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Abstract

We present an exact method for minimizing logic functions using BDD’s to represent our functions.
This approach differs from the classical approach in that it exploits the properties of the BDD data
structure and the properties of a new extended space that we define, in order to implicitly compute
the Primes, Minterms and Covering table for the Quine-McCluskey procedure. In this method the
function is mapped to an extended space which endows it with special properties that may be
exploited to compute the function Primes and Minterms. The next step consists of conceptually cre-
ating a covering table whose rows represent the minterms and whose columns represent the primes.
We formulate conditions for row and column dominance and remove dominated rows and columns
iteratively until no more reduction is possible. The final step consists of finding a minimum column
cover for the remaining cyclic core of the problem. All functions are implemented using implicit
BDD operations.
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Introduction

Introduction

The objective of logic minimization is to create a representation for a given logic function which requires a minimal num-
ber of logic devices for its implementation. This problem is CoNP-hard in nature and hence any exact algorithm to solve it
is thought to be of exponential complexity[8]. The Quine-McCluskey procedure[7] is one such exact algorithm.

Before we begin our method, we need to the discuss the Quine-McCluskey procedure. The basic Quine-McCluskey tabu-
lar minimization procedure is as follows:

1. Find all the prime implicants of the function.
2. Construct the prime-implicant table

3. Determine the dominated rows of the table and delete them. Next, determine dominated columns of the table and delete
them.

4. Repeat step 3 until no more reduction is possible. At this point we are left with a cyclic core.
5. Find the minimum column cover for the remaining problem.

Though this algorithm may be used effectively for small examples, it often fails in its explicit form for larger examples.
For example the espresso-exact algorithm[6)] fails in the case of problems like the mish[6] example with a large number of
primes even when the actual cover is quite small in comparison.

Recent work at Bull Research [1], (3], gives us a new implicit approach to this problem. In those papers, O. Coudert &
J.C. Madre [1,3] have developed a new method of representing primes of Boolean functions. Through their techniques
they have been able to arrive at a collection of the primes of the largest and most difficult of the public benchmark func-
tions. We extend the techniques of [11,[3] to exact minimization of boolean functions. The method we propose here relies
on the following statement: Any precise set can be phrased as a propositional sentence over the appropriate boolean
space. Thus the primes, minterms, as well as the Quine-McCluskey dominators may be formulated as propositional sen-
tences.

Briefly we represent the primes and the minterms required and the covering table implicitly, and express step (3) of the
Quine-McCluskey procedure as operations over this implicit representation. We then arrive at the cyclic core of the com-
binatorial problem in an implicit representation and derive the actual primes and minterms implicitly for this cyclic core;
since the primes and minterms of the cyclic core are just a fraction of the total primes and minterms we hope to solve
those problems which have not yet been solved by explicit methods[6].

Recapping from Bryants paper[4], a BDD or a binary decision diagram is a tree data structure (defined in the next sec-
tion). Operations on this type of data structures are a function of the number of nodes in the tree, whereas the number of
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terms it represent are dependent on the number of paths down the tree. It is possible to perform logic operations like AND,
OR, XOR, NOR etc. as well as logical quantification by performing the basic BDD operations as given by Bryant’s
paper(4]. The BDD[4] data structure lends itself very well to implicit operations. This is because operations on BDD’s are
dependent on the number of nodes in the BDD, however the terms it represents are determined by the number of paths in
the BDD and the BDD representation for complex combinatorial functions turn out to be surprisingly compact in the num-
ber of nodes involved. The main disadvantage of using BDD’s is that given a bad ordering for the input variables, it is
highly likely that the size of the BDD becomes inordinately large. We have explored this problem extensively and arrived
at what we think is a good ordering for the input and output variables for a combinatorial function.

Given any proposition over a finite boolean space, one can find the solution set to the proposition by a series of BDD
operations on the proposition and in fact there is a direct correlation between operations in the proposition and BDD
operations. These insights were given by Coudert & Madre [1],[3]. While the two insights are not extremely remarkable,
what is remarkable is that the BDD representations of formidable propositions are often small, making this an attribute for
the solution of boolean problems. It is easy to see that it is possible to write the Quine-McCluskey procedure as a
sequence of BDD operations.

In the case of BDD operations the major bottlenecks are quantification (defined in the next section). Thus it is essential for
the success of this approach to reduce the use of quantifiers as much as possible. Thus the attempt will be to reduce the use
of quantifiers at each stage.

The rest of the paper is devoted to the translation of the Quine-McCluskey algorithm to a series of formulae over the
appropriate boolean space and to their computations using implicit BDD techniques. To make the paper more concise and
readable, we have relegated all proofs to the appendix for reference.

Definitions

Boolean space: A boolean space B"is a space where variables may only take the values 0 and 1.

Logic Function: Let X, X5, X, ..., X,, be variables on a Boolean space B" . A completely specified logic function is a
mapping from B" to B. An incompletely specified function consists of 3 parts; f,d andr. fisa completely specified func-
tion which is called the onset and consists of the points where the function is 1, d is the don’t care function and consists of
all the points where the value of the function may be both 0 or 1 and r is the offset and consists of all the points where the
function will take the value 0. f, d and r together form the incompletely specified function.

Literal: A literal is an ordered pair of the form (variable, value). By convention the pair (X;,0) is written as X; and the pair
(X;1) is written as X If the variable takes on the value 0 then the literal X; is said to be 1 and X; is said to be 0. If the vari-
able takes on the value 0 then the literal X; is said to be 0 and the literal X; is said to be 1
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Vertex: A vertex is a single point in the subspace cormresponding to the function input and output variables.
Minterm: A minterm of an incompletely specified function (f,d,r), is a vertex of the space which is in the onset of f.

Monotonically decreasing function: A monotonically decreasing function is a function such that changing any (boolean)
variable from value 1 to value 0 causes the function value, if it changes, to go from value 0 to value 1.

Cube: A cube is a subspace C, X C,X ... x C, of B" where C; is a subset of {0,1}. It can also be written as a product of
literals. A vertex (v,, v,, ..., v,) is contained in a cube C; X C, % ... X C,, iff v; € C; for all i. For convenience a cube
written as a product of literals with the connection that neither literal for a variable are present if C; is {0,1}, e.g. the cube
{0,1} x {0} x {1} over B® is written as X,X,. A cube D D, XD, X ... X D, is said to be contained in a cube C
CyXCyx...xXC, if D;c C; foralli. The size of acube C; X C, X... X C, is given by |C;| X |Cy| X ... X|C | . A vertex
* of the space can also be defined as a cube of size 1.

Null Cube: A null cube is a cube of size 0. The null cube space is the subspace consisting of all the null cubes of a given
space. As a result of the way cubes have been defined, it is observed that there are (4" -3*) null cubes.

Implicant: An implicant of an incompletely specified function (f,d,r) is a cube C, such that, no vertex contained in this
cube belongs to the offset . The definition for implicant containment is identical to cube containment.

Prime Implicant: A prime implicant is an implicant which is not contained in any other implicant of the function.

Cofactors: The cofactor of a function f with respect to a literal (x, i) , i.e. variable x in the i* value, is the function
obtained by evaluating the function f on the plane x=i. Conventionally the cofactor of f with respect to (x,1) is written as
£ and the cofactor of f with respect to (x,0) is written as f;.

Shannon Expansion: A function may be written in terms of its cofactors with respect to a variable x. This is written as

f = Xf;+ xf,. This leads to the concept of a Shannon tree. If we recursively compute the value of the function using the
above expression and computing the cofactor with respect to a new variable in the support of the function at each stage of
the recursion and terminate when we reach the condition that the remaining function is either 0 or 1 in value, we get an
expanded function. If we represent each level in this recursion by a unique node with the left and right branches of this
node being representing the two cofactors, then the resulting structure becomes a tree and is called a Shannon tree. Each
level of recursion represents a new level of the tree.

Binary Decision Diagram: [4] The binary decision diagram for a function is the folded form of the Shannon tree for the
Sunction. A function graph is a rooted directed graph with a vertex set V containing two types of vertices; a non terminal
vertex v has as attributes an index (v) € {0, 1...n— 1} and two children low(v) and high(v) belonging to V. A terminal
vertex has as attribute a value value (v) € {0, 1} . A function graph is reduced if it contains no vertex v with

low (v) = high(v) and no distinct vertices v and v" such that the subgraphs rooted at them are isomorphic.A BDD,
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also called a ROBDD is then defined as a reduced function graph. This tree has labelled internal nodes corresponding to
the variable with respect to whom the function is expanded at the given level.

FIGURE 1. BDD for function F

Yo Yo

This representation is a canonical form. The root node corresponds to the variable with respect to whom we cofactors and
the left branch corresponds to BDD for the cofactor of the function with respect to x and the right branch corresponds to
the BDD for the cofactor of the function with respect to x The example in Figure 1 illustrates the BDD for the func-
tionF = yo-y_1+yo-y2+y_l Y,

Covering Table: The covering table M, of function £, represents the problem of finding the smallest prime irredundant
cover of the function. The rows of this table correspond to the minterms and the columns of the table correspond to the
primes.M;(i, j) = 1 if minterm i is contained in a prime j and 0 otherwise. A column cover of this table is a set of col-
umns of this table such that each row has a ‘1’ entry in at least one of the columns of the cover. A column cover for this
table corresponds to a prime cover for the function it represents. We are looking for a minimum prime cover for our func-
tion, this corresponds to minimum column cover for this table.
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Row Dominance: A row (minterm) is said to dominate another row (minterm) iff any cover which covers the first row,
automatically covers the second row. This occurs when all the primes containing the first minterm (row) also contain the
second minterm (row) and there is a prime containing the second minterm which does not contain the first.

Column Dominance: A column (prime) is said to dominate another column (prime) iff any cover which contains the first
column automatically contains the second column. This occurs when all the minterms contained in the second prime (col-
umn) are also contained in the first prime (column) and there exists a minterm (row entry =1) which is contained in the
first prime (column) but not in the second prime (column).

Quantification: There are two different quantifiers, Ix and Vx. The first quantifier is the existential quantifier. If there
exists a vertex x such that some condition f(x) is 1, this is shown as 3xf(x) = 1. The second quantifier is called the “for
all” quantifier. If for all variables x some condition f(x) is 1, this is written as Vxf (x) = 1. The relation between these
operators is expressed as VxF (x) & 3x(F (x)) and 3xF (x) < VxF (x) . Thus each quantifier may be written in terms
of the other quantifier.

The Smoothing operator: The smoothing operator S, is given by S, (f) = f, +f;. The smoothing operator distributes
over variable sets, thus S, = S, -S, = S, - §, = §,,. Inaddition it can be shown that [2] 3xF (x,y) = Sxy..5,F (% Y)

The Consensus operator: The consensus operator C, is given by C, (f) = f; - f,. This operator too, distributes over a set
of variables, i.e. C,, = C,-C, = C,- C, = C,,. In addition we have the relation that VxF (x,y) = C,, .F(x)

The Quine-McCluskey procedure

The Quine-McCluskey tabular minimization procedure follows the following steps.

1. Find all the prime implicants of the function.

2. Construct the covering table. The rows in the covering table correspond to minterms of the onset of the function, the
columns of the covering table correspond to the primes computed in step 1. An entry in the table is 1 if the corresponding
row minterm is contained in the its column prime, otherwise the entry is 0. Our problem is to find a minimum column
cover for all the rows. The essential prime are those columns one of whose row entries is not contained in any other col-
umn.

3. Determine the dominated rows and remove them from the table, next determine the dominated columns and remove
them from the covering table

4. Repeat the process until no reduction is possible. When no more reduction is possible the remaining problem is called
the cyclic core. There are no dominated rows or dominated columns in the cyclic core.
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3. At this point find a minimum column cover for the cyclic core.

The main bottlenecks here are the problems of prime explosion. The number of primes for n input variables can poten-
tially be as large as 3"/n and hence for larger examples the number of primes become 0o large to enumerate, even when
the size of the cyclic core is small. For e.g. the Espresso-exact algorithm fails on the example circuit “mish” [6] which has
10" primes but a cyclic core with just 82 primes.

The extended space and the implicant characteristic

Our goal is to represent all the cubes over B” as terms in some space and the Quine-McCluskey algorithm as a series of
propositional formulae on that space.

We must note that functions work over points but cubes are collections of points. The key objective is to map cubes onto a
space in which we can perform minimization algorithms by operations on functions which implicitly represent the set of
implicants, minterms, primes etc.

Consider an arbitrary cube C = C, XC, X ... X C,. Each C;is an arbitrary subset of (0,1}. Since there are 4 subsets, it
follows there are 4" vertices of any extended space; i.e. the extended space of B" is B2*. This differs from the conventional

practise of assuming 3" products in the original space. The difference comes from the way we have defined a cube which
leads to (4" - 3™) null cubes. )

Before we begin let us clarify the notation used. We will represent the variables in the original space as ¥; and the vari-
ables in the new extended space as Xip 2;p W, where 1<i<nand je {0, 1}

Assuming all variables are binary valued in the original space. We choose the following extended space, using 2n vari-
ables:

Definition® (C) : Consider any cube C, X CyX... xC, in the original space. The corresponding veriex in the
higher order space Is given by ® (C) = (x,y- Xy, - ... - X,,) , where x;=01Ifje C and x;=1H#je& C,eq.The
cube Y; - Y, over B% is represented as the vertex (1,1,1,0,0,1) = X, - X,; - X0 - Xa1 - X30 - X,, over B%.

Theorem 1.1: The mapping © is 1-1 for all non nuil cubes.

Proof: Assume a contradiction.

Let us assume there exists a cube C, X C, X ... X C, which maps to at least 2 points. Let us call these 2 points a and b.
Consider some variable X;; in which a and b differ.
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X;; = 0fora

X;; = 1forb.
X;=0) e (jeC) (1)
X;=1) e (eC) (2

For any cube C, X C, X ... X C, each C; isa unique set C; < {0,1} .
Hence Equationl and Equation 2 lead to a contradiction.
This implies that the mapping is unique for all non-null points.

This space is also known as the positional notation and is commonly used for representing multi-valued functions. To
understand this refer to Figure. 2 of the extended space, also called the coded cube space(ccs). Every non null cube has a
unique representation in this space. The figure shows the mapping of points in a 2-dimensional space to the 4-dimensional
extended space. In the figure shown the minterm¥,Y; translates to the point XoXo,X,oX, and the cube Y, translates to
the point XgXo, X 10X, in the extended space.

The variables z and u are used to provide temporary intermediate storage for computations.

Definition xF (x) We define the characteristic of function F in the extended space xF as a mapping from Bt B
such that

X (x) = 1ox= {8(C)| (Ce cube(F))} @)
The characteristic function of F in the extended space is also called the implicant characteristic.

Theorem: 1.2: The characteristic function of F in the extended space satisfies the following property.

xFG _ XF'XG @

Proof:
x (x) = 1iffx = {®(C)| (Ce cube(F))}.

K@=ne
x = {©(C)| (Ce cube(F))and(C € cube(G))}
(5)
< (x= {®(C)| (Ce cube(G))})

and
x = {8(C)| (Ce cube(F))} (6)
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o (xex) eande (xe 1% m
This implies that xF G- xF . XG

FIGURE 2. The Coded Cube Space

)

Theorem: 1.3: If every prime of F+G is a prime of For a prime of G then the characteristic functions of in the
extended space satisfies the following property.

xFrO = 4F 4 yC ®)




The extended space and the implicant characteristic

Proof:
X (x) = 1iffx = {8(C)| (Ce cube(F))}. ®)
K*Cw=ne
x = {©(C)| (Ce cube(F))or(Ce cube (G))} (10)
@ (x= {O(C)| (Ce cube(G))})
x= {8(0)] (CO:: cube (F)) } (1)

Equation 11 comes as a results of our statement that every prime of F+G is either a primes of F or a prime of G, if some
cube is formed by combining cubes that are individually either in F or G, then it follows that there must be a larger prime
covering this cube which is not contained in either F or G and this contradicts our assumption.

& (xe xF)oorO(xe xc) (12)

This implies that x ©*9 = ¥ +4°

Key Theorem of implicant characteristic
Theorem 1.4: The characteristic of a function F is given by

X = o=y Xy =™ (13)
Proof:
The above is equivalent to
X = (Xio+ XF;") (X + XFY') (19)
We will prove this by induction. Let us consider the base case; i.e.
X=0 (15)
=1 (16)

Consider the case when F is a function of a single variable. The possibilities for the function F are the following.

F = Y, thisgives X~ = X;oX,, = XioX,, + X;oXy = Xy since the term §* = X;oX;, is a null cube. (EQ 7.8) give the
same answer

F = ¥; thisgives ¥ = X,oX;, = X,oXi1 + XioXs; = Xy since the term §° = X;oX;, is a null cube.(EQ 7,8) give the
same answer.
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F=0 and F=1 reduce to the base case.
The function F can be written as
F=YFy+¥; Fy+Fy Fy (7
which factors as
F= (Y;+Fy) - (Y;+ Fy) (18)
hence translating the function to the extended space and using theorem 1.2 we have

+Fp)  (Fi+Fy)
X

=>xF = x (19)

Using the fact that (¥; and Fy;) and (¥; and Fy;) have no cubes in common (excluding the null cube) and theorem 1.3 we
have the following,

F. = F
=>xF = (xy‘+x Yy . (xy‘+x Ty (20)
F = F? S Fy
2% = Xo+X ) Xa+x ) (21)
Hence proved
Technical Functions over the CCS
The Null Cube space (¢ (x))
Theorem 1.5: The null cube set is given by
o(X) = 22.'0'}?31 (22)
Proof:
X,y =0=0¢ C; (239)
C;=¢=>C=¢ (26)

10
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Adding the null cube to an expression does not add any vertices to the function as the null cubes contain no vertices. How-
ever adding the null cube to any function in this extended space makes the function monotonically decreasing in this space
(Theorem 1.6) and hence gives it special properties which will be exploited in order to calculate the primes.

Theorem 1.6: For any function F, xp + ¢ form a monotonically decreasing function in the extended space.
Proof:

Consider any cube of the form X0 - X;, - A

X;o - X;,is a member of the null space. Thus X - X;, - A = X;o-X;, - A+X;o- X;, but we know X, - X;;A © Xig - X;1.
Thus we have

Xio ‘X, -A= -X-,'o 'Xil <A +J?,'0 ‘f,'lA+i;0 . i;l

Which is equal to X;0A + X;o - X;;

» Thus XA is a cover for the cube.

It can be similarly argued for any cube of the form X, - X;;A

e X A is a cover for this cube
Consider any cube of the form
Xio- Xy A (27)

Existence of this expression implies that X; occurs in both its complemented and its non-complemented form in the origi-
nal space. This implies that in the extended space both the cubes.

XX, A (28)
X Xy A (29)
occur. Hence if the null cube is added to these expressions both the X;, and the X;, dependences disappear.
¢ Thus A is a cover for this cube.

We can repeat this sequence of operations on the cube A to remove all cubes which have a variable present in the non-
complemented form and replace them with cubes in the complemented form alone.

It follows as a result, that each cube may be replaced by another cube which depends only on the complemented literals.

11
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Hence all cubes of the function may be replaced by ones which have no variable in its non-complemented form. Hence
there is a cover of this function in the extended space which has variables only complemented variables [2). This implies
that the function is monotonically decreasing in the extended space.

This is known as the Unateness theorem.

The Vertex Function (v (x))

The vertex function is the representation in the new space of all the vertices of the old space B".

Theorem1.7: The vertices of the original function space in the new extended space are given by
v(X) = H(}?m'xn"'xio'}—(il) (30)

Proof: The vertices of a function are those cubes C such that |C] = 1.1f |C] = 1 we must have the condition that Vi
|C] = 1.

If|C] = 1 thenif je C;=1-j¢ C;

Thus in the extended space for a given i, the two C;’s of size 1 are X;o - X i and X, - X;, . Thus Equation 30 is obtained by
taking the product of all such C;.

The Minterm Image and the Prime Image

Minterms (n(x))

The minterms for the function in the extended space, are members of the vertex space which lie in the onset of the func-
tion.Thus for a term to be a minterm it must satisfy

rX) =1 (32)
i.e. it belongs to the onset of the function and it must belong to the vertex function.
v(X) =1. (33)

This gives

pX) =¥ XNvX) (34)

12
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The Primes (n(x))

In order to calculate the primes of the function the following theorems are required. We also need to understand the con-
cept of a maximum point; a maximum point is a point having a maximal number of variables in the non-complemented

phase.

Definition: x is a maximal point of the function F iff

Vz(Ji(ze F),z;2x).

Lemma 1.1: letC”, Pbe cubes of B", then

oo™ <ed

C* = CyxCyx...xC

if c*ccf

=33, j(e C) (e C))andHk (ke CO) (ke C2) Vp

=>3X,'j((x,-j=0) and(x‘_j= l)

in® (C% in@ (P )

= (x..:

and =Vx"f((x"l;1).‘,.9((:") y l)ine(cn))

=>8(C™ <o

if &(c™ <o

= axu( (xij = 0) and (x"j = l)

in® (C% ine(c? )

and SV (=1, o= =D, )

=3(,je ) (e C))and3k (ke Cb) (ke C3)

=>c*ccP

(35)

(36)

37

(38)

(39)

(40)

41)

(42)

(43)

13
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hence proved

Theorem 1.8: Any cube p is a prime of F itf © (p) is a maximum point of xF

Proof: If x and z are cubes of a function

(x22) = (8(x) 28(2)) (44)
(pe Prime(F)) &@3z(zgF) (z2x) (45)

From lemma 1.1 we have the following.
Jz(zcF) (z2x) ©32(8(2) 20 (x)). (486)

The maximal points are those points such that 3z (8 (z) 20 (x)) .

Hence the primes of the function are the represented by the maximal points in the extended space.

Theorem 1.9: Let G be any function, G monotonically decreasing in x, then

Max(G,) cMax(G;) a7
Proof:
x-AeG=>x-Ae G (48)
where A is a cube. Thus
peG,=peG; (49)
where p is a cube. This implies
Max(G,) cMax(G;) (50)

Lemma1.2: Let G be any function, G monotonically decreasing, the maximum points of G are given by
Max(G) = x-Max(G,) +x-Max(G;) G, (51)

Proof:

)

14
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Max(G) 2x-Max(G,) +x-Max(G;) G,
a) (pe x-Max(G,)) = either(pe Max(G)) p = xs
or3g((g=xr),r>s5,q€ G))
= (re G),r>s =>s¢ Max(G,)

a contradiction.
b)pe x- ax-Max(Gi) = either (pe Max(G)) p = xr
or 3g(¢>p)

1) either (q = Xs), (s>r),(s€ Gy)

this contradicts the assumption that r € Max (G;)

2) (g=2xs), (s271)

(s€ G,)) = (se G;) asG,cG;
(s>r) = (re Max(G;)) acontradiction
(s=r) = (re G,) acontradiction

= Max(G) 2x-Max(G,) +x-Max(G;) G,

ID

Max(G) cx-Max(G,) +%- Max(G;) G,
a) pe Max(G) = either(p=xs)
= either (s€ Max(G,))or (3r(re G,) (r>s))
=xr>p =pe Max(G))
a contradiction
b) (p=xs) = (re Gy)
if (re G,) = (xe € G),(xr>p) we get a contradiction: (p € Max(G))
if (re Max(G;)) = (3s(s>r),(s€ G,)) = (xs>p),(xse G)
we get a contradiction (p € Max (G))

= Max (G) cx-Max(G,) +X- Max (G;) G,

from Equations 54 and 55 the lemma is proved.

lemma 1.3: The maximum points of G are also given by

Max(G) = x-Max(G,) +i-Max(G;-5,)

Proof:

(52)

(53)

(59)

(55)

(s6)
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Forming & Solving the Covering Problem

I) Max(G;- G,) cMax(G;) - G,

if 3p (xp € G) (p € Max(G;-G,)),(pe Max(G;) - Gy)

then (3¢ (g =Xxt) (1€ G;-G,),(¢t>p)) andIg(g=31) (1€ G;) (1e Gy),(t>p)
this is a contradiction.
1) Max (G;- G,) 2 Max(G;) - G,
if 3p(Xp € G) (p & Max(G;-Gy)),(p e Max(G;) - Gy)
then since G, ¢ G; and Max (G;) cG;
we have the statement 3g (¢ = Xr) (r € Max(G;-Gy)),(r>p)
= (re G,) = (re G,) = (r& Max(G;) - G,)
a contradiction.

using lemmal.2 and the above, lemma 1.3 is proved.

The primes are calculated by considering F+D, namely the onset plus the don’t care set of the function.

ey p(X) = Max(x"*?)

Forming & Solving the Covering Problem

The covering table is a table representing the problem of finding the minimal prime irredundant cover of the function.
The rows of this table correspond to the minterms of the onset of the function to be minimized and the columns of the
table correspond to the primes of the onset plus the don’t care set of the function. The entries of the table are 1 if a min-
term is contained in a prime and 0 otherwise. We are looking for a minimum column cover for this table.

Having calculated the primes and the minterms of the function, we now formulate the covering problem as follows.

. Form conditions for minterm dominance. o (x, z)
. Remove dominated minterms.

. Form conditions for prime dominancep (x, z)

. Remove dominated primes

& W N =
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Forming & Solving the Covering Problem

5. Repeat steps 1 - 4 until no change is observed.
6. Solve the reduced covering problem.

It must be specified that in the case of completely specified functions, at the start of this process no prime will dominate
another. However after the first round of removal of dominated minterms some primes begin to dominate each other.

Minterm Dominance (o (x, z))

A minterm x is said to dominate another minterm z, (o (x, z) = 1), if every prime covering x also covers z and there
exists at least one prime which covers z but does not cover x. In such a case a cover involving x automatically covers z.
Figure 3 illustrates this case. When x and z are covered by the same set of primes, we have the condition for co-domi-
nance. If x and z co-dominate we may pick just one of the two as a representative term. We formulate the dominance con-
dition as the converse of the condition for non-dominance, i.e the converse of the condition that there exists a prime
covering x but not covering z.

Nxz) = p(x) -1(z)3u(n(u) - u2z-u2x) (8)

Hence we have the complete condition for minterm dominance as

a(x,z) =n(xz2) - (M(zx) +x-2) (59)
where x—z is the tie-breaker whose purpose is to arbitrarily choose one representative term when 2 terms are co-domina-
tors. Co-domination occurs when two minterms are covered by exactly the same set of primes, as shown in Figure 4.

We remove all minterms which are dominated at any stage of the reduction. Altemately we keep all the minterms which
are not dominated at any stage of the reduction. In order to remove dominated minterms we use the condition:

R =Fz-azou,_, (% (60)

FIGURE 3. minterm x dominates minterm z

K 1
z[1]1 1]1
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Forming & Solving the Covering Problem

Equation 60 is equivalent to step (3) of the Quine-McCluskey procedure. This is the step which removes all dominated
rows (i.e. minterms).

FIGURE 4. co-dominators

b d
—
-t
A
A

N
A
—h
A
A

Prime Dominance (B (x, z))

In order for a prime x to dominate another prime z, all minterms contained in z must be contained in x, but not vice versa.
Alternately we may formulate this as the converse of the condition that there exists a minterm contained in z but not in x,
in such a case x does not dominate 2. Thus a cover involving x would automatically cover z and hence we may remove z
from our covering problem. The condition is

Y(x,2) = n(x)n(z)u(n(u) -x2%-z22u) (61)

Similar to minterm dominance the complete formulation follows as:

B(x,2) = Y(x,2) - (Y (2 %) +x—z) (62)

Figure 5. shows a case of prime dominance

The tie-breaker is identical to the previous case. Co-domination occurs when two primes cover exactly the same set of
minterms at some stage of the reduction of the covering problem. We need to pick only one of the two co-dominators as a

representative term. The tie-breaker is the condition for arbitrarily choosing one of two co-dominators, as shown in Figure
6.

18



Forming & Solving the Covering Problem

FIGURE 5. prime x dominates prime z

11

We remove all primes which are dominated by some other prime. Alternately we keep all primes which are not domi-
nated. In order to remove all dominated primes we use the following expression.

n (x) =3B (z,x)-m, _ x (63)

1

FIGURE 6. Prime co-dominators

111
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Handling Multiple Output Functions

This is equivalent to step3 of the Quine-McCluskey algorithm. For a completely specified function before the first pass of
reduction, neither prime dominance nor co-dominance occur, however after removal of dominated rows or columns these
conditions may come into play.

After the iterative removal of dominated primes and minterms, we are left with a reduced covering problem, which needs
to be solved.

The result of this step are a set of rows and columns that are not dominated by any other row or column. These rows and
columns form the cyclic core of the problem.

Handling Multiple Output Functions

In order to handle multiple output functions, we need to add additional bits of data corresponding to the output part. We
need one additional bit of data for each multiple output. Thus in the extended space a function of  inputs and » outputs is
represented by 2m-+n bits. The occurrence of the j* output bit implies that the /* output part exists for the given input.
This leads to complete representation in the extended space as shown in Equation 64.

= [ x,=x" 64)
J
where F; is the /" output and X,j is the variable in the extended space which represents it. The above equation becomes
" =[] Ees+x (65)
i
The vertex space and the null cube need to modified in order to take into account this output part. A point is a member of
the null space iff it is a null in its input or it is a null in its output part.It is an output null iff all the output variables are
turned off, i.e. they are all in their complemented phase. This would imply that no output part (function) is present. Hence

the null cube is given by

¢final = ¢oulpul + ¢£nput (€6)

where the null cube for the input part is as previously calculated and the null cube for the output part is given by

¢ = [1%.s (67)
j
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BDD Representation and Implementation of functions

The new vertex function now includes both an input part and an output part. The point is a point in the vertex function if it

is a point in the input vertex and the output vertex. It is a point in the output vertex function iff exactly one output variable
is tumed on. This is given by

Dfiual = 0autpul ) ninpul (68)

where the input vertex space is as calculated and the output vertex space is given by

V= ZXOJH‘Y"‘ ‘ (69)
7

inj

The remaining computations remain identical.

BDD Representation and Implementation of functions

All the functions discussed in this paper are handled as BDD's. The BDD for the onset plus the don’t care set and for the
function alonc are used as input. The characteristic BDD in the extended space is created by writing a recursive routine
which evaluates the BDD in terms of the BDD node and the BDD'’s for the characteristic for the left branch and the right
branch at each BDD node. A similar technique is used for prime computations. Thus at each stage the BDD of the results
is the merged result of the BDD’s for the left and right branches.

According to Bryant’s analysis [4], the size of the BDD of the function f, - (op) - f, is bounded by |Ai| - Ify] where | |
represents the size of the BDD. The operator could be any logical operator. It can be shown by analysis that the sizes of
the null space and vertex space BDD’s are essentially linear in the number of variables, thus if the extended space repre-
sentation is of manageable size, it follows that so are the prime and minterm BDD’s.

In order to implement the mapping into the extended space, the original BDD is traversed recursively, at each level the
BDD of the extended function is written as a combination of the BDD’s of the extended representation of the left branch
and the right branch. This is a recursive formulation for the extended BDD in the form

extend (f) = (X;o+ extend :)) (X;, + extend )

This recursion terminates when the remaining BDD is either a “0” BDD or a “1” BDD. The pseudo-code for the calcula-
tion of the extended BDD is as follows:

extend(f)
if (look_up(f,value)) return value
else if (terminal_value(f,value)) return value
else
Y;= top_variable(f)
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BDD Representation and Implementation of functions

f_nex = extend(left_branch(f))
f_ex = extend(right_branch(f))
return ((x;p+f_ex)(x;;+ f_nex))

In order to make this calculation more efficient a memoization is used. This is the look_up routine used in the code. At
each node first a check is made as to whether the node has been traversed; in that event it would have been stored in a
look_up table and a lookup of the table yields the answer. In the other case it is computed and the computed BDD is
inserted into the table using the BDD node as the key to insert the BDD. This method of hashing to avoid further compu-
tation is also used for the prime computation routine. Each node needs to be computed just once. This technique relies
heavily on the fact that a BDD is a canonical form and as a result each node in the BDD is unique[4].

In order to do prime computation we use the equation

Max(G) = x-Max(G,) +X-Max(G;-G,) (70)

This formulation is recursive and based on computing the result for the left and right branches of the BDD first. Again a
hash table is used to hash the value of the result BDD with the node as key.

As a result the pseudo-code for this computation becomes:

Max(G)
if look_up(G ,value) return value
else if (terminal_value(f,value)) return value
else
x;j = top_variable(G)
max_nx = Max((left_branch(G)) and not(right_branch(G))
max_x = Max(right_branch(G))
return(bdd_ite(x;;, max_x, max_nx))

We traverse the BDD node by node. At each point we first check if the max point for a node has already been calculated,
in such an event we merely perform a lookup of the hash table. If however it has not been computed it is computed using

the above equation and then the value is stored in the hash table. This ensures that we compute the “Max” BDD at each
node exactly once.

The Quine-McCluskey algorithm uses the BDD AND,OR and SMOOTH operators to implement. It is a straightforward
implementation which essentially uses Equation 58-63 to form and segregate the minterm and prime dominators by using
BDD AND for all logical ANDs, BDD OR for all logical ORs and BDD-SMOOTH for all the existential quantifiers, in
the aforementioned equations. Thus the pseudo-code for the algorithm becomes:

Quine-McCluskey-reduction(primes,minterm)
While further reduction possible
minterms =bdd_and(minterms,bdd_not(minterms_dominated(minterm,primes)))




Ordering heuristics

primes = bdd_and(primes,bdd_not(primes_dominated(minterm,primes)))

primes_dominated(minterms,primes)
gamma_1=bdd_not(bdd_and_smooth_with_u_vars(minterms_in_u_vars,u_vars_not_in_x_varsu_vars_in_z_vars))
gamma_x_dom_z = bdd_and(primes_in_x_vars,primes_in_z_vars,gamma_l)

gamma_z_dom_x = bdd_swap_x_vars_z_vars(gamma_x_dom_z)

beta = bdd_and(gamma_dom_z, bdd_or(bdd_not(gamma_z_dom_x), x_vars_tie_z_vars))

return(beta)

minterms_dominated(minterms primes)
eta_l=bdd_not(bdd_and_smooth_with_u_vars(minterms_in_u_vars,u_vars_in_x_vars,u_vars_not_in_z vars))
eta_x_dom_z = bdd_and(minterms_in_x_vars,minterms_in_z_vars,eta_1)

eta_z_dom_x = bdd_swap_x_vars_z_vars(eta_x_dom_z)

alpha = bdd_and(eta_dom_z, bdd_or(bdd_not(eta_z_dom_x), x_vars_tie_z_vars))

return(alpha)

Ordering heuristics

Malik’s “level” heuristics were originally used to order the variables to build the BDD’s in the original space. In the
extended space the new input variables are ordered according to the order of the corresponding variables in the original
space. The x,u and z variables are interleaved. The output variables were ordered first. Thus the ordering in the extended
space puts the output variables first and then the input variables. All x,u and z variables are interleaved.

After further experimentation we found that a much better ordering was achieved by ordering the support of each output
part according to the aforementioned level heuristics and ordering each support set by its size. The output variables were
ordered after their supports. This is essentially an application of [9] for ordering combinatorial circuits. All x,u and z vari-
ables were again interleaved.

Results

The Following table gives the results of the above method. There are many aspects of the problem which require further
development. We need to find a means of removing the quantifiers from the expressions for prime and minterm domi-
nance as these are the bottlenecks of the problem.

We found that the method worked well in some examples, giving an answer equal to the minimum obtained from
Espresso-exact, however in the larger examples it failed at the quantifiers in Equations 58-63. Currently we are working
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Results

on an expression for domination relationships which eliminates the need for quantifiers. However as a result of our previ-

ous efforts, we have been able to solve a few of the 20 hard espresso problems; namely the examples misj and misg. We
also able to build the prime and minterm BDD’s for a large fraction of the remainder, namely ex4, ex1010, ibm, jbp, misg,
misj, mish, shift,soar.pla, ti,ts10 x2dn and xparc. We are confident that further development will solve all of the 20 hard

problems.

The results table for the “Benchmark” examples are given in the appendix.However table 1 & 2 show the behavior on a
few example circuits.We observed that the problem size is very much a function of the ordering technique used and
change in our ordering strategy can cause a phenomenal change in the size of the problem.In addition we need to formu-
late an implicit means to solve the reduced covering problem obtained.

TABLE 1. Results on the 20 hard espresso problems

Name
exdw-
ex1010w?
ibmer
jope
misger
misheer
misje-
shiftee-
soar.plaw-
tive~

ts 10
X2dnee

Xparcer-

Nodes in Size of Time to
Input/ extended Size of Minterm compute
Output BDD (F) Prime BDD BDD Primes Minterms (in sec.)
128/28 43881 4238 3992 1.8348E14  computed 615
10/10 12662 40970 2655 25888 1471 4540.6
48/17 9507 16427 4975 1047948736  1.5523729E15 134.2
36/57 309019 80699 26461 2496809 8.0095268E11 2755.3
56/23 350 770 889 6499491840  1.054609E18 3.4
94/43 14109 503 605 139103 2.561545E11 1.3
35/14 364 8784 6597 1.1243753E15 4.1494202E29 49.1
1916 7117 22831 6814 165133 4194304 3832
83/94 45302 38797 7898 3.3047729E14 1.7458651E26 822.3
47772 143009 69678 28078 836287 4.136440E14 19233
22/16 88803 52143 52251 524280 4194304 1084.9
82/56 18908 18393 7563 1.1488762E16 8.849739E25 194.1
41/73 232552 55839 11665 15039 1.0865220E13 1384.8

a. wr refers to one of espresso’s 20 hard problems

TABLE 2. Results including reduction on some sample examples

Name
clpl
cordic
e64
misex1
misge

Input/
Output
11/5
23/2
65/65
877
56/23

Nodesin Sizeof Size of

extended Prime Minter Number of
BDD BDD mBDD Primes

41 70 89 143

336 310 224 1754

321 511 577 65

136 207 162 28

350 770 889 6499491840

Primes
Number of  After
Minterms Reducing
6713 20
8634368 1712
36893488E20 65
548 12

1.054609E18 69

Minterms
after
Reducing

20
1712
65
12
69

Primes Total
from Time
espresso (sec)
20 1.9
914 22.1
65 24.0
12 12.0
- 102.1
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TABLE 2. Results including reduction on some sample examples

Nodesin Size of Size of Primes Minterms Primes Total
Input/ extended Prime Minter Number of Numberof  After after from Time
Name Output BDD BDD mBDD Primes Minterms Reducing Reducing espresso (sec)
misjer 35/14 364 503 605 139103 2.561545E11 35 35 - 39.2
newapla 12/10 264 312 239 113 10421 17 17 17 349
newcpla2 mo 30 282 197 38 282 19 19 19 28.3
rd84 8/4 247 228 125 633 411 255 255 255 6.8
3 12/8 594 429 282 233 167920 33 33 33 86.5
vg2 25/8 1110 572 477 1188 61570752 110 110 110 187.9
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Appendix

Appendix

Table of Results

The following table gives the calculated number of primes and minterms, primes and minterms after reduction and the

number of primes in the minimum by espresso.

TABLE 3. Nodes in extended space representation

Name

alcom
alul
alu2
alu3

apla
b10
bll
b12

clpl

clip
conl
cordic
dcl

dc2
dekoder
dk17

dk48

Inputs Outputs

16
15
12
10
10
14
10
15
8

15
16
32
33
8

16
26
26
26
26
26
12
12
29
11
24
9

7

23
4

8

4

10
9

15

47
38
8

8

8

24
12
1
31
9

17
20
23
31
5

11
46
39
45
38
8

00

Nodes in
extended
BDD (F+D)

1681
802
543
3356
4414
5963
2n
39516
808
830
22125
42174
93489
808
2250
1923822
23508
19870
15904
7156
738
558
46466
41
56447
4435
79
336
129
658
91
1005
300
1303

Nodes in
extended
BDD (F)

1681
802
543
5834
7422
5963
1765
34136
857
830
22125
32075
62278
857
2250
1923822
23118
16645
16562
7762
738
558
46466
41
56447
4435
79
336
129
658
125
813
246
1172
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TABLE 3. Nodes in extended space representation

Name
duke2
e64
ex1010e-2
exdwr
ex5
ex7
exp
exps
gary
ibmwe-
in0
inl
in2
in3
ind
in$
in6é
in7
inc
intb

bper

lin.rom
luc
ml
m2
m3
m4

mark1
max1024
max128
max46
max512
misex1
misex2
misex3
misge
mishe
misje
mp2d
newapla
newaplal

22
65
10
128

12
12

29
65
10
28
63
5

18
38
11
17
11
17
10
29
20
14
23
10
9

7

57
36
27

Nodes in
extended
Inputs Outputs BDD (F+D)

7880
321
62822
43881
85985
2250
3275
11570
16590
9507
30138
22125
14810
15976
33414
11441
11446
6045
1375
56570
309019
16153
2034
622
4064
3715
3319
1902
12254
3707
433
2144
136
869
92952
350
14109
364
360
264
237

Nodes in
extended
BDD (F)
7880
321
12662
43881
85985
2250
2794
8985
16590
9507
30138
22125
14810
15976
33414
11441
11446
6045
1269
56570
309019
16153
2034
622
4064
3715
3319
1223
12254
3707
433
2144
136
869
92952
350
14109
364
360
264
237
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TABLE 3. Nodes in extended space representation

Nodes in Nodes in
extended extended
Name Inputs Outputs BDD (F+D) BDD (F)

newapla2 6 7 99 9
newbyte 5 8 85 85
newcond 11 2 299 299
newcplal 9 16 1245 1245
newcpla2 7 10 30 301
newcwp 4 5 54 54
newill 8 1 60 60
newtag 8 1 28 28
newtpla 15 5 339 339
newtplal 10 2 135 135
newtpla2 10 4 306 306
newxcplal 9 23 2192 2192
p82 5 14 608 608
poperom 6 43 11291 11291
prom1 9 40 101324 101324
prom2 9 21 53547 53547
rd53 5 3 80 80
1d73 7 3 161 161
1d84 8 4 247 247
risc 8 31 941 941
1yy6 16 1 9 9
sex 9 14 560 560
opa 17 69 11477 11477
shifve- 19 16 7117 7117
soarplae 83 94 45302 45302
spla 16 23 53285 53364
sqn 7 3 423 423
tl 21 23 13283 13283
(v] 17 16 1433 1344
3 12 8 594 594
4 12 8 1767 1184
tier 47 72 143009 143009
table3 14 14 42637 42637
table5 17 15 73511 73511
tms 8 16 893 893
ts10w- 22 16 88803 88803
vg2 25 8 1110 1110
vixl 27 6 4619 4619
wim 4 7 103 134
x1ldn 27 6 4619 4619
xor5 5 1 31 31
X2dne 82 56 18908 18908
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TABLE 3. Nodes in extended space representation

Nodes in Nodes in
extended extended
Name Inputs Outputs BDD (F+D) BDD (F)

x9dn 27 7 3090 3090
xparce 41 3 232552 232552
5xpl 7 10 381 381
9sym 9 1 178 178
z9sym 9 1 178 178

a. W refers to one of espresso’s 20 hard problems

TABLE 4. Number of Primes and Minterms

Time to
Name Primes Minterms compute
5xpl 390 576 1.1
9sym 1680 420 0.7
Z9sym 1680 420 1.0
al2 9179 191296 57
alcom 4657 88064 28
alul 780 15872 12
alu2 434 7422 83
alu3 540 3903 10.3
alud 7145 62256 1624
amd 457 35072 21.8
apex1 6750 1.6482007E14 1704.2
apex2 13403 1.6481762E11  747.2
apex3 2700 5.8194951E16 4041.1
apex4 2336 2770 106.7
apla 201 157 6.3
bl10 938 72912 60.8
bll 44 836 3.7
b12 1490 163072 217
b2 928 328488 97.5
b3 3056 1.3076E10 194.8
b4 6455 4.9942E10 202.8
b7 44 836 3.7
b9 3002 133704 5.1
bcO 6596 284933120 2331.2
bca 305 2778112 117.7
beb 255 2417664 85.7
bee 237 2477056 88.2
bed 172 1699840 414
brl 29 114 1.5
br2 27 125 1.3
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TABLE 4. Number of Primes and Minterms

Name
bw
chkn
conl
cordic
clpl
cps
dcl
dc2
dekoder
dk17
dk27
dk48
duke2
e64
ex1010 w
ex4
ex5
ex7
exp
exps
gary
ibm e

in0
in2
in3
in4
in5

iné

in7

inc
intb
joper
lin.rom

luc
ml
m2
m3
mé4

mark1
max1024
max128
maxd46

Primes
108
671
24
1754
143
2487
22
173
26
1
82
157
1044
65
25888
1.8348E14
2532
3002
238
852
706
1047948736
706
666
1114
3076
1067
6174
2112
124
6522
2496809
1087
190
59
243
344
670
208
1278
469
49

Minterms
281
788036864
156
8634368
6713
124362704
47

442

49

61

20

42
8464768
36893488E20
1471
computed
7620
133704
297

1623
84196
1.5523729E15
84196
686336
1.7485E11
1.3295E10
24912896
4.9950E10
220769280
281

101720
8.0095268E11
2306

2198

218

831

1105

2134
2098128
3232

1616

62

Time to
compute

7.6
4.7
0.2
35
0.2
2874
0.3
1.3
0.5
3.6
1.5
9.9
209
113
4540.6
61.5
14609
417
13.0
65.5
28.8
1342
36.0
21.1
83.9
139.0
40.6
31.0
154
3.2
1312
27553
84.7
7.7
1.3
7.1
9.7
18.6
321
27.8
16
0.7
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TABLE 4. Number of Primes and Minterms

Name
max512
misex1
misex2
misex3
misg
misj -
mish &
mp2d
newapla
newaplal
newapla2
newbyte
newcond
newcplal
newcpla2
newcwp
newill
newtag
newtpla
newtplal
newtpla2
newxcplal
opa

p82
pope.rom
proml
prom2
1d53
rd73
1d84

Tisc

Tyy6
sao2

seq

sex

shift W
soar.pla v
sqn

spla
square5
tl

2

Primes
535

28

42
6731
6499491840
139103
1.1243753E15
469

113

31

7

8

72

170

38

23

11

8

40

6

23

191
477

48

593
9326
2635

51

211

633

46

112

184
7457
99
165133
3.3047729E14
75
4972
71
15135
233

Minterms
1616

548
37257216
23196
1.054609E18
2.561545E11
4.1494202E29
118544
10421

380

7

8

704

1317

282

42

142

234

4484

12

608

3506
732072

81

1614

8306

3027

42

192

411

844

19710

747
9.8390465E12
1848
4194304
1.7458651E26
144

122736

85
13956096
167920

Time to
compute

113
05
1.8
456.7
34
13
49.1
20
0.7
03
0.2
0.2
0.6
25
0.7
0.2
0.1
0.1
0.6
0.2
04
3.6
56.8
1.0
61.1
18924
276.4
0.2
0.7
13
2.6
0.3
12
983.8
1.3
3832
8223
0.9
680.4
0.7
56.1
8.8
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TABLE 4. Number of Primes and Minterms

Time to
Name Primes Minterms compute
3 42 4096 12
4 174 982 15.2
1481 481 42016 22
table3 539 11467 50.8
tableS 462 119523 713
ti o 836287 4.136440E14 19233
tms 162 790 33
ts10w 524280 4194304 1084.9
vg2 1188 61570752 2.5
vixl 1220 133035072 6.5
wim 25 51 0.5
x1dn 1220 133035072 6.6
x2dnw  1.1488762E16 8.849739E25  194.1
x9dn 1272 133041984 6.9
xorS 16 16 0.1
xparc @ 15039 1.0865220E13  1384.8

TABLE 5. Primes and Minterms after Reduction

Minte-
Primes rms
After after Primes
Reduct- Reduct- from Time

Name ion ion espresso (in sec)
al2 66 66 66 1414
alcom 40 40 40 62.4
alul 19 19 19 94.8
bll 27 27 27 144.2
b7 27 27 27 147.1
brl 19 19 19 87.2
br2 13 13 13 584
clpl 20 20 20 1.9
conl 9 9 9 4.0
cordic 1712 1712 914 22.1
dcl 9 9 9 59
dc2 39 39 39 204.6
dekoder 12 12 9 5.7
dk27 14 14 10 48.8
e64 65 65 65 24.0
inc 29 29 29 3043
ml 19 19 19 65.6
misex] 12 12 12 12.0
misex2 28 28 28 192.7
max46 46 46 46 25.2
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TABLE 5. Primes and Minterms after Reduction

Name
misg w
misj &
newapla
newaplal
newapla2
newbyte
newcond
newcplal
newcpla2
newcwp
newill
newtag
newtpla
newtplal
newtpla2
p82

rd53
rd73
1d84

risc

yy6
sao2

sex

sqn
squar5

3

vg2

wim
xord
5xpl
9sym
Z9sym

The total number of primes and minterms for all examples is given by the following table.

Primes
After
Reduct-
fon

127
255
28
112
58
21
38
35
33
110
12
16
146
1680
1680

Minte-
rms
after
Reduct-
fon

69
35
17
10
7

8

31
40
19
11
11

8
23
4
9

21
31
127
255
28
112
58
21
38
35
33
110
12
16
156
420
420

Primes

from Time
espresso (in sec)
- 102.1
- 39.2
17 34.9
10 4.1

7 1.1

8 1.0
31 493
38 4389.8
19 28.3
11 2.6

8 1.0

8 05
23 18.1
4 1.2

9 12.5
21 38.7
31 1.2
127 39
255 6.8
28 226
112 1.8
58 88.8
21 73.2
38 35.7
25 94.4
33 86.5
110 1879
9 55
16 0.2
63 322
84 2.6
84 2.8
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TABLE 6. Size of Prime and Minterm BDD’s

Name
5xpl
9sym
Z9sym
al2
alcom
alul
alu2
alu3
alu4
amd
apexl
apex2
apex3
apex4
apla
b10
bll
bl2
b2
b3
b4
b7

b9

bcO
bca
beb
bee
bed

brl
br2
bw
chkn
conl
cordic
clpl
cps
dcl
dc2
dekoder
dk17

Size of Prime
BDD

464
162
162
990
635
742
1689
2231
12059
4125
67731
15858
126934
28307
11865
3234
744
958
10905
12318
11562
744
1716
28750
5060
16645
4072
2310
473
367
1968
4195
120
310
70
33255
145
499
145
760

Size of Minterm
BDD

169
96
96
936
5N
509
1279
1602
3174
1899
19265
8594
24568
8873
495
1702
572
512
2242
4282
4578
572
754
9473
3953
3930
3025
2050
414
316
595
1863
86
224
89
9725
88
345
86
317
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TABLE 6. Size of Prime and Minterm BDD’s

Name
dk27
dk48
duke2
e64
ex1010 w
ex4 &
ex5
ex7
exep
exp
exps
gary
ibm -
in0

inl

in2

in3

ind

inS

in6

in7

inc
intb
joper
lin.rom
luc

ml

m2

m3

m4
mark1
max1024
max128
max46
max512
misex1
misex2
misex3
misg =
misj
mish
mp2d

Size of Prime
BDD

390
1278
4667
s
40970
4238
70225
1716
6878
1794
6933
4714
16427
4504
10905
3736
10729
12609
6691
6720
4125
721
11423
80699
11033
2163
550
2115
2784
4249
2597
3465
3733
215
2026
207
631
21291
770
503
8784
600

Size of Minterm
BDD

178
611
2552
577
2655
3992
3397
754
10113
707
2814
2120
4975
2062
2242
2010
3799
4974
2764
2515
1438
298
3089
26461
1966
817
260
791
946
1339
811
1091
1014
186
961
162
645
10755
889
605
6597
318
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TABLE 6. Size of Prime and Minterm BDD’s

Name
newapla
newaplal
newapla2
newbyte
newcond
newcplal
newcpla2
newcwp
newill
newtag
newtpla
newtplal
newtpla2
newxcplal
opa

p82
pope.rom
proml
prom2
rd53
1d73
rd84

risc

1yy6
sao2

seq

sex
shift o
soar.pla

spla
square$
tl

13
1481
table3
tableS
tj o

ts10 -

Size of Prime
BDD

312
141
96

82

228
787
282

806

407
50715
623
22831
38797
290
37353
341
9126
1435
429
959
518
4003
5337
69678
1065
52143

Size of Minterm
BDD

239
129
96
82
166
464
197
60
55
44
213
90
118
494
417
292
1798
10177
5311
55
96
125
635
95
243
9296
404
6814
7898
207
24299
214
2626
980
282
525
293
2458
2832
28078
417
52251
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TABLE 6. Size of Prime and Minterm BDD’s

Name
vg2
vix1
wim
x1dn
x2dn e
x9dn
xor$
xparc

Size of Prime
BDD

572
1462
154
1462
18393
1564
25
55839

Size of Minterm
BDD

471
1062
88
1062
7563
1308
25
11665
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