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A Fully Implicit Quine-
McCluskey Procedure using

BDD's

Gitanjali M. Swamy, Patrick McGeer, Robert K. Brayton

Abstract

We present an exact method for minimizing logic functions using BDD's to represent our functions.
This approach differs from the classical approach in that it exploits the properties of the BDD data
structure and the properties of a new extended space that we define, in order to implicitly compute
the Primes, Minterms and Covering table for the Quine-McCluskey procedure. In this method the
function is mapped to an extended space which endows it with special properties that may be
exploited to compute the function Primes and Minterms.The next step consists of conceptuaUy cre
ating a covering table whose rows representthe mintermsand whose columns represent the primes.
We formulate conditions for row and column dominance and remove dominated rows and columns
iteratively until no more reduction is possible.The final step consists of finding a minimum column
cover for the remaining cyclic core of the problem. All functions are implemented using implicit
BDD operations.
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Introduction

Introduction

The objectiveof logic minimization is to create a representation for a given logic function whichrequiresa minimalnum

ber of logicdevicesfor its implementation. This problemis CoNP-hardin natureand henceany exactalgorithmto solve it

is thought to be of exponentialcomplexity[8].The Quine-McCluskey procedure[7] is one such exact algorithm.

Beforewe begin our method,we need to the discuss the Quine-McCluskey procedure.The basic Quine-McCluskey tabu

lar minimization procedure is as follows:

1. Find all the prime implicants of the function.

2. Construct the prime-implicant table

3. Determine the dominated rows of the table and delete them. Next, determine dominated columns of the table and delete

them.

4. Repeat step 3 until no more reductionis possible.At this point we are left with a cycliccore.

5. Find the minimumcolumn cover for the remainingproblem.

Though this algorithm maybe usedeffectively for smallexamples, it oftenfails in its explicitformfor largerexamples.

Forexampletheespresso-exact algorithm[6] failsin thecaseof problems like themish[6] examplewitha largenumberof

primeseven when the actual cover is quite small in comparison.

Recent work at Bull Research [1], [3], gives us a new implicitapproachto this problem. In those papers, O. Coudert &

J.C. Madre[1,3] havedeveloped a newmethod of representing primes of Boolean functions. Through their techniques

theyhavebeenable to arriveat a collection of theprimes of the largestand mostdifficult of the public benchmark func

tions. Weextendthe techniques of [1],[3] to exactminimization of boolean functions. Themethod weproposehererelies

on the followingstatement:Any precise set canbephrased as a propositional sentence over theappropriate boolean

space.Thus the primes, minterms,as well as the Quine-McCluskey dominatorsmay be formulated as propositionalsen

tences.

Briefly we representthe primesand the minterms required and thecoveringtable implicitly, and expressstep (3) of the

Quine-McCluskey procedureas operations over this implicitrepresentation. We then arriveat the cycliccore of the com

binatorialproblem in an implicit representation and derive the actual primes and minterms implicitlyfor this cyclic core;

sincetheprimesand minterms of thecycliccorearejust a fraction of the totalprimesand minterms we hope to solve

those problems which have not yet been solved by explicit methods[6].

Recapping from Bryants paper[4], a BDD or a binary decision diagram is a tree data structure (definedin the next sec

tion). Operations on this type of data structures are a function of the number of nodes in the dree,whereas the number of
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terms it represent are dependent on thenumber of paths downthetree. It is possible to perform logic operations like AND,

OR, XOR,NOR etc.aswell aslogical quantification by performing thebasic BDDoperations asgivenby Bryant's

paper[4]. The BDD[4] data structure lendsitselfverywellto implicit operations. This is because operations on BDD'sare

dependent onthenumber of nodes in theBDD, however theterms it represents are determined by thenumber of paths in

theBDD and theBDD representation for complex combinatorial functions turn outtobesurprisingly compact in thenum

berof nodes involved. The main disadvantage of using BDD's is that given abad ordering for theinputvariables, it is

highly likelythat thesizeof theBDDbecomes inordinately large. Wehave explored this problem extensively and arrived

atwhat we think is a goodordering forthe inputandoutputvariables for a combinatorial function.

Given anyproposition overafinite boolean space, one can find the solution set to the proposition bya seriesofBDD

operations on theproposition andinfact there is a direct correlation between operations in theproposition andBDD

operations. These insightsweregivenby Coudert & Madre [1],[3]. While the two insights arenot extremelyremarkable,

what is remarkable is that theBDD representations of formidable propositions are oftensmall, making thisanattribute for

thesolution of boolean problems. It is easyto seethat it is possible to write theQuine-McCluskey procedure asa
sequence of BDD operations.

In thecaseof BDDoperations themajorbottlenecks are quantification (defined in thenext section). Thus it is essential for

thesuccess of this approach toreduce theuseof quantifiers as much aspossible. Thus theattempt willbetoreduce theuse
of quantifiersat each stage.

The restof thepaper is devoted to thetranslation of theQuine-McCluskey algorithm to a series of formulae overthe

appropriate boolean space andto their computations using implicit BDD techniques. Tomakethepaper more concise and

readable, we haverelegated all proofsto the appendix forreference.

Definitions

Boolean space: A boolean space Bnis aspace where variables may onlytake the values 0 and 1.

Logic Function: Let Xv X2, X3,..., Xn be variables ona Boolean space Bn . A completely specified logic function is a

mapping from Bn toB. An incompletely specified function consists of3 parts; f, dand r. f isacompletely specified func
tion which is called theonsetand consists of thepoints where the function is 1,d is thedon'tcare function and consists of

all the points where thevalue of the function maybeboth 0 or1and r is the offset and consists of allthepoints where the
function will take the value 0. f, d and r together form theincompletely specified function.

Literal: A literal isanordered pair of the form (variable, value). By convention thepair (Xh0) is written asX,- and thepair

(X,-,l) iswritten as Xt. If the variable takes onthe value 0 then the literal Xt is said tobe1and Xt is said tobe0. If thevari
able takes onthe value 0 then theliteral Xt is said tobe0 and theliteral X; is said tobe 1



Definitions

Vertex. A vertex is a single point in the subspace correspondingto the function input and output variables.

Minterm: A minterm of an incompletely specified function (f,d,r\ is a vertex of the space which is in the onset of/.

Monotonically decreasingfunction: A monotonically decreasing function is a function such that changing any (boolean)

variable from value 1 to value 0 causes the function value, if it changes, to go from value 0 to value 1.

Cube: Acube isa subspace Clx C2 x... x Cn ofBn where Ct isa subset of {0,1}. Itcan also bewritten asa product of
literals. A vertex (vv v2,..., vB) is contained ina cube Clx C2 x... x C„ iff v;e C, forall i. Forconvenience a cube

written as a product of literals with the connection that neither literal for a variable are present if C, is {0,1}, e.g. the cube

{0,1} x {0} x {1} over B3 is written as X2X3. Acube D£>,xD2x... xDn is said to be contained in acube C
Cx x C2x... x Cn if £>,. c C,- forall i.Thesize ofa cube Clx C2x... x Cn isgiven by \C}\ x \C2\ x ... x \Cn\. Avertex

of the space can also be defined as a cube of size 1.

Null Cube: A null cube is a cube of size 0. The null cube space is the subspace consisting of all the null cubes of a given

space. As a result of the way cubes have been defined, it is observed that there are (4n-3n)null cubes.

Implicant: An implicant ofan incompletely specified function (f,d,r) is a cube C, such that, no vertex contained in this

cube belongs to the offset r. The definition for implicant containment is identical to cube containment.

PrimeImplicant: Aprimeimplicant is an implicantwhich is not contained in any other implicantof the function.

Cofactors: The cofactor ofa function/with respect toa literal (x, i), i.e. variable x inthe ith value, is the function
obtainedby evaluating the function/on the planex-i. Conventionally the cofactorof/with respect to (x,l) is writtenas

/, andthecofactor of f with respect to (x,0) is written as/j.

Shannon Expansion: A function may be written in terms of its cofactors with respect to a variable x. This is written as

f = xf- + xfx.This leads to the concept of a Shannontree. If we recursively compute the value of the function using the

aboveexpression and computing the cofactorwithrespectto a newvariablein the supportof the function at each stageof

the recursion and terminate when we reach the condition that the remaining function is either 0 or 1 in value, we get an

expanded function. If we represent each level in this recursion by a unique node with the left and right branches of this

node being representing the two cofactors, then the resulting structure becomes a tree and is called a Shannon tree. Each

level of recursion represents a new level of the tree.

BinaryDecision Diagram: [4] The binarydecisiondiagramfor aJunction is thefoldedform oftheShannon treefor the

function.Afunctiongraphis a rooteddirected graphwith a vertex set Vcontaining two types ofvertices; a non terminal

vertexv has as attributes an index (v)€ {0, 1... n - 1} and two children low(v) and high(v)belonging toV.A terminal

vertex has as attribute a value value (v) e {0,1} . Afunction graphis reduced ifit containsno vertexv with

low (v) = high (v) and no distinctverticesv and v' such that thesubgraphs rootedat them are isomorphic^. BDD,
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alsocalleda ROBDD is then definedas a reduced function graph. This treehas labelled internal nodescorresponding to

the variable with respect to whom the functionis expandedat the given level.

figure 1. BppforfwnictionF

This representation is a canonical form. The rootnodecorresponds to the variable withrespect to whomwe cofactors and

theleft branch corresponds to BDDforthecofactor of the function withrespect to x andtheright branch corresponds to

the BDD for the cofactor of the function with respect to x The example in Figure 1 illustrates the BDD forthe func

tion/? = y0'Jl+y0-y2+y'i-y2

Covering Table: The covering table Mf of function/, represents the problem of finding the smallest prime irredundant
coverof the function. The rowsof this table correspond to the minterms andthecolumns of the table correspond to the

primes. Mf (i,j) = 1 if minterm i iscontained in aprime j and 0 otherwise. A column cover of this table isaset of col
umns of this table such that eachrow hasa' 1' entry in at leastone of the columns of the cover.A column cover for this

table corresponds to a prime cover for the function it represents. We are looking for a minimum prime cover forour func

tion, this corresponds to minimum column cover for this table.
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RowDominance: A row (minterm) is said to dominate another row (minterm) iff any cover which covers the first row,

automatically covers the second row. This occurs when all the primes containing the first minterm (row) also contain the

second minterm (row) and there is a prime containing the second minterm which does not contain the first

Column Dominance: A column (prime) is said to dominate another column (prime) iff any cover which contains the first

column automatically contains the second column. This occurs when all the minterms contained in the second prime (col

umn) are also contained in the first prime (column) and there exists a minterm (row entry =1) which is contained in the

firstprime (column)but not in the second prime (column).

Quantification: There are two different quantifiers, 3x and Vjc. The first quantifier is the existential quantifier. If there

exists a vertex x such that some condition f(x) is 1, this is shown as 3jc/(jc) = 1. The second quantifier is called the "for

all" quantifier. If for all variables x some condition f(x) is 1, this is written as Vjc/(jc) = 1. The relation between these

operators is expressed as VjcF(jc) <=» 3x (F (jc) ) and 3xF (jc) <=» VjcF (jc) . Thus each quantifier may be written in terms

of the other quantifier.

The Smoothing operator: The smoothing operator Sx is given by Sx (f) = fx +fx. The smoothing operatordistributes

over variable sets, thus Sxy = SxSy = Sy-Sx = Syx. In addition itcan be shown that [2] 3jcF (x, y) = S F(x, y)

The Consensus operator: The consensus operator Cx is givenby Cx if) = /- fx. This operatortoo, distributesover a set

ofvariables, i.e. Cxy = CxCy = CyCx = Cyx. In addition we have the relation that VjcF (jc, v) = C^H_xf(x,y)

The Quine-McCluskey procedure

The Quine-McCluskey tabular minimization procedure follows the following steps.

1. Find all the prime implicants of the function.

2. Construct the covering table. The rows in the covering table correspond to minterms of the onset of the function, the

columns of the covering table correspond to the primes computed in step 1. An entry in the table is 1 if the corresponding

row minterm is contained in the its column prime, otherwise the entry is 0. Our problem is to find a minimum column

cover for all the rows. The essential prime are those columns one of whose row entries is not contained in any other col

umn.

3. Determine the dominated rows and remove them from the table, next determine the dominated columns and remove

them from the covering table

4. Repeat the process until no reduction is possible. When no more reduction is possible the remaining problem is called

the cyclic core.There are no dominated rows or dominated columns in the cyclic core.
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5. At thispoint finda minimum column cover for thecycliccore.

The main bottlenecks here arethe problems ofprime explosion. The number ofprimes for n input variables can poten
tially beaslarge as 3"//i and hence for larger examples the number ofprimes become too large toenumerate, even when
the size ofthe cyclic core is small. Fore.g. the Espresso-exact algorithm fails onthe example circuit "mish" [6] which has
10 primes but a cycliccore withjust 82 primes.

The extended space and the implicant characteristic

Our goal is torepresent all the cubes over fl"asterms insome space and the Quine-McCluskey algorithm asa series of
propositionalformulae on that space.

We must note that functions work overpoints but cubes are collectionsofpoints. The key objective istomap cubes onto a
space inwhich we can perform minimization algorithms by operations on functions which implicitly represent the setof
implicants,minterms, primes etc.

Consider an arbitrary cube C= Cj xC2 x... x CB. Each C, is an arbitrary subset of{0,1}. Since there are 4subsets, it
follows there are 4n vertices ofany extended space; i.e. the extended space ofBn isB2n. This differs from the conventional
practise ofassuming 3" products intheoriginal space. The difference comes from the way we have defined a cube which
leads to (4n - 3") null cubes.

Before we begin let us clarify the notation used. We will represent the variables in the original space as Yt and the vari
ables in the new extended space as XiJt zijt uij7 where 1^ i<nand ; e {0,1}

Assuming allvariables are binary valued inthe original space. We choose the following extended space, using 2n vari
ables:

Definition©(C): Consider anycube C1 x C2 x... x Cn in theoriginal space. The corresponding vertex In the
hlgherorderspace isgiven by0(C) = (x10-xn •... -xnl), where xi} =0 ifje Cjmdxy = 1 ff/e C„e.g.The
cube Y2 •y3 over S3 is represented as the vertex (1,1,1,0,0,1) =X10 •Xn •X20 •X21 •X30 •X31 over B6.

Theorem 1.1: The mapping 0 is 1-1 for all non null cubes.

Proof: Assume a contradiction.

Let us assume there exists acube Cx x C2 x... x C„which maps to atleast 2points. Let us call these 2points a and b.
Consider some variable Xti in which aand b differ.
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Xi} = 0 for a.
Xi} = 1 forb.

(Xij = 0)^(jiCi) (1)

(^=l)»0'eC,.) (2)

For any cube C, x C2x... x Cn each C, is a unique set C;£ {0,1} .

Hence Equation 1 and Equation 2 lead to a contradiction.

This implies that the mapping is unique for all non-nullpoints.

This space is also known as thepositional notation and is commonlyused for representingmulti-valued functions.To

understand this refer to Figure. 2 of the extended space,also called the codedcubespace(ccs). Every non null cube has a

uniquerepresentation in this space.The figureshowsthe mappingof points in a 2-dimensionalspace to the4-dimensional

extended space. In the figure shown the mintermPo^i translates to the point XooXoiX^^^and the cube retranslates to
the point XOQX01Xi0Xn in the extendedspace.

The variablesz and u are used to provide temporary intermediate storage for computations.

Definition %F (x) We define the characteristic of function Fin the extended space %F as amapping from B2n to B
such that

XF(x) = l«*x = {0(C)| (Ce cube(F))} (3)

The characteristicfunction of F in the extendedspace is also called the implicant characteristic.

Theorem: 1.2: The characteristic function of F in the extended space satisfies the following property.

XFG = 'f'XG (4)

Proof:

XF(x) = 1iffx = {©(C)| (Ce cube(F))}.

OtFG(x) = l)«

x = {0(C)| (Ce cube (F)) and(Ce cube(G))}

(5)

o (x= {0(C)| (Ce cube(G))})
and

x= {0(C)I (Ce cube(F))} (6)
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<=> (*e XF) •and* (xe x°)

This implies that ^G = %F •%C

FIGURE 2. The Coded Cube Space

k00

Theorem: 1.3: If every prime of F+G is a prime of For a prime of G then the characteristic functions of in the
extended space satisfies the following property.

. (F + G) F . G
X = X +X

(7)

(8)
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Proof:

(XF+G(x)=l)<*

XF(x) = 1iffx = {0(C)| (Ce cube(F))}. (9)

x= {0(C)| (Ce cube (F)) or (Ce cube (G))} (10)

«=>(x= {0(C)| (Ce cube(G))})
or

x= {0(C)| (Ce cufee(F))} (11)

Equation 11 comes asa results of ourstatement thatevery prime of F+G is eithera primes of For a primeofG, if some

cubeis formed by combining cubesthatare individually either in ForG, men it follows thatthere mustbe a larger prime

coveringthis cube which is not contained in eitherF orG andthiscontradicts ourassumption.

<=> (xe%F) *or* (xexG) (12)

This implies that x(f+G) = yt +XC

Key Theorem of implicant characteristic
Theorem 1.4:The characteristic of a function Fis given by

F. F

Proof:

The above is equivalent to

F- - F
XF = (X,•o +X,',)(Xil +3Cr,) (14)

We will prove this by induction. Let us consider the base case; i.e.

X° = 0 (15)

X1 = 1 (16)

Consider the casewhen F is a function of a singlevariable. The possibilities forthe function F arethe following.

F = Yt this gives %F =^io*n = Xi0Xn +Xi0Xn = Xi0 since the term %F =Xl0Xn is anull cube. (EQ 7,8) give the
same answer

F = P, this gives %F = Xi0Xn = Xi0Xn +Xi0Xa =Xn since the term %F = Xi0Xais anull cube.(EQ 7,8) give the
same answer.
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F=0 and F=l reduce to the base case.

The function F can be written as

F= YrFy + YrF-+FyrF
Yi • ri y,

which factors as

F= (Yi + FY)(Yi + F-)
< 'i

hencetranslating the function to the extendedspace andusingtheorem 1.2we have

F (Yi+F.) (Y,+Fr)
X =x -x

(17)

(18)

(19)

Using the fact that(Y,- andFy-) and (y,- and Fyj) have nocubes in common (excluding thenullcube) and theorem 1.3 we
have the following.

Hence proved

Technical Functions over the CCS

The Null Cube space (0 (jc) )
Theorem 1.5: The null cube set is given by

Proof:

10

xF = (xYi+xFii)-(x?i+xFr')
_ F- _ F

xF = (Xio+xri)(Xn+xr')

<J)(X) =^Xl0Xll

xi0 = 0 =» 0 e c4.

Xn = 0 => 1 6 c,

(Oe CJandde Q =» C£

C, = <J> => C = (|>

(20)

(21)

(22)

(23)

(24)

(25)

(26)
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Adding the nullcube to anexpression does not addany vertices to the function as dienullcubescontain no vertices. How

ever adding thenull cube toanyfunction in thisextended space makes the function monotonically decreasing inthisspace

(Theorem 1.6) and hence gives it special properties which willbeexploited in order tocalculate theprimes.

Theorem 1.6: For any function F, %F +<{> form amonotonically decreasing function in the extended space.

Proof:

Consider anycubeof the form Xl0 •Xa •A

Xi0 •Xxl is a member of thenullspace. Thus Xi0 •Xn •A = Xi0 •Xfl •A+ Xl0 •Xn butwe know Xi0 •XnA c Xl0 •Xn.

Thus we have

Xio'%n*A = Xio •Xjj •A +X,o •XnA + X,o •Xn

Which is equal to Xi0A+ Xi0 •Xn

• Thus Xi0A is a cover for the cube.

It canbe similarly argued for anycubeof the form Xl0 •XnA

• XnA is a cover for this cube

Consider any cube of the form

Xi0'Xn.A (27)

Existenceof this expression implies that Xj occursin both its complemented andits non-complemented form in the origi

nal space. This implies that in the extended space both the cubes.

Xi0-Xn-A (28)

Xi0-XirA (29)

occur. Hence if thenullcubeis added to theseexpressions boththe Xl0 andthe Xa dependences disappear.

• Thus A is a cover for this cube.

We can repeatthis sequence of operationson the cube A to remove all cubes which have a variablepresentin the non-

complemented form and replace them with cubes in the complemented form alone.

It follows as a result, that each cube may be replacedby anothercube which depends only on the complemented literals.

11
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Henceall cubesof the function maybe replaced by ones which haveno variable in its non-complemented form. Hence

there is a cover of thisfunction in the extended space which hasvariables only complemented variables [2].This implies

that the function is monotonically decreasingin the extendedspace.

This is known as the Unateness theorem.

The VertexFunction (\> (x))

Thevertex function is therepresentation in thenew space ofall thevertices of theoldspace Bn.

Theorem1.7: The vertices of the original function space inthe newextended space aregivenby

u(X) =JJ (Xl0 •Xn +Xi0 •X,,) (30)
i

PjBOf: The vertices of a functionare those cubes C such that IC| = 1. If |CI = 1 we must have the condition that Vi

iq = i.

|Cf| = 1«=>C,= {0}.or.C,. = {1} (31)

If |C4.| = 1 then if; e C, <=> 1-; e C,-

Thus inthe extended space for a given i,the two C,'sofsize 1are Xi0 •Xa and X-0 •Xn.Thus Equation 30isobtained by
taking theproductof all such Cx.

The Minterm Image and the Prime Image

Minterm (n(*))

The minterms for the function inthe extended space, are members of the vertex space which liein the onset of the func-
tion.Thus fora term to bea minterm it must satisfy

XFW = 1 (32)

i.e. it belongs to theonset of thefunction andit must belong to thevertex function.

v(X) = 1. (33)

This gives

\i(X) =xF(X)v(X) (34)

12
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The Primes (k (x))

In order to calculatethe primes of the function the following theorems are required. Wealso need to understand the con

ceptof a maximum point; a maximum point is a pointhaving a maximal numberof variables in me non-complemented

phase.

Definition: x is a maximal point of the function F iff

Vz(3/(zeF),zi>x/). (35)

Lemma 1.1: letC", & becubes of Bn, then

(fed<=>0(C") <0(C*) (36)

Proof:

C°= C"xC2X...xCn°

0(C°) <0(CP)

XCfc^d (37)

3dJ (j e Cf) (j e C")) and3k (k g A (k e C") V/> (38)

=>3xiy((x, =0)|.we(ca)^(x,= l)ifle(cP)) (39)

and =>Vx,((^-l)||i9(^=>(^=l) ) (40)

if©(Ca) <0(C^) (41)

^^W^^W)* (42)

and =>Vxl7 ((x,, = 1) ^ => (xi; = 1) . ) (43)

3(iJ(/e Cf) (/« C°))and3*(** cj) (ike C°)

Cac=CP

13
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hence proved

Theorem 1.8: Any cube pisa prime of Fiff0 (p) isa maximum point of %F

Proof: If x and z are cubes of a function

(xa2)=M0(x)>0(z)) (44)

(p e Prime (F)) <=* 3z (z £ F) (z 2 x) (45)

From lemma 1.1 we have the following.

3z(zgF)(z2Jc) <=>3z(0(z)>0(x)). (46)

The maximal points are those points such that 3z (0 (z) £ 0 (x)).

Hence theprimes of thefunction are therepresented bythemaximal points in theextended space.

Theorem 1.9: Let G be any function, G monotonicallydecreasing in x, then

Max(Gx) £ Max(G£) (47)

Roof:

xAeG=>x,AeG (48)

where A is a cube. Thus

peGx=*peG-x (49)

wherep is a cube. This implies

Max(Gx) QMaxiGJ (50)

Lemma1.2: LetG be any function, G monotonically decreasing, the maximum pointsof Gare given by

Max(G) = x •Max(Gx) + x •MaxiG;) Gx (51)

Proof:

I)

14
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Max(G) 2 x •Max(Gx) + x •Max(G5)Gx (52)

a) (/J€ x-Max(Gx)) =>either(pe Max(G)) p = xs
or 3q((q = xr),r>s,qe Gx)

=> (re Gx),r>s =$s£ Max(Gx)
a contradiction.

b)pe x • Gx •A/ax(G^) => eif/ier (p e Max(G)) p = xr
or3a(a>p)

1) eMer(a = xj), (j>r),(i6 G5)
this contradicts the assumption that r e Max (G-)

2) (a = x*),(*>r)

(je Gx) => (se G-) asG^cGjj

(s>r) => (r« MaxiG^) a contradiction

(s = r) => (re G_) a contradiction

=>Max(G) 2x• Afax(G;c) + x• MaxiG;)Gx (53)

ID

Max(G) ex• Max(Gx) +x• MaxiGJGx (54)

a) p e Max (G) =>eif Zier (p = xs)

=>either(se Max(Gx))or(3r(re Gx) (r>j))

=>xr>p =>/>gA/ax(GJ[)

a contradiction

b) (p = xj)=>(reGi)
if (re Gx) => (x<?e G),(xr>p) we get a contradiction: (p e Max(G))

if (rg Max(G-)) => (3j(f>r),(j€ Gx)) => (xj>p),(xje G)
we get a contradiction (p g Max (G))

=>Max(G) cx• Max(Gx) +x• Max^G^Gx (55)

from Equations 54 and 55 the lemma is proved.

lemma 1.3: The maximum points of G are also given by

Max (G) = x •Max (Gx) + x •Max (G- •Gx) (56)

Proof:
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Forming & Solving the Covering Problem

I) Max(Gx-Gx) eMax(Gx) •Gx

if 3p(xp eG)(pe Max(G-• Gx)),(p g Max(G-) •GJ

then (3a(a = x/)(fe GiGx),(t>p)) and3a (a = xr) (re G-) (/g Gx),(f>p)

this is a contradiction.

II) Max(G^ •Gx) 2 Max(Gx-) •Gx

if3p(xpe G) (pgMax(GrGx)),(peMax(Gx-) -GJ

then since Gx c G£ and Max(G-) e G5

we have the statement 3a (a = xr) (r e Max(GiGx)),(r>p)

=> (re Gx) => (rg Gx) => (rg Max(G£) •G*)

a contradiction,

using lemmal.2 andtheabove, lemma 1.3 isproved.

The primes arecalculated byconsidering F+D, namely theonset plus the don'tcare setof the function.

nF+D{x) =Mox(xF+/)) (57)

Forming & Solving the Covering Problem

The covering table isa table representing the problem offinding the minimal prime irredundant cover ofthe function.
Therows of thistablecorrespond to theminterms of theonset of thefunction to be minimized andthecolumns of the

table correspond to theprimes of theonsetplusthedon'tcaresetof thefunction. Theentries of thetable are 1 if a min

term iscontained ina prime and 0 otherwise. We are looking for a minimum column cover for this table.

Having calculated the primes and the minterms ofthe function, we now formulate the covering problem asfollows.

1. Formconditions for minterm dominance, a (x, z)
2. Remove dominated minterms.

3. Form conditions forprimedominancep (x, z)
4. Remove dominated primes

16



Forming & Solving the Covering Problem

5. Repeat steps 1 - 4 until no change is observed.

6. Solve the reduced covering problem.

It mustbe specified that in the case of completely specified functions, at the start of this processno prime willdominate

another.However after the first round of removal of dominated minterms some primes begin to dominate each other.

Minterm Dominance (a fx. z))

A mintermx is said to dominate another minterm z, (a (x, z) = 1), if every prime coveringx also covers z and there

exists at least one prime whichcovers z but does not coverx. In such a case a cover involvingx automaticallycovers z.

Figure 3 illustrates this case. Whenx and z are covered by the same set of primes, we have the condition for co-domi

nance. If x and z co-dominate we may pick just one of the two as a representative term. We formulate the dominance con

dition as the converse of the condition for non-dominance, i.e the converseof the condition that there exists a prime

covering x but not covering z.

T| (x,z) = \i(x) -\l(z)3u(k(u) -M2Z«2X)

Hence we have the complete condition for minterm dominance as

a (x, z) = T| (x, z) • (T| (z, x) + x-*)

(58)

(59)

where x-iz is the tie-breakerwhose purpose is to arbitrarilychoose one representativeterm when 2 terms are co-domina-

tors. Co-domination occurs when two minterms are covered by exacdy the same set of primes, as shown in Figure 4.

Weremoveall mintermswhichare dominated at any stageof the reduction. Alternately wekeep all the mintermswhich

are not dominated at any stage of the reduction. In order to remove dominated minterms we use the condition:

Hn(x) = 3za(z,x)|LiB_1(x)

FIGURE 3. minterm x dominates minterm z

X

z

1 1

1 1 1 1

(60)
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Forming & Solving the Covering Problem

Equation 60 is equivalent to step (3) of the Quine-McCluskey procedure. This is the step which removes all dominated

rows (i.e. minterms).

FIGURE 4. co-dominators

X 1 1 1 1

z 1 1 1 1

Prime Dominance (|5 (x,z))

In order for a primex to dominate anotherprimez,all minterms contained in z mustbe contained inx, but not viceversa.

Alternately we mayformulate thisas theconverse of thecondition thatthere exists a minterm contained inz butnot inx,

insuch a case x does notdominate z.Thus a cover involving x would automatically cover zand hence we may remove z
from our covering problem. The condition is

T(X,Z) = JC(X)7C(Z)3U(|1(U) X2"'Z2W)

Similarto minterm dominance thecomplete formulation follows as:

p(x,z) =T(x,z)- (Y(z,x)+x-^z)

Figure 5. shows a case of prime dominance

(61)

(62)

Thetie-breaker is identical to theprevious case. Co-domination occurs when two primes cover exactly diesame setof

minterms at some stage of thereduction of thecovering problem. We need topick only oneof the two co-dominators asa

representative term. The tie-breaker isthe condition for arbitrarily choosing one of two co-dominators, asshown inFigure
6.

18



Forming &Solving the Covering Problem

FIGURE 5. prime x dominates prime z

1 1

1 1

1

1 1
X z

We remove all primeswhich aredominatedby some otherprime.Alternatelywe keep all primeswhich arenot domi

nated. In order to remove all dominated primes we use the following expression.

nn(x) = 3zp(z,x) -Tin_xx

FIGURE 6. Prime co-dominators

(63)

1 1

1 1

1 1
X z
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Handling Multiple Output Functions

Thisis equivalent tostep3 of dieQuine-McCluskey algorithm. Fora completely specified function before the first passof

reduction, neither prime dominance nor co-dominance occur, however after removal of dominated rows or columns these

conditions may come into play.

After theiterative removal of dominated primes andminterms, weareleftwith a reduced covering problem, which needs
to be solved.

Theresultof thisstepare a set of rowsand columns thatarenotdominated byanyotherrowor column. Theserowsand

columns form the cycliccoreof the problem.

Handling Multiple Output Functions

Inorder tohandle multiple output functions, we need toadd additional bits ofdata corresponding tothe output part. We
need one additional bitofdata for each multiple output. Thus inthe extended space a function ofminputs and noutputs is
represented by 2m+n bits. The occurrence ofthe/* output bit implies that the/* output part exists for the given input.
This leads tocomplete representation in the extended space asshown inEquation 64.

XF =Yl(XoJ^>xFj) (64)
;'

where Fj is the/A output and X0j is the variable in the extended space which represents it. The above equation becomes

XF =JJ(Xoj+XFi) (65)
j

The vertex space and the null cube need to modified in order to take into account this output part. Apoint isa member of
the null space iffit isa null inits input orit isa null inits output part.lt isan output null iffall the output variables are
turned off, i.e. they are all intheir complemented phase. This would imply that no output part (function) ispresent. Hence
the null cube is given by

™final ~ "output ™input (66)

where the null cube for the input part isas previously calculated and the null cube for the output part isgiven by

♦ =JJXoj (67)
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BDD Representation and Implementation of functions

Thenew vertexfunction now includes both an input partand anoutput part. Thepoint is a point in thevertex function if it

isa point intheinput vertex and theoutput vertex. It isa point inthe output vertexfunction iffexacdy oneoutput variable
is turned on. This is given by

^final = "^output' V)input (68)

where the inputvertex space is as calculated and the outputvertex spaceis givenby

v=sxn*" <69>

The remaining computations remain identical.

BDD Representation and Implementation offunctions

All the functionsdiscussed in this paper are handledas BDD's. The BDD for the onset plus the don't care set and for the
function aloneare usedas input.Thecharacteristic BDDin theextended spaceis createdby writing a recursive routine
which evaluates the BDDin termsof the BDDnodeand theBDD'sfor the characteristic for the leftbranchand the right
branchat each BDDnode.A similartechnique is usedforprimecomputations. Thus at each stage the BDDof the results
is the merged result of the BDD's for the left and right branches.

According toBryant's analysis [4], the size of the BDD ofthe function fx • (op) f2 is bounded by \fx\ • [/"2| where | |
representsthe size of the BDD. The operator could be any logicaloperator. It can be shown by analysis that the sizes of

thenull space and vertexspace BDD's are essentially linearin the numberof variables, thus if the extendedspacerepre

sentation is of manageable size, it follows that so are the prime and minterm BDD's.

In order to implement the mappinginto the extended space,the original BDDis traversedrecursively, at each leveldie

BDDof the extended function is written as a combination of the BDD's of the extended representation of the left branch

and the right branch. This is a recursive formulation for the extended BDD in the form

extend (J) = (Xi0 + extend (/-)) (Xn + extend (fx))

This recursion terminates when the remainingBDD is eithera "0" BDD or a "1" BDD. The pseudo-codefor the calcula

tion of the extended BDD is as follows:

extendif)

if (look_up(f,value)) return value

else if (terminal_yalue(f,value)) return value

else

Yi= top_variable(f)
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BDD Representation and Implementation of functions

fjiex = extend(left_branch(f))

f_ex = extend(right_branch(f))

return ((XiQ+f_ex)(xu+fjiex))

Inorderto make thiscalculation moreefficient a memoization is used. This is thelook_up routine used in thecode. At

each node first a check is made as to whether the node has been traversed; in that event it would have been stored in a

look_up table anda lookup of thetable yields theanswer. In theother case it is computed andthecomputed BDD is

inserted into thetable using theBDD node as thekey toinsert theBDD. This method of hashing toavoid further compu

tation is also used fordieprime computation routine. Each node needs tobecomputed justonce. This technique relies
heavily on the fact that a BDD is a canonicalform and asa result each node inthe BDD is unique[4J.

In order to do primecomputation we use the equation

Max (G) = x•Max (Gx) +x•Max (G5 •G~x) (70)

This formulation isrecursive and based oncomputing the result for the left and right branches of the BDD first Again a
hash table is used to hash thevalue of theresult BDD with thenode askey.

As a result thepseudo-code for this computation becomes:

Max(G)

if lookjip(G,value) return value

else if {terminalj/alue{f,value)) return value
else

xij= top_variable(G)

maxjix = Max((left_branch(G)) andnot(right_branch(G))
maxj. = Max(right_branch(G))

return(bdd_ite(Xij, max_x, maxjix))

We traverse the BDD node by node. Ateach point we first check if the max point for a node has already been calculated,
in such an event we merely perform a lookup ofthe hash table. Ifhowever ithas not been computed it iscomputed using
the above equation and then the value isstored inthe hash table. This ensures that we compute the "Max" BDD ateach
node exacdy once.

The Quine-McCluskey algorithm uses the BDD AND,OR and SMOOTH operators toimplement It isa straightforward
implementation which essentially uses Equation 58-63 to form and segregate the minterm and prime dominators by using
BDD AND for all logical ANDs, BDD OR for all logical ORs and BDD-SMOOTH for all the existential quantifiers, in
theaforementioned equations. Thus thepseudo-code for the algorithm becomes:

Quine-McCluskey-reduction(primes,minterm)
While further reduction possible

minterms =bdd_and(minterms,bddjiot(minterms_dominated(minterm,primes)))
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Ordering heuristics

primes = bddjind(primes,bdd_not(primes_dominated(minterm,primes)))

primesjdominatedfminterms,primes)

gammaJ=bMjot(bddjmd^moothjvithjij>ars(mintermsjnjij>arsMj>ar^
gammaxdomz = bddjxnd(primes_in_x_yars,primes inj_vars,gamma_l)
gamma_zjdomjc = bdd_swapjc_varsj_vars(gammajcjiom_z)

beta= bddjind(gamma_domj, bddj>r(bddjiot(gamma_zjhmjc), x_varsjiej_vars))
return(beta)

mintermsjiominated(minterms,primes)

etaJ=bddjiot(bddjind_smoothjvithjijfars(mintermsJnjijfarsMjfarsJnjcj^

eta_x_dom_z = bddjmd(minterms_injc_vars,mintermsjnj_vars,eta_l)

etajjiom_x - bdd_swapjc_vars_zjfars(etajcjiom_z)

alpha = bddjind(etajiom_z, bddj>r(bddjiot(etajjiomjc), x_varsjie_z_vars))

return(alpha)

Ordering heuristics

Malik's "level" heuristics were originally used to order the variables to build the BDD's in the original space. In the

extended space the new input variables are ordered according to the order of the corresponding variables in the original

space. The x,u and z variables are interleaved. The output variables were ordered first. Thus the ordering in the extended

space puts the output variables first and then the input variables. All x,u and z variables are interleaved.

After further experimentation we found that a much better ordering was achieved by ordering the support of each output

part according to the aforementioned level heuristics and ordering each support set by its size. The output variables were

ordered after their supports. This is essentially an application of [9] for ordering combinatorial circuits. All x,u and z vari

ables were again interleaved.

Results

The Following table gives the results of the above method. There are many aspects of the problem which require further

development. We need to find a means of removing the quantifiers from the expressions for prime and minterm domi

nance as these are the bottlenecks of the problem.

We found that the method worked well in some examples, giving an answer equal to the minimum obtained from

Espresso-exact, however in the larger examples it failed at die quantifiers in Equations 58-63. Currendy we are working
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Results

on an expression for domination relationships whicheliminates the needfor quantifiers. Howeveras a result of our previ

ousefforts, we havebeenable to solve a fewof the20 hard espresso problems; namely theexamples misj andmisg. We

alsoable to build the primeand minterm BDD's fora largefraction of theremainder, namely ex4,exlOlO, ibmjbp, misg,

misj, mish, shiftjoar.pla,ti,tsl0x2dn andxparc. Weare confident that furtherdevelopment will solveall of the 20 hard

problems.

Theresults tablefor die"Benchmark" examples are given in theappendix.However table1 & 2 showthe behavior on a

few example circuits.We observed that the problem size isvery much a function of the ordering technique used and
change in ourordering strategy cancause a phenomenal change in thesizeof theproblem.In addition weneedto formu
latean implicit meansto solvethereduced covering problem obtained.

TABLE1. Results on the 20 hard espresso problems

Name

Input/
Output

Nodes in

extended

BDD(F)
Size of

Prime BDD

Size of

Minterm

BDD Primes

Time to

compute
Minterms (in sec.)

ex4*- 128/28 43881 4238 3992 1.8348E14 computed 61.5

exl010*"a 10/10 12662 40970 2655 25888 1471 4540.6

ibm*" 48/17 9507 16427 4975 1047948736 1.5523729E15 134.2

jbp*- 36/57 309019 80699 26461 2496809 8.0095268E11 2755.3

misg*' 56/23 350 770 889 6499491840 1.054609E18 3.4

mish** 94/43 14109 503 605 139103 2.561545E11 1.3

misj*" 35/14 364 8784 6597 1.1243753E15 4.1494202E29 49.1

shift* 19/16 7117 22831 6814 165133 4194304 383.2

soar.pla** 83/94 45302 38797 7898 3.3047729E14 1.7458651E26 8223

ti** 47/72 143009 69678 28078 836287 4.136440E14 1923.3

tslO** 22/16 88803 52143 52251 524280 4194304 1084.9

x2dn** 82/56 18908 18393 7563 1.1488762E16 8.849739E25 194.1

xparc** 41/73

iers to one

232552

of espresso

55839 11665 15039 1.0865220E13 1384.8

a. ** rel 's 20 hard problems

TABLE 2.Results including reduction on some sample examples

Name

clpl

Input/
Output

11/5

Nodes in

extended

BDD

41

Size of

Prime

BDD

70

Size of

Minter

mBDD

89

Number of

Primes

143

Number of

Minterms

6713

Primes

After

Reducing

20

Minterms
after

Reducing

20

Primes

from

espresso

20

Total

Time

' (sec)

1.9
cordic 23/2 336 310 224 1754 8634368 1712 1712 914 22.1

e64 65/65 321 511 577 65 36893488E20 65 65 65 24.0

misexl 8/7 136 207 162 28 548 12 12 12 12.0

misg*" 56/23 350 770 889 6499491840 1.054609E18 69 69 w 102.1
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TABLE 2. Results including reduction on some sample examples

Name

misj**

Input/
Output

35/14

Nodes in

extended

BDD

364

Size of

Prime

BDD

503

Size of

Minter

mBDD

605

Number of

Primes

139103

Number of

Minterms

2.561545E11

Primes

After

Reducing

35

Minterms

after

Reducing

35

Primes

from

espresso

Total

Time

i (sec)

39.2

newapla 12/10 264 312 239 113 10421 17 17 17 34.9

newcpla2 7/10 301 282 197 38 282 19 19 19 28.3

rd84 8/4 247 228 125 633 411 255 255 255 6.8

t3 12/8 594 429 282 233 167920 33 33 33 86.5

vg2 25/8 1110 572 477 1188 61570752 no 110 110 187.9
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Appendix

Table of Results

Appendix

The following tablegives the calculated numberof primesand minterms, primesand minterms after reduction and the

number of primes in the minimumby espresso.

TABLE 3. Nodes in extended space representation

Nodes in Nodes in

extended extended

Name Inputs Outputs BDD(F+D) BDD(F)

al2 16 47 1681 1681

alcom 15 38 802 802

alul 12 8 543 543

alu2 10 8 3356 5834

alu3 10 8 4414 7422

amd 14 24 5963 5963

apla 10 12 2271 1765

blO 15 11 39516 34136

bll 8 31 808 857

M2 15 9 830 830

b2 16 17 22125 22125

b3 32 20 42174 32075

b4 33 23 93489 62278

b7 8 31 808 857

b9 16 5 2250 2250

bcO 26 11 1923822 1923822

bca 26 46 23508 23118

bcb 26 39 19870 16645

bcc 26 45 15904 16562

bed 26 38 7156 7762

brl 12 8 738 738

br2 12 8 558 558

chkn 29 7 46466 46466

clpl 11 5 41 41

cps 24 109 56447 56447

clip 9 5 4435 4435

conl 7 2 79 79

cordic 23 2 336 336

del 4 7 129 129

dc2 8 7 658 658

dekoder 4 7 91 125

dkl7 10 11 1005 813

dk27 9 9 300 246

dk48 15 17 1303 1172
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Appendix

TABLE 3. Nodes in extended space representation

Name

newapla2

Inputs

6

Nodes in

extended

Outputs BDD(F+D)

7 99

Nodes in
extended

BDD(F)

99

newbyte 5 8 85 85

newcond 11 2 299 299

newcplal 9 16 1245 1245

newcpla2 7 10 301 301

newcwp 4 5 54 54

newill 8 1 60 60

newtag 8 1 28 28

newtpla 15 5 339 339

newtplal 10 2 135 135

newtpla2 10 4 306 306

newxcplal 9 23 2192 2192

p82 5 14 608 608

popejom 6 48 11291 11291

proml 9 40 101324 101324

prom2 9 21 53547 53547

rd53 5 3 80 80

rd73 7 3 161 161

rd84 8 4 247 247

rise 8 31 941 941

ryy6 16 1 99 99

sex 9 14 560 560

opa 17 69 11477 11477

shift** 19 16 7117 7117

soar.pla** 83 94 45302 45302

spla 16 23 53285 53364

sqn 7 3 423 423

tl 21 23 13283 13283

a 17 16 1433 1344

t3 12 8 594 594

t4 12 8 1767 1184

ti*- 47 72 143009 143009

table3 14 14 42637 42637

table5 17 15 73511 73511

tms 8 16 893 893

tslOw 22 16 88803 88803

vg2 25 8 1110 1110

vtxl 27 6 4619 4619

wim 4 7 103 134

xldn 27 6 4619 4619

xor5 5 1 31 31

x2dn** 82 56 18908 18908
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TABLE 3. Nodes in extended space representation

Nodes in Nodes in

extended extended

Name Inputs Outputs BDD(F+D) BDD(F)

x9dn 27 7 3090 3090

xparc*" 41 73 232552 232552

5xpl 7 10 381 381

9sym 9 1 178 178

z9sym 9 1 178 178

a. *" refers to one of espresso's 20 hard problems

TABLE 4. Number of Primes and Minterms

Time to

Name Primes Minterms compute

5xpl 390 576 1.1

9sym 1680 420 0.7

Z9sym 1680 420 1.0

al2 9179 191296 5.7

alcom 4657 88064 2.8

alul 780 15872 1.2

alu2 434 7422 8.3

alu3 540 3903 10.3

alu4 7145 62256 162.4

amd 457 35072 21.8

apexl 6750 1.6482007E14 1704.2

apex2 13403 1.6481762E11 747.2

apex3 2700 5.8194951E16 4041.1

apex4 2336 2770 106.7

apla 201 157 6.3

blO 938 72912 60.8

bll 44 836 3.7

bl2 1490 163072 2.7

b2 928 328488 97.5

b3 3056 1.3076E10 194.8

b4 6455 4.9942E10 202.8

b7 44 836 3.7

b9 3002 133704 5.1

bcO 6596 284933120 2331.2

bca 305 2778112 117.7

bcb 255 2417664 85.7

bee 237 2477056 88.2

bed 172 1699840 41.4

brl 29 114 1.5

br2 27 125 1.3
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TABLE 4. Number of Primes and Minterms

Time to
Name Primes Minterms compute

bw 108 281 7.6

chkn 671 788036864 41.7

conl 24 156 0.2

cordic 1754 8634368 3.5

clpl 143 6713 0.2

cps 2487 124362704 287.4

del 22 47 0.3

dc2 173 442 1.3

dekoder 26 49 0.5

dkl7 111 61 3.6

dk27 82 20 1.5

dk48 157 42 9.9

duke2 1044 8464768 20.9

e64 65 36893488E20 11.3

exlOlO•• 25888 1471 4540.6

ex4** 1.8348E14 computed 61.5

ex5 2532 7620 1460.9

ex7 3002 133704 4.7

exp 238 297 13.0

exps 852 1623 65.5

gary 706 84196 28.8

ibm** 1047948736 1.5523729E15 134.2

inO 706 84196 36.0

in2 666 686336 21.1

in3 1114 1.7485E11 83.9

in4 3076 1.3295E10 139.0

in5 1067 24912896 40.6

in6 6174 4.9950E10 31.0

in7 2112 220769280 15.4

inc 124 281 3.2

intb 6522 101720 131.2

jbp** 2496809 8.0095268E11 2755.3

lin.rom 1087 2306 84.7

luc 190 2198 7.7

ml 59 218 1.3

m2 243 831 7.1

m3 344 1105 9.7

m4 670 2134 18.6

markl 208 2098128 32.1

maxl024 1278 3232 27.8

maxl28 469 1616 16

max46 49 62 0.7
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TABLE 4. Number of Primes and Minterms

Time to
Name Primes Minterms compute

max512 535 1616 11.3

misexl 28 548 0.5

misex2 42 37257216 1.8

misex3 6731 23196 456.7

misg** 6499491840 1.054609E18 3.4

misj** 139103 2.561545E11 13

mish*" 1.1243753E15 4.1494202E29 49.1

mp2d 469 118544 2.0

newapla 113 10421 0.7

newaplal 31 380 0.3

newapla2 7 7 0.2

newbyte 8 8 0.2

newcond 72 704 0.6

newcplal 170 1317 25

newcpla2 38 282 0.7

newcwp 23 42 0.2

newill 11 142 0.1

newtag 8 234 0.1

newtpla 40 4484 0.6

newtplal 6 12 0.2

newtpla2 23 608 0.4

newxcplal 191 3506 3.6

opa 477 732072 56.8

p82 48 81 1.0

popcrom 593 1614 61.1

proml 9326 8306 1892.4

prom2 2635 3027 276.4

rd53 51 42 0.2

rd73 211 192 0.7

rd84 633 411 1.3

rise 46 844 2.6

ryy6 112 19710 0.3

sao2 184 747 1.2

seq 7457 9.8390465E12 983.8

sex 99 1848 1.3

shift*" 165133 4194304 383.2

soar.pla *" 3.3047729E14 1.7458651E26 822.3

sqn 75 144 0.9

spla 4972 122736 680.4

square5 71 85 0.7

tl 15135 13956096 56.1

t2 233 167920 8.8
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TABLE 4. Number of Primes and Minterms

Time to
Name Primes Minterms compute

t3 42 4096 1.2

t4 174 982 15.2

t481 481 42016 2.2

table3 539 11467 50.8

table5 462 119523 77.3

ti*" 836287 4.136440E14 1923.3

tms 162 790 3.3

tslO** 524280 4194304 1084.9

vg2 1188 61570752 2.5

vtxl 1220 133035072 6.5

wim 25 51 0.5

xldn 1220 133035072 6.6

x2dn** 1.1488762E16 8.849739E25 194.1

x9dn 1272 133041984 6.9

xor5 16 16 0.1

xparc*" 15039 1.0865220E13 1384.8

TABLE 5. Primes and Minterms after Reduction

Minte
Primes rms

After after Primes
Reduct Reduct- from Time

Name ion ion espresso (in sec)

al2 66 66 66 141.4

alcom 40 40 40 62.4

alul 19 19 19 94.8

bll 27 27 27 144.2

b7 27 27 27 147.1

brl 19 19 19 87.2

br2 13 13 13 58.4

clpl 20 20 20 1.9

conl 9 9 9 4.0

cordic 1712 1712 914 22.1

del 9 9 9 5.9

dc2 39 39 39 204.6

dekoder 12 12 9 5.7

dk27 14 14 10 48.8

e64 65 65 65 24.0

inc 29 29 29 304.3

ml 19 19 19 65.6

misexl 12 12 12 12.0

misex2 28 28 28 192.7

max46 46 46 46 25.2
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TABLE 5. Primes and Minterms after Reduction

Minte

Primes rms

After after Primes

Reduct Reduct from Time
Name ion ion espressc> (in sec)

misg** 69 69 mt 102.1

misj*" 35 35 ** 39.2

newapla 17 17 17 34.9

newaplal 10 10 10 4.1

newapla2 7 7 7 1.1

newbyte 8 8 8 1.0

newcond 31 31 31 49.3

newcplal 40 40 38 4389.8

newcpla2 19 19 19 28.3

newcwp 11 11 11 2.6

newill 11 11 8 1.0

newtag 8 8 8 0.5

newtpla 23 23 23 18.1

newtplal 4 4 4 1.2

newtpla2 9 9 9 12.5

p82 21 21 21 38.7

rd53 31 31 31 1.2

rd73 127 127 127 3.9

rd84 255 255 255 6.8

rise 28 28 28 226

ryy6 112 112 112 1.8

sao2 58 58 58 88.8

sex 21 21 21 73.2

sqn 38 38 38 35.7

squar5 35 35 25 94.4

t3 33 33 33 86.5

vg2 110 no 110 187.9

wim 12 12 9 5.5

xor5 16 16 16 0.2

5xpl 146 156 63 322

9sym 1680 420 84 2.6

Z9sym 1680 420 84 2.8

The total number of primes and minterms for all examples is given by the following table.
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TABLE 6. Size of Prime and Minterm BDD's

Sizeof Prime Sizeof Minterm
Name BDD BDD

5xpl 464 169

9sym 162 96

Z9sym 162 96

al2 990 936

alcom 635 571

alul 742 509

alu2 1689 1279

alu3 2231 1602

alu4 12059 3174

amd 4125 1899

apexl 67731 19265

apex2 15858 8594

apex3 126934 24568

apex4 28307 8873

apla 11865 495

blO 3234 1702

Ml 744 572

bl2 958 512

b2 10905 2242

b3 12318 4282

b4 11562 4578

b7 744 572

b9 1716 754

bcO 28750 9473

bca 5060 3953

bcb 16645 3930

bee 4072 3025

bed 2310 2050

brl 473 414

br2 367 316

bw 1968 595

chkn 4195 1863

conl 120 86

cordic 310 224

clpl 70 89

cps 33255 9725

del 145 88

dc2 499 345

dekoder 145 86

dkl7 760 317
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TABLE 6. Size of Prime and Minterm BDD's

Sizeof Prime Sizeof Minterm
Name BDD BDD

dk27 390 178

dk48 1278 611

duke2 4667 2552

e64 511 577

exlOlO*" 40970 2655

ex4** 4238 3992

ex5 70225 3397

ex7 1716 754

exep 6878 10113

exp 1794 707

exps 6933 2814

gary 4714 2120

ibm*" 16427 4975

inO 4504 2062

inl 10905 2242

in2 3736 2010

in3 10729 3799

in4 12609 4974

in5 6691 2764

in6 6720 2515

in7 4125 1438

inc 721 298

intb 11423 3089

jbp** 80699 26461

lin.rom 11033 1966

luc 2163 817

ml 550 260

m2 2115 791

m3 2784 946

m4 4249 1339

markl 2597 811

maxl024 3465 1091

max128 3733 1014

max46 215 186

max512 2026 961

misexl 207 162

misex2 631 645

misex3 21291 10755

misg*" 770 889

misj*" 503 605

mish*" 8784 6597

mp2d 600 318
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TABLE 6. Size of Prime and Minterm BDD's

Size of Prime Size of Minterm

Name BDD BDD

newapla 312 239

newaplal 141 129

newapla2 96 96

newbyte 82 82

newcond 228 166

newcplal 787 464

newcpla2 282 197

newcwp 71 60

newill 58 55

newtag 36 44

newtpla 249 213

newtplal 92 90

newtpla2 153 118

newxcplal 1155 494

opa 9512 4171

p82 436 292

popcrom 10630 1798

proml 49464 10177

prom2 23370 5311

rd53 74 55

rd73 151 96

rd84 228 125

rise 806 635

ryy6 80 95

sao2 407 243

seq 50715 9296

sex 623 404

shift*" 22831 6814

soar.pla ** 38797 7898

sqn 290 207

spla 37353 24299

square5 341 214

tl 9126 2626

t2 1435 980

t3 429 282

t4 959 525

t481 518 293

table3 4003 2458

table5 5337 2832

ti** 69678 28078

tms 1065 417

tslO** 52143 52251
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TABLE 6. Size of Prime and Minterm BDD's

Size of Prime Size of Minterm
Name BDD BDD

vg2 572 477

vtxl 1462 1062

wim 154 88

xldn 1462 1062

x2dn*" 18393 7563

x9dn 1564 1308

xor5 25 25

xparc** 55839 11665
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