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ABSTRACT

Managing the buffering ofdata along arcs is a critical part ofcompiling a Synchronous Dataflow
(SDF) program. This paper shows how dataflow properties can be analyzed at compile-time to
make buffering more efficient. Since the target code corresponding to each node of an SDF graph
is normally obtained from a hand-optimized library of predefined blocks, the efficiency of data
transfer between blocks is often the limiting factor in how closely an SDF compiler can approxi
mate meticulous manual coding. Furthermore, in the presence of large sample-rate changes,
straightforward buffering techniques can quickly exhaust limited on-chip data memory, necessi
tating the use ofslower external memory. The techniques presented in this paper address both of
these problems in a unified manner.

Key words: Dataflow Programming, Code Generation, Memory Allocation, Graphical Program
ming, Optimizing Compilers, Multirate Signal Processing.

1 INTRODUCTION

Dataflow [6] can be viewed as a graph-oriented programming paradigm in which the

nodes of the graph represent computations, and directed edges between nodes represent the pas
sage ofdata between computations. Acomputation isdeemed ready for execution whenever it has

sufficient data on each of its input arcs. When acomputation is executed, orfired, the correspond
ing node in the dataflow graph consumes some number of data values {tokens) from each input arc
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INTRODUCTION

and produces some number oftokens on each output arc. Dataflow imposes only partial ordering
constraints, thus exposing parallelism. In Synchronous Dataflow (SDF), the number of tokens

consumed from each input arc and produced onto each output arc is a fixed value that is known at

compile time [23].

Another significant benefit ofSDF is the ease with which alarge class ofsignal processing
algorithms can be expressed [3], and the effectiveness with which SDF graphs can be compiled
intoefficient microcode for programmable digital signal processors. This is in contrast to conven

tional procedural programming languages, which are not well-suited to specifying signal process

ing systems [10]. However, there are ongoing efforts towards augmenting such languages to make

them more suitable; for example, [18] proposes extensions tothe C language.

There have been several efforts toward developing compiler techniques for SDF and

related models[ll, 21, 26, 27, 28]. Ho [16] developed the first compiler for pure SDF semantics.

The compiler, part of the Gabriel design environment [21], was targeted to the Motorola

DSP56000 and the code that it produced was markably more efficient than that ofexisting Ccom

pilers. However, due toits inefficient implementation of buffering, the compiler could not match

the quality of good handwritten code, and the disparity rapidly worsened as the granularity of the
graph decreased.

The mandatory placement of all buffers inmemory isamajor cause of the high buffering

overhead in Gabriel. Although this is anatural way tocompile SDF graphs, it can create an enor

mous amount ofoverhead when actors ofsmall granularity are present This isillustrated in figure

1. Here, a graphical representation for an atomic addition actor is placed alongside typical assem

bly code that would be generated if straightforward buffering tactics are used. The target language

is assembly code for the Motorola DSP56000. The numbers adjacent to the inputs and the output

7TV-
move inputl, a
move input2, xO

x , add xO, a

^^"^ move a, output

Fig 1.An illustration of inefficient buffering for an SDFgraph.
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INTRODUCTION

represent the number of tokens consumed or produced each time the actor is invoked. In this

example, "inputl" and "input2" represent memory addresses where the operands to the addition

actor are stored, and "output" represents thelocation in which theoutput sample will be buffered.

In figure 1, observe that four instructions are required to implement the addition actor.

Simply augmenting thecompiler witharegister allocator and amechanism for considering buffer

locations as candidates for register-residence can reduce the cost of the addition to three, two or

one instruction. TheComdisco Procoder graphical DSP compiler [26] demonstrates that integrat

ing buffering withregister allocation can produce code comparable to the best manually-written

code.

The Comdisco Procoder's performance is impressive, however the Procoder framework

has one major limitation: it is primarily designed for homogeneous SDF, in which a firing must

consume exactly one token from each input arc and produce exactly one token on every output

arc. In particular, it becomes less efficient when multiple sample rates are specified. Furthermore,

their techniques apply only when all buffers can be mapped statically tomemory. In general, this

need notbe the case, and we will elaborate onthis topic in section 2.

In this paper, we develop compiler techniques to optimize the buffering of multiple sam

ple-rate SDF graphs. Multirate buffers are often best implemented as contiguous segments of

memory tobeaccessed byindirect addressing, and thus they cannot bemapped tomachine regis

ters. Efficiently implementing such buffers requires reducing the amount of indexing overhead.

We show that for SDF, there isalarge amount ofinformation available at compile-time which can

be used to optimize the indexing of multirate buffers. Also, buffering and code generation for

multirate graphs is complicated by the desire toorganize loops in the target code. With large sam

ple rate changes, failure to adequately exploit iteration may result in enormous code space

requirements or excessive subroutine overhead. In [2], we develop techniques to schedule SDF

graphs to maximize looping. We assume that such techniques are applied and examine the issues

involved when buffers are accessed from within loops. Finally, multirate graphs may lead to very

large buffering requirements if large sample rates are involved. This problem is compounded by

looping. For example, for the graph in figure 2, (AABCABC) and (AAABCBC) are both permis-
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sible periodic schedules. The latter schedule clearly offers simpler looping, however the amount

of memory required to implement the arc between A and B is 50% greater (600 words vs. 400

words). In general, increasing thedegree of looping in theschedule significantly increases buffer

ing requirements [2], Thus, due to the limited amount of on-chip data memory in programmable

DSPs, it is highly desirable tooverlay noninterfering buffers in the same physical memory space

as much as possible. This paper presents ways to analyze the dataflow information to detect

opportunities for overlaying buffers which can beincorporated into a best-fit memory allocation

scheme.

Normally, when an SDF graph Gis compiled, the target program is an infinite loop whose

bodyexecutes oneperiod of a periodic schedule for G.Werefer to each period of this schedule as

a schedule period of the target program. In [22], it is shown that for each node N in G, we can

determine a positive integer q(N) such that everyvalid periodic schedule forG must invoke N a

multiple of q(N) times. More specifically, associated with each valid periodic schedule S for G,

there is a positive integer J, called the blocking factor of S, such that S invokes every node M

exactly J<7(M) times. Thus, code generation begins bydetermining <?(), selecting ablocking factor

and constructing an appropriateschedule.

Several scheduling problems for SDF andrelatedmodels have been addressed: construct

ing efficient multiprocessor schedules is discussed in [27, 29]; Ritz et. al discuss vectorization

[28]; the problem or organizing loops isexamined in [2]; and compiler scheduling techniques for

efficient register allocation are presented in [26]. In this paper, we assume that a schedule has

been constructed under one or more of these criteria. In other words, the techniques of this paper

do not interact with the scheduling process — we assume that the schedule is fixed beforehand.

Systematically incorporating buffering considerations in the scheduling process is atopic that we
are currently examining.

Q22M2S0!—^Q

Fig2.Amultirate SDFgraphfor which looping greatly increases buffering requirements.
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We begin by reviewing the scheduling and code generation issues involved in effectively

organizing loops in thetarget code. In section 3 wediscuss circular buffers, which play akey role

in multirate buffering. Section 4 presents a classification of buffers based on dataflow properties

and discusses tradeoffs between the different categories. Most buffer-related optimizations apply

only to particular subsets of these categories. The following section examines the problem of

overlaying buffers for compact memory allocation. Section 6 considers optimization opportuni

ties that apply to modulo buffers. Section 7 describes a class of actors that can be implemented

very efficiently by abandoning their dataflow interpretation and using more intelligent buffering.

Finally, section 8 presents concluding remarks.

Although the techniques in this paper are presented in the context of block-diagram pro

gramming, they can be applied toother DSP design environments. Many of the programming lan

guages used for DSP, such as Lucid[30], SISAL[24] and Silage[10] are based on or closely related

to dataflow semantics. In these languages, the compiler can easily extract aview of the program

as hierarchy of dataflow graphs. A coarse level view of part of this hierarchy may reveal SDF

behavior, while the local behavior of the macro-blocks involved are not SDF. Knowledge of the

high-level synchrony can be used to apply "global" optimizations such as those described in this

paper, and the local subgraphs can be examined for finer SDF components. For example, in [7],

Dennis shows how recursive stream functions in SISAL-2 can be converted into SDF graphs. In
signal processing, usually asignificant fraction ofthe overall computation can be represented with

SDF semantics, so it isimportant to recognize and exploit SDF behavior as much as possible.

2 Multirate Code Generation Issues

If the number of samples produced on an SDF arc (per invocation of the source actor) does

not equal the number of samples consumed (per sink invocation), the source actor or the sink

actor mustberepeated, and when thenumber of samples produced and consumed form anoninte-

gral ratio, bothactors must be repeated. For example, in figure 2, actor A must fire at least three

times per schedule period and B must fire at least twice. It is thus natural to define iteration in
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Multirate Code Generation Issues

multirate SDF as the changein firing-rate which is manifested by a change in the production and

consumption rates along an arc[20].

In conventional programming languages, the notion of iteration is normally associated

with loops, in which the programmer specifies that a sequence of code is to be repeated some

number of times in succession. However, in SDF there are three mechanisms which force us to

distinguish looping from iteration. The most fundamental reason is that an SDF graph specifies

only a partial ordering on the computationsinvolved.Whether or not repeated firings are invoked

in succession depends on how the graph is scheduled. Second, feedback constraints may restrict

the degree of looping that can be assembled from an instanceof iteration.For example, figure 3(a)

shows a multirate SDF graph that consists of a simple feedback loop. The only possible periodic

schedule for this graph is BAB, which offers no opportunity for looping within a single schedule

period. If, however, the delay on the lower arc were transferred to the upper arc, or if the upper arc

were removed, then the sample-rate change between A and B could be translated into the schedule

BBA, which allows a loop to subsume the firings of B. Finally, a cascade of iterations, the SDF

form of nested iteration [20], does not translate into a unique opportunity for nested loops. For

example, two possible schedules for the graph in figure 3(b) are AABBBAABBBCCCCCCCCC.

and AAAABBCCCBBCCCBBCCC. Using the looped schedule notation defined in [2], we can

express these schedules more compactly as (2 (2A) (3B)) (9C) and (4A) (3 (2B) (3C)) respec

tively. Here each parenthesized term (NX-j X2... X^) represents N successive invocations of the

firing sequence X-j X2 ... X^. These compact representations of the two schedules reveal that

D

D

(a) (b)

Fig 3. Examples that illustrate distinctions between iteration and
looping in SDR
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Multirate Code Generation Issues

they are two distinct nested loop organizations for the same graph. It is important for a scheduler

to recognize this distinction because the buffering requirements may vary significantly. In this

case, forexample, the former schedule requires 27 words of data memory and the latter schedule

requires 21.

In [2], we discuss the problem ofscheduling SDF graphs toeffectively synthesize looping

from iteration. When there is a large amount of iteration, these techniques may be crucial to

reducing the code-space requirements to alevel that will allow the program to fit on-chip. Thus

we mustexamine thecode-generation aspects of having loops in the target code.

The primary code generation issue for loops is the accessing of a buffer from within a

loop. The difficulty lies in therequirement for different invocations of the same actor to be exe

cuted with the same block of instructions. Asasimple example, consider figure 4, which shows a

multirate SDF graph, a looped schedule for the graph, and an outline of Motorola DSP56000

assembly code that could efficiently implement this schedule. In the code outline, the statement

"do #N LABEL" specifies N successive executions of the block of code between the "do" state

ment and the instruction at location LABEL. Thus the successive firings ofB are carried out with

aloop. This requires that both invocations ofBmust access their inputs with the same instruction,
and that the output data for A be stored in amanner that can be accessed iteratively. This in turn
suggests writing the data produced by A to successive memory locations, and having B read this
data using the register autoincrement or autodecrement indirect addressing modes, addressing

Schedule: A(2B)

code for "A"

outputs in xO and yO

move xO, but

move yO, buf +1
move #buf, r2
do #2, LOOPEND
move (r2)+, xO

code for "B"

input in xO

-OOPEND:

Fig 4. An illustration of compiled code for a looped schedule.
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modes that were designed precisely for this purpose of iteratively stepping through successive

items ofdata. Here, the outputs ofAare stored to successive locations bufand buf+J, and B reads

these values into local register xO through the autoincremented buffer pointer r2.

We conclude this section by introducing two definitions which will be useful throughout

theremainder of the paper. The first definition provides a mapping from theappearances of actors

in a looped schedule to the firings that they represent. In other words, it maps a code block in the

target program to the set of invocations which it will execute.

Definition 1: Given an SDF graphG, a looped schedule S for G, and a node A in G, a common

code space set, abbreviated CCSS, for A is the set of invocations of A which are represented

by some appearance of A in S.

A CCSS is thus a set of invocations carried out by a givensequenceof instructions in pro

gram memory (code space). For example consider the looped schedule (4A)C(2B(2C)BC)(2BC)

for the SDF graph in figure 3(b). The CCSS's for this looped schedule are {A-j, A2, A3, A4},

{Ci}, {B1f B3}, {C2, C3, C5, C6}, {B2, B4}, {C4, C7}, {B5, B6}, and {C8, C9}.

It will be useful to examine theflow of common code spacesets. This can be depicted with

a directed graph,called the CCSS flow graph, that is largely analogous to the basic block graph

[1] used in conventional compiler techniques. Each CCSS corresponds to a node in the CCSS

flow graph, and an arc is inserted from a CCSS A to a CCSS B if and only if there are invocations

Aj 6 A and Bj € Bsuch that Bj is fired immediately after Aj. To illustrate CCSS flow graph con

struction, figure 5 shows the CCSS flow graph associated with the schedule (4A)C(2B(2C)B-

C)(2BC) for the SDF graph in figure 3(b).

3 MODULO ADDRESSING

Most programmable DSP's offer a modulo addressing mode, which can be used in con

junction with careful buffer sizing to alleviate the memory cost associated with requiring buffer

accesses to be sequential. This addressing mode allows for efficient implementation of circular
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Fig 5. The CCSS flow graph associated with the schedule (4A)C(2B(2C)BC)(2BC) for the SDF
graph in figure 3(b).

buffers, for which indices need to be updated modulo the length of the buffer so that they can

wrap around to the other end. Forexample, consider the modulo addressing support provided in

the Motorola DSP56000.

Example 1: In the Motorola DSP56000 programmable DSP, a modifier register MX is associ

ated with each address register RX. Loading MX with a value n > 0 specifies a circular buffer of

length n + 1.Thestarting address of the buffer is determined by thevalue V thatis stored in RX.

Ifwe letBdenote the value obtained by clearing the flog 2I n+ 1]] least significant bits ofV, then

assuming that B <> V£ (B + «), an autoincrement access (RX)+ updates RX to {B + [(V - B+ 1)
mod(n+ 1)]}.

Figure 6 illustrates the use ofmodulo addressing todecrease memory requirements when

sequential buffer access is needed. The schedule U(2UV) would clearly require a buffer ofsize 6

for iterative access if only linear addressing is available. However, as the sequence ofbuffer dia

grams infigure 6 shows, only four buffer locations are required when modulo addressing is used.

Wand Rrespectively denote the write pointer for Uand the read pointer for V, and a black circle

inside abuffer slot indicates a live sample —asample which has been produced but not yet con

sumed. Note that the accesses ofthe second invocation ofUand the second invocation ofVwrap
around the end of the buffer.

Observe also that the pointers R and W can be reset at the beginning of each schedule

period to point to the beginning of the buffer, and thus the access patterns depicted in figure 6

MEMORY MANAGEMENT FOR SYNCHRONOUS DATAFLOW PROGRAMS 9 of 53
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could berepeated everyperiod. This would cause thelocations in each buffer's access to bestatic

— fixed for every iteration of the periodic schedule —and hence they would be known values at
compile time.

This illustration renders false the previous notion that for static buffering, the total number

of samples exchanged on an arc per schedule period must always be amultiple of the buffer size.

As we will show in the following section, the requirement holds only when there is a nonzero

delay associated with the arc in question.

y

A
W R

uV
• •

1

I

V 1

1 y

\

V

# • • •

K
W R

T

R

I/K

w

ft
W R

R

Fig 6. Anillustration of modulo addressing. This figure shows how the position of samples
in a buffer changes as the firings in a schedule are carried out. The schedule in this exam
ple is U(2UV). "W" and "Ft" represent the write pointer for U and the read pointer for V
respectively.
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A CLASSIFICATION OF BUFFERS

A CLASSIFICATION OF BUFFERS

We must determine four qualities of a buffer to guide memory allocationand code genera

tion — the logicalsize of the buffer,whether the bufferwill be contiguous, whether the accesses

to the buffer are static, and whether the bufferis circular or linear. By the logical size of a buffer,

we mean the number of memory locations required for the buffer if it is implemented as a single

contiguous block of memory. For example, the buffer for the graph of figure 6 will have a logical

size of four or six depending, respectively, on whether or not we are willing to pay the cost of

resetting the buffer pointers before the beginning of every schedule period. In section 5, we will

show that it may often be desirable to implement abuffer in multiple nonadjacent segments of

physical memory. We will also show, however, that insuch cases, the logical buffer size parame
teris stillimportant for guiding thememory allocation process.

4.1 Terminology

We digress briefly to introduce some definitions and notation that will be used frequently
throughout the rest of this paper.

We use the following notation toexpress the parameters of an SDF arc a:

• source(a) = the source node of a.

• sink(a) = the sink node of a.

• p(a) =the number of samples produced onto a each time source(a) is invoked.

• c(a)=thenumber of samples consumed from a each time sink(oc) is invoked.

• delay(oc) = the delay on a.

We define the total number ofsamples exchanged on a —abbreviated TNSE(ot) or just
TNSE, when the arc inquestion is understood —to be the total number ofsamples produced onto
a by source(a) during aschedule period, or equivalently the total number of samples consumed

from a during aschedule period. Finally, if a is the only arc directed from source(cc) to sink(ct),
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then we will occasionally denote a by "source(a)Tsink(a)". For example Utv denotes the arc
from U to V in figure 6.

4.2 Static vs. Dynamic Buffering

The first quality of a buffer that should be decided upon is whether or not the buffer is

static. For anSDF arc a, static buffering means that for both source(oc) and sink(ot), the fth sample

accessed in anyschedule period resides in thesame memory location as the ith sample accessed in

any other schedule period [23]. From our discussion of figure 6, it is clear that when there is no

delay on a, static bufferingcan occur with a logical buffersize equal to the maximum number of

live samples that coexist on the arc. However, if a has nonzero delay, then we must impose an

additional constraint that TNSE is some positive integral multiple of the buffer length. A "delay"

on a can be viewed simply as an initialsample. In steady state, it can be viewed as dataproduced

in one schedule period and consumed in the next.

The need for this constraint is illustrated in figure 7. Here, the minimum buffer size

according to the previous rule is four, since up to four samples can concurrently exist on the arc.

Figure 7 shows the succession of buffer states if a buffer of this length is used. Nowsincethereis

a delay on the arc, therewill always be a sample in the buffer at the beginning of each schedule

period — thisis the first sample consumed by V-j. Forstatic buffering, weneed this delay sample

—which is consumed in theschedule period after it is produced —toreside in thesame memory

location everyperiod. Comparison of the initial andfinal buffer states in figure 7 reveals that this

is not the case, since the write pointer W did not wrap around to point to its original location.

Clearly, W could have returned to its original position if and onlyif the total numberof advances

made by W (6, in this case) was an integer multiple of the bufferlength. But the total number of

advances made by W is simply TNSE.

We have motivated the following theorem:

Theorem 1:For a given schedule, the logical buffer size Nmust satisfy the following conditions

1.N cannot be less thanthe maximum number of five samples which coexist on the correspond-
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ingarca

2. If a has no delay, then static buffering is possible with any buffer size that meets criterion 1.

Otherwise, staticbuffering is possibleif andonly if TNSE is a positive-integer multiple of N.

Thus, static buffering for an arc with delay may require additional storage space — 50%

morein the caseof the examplein figure 7. The difference may be negUgible formost buffers,but

it must be kept in mind when samplerates are very high. The storage economy of non-static, or

dynamic, buffering comes attheexpense of potential execution-time overhead. When a pointer to

adynamic buffer is swapped outof its physical register, it is mandatory that its value be spilled to

Ut

Vi

1\

R

R

w

I

w

ft
W R

D
i0

w

1\

I

R

ft
W R

r

w

Fig7.The effect of delay on the minimum buffer size required for static buffering. With a
buffer size ofonly 4, the location ofthe "delay sample" shifts two positions each schedule
period. The schedule in this example is UVUUV.
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memory so that the next time the pointer is used, it can resume from the correct position in the

buffer. With static buffering, we know the offset at which every invocation accesses the buffer.

Thus we can resume the buffer addressing with an immediate value and there is noneed to spill

thepointer to memory. The netresult is that every timeabuffer pointer of the source orsinknode

is swapped out,dynamic buffering requires an extra store to memory.

However, looping may limit the savings in overhead for static buffering. For instance,

consider theexample in figure 8. It can easily beverified that the repetitions counts for A, B, C, D,

and E are respectively 1,2,4,4, and 4 invocations per schedule period. Since TNSE(BtC) =4, a

bufferof size foursuffices forstatic buffering on the arc betweenB and C. Now thecode block for

C must access BTc through some physical address register R, and R must contain the correct
buffer position Cro every time the code block is entered. If it is not possible to dedicate R to Cm

for the entire inner loop (2DCE), then Rmust be loaded with the current value ofC^ just prior to
entering thecode block for C. Since the code block executes C-|, C2, C3 and C4 — the members

of the associated CCSS — andeachof theseinvocations accesses the buffer at a different offset,

we cannot load R with an immediate value. R mustbe obtained from a memory location and the

current value of C,p must be written to this location whenever R is swapped out. It can easily be

verified that at most three samples coexist on BTC at any given time, and thus adynamic buffer of

size three could implement the arc. Since the organization of loops precludes exploiting the static

information of a length four buffer, dynamic buffering is definitely preferable in this situation.

It is not always the case, however, that different members of a CCSS access a static buffer

atdifferent offsets. As an illustration of this, consider again the example in figure 3(b), and the

0^0^
Schedule: A(2B(2DCE))

Fig 8. An example of how loops can limit the advantages of static buffering.

14 off 53 MEMORY MANAGEMENT FOR SYNCHRONOUS DATAFLOW PROGRAMS



A CLASSIFICATION OF BUFFERS

schedule (4A)C(2B(2C)BC)(2BC) forthis SDF graph. We can tabulate the offsets for every buffer

access in the program to examine the access patterns for each CCSS. Such a tabulationis shown

intable 1, assuming that static buffers oflength 12 and 6are used for arcs ATB and BtCrespec

tively. The access port column specifies the different node-arc incidences in the SDF graph. For

example A-» aTb refers to the connection ofactor Ato the input ofarc AfB (the side without
the arrowhead), and BTc -»Crefers to the connection of the output ofarc BTc (the side with the
arrowhead) to actor C. The invocation column lists the firings of the actor with the associated

access port, and the offset at which the ith invocation of this actor references the access port is

givenin the ith offsetentry for the accessport. Examination of table 1 reveals that the membersof

CCSS {C4, C7} read from arc BTC at the same offset. Similarly the write accesses ofCCSS's
{B-j,B3} and {B2,B4} occurrespectively at the same offsets. If all membersof a CCSSX access

an arca at the sameoffset, we say thatX accesses a statically.

Thus when a pointer into a static buffer is spilled, and the pointer is accessed elsewhere

from within a loop, it is not always necessary to spill the pointer to memory. The procedure for

determining whether a spill is necessary at a given swap point can be conceptualized easily in

terms of the CCSS flow graph, which we introduced in section 2. Suppose that a buffer pointer

access port invocation offset

AtB->B 1 0

2 2

3 4

4 6

5 8

6 10

B^BfC 1 3
2 0

3 3

4 0

5 3

6 0

access port invocation offset

BtC-»C 1 0

2 2

3 4

4 0

5 2

6 4

7 0

8 2

9 4

"a"-^ AfB 1 0

2 3

3 6

4 9

Table 1. A tabulation of the buffer access patterns associated with the schedule (4A)C(2B(2C)BC)(2BC) for
the SDF graph in figure 3(b).
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associated with actor A and arc a must be swapped out of its register at some point in the pro

gram. First we must determine location X in the CCSS graph thatcorresponds to this swap-point.

From X, we traverse all forward paths until they either reach the end of the program, they traverse

the same node twice (they traverse a cycle), or they reach an occurrence of a CCSS for A. We are

interested only in thefirst time a forward pathencounters a CCSS for A. Let P be the set of all for

ward paths p from X which reach a CCSS for A before traversing any node twice, and let A(p)

denote the first CCSS for A that p encounters. Thenthebuffer pointer mustbe spilled to memory

if and only if the set Pcontains amember p* such that A(p*) does not access a statically.

Traversing forward paths at every spillmay be extremely inefficient. Instead, we can per

form a one-time analysis of thelooporganization toconstruct a table containing thedesired reach

ability information. The concept is similar to the conventional global data flow analysis problem

of determining which variable definitions reach which parts of the program [1]. However, our

problem is slightly more complex. In global dataflow analysis, we need to know which variable

definitions are live ata given point in theprogram. For eliminating buffer-pointer spills, we need

to know which points in a program can reach a given CCSS without passing through another

CCSS for the same actor. This information can be summarized in a boolean table which has each

entry indexed by an ordered pair of CCSS's (Q, C2). The entry for (G|, C2) will be true if and

only if there is a control path from C-j to C2 which does not pass through another CCSS for the

actor that corresponds to C2. We refer to this table as the first-reaches table since it indicates the

points (theCCSS's) atwhichcontrol first reaches a given actor from a givenCCSS.Table 2 shows

the first-reaches table for the looped schedule (4A)C(2B(2C)BC)(2BC). The CCSS flow graph

associated with this schedule is depicted in figure 5.

In the appendix, we describe a technique for constructing the first-reaches table based

largely onmethods described in [1] for reaching definitions. An important difference is that asep

arate pass through the loop hierarchy is required to construct the columns associated with each

actor, whereas reaching definitions canbe dealt within a single pass. In practice, however we are

concerned only with the columns of the first-reaches matrix that correspond to actors which

access multiword contiguous buffers, so oftena large number of passes canbe skipped.
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To fully asses the benefit of choosing static buffering over dynamic buffering for apartic

ular arc, we must consult the first-reaches table at every spill-point. Performing this check on

every multiword buffer is very expensive. Instead, weshould perform this check only for critical

sections of the program. For example if an arc carries alarge amount of traffic, we wouldwish to

choose dynamic buffering unless the arc is accessed from very frequently executed parts of the

program and the loop structure permits taking advantage of static buffering. Similarly, the data-

memory savings of implementing a low-traffic arc as a dynamic buffer is oftennegligible — the

compilerhas little to lose by choosing static buffering for such cases.

We conclude this subsection with a note onthe requirements for static buffering. The two

conditions of theorem 1 together imply that static buffering cannot be possible if TNSE is less

than the maximum number of samples that coexist on the arc. For this to happen, clearly the arc

must have nonzero delay since TNSE samples are produced and consumed from the arc every

schedule period. When there is delay, however, it is possible that at some point in the schedule

period, thearc willbuffer more than TNSE tokens. For example, looping often creates a situation

in which an arc must be implemented as a dynamic buffer. This is illustrated in figure 9. The

ft C?
^2 C3
^3 gl & B? C4 B5 c8
A4 C1 *3 C6 B4 c7 b6 c9

Ai,A2>A3,A4 T T T F F F F F

Cl T F T T F F F F
B1fB3 T F F T T F F F
C2.C3.C5.C6 T F F T T T F F
B2,B4 T F T F F T T F
C4C7 T F T T F F T T

B5>B6 T F T F F F T T
C&Cg T T T F F F T T

Table 2.The first-reaches table associated with the looped schedule (4A)C(2B(2C)BC)(2BC)
(the corresponding flow graph is shown in figure 5. The entry corresponding to arow CCSS
X and acolumn CCSS Y is"true" (T) if and only if there isacontrol path that goes from X to
Y without passing through another CCSS for the actor that corresponds toY.

(T)4 d^(b) Schedule:A(4B)
Kg 9. An illustration of howlooping can necessitatedynamic buffering.
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schedule which takes full advantage of thelooping possibilities for this graph is A(4B). However,

this schedule results in five samples on the arc after A is fired, which exceeds the TNSE of four.

Grouping all four invocations of B together in theschedule requires that themaximum number of

samples on the arc exceed the TNSE.

4.3 Contiguous vs. Scattered Buffering

Once we have decided whether a buffer is to be static ordynamic, we may decide upon

whether it will be a contiguous buffer, occupying a section of successive physical memory loca

tions, orwhether the buffer may bescattered through memory. The decision primarily affects the

addressing modes that can beused to access the buffer and the storage efficiency of the memory

allocation. Clearly, only acontiguous buffer can be accessed through register autoincrement/auto-

decrement indirect addressing, and thus abuffer that is accessed from within any kind of loop — a

loop arranged by thescheduler oraloop that appears inside the code template for an actor — must

usually be implemented using a contiguous buffer. The only exception occurs when all CCSS's

associated with the source or sink of an arc access the arc statically — in this case absolute

addressing can beused. Depending on the target processor, this may be an important exception to

consider. For programmable DSPs such as the Motorola 56000, arbitrary absolute addresses

require an additional word of program memory, and thus an additional instruction cycle. Register-

indirect accesses require no such overhead and can often be performed inparallel with other oper

ations [26]. Under these circumstances, contiguous buffering and register-deferred addressing are

preferable for multiword buffers even if the loop-structure permits absolute addressing. On the

other hand, many general-purpose RISC microprocessors allow large absolute displacements to

beaccessed through single-word instructions [14], butthey donotallow register-indirect accesses

to be issued in parallel with other instructions. Furthermore, they do not support autoincrement

mode in hardware — a separate instruction must be issued toincrement the index register. In this

case there is no advantage to using register-indirect addressing when the loop structure does not

require it. There is no point in incurring the overhead to initialize the address register and the

overhead due to a possible increase inregister swapping, and thus absolute addressing is prefera

ble.

18 of 53 MEMORY MANAGEMENT FOR SYNCHRONOUS DATAFLOW PROGRAMS



A CLASSIFICATION OF BUFFERS

With dynamic buffering, noinvocation accesses the buffer atthe same offset every sched

ule period. To see this, suppose some invocation Aj accesses abuffer pat the same offset every
period. Since the buffer pointer for Aj advances TNSE positions from one schedule period to the

next, it follows that TNSE mustbe a positive integer multiple P's logical buffer size, and thus the

buffer must bestatic. Thus, absolute addressing is never possible for adynamic buffer — dynamic

buffers must becontiguous, and if an actor A accesses adynamic buffer, the current position inthe

buffer must be maintained as a state variable of A. We find register-indirect addressing most

appropriate, and when available, hardware autoincrement/autodecrement should be used to

advance the buffer pointer in parallel with the accesses.

Another important aspect of the physical layout of a buffer is the effect on total storage

requirements. The locations of a scattered buffer can be considered as independent entities with

respect to memory allocation, and graph coloring [12] can be used to assign physical memory

locations to the set of scattered buffers. If all scattered buffers correspond to delayless arcs then

the interference graph becomes an interval graph, and interval graphs can be colored with the

minimum number of colors in linear time [31,5]. The presence ofdelay on one more of the rele

vant arcs complicates coloring substantially. A delay results in asample that is read in a schedule

period after the period in which it is written, and thus the lifetime of the sample crosses one or

more iterations of the program's outermost (infinite) loop. The resulting interference graphs
belong to the class of circular-arc graphs [13]. Finding a minimum coloring for this class of

graphs is intractable, buteffective heuristics have been developed [13].

When subsets ofvariables must reside incontiguous locations, we expect that the memory

requirements will increase since this imposes additional constraints on the storage allocation

problem. Until further insight is gained about this effect or a large set of experimental data is

obtained, we cannot accurately estimate how much more memory will be required if aparticular

scattered buffer ischanged to acontiguous buffer. However, since optimal storage layout requires

scattered buffers, it is likely that when data-memory requirements are severe, arcs should be

implemented as scattered buffers whenever possible. We will discuss storage optimization further
in section 5.
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4.4 Linear vs. Modulo Buffering

For each contiguous buffer, we must determine whether modulo address-updates will be

required to make the buffer pointer "wrap-around" the end of the buffer. Such modulo address

updates normally require overhead; the amount of overhead varies from processor to processor.

For instance, recall example 1, which illustrates the Motorola DSP56000's hardware support for

modulo address generation. Here a "modifier register" must be loaded with the buffer size before

modulo updates can be performed on the corresponding address register, so there is a potential

overhead of one instruction every time the buffer pointer is swapped into the register file. When

there is no hardware support for modulo addressing, as with general purpose RISC microproces

sors such as the MIPS R3000 [17], themodulo update must be performed in software every time

the buffer is accessed. A sample MIPS R3000 assembly code sequence to perform this update is

shown in figure 10. This reveals an overhead of several instructions for each buffer access.

For static buffering, we know exactly which accesses require a modulo update. We need

not perform modulo address computations for any other access, and for the accesses that wrap

around the buffer, we can simply load the start address of the buffer into the corresponding

address register — no explicit modulo computation is required. For example, consider theexam

ple in figure 11(a) and suppose that abuffer of length 4 is used. Then clearly the read-pointer for

B wraps around the buffer between the first and second accesses of the second invocation B2.

Thus code for B2could have thestructure outlined in figure 11(b). The only overhead for modulo

buffering in this case is asingle load instruction —regardless ofwhether or not hardware support

for modulo addressing is required.

$40:

$41:

Iw$10,22($11) # # Load the address of the end of the buffer,
beq $10, $12, $40 # # Compare with the buffer pointer.
addi $12,1 # # Increment pointer if notequal
j$41

Iw $12,23($11) # # Otherwise, reset the pointer to the startof the buffer.

Fig 10. Sample MIPS R3000 assembly code to perform a modulo address calculation.
Note that both registers and labels are identified by leading '$' characters.
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Unfortunately, the presenceof loops often precludes the application of this technique. For

example, if actorB was programmed with a loop surrounding the input buffer accesses, then the

modulo computation wouldhave to be performed in every iteration of theloop even though wrap

around only occurs during the second iteration. A naive pohcy to account for loops would be to

perform a modulo update every time a circular buffer is accessed from within a loop. However,

this would prevent us from exploiting an opportunity for optimization which occurs in many mul

tirate graphs.

Figure 12 shows asimple example. Here, due to the unit delay, acircular buffer isrequired

to implement arc BTc. Since TNSE(BtC) =4, abuffer of length four suffices for static buffering.
Let C,p denote the readpointer associated with C's accesses ofBTc, and observe that Cro wraps
around its associated buffer after every fourth access. Since C performs four read accesses

throughout each invocation ofthe loop (2B(2C)), modulo address computation can be avoided by

00 *v0 Schedule: AABAB
(a)

move X:(rO)+, xO ; Consume the first input token.
move#44, rO ; Reset the input buffer's pointer to the start ofthe buffer.
move X:(rO)+, x1 ; Consume the second input token.
move X:(rO)+, yO ; Consume the third input token.

; Process the inputsamples

(b)

Fig11. An example of how modulo address updates can be avoided for circular buffers
Part (a) shows an SDF graph and a schedule for this graph, and part (b) shows sample
Motorola 56000 codeto implement thebuffer accesses of invocation B2 assuming a buffer
size of four. * *

(aV »^JP)2D •(c^) ScheduleA(2B(2C))

Fig 12. An example of anopportunity to optimize modulo buffer accesses within a loop.
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resetting Cjp to point to the beginning ofthe buffer justprior to entering the loop (2B(2Q). Also,
due to the delay on BTc, the write-pointer for Bwraps around after the first write access of invo
cation B2 in each schedule period. Thus, ifB's writes do not occur inside aloop within B, then we
canomit the moduloaddress computation for the first write in the codeblock for B.

In section 6, we will present general techniques for eliminating modulo accesses. Pres

ently, weconclude that circular buffering may potentially introduce execution-time overhead. For

arcs with delay, this risk in unavoidable — circular buffers are mandatory. However, for some

delay-free arcs it may be preferable to forego the data-memory savings offered bymodulo buffer

ing sothat the overhead can beavoided. A buffer size ofTNSE clearly guarantees that nomodulo

accesses will berequired — provided that we reset the buffer pointer at the start ofevery schedule

period. Smaller buffer sizes (divisors of TNSE which meet or exceed the maximum number of

coexisting samples) are also possible, but one must verify that no access within a loop wraps

around the buffer. This expensive check is very rarely worth the effort. A simple rule of thumb

can be used for deciding whether to switch to linear buffering for adelayless arc —we prioritize
each delayless arc a by the following "urgency measure" fi:

u.(a) =
TNSE (a) -I r i

H_minimumbuffersizeofaJ ITNSE(a) - (minimum buffersizeofa)

The first bracketed term is the number of modulo accesses that occur on each end of a

every schedule period, and the denominator in the second term is the storage cost toconvert this

arc to a static buffer of size TNSE. Thus, U.(a) denotes the numberof modulo accesses eliminated

per word of additional storage. We simply convert the arcs with the highest |Ivalues until wehave

exhausted the remaining data memory. Many variations on this scheme are possible, and architec

tural restrictions on the layout of storage, such as multiple independent memories [19], may
require modification.
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4.5 Summary

Fig 13 illustrates the relationships between the different buffer classifications which we

have presented. Any vertical path represents a set of buffer qualities that can coexist. There are

four possible combinations — contiguous/static/linear, contiguous/static/modulo, contiguous/

dynamic/modulo and scattered/static/linear. This section has provided a systematic approach to

determining the qualities of a buffer based oninformation in thedataflow graph.

We conclude this section with a summary of the situations in which register indirect

addressing is desirable:

• The buffer is dynamic.

• The buffer is accessed from within a schedule loop and all members of the CCSS do not

access the buffer at the same offset.

The buffer is accessedfrom a loop inside the actor.

Overlaying Buffers

Recall that storage optimization for the scattered buffers inan SDF program can be formu

lated in terms of coloring a circular-arc graph and that effective heuristics have been developed
for this class of coloring problems [13]. Contiguous buffers do not lend themselves to this tech

nique since their sizes vary [12]. When large sample rate changes are involved, assigning each

CONTIGUOUS SCATTERED

STA' DYNAMIC STATIC

LINEAR MODULO
LINEAR

Fig 13. The relationship between the different categories of buffers for an SDF program
Any vertical path represents a set of buffer qualities that can coexist.

MEMORY MANAGEMENT FOR SYNCHRONOUS DATAFLOW PROGRAMS 23 of 53



Overlaying Buffers

contiguous buffer to a separate block of physical memory may require more data-memory space

than what is available. In this section, we show how toanalyze dataflow properties and properties

of the schedule to efficiently determine opportunities for mapping multiple noninterfering buffers

to thesame physical memory locations. We also show how to determine how to fragment contig

uous buffers in physical memory, which can expose more opportunities for overlaying [8]. This

precise lifetime and fragmentation information can be used to improve simple first-fit or best-fit

storage optimization schemes, which are frequently applied to memory allocation for variable-

sized data items. Fabri [8] has studied moreelaborate storage optimization schemes that incorpo

rate a generalized interference graph. These schemes are equally compatible with the methods

developed in this section.

5.1 Buffer Periods

The periodic nature of buffer accesses can be exploited to fragment an arc's storageinto

multiple independent contiguous blocks whose combined lifetime does not exceed — and is often

much less than — the lifetime of the entire arc. Figure 14 illustrates this effect. Here, a multirate

graph is depicted along with a loopedschedule for the graph andtheresulting buffer lifetime pro

files. The first profile treats eacharc as anindivisible unit with respectto buffering. In this model,

a delayless buffer is assumed to be "live" from the first firing of the source actoruntil the last fir

ing of the sink actor and for an arc with nonzero delay, a buffer is deemed five throughout the

entirescheduleperiod. In the example of figure 14, we see thatthis straightforward designation of

buffer lifetimes does not reveal any opportunity for buffers to share storage and thus ATB, ATc,

bTd and CTE require 2,2,10and 10 units ofstorage respectively, for atotal of24 units.

Notice, however, that invocations that access BTD can be divided into two sets {B-j, D-j,

D2,..., Diq} and {B2, D-j-j, D^, •••» D20} suc^ mat ^ samples are produced in the same set that

they are consumed — there is no interaction among the two sets. Thus they can be considered as

independent units for storage allocation, with lifetimes ranging from B-j through D-jo and B2

through D20 respectively. Wecall these two invocation subsets the buffer periods of BTd, and we

denote them by successive indices as bTd<1> and bTd<2>. The live range for CTE can be

decomposed similarly and the resulting lifetime profile is depicted at the bottom of figure 14 (we
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suppress the"<1>" index for arcs that have only one buffer period). This new profile reveals that

we can map both Bit) and CTE to the same 10-unit block of storage, because even though the
lifetimes of these arcs conflict, the buffer periods do not. Thus the memory requirements can be

reduced almost in half to 14 words.

In this example, wehave exploited only the reduction in overall lifetime for adecomposi

tion intobuffer periods. It is also possible to map different buffer periods for the same arc to dif

ferent blocks of memory. This technique may be useful for overlaying buffers along multirate

cychc paths in the SDF graph. Consider, for example figure 15. This figure shows an upsampled

multirate feedback loop along with the resulting buffer period profiles. Notice that due to the

delay of four on DTB, the buffer periods of this arc are {D5, D6, D7, D8, B-|} and {D-j, D2, D3,

Schedule: AB(10D)C(10E)B(10D)C(10E)

Ai Bi D^.. D10 Ci Ei ... E10 B2 D^ ... D20 C2 E„ ... E

bTd
Aggregate Buffer Lifetimes

aTc

Ai B! D, ... D10 q Ei ... E10 B2 D^ ... D20 Cg E„ ... E20

'A bTd <i> cTe <i> BTd <2>
Buffer Period Lifetimes

aTc

Fig 14. Anillustration of opportunities to overlay buffers basedonthe periodicity of accesses.
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D4, B2} and the first buffer period wraps around the end of the periodic schedule — the first four

samples consumed by Bin aschedule period are the last four samples produced by Din the previ
ous schedule period. Notice also that each ofthe buffer periods for BTc, CTd and DTb requires
four words of storage. From the lifetime profile, we see that BtC<l> overlaps with CTd<1>,
CTd<1> overlaps with DTB<2>, and DTB<2> overlaps with BtC<2>. Thus if we are con
strained to map all buffer periods ofagiven arc to the same block ofmemory, then three separate
4-word blocks are required for BTc, CTd and DTb. If, however, we consider each buffer period
as an independent unit, then from the two lower sections ofthe lifetime profile, we see that only
two 4-word segments suffice —one for {BtC<l>, dTb<2>, CTd<2>} and another for

{DTB<1>, CTD<1>, BtC<2>}. Taking into account the 2words required for ATB, we see that
the decomposition into buffer periods reduces the total storage requirements from 14 words to 10.

5.2 Determining Buffer Periods

In the previous subsection, weillustrated the use of buffer periods toreduce lifetimes and

to increase flexibility in allocating memory for contiguous buffers. Now we examine how to sys
tematically determine the buffer periods and to apply them to memory allocation. We have loosely

•iQi—J(d
Schedule: AB(4C)(4D)B(4C)(4D)

AlB1C1...C4D1 ...D4 B2 C5 ... C8 D5 ... D8

Fig 15. An example ofhow mapping different buffer periods ofan arctodifferent blocks of
memory can improve memory allocation.
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defined a buffer period to be an indivisible subset of invocations whose accesses of a particular

arc are independent of the other invocations that access the arc. This independence allows differ

ent buffer periods for the same arc tobemapped todifferent blocks of memory and it provides an

efficient way to fragment the aggregate buffer's lifetime.

There are four mechanisms that can impose contiguity constraints on successive buffer

accesses ofan arc a — writes toa occurring from aloop inside source(a); reads from a occurring

from inside a loop in sink(oc); placement of source(a) or sink(a) within a schedule loop; and

dynamic buffering. The constraints imposed by these mechanisms can be specified as subsets of

samples which mustbe buffered in the same block of storage. For example, suppose that for the

SDF graph in figure 16(a), actor A is programmed so that it writes its samples iteratively. The

resulting contiguity constraints are illustrated in figure 16(b) —- the three samples produced by

each invocation must be stored in three adjacent memory locations. We specify these two con-

Ai

I I I I I I I I Bi B2 B3

(a) (b) (c)

Fig 16. An illustration of buffering constraints whenarcs areaccessed through loops inside
the actors.

straints by the subsets {A[l], A[2], A[3]} and {A[4], A[5], A[6]}, where A[i\ represents the ith

sample accessed by Ain aschedule period 2(for 1£i£TNSE). The constraints resulting from B's
reads occurring from within a loop are depicted in figure 16(c), and we can represent these con

straints analogously as {B[l], B[2]}, {B[3], B[4]} and {B[5], B[6]}. However, since we mustulti

mately superimpose all constraints, we would liketoexpress them in terms of thesame actor. Our

convention will be to express all contiguity constraints interms of the source actor. Thus, noting

the unit delay on ATB, we translate figure 16(c) to {A[6], A[l]}, {A[2], A[3]}, {A[4], A[5]}.

1. This notationassumes that the arc in question(in this caseATB) is understood.
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Determining the constraints due to schedule loops is also straightforward. Given an arc

ATB and an X € {A,B}, each outermost loop L in the periodic schedule defines aconstraint set
that consists of all accesses by X of ATB which occur within L.We can derive these from thecon

tiguous ranges of invocations of A and B that L encapsulates. We map all accesses within a loop

to the same physical block of memory because we cannot easily perform isolated resets of read/

write pointers inside loops. Expensive schemes — such as testing the loop index to determine

which physical buffer to use or mamtaining an array of buffer locations — are required to frag

mentbuffering within a loop. We do notconsider such schemes presently because we expect that

their benefits are rare, and thus we consolidate accesses within loops to thesame physical buffers.

Note that unlike the constraint sets corresponding to loops inside actors, a constraint set

corresponding to a schedule loop doesnot necessarily require a separate word foreachmember of

the set. A simple example is shown in figure 17. Here, the loop imposes theconstraint set {B[l],

B[2],... B[20]} for BTc, but clearly only two words are required to implement the buffer for this
arc. The actual memory requirement for each section of a fragmented buffer can easily be deter

mined by simulating the buffer activity over a single schedule period and noting the maximum

number of coexisting samples.

(a/^—^(bV ^\C) Schedule: A(10 BC)
Fig17.An illustration of compact buffering within a constraint set.

The constraint sets due to intra-actor looping, inter-actor looping and dynamic buffering

together define the physically independent sections of a buffer, which we have termed the "buffer

periods". We also include the singleton constraints {A[1]J, {A[2]}, ..., {A[TNSE]}, which we

need to account for samples that don't appear in any of theother constraint sets. For anSDF arc ct,

we refer to the entire collection of constraint sets, including the singleton constraints, as the col

lection of constraint sets imposed on a. Then, determining the buffer periods, which can be

viewed as the maximal independent constraint sets, amounts to partitioning the entire collection

into maximal nonintersecting subsets.
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Definition 2: Given an SDF graph G, an arc a in G, and aschedule Sfor G, let C={C-j, C2,...,
C|<} denote the collection ofconstraint sets imposed on a. Suppose b= {b-\, 62,..., bn] c c such
that

(1) No memberof b is independent of all other members of b — if n > 1, then for

each b\ there isatleast one Aj * b\ such that b\ n b\ * 0; and

(2) Ais independent of the remainder of C—i.e. (U6z)n[(uc2)-(u a)1 e 0
Z-l L z.l Z 2-1 ZJ

Then (u *>z) is called a buffer period for a.
z-l

One can easily verify that for a given schedule, each arc has a unique partition into buffer

periods. Furthermore, samples in the same buffer period must be mapped to the same contiguous

physical buffer whereas distinct buffer periods can be mapped to different segments ofmemory.
Finally, the amount of memory required for a buffer period is simply the maximum number of

coexisting live samples in that buffer period. Figure 18(a) depicts an example which we will use

to illustrate the consolidation ofdifferent constraint sets into buffer periods. The schedule offig
ure 18(a) does not contain any loops. If the buffer accesses within A or B do not occur

within intra-actor loops, then only the singleton constraint sets apply to ATB, and the buffer peri
ods are {A[l]}, {A[2]},..., {A[12]}.

Now suppose Aaccesses ATB through aloop inside A. The corresponding constraint set
is shown inthe second row offigure 18(b), and we obtain the resulting buffer periods by superim
posing the first two rows offigure 18(b) —{A[l-3]}, {A[4-6]}, {A[7-9]}, {A[10-12]}. Ifwe add

the additional condition that the first two invocations ofAare grouped into a schedule loop (we
change the schedule toC(2A)BABBABBB), then we must consider another constraint set {A[l-

6]}. Thenew buffer periods are thecombination of the 17 constraint sets in thefirst three rows of

figure 18(b) —{A[l-6]}, {A[7-9]}, {A[10-12]}. Now if we encapsulate B5 and B6 within a
schedule loop (the new schedule is C(2A)BABBAB(2B)), the resulting constraint set is {B[9-

12]}, which is equivalent to {A[8-ll]} due to the unit delay. This new constraint forces us to
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merge buffer periods {A[7-9]} and {A[10-12]}, and the resulting buffer periods are {A[l-6]} and

{A[7-12]}. Finally, if we impose the condition that Breads ATB through an intra-actor loop, then
we have the six additional constraint sets shown in the fifth rowof figure 18(b).The first of these

constraint sets intersects both of the remaining buffer periods and we are leftwith asingle buffer

period {A[l-12]}.

So far we have only mentioned that dynamic buffering can also lead to constraint sets,

however wehave notdescribed this effect. The effects of dynamic buffering are more subtle than

conditions imposed by loops. This is the topic of the next subsection.

CCJ •T AJ—W*\B J Schedule: CAABABBABBB

(a)

Some Possible Constraint Sets

Singletons {A[l]} {A[2]} ... {A[12]}
Awrites to ATB through aloop {A[l-3]} {A[4-6]} {A[7-9]} {A[10-12]}
Encapsulate A-j, A2 in a schedule loop {A[1-6]}
Encapsulate B5, B6 in a schedule loop {A[8-ll]}

Breads from ATB through aloop {A[12],A[1]} {A[2],A[3]} {A[4],A[5]}
{A[6],A[7]J {A[8],A[9]} {A[10],A[11]}

(b)

Fig 18. This example illustrates howsuperimposing different constraint sets can lead to dif
ferent buffer periods. The figure depicts amultirate graph, a schedule for the graph and
five possible constraint sets for the arc ATB.We use Ap-il as shorthand notation for A[il
A[/+1] A[/],if/</. u'
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5.3 Constraints for Dynamic Buffering

Dynamic buffering imposes contiguity constraints between buffer accesses whenever a

read occurs when the number ofsamples onthe arc exceeds TNSE. In such situations, the sample

to be read co-exists with the corresponding sample of the next schedule period —so we cannot

dedicate a single memory location to that sample. Fora given arc, an efficient way do deal with

such cases is to force all of these accesses to occur in the same contiguous block p of memory.

Since each of these sample's location will vary between schedule periods, they access p through

read/write pointers. Anyread which occurs when thesample population is within TNSEhowever,

corresponds to a sample whose location is independent of p. To explain this effect precisely, we

introduce the following definition:

Definition 3: LetG beanSDF graph and suppose that ATB isanarc in G.Then a transaction on

ATB is an ordered pair (i,j), 1£ ij £ TNSE, such that1

j= ([/-l+delay(AtB)]mcd TNSE) +1

Thus (i, j)is atransaction on ATB iftheyth sample consumed by Bin any given schedule period
is the fth sample produced by A in that schedule period or some earlier schedule period. For a

given periodic schedule S for G, we say that (ij) isastatictransaction if the number ofsamples

existing on ATB just prior to theyth read of Bis less than or equal to TNSE. We can express this
condition as

[delay(AtB)+p(ATB)^J - [c(ATB)(A^-1) + (/-I) mod c(ATB)] ZTNSE,

where iVB =1+floor[(/ —1) / c(ATB)] is the invocation ofBinwhich theyth read access ofATB

occurs and N/± is the number ofinvocations ofAwhich precede BN in S. Finally, we say that a
B

transaction is a dynamic transaction if it is not a static transaction.

1. The**+lM and "-1"are required inthis expression because we(by convention) number samples starting at1rather than 0.
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The transactions on an arc can be determined easily from the acyclic precedence expan

sion graph, or APEG (see [29] for a systematic procedure for computing the APEG associated

with an SDF graph), and the static and dynamic transactions can be identified by simulating the

activity on the arc over one schedule period. Figure 19 illustrates the decomposition of a buffer

based on static and dynamic transactions. In this example,TNSE is 6 while the maximum number

of coexisting samples on ATB is 8 —so clearly dynamic buffering applies. However, from the

table on the right side of figure 19(a), we see that the third, fifth and sixth read accesses of B occur

when there are TNSE or fewer samples queued on ATB. This corresponds to the set of static

transactions, which is summarized in the table on the left sideof figure 19(a). Thus samples asso

ciated with transactions (1,5), (2,6) and (5,3) canbe buffered in independent memory locations,

while (3, 1), (4, 2) and (6, 4) must be maintained in a single contiguous block of memory. The

resulting constraint sets are {A[l]}, {A[2]}, {A[5]}, {A[3], A[4], A[6]}. Figure 19(b) illustrates

the use of these constraintsets to form independent bufferingunits. Here, A[l], A[2] and A[5] are

mapped to independent (not necessarily contiguous) memory locations LI, L2 and L3 respec

tively, and the remaining constraint set is mapped to a five-word contiguous block of storage,

labeled the "dynamic buffer component". Five words are required because this is the maximum

number of coexisting live samples from {A[3], A[4], A[6]}. Figure 19(b) shows how the profile

of live samples in this buffering arrangement changes through the first schedule period. Each five

sample is represented by anordered pair ij, which denotes thejth sample to be consumed by B in

schedule period i, and a shaded region designates the absence of a sample. Observe that for each

live sample s in thedynamic buffer component, there is some point in the schedule period when s

coexists with thecorresponding sample of thenextorprevious period. This is precisely why these

samples must be buffered as a contiguous unit. Observe also thatin the dynamic buffer compo

nent, the read and write pointers for B and A, respectively, each shift three positions to the right

(in a modulo-5 sense) every schedule period. These pointers are not involved in accesses of LI,

L2 and L3 — theselocations canbe accessed using absolute addressing.

For the example in figure 19, mapping all accesses of ATB toasingle contiguous segment

Pof memoryrequires an8 word blockof memory, while decomposing this bufferbased on static

anddynamic transactions allows a partition into four mutuallyindependent blocks of 1,1,1 and 5
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transactions

(1.5) <static> (4,2) <dynamic>
(2.6) <static> (5,3) <static>
(3,1) <dynamic> (6,4) <dynamic>

initially

after Ai

after A2

after B1

after A3

after B2

LI L2 L3

1,3 1,5 1,6

1,3 1,5 1,6

1,5 1,6

2,3 1,5 1,6

Schedule: AABAB

read access

number of samples onATB
just prior to the access

(a)

(b)

B[l]
B[2]
B[3]
B[4]
B[5]
B[6]

Dynamic Buffer Component

Fig 19. An illustration ofstatic transactions and dynamic transactions for a dynamic buffer. In
(b), "ij" represents the live samplewhich is to be the jth sampleconsumedby B in schedule
period i.
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words. Although the net requirement of physical memory is the same (8 words), there is less

potential for fragmentation, or equivalentiy, more opportunity for buffer reuse [8] when this

example isa subsystem ina larger graph. Furthermore, the lifetime ofPextends through the entire
schedule period, whereas L2 and L3 are live only in the interval between Al and B2. These two

locations may thus bereused forother parts ofthe graph.

Itis not obvious however, that decomposing abuffer based on static and dynamic transac

tions will never increase the net memory requirements. Ifwe refer to the samples associated with

static transactions and dynamic transactions as static samples and dynamic samples respectively,
then the transaction-based decomposition requires a set of blocks whose sizes total Ns + N^
words, where Ns is the number of static samples (in asingle schedule period) and N^ is the maxi
mum numberof coexisting dynamic samples. If thissumexceeds the maximum number of coex

isting samples on the arc, then without further analysis —for which currently there are no general
techniques —we cannot guarantee that decomposing the buffer will not be detrimental. Fortu

nately, however, (Ns + Nj) is always equal to the undecomposed dynamic buffer size, as the fol
lowing theorem proves.

Theorem 2: Suppose that a is an SDF arc for which the maximum number of coexisting samples
M(oc) exceeds TNSE. Then Ns+ Nd = M(ct).

Proof: Suppose at some time t in the schedule period there are Rlive samples on a, and first sup
pose that Rk TNSE. Since the tokens buffered on an arc are successive, the last TNSE samples
produced by source(cc) are on the arc. Thus, there is asample corresponding to each static transac
tion on the arc. Itfollows that there are R-Ns dynamic samples on a at time t. Now suppose that
R < TNSE. We consider two cases here:

Case 1: (R< TNSE) and(Ns <TNSE -R). Then

(The number of dynamic samples at time t) <> R<, TNSE - Ns <M(ct) - Ns.
Case 2: R < TNSE) and (Ns £ TNSE - R). Then

(The number ofdynamic samples at time t)£R- [Ns - (TNSE - R)] =TNSE - Ns <M(cc) - Ns
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From the above discussion, the number of dynamic samples when R =M(cc) is M(ct) - Ns, and

this amount of dynamic samples cannot be exceeded with any other value of R. Therefore N,j =

M(oc) - Ns, which leadsimmediately to the desired result. QED

We conclude this section by pointing out that it is possible to decompose the dynamic

buffer component further — each dynamic transaction can be mapped to an independent block.

For example, the dynamic buffer component in figure 19 can be separated into three two-word

fragments corresponding to transactions (3,1), (4,2) and (6,4). This could be achieved simply by

using different read and write pointers for each of the associated accesses — we would need three

separate write pointers for A[3], A[4] and A[6] and three separate read pointers for B[l], B[2] and

B[4]. The overhead associated with this scheme is significant, but difficult to gauge precisely.

First, it places more pressure on the address-register allocator and may increase the amount of

spilling. This, in turn requires an extra memory location tosave each spilled item. Finally, thesum

of theindependent dynamic transaction segments (in this case 2+2+2=6)mayexceed the max

imum number of coexisting dynamic samples (in this case 5). Thus, for small to moderate

dynamic buffer sizes it is unlikely that decomposing the dynamic buffer component further will

beof value. However, when large delays are involved, it may provide substantial new opportuni

ties for overlaying. For example, in figure 20 there are no static transactions for BTc, anda 100

word block ofmemory isrequired for this arc if wedo not decompose the dynamic buffer compo

nent. However, if we view each of the four dynamic transactions ((1,1), (2, 2) (3, 3) (4,4)) as a

separate unit, we can implement this arc with four independent 25 word blocks of memory. This

additional freedom may lead tomuch better overall memory use if this example is asubsystem in

a more complex graph.

Since currently we cannot effectively predict the tradeoffs in decomposing the dynamic

buffer component, wehave nosystematic procedure for determining precisely when the optimiza

tion is useful. This is a topic for furtherresearch.
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Eliminating Modulo Address Computations

In section 4 we discussed the overhead associated with accessing circular buffers and we

presented examples ofhow we could reduce this overhead with careful compile-time analysis. We

showed that in the absence oflooping, we need only perform modulo address-register updates for

accesses that wrap around the end ofacircular buffer. We also presented examples ofhow modulo

accesses can be eliminated even in the presence of looping. In this section we develop a system

atic approach to eliminating modulo accesses.

6.1 Determining Which Accesses Wrap Around

First, we show how to efficiently determine which accesses of a circular buffer wrap
around the end ofthe buffer. For a static circular buffer this isstraightforward —we simply deter

mine the values of n € [0,TNSE - 1] for which

delay(a) + n= (some positive integer) x BUFSIZE,

where a denotes the arc inquestion, and BUFSIZE denotes the length of the circular buffer.

Fordynamic buffers, different accesses will wrap around the end of the buffer in different sched

ule periods. However there may still exist invocations whose accesses do not wrap around in any
schedule period. To determine these invocations we need to use a few simple facts of modulo
arithmetic.

Lemma 1: Suppose a, b and c are positive integers, and suppose that a divides b and c. Then a
divides (c mod b).

A) *\BJ *\C) Schedule: ACBCBCBCB

Fig 20. An example showing the benefits of decomposing the dynamic buffer component
into a separate segment for each dynamic transaction.
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Proof: c mod b = c - floor(c /b)xb. Both the subtrahend and minuend of the LHS are divisible

by a, so a must divide c mod b. QED

Lemma 2: Suppose thatp and qare coprime positive integers, let/q denote {0,1,..., q-1}, and
suppose r€ /q. Then Vfcj € /q3 k% € /qsuch that (r+^2) m°& a =*1 •

Proo/: Suppose thatfor somek1, nosuchk2exists. Then [(r +/wt) mod q] takes on at most (q-1)

distinct values as *varies accross Iq. Thus there exist distinct *2a> *2b e ^q suc^ mat

(r+*2aP)m°d ?=(r+*2bP)mo^ 0=*» f°r some *e !q-

Which implies that thereexistdistinct nonnegative integers ra and rD suchthat

r + k2aP = ra 4+*» a*10" r + *2bP = rb Q+ *•

=> (*2a~ *2b) P = (ra " rb) <?•

Since p and q are coprime, it follows that (*2a - &2b) is a multiple of <?. This contradicts our

assumption that Afca, *2b€ {0,1,..., q -1}. Q£0

Applying lemma 1, with a = gcd(TNSE, BUFSIZE), b = ^TNSE, and c - BUFSIZE, we

see that

Vpositive integers k-\ 3 a positiveintegerk% suchthat

(fyTNSE mod BUFSIZE) = *2gcd(TNSE, BUFSIZE).

This means that we can consider each dynamic buffer as successive "windows" of size

gcd(TNSE, BUFSIZE). In some schedule period, if source(cc) or sink(cc) performs its ithaccess at

offset j of window wx, then, since the ith access shifts TNSE positions from schedule period to

schedule period, weknow that theithaccess in any schedule period will occur at offsetj of some

window. Forexample, for thedynamic buffer in figure 21, it is easy toverify thatfor all schedule

periods, the window offset for A's first access is 0.
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Now let ws denote gcd(TNSE, BUFSIZE), the size of each window. Also let «w = BUF

SIZE / ws, thenumber of windows. Suppose that in the first schedule period, access i occurs at

offsetyofwindow w (assume now that offsets and windows are numbered starting at0). Then the

window number ofthe ithaccess insome later schedule period itcan beexpressed as (w+kTNSE/

ws) mod flyy. This is simply the initial window number plus the number of windows traversed

modulo the number ofwindows. To this expression, we can apply lemma 2 withp =TNSE/ws =

TNSE/gcd(TNSE, BUFSIZE); q=«w =BUFSIZE/gcd(TNSE, BUFSIZE); and r = w. Interpreting

this result, we see that for each window w\ there will be schedule periods (values of"/?') inwhich

theyth access occurs in w\ Thus they'th access of some schedule period will be a wrap-around
access if and only if thejth access of the first schedule period occurs at the end of a window. We

have proved the following theorem.

Theorem3:Suppose a is an SDF arc. Then they'th access (j € {1,2,..., TNSE}) ofsource(a) or

sink(a) is a wrap-around access in some schedule period if and only if

[delay(cc) + (/-1) ] mod gcd(TNSE, BUFSIZE) = gcd(TNSE, BUFSIZE) -1.

TNSE = 15

BUFSIZE =10

Schedule: AABAABAB gcdfTNSE, BUFSIZE) =5 ("window" size)

first access by Ainall odd schedule periods first access by Ainall even schedule periods

i i

^ window 1- -of<}- window 2- M

Fig 21. An illustration ofrepetitive access patterns in gcdfTNSE, BUFSIZE) windows.
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This check can be further simplified by observing the periodicity of the modulo term

above — we needonlydetermine the first wrap-around access yw explicitly:

yw =gcdfTNSE, BUFSIZE)- [delay(a) mod gcdfTNSE,BUFSIZE)].

Then we immediately obtain the complete setof wrap-around accesses Sw:

Sw=Sw(ocBUFSIZE)={7w +«xws|«€ {0,1,..., wsx floor[(TNSE - lj/wj },

where ws = gcdfTNSE, BUFSIZE) denotes the window size.

For the example of figure 21 we haveyw =5, and Sw = {5, 10, 15}. Code to implement

these accesses mustperform modulo address computations.These modulo computations willcor

respond to wrap-around accesses only one-third of the time. However, unless we increase the

blocking factor, which would in turn increase TNSE, we must ensure that these accesses are

always performed with modulo updates. In general, modulo computations will wrap around 1out

of every nw=BUFSLZE / gcdfTNSE, BUFSIZE) times, andwe canreduce the number of modulo

computations by a factor of ww if we increase the blocking factor to »w However, the resulting

explosion in code space renders this optimization impractical except for extremely simple exam

ples.

Note that the above developments apply to static buffering as well. In this case ws =

gcdfTNSE, BUFSIZE) =BUFSIZE and ww =1, so each mandatory modulo computation always

corresponds to a wrap-around access. Observe also that for both static and dynamic buffers, the

number of modulo computations required depends on the choice of the buffer size. Qearly 1out

of gcdfTNSE, BUFSIZE) accesses requires a modulo computation. Thus the modulo overhead

varies (neglecting looping considerations) inversely with gcdfTNSE, BUFSIZE). For example in

figure 21, a7-word buffer can support the given schedule. However, this requires 15 / gcd(15,7) =

15 modulo computations per schedule period —every access must perform a modulo update!

Increasing the buffer size to 10 results in 5 times fewer modulo computations. Thus, for critical

sections of the code, it may be beneficial toexplore tolerable increases inbuffer size for the possi

blereduction of modulo updates, particularly when the cost of themodulo update is high.
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As we will show in the following subsection, if we assume that the schedule is fixed, we

can efficientiy eliminate unnecessary modulo address computations using theorem 3 alone

— without explicitly computing S^ However the technique described here for determining Sw

should be kept in mind for advanced optimizations which attempt to reorganize the schedule to

improve code efficiency. Such techniques might include, for example, selectively unrollinginfra-

actor loops or scheduleloops to isolate moduloaddress computations. This wouldrequire explicit

knowledge of each wrap-around access. Incorporating modulo buffer analysis — as well as the

other techniques in this paper — into scheduling is an unexplored, but in the authors' estimate,

promising area of research.

6.2 Applying the Set of Wrap-Around Accesses

In the absence of looping, the numberof modulocomputations required in the target code

is exactly the numberof elements in Sy^ However, loops may cause the samephysical instructions

to perform both wrap-around accesses and linear accesses. In such cases, we must either unroll

the loop to isolate the accesses thatwrap around, or we must perform a moduloaccess computa

tionfor every access that is executed from within the loop. Wedonotpursue the issue of unrolling

in this paper; it is a topic that our research has notyet addressed. Instead, we focus on analyzing

the loop structure to eliminatemodulo accesses while leaving the loopsintact.

To eliminate unnecessary modulo address computations for theread orwrite accesses per

formed by some actor A from/to an arc cc, we first identify the set of distinct physical instruction

sequences, calledbuffer access instruction sequences, thatwill be used to access a by A. This is

analogous to common code space sets, which associate blocks of program memory with actor

invocations. However the bufferaccess instruction sequences depend on intra-actor loops as well

as schedule loops. For example, consider theactor definition in figure 22(a), in whichtheinputarc

is accessed through a loop of two iterations. Here "input.i++" specifies the next sample in the

buffer. Thus the first move statement consumes the first and third inputsamples in successive iter

ations of the loop, and the second move consumes the second and fourth input samples. Each of

these movestatements corresponds to a separate buffer access instruction sequence, since each

must be translated to a separate instruction or sequence of instructions. Thus every common code
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space set associated with an instance of this actor will have two buffer access instruction

sequences. For instance, for the schedule in figure 22(b), there are four distinct buffer accesses

instruction sequences associated with A's connection to BTA. Ifwe order them lexically, then the

first two correspond to the first appearance of A in the schedule, and these represent access sets

{1, 3} and {2, 4}; the other two correspond to the second appearance of A, and the associated

access sets are {5,7,9,11} and {6,8,10,12}.

X4X3X2X1 0.5{^-Xd + (X3-X4)}
• • • # /—

W A

clear pseudoregisterl ; initialize the sum
repeat2 ; startof loop

move input.i++, pseudoregister2 ;consume the next input sample (X-j or X3)
move input.i++, pseudoregister3 ; " " " " " " (X2orX4)
sub pseudoregister2, pseudoregisterS ;compute the difference
add pseudoregister3, pseudoregisterl ; updatethe sum

end-repeat ;
mult 0.5, pseudoregisterl ;divide the sum by two
move pseudoregisterl, output ;outputthe result

(a)

Schedule: AB(2A)

(b)

Kg 22. Anillustration of distinct buffer access instruction sequences.
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For a given buffer access instruction sequence, the corresponding machine instructions

must perform a modulo address computation ifand only the associated access set Iaintersects the

set ofwrap-around accesses, i.e. iff Ia n Sw * 0. In practice, however we do not need to explic

itly compute and maintain Sw nor the access sets associated with each buffer access instruction

sequence. We simply simulate the buffer activity, traversing the buffer access instruction

sequences in succession, for one schedule period and apply theorem 3 for each access. If O

denotes the current bufferaccess instruction sequence in oursimulation, and the current access is

they'th access ofarc a by actor A, then we mark O as requiring a modulo computation if

[delay(ct) + (j - 1) ] mod gcdfTNSE, BUFSIZE) = gcdfTNSE, BUFSIZE) - 1.

All buffer access instruction sequences which are notmarked by this simulation can be translated

into simple linear address updates.

6.3 Moving Modulo Address Computations Outside of Loops

Frequently, the wrap-around access for a multirate modulo buffer occurs during the last

access associated with each invocation of some schedule loop, allowing us to float the modulo

address computation outside of the loop. We illustrated this effect earlier in the example of figure
12. Such situations normally arise through one of two mechanisms. First, when there is no delay
on an arc a, optimally looping the firings of source(a) and sink(cc) often requires that a loop

encapsulate a number of accesses of a equal to theminimum buffer size. Thedetails of this mech

anism are beyond the scope of this paper. Second, when there is a delay on a, and the buffer size

matches the number of accesses performed by some encapsulating loop Ag, then the modulo

access associated with sink(ct) can be moved outside ofAg (this is the case in figure 12). The

modulo computation for source(ct) must remain inside Ag since, due to the delay, the wrap-around
access is not the last access ofa by source(a) in an invocation ofAq.

We can detect such opportunities in conjunction with the buffer simulation used to elimi

nate modulo address computations. For each invocation of a loop A, we record the last offset at

which this loop invocation accesses each buffer. If at the end of the simulation, we find that each

invocation ofAaccesses buffer batthe last position (offset BUFSIZE - 1), and each invocation of
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Aperforms no more than BUFSIZE accesses of b, then we can float the corresponding modulo
address computation outside of the loop.

7 Deviating from Dataflow Semantics

The most natural way tocompile a dataflow program is toimplement each arc as a distinct

contiguous block ofmemory. The production ofasample onto an arc then corresponds to a write

into a distinct physical location; and at any given time, there is a one-to-one correspondence

between live samples and physical storage locations. We have already shown how modifying this
strictly dataflow-based approach to include register allocation and buffer overlaying can improve
target code efficiency. For a certain class ofactors, a further modification is useful —suppressing
the duplication of coexisting samples that have the same value.

Probably the most obvious and most frequently-used example is the/or* actor, which con

sumes one input sample and replicates the value ofthis sample on each ofits output arcs. Figure

23 shows a simple illustration of how implementation offork can be optimized. Here, ¥ repre
sents an instance of a 2-output/or*; A represents an arbitrary homogeneous source actor; and B

and Ceach denote arbitrary homogeneous sinks. The lower left side ofthe figure shows an outline

ofMotorola DSP56000 code to implement the graph if ¥ is treated like any other actor (the code

outline assumes that register allocation has been performed accross the homogeneous buffer

accesses). Since the code associated with ¥ simply copies data, we can eliminate move instruc

tions by having B and Cread their inputs directly from the output buffer ofA. An outline of the

resulting code is shown in the lower right sideof figure 23. Observe thatno extra instructions are

required to implement *P.

The easiest way to automate this optimization is to make the compiler recognize fork as a

special actor —we incorporatefork into the language. For each instance ¥ of fork, the compiler
generates a single logical buffer to implement all of the arcs connected to ¥. A single write

pointer into this buffer is associated with the source of *Fs input arc, and the sink of each output
arc is allocated a distinct read pointer. Thus no run-time code is required to implement the fork,
except for possible swapping ofbuffer pointers. Furthermore looping creates no complications for
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this scheme. The only additional consideration is that the "macro-buffer" associated with ¥ must

be largeenough so that a sample is never overwrittenbefore it has been consumed by all destina

tioninvocations. The required minimumbuffersizeis simplythe maximum number of coexisting

live samples that can exist on any of ^P's output arcs. The techniques presented in the previous

sections of this papercan be extended straightforwardly to the macro-buffers associated with/or*

instances.

We can apply similar optimizations to various other actors thatdo not perform any opera

tions on theirinputs. However, looping often introduces comphcations. For example, consider the

repeatactor, which consumes a singlesample and replicates this sample n times on its outputarc.

Figure24 shows the connection of such an actor (node B, with n = 4) to a sink (node C) that con

sumes three samples per invocation. If there is no looping, we can implement BTC efficiently by

having Cs read pointer Cm point directly into the buffer for ATB and advancing this pointer after

every four accesses. Thus no run-time code would be required for the upsample and we would

code for "A"

output in xO
code for "A"

output in xO

move xO, yO
move xO, y1

> code for code for "B"
input in xO

code for °BM
input in yO

code for aCM
input in xO

code for MCM
input in y1

Fig 23.Optimizing the buffering for the/or* actor.
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save four move instructions over the conventional implementation of B. If however, we have the

looped schedule (3AB)(4C) then it is difficult to apply this optimization. This is because the

advances of Cm do not occur in lockstep with the loop Lcthat encapsulates C. In particular, if C

reads directly from the buffer for ATB, then Cm advances after the 4th, 8th and 12th read

accesses. These correspond respectively tothe first access in the second iteration of Lc, the second

access in the third iteration of Lc, and the third access in the fourth iteration of Lc. Thus wemust

test the iteration count after each access to determine whether or not to advance Cm, which will

mostlikelybe less efficient than making four physical copies of each inputsample to B.

Figure 25 depicts three other common non-computational actors that can beimplemented

efficientiy as "macro buffers" only if the looping structure permits it. Before "optimizing" such

0^0^20
Fig 24. An illustration ofhow looping can complicate the optimization ofnon-computational
blocks. Here, "B" represents a repeat actor that consumes onesample and produces four
copies of it on its output arc.

downsample
(by factor of 2) commutator distributor

Fig 25. Three useful actors thatdo not perform operations on their data. "Downsample by
factor of nn outputs one out of every n samples consumed. A "commutator" interleaves
samples from each input arc onto its output arc; and the "distributor actor" outputs alter
nate input samples to alternate output arcs.
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actors by the techniques discussed in this section, the compiler should verify compatibihty with

the loop organization.

Also, if we implement these optimizations by augmenting the language, then we should

clearly consider only functions that will be used frequently. However, the ideal solution is to

allow the user to define such actors in a programmable fashion. This would allow special-purpose

non-computational blocks to be implemented efficiently — for example, an actor that reverses the

elements in an array. Supporting this generally requires a significant innovation in the program

ming model.

In this section, we have presented a class of optimizations for SDF programs based on

suppressing the duplication of data by actors that do not perform any computations. There is

another widely applicable code optimization that is closely related, and that also requires a devia

tion from strict SDF semantics — this involves actors whose outputs depend on previously con

sumedinput samples. Probably the mostprevalent example of this in DSP applications is the FIR

filter. Figure 26 shows oneSDFtopology forannthorder FIR filter. Here, thehomogeneous input

arc represents the next sample in the input sequence and the self loop represents the state associ

ated withtheFIRblock —these arethelastn-1 samples of theinput sequence. However directly

applying this model to compilation would result in 2nbuffer accesses per invocation! A far pref

erable solution is to have the code block for the FIR manage the buffering of pastsamples [15].

This simply involves maintaining a circular buffer of length n-1, where each invocation copies

the new input sample into the last position, overwriting the oldest buffered sample. In terms of

dataflow, this imphes replacing theself-loop of figure 26 with a homogenous arc containing unit

(n-1)D

Fig 26. Graphical representation of an nth order FIRfilter block.
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delay. This arc represents the address ofthe current insert-position in the buffer ofpast samples,

which must bemaintained from invocation to invocation (for more details, see [15]).

Although a big improvement, this scheme still involves overhead —replicating each new

input sample and maintaining the internal circular-buffer pointer. We can eliminate this overhead

simply by ensuring that theNth sample produced on the inputarc of the FIR is never overwritten

before the (N+ri)th sample is consumed. This can be guaranteed by making sure the buffer sizeis

at least n greater than the maximum number of coexisting live samples. Thus, each FIR invoca

tion can read all past samples directly from the buffer associated with the input arc, and no repli
cation is necessary.

This technique applies to any actor which references past samples. The requirement for

past samples can be specified by annotating each SDF arc with an additional parameter —the

number ofpast samples required by the sink. Allowing successive invocations to process overlap

ping "windows" ofinput samples in this manner also increases the exposure ofdata parallelism
(for details, refer to [27]).

8 Conclusion

Until recently, in the domain of signal processing, graphical programming was primarily

used in the context of simulation and developing software for applications with modest perfor

mance requirements. When performance requirements approached the limits of the target proces

sor, implementers had to resort to manual programming at the microcode level. However, recent

progress in dataflow theory and in compiler technology for dataflow programming now allows

compilers for graphical DSP languages to approximate meticulous manual coding for single sam

ple-rate applications.

Although therepresentation of multirate algorithms asdataflow graphs is well-understood,

compiler techniques must be augmented to efficiently manage the iteration and large buffering

requirements associated with the multirate case. This paper approaches these problems in a uni

fied manner and develops systematic solutions. A large number of optimization techniques have
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been presented. Many of these, such as handling loops, determining buffer parameters, and com

puting wrap-around accesses will apply frequently, while the importance of various other tech

niques — e.g. decomposing dynamic buffer components and applying the first-reaches matrix —

isvery problem-specific. For example, if minimizing chip area is critical, it may be necessary to
overlay buffers as much as possible. However, since thorough exploitation of buffer period infor

mation is computationally expensive (although not combinatorial), a robust compiler should not

attempt it if it is not necessary.

We envision that the large number ofspecialized optimization strategies introduced in this

paper can be best applied within a knowledge-based, goal-oriented framework, such as DES

CARTES [27]. We are currently designing such a framework for optimized code generation of

multirate signal processing systems. The implementation platform is Ptolemy, an object-oriented

prototypingenvironment for heterogeneous systems [5].

We are also pursuing the incorporation of our memory management strategies into the
scheduling process.

9 Appendix

In this appendix, we show how to systematically compute the first-reaches table, which

was introduced in section 4. Our technique is an adaptation of the method described in [1] for

determining reaching definitions. Let Gdenote an SDF graph; let Sdenote a looped schedule for
G; let (j)(#, •) denote the corresponding first-reaches table; and recall that for any two CCSS's X
and Yassociated with G and S, *(X, Y) =Tifand only if there is a control path from X to Ythat

does not pass through another CCSS for Y. Also, for any CCSS X, let actor(X) denote the actor
associated with X — i.e. the actor for which X is a CCSS.

Figure 27 summarizes how to determine the columns of(j) that correspond to an actor A* in

G. We start by examining some innermost loop A1 of S(by "innermost loop", we mean aloop in
which no other loops are nested). Let G|, C2,..., Cr denote the CCSS's encapsulated by A1 in lex
ical order. We process each Cj according to the following construction rules:
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Loop A

C2

1
Cr

actor(G)*ti

owr(C) =w(C)u{C}

(a)

Appendix

(c)

actor(C) =A*

V*€w(C'),<KjtJC)=T
out(C) = C'

(b)

A* -first=the lexically first
CCSS of A*in A

A*-out=owf(Cr)

(fA*-first*0
(1) V*G w(A), <(>(*, A*-first) =T
(2) V*e A*-out, <|)(jc, A*-first) =T
(3)o«/(A) =A*-out

else

out(A) =in(A) u A*-out

Fig 27. This figure summarizes how the loop structure is hierarchically analyzed to con
struct the first-reaches table. Parts (a) and (b) correspond toCCSS's in an innermost loop,
and part (c) shows how an inner loop is consolidated into a single block Ci in the CCSS
flow araph. The pseudocode segment in (c) specifies how Cms handled when its encap
sulating loop is examined.^, C& .... Cr each represents aCCSS or aconsolidated loop.

in(C,)=0.

fori = 1,2, ...,r:

if actor(C\) =A*, then

(1) V T| € m(Cj), set ftT|, Q) to"T"

(2)oK/(Cj) = {Ci}
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else

ow*(Cj) = m(Cj)u{Cj}

if i * r then in(C\+-\) =out(C\)

These rules are summarized in figure 27(a) and 27(b). Observe that wecan describe in(C\)

as the set of CCSS's in A1 which reach C\ before they reach a CCSS for A*. Thus when we

encounter aCCSS C^ associated with A*, we set each entry in column Cy\ ofo> that corresponds to
anelement of in(Cfi).

After processing Ai in this manner, we"collapse" the body of A-| into asingle loop-CCSS

in S. For example, ifS=(2A(3 CBA))1 and A^ represents the loop (3CBA), then we collapse A1
to obtain the hierarchical schedule S-j =(2AA-j). We associate two parameters with A«|: A*-

first(Ai), which denotes the lexically-first CCSS for A* in A1 (if A* does not appear in A<\ then we
write A -firs^A-j) =0); and A*-out(A-|), which simply denotes out(Cr). For example, suppose that
S is the looped schedule shownin figure 28(a). Let H1, H2, H3 and H4 denote the CCSS's corre

sponding tosuccessive appearances of Hinthe looped schedule, and similarly define CCSS's J1,

J , J ,J and K1, K2, K3 (recall that for SDF actors, subscripts denote invocation numbers, so we
use superscripts to label CCSS's). Now suppose that A* =Jand A-j denotes the loop (2HJKJHK).
Then A'-first^) =J.,; A'-ou^A-,) ={H2, J2, K2}; and S2, the loop hierarchy for the next algo
rithm iteration, is (A-|HJ(3KJH)).

In the algorithm iteration corresponding to schedule Sj (i £ 2), weselect one of the remain

ing innermost loops from Sj. This loop Aj contains only actor appearances and collapsed loops
(members of {A-j, A2,...,Aj.-|}). We process these elements ofSj using the construction rules of
figure 27(a) and 27(b) for actor appearances (CCSS's). For each collapsed loop A, we apply the
rules shown in figure 27(c) instead. Here, rule (2) is required to capture the reachability informa
tion associated with successive iterations ofA, whereas rule (1) corresponds to the flow path
entering A. After applying the appropriate construction rules to each component ofAj, we col
lapse Aj in Sj to obtain Sj+1, the schedule for the next algorithm iteration. We proceed through

1. The outermost parenthesis represents the infinite loop that encapsulates the schedule period.
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A1=(2HJKJHK)

in(H1) =0
in(J1) ={H1}
in(K1) ={J1}
in(J2) ={J1,K1}

in(H2) ={J2}
inCK2) ={J2 H2}

J-first(A-,) o J1
J-out(A-|) =out(K2)
S2 = (A1HJ(3KJH))

A2 = (3KJH)

infK3) =0
in(J4) ={K3}
inOH^-'J4}

J-first(A2) =J4
J-outfA^ =out(H4) o {H4 J4}
S3 = (A1HJA2)

Appendix

Schedule: ((2HJKJHK)HJ(3KJH)))

(a)

<MH1,J1)=T

<KJ\J2)=T
<MK1,J2)=T

{J2H2,K2}

<KK3J4)=T

A3« (A! HJA2)=> (oo A!HJA2)

in(A-j) a 0 *(J2,J1)-T
<KH2J1)=T
<MK2J1)=T

in(H3) ={J2H2,K2}
in(J3)o{J2H2,K2H3}

<KJ2,J3)=T
<MH2,J3)=T
(MK2J3)=T
(MH3,J3)=T

infA^-fJ3}

in(A3) « 0

(MJ3,J4)=T
<KH4,J4KT
W4,J4)=T

J-firs^JoJ-firsttA^oJ1
J-out(A3)» outfA^ ={H4,J4}
S4 =A3

cMH4J1)=T
cMJ4,J1)=T

(b)

Fig 28. An illustration of how the first-reaches matrix is constructed. For the schedule in
part(a), part(b) shows step-by-step how the relevant reachability information is extracted
to construct the columns of 9 associated with actorJ.

algorithm iterations until we have collapsed the infinite loop that encapsulates the schedule
period.

Figure 28(b) illustrates the construction ofthe first-reaches table based on the method pre
sented in this appendix.
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