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ABSTRACT

The optimal and timely control of semiconductor manufacturing equipment is crucial

for a successful fabrication line. Responding to the inevitable equipment shifts or changes

in output specifications must be made on-line, without having to stop the process and re

characterize the equipment. Sequential optimization approaches attempt to accomplish

this for single equipment steps whose output specifications are known. In addition, since

typical processes require numerous steps, some compensation must be made for the

interaction of consecutive steps.

This thesis will overview the important issues in sequential optimization, and describe

two different implementations: evolutionary operation and Ultramax. A dynamic

specification strategy for multi-step processes will then be presented.
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Chapter 1 Introduction

1.1 Background and Motivation

The increasing complexity and speed requirements of modern integrated circuits have

placed stringent demands on the performance of manufacturing equipment. Determining

the optimal input settings and output specifications for each process step has become a

non-trivial task. The control algorithms must continuously respond to shifts in equipment

behavior or changes to output specifications. When a change takes place in a high volume

manufacturing environment, re-characterizing the fabrication line through a series of off

line experiments is often not feasible. To avoid disrupting the product flow, the necessary

adaptations must occur immediately.

Design of experiments (DOE) is a useful tool that has been applied on several

manufacturingprocesses. Traditional DOE examines a wide variety of input combinations

in order to deduce the process response. Such a technique is useful for developing initial

equipment settings.

Toensure that a process is running optimally in a production environment, experiments

may be performed while useful product is being produced. During such a sequential design

of experiments, a compromise is made between exploringalternativerecipes for enhanced

performance, and continuously running the process at the sameoperating point to ensure

adequate results. In this document, we report on the implementation of an evolutionary

operation (EVOP) algorithm that uses fractional factorial experiments. We have also

experimented withUltramax [1],a sequential optimizerthat has foundapplication in many

manufacturing environments. Ultramax uses a variant of the EVOP algorithm to generate

advice for process runs.
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Sequential design of experiments requires ameasure of performance to optimize. For

single equipment processes, this measure of performance can be easily derived from the

given output specifications. For manufacturing sequences that consist of numerous steps,

the specifications for the final step are given, but the optimal specifications for the

intermediate steps must be determined. It is important to find a consistent set of

specifications among all processing steps since they are dependent upon each other.

Determining the best target range for each step is affected by shifts in the equipment

response and changes in the final output specifications. A dynamic specification strategy

for reacting to these changes is necessary. Such a strategy has been developed and is also

presented in this document

1.2 Thesis Organization

The remainder of this report is organized as follows. Chapter 2 will discuss generic

issues in sequential optimization. In chapter 3, the details of EVOP, its implementation

and simulation results will be presented. Chapter 4 overviews the structure of Ultramax

and a comparison to EVOP. The approach taken to optimize a multi-step manufacturing

sequence is contained in Chapter 5. Finally, simulated results and conclusions are

provided in Chapter 6.
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Chapter 2 Issues in Sequential Optimization

This chapter introduces a variety of fundamental topics in sequential optimization that

will be referenced in the remainder of the report

2.1 Equipment Models

Accurate equipment models are a vital part of a manufacturing control system [2].

Physical models can be developed using theoretical principles, but quite often the

underlying assumptions may not be valid. Instead, two other approaches dominate the

modeling techniques evident in modern semiconductor manufacturing. The first method

uses quadratic response surface models. The second method employs semi-empirical

models where the functional form is influenced by theoretical considerations, and the

various coefficients are tuned to match experimental results.

Once the form of the model has been determined, the coefficients are found by

performing a regression using historical data. In order to accurately represent equipment

whoseresponse is constantly changing, the regression is typicallyweighted to emphasize

more recent data. In this analysis, it is advantageous to scale the inputs and outputs to be

within reasonable ranges so that numerical round-off errors are minimized.

2.2 Feedback and Feed-Forward Control

Feedback control is a popular technique to improve theperformance of manufacturing

equipment. Models of theequipment aregenerated andthenusedto determine theoptimal

settings of the inputs. Feed-forward control corrects for processing variations in previous

steps. Parameters of the incoming wafers are examined and then the controllable inputs

are adjusted. A more thorough discussion of feedback and feed-forward control is

presented in [3].
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2.3 Process Capability and Process Observability

Process capability (Cp^) is an indicator of the suitability of a manufacturing step for a

given task. Under the assumption that the output is normally distributed and under

statistical control, Cp^ isdefined to be

min(USL-u^-LSL) (1)
Cpk =

3a
exp

where USL and LSL are the upper and lower specification limits, \i is the mean output

value and oexp is the standard error of the output. For a given process, the maximum

attainable capability is achieved when the inputs are fixed to values which will produce

outputs at the center of the specifications.

Frequency N(n, oexp2)

LSL USL Output

Figure 1. Process Capability

Observability refers to the ability to infer the equipment behavior and to recognize

when changes have occurred. Sequential design of experiments achieves observability by

continuously introducing changes to the inputs and monitoring the output, even if the

current operating point is at the optimum. A local model of the process is constructed and
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later used for optimization. As shown in figure 2, if the deviations introduced are

insignificant, then the effects of altering input parameters will be masked by noise,

decreasing the observability. Conversely, if large deviations are introduced, then the

effects of the inputs will become visible, but then the process capability will be reduced.

Thus, observability and capability are conflicting goals.

Frequency Ideal
Distribution

LSL

Result of Small
Input Deviations

Result of Large
Input Deviations

H
USL Output

Figure 2. Capability andObservability Trade-off For anOptimized Process

Ideally, when the current operating pointis atits optimum value,no deviations should

be introduced and therefore no degradation in process capability will occur. In practice,

smalldeviations areinsertedso thatchanges in equipment behaviorcan be detected. If the

current process capability is relatively low, then large deviations should be employed to

increase the observability and to quickly shift the operating point to maximize the

capability. Large deviations should be used for initial equipment characterization or as a

reaction to equipment shifts.
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2.4 Cost Functions

Manufacturing steps typically have a target and specifications for each of their

outputs. The target is the ideal output value and the specifications indicate the range for

theoutput to beconsidered acceptable. It is important to ensure that alloutputs are within

theseranges; otherwise, unacceptable products will be processed. One method to help

influence all outputs to be within specifications is by using a cost function. The primary

purposeof the cost function is to collapse the information of an output vector into a single

measure of performance to be minimized by the controller. A relatively low cost indicates

that the outputs are close to their targets.

A cost function should be chosen so that attention is focused on outputs which are

currently farthest from their targets since these outputs most seriously degrade the overall

process capability. On the other hand, outputs which are currently close to their targets

should not be completely ignored in the cost function, otherwise they would be allowed to

drift away from their targets without affecting the cost. It is important to ensure that all

outputs are within specification, since a single output outside of its specifications will

result in an unacceptable product.

2.4.1 Choice of the Cost Function

Numerous cost functions are possible. For a single output, Taguchi [4] recommends a

cost function of the form:

Cost =k(y-ytan.t)2 (2)

where y is the output, ytorgC/ is the target value, and kisa constant.
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Using such a function promotes an effort for continuous process improvement even

when the output is within specifications. Typically, the scaling factor k is chosen so that

the cost is equal to 1 when the output approaches its specification, as shown in figure 3.

Cost

1.0

LSL Ytarget USL y

Figure 3. Quadratic Cost Function for a Single Output

This is done to maintain consistency across all equipment and to simplify the performance

analysis of anystep. In thisway, thehuman operator ortheCIM software can immediately

infer the performance of the equipment simply by examining the magnitude of the cost,

without the need for scaling. A quadratic, as opposed to linear, cost function reflects the

idea that unit changes in the output affect the cost differently, depending onthedistance to

the target. Deviations in outputs which are close to their target affect the costonly to a

limited degree because the outputs are already well within their specifications and small

changes have negligible effectontheprocess capability. Conversely, deviations in outputs

which are far from their target affectthecost to a large degree because theseoutputs are

limiting the process capability. Any change in these outputs should have a noticeable

effect on the cost
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For multiple outputs whose specifications are independently defined, the total cost is

the sum of the costs of each output:

cost^^i-y^'V (3)

i=l

where n is the number of outputs. In this context, 'independence' implies that the

acceptable range for each output is not a function of the values of other outputs. These so

called 'box constraints' specify that each output must be between an upper and lower

specification limit. As with one dimension, each ty is chosen so that if an output is equal to

its specifications, the contribution to the cost will be 1. In two dimensions, the resulting

equal-cost lines of Equation 3 appear in figure 4.

LSL2 y^1 USLj

Figure 4. Lines of Equal Cost for the Quadratic Function
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For a given output, the distance between its upper and lower specification limit is

directlyrelated to the importanceof the output The narrower the specifications in relation

to the routine variation of this output, the more important the output.

The multidimensional quadratic cost function has one disadvantage. In general, given

the cost, it is not possible to determine if all specifications have been met If the cost is less

than one, then all outputs have met their specifications. If the cost is greater than the

number of dimensions, then at least one of the outputs did not meet its specifications.

However, if the cost is greater than one but less than the number of dimensions, then it is

impossible to determine if all specifications have been met by simply referring to the cost.

The solution is to confirm the specifications directly or to use a different cost function as

described in the next section.

2.4.2 Alternative Cost Function

An alternative function can be used to remove the uncertainty evident in the quadratic

cost function:

Cost =max^^yj-y^] ), i=1to n (4)

where n is the total number of outputs.The equal-cost lines for two dimensions are shown

in figure 5. From the figure, it is obvious that the cost is less than one if and only if all

specifications are met. However, this cost function introduces a more serious problem,

since it focuses exclusively on the output which is farthest from its target and ignores the

other outputs. Therefore, while bringing the "worst" output closer to its target, the other

outputs can drift away from their targets unnoticed, with no effect on the cost until one of

them becomes the worst output. This will drastically decrease the process capability,

making the above formulation of the maximum cost function unsuitable for control

purposes. Thus, the quadratic cost function is still preferable for most control situations.
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Y2

USLj

target
y2

I 1 <*

LSLa

LSL2 yi*** USLi yi
Figure 5. Lines of Equal Cost for the Maximum Function

0.25

0.50

0.75

1.00

2.43 Further Requirements of the Cost Function

The preceding discussion on cost functions has assumed that the specifications for the

outputs are independently set. This assumption is usually true for the final outputs of a

manufacturing sequence, but not necessarily true for the outputs of the intermediate steps.

Figure 6 shows how dependent specifications form an oblique angle with the output axes.

In these situations, interaction terms must be included in the cost function. The quadratic

cost function in Equation 3 now takes the more general form:

n n

Cost =X l^-yf^S cyj-jf"")
i=lj =i

Equation 5 supports pairs of parallel linear specifications of the form,

b1<c1y1+c2y2+...+cnyn<b2

(5)

(6)
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v2

cceptability Region

yi

Figure 6. Pairs of Orthogonal Dependent Specifications

where y is the output vector and b and c are constants1. Graphically, the cost function is

very similar to figure 4; the only difference is that the ellipses are now rotated through a

certain angle.

The kfj coefficients are chosen by considering thecostassociated with each pair of

parallel specifications. If the output vector just meets the specifications, the cost

associated with the pair is 1. If the output vector is midway between the pair of

specifications, the cost associated with the pair is 0. For the total cost function, the cost

from each pair of parallel specifications is combined to yield the total cost

The remainder of this work uses pairs of parallel linear specifications which are

orthogonal to each other, but not necessarily orthogonal to the output axes. As shown in

figure 7, the resulting acceptability region is an orthogonal box which is used to

approximate the true acceptability region.

Of course, in general, the true acceptability region can take any arbitrary shape.

Though it would be possible to approximate the acceptability region with specifications

1. In this report, lower case bold letters designate a column vector.
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y2n

True Acceptability Region

Approximation

yi

Figure 7. Approximation of True Acceptability Region

that are not parallel or not orthogonal, the derivation of cost functions as described in

Chapter 5 would not longer be valid. Fortunately, simulations have shown that the box

approximation will normally suffice. However, if the output of a processing step is a

highly non-linear function of the input, then the box may be a poor approximation. The

solution to this problem is discussed in Chapter 6.

This chapter has overviewed some of the important issues in sequential optimization.

The next chapter will describe an implementation of a sequential optimizer which relies

on many of the ideas presented so far.
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Chapter 3 Evolutionary Operation

3.1 Introduction

Evolutionary operation (EVOP) is a popular process control technique that is useful in

optimizing equipment performance during production runs. Factorial experiments

centered around the current operating point are constructed and from the results, the

operating point may be adjusted if a favorable effect on the output is likely. When running

the experiment, only small deviations may be introduced to the inputs in order for the

process capability to remain acceptable. However, if the deviations are made too small,

then the effects of the input variables will be invisible due to the routine variation of the

process.

EVOP requires a single performance measure to be minimized or maximized. The

quadratic cost function described in Chapter 2 is a natural choice. EVOP attempts to

position the operating point at its optimal value even for noisy, dynamic environments.

Unlike traditional off-line experimental designs, EVOP is applied on a sequential run-by-

run basis during normal productionruns. This chapter describes such an EVOP scheme as

it has been implemented for the photoresist spin coat and bake station in the Berkeley

Microfabrication Laboratory.

3.2 Methodology

3.2.1 Design of Experiment

All EVOP approaches use the common idea of a structured factorial experiment, but

substantial flexibility still exists in the design of the experiment and the actions taken as a

result of the experiment.When performingEVOP, a decision must be made regarding the

magnitude of the deviations introduced to the inputs. If the ideal operating point is far

from the current operating point, then large deviations are needed to shift the inputs as
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quickly as possible. This is especially true if the current operating point is at a relatively

insensitive location of theresponse surface orif appreciable noiseexists, sincesmall input

deviations will have negligible effect At theother extreme, if the current operating point

is at its optimal location and the process is sensitive to the inputs, then the deviations

introduced must be small in order for an acceptable capability to be maintained.

Although full factorial experiments are conceptually simpler, fractional factorial

designs are encouraged especially if the number of inputs is larger than 3 or 4. By using

fractional factorials, the important information is often deduced using much fewer runs

than comparable full factorial designs. However, high order fractional designs run the risk

of excessive confounding of effects [5] which may lead to incorrect conclusions. As a

minimum, the resolution of the design must be at least HI so that first order effects are not

confounded with each other. It is important to realize that resolution III designs are still

not immune to first order effects confounding with second order effects. If second order

effects are considered to be significant, based on operator experience or theoretical

foundations, then higher resolution designs should be utilized.

3.2.2 Estimation of Effects

Figure 8 shows a22 full factorial design which would be used for asystem with only

two inputs. After the equipment is run at each of the five locations, a cycle is said to have

been completed, and a decision is made whether or not to change the current operating

point To make this decision, the effects of the inputs arecalculated. A first order effect for

an input variable is defined to be the average change in the output when going from the

input's low value to its high value. For example, referring to figure 8, the effect of input 1

would be calculated as:

V3+V4 y2+v5 ™
Eff =-1 -—- - 07)
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Figure 8. 22 Factorial Design with Center Point

With p runs per cycle, excluding the center point, the standard error of the estimation

of the first order effects after q cycles at a particular factorial location is

2c

effect

exp

Jm
(8)

Assuming that the replication noise of a process is normally distributed with standard

deviation aexp, the 95% confidence interval for an effect is +/-2aeffect. If the estimate of

an effect lies outside of this interval, then the effect is considered to be statistically

significant.

The change in mean effect, CIM^ is defined to be the difference in the average

response at the factorial locations of the experiment minus the average response at the

center point For the 2-input case shown in figure 8,

1ciMeff* 5(y2+y3+y4+v5-4yi>
(9)
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The standard deviation of the CIM effect is

GCIMeff =^(p+lx^exp (10)

The CIM effect is used to determine if a minimum or maximum has been reached in

the response surface. A significantly positive CIM effect indicates that a mimmum may

have been reached. A significantly negative CIM effect indicates that a maximum may

have been reached. These conclusions are only valid if no first order effects are significant.

The numbers assigned to the points in figure 8 are not related to the order in which the

experiment is actually run. Regardless of the order chosen, it is not possible to keep time

effects unconfounded with both first order effects for any given cycle. It is possible to

devise an ordering which will block time effects over many cycles, but for simplicity, a

random experimental order is used for each cycle.

3.2.3 Shifting the Experiment

If a first order effect is significant, then the position of the factorial is moved for the

next cycle. The location of the new factorial is dependent upon which effects are

significant, whether the effects are positive or negative, and whether the output is being

minimized or maximized. For example, if an effect is significantly positive aiid the output

is being minimized, then the input will be decreased for the next cycle. Each first order

effect is examined independently. Note that interaction effects need not be calculated,

since the correct direction to move can be determined from first order effects alone. The

only exception occurs when the current operating point is at a 'saddle point' of the

response surface where a first order effect is positive on one side of the factorial

experiment and negative on the other. Under these rare circumstances, using the

informationgained from calculating the interaction effectsmay incrementallyimprove the

performance of EVOP.
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After any given cycle, the center point of the next cycle will be shifted positively,

negatively or not at all, for each input. Thus, for kinputs, there are 3k possible locations

for the centerof the next cycle as shownin figure 9. (Locations 1 through 5 are the settings

used for the previous cycle.) It is quite possible that no effects will be significant,resulting

in a cycle repeated at the same location.

x2

2
4

9
4

6 3

1

IP

74>

4
5

ll A — 4W¥ W

8 4

•

*1

Figure 9. Possible Locations for a Center Point for the Next Cycle

Some implementations of EVOP unnecessarily restrict the possible new positions of

the center point to be one of the locationsof the previous experiment: positions 1 through

5. Doing this results in areducednumberof possiblenew locations,but actuallymakes the

move decisions more complicated. For example, if the output is to be miniinized, the

effectof xj is negative and theeffectof X2 is negligible, we are motivated to increase xj,

implying that positions 3 and4 are candidates for the next center point.We must make the

choice between 3 and 4 arbitrarily, or wait for the effect X2 or the interaction effect to

become significant in order to make an intelligent decision. However, waiting for other

effects to become significant will slow the responsetime of EVOP appreciably.
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3.2.4 Estimation of Experimental Error

Testing the significance of the effects requires an estimate of the experimental error.

This can be acquired by using points which are replicated during a repeated cycle. Any

time a cycle is repeated, a newestimate of the experimental erroris obtained bytaking the

difference, dj, of the last output averageat a particular location and the new value.

4 =yi-yi+i (id

It can be shown that the experimental error is related to the standard deviation of the

differences by the following equation, assuming that the process has not shifted in the

middle of a cycle.

= aJtexp diffV q
<7-l (12)

qis the number ofcycles run, a^ is the standard deviation of the differences, and aexp is

the experimental error.An estimateof c^ff can be determined from the differences as

>diff

m 2
Y dr-
£-i l

i=l

(m "\

ldi

q-\

where m is the number of runs per cycle and C4 is defined below.

m

(13)

(14)
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T(k) = (k-1)!, for integer k. T(k) = (k-1) T(k-1). T(l/2) = JZ

When repeated cycles are needed using a fractional arrangement, each repetition

should use the same fraction. Different fractions could be used for each cycle, at the

expense ofhaving tomake new estimates ofaexp.

It is possible to use the range of the differences to estimate the experimental error. This

is computationally simpler, but the computing power available in modern-day computers

makes this difference unnoticeable. Further, as the number of runs per cycle increases, the

relative efficiency of the range estimator diminishes, so it should only be used in problems

with small dimensionality.

Once an estimate of the experimental error is obtained from a repeated cycle, it is

combined with the previous estimate using an exponentially weighted moving average to

form the new estimate to be used. This weighted average is used to reflect that recent

estimates are more important than older ones.

3.2J> Restrictions to Shifting the Experiment

In general, if any effect becomes significant after only one cycle at a particular

location, then the experiment is moved for the next cycle and no updated estimate of the

noise is obtained. We call this situation a quick move. There are two instances when a

quick move is not allowed. First, since the experimental error is estimated only through

replication, at least two cycles will always be ran at the starting location in order for the

initial noise estimate to be derived.

The second exception applies when several consecutive quick moves have been

performed. If this were to occur, then the estimate of the error would not be updated and

instead would be based only on relativelyold data. Thus, a cycle is inserted to update the

estimate of the error. In a dynamic system where the noise level is constantly changing, it
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is crucial to maintain an accurate estimate of the noise at all times. But even in static

systems where the noise level of the outputs is constant, the sensitivity of the quadratic

cost function to noise is variable, since it will be dependent on the distance of the outputs

to their targets. The addition of noise to outputs which are close to their targets will have a

small impact on the cost since the cost function is in its flat region. The addition of noise

to outputs which are away from their targets will have a large impact on the cost since the

cost function is in a steep region. Thus, even for static systems, updated estimates of the

error are necessary.

To ensure that a current estimate of the error is used, a limit has been set on the

maximum number of consecutive quick moves allowed. This heuristic was developed to

guard against the situation where <j is underestimating the true a^p. Without the

heuristic, numerous consecutive quick moves may occur without having a chance to

update (j , causing moves to be made as aresult of noise only. Having an overestimate

of ccxp is not a problem since it will be more difficult to shift the experiment and the

resulting repeated cycles will help produce updated estimates of aexp.

3.3 Implementation

The algorithms described above have been implemented using C++ and have been

combined with equipment models developed by the Berkeley Computer Aided

Manufacturing group.

Various parametersof the experiment are specified by the user. These include:

•number of inputs and outputs
•degree of fractionation

•range of the inputs
•the starting center point for the inputs

•specifications for the outputs
•step size
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The step size specifies the distance between the center point and the factorial points

along each input direction, as a fraction of the range of each input

The other parameters that may be modified are the maximum number of consecutive

quick moves and the forgetting factor used in the exponentially weighted average

calculation for the estimate of the noise.

Simulated optimization runs were completed on the Eaton photoresist spin and bake

station, but any equipment can be simulated with trivial modification to the code. The

simulations determine the numberofrunsrequired to find the optimum as a function of the

step size and the type of the experimental design. Once the optimum has been found, the

effects of continuously changing the recipe on the cost function have been analyzed.

Generators for the fractional factorials have been taken from [5].

3.4 Simulated Optimization of the Spin-Coat Procedure

A few parameters were set before the simulation began. Specification limits were set

to be 12190 - 12610 A for the photoresist thickness and 35.5 - 44.5% for the photoresist

peak reflectance. The peak reflectance is observed by scanning wavelengths in the

neighborhood of the exposure wavelength. Refer to [9] for details.

Normally distributed errors with sigmas of70 A and 1.5% were added tothe thickness

and reflectance respectively. With the specifications set to be three standard errors away,

the best attainable capability for each output would be approximately 1. The starting

center point for the factorial experimentwas 5200 rpm for spin speed (SPS), 30 seconds

for spin time (SPT), 115 °C for bake temperature (BTE) and 90 seconds for bake time
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(BIT). Further, themaximum number of consecutive quick moves was 5 and the forgetting

factor was 0.5. The equipment models used were taken from [9] and are repeated here.

(\ 7 *T--ngi/i.2-54-10 , 1.95-10 ?7ftPTT ^offSPT 6.16-10'
Vsps bteVsps SPS

R = 134.4 -0.046SPS + 0.32SPT-0.17BTE + 0.023BTI

(15)

(16)

-4.34 •10 5(SPS •SPT) +(5.19 •10"5) (SPS •BTE) - (1.07 •10"3) (SPT •BTE)
- (4.11 •10"4) (SPT-BTI) + (5.15-10"6) (SPS)2

The result of using full and half factorials with various step sizes is shown in Table 1.

TABLE 1.

"type of
Factorial Step Size

Runs to

reach

optimum

Average cost
after

optimum is
reached

Thickness

Cpk after
optimum is
reached

Reflectance

Cpk after
optimum is
reached

Full 0.01 1200 0.261 0.907 0.981

0.02 400 0.341 0.735 0.939

0.05 100 0.765 0.433 0.894

0.10 50 2.787 0.211 0.698

Half 0.01 900 0298 0.871 0.996

0.02 250 0.355 0.717 0.976

0.05 75 0.850 0.409 0.894

0.10 30 2/710 0.214 0.711

As the step size increases, fewer runs are required to find the optimum, but after the

optimum is reached, the average cost is largerand the process capabilities degrade. For the

given values of the specifications and noise levels, running the system continuously at its

optimum without introducing the deviations'required for the factorial experiment results

in an average cost of 0.239. Note that when the step size is small, the average cost is only

slightly above the cost obtained when no deviations are introduced. Thus, such a small
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step size would have a minimal impact on the process capability. Using a large step size

aroundthe optimum degrades the process capability substantially.

However, a small step size requires a very largenumber of runs to reach the optimum.

If the current operating point is far from the optimum, such as when the original

optimizations are being done at start-up or if the equipment response has shifted, large

step sizes are desirable. In a system without any noise, doubling the step size will cut the

number of runs required to find the optimum in half. In a system with noise, doubling the

step size will cut the runs required by more than half.

Figure 10 shows the cost as a function of run number for a variety of step sizes. The

simulations were done using half fractional designs.

Cost
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Figure 10. Effect of Step Size on Performance
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The average costs around the optimum for a full factorial and its half fraction are

virtually the same, but the number ofruns toreach the optimum are significantly different,

as expected. If the half fraction was equally effective as the full factorial in determining

the direction to move, thenbothapproaches wouldtake the same number ofcycles.This is

truewhen the step size is large since the effects are much larger thanthe noise level. But as

the step size decreases, the half fraction takes morecycles than the full factorial, but still

fewer total runs. In the limiting case where the step size is made arbitrarily small, we

would expect the half fraction to take the same number of runs as the full factorial to find

the optimum.

3.5 Conclusion

An EVOP software package has been written and applied to the Eaton photoresist spin

and bake station. Simulations have been run to verify operation of the software and also to

examine the impact of fractional factorials and step size.

Clearly, the ideal scenario would be to have a variable step size depending on the

current conditions: a large step size when movement is required, a small step size when

the optimum has been found. It is important to note thateven after the optimum is found,

the recipe does not become fixed. Instead, EVOP continues so that adaptations to shifts in

the equipment can be made.

Several enhancements could be made to decrease the response time of EVOP to

changes in the equipment. Forexample, if large effects are calculated, then the positionof

the center point for the next-factorial could be shifted by an amount larger than the step

size used within a single factorial. In addition, if several moves are currently being made

in a certain direction, then the step size in that directioncould be increased as well.

When an extra cycle isinserted toupdate ac3tp, the response isdelayed. If extra cycles

needto be inserted frequently and the factorial is large, one alternative wouldbe to simply
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repeat the runs at the center point to update the estimate instead of repeating the entire

factorial. This wouldreduce the total number of runs required.

Even with the proposed enhancements, the response time of EVOP may not be small

enough to meet the demands of a given manufacturingenvironment Instead, a more rapid

sequential optimization approach may be necessary. Such an approach is presented in the

next chapter.
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Chapter 4 Rapid Sequential Optimization

4.1 Introduction

One of the drawbacks of EVOP is that information from runs at previous cycles is

ignored. Consequently, eachcycle of factorial experiments consumes several runs before

a decision is madeto move theoperating point. Tomaintain an optimal yieldin a dynamic

processing environment, the response time to shifts in the equipment must be less than

EVOP can deliver. A different approach must be used.

4.2 Ultramax

Ultramax is a commercial software package that has been developed to performrapid

sequential optimization [1]. It can be applied duringprocess development, but its intent is

to optimize a process in an ongoing production environment. The goal of Ultramax is to

find the optimum input settings in a minimum number of runs and also to respond to

equipment shifts after theoptimum has been found. LikeEVOP, it is basedon the concept

of introducing deviations to the inputs while continuing to manufacture acceptable

products. Ultramax can beconfigured to vary theinputs to a small degree, which would be

useful when the optimumoperatingpointhas beenfound. Alternatively, when shifts in the

equipment have occurred, largedeviations canbe introduced so that the new optimumcan

be found faster.

EVOP suffers from the fact that many runs are necessary to construct a factorial

experiment. A shift in the operating point is only made after a factorial experiment has

been completed. The advantage of Ultramax is that since factorial experiments are not

used, the current operatingpoint can be adjusted after every run. This results in a shorter

response time.
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All combinations of inputs and outputs from previous runs are used to derive

equipment models. The regression uses an exponentially weighted approach so that recent

data can be considered more important. By constructing equipment models, Ultramax is

able to locate regions of the input space that are likely to yield favorable outputs. As new

data is generated, the models are continuously updated to reflect current operating

conditions. Figure 11 shows the incorporation ofUltramax into a control system.

Upstream Inputs

Controlled Inputs

Advice
*

W }f
Measurements

T
Prior

Data

Ultramax

T
Global

Variables

Figure 11. Using Ultramax as a Controller

Before monitoring the system, any priordata that may be available is used to construct

an initial model of the system. The global variables specify parameters of the cost function

such as target values and specification limits. Feed-forward control is achieved by first

examining the upstream inputs and adjusting the advice for the controllable inputs

accordingly. After each run, the outputs aremeasured and the models are updated. Even if
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the controllable inputs are set to values different than what was advised, the run data is

still used to update the equipment models. Some details about the algorithm can be

obtained from the Ultramax User's Guide [1].

4.3 Simulated Performance and Conclusions

Simulations of the Eaton photoresist spin and bake station have been run to compare

the performance ofUltramax to EVOP. The specifications, starting point and the amount

of noise that were chosen to evaluate EVOP in Chapter 3 are also used here.

Table 2 shows the results. Similar to EVOP, as the aggressiveness of the search

TABLE 2.

Type of
Search

Runs to

reach

optimum

Average cost
after

optimum is
reached

Thickness

Cpk after
optimum is
reached

Reflectance

Cpk after
optimum is
reached

Conservative 15 0.348 0.723 0.951

Moderate 12 0.373 0.718 0.933

Aggressive 9 0.682 0.461 0.871

increases, the number ofruns required to reach the optimum decreases, but the steady state

cost increases and the process capabilities decrease. Compared to EVOP, Ultramax

requires very few runs to find the optimum.

In general, the number of runs required to reach the optimum is a function of the

linearity of the response surface. Since EVOP calculates linear effects, a linear reponse

surface is ideal. With Ultramax, fewer terms in the model need to be derived for a linear

response surface. Thus, as the linearity of a system increases, the efficiency of EVOP and

Ultramax will increase.

The simulations performed above assume that the specifications for thickness and

reflectance are known. Typically, this information is subjective and based primarily on



Chapter4 Rapid Sequential Optimization 29

operator experience. Even if the given specifications are accurate at a particular point in

time, they need to be altered when shifts in equipment or changes in the final output

specifications occur. A methodology for determining accurate specifications for all steps

in a processing sequence is presented in the next chapter.
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Chapter 5 Dynamic Specifications for a Multi-Step Process

5.1 Introduction

Modem semiconductor manufacturing consists of numerous individual steps. In order

to maximize the yield of the final outputs, it is important for the intermediate outputs of all

equipment in the sequence to be within acceptable regions. Determining the optimal target

range for each equipment is complicated by noise in the system and affected by shifts in

the equipment response and changes in the final output specifications. Further, it is

important to find a consistent set of specifications among all processing steps since

specifications at a given location in the sequence will directly influence the specifications

of all prior steps. As shown in Figure 12, the outputs of the intermediate steps are targeted

for acceptability regions which will ensure that the following steps can meet their

specifications. A further discussion of this topic can be found in [6].

Output A2 Output B2 Output C2

Output CI

Figure 12. Alignment of Intermediate Outputs

In the figure, the shaded areas represent the acceptable region of the outputs of each

step, whereas the outer region is the entire output space reachable by the step. This outer

region can be obtained by varying a step's inputs over their ranges and determining the

output. The arrows between the acceptability regions represent the intent of the

intermediate specifications. If the specifications are met at a given location in the
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processing sequence, then a careful selection of inputs for the next step might ensure that

the following specifications will also be met. However, noise and shifts in the equipment

response may make this selection difficult or impossible.

Feed-forward control can help to correct process variability in previous equipment, but

only to a limited extent. In other words, the application of feed-forward control widens the

acceptability region of the previous step. If however, the upstream inputs deviate

substantially from their ideal values, no amount of feed-forward control can compensate

for previous mistakes. The goal of dynamic specifications is to align the intermediate

outputs to a range where feed-forward control can still be used to bring the final outputs to

their targets. Specifications are propagated upstream through the processing sequence so

thatcompensation for a changein equipment responseor final output specifications can be

made as early as possible.

Some approaches [6] use fixed acceptability regions that are derived at system start

up. However, as equipmentresponsechangesover time or if the final output specifications

change, these fixed acceptability regions are no longer valid. They must be updated to

reflectthe currentstatusof theentiremanufacturing line in order for theprocesscapability

to be maximized. Next we describe a novel approach for the implementation of dynamic

specifications.

5.2 An Approach for the Dynamic Modification of Process Specifications

Figure 13 shows the integration of dynamic specifications into a control system. In the

figure, products flow from left to right. A local controller with feed-forward and feedback

capabilities is responsible for determining the values of the controllable inputs at each

step. By utilizing a current model of the step based on recent data, the controller is able to

perform feedback control. Feed-forward control is accomplished by first examining the

important parameters of the incoming wafer and then adjusting the recipe to compensate
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Figure 13. The Dynamic Specification System Within a Supervisory Controller

for any variation. As each wafer goes by, the output is examined and the model is updated.

Once a change is detected, specifications for all upstream steps are derived by starting at

the final outputs and propagating the specifications upstream through all steps in the

processing sequence. In order to transform the specifications across a piece of equipment,

its current model is used. At system start-up, the models are generated from historical

data. After the specifications have been updated, a cost function is derived and will be

used by the controller for future runs.

The intermediate specifications must be re-evaluated whenever a change in the system

is detected, as indicated by a control alarm [3]. Note that only the specifications of steps

preceding a change need to be updated. Alternatively, specifications can be re-evaluated

for every equipment after each run, even if no changes have been detected. If no changes

to the system have occurred, then the intermediate specifications may change only slightly

due to noise. For simplicity, the latter approach is currently being used in this work.
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5.3 Propagating Specifications

The propagation of specifications across a step has been divided into four stages:

Monte Carlo simulation, selection of acceptable points, principal component analysis of

the acceptable points and cost function derivation. The key issues regarding each of the

stages is described next.

5.3.1 Monte Carlo Simulation

The first stage in transforming specifications from the outputs to the upstream inputs

of a step is to perform a Monte Carlo simulation using its current model. The goal is to

determine the acceptable region of the upstream variables. Random combinations of

upstream inputs and controllable inputsare generated uniformly across the input space.

The range of the upstreaminput spaceis determined by operator experience. It should

be made large enough to virtually guarantee that any wafers havingparameters outsideof

the range are unsatisfactory. If the range were made large enough to only enclose the

current operating region, then it might miss pans of the acceptability region when

performance shifts occur. The only disadvantage to making the upstream range

unnecessarily large is that more points must be simulated to ensure adequate resolution

during the subsequentstep of mapping the acceptability region.

A uniform distribution is used to generate an even coverage of the input space, since

the goal is to determine the acceptability of all locations within the space. Note that the

Monte Carlo simulation is not intended to reflect the typical distribution of the parameters

of the incoming wafers. If this were the goal, a normal distribution would be more

appropriate. The accuracy of a Monte Carlo simulation is independent of the number of

dimensions and is therefore preferred to an exhaustive grid search especially for

equipment with many inputs [7]. Empirical equipment models result in a tremendous

speed-up improvement over using detailed physically-based simulators.
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For each combination of inputs generated, the cost associated with the resulting

outputs is determined. During the simulation, the values of the controllable inputs are

chosen randomly and independently of the upstreaminputs. Further, no noise is added to

the outputs generated by the model, even if accurate estimates of the noise are known.

5.3.2 Selection of Acceptable Input Points

Once the input combinations have been generated and their cost determined, the points

are divided into two categories: those that are expected to meet the specifications and

those that are not. This division is performed based on evaluating the cost. Using the

maximum cost function introduced in Chapter 2, if the cost is less than one, then the

outputs have met their specifications and therefore the inputs that generated the outputs

are considered acceptable. All combinations of upstream inputs whose cost is less than

one are used to define the acceptability region for the previous step.

Replication noise will cause the observed cost to be different from the expected cost;

consequently, the identification of an input combination as being acceptable does not

ensure that the specifications will actually be met when the process is run with these

inputs.

It is conceivable that for the simulated range of inputs, no points generate a cost

numerically less than one. A number of explanations are possible. First, a piece of

equipment could be malfunctioning, causing the inferred models to change dramatically.

In this case, an alarm should have been generated causing the equipment to be serviced.

Second, the given output specifications may not be attainable. Finally, the defined input

space may not be wide enough to handle the typical variations in equipment response. The

solution for the last two cases is to search over a wider input range until acceptable input

points are found. If no points with a cost less than one can ever be found, then the

specifications are not attainable and an alarm is generated.
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5.33 Principal Component Analysis

Principal component analysis (PCA) is a technique used in various applications to

reduce the dimensionality of a problem. Typically, a highly correlated multi-dimensional

data set is decomposed into fewer independent variables which are orthogonal in the

multi-dimensional space. PCA begins by finding the direction which explains the most

variation in the data set. Then, the direction explaining the most variation in the space

orthogonal to the first direction is determined. This process repeats until all of the

variation is explained by n mutually orthogonal directions in the n-dimensional space.

Any of the principal component directions that explain negligible variance are eliminated.

The original data set is then transformed into variables which are the distances along the

remaining principal component directions. The directions with the highest variability are

deemed to be the most important.

PCA has been applied to the propagation of specifications, but the intent is much

different than that described above. Instead of attempting to reduce dimensionality, it is

used to form orthogonal linear specifications that approximate a collection of acceptable

upstream input points. Figure 14 shows the information derived from the principal

component analysis. Given the acceptable inputs points, PCA determines the target value

for all upstream inputs and the direction of the principal components. The center lines are

easily derived and then the spread of the distances from the acceptable points to each

center line is determined. Note that the typical number of acceptable points used in the

principal component analysis is much larger than shown in the figure.

A direction with a large spread indicates that there are acceptable points which are

distant from the center line perpendicular to the direction. This means that the process is

relatively insensitive to changes along that direction and therefore the specifications can

be wide. Conversely, a direction with a relatively small spread indicates that acceptable

points only exist near to the center line perpendicularto the direction. Consequently, the
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Figure 14. Information Derived from PCA of Acceptable Points

process capability will degrade rapidly as the upstream inputs move away from the target

in that direction. Thus, narrow specifications must be set.

The variance of the distances from the acceptable points to the center line, o2^, is

used as an intermediate step to determine the spread along each direction. Assuming that

the distance from the acceptable points to the center line is a random number that is

uniformly distributed, the width of the specifications can easily be determined from the

variance of this distance. The variance of auniform distribution of width w is h^/12. The

distance from the center line to the specifications for that direction is then:

w/2 =J^c (17)

If the acceptability region is rectangular, thenthe assumption aboutthe distances being

uniformly distributed will be valid. Simulations have shown that even when the

acceptability regionis not rectangular, accurate specifications are still generated.
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It is important to normalize the upstream inputs before performing the principal

component analysis so that each input dimension carries equal weight. Using the

following formula, the inputs are scaled to be within the range -1 to 1. Without

normalization, the analysis will be skewed by the units chosen for the inputs. The variance

evident in those inputs that vary over a large range will dominate whereas the variance

evident in those inputs that vary over a small range will be insignificant.

.center
X:-X

X:' = 1 * (18)
1 (x^h-x|0W)/2

5.3.4 Cost Function Derivation

The cost associated with each pair of parallel specifications is calculated

independently. Let dT =(dj, d2, d3..., dn) be aprincipal component direction. Let tT =(tj,

t2, t3«.., tn) be the target value in the acceptability region. Let xT =(xj, X2, X3..., xn)

represent a vector that belongs to the upstream input space. Then, the equation of the

T Tcenter line that passes through t and is orthogonal to d , is

d.(x-t)=0 (19)

The distance from this center line to an arbitrary point uT =(uj, U2, U3..., un) in the

upstream input space is d* (u-t), assuming that |d| = 1. The square of this distance is

divided by the square of the distance from the center line to the specifications, w/2. The

resulting polynomial is of the same form as the quadratic cost function introduced in

Chapter 2, equation 5. For each of the principal component directions, the kjj coefficients

are computed and combined to yield the coefficients for the total cost function. For the

maximum cost function, equation 4, the Jk,y coefficients for each direction must be kept

separate so that the cost in each direction can be computed. For the quadratic cost
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function, fczy coefficients corresponding to the same terms of the cost function can be

added together.

5.4 Alternative Method to Propagate Specifications

An entirely different approach to propagating specifications would be to attack the

problem analytically. The outputs of each step can be represented as a function of the

inputs. With given output specifications, the input specifications can be determined

through a simple variable substitution. Repeatingthe variable substitutions will enable us

to define the specifications for all steps. However, with many steps, the resulting

expressions for the specifications can become unnecessarily complex.

5.5 Summary

Figure 15 overviews the stages required to propagate specifications. First, a Monte

Carlo simulation is run using randomly generated points in the input range of a step. For

each input point, the outputs are calculated using the model of the step and the costs are

determined by the output specifications. Second, for each output point which meets the

specifications, the corresponding input point is chosen to be acceptable. Third, the

specifications of the input points are derived by performing a principal component

analysis. Finally, a cost function is generated from the specifications obtained in stage3.
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Figure 15. The Four Stages of Propagating Specifications
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Chapter. 6 System Simulation and Conclusions

6.1 Implementation

The software for propagating dynamic specifications was implemented in C++ and

was merged with equipment models developed by the Berkeley Computer Aided

Manufacturing group. Portions of the code have been dedicated to the simulation of the

photolithographic workcell, a three step process. The sequence consists of the photoresist

spin coat and bake station introduced in Chapter 3, as well as a stepper and a developer.

The inputs and outputs used for control purposes for each step are shown below. The goal

is to achieve a critical dimension (CD) on the developed photoresist layer within a certain

range.

™cbles* - • •^nuclcness^ , ^SLa
Spin Coat
and Bake

Reflectance ^
•

Expose Reflectance ^ Develop

Spin Speed, °ose Develop
Spin Time, Ti^
Bake Temperature,
Bake Time

Figure 16. The Photolithographic Workcell

•*•

Ultramax has been used as a controller for each of the three steps, although any

controller that can perform feedback and feed-forward control would be appropriate. The

principal component analysis has been implemented using the Berkeley Interactive

Statistical System [8]. Details of the model generation for the steps in the

photolithographic workcell can be obtained from [9].
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6.2 Determination of.Intermediate Specifications

The target value for the CD was 2.66 |im, as determined in [3] and the specifications

were chosen to be +/- 0.02 um around that value. Given this information, the acceptability

region for the thickness and reflectance outputs of the stepper were determined. The

Monte Carlo simulation searched over the rectangular region defined by the boundaries,

11000 A< Thickness < 13000 A, 70% <Reflectance <90%, while the develop time was

held constant at 60 seconds. The model used for the critical dimension, as determined in

[9], is:

CD = 8.86 - 0.076Rin - 0.00075Tin + 0.00000375 • Tin • Devtime (20)

+8.95 •10~6 (Rin •Tin) - (4.27 •10"8) (Tin •Rin •Devtime)

The acceptable points from the simulation and the derived specifications are shown in

figure 17. This figure demonstrates the acceptable input thickness and reflectance to the

developer assuming that feed-forward control is not used and instead the develop time is

held fixed at 60 seconds. Note that this figure shows the normalized values of thickness

and reflectance. The resulting quadratic cost equation using the normalized values of

thickness and reflectance is shown below.

Cost = 1.669(T+0.07352)2+1.440(T+0.07352) (R-0.09692) +1.682(R-0.09692)2
(21)

6.3 Allowing for Feed-forward Control During Propagation of Specifications

If a feed-forward controller is in place, then the controllable inputs of a step should be

varied while rjerforming the Monte Carlo simulation. Given values of the upstream inputs

may or may not be considered acceptable, depending on the values of the controllable

inputs generated for the simulation. Figure 18 shows the effect of varying the controllable

inputs in the Monte Carlo simulation. For all three plots, the search space is 10500 to
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Figure 17. Acceptability Region for the Outputs of the Stepper

13500 A for the thickness and 65% to 95% for the reflectance. The specifications are 2.66

+/-0.02 |im. The plots in Figure 18 show that the acceptable points extend out to the edge

of the search space, indicating that the search space perhaps could have been widened to

include more acceptable points. As the develop time is allowed to vary over a wider range,

the acceptability region expands and the density of the points varies within the

acceptability region. For combinations of thickness and reflectance that have a high

density of acceptable points, many values of develop time over the covered range in the

Monte Carlo simulation result in a satisfactory output. If all simulated points within a

certain region are acceptable, then any develop time is adequate. Conversely, for

combinations of thickness and reflectance that have a low density, few choices of develop

time result in a satisfactoryoutput, and so the develop time must be chosen carefully when

the actual process is run. Note that the proposed specifications tend toward the dense

regions of the acceptable points.
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Fipure 18. The Effect of Feed-forward Adjustments of the Controllable Input
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The relative densities of acceptable points can be explained by examining the response

surface plots. Figure 19 shows the response surface of the CD as a function of thickness

and reflectance. The three develop times chosen, 50 seconds, 60 seconds and 70 seconds,

span the range that was used in the Monte Carlo simulation above. Using critical

dimension specifications of 2.64 u,m to 2.68 u;m, the surfaces reveal that for small

reflectance values, the acceptabilityregion is highly dependent upon the develop time. As

a result, the density of the points in the lower half of figure 18c is low. Conversely, the

well-defined acceptability region in the top portion of figure 18c is consistent with the fact

that the top portion of response surfaces are similar for any develop time.

6.4 The Effect of Equipment Response or Final Specification Changes

As the equipment response or final output specifications change, the intermediate

acceptability regions need to be updated. Figure 20 shows the result of changing the

specifications from 2.66 +/- 0.02 p.m to 2.64 +/- 0.02 |im. All other experimental

Reflectance

Thickness

Figure 20. New Acceptability Region After a Change in Specifications
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conditions are the same as those used to generate Figure 17. Comparing these two figures

reveals that the acceptability regions overlap, as expected, since the specifications overlap.

The difference is that the combinations of thickness and reflectance which generate a CD

between 2.66 and 2.68 urn have been removed and combinations which generate a CD

between 2.62 and 2.64 u,m have been added. As shown in the figures, changing the output

specifications results in the intermediate specifications being compressed in one direction

and expanded in the other. This can be explained by examining the response surface plot.

Changing the model of the developer will also change the acceptability region for the

incoming thickness and reflectance. It can easily be shown that increasing the constant

term of the CD model by x will have exactly the same effect as lowering the output

specifications by x. The effect of varying other terms in this polynomial model is best

determined by simulation.

6.5 Highly Non-Linear Acceptability Regions

It is possible that non-linearities in the equipment model may result in an acceptability

region that,is not adequately approximated by orthogonal specifications. Figure 21 shows

an example where the acceptability region is not only non-linear, but it is discontinuous.

This example was generated by using output specifications of 2.66 +/- 0.01 |im. The

derived orthogonal input specifications are clearly not adequate since they enclose a

significant portion of the input space that does not generate acceptable outputs. Blindly

applying the derived specifications to the outputs of the previous step will lead to

substantial errors.

It is felt that discontinuous acceptability regions are uncommon; nonetheless, they

cannot be ignored. Two separate issues need to be addressed. The first is how to propagate

the specifications farther upstream if adequate specifications for the current step have not

been generated. The solution.to this problem would be to run the Monte Carlo simulation
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Figure 21. Discontinuous Acceptability Region

across more than one step, terminating with a step whose specifications are approximately

orthogonal. Then, the cost to use for the original upstream input points in the simulation

would be the cost generated after the step whose specifications are orthogonal. For

example, if the acceptability region for the upstream inputs of the developer are as shown

in figure 21, the acceptability region for the upstream inputs of the stepper can be

determined by generating inputs to the stepper and using the simulated cost after the

developer. By doing this, the discontinuous acceptability region at the output of the

stepper is bypassed. The only disadvantage to this approach is that the Monte Carlo

simulation time will increase because more model evaluations need to be executed.

The second problem encountered when discontinuous acceptability regions arise at the

output of a step is how to determine the cost function to be optimized by the controller for

the step. Setting the target to be the centroid of the acceptable points will no longer suffice

since such a target may not even lie within an acceptable region. In addition, the width of
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the specifications cannot be determined by the spread of all acceptable points. It is

important to identify when clusters of acceptable points exist and then to choose the 'best'

cluster. Practical considerations may help to determine which cluster is the most

appropriate. More research is necessary to automate this selection. However, once a

cluster has been chosen, the cost function can be derived as before.

6.6 Conclusions and Future Work

A novel specification propagation methodology has been demonstrated in this chapter.

Given the output specifications for a step, the input acceptability region and input

specifications can be derived. It has been shown that feed-forward controllers can help to

enlarge the acceptability region of the inputs. Further, varying the output specifications

can dramatically change the intermediate specifications.

As mentioned in the previous section, the methodology needs to be made more robust

to highly non-linear acceptability regions. The recognition of discontinuous clusters of

acceptable points is also important.

The next step in this research would be to incorporate the dynamic specifications into

a control system and evaluate its performance. The controller could be an implementation

of EVOP or Ultramax, as described in Chapters 3 or 4, or any other controller that uses

targets and specification ranges. In addition, the propagation of specifications could be

incorporated into the BCAM framework where simulations can be performed using

equipment models or the actual equipment in the microfabrication laboratory.
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