

Copyright © 1992, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

DELAY OPTIMIZATION BASED ON BDD

AND COMMUNICATION COMPLEXITY

by

Minshine Shih

Memorandum No. UCB/ERL M92/117

16 October 1992

N

\

DELAY OPTIMIZATION BASED ON BDD

AND COMMUNICATION COMPLEXITY

by

Minshine Shih

Memorandum No. UCB/ERL M92/117

16 October 1992

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

•

94720 /\

DELAY OPTIMIZATION BASED ON BDD

AND COMMUNICATION COMPLEXITY

by

Minshine Shih

Memorandum No. UCB/ERL M92/117

16 October 1992

Delay Optimization Based on BDD and

Communication Complexity*

Minshine Shih

Department of Electrical Engineering and Computer Sciences

University of California, Berkeley

California 94720

October 16,1992

•This research was sponsored bythe National Science Foundation, under Grant No. MIP 88-03711 and the State ofCalifornia
MICRO program.

1

Abstract

We propose adelay optimization method based on top-down logic decomposition. Given a logic
function, we decompose it into simpler sublogics and construct acircuit structure with minimum cir
cuit delay as the primary goal. We generalized the a-G decomposition proposed by Roth &Karpfl] to
allow arbitrary a-functions. Instead of their branch and bound exhaustive search, we use Communica
tion Complexity based heuristics to determine the best a and G-functions. Since all our algorithms are
operated on BDD (Binary Decision Diagram) data structure, they take much less CPU time than exist

ing methods. In addition to computational efficiency, our method provides much more flexibility in the
structures ofdecomposed circuit, and enables us to reduce circuit delay by controlling decomposition
sequence.

Agroup ofcircuits from MCNC benchmark set were run and results are given. When compared to
standard logic minimization tool (misll), our decomposition method produces circuits which are 41%

faster and 20% smaller (area) by using 49% less CPU ume on average. Applications ofour algorithms
including delay optimization for combinational circuit are also given.

primary inputs

£ B
\ /

a

primary outputs

Figure 1:

1 Introductions and Definitions

1.1 Introduction

We propose adelay optimization method based on logic decomposition. Given alogic function, we decom

pose itinto simpler sublogics and construct acircuit structure with minimum circuit delay as the primary
goal.

Karp &Rothfl] introduced the conceptofdecomposition by a and Gfunctions.(see Fig. 1for example)
We generalize their top-down decomposition method and allow a-functions to be any general functions

instead ofjust primitive gates in their algorithm. Instead oftheir branch and bound exhaustive search, we

use Communication Complexity basedheuristics to determine a and G-functions.

Our basic strategy is simple: find a"good" subset Aofinput variables, compute the a and G-functions

such that A is the set of input variables to a exclusively. This strategy can be repeated k times on the

(rest of the original) input variables, obtaining ka-functions. The resulting logic network would have k

branches, each branch having disjoint input variables (see Fig. 2 for example). This strategy can also be
applied recursively to a and G-functions.(see Fig. 3for example) There can also be many combinations of
the basic strategy.

In theory we may obtain better results by decomposing into ka-functions on the same level ofhierarchy.
But for simplicity ofimplementation, our first attempt focused on decomposing into 2a-functions, that is,

primary inputs

ocl

o2

a3

G3

primary outputs

k =3, 3-way decomposition

a2

zn

G1

G2

ot3

Figure 2:

primary inputs

G3

primary outputs

recursive decomposition

Figure 3:

primary inputs

B
r A /• A

al

G1
a2

nc

G2

primaryoutputs

Our approach :2-way decomposition

Figure 4:

k - 2 (Fig. 4). This immediately translates to grouping the input variables into two subsets. Therefore in

the rest of this paper we shall use "input grouping" to mean the 2-way grouping of input variables unless

otherwise noted. Our benchmark results are obtained with 2-way groupings ofalmost equal sizes (balanced

grouping) to achieve faster circuits, but our problem formulation and algorithms does not depend on this
fact, i.e., wemake noassumption on the sizes of the groupings.

The key issue in our approach is how to find a"good" subset ofinput variables. This is done by the
heuristic ofminimizing communication complexity. Hwang[2] first proposed the idea of finding agood

input grouping byminimizing the rank of the Communication Matrix. However the size of the circuits can

be handled is limited because ofthe exponential size ofthe matrix. To solve this problem we propose to use
BDD (Binary Decision Diagram) introduced by Bryant[3]. We use BDD as our only internal data structure

for both finding the optimal input grouping and computing the a and G-functions efficiently.

Our decomposition approach can be extended to ageneral fc-way style, in this respect itis more general
than the work ofHwang[2] since the matrix LDR decomposition is 2-way bynature. Another difference is

that our approach can take advantage ofalarge library ofgates for technology mapping, while the matrix

decomposition method inherently uses only 2different gates (corresponding to 'addition' and 'multiplica-

don' of matrix elements). Sinceall of our algorithms are operating on BDD, our method is much more

efficient than Hwang's approach which is operating ona matrix ofexponential size.

1.2 Definitions and Notations

Let / : Bn —• Bm be acompletely specified function with n inputs and moutputs, where B = {0,1}.

Definition 1 (A : B) denotes a 2-tuple ofsubsets ofinput variables, where A,B (in that order) are two

non-empty disjoint subsets ofinput variables off, andA\JB is the setofallinput variables off.

Furthermore, letA, B beasabove, {A, B} denotes a2-way grouping ofinput variables.

Let ua = |A| and ub = |J5|, thenclearly ua + ub = n.

Notice that bydefinition (A : B) and (B : A)are different 2-tuples.

Definition 2 The Communication Matrix Cf(A : B) ofa completely specified function f is defined as

a matrix of2n* rows and 2n* columns, where each row (column) index corresponds to a mintermfrom

the subset A(B) ofinput variables. Thus each element c^ in the matrix corresponds to aminterm ofthe
function f. The value ofelement ctJ is an m-bit binary vector and represents the output vector off when
thecorresponding minterm is appliedto f.

Definition 3 We say rows i\ and i2 are distinct when there exists acolumn j such that cixi ^ ct2J;.

Definition 4 Given aBDD ordering ofinput variables and a2-tuple (A:B), we say the BDD ordering is
compatible with the 2-tuple (A :B)ifVae AandV be B,a proceeds bin the BDD ordering.

Definition 5 The Communication Complexity ofafunction f with respect to a2-way input grouping {A,B}
is defined as the sum of the numbers ofdistinct row patterns of two Communication Matrices Cj(A : B)
andCf(B:A).

In the case offc-way decomposition, the inputs are grouped into {A\, A2, A3,..., Ak}. The definition of
Communication Complexitybecomes

k

^(number of distinct row patterns in C/(A, : (|J A,)))
t=i

;*«

2 Input Grouping Minimizing Communication Complexity

Our first step for logic decomposition is to group the input variables into 2 groups {A, B} such that the
communicationcomplexity is minimized.

Brayton[4] made the following observation:

Theorem 1 Given a Communication Matrix Cf(A : B), the number ofdistinct row patterns can be ob
tainedfrom any BDD compatible with (A : B) by counting the number ofBDD nodes (including terminal
nodes) satisfying thefollowing conditions:

a) notcorresponding to an input variable inA and

b) beingpointed to by another BDD node corresponding to an input variable in Aor by the BDD root.

The BDD nodes satisfying these 2conditions are called "pattern nodes" since they each corresponds to

aunique row pattern inthe matrix. Each pattern node corresponds to acompatible class of minterms from
A as defined in [1].

From this theorem the communication complexity can be computed bysimple graph traversals on two

BDD's, one with ordering compatible with (A :B) and the other compatible with (B :A).

2.1 Single Output BDD

In orderto find agood grouping we need to visit many different groupings. Therefore we builtasimple basic

operation called "bubbling", which is alocal swap of2neighboring input variables in the BDD ordering[8].

The exploration ofsearch space is done by repeating this basic operation in an efficient fashion. For example,
let [a bcde f] represent the BDD ordering, we can "bubble" variable 'e' into the 2nd position by 3bubble

operations (d e), (c e) and (b e). The result is [a ebcd f]. This kind ofbubbling will be used repeatedly in
our algorithm.

Since we need two BDD's in order to compute communication complexity, one for (A : B) and the
other for (B : A), we must maintain two BDD's along the search process. One convenient way ofdoing
it istokeep two BDD's intotal reverse order w.r.t each other, whenever we need tobubble one BDD, we

bubble the other BDD on the same variable pair (and consequently) in the opposite direction. When we

need tocount thecommunication complexity we simply obtain the sum of the counts onthese 2 BDD's.

Given a fixed number nA for the size of the first grouping, the following exact algorithm enumerate
finds the optimum grouping of input variables w.r.t. communication complexity.

Let [a-nA a-nA+i ... a.iA ... a_2 o_i , a\ a2 ... a,B ... a„B] be the BDD

ordering, where -nA < iA < -1 and 1 < is < ub.

Algorithm 1 enumerate;

{ if(nA = nB) {

/* In this case, we can fix a„B in place toavoid checking */

/* equivalent groupings twice, e.g. [a b c,d ef] and[d ef,a b c] */

enum(-nA,nB - \);

} else {

enum(-nA,nB);

}

return;

}

enumfiA, ib)

I* all variables notbetween iA andiB arefixed */

{ if(iA = -\andiB = I) {

count communicationcomplexity;

exchange a_i anda\ by 1bubble operation;

count communication complexity;

} elseif(ia = -I) {

enum(-\,iB - I);

move ciiB to slot index -1 by is bubble operations;

count communication complexity;

}elseif(iB = \){

enumfiA + 1,1);

move aiA to slot index 1 by -iA bubble operations;

count communication complexity;

} else {

enum(iA + 1, ib);

moveaiA into slot index iB by (iB - M - 1) bubble operations;

enum(iA, ib - \);

}

8

return;

Theorem 2 IfnA^ nB, algorithm "enumerate" visits all j^b1groupings exactly once.
IfnA = ns, algorithm "enumerate" visits all \ x nAn\lB\ groupings exactly once.

Proof. The proof is based on induction on the sizes of nA,UB and examining all 4 cases in subroutine

"enum". The detail is omitted here. •

This algorithm issoefficient that itvisits a different grouping inless than 2x3 bubble operations on

average, independent of the total numberof inputvariables[8], where the factorof 2 is due to the fact that

we bubble 2 BDD's at once. Notice that if nA = 3, [ab c , d e f] and [fe d , b a c] areconsidered as the

same grouping.

Additionally we developed aheuristic algorithm based on the general framework ofKemighan &Lin[6]

partition heuristic to handle circuits whose numbers of inputs are large. This becomes useful when the

number of inputs is beyond about 12.

2.2 Multiple Output BDD

We need multiple output BDD (MOBDD) to represent multiple output functions. Unlike others[5], our

MOBDD (Figure 5)has adifferent structure. This structure provides the important information ofcommu

nication complexity (as defined inthis paper) by looking all outputs at once. In the worst case itmay have

2m terminal nodes, where m is the number ofoutputs. Our MOBDD isbuilt this way so that we can use

exactly the same methods ofcounting communication complexity and selecting optimum input grouping.

2.3 Construction of MOBDD

We first build single output BDD's for each output separately. Then we merge two BDD's into one in a

recursive fashion starting from the roots of these 2 BDD's and apply the merging procedure to their left

children and right children respectively until terminal nodes are reached, where new terminal nodes are

created by concatenating the values ofthe terminal nodes being reached inthose 2original BDD's. Merging

2BDD's isrepeated ina loop until all single output BDD's are merged into the target MOBDD. The overall

MOBDD ROOT

f1 = a b c
f2 = (a + b) c

Figure 5:

computation complexity is linear with respect to the size ofthe final BDD. When merging 2 BDD's, since

the same node may be reached by more than one path in aBDD, care must be taken not to merge the same
nodes more than once.

3 Logic Decomposition by BDD

After we obtain a good input grouping, the next step isto compute the a and G-functions.

3.1 a-Function

Let {A, B} be the optimum input grouping obtained, and np be the number ofpattern nodes in a BDD
whose ordering is compatible with (A : B). It is obvious that we can encode all the input variables in

Awith \log2(npy\ bits. The following algorithm computes the a-function BDD corresponding to input
variables in A.

Algorithm 2 a-function(BDD.ORIGINAL)

1. n-bits = \log2(np)]

2. copy BDDJDRIGINAL to BDDjol.

3. On BDD.a, assign increasing coding numbers (startingfrom 0) to each one of

np pattern nodes inan arbitrary order, record the order thatpattern nodes are encoded.

10

4. set values ofthese pattern nodes equal to their own encoding number and change them into
terminal nodes, this is equivalent to terminating BDD.a atpattern nodes.

5. return BDDjot

BDD.a contains all BDD nodes corresponding to variables in A, plus the newly created terminal nodes. It

represents an a-function with Aas the set ofinput variables and A' as the set ofoutput variables, where
\A'\ = n_bits.

3.2 G-Function

Whenextracting the a-function in the previous section, we are essentially extracting the toppart ofBDD.ORIGINAL.
Now we extract the bottom part asdescribed by the following algorithm.

Algorithm 3 G-function(BDDJ)RIGINAL)

1. create a complete rooted binary tree BDD.G with 2nJ>it8 leafnodes.

2. labelthe nodes in the binary tree with variables inA' such that nodes at the same level

ofbinary tree are labeled with the same variable in A'.

I* The main loop is startingfrom the leftmost leafnode ofthe binary tree and iterates towards the right. */
3.for(i = 1; i < 2nJ>its; i++) {

if(i < np) {

substitute BDD.G's Uh leafnode (from the left) by the Uh pattern node (and consequently

all itsoffsprings) ofBDD.ORIGINAL according tothe order recorded

earlier in algorithm a-function.

} else {

I* This is the don't care situation */

substitute BDD.G's iJth leafnode (from the left) by the rightmostpattern node (and

consequently all its offsprings) ofBDD.ORIGINAL.

}

}

4. return BDD.G

11

f = abc'e' + ab'ce' + a'bce' + a'b'e + a'c'e + a'd'e + bcd'e' + b'c'e + b'd'e + c'd'e

There are 3 pattern nodes and requires 2 bits to encode.

Figure 6:

BDD_G corresponds toa G-function with A' and B as the sets of input variables and outputs remain

the same asoriginal. Figures 6,7 and 8 illustrate these two algorithms.

Now we need to do the second time alG decomposition in order to obtain another a-function for input
variables in B and the final G-function.

4 Implementations and Experiments

4.1 Control Flow

Our global strategy is to apply this 2-way decomposition procedure in a recursive fashion to both a and

G-functions until we cannot get any simplification, i.e. \A\ = \A'\. Then we stop recursion and convert the

current BDD's into Boolean network. The BDD's may be a single output BDD or MOBDD. In the latter

case the conversion isdone for one output ata time till all outputs are converted into the Boolean Network.

Our current conversion procedure simply starts from the terminal nodes ofBDD and works upwards by
composing the function ateach BDD node from its left child's and right child's respective functions. Since

the "0" and "1" terminal nodes for aparticular output may be scattered among more than 2 terminal nodes

inan MOBDD, we need todo a BDD reduction^] before we proceed. When the function at the BDD root

12

A'

a-BDD

Figure 7:

G-BDD

Figure 8:

13

A'

A

a b c

a

al a2

A'

a- function

A
al o2 H e

G-function

is composed, we create a Boolean nodein the network representing the function.

Once the complete Boolean network is obtained we invoke ESPRESSO to simplify each individual

Boolean node function. It is important not todisturb the circuit structure at this stage.

4.2 Advantage of Decomposition

The main advantage ofabalanced decomposition isto force allinput signals tobeencoded into asmaller set

ofsignals simultaneously. The parallel processing ofsignals through logic gates makes different branches

ofthe decomposition tree have almost equal path delays. This reduces the difference between the largest
and smallest arrival times at the primary outputs and improves circuit speed.

In case that primary input signals arrive atdifferent times, we can decompose the logic inan unbalanced

way to allow late-coming signals to be processed at a latter stage. Again the the difference between the

largest and smallest arrival times will be minimized atthe primary outputs.

43 MCNC Benchmark

We compare our decomposition approach against mis2.2 running standard script for aset ofMCNC bench

mark circuits. The correctness of our results were verified by misll 'verify' command. The area and delay
informations came from mis2.2 technology mapper using msu standard cell library 2.2. The results are in
Table 1. The average circuit speedup is 41% and circuit area savings is 20%. and the average cpu savings
from our method is 49%.

We also tried to combine ourmethod with misll standard script. The results showed that although we can
gain some further area savings, the improvements ofcircuit speed from our method were totally eliminated
by running misll. This fact further proved that our method is unique in the way that it generates afast circuit
structure whichis not obtainable or even maintainable in othermethods.

5 Future Work and Applications

Currently our overall CPU time is dominated by the searching of optimum input grouping using BDD. We
use traditional linked list to represent BDD. There should be 1-2 orders of magnitude speedup ifwe use
hashing techniques on BDD[7] (It is feasible but the modification is nontrivial).

Because of the improvement in circuit speed by our approach, we are investigating apossible applica
tion, namely, to speed up alarge circuit by speeding up aset of small subcircuits along the critical paths.
Another possible application is to take full advantage of the generality of alG decomposition. Since we

14

have full control on the overall structures ofdecomposed subcircuits, we can decompose in such away to
allow those signals along the original critical paths to arrive late without being timing-critical. Thus the
delay along the original critical path is reduced and the overall speed can be improved.

6 table

misll

standard script

BDD decomposition

alone

BDD decomposition

+ misll script

circuit #i/o cpu #lit. area delay cpu #lit. area delay #lit area delay

C17 5/2 0.5 9 136 3.00 0.4 13 192 5.60 9 160 4.20

bl 3/4 0.5 10 128 3.00 0.1 11 152 3.20 10 128 3.00

majority 5/1 0.4 10 200 5.40 0.3 19 240 5.40 10 200 5.40

rd53 5/3 2.3 37 584 12.20 0.6 39 568 6.40 30 488 1320

z4ml 7/4 3.2 52 880 12.80 3.3 56 768 8.60 48 872 15.80

parity 16/1 1.9 60 664 6.20 16.7 60 712 5.00 60 648 8.60

rd73 7/3 20.3 78 1256 15.00 2.3 79 992 11.80 61 992 20.00

f51m 8/8 9.6 126 2032 36.40 38.2 171 2312 13.20 124 2112 38.60

5xpl 7/10 8.3 129 2272 30.40 19.7 172 2360 13.60 117 1936 25.40

rd84 8/4 119.9 168 2680 24.40 3.4 109 1496 13.20 85 1416 22.00

9symml 9/1 31.4 192 3040 17.60 5.4 91 1352 12.80 77 1320 18.00

TOTAL 198.3 871 13872 166.40 90.4 820 11144 98.80 631 10272 174.20

% change

w.r.t misll 0 0 0 0 -49.3 -5.8 -19.6 -40.6 -27.5 -25.9 44.6

Note 1: Cpu's are in seconds on VAXstation 3100.

Note 2: Boolean script wasusedas misll standard script.

Note 3: Number of literals were counted in factored form.

Note4: All"% change'"s are relative to misll standard script.

15

References

[1] J.P. Roth and RM. Karp, "Minimization Over Boolean Graphs," IBM Journal of Research andDe

velopment, Apr., 1962.

[2] T. Hwang, R.M. Owens and M.J. Irwin, "Exploiting Communication Complexity for Multilevel Logic

Synthesis," IEEE Transactions onComputer-Aided Design, Oct., 1990.

[3] RJE. Bryant, "Graph-based Algorithms for Boolean Function Manipulation," IEEE Transactions on

Computers, Aug., 1986.

[4] private communication,Apr., 1990.

[5] S. Minato, N. Ishiura and S. Yajima, "Shared Binary Decision Diagram with Attributed Edges for

Efficient Boolean Function Manipulation," Proceedings, 27th Design Automation Conference, Jun.,
1990.

[6] B.W. Kemighan and S. Lin, "An Efficient Heuristic Procedure for Partitioning Graphs," The Bell
System TechnicalJournal, Feb., 1970.

[7] J.R. Brace, R.L. Rudell and R. Bryant, "Efficient Implementation ofaBDD Package," Proceedings,
27thDesign Automation Conference, Jun., 1990.

[8] M. Shih, "BDD and Communication Complexity," unpublished manuscript May., 1990.

16

	Copyright notice1992
	ERL-92-117

