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Chapter 1

Introduction

1.1 Surface Based Lithography Simulation using SAMPLE-3D

Simulation of photolithography processes, with tools like SAMPLE-3D [1][2][3], is helpful

in the development and design of these processes. Once theoretical models have been developed

and validated, process simulation tools allow designers and production engineers to predict out

comes of proposed and actualprocessesreducing the number of these experiments. Three-dimen

sional simulators are beginning to emerge due to the availability of computational power and

investments in implementing algorithms suitable for 3D. Making 3D simulations fast, memory

efficient, physically accurate and robust requires applying and even extending concepts from

computational geometry. The questions of interest in this study are how, and to what extent, a

computational geometry approach could improve the SAMPLE-3D lithography and pattern trans

fer simulator.

The SAMPLE-3D simulator is based on the use of surface advancement algorithms [4][5].

The surface is represented as a mesh of nodes, segments and triangular faces, organized in a

winged edge data structure. In simulation, the continuous photolithography process is partitioned

into discrete time steps. SAMPLE-3D maintains a representation of the surface at each time step.

The location and geometry of the mesh surface at the next time step is determined using the

present mesh and the lithography model. At each step, the nodes of the mesh are advanced along

trajectories which are derived from this information. The path of each node may therefore be lik

ened to a ray of light passing through an inhomogeneous medium. Because of this physical inter

pretation, this method is described as a ray-trace [1][3][8][9][10] algorithm. To reduce resource

consumption and maintain accuracy, the length of the mesh segments are kept within a range

determined by the segment length parameter. If during simulation, a segment shrinks or grows

beyond specified limits, the regularization process deletes or adds segments, and the neighboring

triangles are updated.



When SAMPLE-3D is used to simulate structures with standing wave effects, or processes

that cause structures that change their topological status during simulation, some mesh nodes may

cross through the surface and form regions of negative area. The surface of this space is called a

loop. (Figure 1) To perform simulation accurately and efficiently, these loops must be removed.

Failure to do so results in unnecessary consumption of computer resources and possible inaccura

cies. Resource consumption by loops results from the extra memory that they occupy and the

extra time that is added for computation of the next time step. The simulation may also be made

inaccurate if the process is dependent on geometry, such as shading or reflection effects. The loop,

since it represents a nonexistent piece of surface, may falsely shade a valid surface piece. Since

the loops represent nonphysical structures, visualization of results is also difficult. Loop identifi

cation and removal are important in practice and some methods have been reported [1][2][3].

Using a nainimal amount of CPU and memory resources is also necessary. For example, when the

SAMPLE-3D code was performance tested, with a simple loop removal method included, the

method was found to consume half of the CPU cycles and be the major cause of failure on com

plex examples. A more acceptable method would consume a small number of CPU resources

compared to surface advancement and would fail only in the most degenerate cases.

1.2 First Pass Loop Removal in SAMPLE-3D

In the original investigation of lithography simulation using SAMPLE-3D, a straightforward

extension of 2D loop removal was proposed. An intersection test was performed on all the trian

gles of the mesh, so that pairs of intersecting triangles could be identified. The line segment that is

common to both triangles in the pair represents the boundary between the valid surface and a

loop. Each triangle was split along its segments to form smaller triangles. The orientation vectors

of the triangles were used to determine which triangles were valid surface and which were loops.

Because a surface of a three dimensional object has a consistent orientation, and because the

motion of the surface under the process models was either consistently in the direction or consis

tently in the opposite of the surface normal for the whole simulation, the loops could be identified

as parts of the surface that were inconsistent with these invariants. (Figure 2) The loop parts were



then removed by deleting the inconsistent triangles and reestablishing the connectivity such that

the surface had consistent orientation and was not self-intersecting. This method was easy to

implement and worked for application studies, however it was limited in speed and robustness.

Examination of CPU resources and analysis of simulator crashes identified three issues to be

addressed. First, to identify the pairs of intersecting triangles in the mesh, each pair of triangles

was examined to determine intersection. This required 0(N ) time (where N is the number of tri

angles.) This was found to dominate the CPU time and is a fundamental consequence of any

approach which does not include auxiliary mechanisms to spatially localize intersection testing.

Second, a robust method to handle degenerate triangle intersection cases is needed. The intersec

tion of two triangles was assumed to be a line segment. Parallel triangles and triangles that had a

single point of intersection gave ill-determined results. Third, certain loop structures were not

considered in the original algorithm. Triangle that have a single point in common were assumed

to always be non-intersecting. As we will show later, this is not the case. These difficulties have

led to this work.

1.3 Work in This Report

The three issues of the original implementation are addressed in this thesis. A method of

loop removal based on a hierarchial spatial subdivision structure known as an octtree has been

proposed and implemented. This method finds the intersecting triangle pairs in 0(NlogN) time by

utilizing an auxiliary octtree structure which allows a quick mapping of any region of space to the

set of triangles intersecting it. By mapping each triangle as a region, the octtree is used to find

those triangles which are nearby to a given triangle. In this manner only nearby triangles need to

be checked for intersections. A description of the method and a discussion of its theoretical

aspects is given in Chapter 2. In Chapter 3, the triangle intersection and loop identification rou

tines of the algorithm are discussed. The 0(N\ogN) property for the algorithm is shown to be pre-

servable throughout the entire algorithm, at least for 'typical' surfaces as encountered in actual IC

processing. A more robust version of subdividing intersecting triangles is presented. An improved

method of determining the loop sections of the mesh is also discussed. The method is shown to be



useful not only for removing negative volume loops, but for handling all topological deformations

that may occur during simulation such as air bridges, which are of interest in fabricating sensors.

Time and memory consumption results of the implementation of this algorithm in SAMPLE-3D

are given in Chapter 4.

1.4 Overview of the Algorithm

The algorithm operates in three basic parts. First, a method of localizing triangles spatially is

used to reduce computational overhead in finding triangle intersections. The particular method

used is called an octtree, which is based on hierarchically subdividing the simulation space. Other

methods such as multi-dimensional segment trees may be used, but the octtree has further uses in

visibility and reflection computations, which make it more useful than the alternatives.

Once the triangle intersection lines have been found, they are used to partition the mesh so

that they form the boundaries between new adjusted triangles. This is done by placing the new

nodes first, then the segments and finally the triangles. This minimizes round off error and maxi

mizes robustness.

Once the mesh is subdivided into parts separatedby intersection lines, the loops are identi

fied and removed, and the mesh is reconnected so that it is continuous and loop-free.



Chapter 2

Octtree Algorithm

2.1 Why an Octtree?

Many algorithms in computational geometry operate in 0(NlogN) time, where N is the

numberof objects that the algorithm must take as input. For the loop removal problem, N is the

number of triangles thatdescribe the surface. The 0(NlogN) limit exists because there is a neces

sary O(iV) step of reading the input implicit in the algorithm, and because an intermediate data

structure requiring O(logiV) time forinsertion anddeletion of a single objectis often mandatory.

To allow loops to be removed in O(MogiV) time, the necessary first step of finding all loops

must be performed in 0(iVlogiv*)time. Since the mesh is represented by triangles connecting all

points on the surface, detecting if there is a self intersecting point of the mesh is equivalent to

checking if a pairof intersecting triangles exists. The entireregion of self intersection is then the

union of the intersection regions of all triangle pairs. In the previous delooping implementation,

anintersection test was performedon all pairs of triangles in the mesh. This takes 0(N ) time and

is highly inefficient. Since most pairs concern two rather distant triangles, the method wasted

much effort. If each triangle is checked only against other nearby ones, then much time can be

saved. Therefore, to improve the efficiency of the routine, a method must be implemented

whereby triangles can be implicitly ordered in space, so that the algorithmonly examines likely

intersection candidates.

2.2 What is an Octtree?

To perform a spatial sortupon the triangles, we use anocttree[6]. The octtreemay be consid

ered as a three-dimensional equivalent of a binary tree. The root node of the octtree represents the

entire simulation space. This node has eightchildren, or subnodes. The subnodes of the root node

represent subspaces. Typically the octants are formed by slicing the complete domain by three

mutually intersecting perpendicular planes. Although their dimensions are halved, these sub-

spaces are otherwise geometrically similar to the full simulation space. The subspaces are



arranged in a 2x2x2 formation. Each subnode in turn has 8 octants which represent further divi

sions of the simulation region. This division continues recursively to a preset depth, or until fur

ther subdivision is deemed unnecessary. Subnodes that have no children are called leaves

(Figures3 & 4).

2.3 Sorting Triangles with an Octtree.

Determination of pairs of intersecting triangles is made efficient by having all triangles

located in this octtree. Starting with an initially empty octtree, each triangle is inserted into it in

turn. Before the triangle is inserted, it is converted to a polygonal representation. This representa

tion is an ordered list of points which define a polygon on a plane in three-dimensional space. The

plane is the plane of the triangle. This represents the intersection of the set of points contained in

the triangle with the region of space associated with a node of the octtree. The triangle is first

inserted into the root node, and, using the polygon, is checked to see which subnodes it intersects.

Subnode intersection is performed by dividing the polygon into eight smaller polygons through

plane divisions. This generates eight residue polygons (some of which may be non-existent, i.e.

there are no points of the triangle, which intersect the region of space associated with the subnode.

) which represent the intersection of the triangle with the eight regions of space associated with

the eight subnodes. The division into eight polygons is performed in three steps. The original

polygon is divided into two parts by one of the three bisecting coordinate planes. These two poly

gons are divided by the second plane so that four polygons are formed, and finally the third plane

is employed to form eight polygons. If a polygon formed for a subnode is non-existent, then the

triangle does not intersect it. If a subnode has a defined residue polygon, the intersection test can

be applied recursively using the new polygon associated with the subnode as the input to recur

sion. Recursion halts at a predefined depth.

Although the insertion test for a triangle can be applied recursively at any subnode, it is not

always desirable to do so. Often, to save memory storage, recursion down to the preset maximum

depth is not performed. In the octtree, if a subnode contains only one triangle, recursive subdivi

sion is not performed until another triangle is inserted into the subnode. The space that would be



consumed by recursion is saved. When thelimitof recursion is reached, a linkedlist is formed of

all the triangles that intersect that leaf. A newlistof triangles is formed, which is the union of all

the lists of triangles in the leaves which contain the inserted triangle. This list of triangles is the

list of candidates for intersection with the inserted triangle. An explicit intersection test is per

formed between the inserted triangle andthe candidates to find the actual intersections.

The time thateachtriangle requires to be inserted into the octtree is a function of the number

of intersection tests with subnodes and of the number of triangle-triangle intersection tests that

mustbe performed. The number of triangle-triangle intersection tests is the number of leaves that

the triangle intersects times the average occupancy of the leaves. As the height of the tree

increases, the number of leaves that the triangle may intersect also increases, since each leaf rep

resents a smalleramount of the simulationregion. If the height is increasedtoo far, then the trian

gle will occupy very manyleaves. This is undesirable, since the increased accuracy in localizing

the triangle, and thereby ruling out comparison candidates, does not make up for the extra time

and memory consumed in forming such a small subdivision. If the tree is too shallow, then the

larger leaves may contain toomany comparison candidates. The extremecase,wherethe heightof

the tree is one, is equivalent to the old method.Therefore, to utilize the octtreeto its fullest poten

tial, a method of determining the optimallevel ofrecursion must be found. A sensible trade-offis

to make the size of the leaves similar to the size of the triangles, which are constrained in their

dimension by the feature size parameter. Underthis condition, the number of leaves that a triangle

may intersect has an average constant value, andthe number of leaves in the tree in total is O(N)

where N is the number of triangles. The height of this octtree is O(logA0, assuming that typically

encounteredmeshes have a relatively even distribution of leaves. Therefore, the total time for tri

angle insertion is O(MogN). Since the time of analgorithm is alsorelated to the size of its output,

the number of triangle intersection pairs is also a contributing factor, so the real time requiredis

OiNlogN + Nt) where Ni is the number of intersection pairs although the latter is never expected

to dominate, since most triangles do not take partin any intersection. Likewise, since the number

of leaves in the tree is O(N), the memory that must be consumed to form the octtree is expected to



be 0(N). Experimental results from ourimplementation of such anocttree structure confirm these

expectations (see Chapter 4).

2.4 Getting Good Intersections.

Sometimes a triangle-triangle pair will have a coincidence between the vertex of one trian

gle and the plane of another triangle. A coincidence is defined as when the vertex is within a dis

tance of 10"8 of the size of atriangle. Since atriangle inapair may have anode that is coincident

with the plane of the other triangle, seven new intersection types arise that are distinct from the

basic Face & Face = line Segment type. (Figure5) To simplify the code and to reduce the number

of cases that must be analyzed and handled, we remove undesirable coincidences by small ran

domized movements of the offending vertices. This causes the intersections that may occur to

reduce to the desired generic case. The only type of node-plane coincidence that is maintained is

when the node is an actual node of both triangles and when the node is not the entire intersection

region of the pair. In an iterative procedure, each such vertex is moved normal to the plane of the

intersecting triangle, adistance of plus or minus 10"8 to 10"' of the size of a triangle. The addi

tional time that is requiredby this preprocessing step is 0( NnlogN), where Nn is the number of

triangles that contain nodes to be moved. This may be performed in this time by moving the node,

removing all triangles which neighbor the node from the octtree, replacing the triangles in their

new positions and recomputing the intersections. Presently when any nodes are moved, the entire

set of intersections is recomputed. Although it is only necessary to remove and replace the trian

gles adjacent to a pushed node, a complete recomputation is performed to simplify prograrriming

complexity. Since coincidences are expected to occur infrequently once the symmetry in the ini

tial conditions is broken, this term is omitted from the complexity analysis. Experiment has con

firmed this assumption (see Chapter 4). After the first time step, on examples that represent real

structures, the octtree needs to be recomputed at most twice.



Chapter 3

Deloop

3.1 Identifying the Intersection Line.

Each intersecting triangle pair now has associated with it a well-defined intersection line

segment. Taken together, these segments form a set of piecewise linear curves in the domain

space of the surface mesh. Figure 6 shows the line segments for two intersecting surfaces. These

lines define the boundaries between sections of the mesh that represent the actual surface and sec

tions that areloops. Because of the continuityof the surface, i.e. each segment of a triangle is con

tained by another triangle or is on the simulation region boundary, the intersection lines either

form closed curves in the domain space, or have both ends terminate at the boundary. In normal

space, where each intersection line is the superposition of either two segments of the same or of

different intersection lines in the domain space, this means that the intersection lines may have

three types of terminations. First, the terminationmay occur at a Node & Node = Node type inter

section. In this case, two triangles which share a common node, intersect one another at more

points than the common node. Although the intersection line passes through the node and does not

terminate in the domain space, it often does terminate in normal space (it is possible that the line

may continue onwards, but it is not guaranteed.) Loops which contain this type of intersection are

called "banana" loops (Figure 9) due to their typical shape. Second, the intersection line may ter

minate at the simulation boundary. In the domain space, this can be represented as two separate

lines that intersect the simulation boundary. Because the intersection line separates the plane into

two disjoint parts, it may be considered a closed curve. Lastly, the curve may be closed in three

dimensional space, and have no endpoints. This is represented as two separate closed curves in

the domain space. Although each of these three types reduces to closed curves in the domain

space, it is important to identify them, since intersection tracking operations are performed on

them in three-dimensional space.



3.2 Tracking the Intersection Line.

Because the intersection lines form the boundaries between parts of the mesh which are

actual surface and the parts of the mesh which are loops, it is necessary to subdivide intersecting

triangles along the intersection line. This is performed by picking an appropriate starting point

and following the intersection line along the mesh. The connectivity information of the winged

edge data structure is particularly important for this part of the algorithm. The intersection pairs

which were generated by the octtree have no inherent order. Therefore, in order to know which

intersection pairis the next on the line, the edges by which the intersection line leaves the old pair

must be examined. Given a present pair, when the intersection line crosses an edge, the triangle

whose edge has been crossed is replaced in the pair. This new pair of triangles is then looked up

from the old list.

Given the entire list of triangle intersection pairs, an initial pair is picked. Associated with

this pair of triangles is an intersection line segment, which may be connected to zero, one or two

other intersection line segments at its endpoints. Having zero, one, or two segments attached

means having two, one or zero intersection line termination conditions attached to that segment,

respectively. If there are no connected segments, then the intersection line is considered to be

completely tracked. If there is one, then the line is followed to the next triangle pair using the con

nectivity of the mesh as a guide. This continues until a termination condition is reached. If there

are two attached segments, then an arbitrary direction is chosen and the line is followed until

either a termination condition is reached or it returns to the original pair of triangles. If a termina

tion condition is reached, the line is then tracked from the starting point in the other direction until

the second termination condition has been reached. The pairs of triangles are removed from the

list of pairs after they areprocessed. This can be done in 0( Ni\ogNi) time where Nt is the num

ber of pairs. When the intersection line under consideration is completely tracked, a pair is taken

out of the list. This is repeated until all pairs have been processed. Such a linearly ordered pro

cessing of all the intersection line segments reduces code complexity and enhances robustness. It

insures that if some triangles are intersected more than once, either by the same or different inter-
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section lines, the algorithm need only concern itself with a single intersection line at any time

entering and leaving triangles.

3.3 Splitting the Triangles.

As the intersection line is tracked, new mesh nodes and edges are being created. A new

mesh edge is formed for each intersection line segment, and a new node is created at the end of

each segment. Each new node that is created represents the intersection of the face of a triangle

with a segment that borders two other triangles. Therefore, two new edges are created, between

the new node and the nodes of the old edge. In this manner, a framework of edges and nodes is

created which represents the intersection line. Once this has been performed, each triangle has

associated with it a sequenceof intersection lines that traverse it. If the original borderof the tri

angle is traversed in an ordered, non-repeating manner, which can be done in 0(N) time, a set of

polygons is derived which partitionthe surfaceof the triangle (Figure 10). Each of these polygons

is then triangulated (Figure 11 local & Figure 7 global). This, theoretically, takes 0(N/log7V/) time

[7], where N{ is thenumber of intersection line segments that were contained in that triangle. The

old triangle is then removed from the mesh, and the new triangles are inserted.

Since each intersection paircontributes one line segment to each triangle, the total time for

this algorithm is 0(//llogiV*/). Three, four orn-way mutual triangle intersections may be handled

in this manner by performing a planar sweep across the plane of the triangle and checking for

intersections of intersection line segments. New nodes would be formed at the points where the

segments cross, and the segments would be divided into smaller segments with the new nodes as

endpoints. In some cases, such as when the N triangles in the mesh are mutually intersecting, the

time complexity would be 0(N ), however, for most geometries encountered in practicallithogra

phy tasks, these higherorderintersections areso rare that they can be neglected in the complexity

analysis.

Once all of the polygons that were formed by the intersection line have been triangulated,

the intersection line now lies along the edges of the new triangles (Figures7 & 11).Each intersec-
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tion line segment now has four triangles connected to it, twotriangles in each of two planes.

Another methodwas previously tried for triangle subdivision. This methodsubdivided each

triangle into smaller triangles simultaneously with intersection line traversal. As the intersection

line was observed to leave a triangle, the triangle would be divided into smaller triangles which

had the intersection line along their edges. The triangles were reinserted into the octtree and

rechecked for intersections with othertriangles. The motivation for this method was that divisions

of triangles couldbe simplified to a single linecrossing from one side ofa triangle to another. This

would remove the difficulties that are inherent when many intersection lines cross a single trian

gle. After some simple examples, an attempt was made to extend this approach for more general

cases. The extra code required was found to be excessivein length andhardto maintain. In many

cases, the need to recompute intersections with extremely small triangles also led to significant

numerical inaccuracy. The approach in the above paragraphs did away with many of these com

plications. The original reason for handling complicated examples was also found to be inappro

priate. The intersections encountered in typical meshes are not complex enough to require such a

treatment.

3.4 Loop Identification and Removal

Now that the mesh has been tessellated so that the intersection line only appears on mesh

segments, it is still necessary to determine which parts of the mesh are surface and which are

loops. Considering the four triangles meeting at eachintersectionline segment, we see that no two

surface triangles or two loop triangles can both exist in the samelocal plane on opposite sides of

the intersection line. We also see that each of the intersection lines forms a closed loop in the

domain space (possibly closed outside the simulation boundary). Therefore the mesh is divided

into two distinct groups of triangles by the intersection lines. The Jordan Curve Theorem [7] can

be used to identify the triangles forming the loops. This theorem states that, given a closed curve

in Euclidean space, an escape ray from a point in the region bounded by the curve will cross the

curve an odd number of times. An escape ray from a point external to the curve will cross it an
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even number of times. If the curve is considered to be the surface mesh, and the Euclidean space

is the simulation space, then any path on the surfacecan be considered to be partof an escape ray.

A pathconnecting any two triangles through the domain space that crosses the intersectionline an

even number of times is therefore equivalent to saying that the two triangles are of the same type.

A connecting path between two triangles that crosses an odd number of times means that the tri

angles are of a different type. Any pathbetween two triangles will give the sameresults since the

intersection curves are closed. Different paths will have the same parity of their number of cross

ings, although they may have a different number of absolute crossings. The mesh triangles can

therefore be labeled in O(iV) time. Each triangle is selected and labeled either "surface** or "loop**.

It is then put into a list of triangles that possibly have adjacent triangles that are not yet labeled.

This triangle is then removed from the list, its adjacent triangles are labeled and these are placed

into the list if they are not yet labeled. This process repeats itself until all triangles are labeled.

The parts that are labeled as loop triangles arethen removed from the mesh. After all triangles of

type "loop** have been removed from the mesh, the data structure needs to be restored to its

canonical form. Since at each intersection line segment, there are two "loop'* triangles and two

"surface'* triangles that contain it as an edge, mesh integrity is restored by replacing the intersec

tion line segment with a normal edge that connects the two "surface** triangles. A cross sectional

view of this example on the two basic types of loops is shown (Figure 12).

In the preceding paragraph, the algorithm assumed that we have reliable knowledge of a tri

angle that was a surface triangle. For lithography tasks that are primarily two-dimensional in

nature, such as IC wafer processing, we can typically startin a corner of the simulation area, suf

ficiently far away from areas where loops might be generated. For more complicated three-dimen

sional tasks, such as pieces of silicon that are floating free in a wet etch process, the type of a

starting triangle can be determined by counting the number of surface intersections on an escape

ray leaving the triangle in the direction of its outward surface normal (Figure 13). If the escape ray

crosses an equal number of surface pieces in the direction of their outward surface normals as in

the direction of their inward surface normals, then the ray has emanated from a valid surface trian-
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gle.This triangle may now be used in the loop labeling algorithm as a valid starting point.

3.5 Identification of Detached Parts.

Parts of the surfacemay become separated during the loop removal; they representpieces of

the bulk that have become detached during processing. These pieces can be detected with the

same marking algorithmthat marks triangles as"loop" or as"surface'*. If we start from a triangle

that clearly belongs to the bulk of our device, all other "bulk** triangles will be connected to it

through a path along other"surface** triangles. "Surface** triangles that cannotbe reached in this

manner are on pieces that have become detached from the surface. To identify the discrete pieces

that have become detached, a list of all the "non-bulk surface** triangles is made. One of the trian

gles in the list is chosen, and all triangles that can be connected to it along "surface" triangles are

located. These triangles represent one piece. If the "non-bulk surface** triangle list is non-empty,

repeat the process to locate other discrete pieces until the list is empty.

Nested loops, i.e. areas where two loops intersect, have the ability to create a 'false' surface

(Figure 13). We can detect these structures by a variant of the loop marking scheme which is

dependent on orientation. This method is a three-dimensional variant on the two dimensional

winding number. It has not yet been implemented, however. Instead of using a two-state value to

distinguish between "loop** and "surface'* regions, an integer is used. At the true surface, the inte

ger flag is set to 1. The mesh is marked in the same manner as the original scheme with one excep

tion. As the intersection segments are crossed, the plane that is being passed through is examined.

If the marking path is proceeding in a direction opposite to that of the surface normal, then the

counter is decremented by 1. If the marking path is proceeding in the direction of the surface nor

mal, then the counter is incremented by 1. If no intersection line was crossed, no change is made

to the counter. After labeling, all l's are actual surface. Both the "bulk" and detached pieces that

represent actual objects which have become removed from the bulk during processing will be

labeled with 1 's. Pieces which have been labeled with other numbers are "non-surface'*.
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3.6 Cleaning the Mesh

In the introduction,it was statedthat the mesh had both upper and lower limits on the size of

its segments. This condition must now be restored. Since it is considered desirable to leave the

intersection line as sharply defined as possible, the first segments to be restored to the proper

value are the intersection line segments. This is done by shrinking to zero the length of the small

ones and by dividing the large ones into smaller parts. While this is occurring, it is possible to

shrink the intersection line too far andinitiatea topological changein the surface by closing up a

hole orpinching off acreated neckof surface. Therefore, theroutine mustbe modified, sothat any

cleaning up procedure that would change thetopological state of the mesh is notcarried out. (This

has not yet been implemented.) Next, to maintain the intersection line, anyother edges that have

endpoints on theline, butare not themselves ontheline are modified, so that the proper range of

segment lengths is restored. When this is done, the points on the intersection line are considered

to be fixed in place. Finally, therestof themeshis cleaned in the normal manner. (Figure 8)

3.7 Preparing for the Next Time Step in Isotropic Etching

Mostetching anddeposition methods onlyrequire geometrical information to determine the

advancement vectors for the next time step. Isotropic etching, via the ray trace method, requires

thatthe directional component of the velocityvector be maintained from one time stepto another.

This requirement must be satisfied because computing the new direction of advancement with

only geometrical information gives inferior results to theray-trace method. Whenevera new node

is created, the direction vector, which would otherwise be computed from information from the

previous time step, is interpolated from theneighboring nodes. Therefore, when anew node for an

intersection line segment must be created, the direction vector has to be interpolated from the

interaction of the two planes.

One method which was attempted, was to apply an interpolated variant of the facet motion

algorithm[ll]. Each node on the intersection line arises from the intersection of an edge between

two triangles, in one plane, and the face of a thirdin the otherplane(Figure 14).The two triangles
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ABC and BCD are connected to the segment BC> and the third triangle EFG which is the face

that the segment intersects, are considered to be moving facets. Their component of motion in the

direction of their normals represents the motion of the triangles at the intersection point. Only the

normal component is required because the instantaneous direction of the new node is the impor

tant component of the ray trace algorithm. Barycentricinterpolationof the normal components of

motion is used to find the contribution of each triangle. Once this operation is performed, the vec

tors VABC, VBCD and VEFG which represent the motion of each triangle, are transformed to the

slowness space. In the slowness space, the direction of the vectors is maintained, but the magni

tude is the inverse of each vector's magnitude in the simulation space. The slowness vector which

determines the motion of the node is then found (according to the facet motion algorithm,) as the

normal vector from the origin onto the plane defined by the endpoints of the three facet slowness

vectors. The direction of the new slowness vector is the desired direction and the etch rate is the

inverse of the magnitude. (Figure 15)

This method has been shown to be inappropriate for isotropic etching (although it might be

suitable for other etching methods.) In isotropic resist etching, the intersection line segments and

nodes often lie on portions of the surface which do not have a continuous surface derivative (Fig

ure 16). For this reason, the vector, while possibly accurate for the first time step, represents the

motion of the point of intersection between two etch wavefronts, and cannot be assumed to be

consistent with the normal manner of surface evolution. A second difficulty which arises is the

difficulty in interpolating new nodes properly for split segments. When a segment has grown long

enough that it needs to be divided, the new node that is to be created must have a direction vector

associated with it. As can be seen in Figure 17, a simple interpolation is not satisfactory in giving

a good guess of the proper direction. To get a proper interpolation, there must be information

retained about the location of the surface before delooping was performed. This difficulty was

also encountered in the two-dimensional version of SAMPLE (Figure 18). The following method

is its extension into three dimensions.

Instead of creating only one intersection segment at the intersection of two triangles, two are
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created. Two nodesnow exist forevery oneoriginal intersection segmentnode.The direction vec

tors associated with these nodes are the ones derived for the originally intersecting planes.above.

(The two vectors from the two triangles on the segment are combined into one.) The surface is

thenadvanced atthe next time stepas pertheray-trace algorithm. Two effects are noted. First, the

intersection between the two etch wavefronts does not need to be controlled explicitly, thereby

maintaining accuracy. Second, a piece of the mesh is maintained which can be used for accurate

interpolation. Thedrawback is that the loop removal program must bemodified for removing dis

continuous surfaces. This is not difficult, however, if the winding number paradigm is imple

mented. Instead of marking the whole surface during the loop identification phase, as each

intersection line is crossed, the part on the otherplane thatwill receive a "1" is determined. Fur

ther labeling proceeds from that point. In this manner, thediscontinuities will notbe encountered,

and the surface will be identified properly.
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Chapter 4

Results

4.1 Octtree Results.

The algorithm was compared to an older deloop algorithm previously implemented for

SAMPLE-3D [1]. Both methods were run on the test case shown in Figure 19, which contains

1500 triangles. The result after loop removal is shown in Figure 20. The execution time was 8.8

seconds on a DECstation 5000/125. The octtree had to be recomputed only one extra time to

remove possible roundoff difficulties (see Chapter 2, Section 4). The older deloop method

required 100 seconds for this test. The new algorithm also removed the loop successfully while

the old one failed.

Times required to find all triangle-triangle intersection pairs are shown graphically (Figure

21 & 22) for test on three structures of 680, 3201 and 7421 triangles respectively. A comparison

was made between finding the intersections using the octtree method and the brute force method

used in the old algorithm (Figure 21). The octtree method has a slope of approximately 1 on the

log-log plot, demonstrating an apparent linear dependence of time on the number of triangles. The

old method has a slope of almost exactly 2, demonstrating the expected quadratic dependence on

the number of triangles.

The variation in time to find the intersections, based on the maximum depth of octtree recur

sion has also been found (Figure 22). The memory shows an 0(7v*) dependence at all points as

expected (Figure 22). Memory consumption for a constant number of triangles with a tree of vary

ing height also behaved as expected. For low feature size to subcell size ratios, the major compo

nent in memory storage is the list of triangles on the surface. There is little overhead present due

to the octtree hierarchy. As the depth of the tree increases, the number of triangles stays constant,

but because of the need to maintain more hierarchial information in the presence of greater recur

sion, memory needs increase. This causes the memory consumption curve to assume the shape in

Figure 22. The minimum of the time curves is approximately where the edge length of the small-
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est octtree cells is the same as the predefined size parameter of the mesh segments. The time

increases for smaller heights due to inadequate subdivision. The original 0(N2) dependence

exists within each leaf, so if the number of triangles in each leaf is large, this is less efficient than

further subdivision. Time consumption increases for excessive subdivision due to the need to cre

ate extra hierarchial information, but because the number of triangles in each leaf was already

small, this information is useless. Decisions on how to trade memory consumption for speed can

be made based on these curves. If memory is important, then the octtree may be set to a lower

height. This will cause the simulation to take slightly longer, but less memory will be consumed.

The intersection runs were performed on a DECstation 3000.

Because both the old and new methods show predictable time and memory usage as a func

tion of the number of triangles, the results can be extrapolated to predict behavior for larger

meshes.

4.2 Deloop Results.

The example given in Figures 23-28 is the surface model of exposed resist that has been

etched for 5 seconds of simulation time. This example has 6100 triangles. 640 intersection line

segments are generated during execution. Deloop was performed after surface advancement was

completed. Figure 23 is the original surface shown from a top view. Figure 24 is the delooped sur

face. The delooped surface consists of two parts. The first part, shown in Figure 25 is a top view

of the bulk of the resist. Figure 26 is the same picture shown from the side. The second part in

Figure 27 shows the four pieces that have detached themselves from the surface. Figure 28 shows

the intersection lines which represent the self-intersection of the mesh.

The resist has been exposed using a contact cut mask. The bottom of the resist is reflective,

which causes the electrical field to form standing waves. Higher electrical field intensities result in

higher etch rates in those regions, thereby causing layers of resist where the etch rate is alterna

tively high and low.

Although this example has 640 intersection line segments, the triangle intersection location
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partof the algorithmis still the most time intensive part. This suggeststhat the dominating term in

loop removal is not in the removal of the loops, but in their location and identification.

4.3 Conclusions

The introduction of an auxiliary octtree structure to quickly find the set of triangles which

are"near** to a given coordinate has reduced the deloop time in SAMPLE-3D by an order of mag

nitude. Since the deloop time is now O(MogN) versus 0(N ), this improvement will be even

larger for cases involving in excess of 6,000 triangles. A case of intersecting triangles with parts

detaching from the surface has been identified as causing the previous version to crash. In the new

version, this case has been accounted for in the theory and handled appropriately in examples.

This has been achieved by a more rigorous geometrical approach to the deloop problem. The new

method can also readily deal with topological changes in the surface, as verified by the removal of

the outermost intersection line in Figure 28. This intersection line removal is topologically equiv

alent to the formation of an air bridge or tunnel. This has also been verified in the same example

where parts of the surface were detached from the bulk.

This work has shown that improvements in the time and memory performance of algorithms

employed in process simulation are valuable. The increase in performance can be significant.

When designing useful and robust simulators, a solid knowledge of computer science and soft

ware engineering is just as important as experience in the area to which simulation is being

applied.
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Triangular Mesh with Intersection Line
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Triangular Mesh After Small Segments Removed
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Splitting Triangles

Once the intersection line is determined,
each triangle is decomposed into polygons.
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Node Direction Interpolation
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Discontinuous Surface Derivatives
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Octtree Time Results
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