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ABSTRACT

Research results [ROSE91] demonstrate that a log-structured file system (LFS) offers the potential
for dramatically improved write performance, faster recovery time, and faster file creation and
deletion than traditional UNIX file systems. This paper presents a redesign and implementation of
the Sprite [ROSE91] log-structured file system that is more robust and integrated into the vnode
interface [KLEI86]. Measurements show its performance to be superior to the 4BSD Fast File
System (FFS) in a variety of benchmarks and not significantly less than FFS in any test Unfor
tunately, an enhanced version of FFS (with readand write clustering) [MCV091] provides com
parable and sometimes superior performance to our LFS. However, LFS can be extended to pro
vide additional functionality such as embedded transactions and versioning, not easily imple
mented in traditional file systems.

1. Introduction

Early UNIX file systems used a small, fixed
block size and made no attempt to optimize block
placement [THOM78]. They assigned disk addresses
to new blocks as they were created (preallocation)
and wrote modified blocks back to their original disk
addresses (overwrite). In these file systems, the disk
became fragmented over time so that new files
tended to be allocated randomly across the disk,
requiring a disk seek per file system read or write
even when the file was being read sequentially.

The Fast File System (FFS) [MCKU84]
dramatically increased file system performance. It
increased the block size, improving bandwidth. It
reduced the number and length of seeks by placing
related information close together on the disk. For
example, blocks within files were allocated on the
same or a nearby cylinder. Finally, it incorporated
rotational disk positioning to reduce delays between
accessing sequential blocks.

The factors limitingFFS performance are syn
chronous file creation and deletion and seek times
between I/Orequests fordifferent files. The synchro
nous I/O for file creation and deletion provides file
system disk data structure recoverability after
failures. However, there exist alternative solutions
such as NVRAM hardware [MORA90] and logging
software [KAZA90]. In a UNIX environment, where
the vast majority of files are small
[OUST85][BAKE91], the seek times between I/O

Permission has been granted by the USENDC Association to
reprint the above article. This article was originally published in
the USENDC Association Conference Proceedings, January 1993.
Copyright © USENK Association, 1993.

requests for different files can dominate. No solu
tions to this problem currently exist in the context of
FFS.

The log-structured file system, as proposed in
[OUST88], attempts to address both of these prob
lems. The fundamental idea of LFS is to improve file
system performance by storing all file system data in
a single, continuous log. Such a file system is optim
ized for writing, because no seek is requiredbetween
writes. It is also optimized for reading files written in
their entirety over a brief period of time (as is the
norm in UNIX systems), because the files are placed
contiguously on disk. Finally, it provides temporal
locality, in that it is optimized for accessing files that
were created or modified at approximately the same
time.

The write-optimization of LFS has the poten
tial for dramatically improving system throughput,as
large main-memory file caches effectively cache
reads, but do litde to improve write performance
[OUST88]. The goal of the Sprite log-structured file
system (Sprite-LFS) [ROSE91] was to design and
implement an LFS that would provide acceptable
read performance as well as improved write perfor
mance. Our goal is to build on the Sprite-LFS work,
implementinga new version of LFS that provides the
same recoverability guarantees as FFS, provides per
formance comparable to or better than FFS, and is
well-integrated into a production quality UNIX sys
tem.

2UNIX is currently a registered trademark of UNIX System
Laboratories in the United States and other countries, however,
pending litigation calls this into question.



This paper describes the design of log-
structured file systems in general and our implemen
tation in particular, concentrating on those parts that
differ from the Sprite-LFS implementation. We com
pare the performance of our implementation of LFS
(BSD-LFS) with FFS using a variety of benchmarks.

2. Log-Structured File Systems

There are two fundamental differences
between an LFS and a traditional UNIX file system,
as represented by FFS; the on-disk layout of the data
structures and the recovery model. In this section we
describe the key structural elements of an LFS, con
trasting the data structures and recovery to FFS. The
complete design and implementation of Sprite-LFS
can be found in [ROSE92]. Table 1 compares key
differences between FFS and LFS. The reasons for
these differences will be described in detail in the fol

lowing sections.

2.1. Disk Layout

In both FFS and LFS, a file's physical disk lay
out is described by an index structure (inode) that
contains the disk addresses of some direct, indirect,
doubly indirect, and triply indirect blocks. Direct
blocks contain data, while indirect blocks contain
disk addresses of direct blocks, doubly indirect
blocks contain disk addresses of indirect blocks, and
triply indirect blocks contain disk addresses of dou
bly indirect blocks. The inodes and single, double
and triple indirect blocks are referred to as "meta
data" in this paper.

The FFS is described by a superblock that con
tains file system parameters (block size, fragment
size, and file system size) and disk parameters (rota
tional delay, number of sectors per track, and number
of cylinders). The superblock is replicated
throughout the file system to allow recovery from
crashes that corrupt the primary copy of the
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Figure 1: Physical Disk Layout of the Fast File System. The
disk is statically partitioned into cylinder groups, each of which is
described by a cylinder group block, analogous to a file system su
perblock. Each cylinder group contains a copy of the superblock
and allocation information for the inodes and blocks within that

group.

superblock. The disk is statically partitioned into
cylinder groups, typically between 16 and 32
cylinders to a group. Each group contains a fixed
number of inodes (usually one inode for every two
kilobytes in the group) and bitmaps to record inodes
and data blocks available for allocation. The inodes
in a cylinder group reside at fixed disk addresses, so
that disk addresses may be computed from inode
numbers. New blocks are allocated to optimize for

Task FFS LFS

Assign disk addresses block creation segment write

Allocate inodes fixed locations appended to log

Maximum number of inodes statically determined grows dynamically

Map inode numbers to disk addresses static address lookup in inode map

Maintain free space bitmaps cleaner

segment usage table

Make file system state consistent fsck roll-forward

Verify directory structure fsck background checker

Table 1: Comparison of File System Characteristics of FFS and LFS.



sequential file access. Ideally, logically sequential
blocks of a file are allocated so that no seek is
required between two consecutive accesses. Because
data blocks for a file are typically accessed together,
the FFS policy routines try to place data blocks for a
file in the same cylinder group, preferably at rotation-
ally optimal positions in the same cylinder. Figure 1
depicts the physical layout of FFS.

LFS is a hybrid between a sequential database
log and FFS. It does all writes sequentially, like a
database log, but incorporates the FFS index struc
tures into this log to support efficient random
retrieval. In an LFS, the disk is statically partitioned
into fixed size segments, typically one-half megabyte.
The logical ordering of these segments creates a sin
gle, continuous log.

An LFS is described by a superblock similar to
the one used by FFS. When writing, LFS gathers
many dirty pages and prepares to write them to disk
sequentially in the next available segment At this
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Figure 2: A Log-Structured File System. A file systemis com
posedof segments as shownin Figure(a). Eachsegment consists
of a summary block followed by data blocks and inode blocks (b).
The segment summary contains checksums to validate both the
segment summary and the data blocks, a timestamp, a pointer to
the next segment, and information that describes each file and
inodethat appearsin the segment(c). Files are described by FIN-
FO structures that identify the inode number and version of the file
(aswell aseach blockof that file)locatedin the segment(d).

time, LFS sorts the blocks by logical block number,
assigns them disk addresses, and updates the meta
data to reflect their addresses. The updated meta-data
blocks are gathered with the data blocks, and all are
written to a segment As a result, the inodes are no
longer in fixed locations, so, LFS requires an addi
tional data structure,called the inode map [ROSE90],
that maps inode numbers to disk addresses.

Since LFS writes dirty data blocks into the next
available segment, modified blocks are written to the
disk in different locations than the original blocks.
This space reallocation is called a "no-overwrite"
policy, and it necessitates a mechanism to reclaim
space resulting from deleted or overwritten blocks.
The cleaner is a garbage collection process that
reclaims space from the file system by reading a seg
ment, discarding "dead" blocks (blocks that belong
to deleted files or that have been superseded by
newer blocks), and appending any "live" blocks.
For the cleaner to determine which blocks in a seg
ment are "live," it must be able to identify each
block in a segment This determination is done by
including a summary block in each segment that
identifies the inode and logical block number of
every block in the segment. In addition, the kernel
maintains a segment usage table that shows the
number of "live" bytes and the last modified time of
each segment The cleaner uses this table to deter
mine which segments to clean [ROSE90]. Figure 2
shows the physical layout of the LFS.

While FFS flushes individual blocks and files

on demand, the LFS must gather data into segments.
Usually, there will not be enough dirty blocks to fill a
complete segment [BAKE92], in which case LFS
writes partial segments. A physical segment contains
one or more partial segments. For the remainder of
this paper, segment will be used to refer to the physi
cal partitioning of the disk, and partial segment will
be used to refer to a unit of writing. Small partial
segments most commonly result from NFS opera
tions orfsync(2) requests, while writes resulting from
the sync(2) system call or system memory shortages
typically form larger partials, ideally taking up an
entire segment During a sync, the inode map and
segment usage table are also written to disk, creating
a checkpoint that provides a stable point from which
the file system can be recovered in case of system
failure. Figure 3 shows the details of allocating three
files in an LFS.

2.2. File System Recovery

There are two aspects to file system recovery:
bringing the file system to a physically consistent
state and verifying the logical structure of the file
system. When FFS or LFS add a block to a file, there
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Figure 3: A Log-Structured File System. In figure (a),two files havebeenwritten, filel and filel Eachhas an indexstructurein the meta-data
block that is allocated afterit on disk, hi figure (b),themiddle block of file2 hasbeen modified. A newversion of it is added to thelog,as well
as a new version of its meta-data. Then file3 is created, causing its blocks and meta-data to be appended to the log. Next,filel has two more
blocks appended to it, causing theblocks anda new version of filel'smeta-data tobeappended tothelog. Oncheckpoint, theinode map contain
ing pointers to the meta-data blocks, is written.

are several different pieces of information that may
be modified: the block itself, the inode, the free block
map, possibly indirect blocks, and the location of the
last allocation. If the system crashesduring the addi
tion, the file system is likely be left in a physically
inconsistent state. Furthermore, there is currently no
way for FFS to localize inconsistencies. As a result,
FFS must rebuild the entire file system state, includ
ing cylinder group bitmaps and meta-data. At the
same time, FFS verifies the directory structure and all
block pointers within the file system. Traditionally,
fsck(&) is the agent that performs both of these func
tions.

In contrast to FFS, LFS writes only to the end
of the log and is able to locate potential inconsisten
cies and recover to a consistent physical state
quickly. This partof recovery in LFS is more similar
to standard database recovery [HAER83] than to
fsck. It consists of two parts: initializing all the file
system structures from the most recent checkpoint
and then "rolling forward** to incorporate any
modifications that occurred subsequendy. The roll
forward phaseconsistsof reading each segmentafter
the checkpoint in time order and updating the file
system state to reflect the contents of the segment.
The next segment pointers in the segment summary
facilitate reading from the last checkpoint to the end
of the log, the checksums are used to identify valid
segments, and the timestamps are used to distinguish

the partial segments written after the checkpoint and
those written before which have been reclaimed. The

file and block numbers in the FINFO structures are

used to update the inode map, segment usage table,
and inodes making the blocks in the partial segment
extant As is the case for database recovery, the
recovery time is proportional to the interval between
file system checkpoints.

While standard LFS recovery quickly brings
the file system to a physically consistent state, it does
not provide the same guarantees made by fsck. When
fsck completes, not only is the file system in a con
sistent state, but the directory structure has been
verified as well. The five passes offsck are summar
ized in Table 2. For LFS to provide the same level of
robustness as FFS, LFS must make many of the same
checks. While LFS has no bitmaps to rebuild, the
verification of block pointers and directory structure
and contents is crucial for the system to recover from
media failure. This recovery will be discussed in
more detail in Section 3.4.

3. Engineering LFS

While the Sprite-LFS implementation was an
excellent proof of concept, it had several deficiencies
that made it unsuitable for a production environment
Our goal was to engineer a version of LFS that could
be used as a replacement for FFS. Some of our con
cerns were as follows:



Phase I Traverse inodes

Validate all block pointers.
Record inode state (allocated or unallocated)and file type for each inode.
Record inode numbers and block addresses of all directories.

Phase II Sort directories by disk address order.
Traverse directories in disk address order.

Validate ".".

Record"..'*.

Validate directories* contents, type, and link counts.
Recursively verify "..*'.

Phase in Attach any unresolved ".." trees to lost+found.
Mark all inodes in those trees as "found".

Phase IV Put any inodes that are not "found*' in lost+found.
Verify link counts for every file.

Phase V Update bitmaps in cylinder groups.

Table 2: Five Phases of fsck.

1. Sprite-LFS consumes excessive amounts of
memory.

2. Write requests are successful even if there is
insufficient disk space.

3. Recovery does nothing to verify the con
sistency of the file system directory structure.

4. Segment validation is hardware dependent

5. All file systems use a single cleaner and a sin
gle cleaning policy.

6. There are no performance numbers that meas
ure the cleaner overhead.

The earlier description of LFS focused on the
overall strategy of log-structured file systems. The
rest of Section 3 discusses how BSD-LFS addresses
the first five problems listed above. Section 4
addresses the implementation issues specific to
integration in a BSD framework, and Section 5
presents the performance analysis. In most ways, the
logical framework of Sprite-LFS is unchanged. We
have kept the segmented log structure and the major
support structures associatedwith the log, namely the
inode map, segment usage table, and cleaner. How
ever, to address the problems described above and to
integrate LFS into a BSD system, we have altered
nearly all of the details of implementation, including
a few fundamental design decisions. Most notably,
we have moved the cleaner into user space, elim
inated the directory operation log, and altered the
segment layout on disk.

3.1. Memory Consumption

Sprite-LFS assumes that the system has a large
physical memory and ties down substantial portions
of it The following storage is reserved:

Two 64K or 128K staging buffers
Since not all devices support scatter/gather I/O,
data is written in buffers large enough to allow
the maximum transfer size supported by the
disk controller, typically 64K or 128K. These
buffers are allocated per file system from ker
nel memory.

One cleaning segment
One segment's worth of buffer cache blocks
per file system are reserved for cleaning.

Two read-only segments
Two segments* worth of buffer cache blocks
per file system are marked read-only so that
they may be reclaimed by Sprite-LFS without
requiring an I/O.

Buffers reserved for the cleaner

Each file system also reserves some buffers for
the cleaner. The number of buffers is specified
in the superblock and is set during file system
creation. It specifies the minimum number of
clean buffers that must be present in the cache
at any point in time. On the Sprite cluster, the
amount of buffer space reserved for 10 com
monly used file systems was 37 megabytes.

One segment
This segment (typically one-half megabyte) is
allocated from kernel memory for use by the
cleaner. Since this one segment is allocated



per system, only one file system per system
may be cleaned at a time.

The reserved memory described above makes
Sprite-LFS a very "bad neighbor** as kernel subsys
tems compete for memory. While memory continues
to become cheaper, a typical laptop system has only
three to eight megabytes of memory, andmight very
reasonably expect to have threeor more file systems.

BSD-LFS greatly reduces the memory con
sumption of LFS. First BSD-LFS does not use
separate buffers for writing large transfers to disk,
instead it uses the regular buffer cache blocks. For
disk controllers that do not coalesce contiguous
reads, we use 64K staging buffers (briefly allocated
from the regular kernel memory pool) to do transfers.
The size of the staging buffer was set to the minimum
of the maximum transfer sizes for currently sup
ported disks. However, simulation results in
[CAR92] show that for current disks, the write size
minimizing the read response time is typically about
two tracks; two tracks is close to 64 kilobytes for the
disks on our systems.

Secondly, rather than reserving read-only
buffers, we initiate segment writes when the number
of dirty buffers crosses a threshold. That threshold is
currently measured in available buffer headers, not in
physical memory, although systems with an
integrated buffer cache and virtualmemory will have
simpler, more straight-forward mechanisms.

Finally, the cleaner is implemented as a user
space process. This approach means that it requires
no dedicated memory, competing for virtual memory
space with the other processes.

3.2. Block Accounting

Sprite-LFS maintains a count of the number of
disk blocks available for writing, i.e. the real number
of disk blocks that do not contain useful data. This
count is decremented when blocks are actually writ
ten to disk. This approach implies that blocks can be
successfully written to the cache but fail to be written
to disk if the disk becomes full before the blocks are
actually written. Even if the disk is not full, all avail
able blocks may reside in uncleaned segments and
new data cannot be written. To prevent the system
from deadlocking or losing data in these cases,
BSD-LFS uses two forms of accounting.

The first form of block accounting is similar to
that maintained by Sprite-LFS. BSD-LFS maintains
a count of the number of disk blocks that do not con
tain useful data. It is decremented whenever a new
block is createdin the cache. Since many files die in
the cache [BAKE91], this number is incremented
whenever blocks are deleted, even if they were never

written to disk.

The second form of accounting keeps track of
how much space is currently available for writing.
This space is allocated as soon as a dirty block enters
the cache, but is not reclaimed until segments are
cleaned. This count is used to initiate cleaning. If an
application attempts to write data, but there is no
space currently available for writing, the write will
sleep until space is available. These two forms of
accounting guarantee that if the operating system
accepts a write request from the user, barring a crash,
it will perform the write.

3.3. Segment Structure and Validation

Sprite-LFS places segment summary blocks at
the end of the segment trusting that if the write con
taining the segment summary is issued after all other
writes in that partial segment the presence of the
segment summary validates the partial segment This
approach requires two assumptions: the disk con
troller will not reorder the write requests and the disk
writes the contents of a buffer in the order presented.
Since controllers often reorder writes and reduce

rotational latency by beginning track writes any
where on the track, we felt that BSD-LFS could not
make these assumptions. Therefore, we build seg
ments from front to back, placing the segment sum
mary at the beginning of each segment as shown in
Figure 4. We compute a checksum across four bytes
of each block in the partial segment, store it in the
segment summary, and use this to verify that a partial
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Figure 4: Partial Segment Structure Comparison Between

Sprite-LFS and BSD-LFS. The numbers in each partial show the

order in which the partial segments are created. Sprite-LFS builds
segments back to front, chaining segment summaries. BSD-LFS

builds segments front to back. After reading a segment summary
block, the location of the next segment summary block can be easi
ly computed.



segment is valid. This approach avoids write-
ordering constraints and allows us to write multiple
partial segments without an intervening seek or rota
tion. We do not yet have reason to believe that our
checksum is insufficient, however, methods exist for
guaranteeing that any missing sector can be detected
during roll-forward, at the expense of a bit per disk
sector stored in the segment usage table and segment
summary blocks.3

3.4. File System Verification

Fast recovery from system failure is desirable,
but reliable recovery from media failure is necessary.
Consequently, the BSD-LFS system provides two
recovery strategies. The first quickly rolls forward
from the last checkpoint, examining data written
between the last checkpoint and the failure. The
second does a complete consistency check of the file
system to recover lost or corrupted data, due to the
corruption of bits on the disk or errant software writ
ing bad data to the disk. This check is similar to the
functionality of fsck, the file system checker and
recovery agent for FFS, and ]ikefsck, it takes a long
time to run.

As UNIX systems spend a large fraction of
their time, while rebooting, in file system checks, the
speed at which LFS is able to recover its file systems
is considered one of its majoradvantages. However,
FFS is an extremely robust file system. In the stan
dard4BSD implementation, it is possible to clear the
root inode and recover the file system automatically
with fsck(S). This level of robustness is necessary
before userswill acceptLFS as a file system in tradi
tional UNIX environments. In terms of recovery, the
advantage of LFS is that writes are localized, so the
file system may be recovered to a physically con
sistent state very quickly. The BSD-LFS implemen
tation permits LFS to recover quickly, and applica
tions can start running as soon as the roll-forward has
been completed, while basic sanity checking of the
file system is done in the background. There is the
obvious problem of what to do if the sanity check
fails. It is expectedthat the file system will be forci
bly made read-only, fixed, and then once again write
enabled. These events should have a limited effect
on users as it is unlikely to ever occur and is even
more unlikely to discover an error in a file currently
being written by a user, since the opening of the file
would most likely have already caused a process or
system failure. Of course, the root file system must
always be completely checked after every reboot in

3 The database community uses a technique called patch
tables to verify multi-sector block writes. Although many people
haveheard of this technique, noneknew of any published reference
for it

case a system failure corrupted it

3.5. The Cleaner

In Sprite-LFS the cleaner is part of the kernel
and implements a single cleaning policy. There are
three problems with this, in addition to the memory
issues discussed in Section 3.1. First there is no rea
son to believe that a single cleaning algorithm will
work well on all workloads. In fact measurements in
[SELT93] show that coalescing randomly updated
files would improve sequential read performance
dramatically. Second, placing the cleaner in kernel-
space makes it difficult to experiment with alternate
cleaning policies. Third, implementing the cleaner in
the kernel forces the kernel to make policy decisions
(the cleaning algorithm) rather than simply providing
a mechanism. To handle theses problems, the BSD-
LFS cleaner is implemented as a user process.

The BSD-LFS cleaner communicates with the

kernel via system calls and the read-only ifile. Those
functions that are already handled in the kernel (e.g.
translating logical block numbers to disk addresses
via bmap) are made accessible to the cleaner via sys
tem calls. If necessary functionality did not already
exist in the kernel {e.g. reading and parsing segment
summary blocks), it was relegated to user space.

There may be multiple cleaners, each imple
menting a different cleaning policy, running in paral
lel on a single file system. Regardless of the particu
lar policy, the basic cleaning algorithm works as fol
lows:

1. Choose one or more segments and read them.
2. Decide which blocks are still alive.
3. Write live blocks back to the file system.
4. Mark the segment clean.

The ifile and four new system calls, summarized in
Table 3, provide the cleaner with enough information
to implement this algorithm. The cleaner reads the
ifile to find out the status of segments in the file sys
tem and selects segments to clean based on this infor
mation. Once a segment is selected, the cleanerreads
the segment from the raw partition and uses the first
segment summary to find out what blocks reside in
that partial segment It constructs an array of
BLOCKJNFO structures (shown in Figure 5) and
continues scanning partial segments, adding their
blocks to the array. When the entire segment has
been read, and all the BLOCKJNFOs constructed,
the cleaner calls Ifsjbmapv which returns the current
physical disk address for each BLOCKJNFO. If the
disk address is the same as the location of the block
in the segment being examined by the cleaner, the
block is "live". Live blocks must to be written back

into the file system without changing their access or
modify times, so the cleaner issues an Ifsjnarkv call,



lfs_bmapv Take an array of inode
number/logical block number
pairs and return the disk ad
dress for each block. Used to
determine if blocks in a seg
ment are "live'*.

lfs_markv Take an array of inode
number/logical block number
pairs and append them into the
log. This operation is a special
purpose write call that rewrites
the blocks and inodes without
updating the inode's access or
modification times.

lfs.segwait Causes the cleaner to sleep un
til a given timeout has elapsed
or until another segment is
written. This operation is used
to let the cleaner pause until
there may be more segments
available for cleaning.

lfs.segclean Mark a segment clean. After
the cleaner has rewritten all

the "live'* blocks from a seg
ment the segment is marked
clean for reuse.

Table 3: The System Call Interface for the
Cleaner.

which is a special write causing these blocks to be
appended into the log without updating the inode
times. Before rewriting the blocks, the kernel verifies
that none of the blocks have "died** since the cleaner
called Ifsjbmapv. Once lfs_markv begins, only
cleaned blocks are written into the log, until
lfs.markv completes. Therefore, if cleaned blocks
die after lfs.markv verifies that they are alive, partial
segments written after the lfsjnarkv partial segments
will reflect that the blocks have died. When
lfsjnarkv returns, the cleaner calls lfs_segclean to
mark the segment clean. Finally, when the cleaner
has cleaned enough segments, it calls Ifsjsegwait,
sleeping until the specified timeout elapses or a new
segment is written into an LFS.

Since the cleaner is responsible for producing
free space, the blocks it writes must get preference
over other dirty blocks to be written to avoid running
out of free space. To ensure that the cleaner can
always run, normal writing is suspended when the
number of clean segments drops to two.

BLOCK INFO STRUCTURE

INODE NUMBER

LOGICAL BLOCK NUMBER

CURRENT DISK ADDRESS

SEGMENT CREATION TIME

BUFFER POINTER

Figure 5: BLOCKJNFO Structure used by the Cleaner. The
cleaner calculates the current disk address for each block from the

disk address of the segment. The kernel specifies which have been

superceded by more recent versions.

The cleaning simulation results in [ROSE91]
show that selection of segments to clean is an impor
tant design parameter in minimizing cleaning over
head, and that the cost-benefit policy defined there
does extremely well for the simulated workloads.
Briefly, each segment is assigned a cleaning cost and
benefit. The cost to clean a segment is equal to the
1 + utilization (the fraction of "live" data in the seg
ment). The benefit of cleaning a segment is
free bytes generated * age of segment where
free bytes generated is the fraction of "dead"
blocks in the segment (1 - utilization) and
age of segment is the time of the most recent
modification to a block in that segment When the
file system needs to reclaim space, the cleaner selects
the segment with the largest benefit to cost ratio. We
retained this policy as the default cleaning algorithm.

Currently the cost-benefit cleaner is the only
cleaner we have implemented, but two additional pol
icies are under consideration. The first would run
during idle periods and select segments to clean
based on coalescing and clustering files. The second
would flush blocks in the cache to disk during normal
processing even if they were not dirty, if it would
improve the locality for a given file. These policies
will be analyzed in future work.

4. Implementing LFS in a BSD System

While the last section focused on those design
issues that addressed problems in the design of
Sprite-LFS, this section presents additional design
issues either inherent to LFS or resulting from the
integration of an LFS into 4BSD.

4.1. Integration with FFS

The on-disk data structures used by BSD-LFS
are nearly identical to the ones used by FFS. This
decision was made for two reasons. The first one



was that many applications have been written over
the years to interpret and analyze raw FFS structures.
It is reasonable that these tools could continue to

function as before, with minor modifications to read
the structures from a new location. The second and

more important reason was that it was easy and
increased the maintainability of the system. A basic
LFS implementation, without cleaner or reconstruc
tion tools, but with dumpfs(\) and newfs(l) tools, was
reading and writing from/to the buffer cache in under
two weeks, and reading and writing from/to the disk
in under a month. This implementation was done by
copying the FFS source code and replacing about
40% of it with new code. The FFS and LFS imple
mentations have since been merged to share common
code.

In BSD and similar systems (i.e. SunOS,
OSF/1), a file system is defined by two sets of inter
face functions, vfs operations and vnode operations
[KLEI86]. Vfs operations affect entire file systems
(e.g. mount unmount, etc.) while vnode operations
affect files (open, close, read, write, etc.).

File systems could share code at the level of a
vfs or vnode subroutine call, but they could not share
the UNIX naming while implementing theirown disk
storage algorithms. To allow sharing of the UNIX
naming, the code common to both the FFS and
BSD-LFS was extracted from the FFS code and put
in a new, generic file system module (UFS). This
code contains all the directory traversal operations,
almost all vnode operations, the inode hash table
manipulation, quotas, and locking. The common
code is used not only by the FFS and BSD-LFS, but
by the memory file system [MCKU90] as well The
FFS and BSD-LFS implementations remain responsi
ble for disk allocation, layout, and actual I/O.

In moving code from the FFS implementation
into the generic UFS area, it was necessary to add
seven new vnode and vfs operations. Table 4 lists the
operations that were added to facilitate this integra
tion and explains why they are different for the two
file systems.

4.1.1. Block Sizes

One FFS feature that is not implemented in
BSD-LFS is fragments. The original reason FFS had
fragments was that, given a large block size (neces
sary to obtain contiguous reads and writes and to
lower the data to meta-data ratio), fragments were
required to minimize internal fragmentation (allo
cated space that does not contain useful data). LFS
does not require large blocks to obtain contiguous
reads and writesas it sorts blocks in a file by logical
block number, writing them sequentially. Still, large
blocks are desirable to keep the meta-data to data

Vnode Operations

blkatoff Read the block at the given offset
from a file. The two file systems cal
culate block sizes and block offsets

differently, because BSD-LFS does
not implement fragments.

valloc Allocate a new inode. FFS must

consult and update bitmaps to allo
cate inodes while BSD-LFS removes

the inode from the head of the free

inode list in the ifile.
vfree Free an inode. FFS must update bit

maps while BSD-LFS inserts the
inode onto a free list

truncate Truncate a file from the given offset
FFS marks bitmaps to show that
blocks are no longer in use, while
BSD-LFS updates the segment usage
table.

update Update the inode for the given file.
FFS pushes individual inodes syn
chronously, while BSD-LFS writes
them ina partial segment.

bwrite Write a block into the buffer cache.
FFS does synchronous writes while
BSD-LFS puts blocks on a queue for
writing in the next segment

Vfs Operations

vget Get a vnode. FFS computes the disk
address of the inode while BSD-LFS
looks it up in the ifile.

Table 4: New Vnode and Vfs Operations. These routines al
lowed us to share60% of the original FFS code with BSD-LFS.

ratio low. Unfortunately, large blocks can lead to
wasted space if many small files are present Since
managing fragments complicates the file system, we
decided to allocate progressively larger blocks
instead of using a block/fragment combination. This
improvement has not yet been implemented but is
similar to the multiblock policy simulated in
[SELT91].

4.1.2. The Buffer Cache

Prior to the integration of BSD-LFS into
4BSD, the buffer cache had been considered file sys
tem independent code. However, the buffer cache



contains assumptions about how and when blocks are
written to disk. First it assumes that a single block
can be flushed to disk, at any time, to reclaim its
memory. There are two problems with this: flushing
blocks a single block at a time would destroy any
possible performance advantage of LFS, and,
because of the modified meta-data and partial seg
ment summary blocks, LFS may require additional
memory to write. Therefore, BSD-LFS needs to
guarantee that it can obtain any additional buffers it
needs when it writes a segment To prevent the
buffer cache from trying to flush a single BSD-LFS
page, BSD-LFS puts its dirty buffers on the kernel
LOCKED queue, so that the buffer cache never
attempts to reclaim them. The number of buffers on
the locked queue is compared against two variables,
the startwrite threshold and stop access threshold, to
prevent BSD-LFS from using up all the available
buffers. This problem can be much more reasonably
handled by systems with better integration of the
buffer cache and virtual memory.

Second, the buffer cache assumes that meta
data (both indirect blocks and inodes) are assigned
disk addresses when they are created and can be
assigned block numbers corresponding to those disk
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Figure 6: Block-numbering In BSD-LFS. In BSD-LFS, data

blocks are assigned positive block numbers beginning with 0. In
direct blocks are numbered with the negative of the first data block

to which they point Double and triple indirect blocks are num
bered with one less than the first indirect or double indirect block

to which they point

addresses. In BSD-LFS, the disk address is assigned
when blocks are written to disk instead of when they
are written in to the cache. This lazy assignment of
disk addresses violates the assumption that all blocks
have disk addresses. FFS accesses indirect blocks by
hashing on the raw device vnode and the disk block
number. Since BSD-LFS has no disk address for
these indirect blocks, the block name space had to
incorporate meta-data block numbering. This nam
ing is done by making block addresses be signed
integers with negative numbers referencing indirect
blocks, while zero and positive numbers reference
data blocks. Figure 6 shows how the blocks are num
bered. Singly indirect blocks take on the negative of
the first data block to which they point Doubly and
triply indirect blocks take the next lower negative
number of the singly or doubly indirect block to
which they point This approach makes it simple to
traverse the indirect block chains in either direction,
facilitating reading a block or creating indirect
blocks. Sprite-LFS partitions the "block name
space*' in a similar fashion. Although it is not possi
ble for BSD-LFS to use FFS meta-data numbering,
the reverse is not true. In 4.4BSD, FFS uses the
BSD-LFS numbering and the bmap code has been
moved into the UFS area.

4.2. The IFILE

Sprite-LFS maintained the inode map and seg
ment usage table as kernel data structures which are
written to disk at file system checkpoints. BSD-LFS
places both of these data structures in a read-only
regular file, visible in the file system, called the ifile.
There are three advantages to this approach. First
while Sprite-LFS and FFS limit the number of inodes
in a file system, BSD-LFS has no such limitation,
growing the ifile via the standard file mechanisms.
Second, it can be treated identically to other files, in

SEGMENT

USAGE

TABLE

tNOOBMAP

IFILE

CLEANER INFO

NUM CLEAN SEGMENTS

NUM DIRTY SBCMBNTS

NUM LIVE BYTES

LAST MOO TIME

VERSION NUMBER

DISK ADDRESS

FREE LIST POINTER

Figure 7: Detail Description of the IFILE. The ifile is main
tained as a regular file with read-only permission. It facilitates
communication between the file system and the cleaner.



most cases, minimizing the special case code in the
operating system. Finally, as is discussed in section
3.6, we intended to move the cleaner into user space,
and the ifile is a convenient mechanism for communi
cation between the operating system and the cleaner.
A detailed view of the ifile is shown in Figure 7.

Both Sprite-LFS and BSD-LFS maintain disk
addresses and inode version numbers in the inode

map. The version numbers allow the cleaner to
easily identify groups of blocks belonging to files that
have been truncated or deleted. Sprite-LFS also
keeps the last access time in the inode map to minim
ize the number of blocks that need to be written when
a file system is being used only for reading. Since
the access time is eight bytes in 4.4BSD and main
taining it in the inode map would cause the ifile to
grow significantly larger, BSD-LFS keeps the access
time in the inode. Sprite-LFS allocates inodes by
scanning the inode map sequentially until it finds a
free inode. This scan is costly if the file system has
many inodes. BSD-LFS avoids this scan by main
taininga free list of inodes in the inode map.

The segment usage table contains the number
of live bytes in and the last modified time of the seg
ment, and is largely unchanged from Sprite-LFS. In
order to support multiple and user mode cleaning
processes, we have added a set of flags indicating
whether the segment is clean, contains a superblock,
is currently being written to, or is eligible for clean
ing.

4J. Directory Operations

Directory operations4 pose a special problem
for LFS. Since the basic premise of LFS is that
operations canbe postponed andcoalesced to provide
large I/Os, it is counterproductive to retain the syn
chronous behavior of directory operations. At the
same time, if a file is created, filled with data and
fsyncod, then both the file's data and the directory
entry for the file must be on disk. Additionally, the
UNIX semantics of directory operations are defined
to preserveordering (i.e. if the creation of file a pre
cedes the creation of file b, then any post-recovery
state of a file system that includes file b must include
file a). We believe this semantic is used in UNIX
systems to provide mutual exclusion and other lock
ingprotocols5.

4Directory operations include those system calls that affect
more than one inode (typically a directory and a file)and include:
create, link, mkdir, mkncd, remove,rename, rmdir, andsymlink.

5Wehave been unable to find areal example ofthe ordering
of directory operations being used for this purpose andareconsid
ering removing it as unnecessary complexity. If you have an ex
ample where ordering must be preserved across system failure,
pleasesendus email atmargo@das.harvard.edu!

Sprite-LFS preserves the ordering of directory
operations by maintaining a directory operation log
inside the file system log. Before any directory
updates are written to disk, a log entry that describes
the directory operation is written. The log informa
tion always appears in an earlier segment, or the
same segment, as the actual directory updates. At
recovery time, this log is read and any directory
operations that were not fully completed are rolled
forward. Since this approach requires an additional,
on-disk data structure, and since LFS is itself a log,
we chose a different solution, namely segment batch
ing.

Since directory operations affect multiple
inodes, we need to guarantee that either both of the
inodes and associated changes get written to disk or
neither does. BSD-LFS has a unit of atomicity, the
partial segment but it does not have a mechanism
that guarantees that all inodes involved in the same
directory operation will fit into a single partial seg
ment Therefore, we introduced a mechanism that
allows operations to span partial segments. At
recovery, we never roll forward a partial segment if it
has an unfinished directory operation and the partial
segment that completes the directory operation did
not make it to disk.

The requirements for segment batching are
defined as follows:

1. If any directory operation has occurred since
the last segment was written, the next segment
write will append all dirty blocks from the ifile
(that is, it will be a checkpoint except that the
superblock need not be updated).

2. During recovery, any writes that were part of a
directory operation write will be ignored unless
the entire write completed. A completed write
can be identified if all dirty blocks of the ifile
and its inode were successfully written to disk.

This definition is essentially a transaction
where the writing of the ifile inode to disk is the com
mit operation. In this way, there is a coherent
snapshot of the file system at some point after each
directory operation. The penalty is that checkpoints
are written more frequently in contrast to Sprite-
LFS's approach that wrote additional logging infor
mation to disk.

The BSD-LFS implementation requires syn
chronizing directory operations and segment writing.
Each time a directory operation is performed, the
affected vnodes are marked. When the segment
writer builds a segment it collects vnodes in two
passes. In the first pass, all unmarked vnodes (those
not participating in directory operations) are



collected, and during the second pass those vnodes
that are marked are collected. If any vnodes are
found during the second pass, this means that there
are directory operations present in the current seg
ment, and the segment is marked, identifying it as
containing a directory operation. To prevent direc
tory operations from being partially reflected in a
segment no new directory operations are begun
while the segmentwriter is in pass two, and the seg
ment writer cannot begin pass two while any direc
tory operationis in progress.

When recovery is run, the file system can be in
one of three possible states with regard to directory
operations:

1. The system shut down cleanly so that the file
system may be mounted as is.

2. There are valid segments following the last
checkpoint and the last one was a completed
directory-operation write. Therefore, all that is
required before mounting is to rewrite the
superblock to reflect the address of the ifile
inode and the currentend of the log.

3. There are valid segments following the last
checkpoint or directory operation write. As in
the previous case, the system recovers to the
last completed directory operation write and
then rolls forward the segments from there to
either the end of the log or the first segment
beginning a directory operation that is never
finished. Then the recovery process writes a
checkpoint and updates the superblock.

While rolling forward, two flags are used in the
segment summaries: SS_DLROP and SS_CONT.
SS.DLROP specifies that a directory operation
appears in the partial segment SS_CONT specifies
that the directory operation spans multiple partial
segments. If the recovery agent finds a segment with
both SS_DIROP and SS_CONT set, it ignores all
such partial segments until it finds a later partial seg
ment with SS_DLROP set and SS_CONT unset (i.e.
the end of the directory operation write). If no such
partial segment is ever found, then all the segments
from the initial directory operation on are discarded.
Since partial segments are small [BAKE92] this
should rarely, if ever, happen.

4.4. Synchronization

To maintain the delicate balance between
buffer management, free space accounting and the
cleaner, synchronization between the components of
the system must be carefully managed. Figure 8
shows each of the synchronizationrelationships. The
cleaner is given precedenceover all other processing

work (iri_tllclean_wa (lockedjaueoejcount)

g (Ifs_dIrop»)

work (lfi_alklean_wakcup)

A >B
Reason (address)

A watts for B on "address" due to "Reason"

Figure 8: Synchronization Relationships in BSD-LFS. The

cleanerhas precedence over all components in the system. It waits

on the lfs_allclean_wakeup conditionandwakes the segmentwrit
er or user processes using the lfs_avail condition. The segment
writer and user processes maintain directory operation synchroni

zation through the IfsjUrop and l/sjvriter conditions. User
processes doing writes wait on the lockedjjueue_count when the
number of dirty buffers held by BSD-LFS exceeds a system limit

in the system to guarantee that clean segments are
available if the file system has space. It has its own
event variable on which it waits for new work

(lfs_allclean_wakeup). The segment writer and user
processes will defer to the cleaner if the disk system
does not have enough clean space. A user process
detects this condition when it attempts to write a
block but the block accounting indicates that there is
no space available. The segment writer detects this
condition when it attempts to begin writing to a new
segment and the number of clean segments has
reached two.

In addition to cleaner synchronization, the seg
ment writer and user processes synchronize on the
the availability of buffer headers. When the number
of buffer headers drops below the start write thres
hold a segment write is initiated. If a write request
would push the number of available buffer headers
below the stop access threshold, the writing process
waits until a segment write completes, making more
buffer headers available. Finally, there is the direc
tory operation synchronization. User processes wait
on the IfsjUrop condition and the segment writer
waits on Ifsjvriter condition.

4 J. Minor Modifications

There are a few additional changes to Sprite-
LFS. To provide more robust recovery we replicate
the superblock throughout the file system, as in FFS.
Since the file system meta-data is stored in the ifile,
we have no need for separate checkpoint regions, and



simply store the disk address of the ifile inode in the
superblock. Note that it is not necessary to keep a
duplicate ifile since it can be reconstructed from seg
ment summary information, if necessary.

5. Performance Measurements

This chapter compares the performance of the
redesigned log-structured file system to more tradi
tional, read-optimized file systems on a variety of
benchmarks based on real workloads. Read-
optimized policies that favor largeblocks or contigu
ous layout perform similarly [SELT91], so we
analyze FFS and a variant of FFS that does extent
like allocation. The new log-structured file system
was written in November of 1991 and was left
largely untouched until late spring 1992,and is there
fore a completely untuned implementation. While
design decisions took into account the expected per
formance impact at this point there is littleempirical
evidence to support those decisions.

The file systems against which LFS is com
pared are the regular fast file system (FFS), and an
enhanced version of FFS similar to that described in
[MCV091], referred to as EFS for the rest of this
paper.

EFS provides extent-based file system behavior
without changing the underlying structures of FFS,
by allocating blocks sequentially on disk and cluster
ingmultiple block requests. FFS is parameterized by
a variable called maxcontig that specifies how many
logically sequential disk blocks should be allocated
contiguously. When maxcontig is large (equal to a
track), FFS does what is essentially track allocation.
In EFS, sequential dirty buffers are accumulated in
thecache, and when an extent'sworth (i.e. maxcontig
blocks) have been collected, they are bundled
together into a cluster, providing extent-based writ
ing.

To provide extent-based reading, the interac
tion between the buffer cache and the disk was
modified. Typically, before a block is read from
disk, the bmap routine is called to translate logical
block addresses to physical disk block addresses.
The block is then read from disk and the next block is
requested. Since I/O interrupts are not handled
instantaneously, the disk is usually unable to respond
to two contiguous requests on the same rotation, so
sequentially allocated blocks incur the cost of an
entire rotation. For both EFS and BSD-LFS, bmap
was extended to return, not only the physical disk
address, but the number of contiguous blocks that
follow therequested block. Then, rather than reading
one block at a time and requesting the next block
asynchronously, the file system reads many contigu
ousblocksin a single request,providing extent-based

reading. Because BSD-LFS potentially allocates
many blocks contiguously, it may miss rotations
between reading collections of blocks. Since EFS
uses the FFS allocator, it leaves a rotational delay
between clusters of blocks and does not pay this
penalty.

5.1. The Evaluation Platform

Our benchmarking configuration consists of a
Hewlett-Packard series 9000/300 computer with a 25
Mhz MC68040 processor. It has 16 megabytes of
main memory, and an HP RD335 with an HPIB6
interface. The hardware configuration is summarized
in Table 5. The system is running the 4.4BSD-Alpha
operating system and all measurements were taken
with the system running single-user, unattached to
any network. Each of the file systems uses a 4K
block size with FFS and EFS having IK fragments.

The three file systems being evaluated run in
the same operating system kernel and share most of
their source code. There are approximately 6000
lines of shared C code, 4000 lines of LFS-specific
code, and 3500 lines of FFS-specific code. EFS uses
the same source code as FFS plus an additional 500
lines of clustering code, of which 300 are also used
by BSD-LFS for read clustering.

Each of the next sections describes a bench
mark and presents performance analysis for each file
system. The first benchmark analyzes raw file sys
tem performance. The next two benchmarks attempt
to model specific workloads. A time-sharing
environment is modeled by a software development
benchmark, and a database environment is modeled
by the industry-standard TPCB benchmark
[TPCB90].

5.2. Raw File System Performance

The goal of this test is to measure the max
imum throughput that can be expected from the given
disk and system configuration for each of the file

Disk(HPRD335)
Average seek
Single rotation
Transfer time

Track size

16.6 ms

15.0 ms
1MB/sec

56.5 KB/track

CPU

MIPS

25 Mhz

10-12

Table 5: Hardware Specifications.

HPIB is an unbelievably slow interface as is shown in
Table 6.



systems. For this test the three file systems are com
pared against the maximum speed at which the
operating system can write directly to the disk. The
benchmark consists of either reading or writing a
large amount of data sequentially to a newly created
file system or a raw partition. Two versions of this
test are run. In the first the data is appended, while
in the second the same data is repeatedly overwritten.
While FFS and EFS merely rewrite the existing data
blocks, BSD-LFS is continually allocating new
blocks and marking the old blocks as no longer in
use, thus requiring more CPU processing than any of
the other file systems. The results for both the
APPEND and OVERWRITE tests are shown in
Table 6.

Given the sequential layout of both BSD-LFS
and EFS, the expectation is that both should perform
comparably to the speed of the raw disk. For the
write test both are nearly identical and within 10% of
the raw disk speed. This 10% difference is an
approximation of the file system overhead. In BSD-
LFS, the overhead comes from creating segments,
while in EFS the overhead comes from doing block
allocation. Since FFS does sequential allocation with
a rotational delay between each block, the expecta
tion is that it should exhibit performance approxi
mately half that of EFS and BSD-LFS. The perfor
mance measurements support this hypothesis.

FFS demonstrates read performance approxi
mately 10% better than write performance for the
append tests. The 10% improvement is due partially

APPENDS

Writes Reads

Transfer Unit iM IM 2M .5M IM 2M

RAW 0.31 (0.00) 0.31 (0.00) 0.31 (0.00) 0.45(0.01) 0.45 (0.00) 0.45 (0.00)

FFS 0.11(0.00) 0.11(0.00) 0.12(0.00) 0.14(0.00) 0.14 (0.00) 0.14(0.00)

EFS 0.26 (0.02) 0.28 (0.01) 0.28(0.01) 0.38 (0.02) 0.38 (0.00) 0.36 (0.03)

LFS 0.27 (0.00) 0.28 (0.00) 0.29 (0.00) 0.33 (0.00) 0.36 (0.00) 0.37 (0.00)

OVERWRITES

Writes Reads

Transfer Unit .5M IM 2M .5M IM 2M

RAW 0.30(0.00) 030(0.00) 0.30(0.00) 0.43 (0.00) 0.43 (0.00) 0.43 (0.00)

FFS 0.12(0.00) 0.12 (0.00) 0.12(0.00) 0.12(0.00) 0.14(0.00) 0.14(0.00)

EFS 0.29 (0.01) 030(0.00) 0.28 (0.00) 0.35 (0.00) 0.37 (0.00) 0.37 (0.00)

LFS 0.25 (0.00) 0.26 (0.00) 0.28 (0.00) 0.33 (0.00) 0.35 (0.00) 0.36 (0.00)

BSD-LFS O-verwrite Performance with Q eaner Running

Writes Reads

Transfer Unit .5M IM 2M .5M IM 2M

0% Utilization 0.25 (0.00) 0.26(0.00) 0.28 (0.00) 0.33 (0.03) 0.35 (0.02) 0.36 (0.01)

50% Utilization 0.24 (0.01) 0.26(0.01) 0.27 (0.03) 0.33 (0.03) 0.35 (0.02) 0.36(0.01)

Table 6: Raw File System Performance(MB/sec). The first two ubles show the raw file system performance in megabytes / second. The
numbers shown are averagesof ten runs with the standarddeviation in parentheses. In the first table, new data is appendedto a file eachtime,
whilein the second, the data is overwritten. The benchmark issuesthe writesin .5 megabyte, 1 megabyte, or 2 megabyterequestsas specified by
the columns. The third table shows the overwrite test for BSD-LFS when the cleaner is ninning. In the first row, the same file is repeatedly
overwritten, leaving very little work for the cleanerwhile in the second,alternating files are overwritten so that each segmentcleanedis approxi
mately half full.



to read-ahead and partially to avoiding the file system
block allocation overhead required during writing.
Since EFS and BSD-LFS do sequential allocation,
the expectation is that the read performance should
be comparable to that of the raw disk. However,
Table 6 shows that BSD-LFS and EFS are achieving
only 70% and 85% of the raw disk performance
respectively. The explanation for BSD-LFS lies in
the mapping between the file written and the on-disk
segment layout The file system is configured with
one megabyte segments. A one megabyte segment
does not hold one megabyte worth of data, due to the
presence of meta-data (segment summary blocks,
inode blocks, and indirect blocks) in the segment As
a result the requests span segment boundaries, and
the resulting seek often incurs the penalty of a full
rotation. The extent-based system does better
because it takes advantage of FFS* understanding of
rotational delay. It pays only a rotational delay (on
the order of 0.25 rotations) between clusters of
blocks. All the systems suffer a small (approxi
mately 5%) performance penalty for the overwrite
test since a disk seek is required before each read is
issued.

The third table in Table 6 shows impact of the
cleaner on BSD-LFS. In the first row (0% utiliza
tion), the same file is overwritten repeatedly. As a
result the only valid data is in the current segment,
and the cleaner does very little work to reclaim
space. In the second row, (50% utilization), every
other file is overwritten, leaving each segment half
full. In this case, the cleaner copies one-half seg
ment on average, to reclaim one segment of space.

As expected, the cleaner had virtually no
impact during the read test (since there was no data
being overwritten). For the 0% utilization test, there
is also no impact on performance which is not
surprising. Even when each segment is half utilized,
the impact is under 10%, However, when the cleaner
is running, performance is less predictable as is evi
denced by the 10% standard deviations observed dur
ing those tests.

The remaining tests are all designed to stress
the file systems. For BSD-LFS, that means the
cleaner is runningand the disk systems are fairly full
(above 80%), so that the cleaner is forced to reclaim
space. For EFS and FFS, it becomes more difficult
for them to allocate blocks optimally when they run
on fairly full file systems, so degradation is expected
for those systems as well.

53. Software Development Workload

The next tests evaluate BSD-LFS in a typical
software development environment. The Andrew
benchmark [OUST90] is often used for this type of

measurement The Andrew benchmark was created

by M. Satyanarayanan of the Information Technol
ogy Center at Carnegie-Mellon University. It con
tains five phases.

1. Create a directory hierarchy.
2. Make several copies of the data.
3. Recursively examine the status of every file.
4. Examine every byte of every file.
5. Compile several of the files.

Unfortunately, the test set for the Andrew benchmark
is small, and main-memory file caching can make the
results uninteresting. To exercise the file systems,
this benchmark is run both single-user and multi
user, and the system's cache is kept small (1.6 mega
bytes). Table 7 shows the performance of the stan
dard Andrew benchmark with multi-user results
presented in Table 8.

As expected, BSD-LFS does quite well on the
directory creation phase of the benchmark (Phase 1),
as BSD-LFS avoids synchronous writes and pays no
allocation overhead during directory creation. How
ever, the remaining phases of the test exercise read
performance, and EFS performs the best with BSD-
LFS and FFS performing comparably. Although
BSD-LFS can take advantage of contiguous layout,
as does EFS, it exhibits poorer performance due to
I/Os issued by the cleaner. In this test the cleaner
pays a substantial performance penalty during clean
ing, because it reads entire segments before deter
mining which blocks are "live". Since the files in
this benchmark are created and deleted in large
groups, most of the blocks read by the cleaner are
discarded and most of the reads accomplished noth
ing.

These single-user results are significantly dif
ferent from those of Sprite-LFS discussed in
[ROSE92J. There are several reasons for this. As
mentioned earlier, a goal of this test is to stress the

Phase 1 Phase 2 Phase 3 Phase 4 Phase 5

FFS 3.30 13.20 7.00 16.10 48.80

EFS 3.30 11.80 6.90 13.20 46.00

LFS 1.30 13.70 8.00 16.60 46.20

Table 7: Single-User Andrew Benchmark Results. This table

shows the average elapsed time, in seconds, for each phase of the

Andrewbenchmark. As expected, BSD-LFS does best on phase 1,
the directory creation portion of the text However, in the remain

ing tests, the extent-based system provides the best performance
because it benefits from contiguous layout on both reading and
writing, but does not vie for disk servicing with the cleaner.



file systems, so both the cacheand the file system are
small. The small cache (1.6 megabytes) ensures that
both read and write performance to the disk can be
measured. The small file system guarantees that the
cleaner has work to do, so its impacton system per
formance can be analyzed.

For the multi-user benchmark, four separate
trees are created and the benchmark runs con
currently in each tree. The reported results are aver
aged across ten runs on each of the four trees for a
total of forty iterations. The multi-user Andrew
results are shown in Table 8. In a multi-user environ
ment the strengths and weaknesses of BSD-LFS
become more apparent. Phase 1 performance is
exceptionally good because BSD-LFS is not doing
synchronous file and directory creation. Since phase
2 is write intensive, BSD-LFS performs approxi
mately 35% better than its nearest competitor (EFS),
because it pays very few seeks in writing. In phase 3,
where every file's inode is examined, EFS demon
strate approximately 10% better performance then
either LFS or FFS. In phase 4 every byte of every
file is examined. BothLFS and EFS achieveapprox
imately a 10% performance improvement over FFS
due to the contiguous nature of their reads. LFS per
forms slightly better because the different trees were
likely to be created at approximately the same time,
and their data is likely to be physically close on the
disk. Phase 5 highlights the weakness in LFS. This
phase is characterized by interspersed reads and
writes. Once again, the large reads and writes per
formed by the cleaner compete with synchronous
read requests, making LFS the poorest performer by
approximately 8%. When the cleaner is forced to
run, synchronous I/O performance, typically read
performance, suffers. The next benchmark

Phase 1 Phase 2 Phase 3 Phase 4 Phase 5

FFS 10.68 36.17 19.18 36.27 167.40

EFS 9.12 34.25 16.90 32.55 168.75

LFS 1.02 22.30 19.23 31.10 183.20

Table 8: Multi-User Andrew Benchmark Results. This table

shows the average elapsed time, in seconds, of each phase of the
Andrew benchmark with four concurrent invocations. The times

are less than four times slower than the single-user times due to the
overlapped CPU and I/O time. The multi-usertest emphasizes the
strengths and weaknesses of BSD-LFS. It performs well in phases
1 and 2 whichare predominantly writesand in phase 4 wheretem
poral localityproducesgood read performance. However, perfor
mance suffers in Phase 5 where read and write traffic is inter

spersed and the impact of the cleaner is most severe.

demonstrates this even more dramatically.

5.4. Transaction Processing Performance

The industry-standard TPCB is used as a
database-oriented test Our benchmark is a modified
version of the TPCB benchmark, configured for a 10
transaction per second system. While the benchmark
is designed to be run multi-user, we show only
single-user (worst case) results. Additionally, we do
not keep redundant logs and we do not model "think
time" between transactions. Each data point
represents ten runs of 1000 transactions. The count
ing of transactions is not begun until the buffer pool
has filled, so the measurements do not exhibit any
artifacts of an empty cache. Transaction run lengths
of greater than 1000 were measured, but there was no
noticeable change in performance after the first 1000
transactions.

When the cleaner is not running, BSD-LFS
behaves as predicted in simulation [SELT90], It
shows approximately 20% improvement over the
extent-based system. However, the impact of the
cleaner is far worse than was expected. With one
megabyte segments and the small random I/Os done
by TPCB, most segments have only a few dead
blocks available for reclamation. As a result the
cleaner does large reads as well as large writes to
reclaim space. Each of these large I/O operations
busies the disk for long periods of time, making the
TPCB reads wait.

In an attempt to reduce this wait time, a second
set of tests were run with a smaller segment size (128
kilobytes). The performance before cleaning is the
same as for the 1 megabyte case, but the after-
cleaning performance is slightly better (about 13%).
In either case, the impact of the cleaner is so severe

Transactions

per second

Elapsed Time

1000 transactions

FFS 8.9 112.51 (1.2)

EFS 9.0 111.03(1.3)

LFS (no cleaner)

LFS (cleaner, IM)

LFS (cleaner, 128K)

10.8

4.3

5.0

92.76(0.87)

23237 (16.84)

200.57 (68.72)

Table 9: TPCB Performance Results for FFS, EFS, and BSD-

LFS. The TPCB database was scaled for a 10 TPS system

(1,000,000 accounts, 100 tellers, and 10 branches). The elapsed

time is reported for runs of 1000 transactions. The BSD-LFS
results show performance before the cleaner begins to run and after
the cleaner begins to run. The after-cleaner performance is shown
for file systems with segment sizes of one megabyte and 128K.



that BSD-LFS cannot compete with either FFS or
EFS. For the tests presented here, the disk was run
ning at 85% utilization, and the cleaner was continu
ally running. Note that FFS and EFS allocate up to
90% of the disk capacity without exhibiting any per
formance degradation [MCKU84], This result shows
that log-structured file systems are much more sensi
tive to the disk utilization. While the user-level
cleaner avoids synchronization costs between user
processes and the kernel, it cannot avoid the conten
tion on the disk arm.

6. Conclusions

The implementation of BSD-LFS highlighted
some subtleties in the overall LFS strategy. While
allocation in BSD-LFS is simpler than in extent-
based file systems or file systems like FFS, the
management of memory is much more complicated.
The Sprite-LFS implementation addressed this prob
lem by reserving large amounts of memory. Since
this is not feasible in most environments, a more
complex mechanism to manage buffer and memory
requirements is necessary. LFS operates best when it
can write out many dirty buffers at once. However,
holding dirty data in memory until much data has
accumulated requires consuming more memory than
might be desirable andmay not be allowed(e.g. NFS
semantics require synchronous writes). In addition,
the act of writing a segment requires allocation of

Deleted Data ta Blocks (file Inode Block

Indli
Live Data Inode Block

Clean Segment

Figure 9: Segment Layout for Bad Cleaner Behavior. Seg
ments 1 and 2 contain data. The cleanerwill attempt to free
up the one disk block of deleted data from segment 1. How
ever, to rewrite the data in segment 1, it will dirty the meta
datablock currently in segment 2. As a result, the cleaner will

not generate any additional clean blocks.

additional memory (for segment summaries and on-
disk inodes), so segment writing needs to be initiated
before memory becomes a critical resource to avoid
memory thrashing or deadlock.

The delayed allocation of BSD-LFS makes
accounting of available free space more complex
than that in a pre-allocated system like FFS. In
Sprite-LFS, the space available to a file system is the
sum of the disk space and the buffer pool. As a
result, data is written to the buffer pool for which
there might not be free space available on disk.
Since the applications that wrote the data may have
exited before the data is written to disk, there is no
way to report the "out of disk space'* condition.
This failure to report errors is unacceptable in a pro
duction environment To avoid this phenomena,
available space accounting must be done as dirty
blocks enter the cache instead of when they are writ
ten from cache to disk. Accounting for the actual
disk space required is difficult because inodes are not
written into dirty buffers and segment summaries are
not created until the segment is written. Every time
an inode is modified in the inode cache, a count of
inodes to be written is incremented. When blocks are
dirtied, the number of available disk blocks is decre
mented. To decide if there is enough disk space to
allow another write into the cache, the number of
segment summaries necessary to write what is in the
cache is computed, added to the number of inode
blocks necessary to write the dirty inodes and

Clean Segment

Deleted Data veDsta- Inode Block

Block

Figure 10: Segment Layout After Cleaning. The cleaner

cleaned segment 1. hi doing so, it rewrote the indirect block

that previously resided in segment 2. Now that block has

been deleted and the cleaner will be able to reclaim a disk

block by cleaning segment 2.



compared to the amount of space available on the
disk. To create more available disk space, either the
cleaner must run or dirty blocks in the cache must be
deleted.

A third and more critical situation arises when
the cleaner consumes more disk space than it frees
during cleaning. Although this cannot happen over
the long term, during short term intervals it can.
Consider the simple three segment file systemshown
below in Figure 9. Segment 1 contains one free
block (the first block marked "Deleted Data").
However, cleaning that segment requires rewriting
the indirect block for file 1. Therefore, after segment
1 is cleaned, segment3 will be full, segment1 willbe
clean, and one block in segment 2 will be dead (Fig
ure 10). While the total number of live blocks on the
system has not increased, it has not decreased either,
and the act of cleaning the segment has not created
any additional space. It is possible to construct cases
where cleaning a segment actually decreases the
amount of available space (consider a segment that
contains N blocks from N different files, each of
which is accessed via an indirect block and the
indirectblock resides in a different segment). There
fore two segments are reserved for the cleaner. One
guarantees that the cleaner can run at all, and the
second ensures that small overflows can be accom
modated until more space is reclaimed.

7. Future Directions

The novel structures of BSD-LFS makes it an
exciting vehicle for adding functionality to the file
system. For example, there are two characteristics of
BSD-LFS that make it desirable for transaction pro
cessing. First, the multiple, random writes of a single
transaction get bundled and written at sequential
speeds, so we expect to see a dramatic performance
improvement in multi-user transaction applications, if
sufficient disk space is available. Second, since data
is neveroverwritten, before-images of updated pages
exist in the filesystemuntil theyare reclaimed by the
cleaner. An implementation that exploits these two
characteristics is described and analyzed in
[SELT93] on Sprite-LFS, and we plan on doing a
prototype implementation of transactions in BSD-
LFS.

The "no-overwrite'* characteristic of BSD-
LFS makes it ideal for supporting unrm which would
undoa file deletion. Savinga single copy of a file is
no more difficult than changing the cleanerpolicy to
not reclaim space from the last version of a file, and
the only challenge is finding the old inode. More
sophisticated versioning should be only marginally
more complicated.

Also, the sequential nature of BSD-LFS write
patterns makes it nearly ideal for tertiary storage dev
ices [KOHL93]. LFS may be extended to include
multiple devices in a single file system. If one or
more of these devices is a robotic storage device,
such as a tape stacker, then the file system may have
tremendous storage capacity. Such a file system
would be particularly suitable for on-line archival or
backup storage.

An early version of the BSD-LFS implementa
tion was shipped as part of the 4.4BSD-Alpha
release. The current version described in this paper
will be available as part of 4.4BSD. Additionally, the
FFS shipped with 4.4BSD will contain the enhance
ments to provide clustered reading and writing.
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