

Copyright © 1992, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

THE POSTGRES USER MANUAL

Edited by

Jon Rhein, Greg Kemnitz, and The POSTGRES Group

Memorandum No. UCB/ERL M92/120

28 October 1992

THE POSTGRES USER MANUAL

Edited by

Jon Rhein, Greg Kemnitz, and The POSTGRES Group

Memorandum No. UCB/ERL M92/120

28 October 1992

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

THE POSTGRES USER MANUAL

Edited by

Jon Rhein, Greg Kemnitz, and The POSTGRES Group

Memorandum No. UCB/ERL M92/120

28 October 1992

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

The POSTGRES User Manual

EditedbyJonRhein, Greg Kemnitz and The POSTGRES Group
EECSDept.

University ofCalifornia, Berkeley

1. OVERVIEW

This document is the user manual for the POSTGRES database system underdevelopment
at the University of California, Berkeley. This project, led by Professor Michael Stone-
braker, is sponsored by the Defense Advanced Research Projects Agency (DARPA), the
Army Research Office (ARO), the National Science Foundation (NSF), and ESL, Inc.

1.1. DISTRIBUTION

This manual describes Version 4.0 of POSTGRES. The POSTGRES Group has compiled
and tested Version4.0on the followingplatforms:

1.2. PERFORMANCE

architecture

DECstation (MIPS)
SPARC

Sequent Symmetry (386)

operating system

ULTRIX V4.2

SunOS 4.1.2

DYNIXV3.0

Version 4.0 has been tuned modestly. On the Wisconsin benchmark, one should expect
performance about twice that of the public domain, University of California version of
INGRES, a relational prototype from the late 1970's.

1.3. ACKNOWLEDGEMENTS

POSTGRES has been constructed by a team of undergraduate, graduate, and staff pro
grammers. The contributors (in alphabetical order) consisted of James Bell, Jennifer
Caetta, Jolly Chen, Ron Choi, Jeffrey Goh, Joey HeUerstein, Wei Hong, Anant Jhingran,
Greg Kemnitz, Case Larsen, Jeff Meredith, Michael Olson, Lay-Peng Ong, Spyros
Potamianos,Sunita Sarawagi and CimarronTaylor.

For version 4.0Jeff Meredith served as chiefprogrammer and was responsible for overall
coordination of the project and for individually implementing the "everything else" por
tion of the system.

The above implementation team contributed significantly to this manual, as did Claire
Mosher, Chandra Ghosh, and Jim Frew.

2. INTRODUCTION

Traditional relational DBMSs support a data model consisting of a collection of named
relations, each attribute of which has a specific type. In current commercial systems, pos
sible types are floating point numbers, integers, character strings, money, and dates. It is
commonly recognized that this model is inadequate for future data processing applica
tions.

The relational model succeeded in replacing previous models in part because of its sim
plicity. The POSTGRES data model offers substantial additional power by incorporating
the following four additional basic constructs:

classes

inheritance

types

functions

The POSTGRES DBMS has been under construction since 1986. The initial concepts for
the system were presented in [STON86] and the initial data model appeared in
[ROWE87]. The first rule system that was implemented is discussed in [STON88] and
the storage manager concepts are detailed in [STON87]. The first "demo-ware" was
operational in 1987, and we released Version 1 of POSTGRES to a few external users in
June 1989. A critique of version 1 of POSTGRES appears in [STON90]. Version 2 fol
lowed in June 1990, and it included a new rule system documented in [STON90B]. Ver
sion 4.0, the current version of POSTGRES, is about 200,000 lines of code in the C pro
gramming language. POSTGRES is available free of charge, and is being used by approx
imately 200 sites around the world at this writing.

3. ORGANIZATION

This manual discusses the POSTQUEL query language, including extensions such as user-
defined types, operators, and both query language and programming language functions.
Arrays of types and functions of an instance are discussed, as well as the POSTGRES rule
system. This manual concludes with a discussion on adding an operator class to POST
GRES for use in access methods.

This manual describes the major concepts of the system and attempts to provide an acces
sible path into using the system. As such, it tries to give examples of the use of the major
constructs, so a beginning user does not need to delve immediately into the Reference
Manual.

4. WHAT YOU SHOULD READ

This manual is primarily intended to provide a broad overview of the system, as well as
to illustrate how programmers would use functions to interact with the POSTGRES "back-
end." The POSTGRES Reference Manual discusses additional aspects of the system, and
provides full syntactic descriptions of every POSTGRES and POSTQUEL command in a
format similar to that used in UNIX "man pages."

If you are new to POSTGRES, you shouldprobably read this manual first, followed by the
parts of the POSTGRES Reference Manual necessary to build your application. In partic
ular, you should read the section on LIBPQ if you intend to build a client application

around POSTGRES, as this is not discussed at all in this manual.

5. The POSTQUEL Query Language

POSTQUEL is the query language used for interacting with POSTGRES. Here, we give an
overview of how to use POSTQUEL to access data. In other sections, user extensions to
POSTQUEL will be discussed.

5.1. Creating a database

Once POSTGRES has been installed at your site by following the directions in the release
notes, you can create a database named f oo using the following command:

% createdb foo

POSTGRES allows you to create any number of databases at a given site and you automat
ically become the database administrator of the database just created. Database names
must have an alphabetic first character and are limited to 16 characters in length.

Once you have constructed a database, there are four ways to interact with it:

• You can run the POSTGRES terminal monitor which allows you to interactively
enter, edit, and execute commands in the query language POSTQUEL.

You can interact with POSTGRES from a C program by using the LIBPQ library of
subroutine and call facilities. This allows you to submit POSTQUEL commands
from C and get answers and status messages back to your program. This interface
is discussed further in the LIBPQ section of the Reference Manual.

You can use the fast path facility, which allows you to directly execute functions
stored in the database. This facility is described in the Reference Manual under
"Fast Path."

POSTGRES is accessible from the PICASSO programming environment PICASSO
is a graphical user interface (GUI) toolkit that allows a user to build sophisticated
DBMS-oriented applications. PICASSO is a separate research project described in a
collection of reports [WANG88, SCHA90] and is not treated further in this manual.

The terminal monitor can beactivated for the foo database by typing the command1:

% monitor foo

(the "%" is your UNIX shell prompt.) You will be greeted by the following message:

Welcome to the C POSTGRES terminal monitor

Go
*

'You may first needto setthe POSTGRESHOME environment variable to thename of the POSTGRES rootdirectory at yoursite,
if it is not the default /usr/postgres. If the POSTGRES you wish to access is on a remote host, then you will also need to set the
PGHOST environment variable to the name of the remote host

The Go indicates the terminal monitor is listening to you and that you can type
POSTQUEL commands into a workspace maintained by the monitor. The monitor indi
cates it is listeningby typing * as a prompt. Printing the workspace can be performed by
typing:

* \p

and it can be passed to POSTGRES for execution by typing:

* \g

If youmakea typingmistake, youcan invoke the vi texteditorby typing:

* \e

The workspace will be passed to the editor, and you have the full power of vi to make
any necessary changes. For more info on using vi, type

% man vi

Once you exit vi, your edited query will be in the monitor's query buffer and you can
submit it to POSTGRES by using the \g command described above.

To get out of the monitor and returnto UNIX, type

* \q

and the monitor will respond:

I live to serve you.
%

For a complete collection of monitor commands, see the manual page on monitor in
the UNIX section of the Reference Manual.

If you are the database administrator for the database foo, you can destroy it using the
following UNIXcommand:

% destroydb foo

Other DBA commandsinclude createuser and destroyuser, which are discussed
further in the UNIX section of the Reference Manual.

5.2. Classes and the Query Language POSTQUEL

5.2.1. Basic Capabilities

The fundamental notion in POSTGRES is that of a class, which is a named collection of
instances of objects. Each instance has the same collection of named attributes, and each
attribute is of a specific type. Furthermore, each instance has an installation-wide unique
(never-changing) object identifier or oid.

5.2.2. Creating a New Class
(In order to try out the following POSTQUEL examples, create the foo database as
described in the previoussection,and start the terminal monitor.)

A user can create a new class by specifying the classname, along with all attributenames
and their types:

* create EMP (name = text, salary = int4,
age = int4, dept = charl6) \g

* create DEPT (dname = charl6, floor = int4,

manager = text) \g

The POSTQUEL base types used above are a variable-length array of printable characters
(text), a 4-byte signed integer (int4), and a fixed-length array of 16 characters
(char16.)2 Spaces, tabs and newlines may beused freely inPOSTQUEL queries.
So far, the create command looks exactly like the create statement in a traditional rela
tional system. However, we will presently see that classes have properties that are exten
sions of the relational model, so we use a different word to describe them.

5.2.3. Populating a Class with Instances

To populate a class with instances, one can use the append command:

* append EMP (name = "Joe", salary = 1400,

age = 40, dept = "shoe") \g

* append EMP (name = "Sam", salary = 1200,

age = 29, dept = "toy") \g

* append EMP (name = "Bill", salary = 1600,

age = 36, dept = "candy") \g

This will add 3 instances to EMP,one for each append command.

5.2.4. Querying a Class

The EMP class can be queried with normal selection and projection queries. For example,
to find the employees under 35 years of age, one would type:

* retrieve (EMP.name) where EMP.age < 35 \g

and the output would be:

'See "Built-inTypes" in theReference Manual

name

Sam

Notice that parentheses are required around the target list of returned attributes (e.g.,
EMP. name.)

POSTQUEL allows you to return computations in the target list as long as they are given a
name (e.g., result):

* retrieve (result = EMP.salary / EMP.age)
where EMP.name = "Bill" \g

5.2.5. Redirecting retrieve queries

Any retrieve query can be redirected to a new class in the database, and arbitrary boolean
operators (and, or, not) are allowed in the qualification of any query:

* retrieve into temp (EMP.name)
where EMP.age < 35 and EMP.salary > 1000 \g

5.2.6. Joins

To find the names of employees which are the same age, one could write:

* retrieve (El.name, E2.name)
from El in EMP, E2 in EMP

where El.age = E2.age and El.name != E2.name \g

In this case both El and E2 are surrogates for an instance of the class EMP, and both
range over all instances of the class. A POSTQUEL query can contain an arbitrary num
berof class names and surrogates.3

5.2.7. Updates

Updates are accomplished in POSTQUEL using the replace command:

* replace EMP (salary = E.salary)
from E in EMP

where EMP.name = "Joe" and E.name = "Sam" \g

This command replaces the salary of Joe by that of Sam.

3The semantics of such ajoin are that the qualification isatruth expression defined for the Cartesian product ofthe classes indi
cated in thequery. For thoseinstances in theCartesian product forwhich thequalification is true, POSTGRES must compute and return
the target list.

5.2.8. Deletions

Deletions are done using the delete command:

* delete EMP where EMP.salary > 0 \g

Since all employees have positive salaries, this command will leave the EMP class empty.

5.2.9. Arrays

POSTGRES supports both fixed-length and variable-length one-dimensional arrays, lb
illustrate their use, we first create a class with an array type.

* create SAL_EMP (name = char[],
pay_by_quarter = int4[4]) \g

The above query will create a class named SAL_EMP with a variable-length array of
text strings (name), and an array of 4 int4 integers (pay_by_quarter), which
represents the employee's salary by quarter. Now we do some appends; note that when
appending to a non-character array, we enclose the values within braces and separate
them by commas.

* append SAL_EMP (name = "bill",
pay_by_quarter = "{10000, 10000, 10000, 10000}M) \g

* append SAL_EMP (name = "jack",
pay_by_quarter = "{10000, 15000, 15000, 15000}") \g

* append SAL_EMP (name = "joe",
pay_by_quarter = "{20000, 25000, 25000, 25000}") \g

POSTGRES uses the FORTRAN numbering convention for arrays—that is, POSTGRES
arrays start with arrayfl] and end with array[n].

Now, we can run some queries on SAL_EMP. This query retrieves the names of the
employees whose pay changed in the second quarter:

* retrieve (SAL_EMP.name)
where SAL_EMP.pay_by_quarter[1] !=

SAL_EMP.pay_by_quarter[2] \g

This query retrieves the third quarter pay of all employees:

* retrieve (SAL_EMP.pay_by_quarter [3]) \g

This query deletes everyone from SAL_EMP whose name begins with the letter "j."
SAL_EMP should now contain only the employee named "bill":

* delete SAL_EMP where SAL_EMP.name[1] = 'j' \g

Let's make sure (note that the attribute all may be used as a shorthand for all attributes
of a class):

* retrieve (SAL_EMP.all) \g

name pay_by_quarter

bill {10000,10000,10000,10000}

POSTGRES supports arrays of base and user-defined types, as well as "arrays of arrays,"
as in the following example:

* create manager (name = charl6, employees = text[]) \g

* append manager (name = "mike",

employees = "{"wei", "greg", "jeff"}") \g

* append manager (name = "alice",
employees = "{"bill", "joe"}") \g

* append manager (name = "marge",

employees = "{"mike", "alice"}") \g

This creates a class manager, and provides a list of employees.

5.3. Advanced POSTQUEL

Now we have covered the basics of using POSTQUEL to access your data. In this section
we will discuss those features of POSTGRES which distinguish it from other data man
agers, such as inheritance and time travel. In the next section we will cover how the user
can extend the query language via query language functions and composite objects, as
well as additional extensions to POSTGRES using user defined types, operators, and pro
gramming language functions.

5.3.1. Inheritance

First, re-populate the EMP class by repeating the append commands in section 5.2.3.
Then, create a second class STUD_EMP, and populate it as follows:

* create STUD_EMP (location = point) inherits (EMP) \g

* append STUD_EMP (name = "Sunita", salary = 1300,
age = 41, dept = "electronics",

location = "(3, 5)") \g

In this case, an instance of STUD_EMP inherits all data fields (name, salary, age,
and dept) from its parent, EMP. Furthermore, student employees have an extra field,
location, that shows their address as a coordinate pair. In POSTGRES, a class can

inherit from zero ormore other classes,4 and a query can reference either all instances of
a class or all instances of a class plus all of its descendants. For example, the following

*i.e., theinheritance hierarchy is adirected acyclic graph.

8

query finds the employees over 39:

* retrieve (E.name) from E in EMP where E.age > 39 \g

On the other hand, to find the names of all employees, including student employees, over
age 40, the query is:

* retrieve (E.name) from E in EMP* where E.age > 39 \g

which returns:

name

Joe

Sunita

Here the * after EMP indicates that the query should be run over EMP and all classes
below EMP in the inheritance hierarchy.

Note that location in STUD_EMP is not a traditional relational data type. As we will
see later, POSTGRES can be customized with an arbitrary number of user-defined data
types.

5.3.2. Time Travel

POSTGRES supports the notion of time travel. This feature allows a user to run historical
queries. Forexample, to find Sam's current salary, onewould query:

* retrieve (E.salary) from E in EMP["now"]
where E.name = "Sam" \g

POSTGRES will automatically find the version of Sam's record valid at the correct time
and get the appropriate salary.

One can also give a time range. For example to see all the salaries that Sam has ever
earned, one would query:

* retrieve (E.salary)
from E in EMP["Jan 1 00:00:00 1970 GMT", "now"]
where E.name = "Sam" \g

If youhaveexecuted allof theexamples so far, thentheabove query returns:

salary

1200

1200

There are two salaries for Sam, since he was deleted from and then re-appended to the
EMP class.

The default beginning of a time range is the origin of the system clock (which just hap
pens to be "Jan 1 00:00:00 1970 GMT" on UNIX systems), and the defaultend is
the current time; thus, the above time rangecan be abbreviated as " [,]."

6. User Extensions to POSTQUEL

Here, we will discuss user extensions to the POSTQUEL query language, query language
functions, composite types, and user definedtypes, functions and operators.

6.1. User Defined POSTQUEL Functions

POSTQUEL provides two types of functions: query language functions (functions writ
ten in POSTQUEL) and programming language functions (functions written in a sepa
rately-compiled programming language such as C.) In this section we will cover
POSTQUEL functions; programming language functions will be covered below with the
discussion on user-defined types.

Any collection of commands in the POSTQUEL query language can be packaged together
and defined as a function, usually returning either a set of instances or a set of base types.
For example, the following function high__pay returns all employees in class EMP
whose salaries exceed 50,000:

* define function high_pay
(language = "postquel", returntype = setof EMP)

as retrieve (EMP.all) where EMP.salary > 50000 \g

POSTQUEL functions can also have parameters. The following function large__pay
allows the threshold salary to be specified as an argument:

* define function large_pay
(language = "postquel", returntype = setof EMP)

arg is (int4)

as retrieve (EMP.all) where EMP.salary > $1 \g

In addition to their obvious utility as "aliases" for commonly-used queries, POSTQUEL
functions are useful for creating composite types, as described below.

6.2. Composite Types

Since POSTQUEL functions return instances or sets of instances, they are the mechanism
used to assign values to composite types. For example, consider extending the EMP class
with a manager field. That is, for each instance of EMP, we want to associate another
instance of EMP corresponding to the manager of the first instance. Specifically, we will
define a POSTQUEL function manager:

* define function manager

(language = "postquel", returntype = EMP)
arg is (EMP)

as "retrieve (E.all) from E in EMP

where E.name = DEPT.manager

and DEPT.name = $l.dept" \g

10

The function manager takes an instance as its only argument, so POSTQUEL allows ref
erencing into it with the use of the nested dot notation. Whenever such a function is
defined over a class, a user can utilize the cascaded dot notation to reference into (i.e.
access the fields of) the objects returned by the function.

The following query finds all the employees who work for Joe:

* retrieve (EMP.name) where EMP.manager.name = "Joe" \g

This is exactly equivalent to:

* retrieve (EMP.name)

where name (manager (EMP)) «= "Joe" \g

Here, we have essentially added an attributeto the EMP class which is of type EMP, i.e. it
has a value which is an instance of the class EMP. Since the value of manager has a
record-oriented structure, we call it a composite object. Consequently, the user can think
of the function manager as an attribute of EMP and can reference it just like any other
attribute, with the following two exceptions. First, one cannot do direct appends—that
is,

* append emp (emp.manager.name = "Smith") \g

won't work. Non-projected retrieves will also be rejected, i.e.:

* retrieve (emp.manager) \g

will result in a warning from the POSTQUEL language parser.

Note that manager is defined as returning a single instance of EMP. We can also write
a POSTQUEL function that returns sets of instances. For example, consider the function

* define function children

(language = "postquel", returntype = setof KIDS)

arg is (EMP)

as "retrieve (KIDS.all)

where $l.name = KIDS.dad

or $l.name «= KIDS.mom"\g

The children function is defined as returning a set of instances, rather than a single
instance. Given the query

* retrieve(emp.name, emp.children.name)

if the query in the body of the children function returns many instances, the retrieve
query will return all of them, in a "flattened" form. If the query in the body ofmanager
returns more than one instance, the manager function will return only one instance,
arbitrarily chosen from the set returned by the query in the function's body. See the
POSTGRES Reference Manual's entry on the define function command for further
details and examples.

11

7. User Defined Types,Operators, and Programming Language Functions
The central concept of extending POSTGRES lies in POSTGRES's ability to dynamically
loada binary object file created by theuser. This allows POSTGRES to callarbitrary user
functions which can be written in a standard programming language. Thesefunctions can
then be used:

• to convert between internal (binary) and external (character string) representations
of user-defined types;

• as operators; and

• to define ordering for indices on user-defined types.

POSTGRES's concept of types includes built-in types and user-defined types. Built-in
types are those required by the system to bootstrap itself. User-defined types are those
created by the user in the manner described below. There is no intrinsic performance dif
ference between using a system type or user-defined type, other than the overhead due to
the complexity of the type itself.

7.1. Internal storage of types

Internally, POSTGRES regards a user-defined type as a "blob of memory" upon which
user-defined functions impose structure and meaning. POSTGRES will store and retrieve
the data from disk and use user-defined functions to input, process, and output the data.

7.2. Functions needed for a user-defined type

A completely defined user type requires the following user-defined functions:

• input and output functions for the type: These functions determine how the type
appears in strings (for input by the user and output to the user) and how the type is
organized in memory. These at least are necessary to define the type.

• operator functions for the type: These functions define the meanings of "equal,"
"less than," "greater than," etc., for your type.

7.3. An Example User Defined Type

In this discussion, we will be defining a circle type, using functions written in the C
programming language.

7.3.1. Data structures for our type

Before we do anything, we have to decide on what a circle looks like, both in string for
mat and internally in memory. Circles have a center and a radius, so a reasonable string
representation of a circle would be an ordered triple:

(center_x, center_y, radius)

where each element is a real number with arbitraryunits, e.g.:

(5.0, 10.3, 3)

This is what the input to the circle input function looks like, and what the output from the
circle output function looks like.

12

Now we have to come up with an internal representation for a circle in memory. The fol
lowing declarations are legal and reasonable given the format we chose above:

typedef struct {

double x, y;

} POINT;

typedef struct {

POINT center;

double r;

} CIRCLE;

Memory containing values of type CIRCLE will be written to disk and read from disk, so
CIRCLE must be both complete and contiguous; that is, it cannot contain any pointers.
The alternate declaration

typedef struct {

POINT *center

double r;

} CIRCLE;

will NOT work,because only the address stored in center wouldbe writtento disk,not
the POINT structure that center presumably points to. POSTGRES cannot detect this
kindof coding error, youmustguard against it yourself.

7.3.2. Defining the input and output functions for our type
Suppose in defining our type "circle," we have a C source file called circle. c, and a
corresponding object code file /usr/postgres/tutorial/circle. o. (All func
tions related to our circle type have to be in the same object file.) For the sake of
argument, suppose we our platform is a DECstation, where sizeof(double) is 8 bytes (this
will be important later).

We will create source file circle. c, containing C source code for the functions that
support our CIRCLE type, circle. c contains three functions:

• circle_in, which is the input function for circles. It takes a string as an argu
ment and returns a pointer to a CIRCLE.

• circle_out, which is the output function for circles. It is takes a pointer to s
CIRCLE as input and returns a string.

The return value of circle_in must be a legal argument to circle_out, and
vice versa.

• eq_area_circle, whichis the equality function for circles. For the purposes of
this discussion, circlesareequal if their areas are equal.

The contents of circle. c are:

#include <math.h>

#include <stdio.h>

#include <string.h>

13

tinclude "tmp/c.h" /* (always) */
#include "utils/geo-decls.hM /* for POINT declaration */
#include "utils/palloc.h" /* for pallocO declaration */

typedef struct {

POINT center;

double radius;

} CIRCLE;

#define LDELIM '('

#define RDELIM ')'

#define NARGS 3

CIRCLE *

circle_in(str)
char *str;

{

char *p, *coord[NARGS];

int i;

CIRCLE *result;

if (str == NULL) return(NULL);

for (i = 0, p = str;

*p && i < NARGS && *p != RDELIM;

P++)

{

if (*p == ',' II (*P == LDELIM && !i))
coord[i++] = p + 1;

}

if (i < NARGS - 1) return(NULL) ;

result = (CIRCLE *) palloc(sizeof(CIRCLE));

result->center.x = atof(coord[0]);

result->center.y = atof(coord[l]);

result->radius = atof(coord[2]);

return(result);

}

char *

circle_out(circle)
CIRCLE *circle;

{

char *result;

if (circle == NULL) return(NULL) ;

result = (char *) palloc(60);

14

sprintf(result, "(%g, %g, %g)'\
circle->center.x, circle->center.y,

circle->radius);

return(result);

)

int

eq_area_circle(circlel, circle2)
CIRCLE *circlel, *circle2;

{

return(circlel->radius == circle2->radius);

}

Now that we have written these functions and compiled the source file,5 we have to let
POSTGRES know that they exist First, we run the following queries to define the input
and output functions. These functions must be defined before we define the type. POST

GRES will notify you that return type circle isnot defined yet, but this isOK6:

* define function circle_in
(language = "c", returntype = circle)

arg is (charl6)

as "/usr/postgres/tutorial/circle.o" \g

* define function circle_out
(language = "c", returntype = charl6)

arg is (circle)

as M/usr/postgres/tutorial/circle.o" \g

Note that the full pathname of the object code file must be specified, so you would
change /usr/postgres /tutorial to whatever is appropriate for your installation.

Now we can define the circle type:

* define type circle
(internallength = 24,
input = circle_in, output = circle_out) \g

where internallength is the size of the CIRCLE structure in bytes. For circles, the
type members are three doubles, which on most platforms are 8 bytes each, with no
additional alignment constraints. However, when defining your own types, you should
not make assumptions about structure sizes, but instead write a test program that does a

printf("size is %d\n", sizeof (MYTYPE));

sYou willneed to supply anoption like -I$POSTGRESHOME/src/lib/H to yourC compiler so it can find the POSTGRES
". h" files. Also, various platform-specific compiler options may be requiredto supportPOSTGRES dynamic linking (for example, the
DECstation ULTRK compilerrequires the "-GO" option.) See "define function" in the ReferenceManual for details.

6Bydefault, user-defined C functions use addresses instead of values forallbut"small"(<= 4-byte)argument andreturn types,
so we can use the POSTQUEL type char16 as a placeholder for the C type char *.

15

on your type.

If internallength is defined incorrectly, you will encounter strange errors which
may crash the data manager itself. If this were to happen with our CIRCLE type, we
would have to do a

* remove type circle \g

and then redefine the circle type correctly. Note that we would not have to redefine
our functions, since their behavior would not have changed.

7.3.3. Defining an operator for our type

Now that we have finished defining the circle type, we can create classes with cir
cles in them, append records to them with circles defined, and retrieve the values of
the entire list of records. But we can do nothing else until we have some circle operators.
To do this, we make use of the concept of operator overloading, and in this case we will
set the POSTGRES equality operator "=" to work for circles. First we have to tell POST
GRES that our circle equality function exists:

* define function eq_area_circle
(language = "c", returntype = bool)

arg is (circle, circle)

as "/usr/postgres/tutorial/circle.o" \g

We will now bind this function to the equality symbol with the following query:

* define operator =

(argl = circle, arg2 = circle,
procedure = eqL_area_circle) \g

7.3.4. Using our type

Let's create a class tutorial that contains a circle attribute, and run some queries
against it:

* create tutorial(a = circle) \g

* append tutorial (a = "(1.0, 1.0, 10.0)"::circle) \g

* append tutorial (a = "(2.0, 2.0, 5.0)"::circle) \g

* append tutorial (a = "(0.0, 1.8, 10.0)"::circle) \g

* retrieve (tutorial.all)

where tutorial.a = "(0.0, 0.0, 10.0)"::circle \g

which returns:

16

a

(1. 0, 1 o, 10 0)

(0 o, 1 8, 10 0)

Recall that we defined circles as being equal if their areas were equal.

Other operators (less than, greater than, etc.) can be defined in a similar way. Note that
the "=" symbol will still work for other types—it has merely had a new type added to the
list of types it works on. Any string of "punctuation characters" other than brackets,
braces, or parentheses can be used in defining an operator.

7.4. Additional info on creating a user-defined function

7.4.1. Use palloc and not malloc

In order for POSTGRES to correctly manage memory associated with processing your
type, you must use the memory allocator palloc and avoid standard UNIX memory
managers such as malloc. If you do not, POSTGRES will chew up ever increasing
amounts of memory, palloc has the same arguments as malloc, that is

char *palloc(size)

unsigned long size;

To free memory allocated with palloc, use pfree, which is analogous to the UNIX
library function free:

void pfree(ptr)

char *ptr;

7.4.2. Re-loading user functions

In the process of creating a user-defined type, you may find it necessary to re-load a func
tion in the course of debugging. This is not done automatically when you edit or re
compile the file, but is done if you quit and restart the data manager.

We would re-load our example functions by using the following command:

* load "/usr/postgres/tutorial/circle.o" \g

7.4J. Writing a Function of an Instance

We've already discussed user functions which take POSTGRES base or user defined types
as arguments; in this section, we will discuss inheritable C functions or methods.

C language methods are useful particularly when we want to make a function inherita
ble; that is, to have the function process every instance in an inheritance hierarchy of
classes.

In using a function of an instance in qualifying an instance, POSTGRES defines the "cur
rent instance" to be the instance being qualified at the moment your function is called.

17

The instance itselfwill be passed in your function's parameter list as an opaque structure
of type TUPLE, and you will use POSTGRES library routines to access the data in the
object as described below.7

Suppose we wantto writea function to answer the query

* retrieve (EMP.all) where overpaid(EMP) \g

In the query above, a reasonable overpaid function might be:

bool

overpaid(t)

TUPLE t; /* the current instance */

{

extern char *GetAttributeByName();

short salary, seniority, performance;

salary = (short) GetAttributeByName(t, "salary");

seniority = (short) GetAttributeByName(t, "seniority");
performance = (short) GetAttributeByName(t, "performance");

return (salary > (seniority * performance));

}

GetAttributeByName is the POSTGRES system function that returns attributes out of
the current instance. It has two arguments: the argumentof type TUPLE passed into the
function, and the name of the desired attribute. GetAttributeByName will align data
properly so you can cast its return value to the desired type. For example, if you have an
attribute name which is of the POSTQUEL type char16, the GetAttributeByName
call would look like:

char *str;

str = (char *) GetAttributeByName(t, "name")

To let POSTGRES know about the overpaid function, do:

* define function overpaid

(language = "c", returntype = bool)
arg is (EMP)

as "/usr/postgres/tutorial/overpaid.o" \g

You can have additionalcomplex, base or user-defined types as arguments to the inherita
ble function. Thus,

* retrieve (EMP.all)

In POSTGRES 4.0, TUPLE is defined asvoid •*.

18

where overpaid2(EMP, DEPT, "bill", 8) \g

could be written, and overpaid2 would be declared:

bool

overpaid2(emp, dept, name, number)
TUPLE emp, dept;

char *name;

long number;

7.5. Arrays of types

As discussed above, POSTGRES fully supports arraysof base types. Additionally, POST
GRES supports arrays of user-defined types as well. When you define a type, POSTGRES
automatically provides supportfor arraysof that type.

7.5.1. Arrays of user-defined types

Using the "circle" example discussed above, wewill create a class containing an array of
circles:

* create circles (list = circle[]) \g

and dosome appends

* append circles (list = "{"(1.0, 1.0, 5.0)",
"(2.0, 2.0, 10.0)"}") \g

* append circles (list = "{"(2.0, 3.0, 15.0)",
"(2.0, 2.0, 10.0)")") \g

* append circles (list = "{"(2.0, 3.0, 4.0)")") \g

We can now run queries like:

* retrieve (circles.list[1]) \g

which returns the first element of each list:

and

list

(1, 1, 5)

(2, 3, 4)

* retrieve (circles.all)

where circles.list[1] = "(0.0, 0.0, 4.0)" \g

which returns:

19

list
{"(2, 3, 4)"}

Note the {} s, indicating that an array has been retrieved, as opposed to a single element

7.5.2. Defining a new array type

An array may be defined as an element of a class, as shown above, or it may be defined as
a type in and of itself. This is useful for defining arrays of arrays.

The special built-in functions array_in and array_out are used by POSTGRES to
input and output arrays of any existing type. Here, we define an array of integers:

* define type int_array
(element = int4, internallength = variable,

input = array_in, output = array_out) \g

The element parameter indicates that this is an array, and setting internallength

tovariable indicates that the array isavariable-length attribute.8
We can use our type defined above to create an array of integer arrays:

* define type int_arrays
(element = int_array, internallength = variable,
input = array_in, output = array_out) \g

* create stuff (a = int_arrays) \g

* append stuff (a = "{{1, 2, 3} , {4, 5}, {6, 7, 8})") \g

* append stuff (a = "{{88, 99, 3})") \g

* append stuff (a = "{{5, 4, 3) , {2, 2}}") \g

* retrieve (stuff.a[l])

where stuff.a[1][1] < stuff.a[1][2] \g

* retrieve (stuff.a)

where stuff.a[3][1] < stuff.a[l][2] \g

* retrieve (s.all) from s in stuff

where s.a[2][2] = stuff.a[l][1] \g

We can also define operators for equality, less than, greater than, etc. which operate on
our new array type as necessary.

•Note that any type using array_in and array_out mustbevariable-length.

20

7.5.3. Creating an array type from scratch

There are many situations in which the above scheme for creating an array type is inap
propriate, particularly when it is necessary to define a fixed-length array. In this section,
we will create an array of four longs called quarterly, and a variable-length array of

longs called stats.9
The only special things we need to know when writing the input and output functions for
quarterly is that POSTGRES will pass a "simple" (i.e. fixed-length) array of longs to
the output function and expect a simple array of longs in return from the input function.
A simple array suitable for quarterly can be declared:

long quarterly[4];

For the variable-length array stats, the situation is a little more complicated. Because
POSTGRES will not know in advance how big the array is, POSTGRES will expect the
length of the array (in bytes) to be encoded in the first four bytes of the memory which
contains the array. The expected structure is:

typedef struct {

long length;

unsigned char bytes[1]; /* Force contiguity */
) VAR_LEN_ATTR;

The input function for the stats array will look something like:

VAR_LEN_ATTR *

stats_in(s)
char s;

{

VAR_LEN_ATTR *Stats;
long array_size, *arrayp, nbytes;

/*

* nbytes is the total number of bytes in stats,
* INCLUDING the byte count at the beginning

*/

nbytes = array_size * sizeof(long) + sizeof(long);

stats = (VAR_LEN_ATTR *) palloc(nbytes);

stats->length = nbytes;

arrayp = &(stats->bytes[0]);

/*

* put code here that loads interesting stuff into
* arrayp[0] .. arrayp[array_size]

We assume sizeof (long)

21

*/

return(stats);

}

The output function for stats will get the same VAR_LEN_ATTR structure.

Now, assuming the functions are in /usr/postgres/tutorial/stats.c and
/usr/postgres/tutorial/quarterly.c, we can define our two arrays. Rrst
wewilldefine the fixed-size array quarterly.10

* define function quarterly_in
(language = "c", returntype = quarterly)
arg is (charl6)

as "/usr/postgres/tutorial/quarterly.o" \g

* define function quarterly_out
(language = "c", returntype = charl6)
arg is (quarterly)

as "/usr/postgres/tutorial/quarterly.o" \g

* define type quarterly

(element = int4, internallength = 16,
input = quarterly_in, output = quarterly_out) \g

Now we define the stats array:

* define function stats_in
(language = "c", returntype = stats)
arg is (charl6)

as "/usr/postgres/tutorial/stats.o" \g

* define function stats_out
(language = "c", returntype = charl6)

arg is (stats)

as "/usr/postgres/tutorial/stats.o" \g

* define type stats

(element = int4, internallength = variable,

input = stats_in, output = stats_put) \g

Now we can run some queries:

* create test (a = quarterly, b = stats) \g

* append test (a ="123 4"::quarterly,

b = "5 6 7"::stats) \g

internallength = 16 follows from ourassumptionabout sizeof (long).

22

* append test (a ="132 4"::quarterly,

b = "6 4"::stats) \g

* append test (a = "7 11 6 9"::quarterly,

b = "1 2"::stats) \g

* retrieve (test.all) where test.a[4] = test.b[2] \g

which returns:

a b

1324 64

NOTE that when you use yourownfunctions to inputand output arraytypes, your func
tion will define how to parse the external (string) representation. The braces notation is
only a convention used by array_in and array_out and is not part of the formal
POSTQUEL definition.

7.6. Large Object types

The types discussed to this point are all small objects—that is, they are smaller than 8
Kbytes11 in size. If you require a larger type for something like a document retrieval sys
tem or for storing bitmaps, you will need to use the POSTGRES large object interface.
The interface to large objects is quite similar to the UNIX file system interface. The par
ticulars are detailed in Section 7 of the POSTGRES Reference Manual, which you should
have available to consult as you read the following.

7.6.1. Defining a large object

Just like any other type, a large objecttype requires input and output functions. For the
purposes of this discussion, we assume that twofunctions, large_in and large_out
have beenwritten usingthe largeobject interface, and that the compiled functions are in
/usr/postgres/tutorial/large.o. We also presume that we are using the
"file as an ADT" interface for large objects discussed in the Reference Manual.

Wedefine a large object which could be used for storing map data:

* define function large_in
(language = "c", returntype = map)

arg is (charl6)
as "/usr/postgres/tutorial/large.o" \g

* define function large_out
(language = "c", returntype = charl6)
arg is (map)
as "/usr/postgres/tutorial/large.o" \g

* define type map

"8* 1,024 = 8.192bytes

23

(internallength = variable,
input = large_in, output = large_out) \g

Note that large objects are always variable-length.

Now we can use our map object:

* create maps (name = text, a = map) \g

* append maps (name = "earth",

a = "/usr/postgres/maps/earth") \g

* append maps (name = "moon",

a = "/usr/postgres/maps/moon") \g

Notice that the abovequeries are identical in syntaxto those we have been using all along
to define types and such; the fact that this type is a large object is completely hidden in
the large object interfaceand POSTGRES storagemanager.

7.6.2. Writing functions and operators for large object types

Like any other POSTGRES type, you can define functions and operators for large object
types. The only caveat is that, like any other functions which process a large object, they
must use the large object interface described in Section 7 of the POSTGRES Reference
Manual. Possible queries which involve functions on large objects could include

* retrieve (emp.name) where beard(emp.picture) = "red" \g

* retrieve (mountain.name)

where height(mountain.topomap) > 10000 \g

Because all functionality is available to largeobjects, any aspect of POSTGRES is avail
able for use with them, including index access methods, if the appropriate operator
classes have been defined. Operator classes for index access methods will be discussed
later in this manual.

8. The POSTGRES Rule System

The discussion in this seaion is intended to provide an overview of the POSTGRES rule
system and point the user at helpful references and examples. POSTGRES actually has
two rule systems, the instance-level rule systemand the query rewrite rule system.

8.1. The Instance-level Rule System

The instance-level rule systemusesmarkers placed in each instance in a class to "trigger"
rules. Examples of the instance-level rule system are explained and illustrated in
$POSTGRESHOME/demo, which is included with the POSTGRES distribution. Addi
tional discussionof the instance-level rule system can be found in the ReferenceManual
underdefine rule. The theoretical foundations of the POSTGRES rulesystem can be
found in [STON90].

24

8.2. The Query Rewrite Rule System

The query rewrite rule system modifies queries to take rules into consideration, and then
passes the modified query to the query optimizer for execution. It is very powerful, and
can be used for many things such as query language procedures, views, and versions.
Examples and discussion can be found in the demo in $POSTGRESHOME/video, and
further discussion is in the Reference Manual under define rule. The power of this
rule system is discussed in [ONG90] and [STON90].

8.3. When to use either?

Since each rule system is architected quite differently, they work best in different situa
tions. The query rewrite system is best when rules affect most of the instances in a class,
while the instance-level system is best when a rule affects only a few instances.

9. Administering POSTGRES

In this section, we will discuss aspects of POSTGRES of interest to those making exten
sive use of POSTGRES, or who are the database administrator for a group of POSTGRES
users.

9.1. User administration

The createuser and destroyuser enable and disable access to POSTGRES by spe
cific users on the host system. Please read the descriptions of these commands in the
Reference Manual for specifics on their use.

9.2. Moving database directories out of $POSTGRESHOME/data/base

By default, all POSTGRES databases are stored in separate subdirectories under

$POSTGRESHOME/data/base/.12 To move a particular data base to an alternate
directory (e.g., on a filesystem with more free space), do the following:

Create the database (if it doesn't already exist) using the createdb command. In the
following steps we will assume the database is named foo.

Copy the directory $POSTGRESHOME/data/base/foo and it contents to its
ultimate destination. It should still be owned by the postgres user.

Remove the directory $POSTGRESHOME/data/base/foo.

• Make a symbolic link in $POSTGRESHOME/data/base to the new directory.

9.3. Troubleshooting POSTGRES

Occasionally, POSTGRES will fail with cryptic error messages that are due to relatively
simple problems. The following are a list of POSTGRES error messages and the likely
fix. These messages are ones you would likely see in the monitor program.

Message: semget: No space left on device

Explanation and Likely Fix:

"Data forcertain classes may stored elsewhere if anon-standard storage manager wasspecified whenthey werecreated.

25

Either the kernel has not been configured for System V shared memory, or some other
program is using it up. On most machines, the UNIX command ipcs will show shared
memory and semaphore usage.

To delete all shared memory and semaphores (may be necessary if a backend fails), run
the ipcclean command. Note, however, that ipcclean deletes all semaphores
belonging to the user running it, so the user should be certain that none of his/her non-
POSTGRES processes are using semaphores before running this command.

Message: Unable to get shared buffers

Explanation and Likely Fix:

This message means that a POSTGRES backend was expecting shared memory to be
available and it was not Usually this is due to ipcclean being run while a postmas
ter was also running.

Message: Can't connect to the backend (...)

Explanation and Likely Fix:

This message means that you are running a LIBPQ application but it could not link up
with a postmaster. If you see this error message, you should see if a postmaster
is truly running. If one is running, the problem is likely related to your network.

10. REFERENCES

[ONG90] Ong, L. and Goh, J., "A Unified Framework for Version Modeling Using
Production Rules in a Database System," Electronics Research Laboratory,
University ofCalifornia, Berkeley, ERL Memo M90/33, April 1990.

[ROWE87] Rowe, L. and Stonebraker, M., "The POSTGRES Data Model," Proc.
1987 VLDB Conference, Brighton, England, Sept. 1987.

[SCHA90] Shapiro, L., "Join Processing in Database Systems with Large Main Mem
ories," ACM-TODS, Sept. 1986.

[STON86] (missing)

[STON87] Stonebraker, M., "The POSTGRES Storage System," Proc. 1987 VLDB
Conference, Brighton, England, Sept. 1987.

[STON88] (missing)

[STON90] Stonebraker, M. et. al., "On Rules, Procedures, Caching and Views in
Database Systems," Proc. 1990 ACM-SIGMOD Conference on Manage
ment of Data, Atlantic City, N.J., June 1990.

[STON90B] (missing)

[WANG88] (missing)

APPENDIX: User defined types and indices

In this section, we will discuss how to extend POSTGRES to use a user-defined type and
associated functions with existing access methods. This way, you can define a BTREE or

26

RTREE index on your own type. To do this, we will discuss how to define a new operator
class in POSTGRES for use with an existing access method.

Our example will be to add a new operatorclass to the BTREE access method. The new
operator class will sort integers in ascending absolute value order. This tutorial will
describe how to define the operatorclass. If you work the example, you will be able to
define and use indices that sort integer keys by absolute value.

There are several POSTGRES system classes that are important in understanding how the
access methods work. These will be discussed, and then a sample procedure for adding a
new set of operators to an existing access method will be shown as an example.

The pg__am class contains one instance for every user defined access method. Support
for the HEAP access method is built into POSTGRES, but every other access method is
described here. The schema is

amname

amowner

amkind

amstrategies

amsupport

am*

name of the access method

object id of the owner's instance in pg_user

not used at present, but set to V as a place holder

number of strategies for this access method (see below)

number of supportroutines for this accessmethod (see below)

procedure identifiers for interface routines to the access
method. For example, regproc ids for opening, closing,
and getting instances from the access method appear here.

The object ID of the instance in pg_am is used as a foreign key in lots of otherclasses.
For BTREES, this object ID is 403. You don't need to add a new instance to this class;
all you're interested in is the object ID of the access method instance you want to extend:

* retrieve (pg_am.oid) where pg_am.amname = "btree" \g

oid

403

The amstrategies attribute exists to standardize comparisons across data types. For
example, BTREES impose a strict ordering on keys, less to greater. Since POSTGRES
allows the user to define operators, POSTGRES cannot in general look at the name of an
operator (eg, >, <) and tell what kind of comparison it is. In fact, some access methods
(like rtrees) don't impose a less-to-greater ordering, but some otherordering, like contain
ment. POSTGRES needs some consistent way of taking a scan qualification, looking at
the operator, deciding if a usable index exists, and rewriting the query qualification in
order to improve access speeds. This implies that POSTGRES needs to know, for exam
ple, that <= and > partition a BTREE. Strategies is the way that we do this.

Defining a new set of strategies is beyond the scope of this discussion, but how the
BTREE strategies work will be explained, since you'll need to know that to add a new
operator class. In the pg_am class, the amstrategies attribute is the number of
strategies defined for this access method. For BTREES, this number is 5. These

27

strategies correspond to

less than 1

less than or equal 2

equal 3

greater than or equal 4

greater than 5

The idea is that you'll add procedures corresponding to the comparisons above to the
pg_amop relation (see below). The access method code can use these numbers, regard
less of data type, to figure out how to partition the BTREE, compute selectivity, and so
on. Don't worry about the details of adding procedures yet; just understand that there's a
set of these for int2, int4, oid, and every other data type on which a BTREE can
operate.

Strategies are used by all of the POSTGRES access methods. Some access methods
require other support routines in order to work. Forexample, the BTREE access method
must be able to compare two keys and determine whether one is greaterthan, equal to, or
less than the other. Similarly, the RTREE access method must be able to compute inter
sections, unions, and sizes of rectangles. These operations do not correspond to user
qualifications in POSTQUEL queries; they are administrative routines used by the access
methods, internally.

In order to manage diverse support routines consistently across all POSTGRES access
methods, pg_am includes a field called amsupport. This field records the number of
support routines used by an access method. For BTREES, this number is one—the rou
tine to take two keys and return -1, 0, or +1, depending on whether the first key is less
than, equal to, or greater than the second.

The amstrategies entry in pg_am is just the number of strategies defined for the
access method in question. The procedures for less than, less equal, and so on don't
appear in pg_am. Similarly, amsupport is just the number of support routines
required by the access method. The actual routines are listed elsewhere.

The next class of interest is pg_opclass. This classexists only to associate a name
with an oid. In pg_amop, every BTREE operator class has a set of procedures, one
through five, above. Some existing opclasses are int2_ops, andint4_ops,
oid_ops. You need to add an instance with your opclass name (for example,
int4_abs_ops) to pg_opclass. The oid of this instance is a foreign key in other
classes.

* append pg_opclass (opcname = nint4_abs_ops") \g

* retrieve (cl.oid, cl.opcname) from cl in pg_opclass
where cl.opcname = "int4_abs_ops" \g

oid opcname

17314 int4_abs__ops

28

NOTE: The oid for your pg_opclass instance may be different! You should substi
tute your value for 17314 wherever it appears in this discussion.

So now we have an access method and an operator class. We still need a set of operators;
the procedure for defining operators was discussed earlier in this manual. For the
int4_abs_ops operator class on BTREES, the operatorswe require are:

absolute value less-than

absolute value less-than-or-equal
absolute value equal
absolute value greater-than-or-equal
absolute value greater-than

Suppose the code that implements the functions defined is stored in the file
/usr/postgres/tutorial/int4_abs. c. The code is

/*

* int4_abs.c — absolute value comparison functions
* for int4 data

*/

#include "tmp/c.h"

#define ABS(a) a = ((a < 0) ? -a : a)

bool int4_abs_lt (a, b) int32 a, b;
{ ABS(a); ABS(b); return (a < b); }

bool int4_abs_le(a, b) int32 a, b;
{ ABS(a); ABS(b); return (a <= b); }

bool int4__abs_eq(a, b) int32 a, b;
{ ABS(a); ABS(b); return (a == b); }

bool int4_abs_ge(a, b) int32 a, b;
{ ABS(a); ABS(b); return (a >= b); }

bool int4_abs_gt(a, b) int32 a, b;
{ ABS(a); ABS(b); return (a > b); }

There are a couple of important things that are happening below. First, note that opera
tors for less, less equal, equal, greaterequal, and greater for int4 are being defined. All
of these operators are already defined for int4 under the names <, <=, =, >=, and >.
The new operators behave differently, of course. In order to guarantee that POSTGRES
uses these new operators rather than the old ones, they need to be named differently from
the old ones. This is a key point: you can overload operators in POSTGRES, but only if
the operator isn't already defined for the argument types.

That is, if you have < defined for (int 4, int4), you can't define it again. POSTGRES
doesn't check this when you define your operator, so be careful. To avoid this problem,
odd names will be used for the operators. If you get this wrong, the access methods are

29

likely to crash when you try to do scans.

The other important point is that all the functions return boolean values; the access meth
ods rely on this fact.

* define function int4_abs_lt
(language = "c", returntype = bool)
arg is (int4, int4)

as "/usr/postgres/tutorial/int4_abs.o" \g

* define function int4_abs_le
(language = "c", returntype = bool)
arg is (int4r int4)

as "/usr/postgres/tutorial/int4__abs.o" \g

* define function int4_abs_eq
(language = "c", returntype = bool)
arg is (int4, int4)

as "/usr/postgres/tutorial/int4_abs.o" \g

* define function int4_abs_ge
(language = Mc", returntype = bool)
arg is (int4, int4)

as M/usr/postgres/tutorial/int4_abs.oM \g

* define function int4_abs_gt
(language = "c", returntype = bool)
arg is (int4, int4)

as "/usr/postgres/tutorial/int4_abs.o" \g

Now define the operators that use them. As noted, the operator names must be unique for
two int4 operands. Youcan do a query on pg_operator:

* retrieve (pg_operator.all) \g

to see if your name is taken for the types you want. The important things here are the
procedure (which are the C functions defined above) and the restriction and join selectiv
ity functions. You should just use the ones used below—notethat there are different such
functions for the less-than, equal, and greater-than cases. Thesemust be supplied, or the
access method will die when it tries to use the operator. You should copy the names for
restrict and j oin, but use the procedurenames you defined in the last step.

* define operator «&

(argl = int4, arg2 = int4, procedure=int4_abs_lt,
associativity = left, restrict «= intltsel,
join «= intltjoinsel) \g

* define operator <=&

(argl = int4, arg2 = int4, procedure = int4_abs_le,
associativity = left, restrict = intltsel,
join = intltjoinsel) \g

30

* define operator ==&

(argl = int4, arg2 = int4, procedure = int4_abs_eq,
associativity = left, restrict = eqsel,
join = eqjoinsel) \g

* define operator >=&

(argl = int4, arg2 = int4, procedure = int4_abs__ge,
associativity = left, restrict = intgtsel,

join = intgtjoinsel) \g

* define operator »&

(argl = int4, arg2 = int4, procedure = int4_abs_gt,
associativity = left, restrict = intgtsel,

join = intgtjoinsel) \g

Notice that five operators corresponding to less, less equal, equal, greater, and greater
equal are defined.

We're just about finished, the last thing we need to do is to update the pg_amop relation.
To do this, we need the following attributes:

amopid the oid of the pg_am instance
for BTREE (= 400, see above)

amopclaid the oid of the pg_opclass
instance for int4_abs__ops
(== whatever you got instead of
17314, see above)

amopopr the oids of the operators for the
opclass (which we'll get in just
a minute)

amopselect,

amopnpages

cost functions.

The cost functions are used by the query optimizer to decide whether or not to use a given
index in a scan. Fortunately, these already exist. The two functions we'll use are
btreesel, which estimates the selectivity of the btree, and btreenpage, which
estimates the number of pages a search will touch in the tree.

So we need the oids of the operators we just defined. We'll look up the names of all the
operators that take two int4s, and pick ours out:

* retrieve (o.oid, o.oprname)
from o in pg_operator, t in pg_type
where o.oprleft = t.oid and o.oprright = t.oid

and t.typname = "int4" \g

which returns:

31

oid oprname

96 =

97 <

514 *

518 1=

521 >

523 <=

525 >=

528 /

530 %

551 +

555 -

17321 «&

17322 <=&

17323 ==*

17324 >=&

17325 »&

(Note that your oid numbers may be different.) The operators we are interested in are
those with oids 17321 through 17325. The values you get will probably be different,
and you should substitutethem for the values below. We can look at the operator names
and pick out the ones we just added. (Of course, there are lots of other queries we could
used to get the oids we wanted.)

Now we're ready to update pg_amop with our new operator class. The most important
thing in this entire discussion is that the operators are ordered, from less equal through
greater equal, in pg_amop. Recall that the BTREE instance's oid is 400 and
int4_abs_ops is oid 17314. Then we add the instances we need:

* append pg_amop
(amopid = "400"::oid,

amopclaid = "17314"::oid,

amopopr = "17321"::oid,

amopstrategy = "1"::int2,

/*

/*

/*

/*

btree oid

pg_opclass tuple
«& tup oid

1 is «&

amopselect = "btreesel"::regproc,

amopnpages = "btreenpage":tregproc) \g

* append pg_amop (amopid = "400"::oid,

amopclaid = "17314"::oid,

amopopr = "17322"::oid,
amopstrategy = "2"::int2,

amopselect = "btreesel"::regproc,

amopnpages = "btreenpage"::regproc) \g

* append pg_amop (amopid = "400"::oid,

amopclaid = "17314"::oid,

amopopr = "17323"::oid,

amopstrategy = "3"::int2,

32

*/

*/

*/

*/

amopselect = "btreesel"::regproc,

amopnpages = "btreenpage"::regproc) \g

* append pg_amop (amopid = "400"::oid,
amopclaid = "17314"::oid,
amopopr = "17324"::oid,

amopstrategy = n4"::int2,

amopselect = "btreesel"::regproc,

amopnpages = "btreenpage"::regproc) \g

* append pg_amop (amopid = "400"::oid,
amopclaid = "17314"::oid,

amopopr = "17325"::oid,
amopstrategy = "5"::int2,

amopselect <= "btreesel"::regproc,

amopnpages = "btreenpage"::regproc) \g

NOTE the order: "less" is 1, "less equal" is 2, "equal" is 3, "greater equal" is 4, and
"greater" is 5.

Okay, now it's time to test the new opclass. Firstwe'll create and populate a class:

* create pairs (name = charl6, number = int4) \g

* append pairs (name = "mike", number = -10000) \g

* append pairs (name = "greg", number = 3000) \g

* append pairs (name = "lay peng", number =5000) \g

* append pairs (name = "jeff", number = -2000) \g

* append pairs (name = "mao", number =7000) \g

* append pairs (name = "cimarron", number = -3000) \g

* retrieve (pairs.all) \g

name number

mike -10000

greg 3000

lay peng 5000

jeff -2000

mao 7000

cimarron -3000

Okay, looks pretty random. Define an index using the new opclass:

* define index pairsind on pairs

33

using btree (number int4_abs_ops) \g

Now ran a query thatdoesn'tuseoneof ournew operators. What we're trying to do here
is to run a query that won't use our index, so that we can tell the difference when we see
a query that does use the index. Thisquery won't usethe index because the operator we
use in thequalification isn't onethatappears in thelistof strategies forour index.

* retrieve (pairs.all) where pairs.number < 9000 \g

name number

mike -10000

greg 3000

lay peng 5000

jeff -2000

mao 7000

cimarron -3000

Yup, just as random; that didn't use the index. Okay, let's run a query that does use the
index:

* retrieve (pairs.all) where pairs.number «& 9000 \g

name number

jeff -2000

cimarron -3000

greg 3000

lay peng 5000

mao 7000

Notethat the number values are in order of increasing absolute value (as theyshould be,
sincethe indexwas used for this scan) and thatwe got the rightanswer—the instance for
mike doesn't appear, because -10000 >=& 9000.

34

	Copyright notice1992
	ERL-92-120

