
Copyright © 1992, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

A RETROSPECTIVE ON DATABASE

APPLICATION DEVELOPMENT

FRAMEWORKS

by

Lawrence A. Rowe

Memorandum No. UCB/ERL M92/13

23 January 1992

A RETROSPECTIVE ON DATABASE

APPLICATION DEVELOPMENT

FRAMEWORKS

by

Lawrence A. Rowe

Memorandum No. UCB/ERL M92/13

23 January 1992

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

A RETROSPECTIVE ON DATABASE

APPLICATION DEVELOPMENT

FRAMEWORKS

by

Lawrence A. Rowe

Memorandum No. UCB/ERL M92/13

23 January 1992

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

A Retrospective on Database Application Development Frameworks

Lawrence A. Rowe

Computer Science Division - EECS
University of California at Berkeley

Berkeley, CA 94720
(Rowe@CSJBerkeley.EDU)

Abstract

Four applicationframeworkmodels developedby the au
thorfor database application development systems arede
scribed. The key feature of these systems is to provide a
modelforthedefinition of highlevelobjectsthatrepresent
interface abstraction that can be used to build an applica
tion.Structuringapplicationcode aroundinterfaceobjects
reduces the conceptual distance between the executing
programand its specification. At the same time,goodpro
gramming practicesmust be supported(e.g., code modu
larity, reusable components, and information hiding).

1. Introduction

Thispaperpresentsa retrospective on what I havelearned
during thepast IS yearson thedesignandimplementation
of development tools for database applications. During
this time I directed or consulted on five systems for data
base applicationdevelopment:

(1) TheRigelprogramming language developed
between 1976 and 1979 at U.C. Berkeley
[Rowe79].

(2) The Forms ApplicationDevelopment Sys
tem (FADS) developed between 1979 and
1982at U.C.Berkeley[Rowe82,Shoens82].

(3) Application-By-Forms (ABF)developed be
tween 1983 and 1986by Ingres Corporation
[Ingres90, Rowe85].

(4) The PICASSO system developed between
1987and 1991 at U.C Berkeley[Rowe91].

(5) Windows/4GL (W4GL) developed between
1988 and 1990 by Ingres Corporation [In-
gres91].

Rigel wasa Pascal-like database programming language.
It provided a traditional character stream-oriented input/
outputsystem that madeit impossible to develop forms-
basedapplications. Rigel itself did not havea majorim
pact but many ideas developed in that system were used

+This research was supported bythe National Science Founda
tion under grantMIP-90-14940.

again in later systems.

FADS andABFweredesignedto developforms-based ap
plications mat would run on an alphanumeric terminal,
and PICASSO and W4GL were designed to developed
graphical applications that wouldrun on a bit-mapped ter
minal or workstation. These four systems have a higher
levelapplicationframeworkmat simplifiesapplicationde
velopment

This paper describes the evolution of the application
framework model from FADS to W4GL.

2. FADS Application Framework

Anapplication framework modelrepresents an application
by a collection of objectsmatencapsulate thedataabstrac
tions,user interface, and application behavior. The major
difference between themodels wasthetypeofobjects sup
plied and their behavior. FADS supported the following
object types:

(1) Relations stored in the database.
(2) Datatypes that represented values such as,

integers, strings, and dates.
(3) Procedures that contain applicationcode.
(4) Formsmat contained fields through which

data is displayed to and edited by the user.
(5) Frames that contain a form and a menu of

operations the user can execute. An opera
tion can change the user interface (e.g., dis
play the next employee) or invoke an
application procedure (e.g., create a new
product number in a bill-of-materials).

Frames are similar to procedures in that they have local
variables and they can be called. Frame variables are
boundto fields in the form so the value displayed to the
user is always the current value of the variable. Frames
alsohaveparameters so that valuescan be passedto them
when they are called. Formal parameters are local vari
ables so it is veryeasy to displaydata to the user. Theap
plication calls a frame and passes it the data. The system
displays the formandmenuto the user.The datapassedto
the frame is displayed in the fieldto whichthe formal pa
rameter is bound.

»J5 wp ul* 12 #u** iast

ft* Ifttottticn

iStvtw IPracass Tint SStep
mmimummj imk i. .i •„.^,-rrr

limiting ip««f
Itfsfttng (IMS
(nmiflB IpMC
(stopped »«*«-l?
halting Ipwc
(Martins IPNC
•starting »p»
Ittartlne lt**-l?
lutltina «P«
lasarting (PMC
{starting lowrl?
tWttifQ)mo*l?

IPHTIBM
I
ifuntwi
IKIL-IHW
1PBTT0W
I
I
\
I
I
I

IMTTERK
I
J

toSuMnj

ihegarf»
ttoStrtg
Ihsuqt
Ihsue
(bang
(tear*
ilaana
tpiC«ttO
Harry
Ipteaaaa
l»ip

f

Help Craato Ceraaet arfaulto Batait HfP-tos Update KtU >

BLISHIP UL, 12 August 19»

Run t9:13
Statu*: usltiqg

ftAtUMS -4MM

Sw Batait

«tap;

(Hetsvftar wrataK i4 «nH«tt serf

Step ftsthi «u.-foa«n«/wiM»wnBW

IstratxvtZS

ute

lid UetMM t

IS ISOMP]
17 «CH J
110 IHCtL I
»2 imirW&S* I
113 (CMOS jl
Ii5
1

liCWWT \
1 1

fetes)n kit SOW
•>''') —

114 Uutar acrlba

Help Halt ftwc ttflHog Earwtaalflro ttodlfM fad

Figure 1: Two frames from a shopfloor control system.

The form andoperation menu aredisplayed to the userin
a standard way, and the system provides built-in com
mands toenter andeditdata. Consequently, theapplication
developer does nothaveto writecode to display the form
andinteract with the usee The developer designs the form
witha direct manipulation editor and specifies the opera
tions. Figure 1showstwo frames from ashopfloor control
system used in semiconductormanufacturing. The frame
on the left lists active runs.When the user selects a run and
executes the Detail operation, the frame on the right re
places the frame on the left on the user's screen.

FADS treated forms as a separate object so they couldbe
reused in different frames or forms. Forexample, a name
and address block with edit checks and operations can be
defined as a form and reused in other forms to standardize
the way they are displayed to and edited by the user.
Datatype objects included display attributes (e.g., edit
checks, input masks, and default values) so that forms de
fined by specifying the datatype displayedthrougha field
would have the default display attributes.

FADS had a direct manipulationinterface editor that al
lowed users to define objects by filling in forms. In addi
tion, the forms system had table fields which are an
essential interfacewidget for applications with structured
data(e.g., tables, sets of objects, etc.). A table field dis
plays a record in each row.

The major problem with FADS was that it was too slow,
and I had trouble getting the funding agencies to continue
work on a system that seemed indistinguishable from the
screen painters being developed in industry. The major
performance problem wascaused by dieway applications
were stored in the database. The complete application
specificationincluding forms, types, and 4GL code was
stored in the database. We fully normalized the database
designso thateachstatementin anoperationandeachfield

in a form wasstoredin aseparate record. As you mightex
pect, it took a long time to fetch a frame definition from the
database. Nevertheless,the FADS prototypedemonstrated
mat this approach to building applications made sense.

3. ABF Application Framework

I co-founded Ingres Corporation in 1980 with Michael
Stonebraker and Eugene Wong and by 1982 it was clear
the company needed a 4th GenerationLanguage system. I
was ableto convince them thata commercialproductwith
a FADS-like model would be a good product The result
ing product was ABF.

ABF introducedseveralnew conceptsto the model: frame
types, popup forms, and globalvariables. FADS provided
only one type of frame. The developer had to specify the
form and the operation code. ABF supplied report and
Query-By-Forms (QBF) frames so an application devel
operdid not have to specify as much detail. Forexample,
report frames are defined by specifying the report The
system automatically supplies a form with fields to enter
the report parameters and operations to display die report
on the terminal or send it to a printer. QBF frames supply
operationsto query and update datathrough adefault form
generated from the database schema or a custom-designed
form specified by the developer. In essence, frames are
createdby application generatorsintegrated into die devel
opment environment

Because FADS and ABF ran on alphanumeric terminals,
they displayed only one frame at a time. When an applica
tion called another frame, the current frame was replaced
by the called frame. When that frame returned, the previ
ous frame was redisplayed. ABF added the concept of
popup forms winch aredisplayed in a small window on top
ofthe currentframe.Popup forms aretypically used to dis-

play acceptablevalues for a field. They were better than
calling another frame because the rest ofthe current frame
wasstill visible. In fact popup form is really amisnomer.
Since die popups received die keyboard focus and con
tained operations, they were really frames. However, it
was more convenient to specify die popup as partof die
form in whichit wouldbe usedrather than define a sepa
rate frame and call it

ABF also added global variables and local variables not
bound to form fields. In FADS, all variables were local and
they were all bound to form fields. This change was the
first of manythatadded aprogramming language to ABF.
My initial concept fortheFADS 4GL wasthatoperations
would be specifiedin an extended query language, not a
programming language. The goal was to create an end-
userprogramming environmentthatdid not require signif
icantprogramming experience. A conventional 3GL pro
cedure could be called from the 4GL so the user could
write a complex procedure if required, but he or she was
not forced to do so. Unfortunately, this approach did not
work becausethe development environment made it diffi
cult to edit and recompile 3GL procedures and users
wanted die power of a full-function programming lan
guage. Over time the ABF4GL has evolved into a reason
ablycompleteprogramming language. In fact manyofdie
procedural constructs in the ABF 4GL were modelled on
the language constructs developedin Rigel.

The ABF model was not perfectbecausenested formsand
type objectswereomitted,anddevelopers couldnotdefine
new frame types.They wereomitted to reduce theproject
complexity anddevelopment time. Nested forms and type
objects weremissed,butthey are not asimportant asuser-
defined frame types.

ABF supported three frame types: user, report, andQBF.
The system needed menu frames, that is frames that show
alist of operations anddocumentation foreachone.Many
usersdeveloped standard menu frames, but they weredif
ficult to specify inan application.1 Ifthe system supported
user-defined frame types, developers could have built
menu frames into the system themselves.

Notwithstanding these limitations, ABF was a very suc
cessful product For several years ABF and the other
forms-based interface products from Ingres Corporation
were considereddie best database tools in die industry.

A static analysis of30 ABF applications wasperformed to
seehow people used ABF [Gardner88]. The applications
weretakenfrom 3 companies. The largest application con
tainedover 15,000lines of code. The study showed that
the averageapplication was composed of 30 frames and
that 25% of the forms were used in more than one frame.
The study also found that on die averageuser frames con
tained 5 operations andeach operation contained 10lines
of code. Another interesting resultwas that applications

Several thirdpartysoftware companies andconsultants devel
opedflexible menu systemsthatthey soldasproducts orusedto
improvetheir own productivity.

were either composed predominately of user frames or
theywerecomposed of QBFand report frames. The appli
cations composed primarily of user frames were produc
tionapplications thattypically included manyapplication-
specific operations (e.g., release purchase order). The
otherapplications werewhatI callad hocapplications de
veloped by end-users to solve an rmmmAA** need. These
applications often bringrealvalue to an organization and
over time they become production applications in the
sense that die organization cannot run without them.

4. PICASSO Application Framework

Inlate1985,1 decided to builda systemto developgraph
icaluserinterface (GUI) applications. The system, called
PICASSO was begun in early 1986 and released outside
Berkeley in late 1989. The ABF model had to be modified
to allow multiple windows to be displayed at the same
time and to include other common GUI interface abstrac
tions. Two new interface objects were created: dialog
boxes wApanels. A dialog box is a modal interface that is
usedto confirmanoperation, collect furtherarguments for
anoperation, orreportanerror. A panelis anon-modalin
terface thatis typicallyused to presentmore detailedinfor
mationaboutanentity (e.g.,selectinganemployeein alist
mightshowmorederails aboutdie employeein apanel)or
the sameinformation in a differentrepresentation.

The behaviorof dialogboxes andpanelsis different than
frames. Whereas a frame is like a procedure, a dialog box
is like a function. That is, die dialogbox is called,the user
is forced to respond to it, and a result is returned to the
caller. It is positioned at the center of the currently active
frame orpanel A panelis like a co-routine. It is displayed
to the user when the panel is first called, but execution of
the panel is suspended when the user moves die mouse
cursoroutside the panel window. Hie panel execution is
resumed when the mouse is moved back into the window.

Each framework object called a PICASSO object (POX
has a different visual appearance. A frame has a menubar
withpulldownmenusacross the top ofits window.A panel
caneitherhave a menubaracross the top or buttonslisted
downtherightsideofthe window.Frames andpanels have
tide barsprovidedby die window manager. Dialogboxes
havebuttonsdown the rightsideandno tide barsincethey
are non-modal interfaces.

Figure 2 shows a screendump ofasemiconductorC3Mda
tabase browser[Smith90]. It hasa frame andthreepanels.
The frame in the upper left cornerof the screen shows the
facility floorplan, diepanelin dieupperrightcomershows
equipment in the facility, the panel in the lower right cor
nershows utility lines running through the facility, and the
panelin the lower left comer shows a picture ofa particu
lar piece ofequipment

PICASSO introduced lexical structure between PO's to
solve two problems: data sharing and window hiding.
PO's can share data either implicitly by accessing vari
ablesin a common parentor explicitly by passingparam-

Figure 2: CIM database browser.

eters. Both approaches have proven convenient. The
second problem lexical structure solved is when to hide a
PO. When a frame is called or exited, the current frame
and all visiblechildren of that frame are hidden. Suppose
that the lexical parent of the equipmentpicture panel in
figure 2 is the equipment panel in the upper right corner,
and the parent of the equipment panel is the frame. Conse
quently, whenan operation returns or exits the equipment
panel, the equipment picture panel is removed too. Declar
ative specification of these relations based on lexical struc
ture is easier for the programmer to understand than
procedural specifications.

PICASSO was written in Common Lisp using the Com
mon Lisp Object System (CLOS) and the X Windowing
System. The 4GL is essentially Lisp with extensions to
call PO's, access variables, and execute database queries.
I wouldhave preferred to develop a simpler end-user4GL,
but resources were limited.

The use of Lisp was both positive and negative. On the

positive side, it is a great prototyping environment partic
ularly for experimenting with language constructs. We
were able to implement a complete constraint system that
allows us to modify variables or interface behaviors as the
result of functions of other variables in less than 3K lines

of code. On the other hand, we have struggled to build
space and time efficient production applications. Another
problem we have had is attracting and training people to
use the system. It takes 4-6 months to train a competent
Lisp programmer and another 6 months for them to leam
the body of the PICASSO system. We have built a proto
type interface builder, but it still needs considerable work.
And we are running into the same funding problem we had
with FADS because people think that the Next Interface
Builder and HyperCardhave solved all problems.

5. W4GL Application Framework

In late 1988,1 convinced the folks at Ingres to build a next
generation development environment for GUI applica-

tions to replace ABF. W4GL simplified the PICASSO
model by reducing the number of distinct callable inter
face objects. It has only one object called a frame or win
dow, rather than the three objects in PICASSO (e.g.,
frame, dialog box, and panel). However, there are two
frame types: menu anddialog. A menu frame corresponds
to a PICASSO frameanda dialog frame corresponds to a
dialogbox. Panelbehavioris specified either m the frame
definition or in the statement that calls the frame.

At the time, I thought this approach was a poor design
choicebecausedie visual appearance ofthe application in
terface did not clearly delineate the behavior of the differ
ent windows. A programmer could create two windows
that looked exacdy alike, but behaveddifferently. The user
could not determine which windows were frames and
which were panels.The eady design did not Higringnigh di
alog boxes, althoughthey were eventually separated out
In retrospect this approach probably is not a problem
since we were forced to add menubars to panels in PIC
ASSO which made them indistinguishable from frames.
However, we still use buttons down the right side for most
panels.

W4GL extended the ABF 4GL to include an object sys
tem. The entire system was written in this object system.
Numerous people have noted that an object system lan
guage is the best interface toolkit and applicationimple
mentation language. The object system in W4GL uses a
single inheritance hierarchy and methods that discriminate
on one argument (Le., unimethods). The CLOS system we
used for PICASSO uses multiple inheritance, urn- and
multi-methods,andmethod combinations.Ourexperience
was that multiple inheritance was useful multi-methods
were unnecessary, and method combinations were useful,
but difficult to use and slow [Konstan 91]. One of the
W4GL implemented remarked that multiple inheritance
would have simplified the implementation of the forms
system on winch the system runs. Consequently, I believe
multiple inheritance is a good idea.

The biggest improvement in W4GL, aside from the sup
port for GUI interfaces and the direct manipulationinter
face builder, was the addition of a version control system
on applicationobjects. From the very beginning in FADS,
it was clear that a version control system was needed so
that multiple programmerscould work simultaneously on
objects in the same application.W4GL is the first system
to provide one, and I believe it is still the only interface
builder in the market today with a built-in version control
system. Real wodd applications include many objects and
multiple versions, and you need help from your develop
ment environment to manage this complexity.

The primary problems with W4GL are that it does not al
low users to add new widgets to the interface library (e.g.,
3D graphics, video, andaudiowidgets), application gener
ators were omitted, there is no general constraint system,
the 4GL object system does not allow users to define sub
classes,andit does not supportpersistentobjects.Presum
ably, these problems will be fixed in future releases.

6. Thoughts on the Past and Future

An object-oriented application framework with a direct
manipulationinterfacebuilderand applicationeditoris the
only way to develop database applications. A high level
framework simplifies the definition of applications be
causeless code must be written and custom direct manip
ulationeditors can be developed foreach object type.

The systems described here show die evolution in my
thinking aboutdie features requiredin a framework. Each
system had many positive characteristics. However, there
are still many problems to be solved. First we need more
work on application generators.The basic idea is to build
applications at a higher level by configuring subsets ofdie
objects that make up the applicationwith a customized di
rect manipulation editor. We first experimented with this
idea in ABF. The only other system I have seen with inte
grated application generators is the PACE system from
Wang.One goal fordie PICASSO was to develop anopen
system so we could experiment with specific application
generators and with "application generator" generators.
Forexample, a company mightwant to build a custom-de
signed report frame generator that used the same report
formats and frame operations.

Application generators offer great hope for significantly
improving programmerproductivity because they reduce
the specification required to build an application. They
must be integrated with the development environment so
the custom extensions needed by real world problems can
be made.

Second, we still do not have the right abstractions for the
interface objects and the 4GL. PICASSO and W4GL
made dramatic progress in the GUI application frame
work, but they still have problems. One good feature ofthe
PICASSO implementation was that the objects were im
plemented in the 4GL so new interface objects can be
addedto die system by users. Forexample, anotherobject
type is a windoid which is a non-modal popup that waits
for a mouse event but does not grab the keyboard focus.

The futureis end-userprogramming andnone ofthe 4GL's
I have seen axeeasy enough to use. We need to make them
easierto learn and improve programmer productivity.

Finally, we need more work on interface builders. No hu
man factors experiments or even pilot studies have been
done to compare different interface builders. Interface
builders are essential components of any modern pro
grammingenvironment because the majority of programs
being written win have graphicaluser interfaces. We need
to understand what features contribute to productivity,
what features areerror prone, and what productivity gains
areprovided by different programming environment tools
(e.g., structured editors, application generators,etc.).

A lot has been learned in the past 15 years, but there are
still many exciting challenges ahead. It is time to begin de
velopment on the next system!

7. Acknowledgments

Many people have worked on the systems described
above.I do not have space to acknowledgeall of them, but
I do want to acknowledgethe principal contributors. Kurt
Shoens implementedRigel anddesigned andimplemented
FADS. Joe Cortopassialso workedon Rigel, was the chief
architect and implementer of ABF, and implementedthe
W4GL runtime system andtranslator. JohnNewton imple
mented QBF. Peter Schmitz worked on ABF and was the
project manager for W4GL. Dave Martin and Scott Lue-
bking worked on an eady version of PICASSO. The de
sign and implementation of the current version of
PICASSO was done by Joe Konstan and Brian Smith.
Steve Langley implemented the forms system in W4GL
and Grant Crossen implemented the interface builder.

8. References

[Gardner88]L.Gardner, "Static Analysis of a Fourth Gen
eration Language,'*MS Report Computer Science
Division - EECS, U.C. Berkeley, June 1988.

[Konstan91] J.Konstan and L.Rowe, "Developing a
GUIDE Using Object-Oriented Programming,'' Pro
ceedings OOPSLA1991, Phoenix, AZ, October 1991.

[Rowe79] L.Rowe and K.Shoens, "Data Abstraction,
Viewsand Updates in Rigel," Proceedings 1979 SIG-
MOD Conference, Boston, MA, June 1979.

[Rowe82] L.Rowe and JLShoens, "A Form Application
Development System," Proceedings 1982 ACM SIG-
MOD Conference, Orlando, FL, June 1982.

[Rowe85] L.Rowe, "Fill-in-the-Form Programming,"
Proceedings 11th International Conference on Very
LargeDatabases,Stockholm, Sweden, August 1985.

[Rowe91] L.Rowe, etal. "The PICASSO Application
Framework," Proceedings 1991 ACM Symposium on
User Interface Software and Technology, Hilton
Head, SC, November, 1991.

[Shoens82] JLShoens, "A FormApplicationDevelopment
System,"Ph.D.Dissertation, ComputerScienceDivi
sion - EECS, U.C. Berkeley, November 1982.

[Smith90] B.SmithandL.Rowe,"An Application Specific
Ad Hoc Query Interface," ERL Report M90/106,
U.C. Berkeley, November 1990.

[Ingres90]INGRES ABF (Application By Forms) User's
Guide, Ingres Corporation, Alameda, CA, June 1990.

[Ingres91] Application Editor User's Guide for INGRES/
Windows 4GL, Ingres Corporation, Alameda, CA,.
June 1991.

