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Abstract The design and implementationof acontinuousmedia player forUnix work
stations is described. The player can play synchronized digital video and audio read
from a file server. The system architecture andresultsof preliminary performance ex
periments are presented.

1. Introduction

Our goal is to develop a portableuser interfaceandcontinuous media support library
that can be used to implement a variety of multimedia applications (e.g., hypermedia
systems, video conferencing, multimedia presentation systems, etc.). A key component
of these applications is a continuousmedia (CM) player that can play scripts composed
ofone or more synchronized data streams. Example data streams are: digitized video or
audio, animation sequences, image sequences, and text.

The initial application we are implementing to test our abstractions is a video
browser that allows a user to play high quality videos stored in a large database on a
shared file server. Figure 1 shows a screen dump of the browser interface. The window
on the left lists videos in the database, and the window on the right plays the video. The
VCR controls below the video window allow the user to play the video forwards or
backwards at several speeds or to access a particular position using the thumb in the
slider.

The player runs on a Sun Sparcstation with a Parallax XV1DEO board which has a
JPEG CODEC chip. The video stream is stored as a sequence of JPEG frames, and the
audio stream is stored in a standardSparc audio file.

The system has a flexible architecture that will allow other data representations and
decompressiontechnologiesto be added.Forexample,we have implemented an MPEG
video decoder in software that will be added to the system, and we areanxiously await
ing compression hardware for other Unix workstations.

A special-purpose datagram protocol was implemented to send CM packets from
the file server to the client workstation. The current implementation runs on UDP,but it
was designed to use the real-time IP protocol being developed by another research
group at Berkeley [18]. We have run the player on a conventional ethernet and FDDI
network.

The remainder of the paperdescribes the design and implementation of the player,
the results of some initial performance experiments, and related work.

*This research was supported by the National Science Foundation (Grant MIP-9014940) and the
Semiconductor Research Corporation with a matching grant from the State of California's MI
CRO program. Additional support was provided by Fujitsu America and Hewlett-Packard.
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Figure 1. CM player user interface.

2. System Architecture

Figure 2 shows thearchitecture of theplayer. Theplayback application controls the
user interface and the CM Server process. The application is responsible for creating
windows, responding to input events, andsending commands to theCMServer.

The CM Server receives CM data from the CM Source and dispatches it to the ap
propriate output device (e.g.. the DSP chip to play audio or the video window to play
video).The CM Server hasa time-ordered playqueuetosynchronize theplayingof au
dio and video packets. It communicates with CM Source processes on the file server
through interprocess communication channels, and it communicates with the X server
through shared memory. The system clocks on the different systems are synchronized
bytheNetwork Time Protocol (NTP) [11] sothat actions in the CM Server andSources
can be synchronized.

The CM Server will eventually be merged with the X server as in the ACMEServer
[1],but for now it is convenient to separate the functionality for several reasons. First,
it makes the CM Servereasy to change. Second, it reduces maintenance when a newX
server is delivered since we do not have to retrofitour changes. Lastly, source code for
the X server is not required which is important because we want to use commercial
video boards. Commercial video boards usually includea modified X server for which
source code is often difficult to obtain.

The CM Source processes read CM dataandsend it to theCM Server. CM data is
sent in 8k packets on a UDP connection. We have implemented retransmission and
adaptive flow control to improve reliability, throughput, and playback quality. Eventu-
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ally,we will implement a single CM Sourceserverprocessrather than using a separate
process for each stream.

Meta data about scripts is stored in a database.The raw CM data is stored in binary
largeobject (blob) files.The meta data is separatedfrom the raw CM data so that differ
ent scriptscan includeoverlapping clips without havingto makea copyof the CM data.

The remainder of this section describes the CM data model, the CM server abstrac

tions, the CM network protocol, and their implementation.

2.1 CM Data Model

Figure 3 shows a logicalpicture of a script.Each stream is composed of a sequence
of clipsthat represent a sequence offrames. Aframe isa playable unitsuchas an image,
a frame of video, or a block of audio samples.A clip is a contiguoussequence of frames
stored in a blob file.The script has a logical time system (LTS)to which frames are syn
chronized.

CM data is stored in files and the meta data that represents the script is stored in a
separate database. The database design for the meta data is shown in figure 4. The
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Figure 3. Script representation.



type cmtype: (AUDIO, VIDEO, ANIMATION, IMAGE, UNKNOWN)

typo cmformat: (JPEGPLX, SPARCAUDIO, GIF, MPEGPARIS,...)

class SCRIPT(scriptOID: oid, name: string, owner, string, source:string,
duration: Itstimeperiod, micon: image, oomrnent: string)

class STREAM(streamOID: oid, name: string, type: cmtype, script: oid)

class STREAMREP(format: cmformat, maxBufferSize: integer,
maxFrameRate:integer, minFrameRate: integer, imageWidth: integer,
imageHeight: integer, imageDepth: integer, audioSampleRate: integer,
clipSeq: oid)

class CLIPSEQ(clipSeqOID: oid, seqNum: integer, blob: oid, startFrame:
integer, endFrame: integer,duration: Itstimeperiod)

class BLOB(blobOID: oid, name: string, numFrames: integer, type: cmtype,
format: cmformat)

class VIDEOBLOB(frameRate: integer, width: integer, height: integer,
depth: integer, maxFrameSize: integer) inherits from (BLOB)

class JPEGPLXBLOB(qFactor: integer, timecodeQ: timecode, startTime[]:
ltstime, endTime[]: ltstime, frameQ: Jbyteof/set)
inherits from (VIDEOBLOB)

class MPEGPARISBLOB(starfTimeQ: 1tstime,forwardEndTimeQ: ltstime,
reverseEndTimerj: itstime) inherits from (VIDEOBLOB)

class AUDIOBLOB(sampleRate: integer) inherits from (BLOB)

class SPARCAUDIOBLOBQ inherits from (AUDIOBLOB)

class GIFBLOB(wkJth: integer, height: integer, depth: integer,
colorTable[]:coi or) inherits from (BLOB)

Figure 4. Database design for script meta data.

schemais specifiedusingan object-oriented data modelwith inheritance, object identi
fiers, and user defined attribute types including arrays. Several points should be noted
about the design. First, a stream may have several representations(c.f. STREAMREP)
so a scriptcan be playedon workstations withdifferent compression hardware andout
put devices.

Second, time is represented eitherby a timecode(i.e., hours:mins:secs:frame) or an
LTS time. Scriptand clip durations arestored so thatapplications can support a slider
and operations to seek to a particular time. Video clips includea start andend time for
each frame to supportplaying forwards and backwards using the mapping from logical
time (i.e., LTS time) to system time described below.MPEG clips need both a forward
and reverse end time to recover synchronization on dropped frames.

Third, an instance of a BLOB class such as JPEGPLXBLOB, SPARCAUDIOBLOB,
and GIFBLOB represents a blob file that contains data in that format. We expect this
meta datato be replicated in the blob file. The designaccommodates the additionof new
file types such as Apple's Quicklime files [14].



Lastly,we expect blob files to move betweendifferent levels of a storage hierarchy
thatwill includelocal disks at a workstation, large video file servers, and near-line ter
tiary stores suchasanoptical disk orarobot tape jukebox. The mapping from thename
ofa blob file to a location on which it resides will be handled by a dynamic name server.

2.2 CM Server Abstractions

The CM Server is an event driven process that uses a time-ordered priority queue.
Events come from many sources including system clock events, network events (e.g.,
receivepacketor remoteprocedure calls), X events,andidle events (e.g., software de
compression processing). The Server receives packets from theCM source, performs re
quired local processing (e.g., assembles data from several packets into playable units,
requests retransmission of missing packets, etc.),calculates the system time at which
frames shouldbe played,andqueuesthe playrequest. Everyqueuedplay request hasa
time periodduringwhich it must be executedthatis represented by anearlieststart time
and a latest start time.

At somelater time, provided theServer wasable to process thequeued playrequest
withinthedesignated timeperiod, therequest isexecuted. Examples ofplayrequests are
"put image invideowindow" or"sendpacket toaudio device." If theServer getsbehind,
the late request is dropped.

An important feature of the system is that audio frames will be played at the right
time regardless ofwhetherthesynchronized video frames areplayed because audioplay
requests are givenhigh priority. Consequently, audio plays smoothly even whenvideo
frames are being dropped.

The mapping from logical time to system time is

LTS = Speedx (SystemClock-Start)

whereSpeedis the rateat which the script is beingplayed andStart is the SystemClock
time for LTS equal zero. Theadvantage of thisabstraction is that conventional VCR con
trolscanbe implementedby setting the Speed andStart variables as follows:

Function Implementation

stop/pause Speed :=0

play forward Speed := 1

play backward Speed := -1

goto Its Start := now • Its

step forward Start :=Start + 1 /fps

step backward Start :=Start -1 /fps

fast forward Speed :=2.S

fast reverse Speed :=-2.5



Speed represents the relationship between LTS time andSystemClock time. Speed equal
one meansLTS time advances at a real-time rate,Speed equals2 impliesthat LTS time
shouldadvanceat twicethe rateofSystemClock time,andso forth. Thisdefinition is bet
ter than usingframe rateas a metric forspeed because frames per second (fps)can vary
during a stream.

Notice that the fast forwardand backwardspeedcan be varied.This capabilityallows
an application to implement a jog-shuttle control similar tothemechanical controls found
on some video tape recorders.

Another feature implemented in the CM Server to produce high quality user inter
faces is resampling audio data in real-time so that synchronized sound can be played
when playinga scriptbackwardsor forwards at speedsotherthannormal.Takentogether,
prioritizingaudio packets higherand audioresampling producea perceptibly better user
interface.

2.3 CM Network Protocol

The CM network protocol wasimplemented when wediscovered thata normal TCP
connection incurred too much overhead and was too slow.

CM Sourceprocessessend packetsone secondbeforetheyare needed. This delay is
insignificant when the user begins to play the script, but it gives the Server a buffer
against delayedpacketsdue to network or fileserverload.Our experiencehas been that
audio packets always are deliveredon time,but that video packetsare often delayed be
cause the data volume and rate is beyond the capabilitiesof the system. This point is dis
cussed in more detail in the next section. The CM Server periodically requests
retransmission of lost packets.

The Server uses an adaptive feedbackalgorithm to matchpacketflow to the available
resources.1 The flow rate isbased onthefpsbeing played. Every 300 msec the CM Server
calculates a penaltyof 10points if a frame is queued,but not played (i.e., missed)and 10
points if two consecutiveframesare missed. For example,if two consecutive framesare
missed, thepenalty is 30 points. In addition,a 10penaltyis assessedif a frame was lost
in the network. The maximum allowable penalty in a time period is 100 points. Thus, a
penalty of 0 means every frame was playedand &penalty of 100 means many frames
were missed.

The penalty is sent to the CM Source.Each stream has a minimum and maximum
frame rate specified either in the database or when play was initiated. The CM Source
also maintains a current frame rate at which the stream is being played. The Source uses
the penalty to adjust the current frame rate as follows

currentRate = currentRatex (1- ) + minimumRate x ( )

Thus if the penalty is 0, no adjustment is made. If the penalty is between 0 and 100, the
current rate is reduced. If the penalty is 100,the current rate is set to the minimum rate.

1Thereal-time IP protocol will guarantee abandwidth when the connection isestablished. How
ever, this adaptivemechanism will still be required becausethedelivery ratethatcan be guaranteed
may be below the rate required by the script.



At the same time the CM Source periodicallyincrementsthe current rate until the max
imum rate is achieved. The effect of this algorithm is to slow the rate quickly when the
systemis overloaded and to increaseit incrementally to an achievable throughput The
system may be overloaded becauseof contention with other processes or because the
video beingplayed requires toomuch bandwidth. Thispoint is discussed in more detail
below.

We believe that reduced variability in the frame rate produces higher quality video
playback than minimizing the numberof dropped frames. Users are more sensitive to
random frame drops than to regular drops. Consequently, the adaptive algorithm at
tempts to reduce the variation offps played.

2.4 Implementation

Allprocessesin theplayerare implemented withtheTool Command Language(Tel)
and the Tel Toolkit (Tk) [12,13]. Altogether, the player is approximately 20K lines of
code of which 10% is written in Tel. The application process uses both Tel and Tk, in
cludes 1.7K lines of code, and requires 1.5 MBytes at runtime. The CM Server and
Source only use Tel anda library of Tel andC code developed for distributed applica
tions(e.g.,an RPC mechanism, client/server abstractions, CMabstractions, etc.).The li
brary is 9K linesof C code.The CM Serverand Source each have500 linesof Telcode
and 4K lines of C code. The Serverrequires 1.8MBytes at runtime and each Source is
about 0.6 MBytes at runtime.

The majority of thecommunication between processes is accomplished by sending
Tel commands to a remoteprocess to be executed. Thesecommands are sent as strings,
evaluatedby the embedded Telinterpreter in theremote process, and a string-valued re
sult is returned. This mechanismis a simple remoteprocedurecall (RPC). The applica
tion was veryeasy to developbecause remote commands couldjust be definedand sent
rather than requiring the definition of a shared header file that was compiled by a stub
compileras inotherRPCmechanisms. Another advantage ofTcl/Tk is thatit is veryeasy
to prototype abstractions inTel,andwhen a time critical abstraction is discovered, it can
be recoded in C. The entire application was written in under 10 person-months.

3. Performance

This sectionreports the resultsof somepreliminary performance experiments. Two
video scripts were used: "TheAdventures of Andre andWally B"and'Tony DePeltrie"
[4].Both are24fps computer graphics generated videos. Wally was digitized at 320by
240 pixels andTony wasdigitized at 640by480pixels. Both streams were JPEG com
pressed using theXVIDEO board. Thefollowing table shows thestatic sizeof thedata.

Video

Total

Number

Frames

Minimum

KB/Frame

Maximum

KB/Frame

Average
KB/Frame

StdDev

KB/

Frame

Wally 1806 7.7 12.7 11.3 1.3

Tony 2530 12.8 24.9 20.9 1.6
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Figure 5 plots frame size versus time. Notice that Wally remains somewhat constant at
12KB/frame whereas Tonyvaries between 13KB/frame and 25KB/frame.

When we play these videos, all audio packets are received and played at the right
time, butdepending on which video is being played and the system load at the time,
video frames are dropped. Wally plays correctly mostof the time,but Tony always
drops many frames. The problem isthe maximum throughput required toplay the vid
eos. For example, the maximum throughput required byWally is305KB/sec (2.4 Mbit/
sec) whereas Tony requires 598KB/sec (4.8 Mbit/sec). Theproblem iseither inthenet
work or the file server, because essentially all frames received by the CM Serverare
played (e.g., one video frame isreceived but not played about every 2seconds). We ran
experiments on both ethernet and FDDI networks and the same problems were ob
served, soit is notthethroughput on the network. Since essentially all packets sent by
theserver are successfully received, weconclude that the bottleneck isinthefile server.

Figure 6 shows the effect of varying the requested play rate ofthe Tony video with
out the adaptive frame rate control algorithm. The figure plots the number of frames
played per second at requested playback rates of 12,16, and 24fps versus time. As you
can see, at 12 and 16fps most frames are played butthat many frames are dropped at
lAfps. Further investigation suggests that the problem isthe number of packets per sec
ondthat mustbesentby the CMSource. Thelimiting factor appears tobetheoverhead
of sending a packet

Figure 7 plots the requested frame rate, shown bythe thick line, and the actual frame
rate, shown by the thin line, with the adaptive frame rate control algorithm. This plot
shows the requested frames and the played frames when playing Tony with bounds of
11 to 16fps. You can see that the play rate closely follows the requested rate. Although
it does notshowin these graphs, thequality of thevideo is perceptibly better when rate
control is used. However, playback could still be improved if predictive data on the
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bandwidththatwill be required during the next few secondswasavailable so the feed
back algorithm could beginreducing the frame rate in anticipation of a change in the
required bandwidth.

4. Related Work

Many groups are working on multimedia applications that include playing contin
uous media [1,2,3,6,7,8,14,15,19]. None of these systems report an application-



level adaptive control algorithm to vary frame rate dynamically. More research is
needed to validate the claims madehere andto explore algorithms that look ahead at
future resource requirements assuggested byLittle and Ghafcor [9]. In addition, webe
lieve that this system is the first oneto useNTP and globally synchronized clocks to
synchronize transmission of CM data between processes ondifferent machines. The
LTS abstraction we usedis similar to ananalogous abstraction usedin Apple'sQuick-
time.

Thesynchronization model issimilar tothe time-based models described byothers.
We eventually plan toadd hierarchical synchronization similar to the model suggested
by Steinmetz [16].

Lastly, the data model we developed uses ideas from many sources including [5,10,
14,17]. One important point inour design is the replication of meta data ina database
that will allow us to manage a tertiary store where CMdata can be archived.

5. Conclusions

The design and implementation of a CM player was described. The player uses a
globally synchronized clock tosynchronize the process that plays the CM data on acli
entwiththe file server processes that delivery thedata. Thisdesign along withsynchro
nizing streams ona logical time system simplified the implementation and made it
possible toplay audio packets correctly even when video packets were being dropped.
Lastly, preliminary performance experiments were reported that illustrate the need for
adaptive control of the rate atwhich video isplayed and the effect ofasimple feedback
control algorithm.
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