Copyright © 1992, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

DELAY OPTIMIZATION BASED ON BDD
AND COMMUNICATION COMPLEXITY

by

Minshine Shih

Memorandum No. UCB/ERL M92/117

16 October 1992

DELAY OPTIMIZATION BASED ON BDD
AND COMMUNICATION COMPLEXITY

by

Minshine Shih

Memorandum No. UCB/ERL M92/117

16 October 1992

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720

DELAY OPTIMIZATION BASED ON BDD
AND COMMUNICATION COMPLEXITY

by
Minshine Shih

Memorandum No. UCB/ERL M92/117

16 October 1992

Delay Optimization Based on BDD and

Communication Complexity*

Minshine Shih
Department of Electrical Engineering and Computer Sciences
University of California, Berkeley
California 94720

October 16, 1992

*This research was sponsored by the National Science Foundation, under Grant No. MIP 88-03711 and the State of California
MICRO program.

Abstract

We propose a delay optimization method based on top-down logic decomposition. Given a logic
function, we decompose it into simpler sublogics and construct a circuit structure with minimum cir-
cuit delay as the primary goal. We generalized the o-G decomposition proposed by Roth & Karp[1] to
allow arbitrary a-functions. Instead of their branch and bound exhaustive search, we use Communica-
tion Complexity based heuristics to determine the best « and G-functions. Since all our algorithms are
operated on BDD (Binary Decision Diagram) data structure, they take much less CPU time than exist-
ing methods. In addition to computational efficiency, our method provides much more flexibility in the
structures of decomposed circuit, and enables us to reduce circuit delay by controlling decomposition
sequence.

A group of circuits from MCNC benchmark set were run and results are given. When compared to
standard logic minimization tool (mislII), our decomposition method produces circuits which are 41%
faster and 20% smaller (area) by using 49% less CPU time on average. Applications of our algorithms

including delay optimization for combinational circuit are also given.

primary inputs
A B

primary outputs

Figure 1:
1 Introductions and Definitions

1.1 Introduction

We propose a delay optimization method based on logic decomposition. Given a logic function, we decom-
pose it into simpler sublogics and construct a circuit structure with minimum circuit delay as the primary
goal.

Karp & Roth(1] introduced the concept of decomposition by « and G functions.(see Fig. 1 for example)
We generalize their top-down decomposition method and allow a-functions to be any general functions
instead of just primitive gates in their algorithm. Instead of their branch and bound exhaustive search, we
use Communication Complexity based heuristics to determine a and G-functions.

Our basic strategy is simple: find a “good” subset 4 of input variables, compute the o and G-functions
such that A is the set of input variables to a exclusively. This strategy can be repeated k times on the
(rest of the original) input variables, obtaining & a-functions. The resulting logic network would have &
branches, each branch having disjoint input variables (see Fig. 2 for example). This strategy can also be
applied recursively to « and G-functions.(see Fig. 3 for example) There can also be many combinations of
the basic strategy.

In theory we may obtain better results by decomposing into k a-functions on the same level of hierarchy.

But for simplicity of implementation, our first attempt focused on decomposing into 2 a-functions, that is,

primary inputs

ol
Lo2 |
a3
G3
primary outputs

k =3, 3-way decomposition

Figure 2:

primary inputs

G11

G3

primary outputs
recursive decomposition

Figure 3:

primary inputs

A B
— —

]

al

G1

G2

primary outputs
Our approach : 2-way decomposition

Figure 4:

k =2 (Fig. 4). This immediately translates to grouping the input variables into two subsets. Therefore in
the rest of this paper we shall use “input grouping” to mean the 2-way grouping of input variables unless
otherwise noted. Our benchmark results are obtained with 2-way groupings of almost equal sizes (balanced
grouping) to achieve faster circuits, but our problem formulation and algorithms does not depend on this
fact, i.e., we make no assumption on the sizes of the groupings.

The key issue in our approach is how to find a “good” subset of input variables. This is done by the
heuristic of minimizing communication complexity. Hwang[2] first proposed the idea of finding a good
input grouping by minimizing the rank of the Communication Matrix. However the size of the circuits can
be handled is limited because of the exponential size of the matrix. To solve this problem we propose to use
BDD (Binary Decision Diagram) introduced by Bryant[3]. We use BDD as our only internal data structure
for both finding the optimal input grouping and computing the @ and G-functions efficiently.

Our decomposition approach can be extended to a general k-way style, in this respect it is more general
than the work of Hwang[2] since the matrix LDR decomposition is 2-way by nature. Another difference is
that our approach can take advantage of a large library of gates for technology mapping, while the matrix

decomposition method inherently uses only 2 different gates (corresponding to addition’ and *multiplica-

tion’ of matrix elements). Since all of our algorithms are operating on BDD, our method is much more

efficient than Hwang’s approach which is operating on a matrix of exponential size.

1.2 Definitions and Notations

Let f : B® — B™ be a completely specified function with » inputs and m outputs, where B = {0,1}.

Definition 1 (A : B) denotes a 2-tuple of subsets of input variables, where A,B (in that order) are two
non-empty disjoint subsets of input variables of f, and A\ B is the set of all input variables of f.
Furthermore, let A, B be as above, {A, B} denotes a 2-way grouping of input variables.

Letny = |A| and np = |B|, thenclearly n4 + ng = n.
Notice that by definition (A : B) and (B : A) are different 2-tuples.

Definition 2 The Communication Matrix C;(A : B) of a completely specified Junction f is defined as
a matrix of 2"4 rows and 2"® columns, where each row (column) index corresponds to a minterm from
the subset A (B) of input variables. Thus each element ¢ij in the matrix corresponds to a minterm of the
Junction f. The value of element cij is an m-bit binary vector and represents the output vector of f when

the corresponding minterm is applied to f.
Definition 3 We say rows i, and i are distinct when there exists a column j such that Cirj F Ciyje

Definition 4 Given a BDD ordering of input variables and a 2-tuple (A : B), we say the BDD ordering is
compatible with the 2-tuple (A : B) ifV a € A andV b € B, a proceeds b in the BDD ordering.

Definition S The Communication Complexity of afunction f with respect to a 2-way input grouping { A, B}
is defined as the sum of the numbers of distinct row patterns of two Communication Matrices C f(A: B)
andCy(B : A).

In the case of k-way decomposition, the inputs are grouped into {4, A3, 43, ..., Aj}. The definition of
Communication Complexity becomes

k
Z(number of distinct row patterns in Cy(4; : (U 4;)))
i=1 i

2 Input Grouping Minimizing Communication Complexity

Our first step for logic decomposition is to group the input variables into 2 groups {A, B} such that the
communication complexity is minimized.

Brayton[4] made the following observation:

Theorem 1 Given a Communication Matrix Cy(A : B), the number of distinct row patterns can be ob-
tained from any BDD compatible with (A : B) by counting the number of BDD nodes (. including terminal
nodes) satisfying the following conditions:

a) not corresponding to an input variable in A and

b) being pointed to by another BDD node corresponding to an input variable in A or by the BDD root.

The BDD nodes satisfying these 2 conditions are called “pattern nodes™ since they each corresponds to
a unique row pattern in the matrix. Each pattemn node corresponds to a compatible class of minterms from
A asdefined in [1].

From this theorem the communication complexity can be computed by simple graph traversals on two

BDD’s, one with ordering compatible with (A : B) and the other compatible with (B:A).

2.1 Single Output BDD

In orderto find a good grouping we need to visit many different groupings. Therefore we built a simple basic
operation called “bubbling”, which is a local swap of 2 neighboring input variables in the BDD ordering([8].
The exploration of search space is done by repeating this basic operation in an efficient fashion. For example,
let [ab ¢ d e f] represent the BDD ordering, we can “bubble” variable ’e’ into the 2nd position by 3 bubble
operations (d €), (c €) and (b e). The resultis [ae b ¢ d f]. This kind of bubbling will be used repeatedly in
our algorithm.

Since we need two BDD's in order to compute communication complexity, one for (A : B) and the
other for (B : A), we must maintain two BDD's along the search process. One convenient way of doing
itis to keep two BDD's in total reverse order w.r.t each other, whenever we need to bubble one BDD, we
bubble the other BDD on the same variable pair (and consequently) in the opposite direction. When we
need to count the communication complexity we simply obtain the sum of the counts on these 2 BDD's,

Given a fixed number n4 for the size of the first grouping, the following exact algorithm enumerate

finds the optimum grouping of input variables w.r.t. communication complexity.

Letla.n, @Gony41 . @, .. @2 a.;, @ @ .. Gy .. Gp)betheBDD

ordering, where —ny <i4y < -land1 < ig < ng.

Algorithm 1 enumerate;

{ if(na =np) {
/* In this case, we can fix an, in place to avoid checking */
I* equivalent groupings twice, e.g. [abcdef] and [defabc] */
enum(—n4z,ng — 1);
} else {

enum(—n4,ng);

}
return,
}
enum(i,, i)

I* all variables not between i 4 and ig are fixed */
{ #lia=-landip=1){
count communication complexity,
exchange a_) and a) by 1 bubble operation;
count communication complexity;
}elseif(ia = —1) {
enum(—1,ig — 1);
move a;g, to slot index —1 by ig bubble operations;
count communication complexity,
}else if (ip = 1) {
enum(is + 1, 1);
move a;, to slotindex 1 by —i 4 bubble operations;
count communication complexity;
} else {
enum(ia + 1, ig);
move a;, into slot index ig by (ig — i4 — 1) bubble operations;

enum(ip, ig — 1);

return,

: “« 0 e e n! .
Theorem 2 If ns # npg, algorithm “enumerate” visits all walng! 8roupings exactly once.

Ifna = np, algorithm “enumerate” visits all § x 51— groupings exactly once.

Proof. The proof is based on induction on the sizes of n4,np and examining all 4 cases in subroutine

“enum”. The detail is omitted here. O

This algorithm is so efficient that it visits a different grouping in less than 2 x 3 bubble operations on
average, independent of the total number of input variables[8), where the factor of 2 is due to the fact that
we bubble 2 BDD’s at once. Notice thatifng =3, [abc,def]and [fed, b ac] are considered as the
same grouping.

Additionally we developed a heuristic algorithm based on the general framework of Kernighan & Lin[6]
partition heuristic to handle circuits whose numbers of inputs are large. This becomes useful when the

number of inputs is beyond about 12.

2.2 Multiple Output BDD

We need multiple output BDD (MOBDD) to represent multiple output functions. Unlike others[S], our
MOBDD (Figure 5) has a different structure. This structure provides the important information of commu-
nication complexity (as defined in this paper) by looking all outputs at once. In the worst case it may have
2™ terminal nodes, where m is the number of outputs. Our MOBDD is built this way so that we can use

exactly the same methods of counting communication complexity and selecting optimum input grouping.

2.3 Construction of MOBDD

We first build single output BDD's for each output separately. Then we merge two BDD’s into one in a
recursive fashion starting from the roots of these 2 BDD’s and apply the merging procedure to their left
children and right children respectively until terminal nodes are reached, where new terminal nodes are
created by concatenating the values of the terminal nodes being reached in those 2 original BDD’s. Merging

2 BDDrsis repeated in a loop until all single output BDD’s are merged into the target MOBDD. The overall

MOBDD ROOT

e
ofjo
Josio

f{—=1 0 0 1
2 0 A o 1
fi=abc

f2=(a+b)c
Figure 5:

computation complexity is linear with respect to the size of the final BDD. When merging 2 BDD'’s, since
the same node may be reached by more than one path in a BDD, care must be taken not to merge the same

nodes more than once.

3 Logic Decomposition by BDD

After we obtain a good input grouping, the next step is to compute the « and G-functions.

3.1 «a-Function

Let {A, B} be the optimum input grouping obtained, and np be the number of pattern nodes in a BDD
whose ordering is compatible with (4 : B). It is obvious that we can encode all the input variables in
A with [loga(n,)] bits. The following algorithm computes the a-function BDD corresponding to input

variables in A.
Algorithm 2 a-function(BDD_ORIGINAL)

1. nbits = [logz(np)]
2. copy BDD_ORIGINAL to BDD_a.
3. On BDD_a, assign increasing coding numbers (starting from Q) to each one of

np pattern nodes in an arbitrary order, record the order that pattern nodes are encoded.

10

4. setvalues of these pattern nodes equal to their own encoding number and change them into
terminal nodes, this is equivalent to terminating BDD_a at pattern nodes.
5. return BDD _o

BDD_« contains all BDD nodes corresponding to variables in A, plus the newly created terminal nodes. It
represents an a-function with A as the set of input variables and 4’ as the set of output variables, where
|A’| = n_bits.

3.2 G-Function

When extracting the a-function in the previous section, we are essentially extracting the top part of BDD_ORIGINAL.
Now we extract the bottom part as described by the following algorithm.

Algorithm 3 G-function(BDD_ORIGINAL)

1. create a complete rooted binary tree BDD_G with 2"-bits Jeaf nodes.
2. label the nodes in the binary tree with variables in A’ such that nodes at the same level
of binary tree are labeled with the same variable in A'.
I* The main loop is starting from the leftmost leaf node of the binary tree and iterates towards the right. */
3.for(i=1;i<2anbits; j4y){
if(t < np) {
substitute BDD_G's i_th leaf node (from the left) by the i_th pattern node (and consequently
all its offsprings) of BDD_ORIGINAL according to the order recorded
earlier in algorithm a-function.
} else {
/* This is the don’t care situation */
substitute BDD_G’s ith leaf node (from the left) by the rightmost pattern node (and
consequently all its offsprings) of BDD_ORIGINAL.

}

4. return BDD_G

11

f=abc'e’ + ab'ce’ + a'bee’ + a'b'e + a'c'e + a'd’e + bed'e’ + b'c'e + b'd'e + c'd'e
There are 3 pattern nodes and requires 2 bits to encode.

Figure 6:

BDD_G corresponds to a G-function with A’ and B as the sets of input variables and outputs remain
the same as original. Figures 6, 7 and 8 illustrate these two algorithms.
Now we need to do the second time a/G decomposition in order to obtain another a-function for input

variables in B and the final G-function.

4 Implementations and Experiments

4.1 Control Flow

Our global strategy is to apply this 2-way decomposition procedure in a recursive fashion to both a and
G-functions until we cannot get any simplification, i.e. |4| = |4’]. Then we stop recursion and convert the
current BDD’s into Boolean network. The BDD'’s may be a single output BDD or MOBDD. In the latter
case the conversion is done for one output at a time till all outputs are converted into the Boolean Network.
Our current conversion procedure simply starts from the terminal nodes of BDD and works upwards by
composing the function at each BDD node from its left child’s and right child’s respective functions. Since
the “0” and “1” terminal nodes for a particular output may be scattered among more than 2 terminal nodes

in an MOBDD, we need to do a BDD reduction[3] before we proceed. When the function at the BDD root

12

A
(a) o o
abc
al o2
U Ny N 7y B
o2 A
o—BDD o— function
Figure 7.
f
A!
al a2 /j-\
(@)
dont care 1 I I
situation
A% anseeners™”
G
f
G-BDD G-function

13

is composed, we create a Boolean node in the network representing the function.
Once the complete Boolean network is obtained we invoke ESPRESSO to simplify each individual

Boolean node function. It is important not to disturb the circuit structure at this stage.

4.2 Advantage of Decomposition

The main advantage of a balanced decomposition is to force all input signals to be encoded into a smaller set
of signals simultaneously. The parallel processing of signals through logic gates makes different branches
of the decomposition tree have almost equal path delays. This reduces the difference between the largest
and smallest arrival times at the primary outputs and improves circuit speed.

In case that primary input signals arrive at different times, we can decompose the logic in an unbalanced
way to allow late-coming signals to be processed at a latter stage. Again the the difference between the

largest and smallest arrival times will be minimized at the primary outputs.

4.3 MCNC Benchmark

We compare our decomposition approach against mis2.2 running standard script for a set of MCNC bench-
mark circuits. The correctness of our results were verified by mislI ’verify’ command. The area and delay
informations came from mis2.2 technology mapper using msu standard cell library 2.2. The results are in
Table 1. The average circuit speedup is 41% and circuit area savings is 20%. and the average cpu savings
from our method is 49%.

We also tried to combine our method with mislI standard script. The results showed that although we can
gain some further area savings, the improvements of circuit speed from our method were totally eliminated
by running misII. This fact further proved that our method is unique in the way that it generates a fast circuit

structure which is not obtainable or even maintainable in other methods.

S Future Work and Applications

Currently our overall CPU time is dominated by the searching of optimum input grouping using BDD. We
use traditional linked list to represent BDD. There should be 1-2 orders of magnitude speedup if we use
hashing techniques on BDD[7] (It is feasible but the modification is nontrivial).

Because of the improvement in circuit speed by our approach, we are investigating a possible applica-
tion, namely, to speed up a large circuit by speeding up a set of small subcircuits along the critical paths.

Another possible application is to take full advantage of the generality of a/G decomposition. Since we

14

have full control on the overall structures of decomposed subcircuits, we can decompose in such a way to
allow those signals along the original critical paths to arrive late without being timing-critical. Thus the
delay along the original critical path is reduced and the overall speed can be improved.

6 table

misllI BDD decomposition BDD decomposition
standard script alone + mislI script
circuit #1/0 cpu | #lit. area | delay " cpu | #lit. | area | delay || #Iit. area | delay

C17 sz | 05| 9| 136] 300 04] 13] 192] se0] o] 160] 420
bl 3 | os| 10| 18] s00f o1| u| 152] 320 10] 128] 300
majority | 5/1 | 04| 10| 200 540 o3| 19| 240] sa0[10| 200] 540
rd53 5/34‘ 23| 37| s84| 1220 06| 39| s68] 640[30| 4ss| 1320
z4ml 7 || 32| 52| sso| 1280 33| s6| 768| seo0| 48| s72| 1580
parity 16/1 | 19| 60| 664| 620(167 60| 712 500l 60| 48| 860
rd73 73 || 203| 78| 1256 | 1500 23| 79| 9902|1180 61| 992] 2000
£51m 88 || 96| 126 | 2032 | 3640 [382 171] 2312 | 1320 124 | 2112 | 3860
Sxpl 70 | 83| 129 2272 3040 Ih9.7 172 | 2360 | 13.60 | 117 1936 | 2540
rd84 8/4 [1199 168 | 2680 | 2440 | 34| 109| 1496 [1320 | 85| 1416 | 2200
gsymml | o1 || 314 192 | 3040 | 17.60 | 54| o1| 1352]1280 | 77] 1320] 1800
TOTAL 198.3 | 871 | 13872 | 16640 || 904 | 820 | 11144 | 98.80 || 631 | 10272 | 17420
% change

w.rt mislI “ ol o 0 0| 493| 58| -19.6 | 406 || -275| -259| +46

Note 1: Cpu’s are in seconds on VAXstation 3100.
Note 2: Boolean script was used as misII standard script.
Note 3: Number of literals were counted in factored form.

Note 4: All “% change™’s are relative to mislI standard script.

15

References

[1] J.P. Roth and R.M. Karp, “Minimization Over Boolean Graphs,” IBM Journal of Research and De-
velopment, Apr., 1962.

[2] T. Hwang, R.M. Owens and M.J. Irwin, “Exploiting Communication Complexity for Multilevel Logic
Synthesis,” IEEE Transactions on Computer-Aided Design, Oct., 1990.

[3] R.E. Bryant, “Graph-based Algorithms for Boolean Function Manipulation,” /EEE Transactions on
Computers, Aug., 1986.

[4] private communication, Apr., 1950.

[5] S. Minato, N. Ishiura and S. Yajima, “Shared Binary Decision Diagram with Attributed Edges for
Efficient Boolean Function Manipulation,” Proceedings, 27th Design Automation Conference, Jun.,
1990.

[6] B.W. Kemighan and S. Lin, “An Efficient Heuristic Procedure for Partitioning Graphs,” The Bell
System Technical Journal, Feb., 1970.

[7] J.R. Brace, R.L. Rudell and R. Bryant, “Efficient Implementation of a BDD Package,” Proceedings,
27th Design Automation Conference, Jun., 1990.

[8] M. Shih, “BDD and Communication Complexity,” unpublished manuscript May., 1990.

16

	Copyright notice1992
	ERL-92-117

