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Abstract

In this paper, we propose adesign methodology for real-time mixed hardware-software system
that stresses system design issues rather then specific softwareorhardwareaspects. We propose that
aunified mathematical model based on interacting FSMs be used as arepresentation ofthe beha
vior. This underlying model is used as the basis to perform all steps ofthe design process, namely
verification, simulation, software-hardwarepartitioning synthesis, and technology mapping. The
common modelallows thedescription to be technology independent thus enhancingtheflexibility of
the design. Our approach is based on the knowledge ofthe techniques used to design embedded
controllers for automotive applications and on the synthesis and verification offinite state machi
nes. We demonstrate the method on afew examples from the automotive industry.

1. Introduction

Although ithas been common practice in industrial systems design for decades, mixed Hardware-Software
systems design is still in its infancy as arecognized discipline. In addition, systems which require the joint
design ofhardware and software range from the portable CD playercontroller to the navigation control unit
ofabattle aircraft, and it is difficult to think ofdesign methods that can serve in such awide arrayofapplica
tions. Therefore, we concentrate on the field of Reactive Real-Time Systems [1,4] (RRTS) which will be
defined more formally further on. In this paper, we propose adesign methodology that stresses the system
design issues rather then specific software or hardware aspects.

In our method, asystem is described as anetwork of interacting Finite State Machines (FSM). The actual
representation of this network, which is clearly not unique, consists of an Intermediate Format (FSM-IF)
into which an input language is mapped. We believe that the choice of the input language is relatively unim
portant, as long as the languages used can properly express the intended behavior and can be mapped into
the FSM -IF which carries no knowledge ofwhat entry language was used. The FSM-IF carries all the
information on how the system reacts to external stimuli. The FSM-IFis the input representation on which
we can perform all further steps ofthe design process. We want to work as much as possible on the FSM-IF
in order to remove from the system description every possible source ofproblems that could affect the final
implementation, and to gain flexibility in the process of actually producing and evaluating the implementa
tion before we build it. In practice, we want to do Fonnal Verification to check »nether the system satisfies a
number of prope rties that specify its correctness, Simulation to check whether the systems responds correctly

vl.l 16loctll992



Design Methodsfor Reactive Real-Tune Systems CoDesign

to the stimuli that the environment is supposed to produce, andAutomatic Synthesis to produce, with amaxi
mumof flexibility, animplementation consistent with some user-defined criteria.

The reason why we choose aFSM based representation is that FSMs are well known mathematical objects,
relatively easy to handle. Manageable algorithms for formal verification and automatic circuit and code syn
thesis exist thatwork on some type ofFSMs. In particular, formal verification is nowbecomingofage and the
most viable techniques, namely model checking and language containment, are based on FSMs. We allow
the useofnon-determinism in the specification ofasystem to allowastepwise refinement design process, as
proposed by Kurshan [28], and toyprovide ameans to specify the interaction with the environment which is
generally not fully defined. Non-determinism also allows for abstraction mechanismswhich are apowerful
means to cope with the complexity ofsystems. However, non-determinism in system specification must
always beresolved once animplementation istobedevised.

In the implementation, amajor issue is obviously what criteria are tobe considered in software-hardware
partitioning. Ideally, the software solution provides the maximum of flexibility during the design process.
However, an all-software solutions may be too slow with respect to the timing requirements. Hardware
solutions are faster but more risky, because apoorly designed circuit is not nearly as easy to fix as code.
Regardingcost, software solutions tend to be cheaper for low to moderate production volumes, whereas har
dware solutions are to be preferred for large volumes. In addition, the criteria can change over time (e.g.
variations in production volume, or new technology available) and call for arather different implementation
option. In such acase, the FSM-IF based model provides aneutral system description on which, ifall the
proper steps ofverification and simulation have been applied, only the implementation sythesis must be re
done.

In perspective, our methodology would be embodied in adesign framework (as depicted in Figure 1) consi
sting ofanumberofspecification languages, including graphical interfaces, that will be compiled into acom
mon FSM-IF; an array ofdesign aid tools like verification systems and simulators; aset of"extended"
technology mapping tools. All ofthese will exchange information through FSM-IFs.

Finally, it must be mentioned that the flexibility introduced in the design process by the principles we advo
cate (i.e. technology independent specification) allow aclear trade-off between specification and actual
implementation. Within the array of all possible implementation option for agiven initial specification, we
may not find one that will produce aviable product. This means that the specification needs to be changed,
which in turn produces anew set ofimplementation options.

The paper is organized as follows. In section 2we define the class ofsystems ofinterest. In section 3we
explain the ideas of our method and illustrate them on asimple example. In section 4we use asimplified
version ofan industrial system to demonstrate how the method can actuallywork. In section5we address the
issue of specification-implementation trade-off by examining areal industrial project.

2. Reactive Real-time Systems and Embedded Systems
Pneuli [1], along with others, introduced the name Reactive Systems (RS) to designate systems that react to
external signals from their environment by sending themselves signals to the environment. As opposed to
"Transformational" or "Terminating" systems which, given aset of inputs, compute a(possibly non-deter
ministic) set ofoutputs, RS ideally never terminate. The purpose for which they are run isnot to obtain afinal
result but rather to maintain some interaction with the environment. In general, the evolution ofthis interac
tion is not known apriori. That is, the intermediate signals from the environment to the system depend on
the intermediate signals from the system to the environment. In otherwords, the environment can be model
led as areactive system itselfwhose behaviour is not completely known.

The notion of RS captures the notion of Real-Time (RT) system. As well pointed out [4], it is commonly
accepted to call real-time aprogram or system that receives external interrupts or reads sensors connected
to the physical world and outputs commands to it. Real-time Sysic.ns (RTS) dea*.- a.id programming is an
essentia! industrial activity whose importance keeps increasing. Factories, plants, transportation systems,
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Figure 1. CoDesign Framework

cars, and awide variety ofeveryday objects are controlled byelectronic systems. With[4], we will call reactive
any system that maintains apermanent interaction with its environment, and reserve tie term real-time to
those reactive systems that inaddition are subject toexternally defined timing constraints.

In this paper we will use the term Reactive Real-Time System (RRTS) tocharacterize the specific class of
systemsof interest. Accordingto [14], RRTS characteristics areas follows:

t The problem formulation for aRRTS system is drawn from science and engineeringdisciplines. Real
time problems are formulated inlanguage drawn from biophysics, chemistry, automotive oravionic
engineering rather then in language ofcomputers. The vocabulary distinction issignificant since it
is correlated with the separation ofthe problem formulation and the details ofimplementation in
system development problems.

+ The environment ofaRRTS contains devices that act as the "senses"and as the "arms"ofthe system.
A RRTS is typically attached to sensors such as termocouples, optical scanners, contact probes, and
thuscollects acontinuous stream of relatively unstructured data. The environment of a RRTS con
tains also devices that can produces change the physical world in aliteral way by changing tempera
tures, valve positions, and so on.

+ RRTS require concurrent processing ofmultiple inputs. A RRTS has to
process aninput/event when it occurs, notwhen it isready to doso.

As examples of RRTS we mention:

♦ Most Automotive electronics and Avionics applications, among which
• engine control system (injection/ignition and emission control)
• breaks anti—blocking systems

vehicleautomaticnavigation systems

Design MethodsforReactive Real-Time Systems CoDesign

ASTG
Esterel \ \ / / StateCharts

♦ Industrial processes monitoring and control systems (like automated
assembly lines,automaticstorage plants)

+ Homeandofficeappliances
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Safety is acrucial concern for RRTS due both to the particular type ofapplications they areused for (think of
automotive or aircraft controllers) and to the fact that they cannot be fixed once installed and sold (if amal
function is detected amarket share ofthe manufacturermaybe in jeopardy.) In some systems even the sligh
test delay or wrong synchronization make results unacceptable and may have dangerous or catastrophic
consequences.

RRTS are mostly used to provide some degree ofautomation in common widespread goods like cars (Auto
motive) and consumer electronics, and in other fields like Avionics. In these types ofproducts, (for example
on board ofany kind ofvehicle) an inexpensive, small, light, robust device is needed. Since theymust be inex
pensive, they only come with the capabilities strictly necessary for the function they have been thought for
(the smallest memory, the smallest CPU, etc) Consequently, most RRTS are implemented in the form of
Embedded systems (ES). ES are single-purpose devices designed toperform asingle weD-defined func
tion life long. In other words, Embedded Systems are systems whose behaviour is built in with the system
itself and can never be changed. The typical ES is aup based system that comes with afixed program in its
ROM. For ES, special devices have been developed, called micro-controllers (uC) or single chip compu
ters, which consist of a uP and anumber of support devices like I/O devices, memories, A/D converters,
timers etc., all integrated in asingle chip. This methodology has been targeted for the design ofembedded
controllerapplications mainly.

Webelieve thatthedemand for embedded controllerswill increase moreandmoreinthenearfuture bothin
terms ofrange ofapplications and sophistication ofthe functions performed. This will be particularly true in
some areas like in-vehicle automotive applications. In this specific sector ofconsumer goods, high produc
tion volumes go along with ademand for high quality (since the end customer pays for a fairly expensive
good), low costs, and time-to-market issues. Thus, there the demand for flexible design methods is extre
mely high. Inhardware design, the problem ofautomatic synthesis ofcircuits is well defined, so that nume
rous synthesis techniques and tools have been developed. This is not the case for general software design.
However, the type ofalgorithms that most automotive applications implement is relatively simple from a
computational point ofview, which makes itpossible to address the problem ofeffective software synthesis.
Moreover, the automotive sector is on the edge ofatechnological revolution, namefy the appearance ofa
newgeneration of hardware platforms like32-bit micro-controllers, that stirs a lot of interest from the
industry for effective software-hardware codesign. For these reasons, wechoose theautomotive ESas a
privileged area to explore the problems involved in software-hardware codesign and envision possible solu
tions.

In our experience, the design ofembedded controllers suffer from the lack ofawell-defined design flow to
minimize errors and to improve time-to-market. Often the specifications are not given formally and are
subject to continuous revisions. In addition, the decisions on how to implement the system are often taken a
priori on the basis of experience or intuition resulting in suboptimal solutions. Hardware and software
design proceed almost independently so that only at integration time system errors can be caught. Even ifthe
micro-controllers that are the hart ofembedded controllers have been constancy improving in terms of
speed their power is not fully exploited since new control algorithms are difficult to anaryze and to imple
mentwiththe present design approach.

Embedded controllers are in general less complex than computers, or telecommunication apparati and,
hence, are more amenable to formal design methods. The importance ofdeveloping these methods cannot
be overemphasized: The number ofdesigns is very high and itwill increase dramatically over the next few
years since most home appliances, transportation and industrial equipment will have atleast one embedded
controller that performs aspecific task. Given the big production volumes ofthis type ofgoods, it is apparent
that the consequencesofapoordesign choice can be dramatic in commercial terms. This, with the increasing
complexity ofthe systems calls for amore structured approach to this problem.

The design methodology proposed here capitalizes on aset ofresults recentlyobtained in formal verification
and automatic synthesis ofFSMs. We emphasize the view that ageneral technique for system design inclu
ding hardware-software trade-offs is not practical today. Our methodology is applicable to an important
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classofreal world designs butwe do not claim that this technique could beused universal^with success.We
also point out that the theoretical basis for this work are known, the contribution here consists of putting
together ina coherent frame aset of tools and techniques that are not used in the embedded controller
design world. We believe that the choice ofFSMs as the representation ofthe design isamost natural one for
embedded controller design: inmostofthe applicationswe are aware ofsome form ofFSM formalism isused
to represent designs, whence the recent interest placed bydesigners on tools such as StateOiarts from iLogix
that provides apowerful editor for FSM description.

While automatic partitioning between hardware and software is amost interesting research topic, in the
present form ofour methodology, itis done interactively. In automotive applications, flexibility and cost are
main issues. Hence, the ideal solution would be to implement as much ofthe application as possible on the
micro-controller. Ifthis solution is not feasible because ofperformance and capacity constraints, then parts
ofthe control system is downloaded to some additional hardware (either aDigital Signal Processor, aField
Programmable Gate-Array or agate-array) until the performance and capacity constraint are met In this
situation, it is important to have tools that map agiven subalgorithm onto the chosen hardware accurately,
efficiently and rapidly since this step is key to evaluate agiven partition. Since the number offeasible parti
tions islimited, an interactive session iscertainly possible.

3. A Design Methodology for RRTS

System Specification

The objective ofthis phase is to produce an algorithm that models the behaviorofthe system. In general, we
need some entry language that enables us to describe the detail ofthe algorithm with agiven degree ofdetail/
abstraction. No single input language is absolutely better than another, thus we may want tobe able to use
several different languages. For all of them the semantics is defined in terms ofageneral mathematical
model which provides the capability toput different types ofspecifications together. In other words, each
description ofthe parts ofthe system must be unambiguously mapped into an intermediate format which is
the input to the subsequent steps ofthe design process (verification, simulation, synthesis, etc.)

Notice that different languages may have different expressive powers. For example, we can have languages
based on synchronous event-reaction like Esterel [3], or on non-deterministic dicrete selection/resolution
like S/R [31], or on asynchronous event-reaction like Signal-Transition Graphs [7,8], or on Petri nets, or a
generic language like VHDL (provided asubset with aformal semantics is used, as described in [5]), and so
on. Each language is apt to specify a type of application (or domain) and the communication between
domains is made possible by the underlying common semantic model which subsumes the expressive powers
of all the languages used. This approach is different from the one used in other systems like Ptolemy [6]
where each domain has itsown model, although some similarities exist across domains, lb allow communica
tion between domains intheir approach specific interfaces have tobewritten.

Proper expressiveness is the most imporant feature ofaspecification language. This does not mean that the
best language is the most expressive one. In fact, alanguage which is too expressive can often rum out to be
confusinglycumbersome. Even though we want to be able to describe the widest possible array ofbehaviors,
we do not want to do this all at once and by using the same tool. As an analogy, consider the different types of
domains and corresponding techniques used in specifying the parts ofan automobile: the type ofspecifica
tion used for the engine mechanical design would be both redundant and useless for the description ofthe
electrical connections. Therefore, each language should have arestricted expressiveness that allows tocon
centrate on the characteristic issuesofagiven domain. For example, itis pretty easy to design apure control
ler using Esterel, but ifin the same system some data processing needs tobe done we had better turn tosome
other language.

Regarding the differences between information domains, amajor distinction can bemade between control
and data. Some claim that this distinction is artificial and misleading, therefore advocating the use of
description techni4ues that do not distinguish between the two. We believe that the distinction is certainly
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arbitrary and depends on what models are used. When usingaFSM-based model, itis necessary to draw a
boundarybetween the two: control is everything that can be expressed directly by aFSM; data is everything
which stays on the side. For example, consider the following specification:

if (ok(x)) then y»foo(x);

the if... then part is acontrol operation. ok() and y=foo{) are data operations. These two
aspects havedifferent expressive needs.

In most cases, in aRRTS wecan always distinguish amongthreebasic parts: data acquisition, reaction, actua
tion. These three parts have different characteristics. In data acquisition we group together the computatio
nal (i.e. numerical) complexity that results in the ackowlegment ofthe occurence ofsome input events. In
reaction (or decision) phase the system selects the output actions that appropriately respond to the input
events. In actuation the actuators are driven. In general, these three parts belong todifferent domains, and
will be specified withdifferent techniques.

Another desirable characteristic of every input specification language, along with the expressiveness, is
user-friendliness, that is the ability to make understandable what the description stands for. Tliis is by no
means asecondary aspect of the design process. Human ability to handle information is affected by the
amount of information that has tobeprocessed; thefewer theinformation, theeasier it istounderstand it.
Therefore, economicity is ahighty desirable feature ofa language. Since economicity does not go with
expressiveness, we need awide array oflanguages ofrelatively limited expressiveness rather than arich and
tortuous labyrinth ofintricacies such as aunique all-purpose language would be. Inasense, this idea isana
logous to the conceptofinformation hiding (as in Object Oriented programming and design methodologies.)
In fact, in OO the quantityofinformation is organized into astructure that makes ittractable, whereas here
the diverse qualities (or "flavours") of information are presented in different fashions. Roughfy speaking,
we can see each domain as an object type, and the general model as the super-class ofwhich all domains are
special cases. As to the specific languages that can be effectiveryused to specify aRRTS, itis onlyamatterof
taste,aslongasthey fit in the general semantic model.

We believe that the underlying mathematical model should be based on Multiple Interacting FSMs. As better
explained in [43], there are numerous advantages for using such amodel, mainly in terms ofsimplicity, flexi
bility and expressiveness. Vutualry every type ofsequential behaviour can be expressed as aFSM ofsome
kind. It is important to point out though that the FSM model, although fairly general, may notbe practical in
the case ofmore complex data processing algorithms for the size ofthe FSMs may grow too big. It is indeed
perfectly suited for control algorithms where mainly signals are exchanged. An even stronger argument in
favour ofthe use ofFSM is that we have algorithms for sequential system manipulation (namefy verification,
optimization, code and circuit synthesis) that work on networks of synchronous FSMs.

The idea ofrepresenting RRTS as FSMs is not new. Several slightly different variations on this theme have
been proposed. In the field ofmixed software-hardware systems, different communities (e.g. CAD vs
CASE) stress different aspects ofthe design problem. Several CASE product tend to address the problem of
how to help adesigner to come up with aset ofmeaningful specifications. Most CAD product tend to take the
specification for granted and devise methods that automatically synthetize, verify, and test implementations.
Both approaches are correct in their own place. Techniques like Structured Analysis [14] and the tools that
implement it (for example Cadre's TeamWork, EDI's Software Through Pictures) can help in the very early
stages ofdefining aset ofspecifications, but do not make for aformal unambiguous (i.e. compilable) descrip
tion that allows the use ofanumber ofdesign aids from verification to synthesis. Avery interesting idea is to
make Data Flow Diagrams formal in order to use them as acustomizable input specification language, as
shown in [15]. SDL is a formalism invented for software design that the authors claim can beeffective for
hardware design as well [40]. The communication between processes is based on aqueuing mechanism.
Communicating Real-time State Machines (CRSM), proposed by Shaw [41], are an attempt to introduce a
similar notation which is also executable. Communication between FSMs »n hised on menage passing Sm-
techarts, proposed by Harel and Druzinski [12,13], are amost interesting way to organize aFSM based
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system description into amanageable hierarchy. Communication between FSMs in done by broadcasting.
Commercial tool like i-Logix's Statemate and Express VHDL implementing this technique are already avai
lable. Wolf [9,10,11] proposes using FSM networks for behavioral synthesis ofcontrol-dominanted ASICs
and systems.

In our approach, we propose the use of two layers ofFSM-IF. The upper level (UIF) provides aconvenient
general formalism to combine the different types ofspecifications. In particular, it must be able to represent
event/reaction as well as value/function semantics. The partitioning into implementation domains is done on
this level. The lower level (LIF) isanetworkofsynchronous Moore-like FSMsonwhich we actuallydo veri
fication, simulation, and hardware synthesis.

In our model ofUIF, aFSM (orprocess) is an entity that consists ofaset ofstates and asetoftransitions. A
transition u->(%)->v specifies that asystemMwill move from stateuto statevwhen the eventtoccurs, and
theactionflwaiinstantaneousrybeexecuted. The model of time is similar to that proposed byBerry [3] Itis
assumed that nothing interesting happens between event occurrences, therefore the time is discretized into
intervals ofuninteresting length. Each interval is identified as being before some event and after some
event. The model of parallel composition is based on broadcasting; each process can see the value ofthe
states of every other process but can modify only its own. Each event can be sensed by every process and a
grveneventcan be emitted by different processes. However, aprocess is not sensitive to events ithas emitted
in orderto avoid temporal paradoxes.

We can express such asystem of FSMs using BUF-MV [43], avery simple format whose base semantic is
purely synchronous. BLIF-MVis an extension of the Berkeley Logic Interchange Format (BUF) [441 The
base elements ofBLIF-MV are multi-valued latches, and multi-valued functions. These elements can be
nested and organized into ahierarchy by using asub-system construct. The communication is based on
broadcasting At ameta-level (or interpretive level) it is capable ofmodelling synchronous as well as asyn
chronous^behavior, delays, interleaving semantics as well as true concurrency through the use ofnon-deter
minism. The particular interpretation we are going to define, which we call *BLIF-MV, must be able to
express the type ofbehaviourwe have described above, and should also be suitable to be translated into soft
ware and hardwareprimitives.

In 'BLIF-MV, we interpret every signal whose name begins by —• as adiscrete event. We impose that an
eventcantakevalueslorOonly. When as input, an event triggers the function that usesitWhenaToutput it
is a(re)action that is executed synchronously (or in zero time) with the occurence of the input trieger(s)
Non-event signals are interpreted as pure static values. Function can be classified into two types: triggered
funcnons modify outputvalues when the trigger occurs; event transformers produce actions depending upon
input values when triggers occur; Atriggered function can modify the same variable it accepts as input; the
input is interpreted as the value before the trigger occurence, and the output is interpreted as the value after
he tngger occurrence. Consequently, latches are not explicitly needed but can be used as aspecial case of
nggered functions. An output action can be atrigger for another function. The model of time is discrete,

thus it is admissible that several triggers occur at the same time. The output event can be selected non-
determimstically (seeFigure 2.)

The UIF is unambiguously mapped into LIF which represents anetwork of synchronous interacting FSMs
whose behav,or»scons.stentwith the behaviorofthe upper layer. The LIF is technicallyatransparent imple-
mentation of theUIFand it is obviously notunique. At the UF level, adiscrete events is typically interpreted
as astate of an event carrier flow. That is, ifan event carrier reads 1, it means that the associated event is
present (i.e. it occured sometime within the last clock cycle). If an event carrier stays 1for ncycles in arow
this is interpreted as nsuccessive occurrences of the event. This makes it possible to apply many FSM mani'
pulation algorithms based on the Moore FSM model.

The main disadvantage ofaFSM based model is the potential for an explosion in the size ofthe representa-
fton. In fact the size (number ofstates) ofaFSM with «state variables each ofcardinalitykcan grow as big as
k.For this reason, we recommend that the moJcl be based on multiple machine, rather than on asingle
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value in

value out

value in

Figure 2. *BUF-MV constructs

machine. That is, asystem should be specified asaset ofinteractingcomponents that should be keptseparate
(i.e. not explicitly collapsed.) However, the structure ofthe system can be changed, for example re-parti
tioned into different components, to fit better ina verification or implementation scheme. As a conse
quence, the FSM representation that can be associated toagiven behavior isnot unique. As for the LIF in
particular, it isconvenient touse anencoded format rather than a symbolic one.

The following example illustrates how a simple system specified across diverse domains can be specified
using different languages and mapped into *BLIF-MV. Supposewe want to specifyasimple safety function
ofan automobile: the alarm that beepswhen the seat belt is not fastened Atypical specification, as itwould
be given to asystem engineer, would be: "Fivesecondsafterthekey is turnedon, ifthebelthasnotbeenfastened,
an alarm beep will soundfor ten seconds oruntil the key is turned off."Asa first step, the engineer would tran
sform this sentence into acorresponding FSM like the one depicted in Figure 3. Assuming that agraphic
interface (like Statecharts [12]) is not available, s/he would translate itinto some formal language. For exam
ple, s/he could write the following pure (i.e. signals only are used) Esterel code:

input BELTJDN, END_10_SECONDS, END_5_SECONDS, KEY_ON, KEY_OFF;
output START_5_SECONDS, START_10_SECONDS, ALARMJDN, ALARMJDFF;
relation END_5__SECONDS # END_10_SECONDS # BELT_ON # KEY_OFF # KEYjON;
loop

await KEY_ON;
do

emit START_TIME;
await END_5__SECONDS;
emit ALARM_ON;
await END__10_SECONDS;
emit ALARM_OFF;

watching [BELT_ON or KEY_OFF]
timeout

emit ALARM_OFF
end

end.

Note that this behavior can be best modelled by an asynchronous semantics. Esterel is alanguage with syn
chronous semantics that can approximate asynchrony by imposing that some inputs cannot occur atthe same
time. Thisconstraint isimplemented bythestatement

relation END_5_SECONDS # END_10_SECONDS # BELT # KEY_OFF # KEY_ON;

A *BUF-MV mapping of thisspecification is
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KEY_ON/STARTTIME

END5_SEC/BUZZ_0N

Figure 3. Belt example.

.module belt

.Inputs *BELT_ON *END_10_SECONDS *END_5_SECONDS *KEY_ON *KEY_OFF

.outputs *START_5_SEC0NDS *START_10_SECONDS *ALARM_QN *ALARM_OFF

.mv STATE 3

•names STATE *KEY_OFF *KEY_ON *END_10_SECONDS *END_5_SECONDS *BELT_ON STATE
0-1 1

11 0

1 1 0

1 1 - 2

2 1 0

2 - - 1 - - 0

2 1 0

.names STATE *KEY_OFF *END_10_SECONDS *BELT_ON *ALARM OFF
2 1 - - 1

2 - 1 - 1

2 - - 1 1

.names STATE *END_5_SECONDS *ALARM_0N

111

.names STATE *KEY_ON *START_TIME

Oil

Notice how _state appears as both an input and an output in the first function. The timer that counts 5
and 10 seconds, can be specified by alanguage that features both arithmetic capability and non-determi
nism to model the occurence ofthe external event SEC. Apossible way to do this is by writing S/R code.

proc count_5__10

import s

se1var #: (0, SEC, END_5_SEC, ENDJL0_SEC)
stvar n: integer

init 0

trans

10 {END 10 SEC}
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->0 : S=START__TIME
->n : else;

5 {END_5__SEC}
->0 : s=START_TIME
->a5 : true;

a5 {0: SEC)
->6 : #=SEC;
->n : else;

true {0: SEC)

->0 : s=START_TIME
->n+l : #=SEC

->n : else;

end /* COUNT 5 AND 10 SEC */

A straighforward *BLIF-MV mapping ofthis trivial algorithm is

.model count_5_10

.inputs *SEC *START_5__SEC *START_10_SEC

.outputs *END

,mv i

.names *SEC *START_TIME i i
- 1 - 0

10 0 0

10 12

10 2 3

10 3 4

10 4 5

10 5 6

10 6 7

10 7 8

10 8 9

1 0 9 10

.names *SEC i *END__5_SEC
15 1

.names *SEC i *END_10__SEC
1 10 1

A.

The semantics is immediate. The statement

.names *SEC i *END_5_SEC
15 1

in count_5_10 means that, at each *SEC tick, *END_5_SEC must be
emitted if the valueof i is 5. The statement

.names __STATE *KEY_OFF *KEY_ON *END_10_SEC *END_5_SEC *BELT_ON __STATE
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1 1 2

in belt means that the system makes atransition from STATE«*1 to STATE=2 when *END_5_SEC
occurs.

These *BLIF-MV procesess are mapped intoLIF which isthenvalidated through formal verification and
simulation. Themapping from UIF to LIF isdone byexplicitery introducing latches triggered byacommon
clock tick. Every discrete events isassociated to an event carrier line, abdthepresence of theeventisinter
preted as astate (typically 1) ofthe carrier. BUForanimmediate synchronous interpretation ofBLDF-MV
can beused as aLIE A BLIF-MV synchronous mapping of thebeltsystem isthe following:

.module belt t

.inputs *BELT_ON *END_10_SECONDS *END_5_SECONDS *KEYjON *KEY_OFF

.outputs *START_5_SECONDS *START_10_SECONDS *ALARM_ON *ALARM_OFF

I, .latch NEXT STATE STATE

.mv STATE 3

•names STATE *KEY_OFF *KEY_ON *ENDJL0_SECONDS *END_5__SECONDS *BELT_ON MP-A slate
0-0 0 ; "
0-1 1

10 0 0 1

11 0

1 1 0

1 1 - 2

2 0-0-0 2

2 1 0

2 1 0

2 1 0

.names STATE *KEY_OFF *END_10_SECONDS *BELTjON *ALARM_OFF

1 0

0 0

2 0 0 0 0

2 1 - - 1

2 - 1 - 1

2 - - 1 1

.names STATE *END_5__SECONDS *ALARM_ON

111

0-0

2-0

.names STATE *KEY_ON *START__TIME

0 11

1-0

2-0

Noticethat newtransitions havebeenadded (highlighted).

A similar LIFmapping ismade for theother FSM, that isthecounter. Wecan now putthese twoFSMs toge
ther just byassociating the signals byname. Theresulting network of *BUF-MV processes isa general
representationof the behaviorwe expect from the system.
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In this example, we explicitelycoded a10 step counter in S/R. In the real world itwould beveryunconvenient
for adesigner to do so. Instead, it would be useful to have librariesofpre-built functions, (like adders, coun
ters, etc) already optimized and mapped in LIFthat the designer can instanciate byname expansion and use
as sub-components in alarger design. In thisway the networkmanipulation is done on the LIF description
of theglobal system. Themanipulation ofthe UIF, instead, must treat these blocks asblack boxes.

Specification verification

Once asystem hasbeen specified,wewant tobe able toverifywhetheritsatisfiesasetofpropertiesbeforewe
move to an implementation. This can be done bymeans offormal verification, simulation, and fast prototy
ping. Allofthese algorithms take as inputanetworkofsynchronous FSMs (i.e. the LIF), so the first step is to
map the systeminto such arepresentation. No hypothesis is made so far on the typeoffinal implementation.
Whatever the result ofthe verification, ittell us something on how the behaviour has been specified. Ifthe
specification fails atthis stage, it means that noimplementation of itwill work.

Among the possible approaches to formal verification ofsequential systems [22], model checking ofbran
ching time temporal logic properties [35] seems to be the mostviable one for an industrial design scenario. It
subsumes other approaches, like language containment [29,30], and provides abase for more sophisticated
techniques like real-time verification [36,37,38}. The verification ofreal-time properties, that is quantita
tive timing constraints, is the fundamental target ofthe research in this field. However, the complexity ofthe
algorithms is stilla majordrawback.

For example, let us consider the seat belt example again. Suppose we want to verify that ifthe alarm goes on,
it will eventially go off. We can express this property in CTL [17], aformalism to represent branching time
temporal logic properties. The property above can beexpressed inCTLas follows:

VG(*ALARMJ)N=> VFCALARM_OFF)).

The algorithm that checks this property, takes as input the LIF representation ofthe system, and computes
the set ofstates that satisfy each sub-formula ofthe nested expression by examining the sequences ofstates
that are consistent with thesub-formula. Inthis case, it first extracts thestates inwhich *ALARM ONis
true and that lie on paths that take toastatewhere *ALARM_OFF is true, and then itextracts the stares that
lie on pathswhere all states have the former property. This property is clearly satisfied by this simple system.

The main obstacle to the formal verification oflarge industrial systems is the problem ofthe explosionofthe
size ofthe representation. In fact, most known algorithms for formal verification work on asingle FSM
whose size can grow exponentially in the numberofvariables. The useofimplicit representations, like BDDs
[18] and MDDs [19], allows to handle systems ofgreater complexity [23]. Yet, in many real cases these techni
ques cannot handle the complexity ofthesystem. For this reason many reduction and minimization techni
quesarebeingconsidered [26,27,25,20,21,30,24,32,33,34}.

Specification Simulation and Fast Prototyping
Simulation isparticularly useful when the type ofinteraction with theexternal environment iswell know. In
this way we can provide sequences of inputs that the system can expect in the real world and check if the
simulated system responds correctly. Simulation and verification are complementary aspects ofthe design
process. In section 4itis shown how the verification can give hints on what situations need tobesimulated,
and simulation gives feed-back to the verification.

By Fast Prototyping (FP) we mean buildingaprogram that behaves as apart ofthe intended system ofwhich
we want to have aflavour before we move forward to all other design phases. This is especially interesting
when the system has auser interface of some sort, and it ismainly used to test the user interaction which
cannot be evaluated in anyway but trying itout. In other words, in most cases the user/system interaction
cannot be measured but only experimented with. For the ^pecii.. .a.w oi the belt system, itmay be interesting
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for the user to try whether s/he likes the timing sequence of the alarm. Is 5seconds too short? Is 10 seconds
too long? Unless there are specific regulations on the subject, the only answer can be an empiric one.

System Implementation and Partitioning
The problem of implementation i& somehow dual to that of system specification: given amultiple FSM
description how can we map it into aset of different modules chosing what type of technology and style of
design (e.g. intemipt-based or sequential software) we should use for each ofthem, and how can we make
them communicate with each other. Conceptually, for each of the possible implementation solutions we
need an algorithm that automatically transforms aFSM into agiven technology. As it is the case for system
specification, the different types ofimplementations are not interchangeable. That is, agiven function (part
of the algorithm that describes the system) may or may not be mappable into agiven implementation
domain. For example, arecursive graph-traversal algorithm cannot be implemented as acircuit because
hardware cannot be instantiated dynamically; afast event-sampling function cannot be implemented as
sequential software ifthe required sampling frequency is overagiven ratio ofthe actual response time ofthe
software.

In software-hardware mixed systems the software-hardware partition is amost critical phase. Traditio
nally, the partition was done in the early phases of the design process, which affects all the following steps.
This can be ajump in the dark. For example, ifin the earry phases ofthe design ofan automotive dashboard
controllerwe decide that agiven uCwill be used, we set alimit on the amount ofprogram and data memory
we are allowed to use. If, for some reason, new functions need to be added, or we realize that the code that
implements the required algorithm is too big, we may not be able to come up with afunctioning product. In
addition, in some fields (like some automotive products) the specifications are subject to frequent changes
Thus it would be useful to delay as much as possible making definitive decision on the structure ofthe system
that one may not be able to undo.

In general, to implement asystem as software as much as possible gives the most flexibility and is therefore
preferable. This is even more true now that even almost every uP or uC can be programmed with standard
languages (various Cversions usually). Changes are made easier to make, and, if some coding conventions
that ensure portability are observed, comparisons between implementations on different CPUs are made
possible. In most cases, using astandard product like auC will be the least expensive solution. However
software evaluation is acritical point in evaluating an implementation option. If it is easy to determine a
pnon whether agiven uC has aI/O configuration that matches the system specifications, itis much harder to
estimate ifaprogram can fit in its memory, or if the software will run fast enough to meet all timing require
ments. In most cases, it will be convenient to start with an all-software solution. If it works fine the job is
done. If it does not, that is the program is either too slow or too big, itwill be necessary to replace some sub
routines with hardware parts and try this new solution. The process is repeated until asatisfactory solution is
found. Unfortunately, trying hardware is not as easy as trying software. In this respect, the use ofhardware
emulation machines (like PIE or QUICKTURN) introduces great flexibility. It gives the designer informa
tion on how agiven partition is going to work. Therefore it can help to evaluate different possible partitions
and implementation options before one actually builds prototypes.

In our method, we restrict our attention to one single implementation option: asynchronous system compri
sed ofone or more uP's (or uC's ) surrounded by synchronous sequental logic. There is one base clock for the
entire system, although the clock used by the uP's can be amultiple ofthe base clock. We propose that algo
rithms be developed to translate the LIF into two standard intermediate specialized formats: BLIF for har
dware parts, and astandard pseudo-language (PL) for software. The partition must be provided by the user
who will divide the UIFortheLlFformat into groupsofelements. Each part will be input toaBLIFcompiler
or PL compiler that will automatically provide the interface to the other domain. Atriggered function can be
implemented mhardware as circuit composed ofamulti-valued latch and acombinational logic block. In
Figure 4a"naive" implementation ofageneric next state function is shown. Notice that in the circuit the
potential non-determinism ofthe *BLIF-MVtable (and therefore ofthe LIF) must be resolved An event
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Figure ^Implementation ofa'BUF-MV triggered function

»f^r^eH~redJUSt f ™mbinati°nal *>**hank «o«he<Bscrete event UFimplemenu.ion.Thesoftware is synthenzed in an explicit state coding style to allow direct translation from the FSM format.

Amajor and yet still largely unsolved problem is the communication across implementation domains Forexample consider the problem of synchronizing software and hardware hnpLenU.il o^Z o^a
tha^n.1™ £T ™6 ^l bei"g diKre,iZed-"*necesK"y to P™** mechanisms to guaranteeAat contemporaneiry ofeventsm the specification (i.e. 'BLIF-MV and UF format) will imply(ZT
Zi 1i m?° Ka> 9S*em- ** eXamp,e'"is*»"*"***of the hardware confpUeTtoSttotT Span,be,ween.,wo** *•* »«o"g enough to allow the propagation of all eUs B^Mn
software every single operation takesadiscrete amount oftime, therefore taroducing"states" in the took"
mentationthatwedidnotspecifyinthespecificationformat. mtneimple-

^UfTv w,' m°deI °'00D,munici"i0» of 'BUF-MV is aimed to help coping with this problem.
ZT^^Z^T^I""" ^ °'her" eXpHdte* "»«*"»«*• on discrete evL. The
etTh dlafn 1111^, ^ T a"d in,Plen,eMa,io» °f<«««* event detection and emission for
hXtT ( ^ T " 9nchr<M,°us hM*«") »d put standard interface blocks at the borderbetween domains For example, in asoftware implementation atrigger can eitherbe an interrup o^ence
or the presence ofasgna. detected by pollingaline, and an actioTfc the statementexeSf^Sy
example ofinterfacing software and hardware modules inadiscrete event model ofcommunication*she™

££££»'Tt, ,a'̂ TteftTOO^rati^OnaW^^UketheMot^laMC68HC05,Sclock cycles. The interface block*.*,.* transforms it into awaveform that last for asingle clock cyde^is

^ne^an^^^^
Afurther step will be to map the intermediate specialized formats into actual industrial technologies fi e
ofthe problem oftechnology mapping for hardware. «"««:nwon

Once an implementation has been done, it is still useful to check whether the result is consistent with theinmal specfication. TTis problem is called Indentation Verification. In ahardware^Z£££Z
on venfication can be Cone relative* eaM-v, a, leas, in prlr 4rI•; -, ch^ FSM equTZncT However

.he SEe ofareal system can make the verification impossible even though algorithms a'nd prog™"^
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Figure5. Interfacingheterogeneous modules

Whenwedeal withsoftware, it isevenharder since thecomplexityof eventhe simplest programs canbemuch
greater ascompared to thatof circuits. Inaddition, attheimplementation levelabstraction techniques based
onnon-determinismcannot beapplied. As amatter of fact, veryfew simple systems can be effectively veri
fied by the existing tools. We believe that the approach to implementation verification of mixed systems
cannotbeseparated from thegenera] problem ofmanaging thecomplexityof large systems.Thatis,onlywith
viable verification techniques based on compositional verification [32] or compositional minimization
[24,25] wecan think of performing implementation verification on real industrial systems.

4. An Example: CAN Controller

As an example of a non-trivial RRTS, consider an automotive in-vehicle network. In-vehicle networks
are being introduced to replace the electrical wirings of cars which have become a major concern for car
makers. The complexity of electrical wiring on cars has increased steadily since the late 1970s at a rateof
5-10% per year. Anaverage car produced inthe1990s carries about 4kmofwires. This ismainlyduetothe
increasing introduction of computer-controlled functions, (i.e. engine control, emission control, brakes
control, etc.) which come with their sensors and actuators. This gives rise toanumber ofobvious problems,
like increased weight, increased assembly cost, risk of erroneous connections. In-vehicle networking is
being intoduced to get over these inconvenients. Automotive networks areclassified into three classes,
according to the time constraints of the application they serve:

Class Application Latency time Bit rate

Class A Body electronics
(e.g. locks,

10-50 ms <10kbit/s

Class B Information sharing
(e.g. diagnostics)

1 - 10 ms 10-125kbit/s

ClassC Real-time control
(e.g. engine control)

< 1ms 0.125 -1 Mbit/s

Several protocols have been proposed toimplement automotive networks. Among them J1850 developed by
SAE [45], and CAN (Controller Area Network), developed byBosch [46], which we use here as an example.

TheCANnetwork architecture consists ofanumber ofnodes that communicate with each otherbybroadca
sting messages onaserial bus. Although the nodes are notinitially synchronized, thesystem can bemodeled
as asynchronous system since they use thesame baud rate and re-synchronize periodically onedges detec
ted on the bus. A majorcharacteristic of the bus protocol is the automaticarbitration of transmission colli
sions, which is important for safety critical reactive systems such asautomotive applications. Whenever a
node wants to begin a transmission, it has to wait foi.uc bus Jo be available.The bus isavailablewhenever an
end-of-message (EOM) sequence isdetected (seven bitsat"1"). As soonasthe EOM isdetectedthe node
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sends astart-of-message (SOM) (one bit at "0"), and then begins to transmit amessage ID (eleven bits
where the seven"l"s sequence is forbidden). One or more nodes can start the transmission at the same time.
When acollision arises (that is, some nodes are writing "1", and some are writing "0") the bus reads "0". In
this case, the nodes writing "0" do not detect the collision and continue the traiismission, whereas the nodes
transmitting"1" switch to receiving mode. Since no two nodes share the same IDs, the coUisions are automa
tically arbitrated, and only one node completes the transmission ofthe ID and can continue with the tran
smission ofthe full message. In this way the bus is never idle with pending requests.

The system described here implements the part ofID transmission and arbitration ofone CAN node. The
structureofanodeisshownin Figure 6. The node isorganized into three function: aniain unit node control
which controls the activities of the other functions, detectjom which monitors the bus to detect aEOM, and
idjegisterwhich outputs the 11 bitsofthe ID and monitors the bus tocheckwhetheracollision has occurred.

These subsystems have different characteristics and can be effectively described by different formalisms.
The module node_control is atypical reactive element and can be easily specified in pure Esterel. Anyone
who knows the Esterel language will notice that signals TX_ON, RX ON, SENT MSG, REC MSG have
been "latched" tostates which are redundant to the specification ofthe behavior. The reason isThat Esterel
is based on aMealy-like FSM model, and the Esterel-to-BUF compiler does not use the same represen
tation of discrete events as we need for LIF. Therefore we need to force these states to appear in the BUF
implementation.

module node__ctrl:

input REQUEST, EOID, EOM, COLLISION;
output TX_ON, RXJDN, START_ID, SENT_MSG, REC_MSG;

loop

await REQUEST;

await EOM; emit STARTJCD; % at EOM, start tx ID
await tick; emit TX_ON; % tx begins
await [COLLISION or EOID] ; % tx ID until EOID or COLLISION
present COLLISION then

await tick; emit RX_ON; % tx interrupted, rx begins
await EOID; % rx ID until E0ID
await tick; emit REC_MSG; % rx completed

else

await tick; emit SENT_MSG; % tx completed
end

end.

The other parts of the system have also been specified in Esterel. For this example, only

For the remaining steps, we are going to use the sis synthesis system [42], which has been extended with a
CTL Model Checker [34], acapability for the formal verification of CTL formulae. Since so far sir accepts
BLIF as input format, each part ofthe system is compiled into aBUF description. The connections between
the various modules are resolved by name and the resulting output is the LIF representation ofthe entire
system. The fact that BLIF is mainly ahardware description format is irrelevant. We use it in this example
because it is the only format through which the Esterel compiler and the sis system can communicate.

Before we move forward to attempt an implementation, we need to verify if the behaviorwe have specified is
the behaviour we expect. Some properties we want to verify on this network are: (1) whenever anode
attempts atransmission (TXON), itwill eventually complete it (SENT MSG) or wOl receive an ID from
another node (RECMSG), (2) one node will never complete atransmission and areception at the same
time. These properties can beexpressed inCTLas follows:

t i) VG( T.\jjN =* VF(SENTJfSG +RECJfSG))
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Figure 6. CAN controller.

(2) VGn(SENTJfSG • RECJfSG)

Ifwe were toconsider anetwork ofseveral nodes,we would have toverify properties concerning the interac
tion between them, like that two nodes will never complete atransmission atthesame time. Inaddition, we
could impose some fairness constraints. For example, we can require that, regardless ofwhat point intime
the system attempts atransmission, the EOM signal will be found true sometimes later, thus allowing the
transmission to start (This isan example ofjustice property [2].) Also, itwould benecessary toverify some
real-time properties, like whether the specification satisfies aconstraint onthe maximum latency time. We
arenot exploring these issues in thisexample.

We start the session bycalling thesissystem.

cad 45: msis

UC Berkeley, SIS Release 1.1 (compiled 21-May-92 at 7:34 PM)

The Esterel source code has been previoulsy compiled intoBLIF format.
We read the BLIF file into sis.

sis> rl canl.blif

sis> wl

.model can_one

.inputs BIT ZERO_EXT REQUEST

.outputs TX_ON RX_ON SENT_MSG REC_MSG

(blifformat omitted)

Next, we invoke the CTL model checker to verify whether the system satisfies properties 1and 2above by
calling the_mc command. The file canl_l. ctl contains the twoCTL formulae.

sis> _mc canl_l.ctl
Reading encoding info ... done: 5 fsms, 34 bits

Computing fsm_reach()... done: TRs are NOT EQUAL. ini=166450, fin=2444

Notice that by computing the set ofreachable transitions (f sm__reach) the size ofthe system is dramatically
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reduced. In this case the reachable FSM is about 68 times smaller than the original machine.

M->name: canl

M->lnital states:

cube:

# 1 0100100000000000011000000010000000

CTL Compositional Model Checker

Current options:

* CTL Input Pile [ canl_l.ctl ]
* Debug

* Product machine

* Reachability computation

Verifying formula:

TX_ON=SH140_; ->(!(EG(!( SENT_MSG=SH157_; + REC_MSG=SH154_; ))))

(sessionomitted)

Final set Q:

cube: (size - 4)
# i 0-.

# 2 10.

mc OK! The initial state satisfies the property.

Continue? [y/n]: y

Verifying formula:

!((E[ f=l; R(!( TX_ON=SH140_; ->(!(EG(!( SENT_MSG=SH157_; + REC_MSG~SH154_;
))))))])+(!( TX_ON=SH140_; ->(!(EG(!( SENT_MSG=SH157_; + REC MSG=SH154 ;
)))))))

(sessionomitted)

Final set Q:

cube: 0123456789ABCDEF (size = 195)
# 1 00000000000000

# 2 000000000000010

# 3 000000000000011000

# 4 00000000000001100100000000000—

# 5 0000000000000110010000000000101-

(list of625cubes omitted)

mc FAULT! The initial state DOES NOT satisfy the property.

Continue? [y/n]: n
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sis>

The mutual exclusion between reception and trasmission is verified (property 1.) But it is not guaranteed
that atransmission orareception will be completed once started (property 2). lb find the cause, alitte simu
lationcanhelp.

sis> print_stats

can_one pi= 3 po- 4 nodes=300 latches=34
lits(sop)= 707 lits(fac)= 707
sis> simul -ns -f canl_l.sim
Network simulation

(Inputs: EXT__ZERO REQUEST BIT)
(Outputs: TX_ON RX_ON SENT_MSG REC_MSG)
Inputs: Outputs:

010 0000 « REQUEST
0 0 1 0 0 0 0

0 0 1 0 0 0 0

0 0 1 0 0 0 0

0 0 1 0 0 0 0

001 0000

001 0000

001 0000

001 1000 « TXON
001 0000

001 0000

001 0000

001 0000

001 0000

001 0000

001 0000

001 0000

001 0000

0 0 1 0 0 0 0

001 0010 4i SENTJV1SG
001 0000

sis>

The simulation shows that the system can actually reach astate where SENT MSG is emitted, but the input
BIT (i.e. the implicit trigger of every bit received or transmitted) must be provided "sufficiently often" In
fact, this specification works under the following fairness assumption: at least 11 bits must be read/written in
order to reach the end of the transmission/reception. We can guarantee this assumption by imposing the
stronger constraint that BITwill occur infinitelyoften (which is an "impartiality" constraint.) Since Esterel is
atotally deterministic language, we had to provide amechanism to guarantee the periodicoccurrenceofBIT.
If we had used S/R we could have exploited the pause construct to express this behaviour. In anext version
our CTL model checkerwillhandle fairness constraints. '

sis> rl canl.blif

sis> _mc canl__l.ctl

CTL Compositional Model Checker

Current options:
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* CTL Input File [ canl_l.ctl ]
* Debug

* Product machine

* Reachability computation

Verifying formula:

!((E[ £-1, R(!( TX_ON=SH140_; ->(!(EG(!( SENT_MSG=SH157_; + REC_MSG=SH154 ;
))))))])+(!( TX__ON=SH140_; ->(!(EG(!( SENT MSG-SH157 ;+ REC MSG-SH154 ;
))))))) ~ - - -'

(session omitted)

Final set Q:

cube: 0123456789ABCDEF (size = 2)
# i

mc OK! The initial state satisfies the property.

Continue? [y/n]: n

sis>

Now we try to synthetize an implementation. Since the system is very small we can use sis to synthetize a
circuit. First, observe that BUF is already acircuit description in aspecialized format. However the BLIF
output generated by the Esterel compiler produces aredundant circuit We minimize it, and check that the
implementation is still consistent with the specification. First, we read the system description.

sis> rl canl.blif

sis> ps

can_one pi= 2 po= 4 nodes=300 latches=34
lits(sop)= 707 lits(fac)= 707

We build astate-transition graph from the BLIF format...

sis> stg_extract -e
Total number of states • 155

Total number of edges = 220
Total time =4.82

Checking to see that the STG covers the network...

... and minimize it

sis> state__minimize

Running stamina, written by June Rho, University of Colorado at Boulder
Number of states in original machine : 155
Number of states in minimized machine : 122

Then, we extract anew circuit description from the minimized STG.

sis> state_assign

Running nova, written by Tiziano Villa, UC Berkeley
sis> ps

can_one pi= 2 po= 4 nodes=163 latches= 7
lits(sop)=1270 lits(fac)=1270 #states(STG)= 122
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The new circuit has fewer nodes (163 out of300) and fewer latches (7 outof34). Finally, we verify the imple
mentation. That is, we check whether the minimized circuit has the same sequential behavior as the original
one. ^"^

sis> verify_fsm canl.blif

The finite state machines have the same sequential behavior.
sis> quit

cad 46:

Finally we could produce areal-world technology implementation, for example byusing the "jrihnx" library
of functions embedded in sis. Or we could produce asoftware implementation by running the occ program
which compiles Esterel into Ccode. But the discussion of these further steps would be beyond the scope of
this paper.

In this case we have worked only on afairly simple part ofalarger industrial system, and the implementation
verification step consists only ofapplying the fsmjyerify procedure to check whether the optimized circuit is
functionally equivalent to the one generated by the BUFinput. This was possible because the initial descrip
tion and theimplementation were given inthesame format.

5. A CaseStudy: EngineControlUnit

The process ofchoosing an implementation solution for amixed software-hardware systems is affected bya
number of interrelated elements whose nature is often non-technical and hardly quantifiable. The type of
function that needs to be implemented determines tht algorithm, which determines the possible implemen
tations. Considerations of amore commercial order (i.e. cost, time-to-market, and manufacturabUity),
affect the spectrum ofpossible implementations, which in turn affect the algorithms that can be considered.
We discuss the case ofan Engine Control Unit prototype, developed by MAGNET! MARELU in the CMA
project [48].

An Engine Control Unit (ECU) is an electronic device whose task is to control the torque produced by the
engine. This is done by controlling the duration and timing of the fuel injection and timing of the spark as a
function ofthe physical state ofthe engine. Traditionally, (i.e. over the last5-10years) an ECU was an open
loop system using an empirical look-up table to derive its control output. Engine speed and mass air flow/
manifold pressure are sampled and the resulting data are fed to the processor. Look-up table addresses are
derived from this information, and the look-up table data are then used to modify spark timing and fuel
mjectorpulsewidth (see Figure 7.) An example ofthis type ofECU is the MM IAW 06 [47], which isbased on
the uC Motorola 68HC11. The advantages ofsuch asystem are its simplicity and its low cost. However, this
type of solution has less then optimum operating characteristics and cannot compensate for errors due to
manufacturing variability, fuel quality, aging, engine wear, and transient conditions such as"cold" engine or
steep accelerations.

One major cause ofbad fuel efficiency it that the real volume ofeach cylinderofthe same engine can vary up
to ±10%. For example, to have aprecise value ofthe amount of fuel to be injected into aspecific cylinderof
a4cyhnder engine with maximum speed of6000 RPM, itwould be necessary to know the actualvolume ofthe
cylinder and compute the output every5ms or less. Atraditional ECU program hasaresponse time ofappro
ximately 15ms. Therefore the injection time iscomputed as afunction ofan average non-optimalvalue and
is never exact. To compute the exact injection time for each cylinder the ECU should be able toelaborate the
input data and access the look-up table every 6ms or less. Anothercause ofbad fuel efficiency is the engine
wear that causes the actual volume ofcylinder to vary over time. Since the variation ofthe actual volume of
the cylinder can not be measured, ifwe want to keep the performance of the engine constant over time the
air/flow must be computed in adifferent way.
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efficiency and emission level. The system has been sub-divided into three paSs as foHowsTa data acquisi-
air temperature

engine speed
air pressure

look-up table

throttle position

engine temperature

Figure 7. Simplified Data Flow Diagram ofan ECU
PWM signals

tion part computes the air flow; areaction part appUes the kernel ofthe control algorithm; an actuation part
consistsofproducnganumberofPWM signals to drive electrovarvescontrollmgthefoelmjection,thecani-

Initially, the proposed algorithm would be an open loop one where the volumetricefficiencyofeach cylinder
is dynamically computed before every single ignition by sampling the air/flow, measured by adebimeter
every 2ms during the aspiration stroke. The actual volume is computed by integrating the flow over the dura
tion of the aspiration stroke. The implementation of such algorithm would not have been possible on any
standard uCwithout adding an extra unit, like aDSP (the Texas Instrument TMS320 was considered for the
™Wf"rSS^ thJ! S°,Uti0n °Ut f°r thC time being"InStead'ilwas estimated that *e m™ 32-bitCPU (Motorola 68332)would be capable ofrunning an open loop algorithm with an expected response time
ot4ms which computed separate outputs for each cylinder.

The generation of PWM signals needed by the actuators is atrivial task that can absorb alot ofCPU time
Therefore, it wouldbe best implemented by an FPGA which has been developed in-house for that purpose'
Asamatterof fact, as opposed to the initial plan, the engine on which the CMA prototype will first be moun
ted w.ll not need any of the PWM signals generated by the FPGA. The uC Motorola 68332 comes with a
PWM generator which will be used for the main fuel injector.

This experience shows how four different implementation scenari would be possible for different versions of
thesame system:( )CPU only, (2) CPU and DSP, (3) CPU and FPGA,(4) CPU, DSP and FPGA. The^1
decision was mainly made on grounds ofcost. The initial intended specification was dismissed in favour ofa
simpler solution that is yet asensible advancement with respect to the existing product.

6. Conclusions

We have outlined adesign methodology for the restricted area ofRRTS.
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We propose aframework where an array of specification languages and design tools can interact via FSM
based intermediate formats which subsume the expressiveness of all languages used. In the field of system
specification, we advocate the use ofdifferent languages in each ofwhich arelatively limited expressiveness
is traded off for economicity. In this manner, we can handle each face of the complexity ofasystem in a
simple way, and nevertheless build specifications ofhighh/ complex systems.

The common lmderlying FSM based semantic model allows both formal verification and behavioral simula
tion of the system. The objective is to refine the system description as much as possible before an implemen
tation is attempted.

The common FSM based model is aconvenient way to address the issue of implementation and partitioning
since every type of implementation can be derived from asubset of that model. The problem oftrying diffe
rent system partitioning and evaluating the trade-offs is reduced to trying different system composition
schemes, and applying atechnology mapping approach to each component of this scheme.

Among the unsolved problems, there is the issue ofhow to make the different implementation domains com
municate. Moreover, how and to what extent the evaluation of different implementation options can be
done automatically, is still an open question. However, by using emulation machines this task can be made
easier for the user.
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