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Abstract

The problem of time-domain simulation of uniform lossy transmission lines within

nonlinear circuits is addressed in this dissertation. The existing convolution method is
improved upon by identifying a formulation in which analytic expressions exist for the
impulse responses ofa simple lossy line. These expressions are convolved (using accurate
numerical formulae) with the port variables ofthe lossy line for simulation. Experimental
results demonstrate significant advantage in accuracy and speed over the lumped RLC
method for real circuits involving a few cycles.

Convolution is inherently slow for simulations with many time points because of
its quadratic complexity. Previous attempts to address this problem have concentrated
on approximating responses by expansions. A new linear time technique (the state-based
method) that derives from an analytic solution ofthe Telegrapher Equations is presented.
Convolution over all previous time is replaced by aspace integral, over amaximum interval
ofthe length ofthe line. Samples ofthe voltages and currents within the line, from which the
space integral is computed, can be dynamically changed dynamically during the simulation.
The number ofsuch samples can be much smaller than the number oflumps required in the
lumped RLC method because their locations can be changed to track waveforms, leading to
the automatic exploitation of circuit latency. Experimental results demonstrate significant
advantage overother techniques.

Extension of the state-based method to lossy lines with high frequency nonideali-
ties, such as skin effect, is also described.

Prof. A. Richard NewtSiP
Thesis Committee Chairman
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Chapter 1

Introduction

During the past two decades, automated design tools have been used increasingly
for the analysis and design ofVLSI circuits [25]. Design tools have developed in two broad
categories - verification tools and syndissertation tools. Verification tools are used to check

whether a given circuit or design performs correctly according to specification. Syndisser
tation tools, on the other hand, are used to produce acircuit or design given a performance
specification. Verification tools save the time and expense ofphysical circuit fabrication and
often provide designers with insight into the operation ofcircuits. Syndissertation tools are
used for creating reliable, efficient designs and reducing design time.

For analog circuits, the most widely accepted methodof verification is circuit sim

ulation. While existing circuit simulation tools [37,17,10] have proven adequate for the de
sign ofmost IC-based systems, faster devices and new packaging technologies have emerged
that require new and more sophisticated models and techniques. A new packaging technol
ogy called the multi-chip module (MCM) has been developed over the last decade and has

recently become popular because of the advantages it offers over conventional packaging1.
In aMCM, bare (i.e., without individual packaging) ICs are mechanically attached toace
ramic or semiconductor substrate, with thin metallic lines called interconnect running over
the substrate to provide electrical connectivity between chips. However, the verification of
MCMs is a challenge since existing simulators cannot model the interconnect, which must
be represented as a collection of lossy transmission lines, adequately. Lossy transmission

lTwo electrical advantages of MCMs are reduced parasitics due to shorter interconnect lengths and the
absence of individual packaging, and smaller delays due to physical proximity. Among the packaging/system
level advantages are increased packing density and simpler, more modular overall system design, with at
tendant reliability benefits. An excellent analysis of MCM benefits is presented in [14].



CHAPTER 1. INTRODUCTION 2

lines exhibit complex analog phenomena such as reflection2, dispersion3, crosstalk4 and skin
effect5, making it necessary for analog simulation to be used for the verification of digital
MCM interconnections. Simulating lossy transmission lines efficiently is adifficult problem,
particularly when strong nonlinearities (e.g., in digital logic) are present in the circuit.

Interconnect structures are the "wires" on an IC, module or PWB6, ideally meant
to be parasitic-free elements that provide electrical connection. Before the advent of the

MCM (or hybrid), there were two levels of packaging structures in general use up to the
PWB level: the IC or single-chip module (Level 1, to use the terminology of [14]), and the
PWB (Level 2). The interconnect associated with Level 1structures are typically thin (small
cross-sectional area) and short (line-delays much smaller than the wavelength). The small
cross-sectional area results in high series resistance, but the small length makes the use of
RC models adequate. On the other hand, PWB or Level 2interconnect are typically wide
and long. Thus their resistance is small and so lumped capacitors, or lossless transmission
lines (where inductance cannot be neglected) are adequate models. The emergence ofMCM
(often called Level 1.5) interconnect, which are both thin7 and long, has made it necessary
to use lossy transmission lines as models for such interconnect.

Many different models have been proposed for lossy transmission lines, the simplest
being the uniformly distributed, constant R,L,C,G line (the "simple lossy line"). Other
models handle more sophisticated effects by allowing R,L,C and Gto vary with frequency
("frequency varying models"). The most important frequency varying models are those that
deal with skin-effect [53, 57, 2, 36, 54], a phenomenon due to which fast-varying currents
tend toconcentrate towards the surface ofaconductor. Qualitatively speaking, this reduces
the effective cross-sectional area of a conductor thereby increasing its series resistance.
Many studies have been conducted about the relevance of skin-effect to interconnect in the

different levels of packaging structures [56, 21, 26, 42, 16]; that by Deutsch et. al. [11]
is particularly informative. These studies have demonstrated that it is "sufficient to use

frequency-independent series loss8 in modelling rise-time dispersion and coupled noise for
*A phenomenon in which waves travelling through a line are reflected back to the source
^A phenomenon caused by series resistance that smoothens waveshapes and increases rise and fall times
Spurious signals caused by capacitive and inductive coupling among interconnect in close proximity with

each other
5

Aphenomenon due to which fast-varying currents tend toconcentrate towards thesurface ofa conductor
Printed Wiring Board, also known as PCB

7For example, a typical case (copper interconnect, 4jim high by S/tm wide) has series resistance of about
50/cm [16].

i.e., the simple lossy line
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a large group of interconnection types", and that "this simplification will probably remain

valid for many years to come" (excerpts from [11]). Othereffects that havefrequency varying

models (such asdielectric dispersion and the slow wave effect) are usually of relatively little

importance.

The transient simulation of lossy transmission lines is more difficult than that of

lossless lines, for which satisfactory techniques exist [34, 33, 39, 43, 35]. The difficulty arises

because time-domain equations for lossy lines lack the computational simplicity of those

for lossless lines. Lossless Unes have the property that at any given time, the influence of

past activity can be captured entirely from the values of the port variables (the currents

and voltages at the two ends) at a single previous instant of time. In contrast, lossy lines

require information about either the entire history of their port variables up to the present

time (c.f. the convolution formulation), or the values of the voltages and currents within

the line (leading to the state-based method, described in this dissertation).

Equations describing lossy lines in the frequency domain are however easily ob

tained. This fact has been used for transient simulation within entirely linear circuits [16, 7].
All time-domain inputs to the circuit are converted numerically to the frequency domain
(typically by means of the FFT), the circuit is analysed at several frequency points, and
frequency-domain information from the solved circuit is reconverted back to the time do

main. Apart from being inapplicable to circuits with nonlinear elements, this technique

relies on numerical transforms of waveforms which can be inaccurate at the sharp transi

tions typical in high-speed digital circuits. Direct use of frequency-domain equations is also

made by the waveform relaxation (WR) approach by Chang [3, 4, 5] and Wang et al [50].
This technique is applicable to lossy lines embedded in arbitrary nonlinear circuits. The

WR methodology [30, 55] of holding all waveforms but one fixed at assumed values makes

it possible to convert waveforms between the time and frequency domains; when a lossy

line's equations are encountered, all computation is performed in the frequency domain,

whereas the equations of other devices in the circuit are handled in the time domain. As

in the previous method, the reliance of this technique on numerical transformation makes

it susceptible to inaccuracies near sharp transitions.

Several techniques are based on representing the lossy line by a combination of

circuit elements that are easier to simulate. In the lumped-RLC method [9], the oldest

and best-known such technique, the lossy line is modelled as segments connected in series

with each segment consisting of lumped R, L, C and G elements. Conceptual simplicity
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combined with the convenience of being able to use existing simulators without modification

havemade this the most popular simulation technique in use today. Unfortunately, In high

speed simulations, many segments may be needed for accurate representation of the line; an

inadequate number of segments may lead to spurious responses (Fig. 1.1). These responses

are reminiscent of Gibbs' phenomenon [28, page 498] because the error near sharp edges

reduces slowly with increase in the number of segments used. Using a large number of

segments increases the size of the simulator circuit matrix, often to the extent that lossy

line elements dominate the circuit computation time; in addition, a widely-separated time-

constant problem is introduced because the time-constant of each segment needs to be

much smaller than circuit rise times and the line's delay for accuracy. These factors can

lead to large computation times for simulation. A variant of the lumped-RLC method that

requires fewer segments for a prescribed accuracy is the pseudo-lumped method [22, 23], in

which each segment is represented by a lossless line and lumped R and G elements. The

delay of the transmission line in each segment is still constrained to be much smaller than

circuit rise times, and high computation times are encountered in cases where time-steps

are limited to values smaller than this delay. A third method [4] in this category relies

on a more sophisticated choice of lumps in order to use fewer segments. The irrational

transfer-functions of the lossy line are approximated by rational functions with a finite

number of poles and zeros, i.e., a reduced-order model is obtained. A lumped network

may be used to describe the reduced-order model. A related approach [31] uses Pade

approximants to match the moments of the irrational transfer-functions up to some degree.

The moments are calculated at infinite frequency, leading to better characterization of

high frequency behaviour. The approximating rational function is equivalent to a lumped

network (although the state variables are simulated without explicit representation as a

lumped network in [31]). Yet another technique in this category is a variation proposed

by Semlyen et al [46] in which approximations are made to time-domain responses instead

of to the frequency-domain transfer-functions. The responses are approximated by the sum

of a finite number of exponentials of different time-constants.

Another broad approach to lossy line simulation is based on using time-domain

equations that capture the overall behaviour of the line, in the sense that the only circuit

unknowns in the formulation are the port variables. Such techniques increase the size of

the simulator matrix by only two equations independent of the parameters of the lossy

line. Liu et al [32] were apparently first to use convolution to simulate similar devices, i.e.
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Figure 1.1: Lumped-RLC method, varying number ofsegments

antennas, in conjunction with nonlinear loads. Djordjevic et al [12] applied the technique
to simulate lossy lines. That the lossy line is a linear two-port was exploited by expressing
the "outputs" of the two-port as a convolution of the "inputs" with impulse responses (or
Green's functions) characteristic of the line. In a comparison of techniques for lossy line
simulation [13], the convolution approach was found slow and only slightly more accurate
than the lumped-RLC approach. In the early formulation, the length and nature of the
impulse responses was a limitation: for lossless lines, the impulse responses were infinite in
duration and consisted of periodic sharp spikes; those of lossy lines diminished gradually
while being otherwise similar. Impulse-responses that fall to negligible levels after a short
time result in efficient computation. If the responses remain significant for a period greater
than the total simulation time, convolution from time t0 = 0 to t = tn is necessary at
every timepoint tn. This operation requires computation proportional to 71, resulting in
total computation proportional to JV2 (quadratic time-complexity) in a simulation with
N time-points. Augmenting the line with a quasi-matched load was attempted in [12] to
shorten the responses. Schutt-Aine et al [44, 45] reformulated the convolution equations
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usinga scattering parameter approach that led to "well-behaved" impulseresponses9. Even

though these responses decreased monotonically, their effective duration could be greater

than the total simulation time, depending on the values of R, L, G, and C of the line. The

quadratic complexity problem of impulse response based methods remained.

The existing literature about the convolution approach has dealt mainly with equa

tion formulation for well-behaved impulse responses. Obtaining the impulse responses and

performing the convolution numerically have received less attention. The main advantage

of convolution is that if the impulse responses are known exactly, no approximation needs to

be made to the line's mechanism, leading to maximal accuracy. In existing work, however,

exact expressions have not been used10; instead, numerical techniques have been applied to

invert frequency-domain expressions. The FFT11 has been employedin the work mentioned

above. Other techniques for numerical inversion, for example using Pade approximations

(Singhal [47, 48], Vlach [49]), do not appear to have been used to obtain impulse responses,

having been applied to inverting waveforms at circuit nodes instead. Convolution appears

to have been implemented using simple sample-and-sum approximation. The state-based

approach described in this dissertation is very similar mathematically to the convolution

method; in particular, the only circuit unknowns are the port variables.

Multiconductor, or coupled, transmission lines are important because coupling

causes crosstalk, leading to possible false switching in digital circuits. In the lossless case,

multiconductor lines can be decomposed numerically into uncoupled lossless lines and linear

memoryless transformation networks; moreover, the special case of identical, locally-coupled

lines is amenable to analytical decomposition (Romeo[39]). However, general lossy multi-

conductor lines cannot be decomposed into uncoupled simple lossy lines and transformation

networks; the decomposition procedure (Schutt-Aine et al [45]) involves solving a frequency-

dependent eigenvalue problem and results in frequency-varying lines (see next paragraph)

and transformation networks with memory. Gao et al [19] have extended Romeo's work

to show that identical, locally coupled simple lossy multiconductor lines can also be de

composed analytically into uncoupled simple lossy lines and linear memoryless terminal

9The "well-behaved" impulse response for a lossless line is a single Dirac delta function at the line delay;
for lossy lines, the impulse responses decrease asymptotically and monotonically to zero.

Analytic expressions for output waveforms for some specific circuit configurations (e.g., perfectly termi
nated, open, infinite line) of lossy lines are known [15, 27, 51, 8]; these are not applicable to the general case
of arbitrary nonlinear termination.

11 Fast Fourier Transform.
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networks12. The state-based method as well as convolution using analytic forms are appli
cable to this special multiconductor case.

Models more complex than the simple lossy line are needed to account for second-

order phenomena such as skin effect and dielectric dispersion [11,16]. Such models ("frequency-
varying models") have electrical parameters R, L, G and C varying with frequency. The

frequency-domain techniques mentioned above are capable of simulating frequency-varying
models; variations of the lumped-RLC method [57] have been proposed that use lumped

networks to approximate the line's frequency variation. The rational-function and exponen

tial techniques mentioned previously can also be applied to frequency-varying lines. The
convolution technique is applicable to frequency-varying lines; however, the analytic forms

for impulse responses developed in Chapter 2 of this dissertation are valid only for simple
lossy lines. (Note that the numerical formulae of Chapter 3 are applicable to frequency-
varying lines.) The state-based method has been extended to the frequency varying case.
The techniques in this dissertation, though mainly limited to simple lossy lines, are ofprac
tical utility. Deutsch [8] has shown, for example, that the simple lossy line is an adequate
model for the majority of simulations today and in the near future.

After presenting the formulations of the analytic convolution and state-based tech

niques in Chapter 2, a new technique for numerical convolution is presented in Chapter 3.
Experimental results obtained by applying the new techniques to test circuits are presented
in Chapter 4, followed by concluding remarks in Chapter 5.

12Unfortunately, part of our work in [40] was a duplication of this result.



Chapter 2

Analytic Convolution and State

Based Formulations

In this chapter, an analytic formulation for uniform lossy transmission lines suit

able for implementationinto time-stepping circuit simulators (e.g. SPICE3 [37], ADVICE[17],

ASTAP[52]) is developed. The time-domain Telegrapher Equations [44] areaugmented with

additive terms. Laplace transforms are taken to obtain ODEs in the s domain without ig

noring possible non-zero initial conditions. The ODEs are decoupled using a scattering

parameter formulation [44] and integrated to obtain a s-domain solution. Laplace inversion

yields time-domain constitutive relations suitable for implementation using the numerical

methods of Chapter 3.

The time-domain equations thus obtained may be used in three ways. Setting the

augmenting terms to zero leads to two different methods for simulating the Simple Lossy

Line - the Convolution and State Based methods. Both methods yield identical results in the

theoretical limit of perfect numerical implementation; however, the Convolution method is

quadratic time computationally while the State Based method is linear time. An important

difference between these and previous methods (Chapter 1) is that the impulse responses

and other functions needed in these methods need not be determined by numerical inversion

but are available in analytic closed form.

In addition, setting the augmenting terms to suitable non-zero values results in the

incorporation of high frequency nonidealities (see Chapter 1) into the simulation. Using a

heuristic that is most effective for the small cross-sectional dimensions typical of multi-chip
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modules preserves the linear time property of the State Based method for lines with high

frequency nonidealities.

2.1 Analytic Formulation

Let wi(a, J) and w2(x,t) be twoarbitrary functions defined on [0, /] x [0, oo). Con

sider the following (the familiar Telegrapher Equations [45] with "inputs" w^ and w2, /

being the length of the transmission line):

dv ( di \

di („ dv „ \
Tx = -{c*Tt+Gd°v)+w* (2-2)

The above equations hold for x varying between 0 and /. v(x,t) and i(x,t) are the
voltage and current at the point x in the line at time t, respectively. It is assumed that the

simulation starts from time 0.

The inputs to the transmission line are the port variables v\(t) —v(0,t), t'i(t) =
i(0,*), v2(t) = v(l,t) and i2(t) = -t(/,<). These four port variables specify the boundary
conditions of Equations 2.1 and 2.2.

In addition to the boundary conditions, Wi and it>2, which represent the external

inputs to the line, the internal state of the transmission line also determines the future

behaviour of the line. This internal state is stored in the energy-storing distributed induc

tance and capacitance and is specified by the voltages and currents in the line's interior

at time 0, v0(x) = v(x,0) and i0(x) = i(x,0). v0(x) and i0(x) are the initial conditions
for Equations 2.1 and 2.2. The combination of the Telegrapher Equations, the boundary

and initial conditions and the "inputs" w\ and w2 specify the future behaviour of the line

uniquely.

Time-domain Laplace transforms are taken of Equations 2.1 and 2.2 to arrive at

ordinary differential equations in x and the Laplace variable s:

dV-^ = -(sLdc +Rdc)I +Ldci0(x) +W1(x,s) (2.3)

Yx = -(sCdc +Gdc)V +Cdcv0(x) +W2(x,s) (2.4)

Here V, J refer to V(x,s) and I(x,5), the Laplace-transformed variables. W\(x, s)
and W2(x,s) are the Laplace transforms of wi(x,i) and w2(x,t).



CHAPTER 2. ANALYTIC CONVOLUTION AND STATEBASED FORMULATIONS^

To uncouple the above equations, a basis change is performed from the variables

V and / to new ("scattering parameter") variables p and g, defined as follows:

, , V(x,s) + Zdc(s)I(x,s) , ,p(x,s) = ' 2 (2.5)
, . V(xys)-Zdc(s)I(x,s) , xq(x,s) = -^LJ v ; v . ; ^ ^

Zdc(s) is the frequency-domain characteristic impedance of the line:

z w =yicz+GZ (2J)
Equations 2.5 and 2.6 are rewritten to express V and / in terms of p and q. Using

these equations, Equations 2.3 and 2.4 are rewritten in terms of p and q. Two decoupled

Hnear first-order ODEs in x are obtained by adding and subtracting Equations 2.3 and 2.4:

dpjL\d'(*\n - Ldcio(x) + Zdc(s)Cdcv0(x)

]W1(x,s) +Zdc(s)W2(x,s)

^l_xdc(s) = Ldci0(x)-Zdc{s)Cdcv0(x)
dx K}q 2

is

^it*,.)-^)^,!)
2

A c(s) is the frequency-domain propagation constant of the line:

**(*) =^(sCjc +CcKaidc +Brfc) (2.10)

The general solution of any first-order ordinary differential equation of the type

^ +P(x)y =Q(x) (2.11)

y=e-/^*)* (c1+JQ(x)efpMdydx\ (2.12)
Equation 2.12 is then applied to Equations 2.8 and 2.9 to obtain the solutions for

p and q:

p(x, s) =e-xdc* (a +1£ex<*y [Ldc i0(y) +Zdc(s) Cdc v0(y)] dy
+y*eXdey[W1(y,s) +Zdc(s)W2(y,s)]dy^ (2.13)
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q(xys) =eAde* (b +±jfe-xdcy [Ldci0(y) - Zdc(s) Cdcv0(y)]dy
+\ [ e~xdcy [W^y, s) - Zdc(s) W2(yy s)] dy^j (2.14)

The boundary condition at x = 0 is applied to Equation 2.13, and that at x = /

to Equation 2.14, to determine the constants A and B which are substituted for to obtain:

p(x,s) - e-A%(0,s) =J* 6 *V[Ldc i0(y) +Zdc(s) Cdc v0(y)] dy

+J*6 *V[Wi(yis)+Zdc(s)W2(y,s)]dy (2.15)

g(/, «)e-A*<'-*> - q(x, s) =jf' 6 ^^ [Xdc to(lf) - Zdc(s) Cdc «b(y)] dy

+X 2 lWi(y>s)-Zdc(s)W2(y,s)]dy (2.16)
Now p and g are substituted for in termsof V and J (using Equations 2.5and 2.7,

and the resulting equations divided by Zdc(s)1 to obtain:

[V(x, s) Ydc(s) +/(*, s)] - e~xdCx [K(0, *) Y<*c(s) +7(0, *)]

= f e-^c(-v) [X,c io(y) Ydc(s) +Cdc Db(ir)] rfy
«/o

+ f e-^-f) p7i(y, s) Ydc(s) +Wafo, s)] dy (2.17)
«/o

[VU^'M- /(/,,)] «-**»-) _[v(,,,)y*(,) - /(,,,)]

=/' e-^to-)^* «<,(») Ydc(s) - Cu «,,(»)] dy
Jx

+I e-xdc(y-*\Wx(y, s) Ydc(s) - W2(y, s)) dy (2.18)
where

The first integral in x on the RHS of Equations 2.17 and 2.18 is evaluated next2.

The interval [0,/] is divided into a number of segments between the points a?0,xi,.. .,&„,,

Without loss of generality, we assume %£ >%£ in the following. If ^ <§<**, this division by Zdc{s)
is not carried out, but the rest of the derivation is repeated verbatim. *fhis cnange is key in obtaining
well-behaved impulse responses.

It is tempting to apply the inverse Laplace transform at this point to Equations 2.17 and 2.18, transmit
ting the inversion operator through the spatial integrals. Such a course leads to erroneous results because
the integrands involved are not uniformly continuous.
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with xq = 0 and xnt = /. (It is at these sample points that information about the line

state is used in the algorithm.) Let k be the index of the sample point located at &, i.e.,

Xk = x. Over each interval Ij = [xj-i,Xj], it is assumed that the initial states v0(x) and

io(x) can be represented by piecewise linear segments vqj and i0j. The first integral on the
RHS of Equations 2.17 and 2.18 is split into a sum of integrals, each over Ij; over each Ij,
the integrand is simply an exponential which is easily integrated. The evaluation of the

second space integral on the RHS is deferred until later.

\Y0 V(x, s)HY\s) +I(x,s)] - [Y0 V(0,s)HdY(x, s)+ /(0,s) Hdc(x, s)]

= iokHs-yY{x - Xk,s)- iooHs<yY(x - xo, s)
+y0 [v0kHsi(x - Xk,s) - vooHs<y(x - xQ,s)]

+% [- («g3?) *,,(« - x0,S) +(Sg3«^) H^{x - ,»,,)]

where

1_
7o

1_
7o

A—l

r-U |+1WW« - xjys) [- (agj^) +(sg^^)] J

+ f e-^-v) [Wx(y, s) Yd%s) +W2(y, a)] dy
JO

[Yq V(l, s) HdY(l-x, s) - /(/, s) Hdc(l-x, s)] - [Y0 V(x, s) HYc(s) - /(», s)]

= iokHs-yY&k -x,s)- io,niHsiY{xni -xts)
-Y0 [v0kHsi(xk - x,s) - vo,n,-fls7(a;„, - x,s)]

I tn «.j.1 —tni \ »-» j %. / tn

)kUSi{Xk -x,s)- vo>nilis-({xni - x,s)\

- fe£) *W*» - *•') +(^ir) B^y(xni - x, s)
-Yo [- {*»&) J^.4 - x,.)+(Sa^) **,(*-. - «,*

n,-l

+ £
ir^y(«i-,,.)[-(i^i) +(4g^)]

-K

+ / e-^^-^l^^^y^-^^s)]^
Jx

HsM*,s) = LdcYdc(s)
e-\de(s)x

Xdc(s)
e-\dc(a)x

HSi(x,s)= y/LdcCdc
Adc(6)

(2.20)

)]

(2.21)

(2.22)

(2.23)

(2.24)
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H^Y(x,s) = Li y/UZY^s)

<,-\dc(s)x
Hs-y{x,s) = LdcCdc

-Adc(a);

xdc(sy

(2.25)

(2.26)

Let hsyY, ^5-y» hg2yY and h^ denote the inverse Laplace transforms of Hs-iY,
Hs<y, Hg2lY and H&^ respectively. Expressions for these, as well as hY, hdY, hdc, defined
earher, are derived next. Define

*-vTO=./»-J(£+g)...i(g-g) (2-27)
and note that

Hdc(s) = 1_ jsCdc +Gdc _ Hs +fi-q
YK > Y0\lsLdc +Rdc-]l(s +/3) +a

Hd°{x,s) = e~XVaCdc(sLde+Rdc) _ €-1Oxy/(s+0)2-ctl

HdY(xiS) = HYc{x,s)Hdc(x,s)

e-70Xy/(s+p)*-a*
Hs>y(xis) =

Hsiy{x,s) =

Hs2^(x,s) =

Hs2yY(x,s) =

V(s + /3)2-a2

e—yoxy/(s+0)2-a2

(s + P) + a

e—loxy/(s+(})*-a*

(s + /3)2-«2

e-1OXy/(8+0)2-Ot2

{(* +/?) +a} {x/(s +/?)2-a2}
From Table 2.1, the relation3 I'Q = Ii [1] and elementary properties of the Laplace

transform, the following expressions are obtained for hfift), hdc(x,t), hdY(x,t), fcs7(x,<),
hs*tY(x,t), hg2^(x,t) and hg2^Y(xyt):

hY(t) = [6(t) +aWat) - Jo(crt)}] e"# (2.35)

a70x/i (otyjt2 - ("iQxf\
h~f(x,t) = S(t - iqx) + u(t - 70z)-

\/t2-(lox)2

h is the modifiedBessel function of kth order

,-Pt

(2.28)

(2.29)

(2.30)

(2.31)

(2.32)

(2.33)

(2.34)

(2.36)
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No. F{s) /(*)
1 ~-Ty/a2-ct2

,-TvV-a2 _ fi-sT

v/a2—a2
y/s+at 7"

l(t - T)J0 (aVfi - T2)
*(« - njgnh {«VF=ts)
I0(at)

a[I0(at) + Ii(at)

y/s + a —>Js + P
~r

ie-N^T

^-^

*R
s/tt Tt

e-Pt _ e-ct

^ie-f.-Vferfc(^t
d+'W^w^

Table 2.1: Laplace Transform Pairs (Fodor[18])

/i7y(ar,t) = 6{t —70x) + u(t - 70x) a x

tli (ay/t* - (7oz)2)
\/*2 - ("To*)2 V '

teyfa,*) =««(* -7o*)/o (<V*2 "(7o*02) e-#

hsiY(x,t) = u(t -70a:) ,-or(*-7oa?)

rt , *1 ("A2 - (70S)2 )
+a<y0x / e-a<'-T) V y dr

Ao* ^2 _ (7oa.)2

/^(z, *) =u(t - 7ox) e"* / J0 (a>/t2^r2) dr (2.40)

hp-yYix, t) =i«(* - 7os) e"^ y* e-a<'-T)/0 (a^r2 - (7ox)2) dr (2.41)
In the above u(t) and 6(t) represent the unit step and delta functions respectively.

-fit (2.37)

(2.38)

(2.39)
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Equations 2.20 and 2.21 can now be Laplace inverted to yield the time-domain
constitutive relations of the lossy transmission line at any x.

[Y0 «(*, t) */4C(*) +i(a:, t)] - [Y0 v(0, t) *hdY(x, t) +t'(0, t) *hdc(xf t)]
= iokhs-iY{x - Xk,t) - ioohsyY(x - so,*)

+Yo [vokhsi(x - a?jfe,t) - voohsy(x - xo,t)]

- (*£?) W(* - *o,«) +(*£^) h^Y(X -xk,t)
+Yo [- («J3f) W* - xo,t) +(*3g) W* - xk,t)}

h^y(x - ,ht) [- (*££*) +(4J^)]7o fr-1

£_1 {re"AdC(X"y) ^^5)ydCW +W*(v>*)]dv} (2.42)

Wo «(/, t) *A#r(/ -»,*)- t(/, 0*hd%l - X, t)] - [Y0 V(X91) *h^{t) - t(*, *)]
= *0*^57y(«ib - S,t) - 20,n,^57y(sn| - S,*)

-*o [vokhs-vixk -x,t)- v0inihSl(xni - x,t)\

"yo [- feS*) W* - .,0+(«^)^, "*,*)]
+*f [ W(*i - -,*) [- (**£*) +(*=***)]

i=,+i L-%w* - .,o [- (aj^i) +pj^)]
+£_1 {/ a"*"0^0 t^i(|f, s) Ydc(s) -W2(Vis)] dy\ (2.43)

In the above equations, * denotes the convolution operator, defined in Chapter 3.
The evaluation of the terms involving Wx and W2 is deferred until Sections 2.2 and 2.5.

The equations obtained by substituting x = / in Equation 2.42 and x = 0 in
Equation 2.43 are of special interest:

[Y0 v2(t) *hp(t) - i2(t)] - [Yov^t) *hdY(l,t) +i^t) *hdc(l,t)]
= *0,n^57y(0,0 - 2'oo/*S7k(M)

+*o [vo,nihs*t(0,t) - voohs-f(l>t)]

- («) W(M)+(^T1) W«M)

7o

_1_
7o nj—1 W('-*i.O[-0^)+ (*=£*)]

=j L+%w< - «i,«) [- (*g^) +(^35^)]J.
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2.2

c~l {jf c"Ade('""y) P*(*5) ydcM+w*(y> «M*}

[To t*(t) */i7cr(/, *) + i2(t) *hdc(l,t)] - [Y0 t*(*) *hp{t) - h(t)]

= ioohs-yY(Q,t) - io,nthSfY(l,t)
-Y0 [W*s7(<M) - vo>nihsy(l,t)]

- (^f) w«m)+ (Y:l0;:r) wco

«r ^y(si,t)[-(%^)+(^?)] -
L ft l-roW***) [- fe^) +(^S1)] JJ

+C-11 jT e-Adc^) [Wl(y,a) ydc(s) -Wa(y> 5)] rfy|

Simple Lossy Lines

1_
7o

(2.44)

(2.45)

Setting «;i and w2 to zero in Equations 2.1 and 2.2leads to the analytic formulation

for transmission lines with constant, or frequency-independent, R, L, G and C. Such lines

are referred to here as Simple Lossy Lines (SLLs). All terms with W\ and W2 drop out in

the above equations, in particular in Equations 2.44 and 2.45, reproduced below.

[Y0 v2(t) *hp(t) - i2(t)] - [r0v1(t) *hdY(Ut) +h(t)*hdc(l,t)}

= «0,n,^S7Y(0,<) - ioohsiYHit)
+Y0 [votnihsy{0,t) - vQohsi(l,t)]

+% [- (»3f) jwm>+(*7.;i;:r) wo,o]
7o nj—1

L £ |+%w- *,*) [- feif) +fe^1)]J.

[y0 »»(t) *«£(/,*)+.,(<) * ft*(/, o] - [y0 Mt) *4C(«) - «'i(*)l

(2.46)
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-Yo [iXx>hs-r(0, t) - v0,„,hsi(l, t)]

- fe£) W(<M) +C0?!^:;-) W(M)
-Yo [- («) W<M) +("°Ti^:,'-') W.*)]
•fc'f w(*i.o[-(**?39+ (*££*)] •
U. L-%w«i.«) [- (^^) +(*53£f)].

Equations 2.46 and 2.47 are the constitutive equations of the Simple Lossy Line

with the initial state (v0(x)ii0(x)) at time t0 = 0. The contribution of the initial state

is represented by the terms on the RHS of the equations, whereas all the terms involving

convolution are on the LHS. These equations can be used in two different ways for simu

lation: one leads to the quadratic time convolution technique while the other leads to the

linear-time state-based technique.

_1_
70

(2.47)

2.3 Analytic Convolution Technique

If the time origin is kept fixed at t0 = 0 in Equations 2.46 and 2.47, the imple

mentation of the equations leads to the analytic convolution method. At any time point t{

in the simulation, each convolution is carried out from the time origin to the current time,

i.e., values of vi, v2i ix and i2 over the interval [*o,*t] need to be used. The initial state

(vo(s), io(x)) used for the RHS ofthe equations is always the initial state at the time origin
to = 0. (Usually, this initial state is assumed zero, in which case the RHS of the equations
vanish. If the line is at a non-zero DC initial state, a simple reformulation exploiting the
hnearity of the Une yields a system with zero initial state.) The use of Equations 2.46 and
2.47 for the convolution formulation is illustrated in 2.1.

Because the interval of the convolution integral increases during the progress of

the simulation, the computation needed for this integral at any time point Uis proportional

to i. For a total of n time points in the simulation, the total computation time for the

convolutions is proportional to the sum of the computation at each tj,0 < j < n, which
rises as »2, a quadratic relationship between computation time and total simulation length
for this method.
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2. at time t2: convolve from t2
to to, uslngjnltlal Internal
state b> RHS = O.

!

0. Start simulation at time toO,
with zero Internal state

3. at time t3: convolve from t3
to tO, usfnglnltlal Internal
state a> RHS = 0.

etc: convolve all the way back
to tO, using Initial Internal
state => RHS always zero.

Time

1. at time tl: convolve from tl to to, using
Initial zero Internal state for RHS
terms s» RHSsO

Figure 2.1: Equations 2.46 and 2.47 by analytic convolution

2.4 State Based Method

The fact that Equations 2.46 and 2.47 are derived from a system of PDEs makes

it possible to solve them in another way: at time *i (the first time point after the origin
to = 0), the procedure is identical to the convolution method, with convolution over the
interval [*0, *i], and initial state zero. The new state of the line at time tx is calculated

next, using Equations 2.42 and 2.43 for each x chosen to sample the internal state. At the

next time-point t2, the newly calculated, nonzero internal state at tx is used as v0(x) and
2o(x), instead of the zero internal state at time t0i in Equations 2.42, 2.43, 2.44 and 2.45.
In other words, the time-invariance property of the Telegrapher Equations is used, redoing
the derivation with initial time tlm Thus the convolution operation at time t2 starts from
the previous time-point tiy i.e., the time at which the internal state is used in the above

equations, instead of from t0 as in the convolution method. The internal state at t2 is then

calculated, and this internal state is used as the initial state at time t3i and so on. This

procedure (illustrated in Fig. 2.2) is the basis of the recursive computation; information

from the port variables' history, which keeps increasing in size as the simulation progresses,
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is condensed into the state, which is of constant size. The key feature leading to Hnear

complexity in this technique is that the computation at time t{ is independent of i, since

convolution is always performed over only one interval, [t,_i,t»].

Equations 2.35 and 2.36 are valid at any location x within the Une. During sim

ulation, the primary computational load is the calculation of the internal Hne state, i.e.,

evaluation of Equations 2.35 and 2.36 at several different values of x. Note that the eval

uation of the equations at a particular point x is independent of the current line state at

any other point y, y ^ x4. This immediately suggests that the main computation of the

algorithm is particularly suited to parallel implementation, with the newstate at all internal

points being computed simultaneously. Other methods, such as the lumped-RLC method,

lack this feature as they do not utiHse the innate decoupling in the lossy transmission Hne's
mechanism.

2. at tune t2: convolve from t2 to
tl, vsc Internal state at tl =>
nonzero RHS. Calculate new
state at t2.

0. Start simulation at time toO,
with zero Internal state.

3. at time t3: convolve from t3
to t2 only, using Internal
state at t2 o> nonzero RHS.
Calculate new state at t3.

etc.: convolve only till the previous
time-point, use Internal state
at previous time-point for RHS

Time

X. at time tl: convolve from tl to to, use
Initial (tO) Internal state for RHS,
calculate new nonzero Internal state
attl.

Figure 2.2: Equations 2.46 and 2.47 by the state based method

This is a consequence of the fact that there exists a maximum velocity with which waves propagate
within the line.
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2.5 Frequency Varying Lines

For a frequency-varying transmission Hne with parameters R(s), L(s) C(s) and

C?(s), time-domain partial-differential equations similar to Equations 2.1 and 2.2 are not

easily available. The estabHshed technique for incorporating the frequency variation of

the electrical parameters of the Une is to introduce them directly into the Laplace-domain

Telegrapher Equations (Equations 2.3 and 2.4 with W\ = W2 = 0), replacing the constant

quantities Rdc, Ldci Gdc and Cdc, and ignoring the initial state terms:

|£ = -(sL(s) +R(s))I (2.48)
g = -(*?(•)+ G(.))V (2.49)

The solution procedure of Section 2.1 is foUowed, usingEquations 2.48 and 2.49 as

a starting point, to arrive at the foUowing Laplace-domain equations:

\Y0 V2(s) HY(s) - I2(s)] - [Y0 Vi(a) H^Y(s) + h(s) H^(s)] = 0 (2.50)

[Y0 V2(s) H^Y{s) + I2(s) H^(s)] - \Y0 Vi(s) HY(s) - I^s)] = 0 (2.51)

where Vi(s), V2(s), I\(s) and I2(s) are the Laplace transforms of the voltages and currents

at the two ends of the Hne, which is of length /, and

Yo-ffi, Jfr(.) =̂ , *,(») =«-*«' (2.52)
V ^dc JO

HMs) =HY(s) *,«, Y(s) =y/g^g;; (2.53)
A(«) =J(sC(s) +G(s)){sL{s) +R{s)), (2.54)

Rdc = R(0), Ldc = L(0) (2.55)

Cdc = C(0), Gdc = G(0) (2.56)

Taking inverse Laplace transforms yields the time-domain constitutive equations

for the frequency varying Hne:

[Y0 v2(t) * hY(t) - i2{t)] - [Y0 Mt) *VW + «i(0 * M<)1 = 0 (2.57)

[Y0 v2{t) * hyY(t)+ i2(t) * fc7(t)] - [Y0 t>i(<) * fey(i) - i^t)] = 0 (2.58)
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where v^t), v2(t), ^(t), i2(t) are the port variables of the Hne, and hY(t), h^(t) and hyY(t)
are the inverse Laplace transforms of HY(s), Hy(s) and HyY(s) respectively. As expected,
Equations 2.57 and 2.58 are similar in form to Equations 2.46 and 2.47, with RHS (initial
state terms) zero.

The above convolution formulation can be used directly to simulate the frequency-
varying Hne. However, it is convenient to rewrite Equations 2.50 and 2.51 in the foUowing
equivalent form for the purposes of the decomposition mentioned earHer:

[Y0 V2(s) HY\s) - I2(s)] - [Y0 V!(«) HdY(l,s) +h(s)Hdc{l,s)] +Ut(s) =0 (2.59)

[Yo V2(s) HdY(l,s) +I2(s) Hdc(l,s)) - [Y0 V1(s) HYc(s) - h(s)] +U2(s) =0 (2.60)

where

^C(S) =̂ ¥' **(*•*) =«"A*W' (2-61)
H${x,s) =HY*(s)Hd%x,s), Yd%s) =J^^ (2.62)

*dc(*) =\/(sCdc +Gdc)(sLdc + Rdc) (2.63)

Equations 2.59 and 2.60 represent aHnear decomposition ofthe frequency varying
Hne into two parts: a Simple Lossy part and a purely nonideal part, given by the terms
Ui(s) and U2(s), given as foUows:

Ui(s) = Y0 V2(s) AHY(s) - [Yo V^a)AHyY(s) +I^s)AH^s)) (2.64)

U2(s) = [Yo V2(s) AH^Y(s) +I2(s) AH^(s)] - Y0 V^s) AHY(s) (2.65)

where

AHY(s) = HY(s) - HYc(s), AH^(s) = H^(s) - Hdc(l, s) (2.66)

AJ77yW = EyY(s) - HdY(l, s) (2.67)

Laplace inversion of Equations 2.59 and 2.60 yields the time-domain formulation:

[Yo v2(t) *hp{t) - i2(t)] - [Yo V!(t) *hdY(/, t) +H(t) *hdc(l, t)] +Ul(t) =0 (2.68)
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[Yo v2(t) *hdY{l, t)+ i2(t) *hdc{l, t)] - [Y01*(<) *4c(t) - h{t)] + u2(t) =0 (2.69)

where h^t), hdc(x, t)and hdY(x, tf are the inverse Laplace transforms ofHYc(s), Hdc{x, s)
and HdY(x,s) respectively. ui(t) and u2(*)»tne inverse transforms ofUi(s) and U2(s)y are
given by:

ui(t) = Y0 v2{t) * AhY(t) - [Yo vt{t) * AhyY(t) + h(t) * Ah-,(t)] (2.70)

u2(t) = [Yo v2(t) * AhyY(t)+ i2(t) * Ah^(t)] - Y0 v^t) * AhY(t) (2.71)

where

AhY(t) = fcy(t) - hfr(t), Ah^(t) = h^(t) - **»(/, <) (2.72)

AVW =V(0 - Afrft0 (2.73)

Equations 2.68 and 2.69 are equivalent to Equations 2.57 and 2.58. By rewriting

them in the form of Equations 2.68 and 2.69, all terms except u\ and u2 can be computed

recursively, as shown in Section 2.4. Calculating u\(t) and u2{t) (according to Equations

2.70 and 2.71) requires convolution; if, however, the responses AhY, Ah-f and AhyY can

be truncated with insignificant loss of accuracy, the convolution can be computed as an

integral with fixed Hmits.

Define:

_ P»(«)*(«) + Pi(«)«(x-Q
U ' ' ~ 2Y*^j

W2{xs) = U1(s)S(x)-U1(S)S(x-l)
(2.74)

(2.75)

Substituting these specific choices for Wi and W2 into the RHS of Equations 2.20

and 2.21 leads to the foUowing:

[Yo V(x, s)HYc(s) + /(*, s)] - [Yo V(0,s)HdY(x,s) +7(0,s) Hdc(x, s)] +U1(s)X(x - I)

= iokHs*fY(x -Xk,s)- iooHsiY(x - x0is)
+Yo [vokHs-yix - Xk, s) - vooHs<y(x - x0, s)]

~fef )Bwi* - *0, s) +(*^J=l) H^Y(x -xk,s)
+Yo [~ («) *W«- «0,a) +(=K3£f) Hs>y(x - xkls)}

Hs,Mx-Xj,s)[-(<^) +(<^)} "
=f i+YoH^x - xj,s) [- (agj^i) +(^^)]_

1_
7o k-l

+E

'analytical expressions for these are given in Section 2.1.

(2.76)
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[Yo V(l, s) HdY(l-x, s) -1(1, s) Hdc(l-Xi s)] - [Yo V(x, s) H^s) - 7(x, s)] + U2(s)X(x)

= iokHs-yY&k -x,s)- io.ni^-yy^n, - z,s)
-*0 [vokHS<v(Xk -X,S)- V0,n,^57(xn, - X, s)]

- fe£) s*-,y(*<> -*>')+ (%^r) *s*,v(*-. - *,«)

70 n,-l

where:

Ai L-iWW*i - x,.) [- (^^) +(^^)].

x(*) =
x = 0

otherwise

Taking inverse Laplace transforms of the aboveequations results in:

I"[ 0 ot

[Yo v(x, t) *hp(t) + i{x, t)] - [Y0 v(0, t)*hdY(x, t) +t(0,0 *hdc(x, t)] +tn(*)x(* - 0

= iokhsyY(z - Xk,t) - ioohs<yY(x - x0,t)
+Yo [vokhs-y{x -xk,t)- voohs>y{x - x0, *)]

- {*$&) W(* - *o,t) +(i?£?£r) *W(* - **,*)
+Yo [- (»}3f) Wx - x0,t) +(^f) h^x- xkit)\

"f *w(.-.i,0[-(^^) +(^^)] 17o

[Yo «(/, 0*^y(/ - x, *) - *(/, t) *hdc{l - x, t)] - [Y0 v(x, t) *hif(t) - i(x, *)] +u2(t)X{x)

= iokhs-iY^k -«,*)- ^O.nj^yfan, - X,*)
~*bfaofc^fa* ~ <M) ~ V0fn»/i57(«n, ~ 3,*)]

(2.77)

(2.78)

(2.79)

-Yo [- fe^) W* -«,«)+(^S^) W*n, - .,*)]
+y? [ w(«i-«.9[-(*£^)+(*=&?)] •
A» [-Yoh*J*i ~«,*) [- (»gj^) +tefr1)].

By substituting x = / in Equation 2.79 and x = 0 in Equation 2.80 and setting the

initial conditions vo(x) and i0(x) to zero, the foUowing equations relating the port variables
are obtained:

70
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[Y0 v2{t) *hp(t) - i2(t)] - [Yo Vl(t) *hdY(/, t) + H(t) *h**(l, t)] + Ul(t) = 0 (2.81)

[Yo v2(t) *hdY(/, t) + t2(t) *htfil, t)] - [Yo Vl(t) *hp(t) - h{t)] + u2(t) = 0 (2.82)

Equations 2.81 and 2.82 are identical to the frequency varying Hne's equations

(Equations 2.68 and 2.69), but were derived by an alternate route, starting from Equations

2.1 and 2.2 (with possible non-zero initial conditions) through Equations 2.79 and 2.80.

From Section 2.4, they can be solved by using the State Based method, using Equations

2.79 and 2.80 and resetting the initial states at every new time point. The computation of

«i and i*2 by Equations 2.70 and 2.71 at each time point requires convolution. As shown in

Chapter 4, these convolutions may be truncated in short times in narrow MCM interconnect

appHcations. This leads to an overall Hnear time algorithm for frequency varying lossy

Hnes.
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Chapter 3

Numerical Convolution

In Chapter 2, the state-based and convolution methods were derived. The com

puter implementation of both methods calls for the numerical computation of the convo

lution integral over a period of one or more time-steps. In this section, generaHsations of

the Backward Euler (BE) and Trapezoidal methods for ODEs suitable for convolution are

formulated.

The convolution integral to be calculated is the foUowing:

y(t) = f x(r) h(t - t)dr (3.1)
Jo

In Equation 3.1, x(r) is the input to the Hnear system, y(t) is the output and

h(r) is the impulse response or the kernel of the system. h(r) is assumed to be a constant

weU-known causal function of time and may be finite or infinite in duration. At any given

time t, x(r) and y(r) are assumed to be known over the half-open interval [0,*)1. Note

that in a circuit context, x(r) and y(r) are usuaUy also related by a relation other than

Equation 3.1; one may be a function or a causal functional of the other.

The object of numerical convolution is to calculate y(-) in Equation 3.1 at some

time tn > 0, using values of x(r) at only a discrete number of time-points. Denote these

time-points as 0, tlt t2, ..., tni with 0 < t{ < ti+u i € {l,...,n - 1}. Also denote the

values of x(r) and y(r) at these time-points as xt- and y,- respectively. In a circuit simulator,

xn and yn would typically be circuit unknowns to be solved for at the time-point tn, using

the numerical formula to be developed in this section and also, information from the rest

of the circuit, x,-, yi for 0 < i < n would be known values, previously calculated by the

x(r) and y(r) can be assumed zero for r < 0 without loss of generality; see Appendix A.
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simulator. Note that no restriction discretizing the impulse response h(r) is required in this

formulation.

Knowledge of the values of x(t) at a discrete number of points is not sufficient to

specify y(t) uniquely by Equation 3.1;it is necessary to make assumptions about the overaU

nature of x(t). In deriving Hnear multistep methods for differential equations [6, 20], the

assumptions that x(t) is piecewise linear and piecewise constant result in the weU-known

trapezoidal and euler methods, respectively. In this chapter, the same assumptions are made

to arrive at new generaHsations of these methods, suitable for numerical convolution.

3.1 Generalised Trapezoidal Method

The foUowing assumption is made:

Assumption 3.1.1 In each half-open interval [tt-,*,+i), i = 0,..., n-1, x(t) is a polynomial

of order p, i.e.,

x(t) = c0 + c[t + c2t2 + ... +&*, teM;+i), *=0,...,n-l (3.2)

where c0,..., c*p are constants for each i.

Note that x(t) need not be continuous at the points t{, i = 0,..., n—1.

It can be shown that the assumption that p — 1 in Equation 3.2 results in

a generaHzation of the formula commonly known as the Extended Trapezoidal Rule for

integration [1, page 855]. SimUarly, for p = 0, a generaHzation of the Euler methods is

obtained, and for other choices of p, other methods may be derived. For the purposes of

the foUowing, it is assumed that p = 1 in Equation 3.2, or that x(t) is piecewise-linear, of

the foUowing form:

x(t) = c0 + c[t, <€fc, ti+1), i = 0,..., n-1 (3.3)

where:

4 =«<-4**, m,- i c' =*i+1 " *'• (3.4)
H+l ~ H

with:

xt=x(tj), x,= Hm x(t) (3.5)
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implying that:

x(t) = xi + mi(t-ti)y *€fc,ti+1), i = 0,...,n-l

Equation 3.1 is rewritten for t = tn:

V(tn) = fU x(T)h(tn-T)dT
Jo
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(3.6)

(3.7)

Equation 3.7 is spHt up into a sum of integrals over the piecewise Hnear regions
and expressed as:

n-l— ft "-L.1

yM = £/ x(r)h(tn-T)dr
t=0 Jti
n—1 rti+i

=» yM = Yl / (*; +mt- (r - *,-)) fc(*n - r) dr
*=o ,/<«

(3.8)

(3.9)

byusing Equation 3.6, and noting that a finite number of finite point discontinuities do not
affect the value of a definite integral.

Equation 3.9 is evaluated by parts and manipulated algebraicaUy to arrive at the
foUowing:

yn =

where:

in —tn-1

+g ^ IFjh^-U^)- F(h,tn - t{)
t*=i

n-l

U —ti-l

F(h,tn-tj)-F(h1tn-ti+1)
U+i - u

Fjh.tn-ti^-F^tn-tj)
U —U-i

F(h,tn-0)-F(hitn-t1)
h-0

+]£ (** " Xi) E(h,tn-ti)-
t=l

+«0 E(h,tn-0)~

E(h,t) = /'/i(r)dr
Jo

F(h,t) = f f h(Tf)dr'dT
Jo Jo

(3.10)

(3.11)

(3.12)



CHAPTER 3. NUMERICAL CONVOLUTION 28

If X{ = x,-, as is the case when x(t) is continuous and xt- are its samples, Equation

3.10 loses its second £ term. Moreover, if xo = 0, the last term in Equation 3.10 also drops

out, and the equation becomes:

fXMn-tn-l)

where:

= X,

in - tn-1

+y Xi r^(.M»" 'i-l) " F(h>*» - u)
*=1

n-l

U —U-i

F(h,tn-tj)-F(h,tn - ti+1)

+5> ti —ti-\

F(h,tn-ti)-F(h,tn-ti+1)
f=i

U+i —U

x = [x1,...,xn_1,xi,...,xn]16 7e2n-1

Note that An is linear, i.e.,

An{x + y) = An(x)+ An(y)

The net result of the above construction is summarised as the foUowing theorem:

Theorem 3.1.1 Let x(t) be a piecewise-linear function oft, with x(0) = 0. Let the break
points ofx(t) be 0, ti,..., tn, where 0, tu..., tn are an increasing sequence in Tl, n being a
natural number. Define:

Xi = x(ti), i 6 {1,..., n-l}

x- = Hm x(t), t€{l,...,n}
t-+tr

x = [xi,...,xn_1,xi,...,xn]x
This can be assumed without loss of generality; see Appendix A.

t- t- (3'13)
An operator form An of Equation 3.13, subject to the foUowing assumption, is

defined.

Assumption 3.1.2 x(t) is continuous, andx0 = 02 in Equation 3.10.

Definition 3.1.1 An : ft2""1 w-11 is defined as:

A»(X) = Xn^Mn-tn-l)
'n ~~ tn—1
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Then

An(x) =Jnx(T)h(tn-r)dT
where An is defined in Definition 3.1.1.

In view ofTheorem 3.1.1, An is a numerical integration formula for Equation 3.1
that is exact when x(t) is piecewise Hnear.

3.2 Generalised Euler Methods

GeneraHsations of the Backward and Forward Euler methods for numerical con

volution can Hkewise be derived (the derivation is omitted, being simUar to that for the
Trapezoidal method).

Generalised Backward Euler:

ftn
/ x(t) h(tn - r) dr « xnE{h,tn-tn-X)
jo

n-l

+Y, *.' [E(h, tn - U-i) - E{h, tn - U)] (3.14)
»=i

Generalised Forward Euler:

n-l

/ x(r)h(tn-r)dr » £ x< [E(h, tn -*,-i)- E(h, tn - t{)] (3.15)
•/o ,

t=l

where:

E(h,t)= J'h(r)dr (3.16)

3.3 Analytic Expressions for 23(«, •) and F(-, •)

One of the advantages of using the above formulae is that analytic expressions for

£(•, •) and F(-, •) have been identified for some of the lossy Hne's impulse responses. The
foUowing identities are valid for the special case a = p (refer Equations 2.35 - 2.37), which
holds when either R or G equals zero3:

J hY(u)du =e-f3tI0(l3t) (3.17)
The G = 0 case is useful in many practical applications.
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ft fW
/ / hY(u)dudw=U-fit{IQ(pt) + I1(ftt)} (3.18)

Jo Jo

jf V(*,«) ^ =1«-Td«e-*J0 (/V*2 - (7o*)2) (3.19)
Unfortunately, analytic expressions have not been found so far for /0* JJ5" fe7y (x,u) du dw,

/o ^(aJittJdtt, and /0 Jq h^(xiu)dudw. These are calculated numerically from the im

pulse responses - details are given in Appendix B.

3.4 Local Truncation Error

In this section, the error in using the numerical formula An when x(t) is not
piecewise-Hnear is estimated.

Consider x(t) piecewise-smooth4 over [t,-,i,+i), i € {0,.. .,ti - 1}, with x(0) = 0.
Define Xf, xt- and x as in Theorem 3.1.1. Consider:

«n =An(x) - f"x(t) h(tn - r) dr (3.20)
«/o

To estimate an upper bound for en, x(t) is expanded in a Taylor series with an

integral remainder over each interval fo,tf-+1). An analysis analogous to that for differential
equations [6] is performed, resulting in the foUowing expression:

+£ x"(t*) f(*''" u~1>} {jP(Mw" ^+F(Mw" *')}
t=i •• 2

+G(Mn - *i) " <?(Mn " *.-l) (3.21)

where

<?(*, *) =jf jT |T h(r") dr" dr' dr, (3.22)
x"(.) refers to the second derivative ofx(t), and 7* G[*,_i, t,-], i G{1,..., n}.

It can be seen in Equation 3.21 that each interval [*,-,*,-+i] contributes to the total
error. When numerical integration is performed in a circuit context, the values of the circuit

variables x(t) and y(t) in Equation 3.1 are computed forward in time, i.e., starting with x0
and y0, a value for *i is chosen, xi and yx found, t2 is chosen, x2 and y2 found, and so on.

^piecewiae-smooth implying that a Taylor-series expansion is possible over each region [U,ti+1), i €
{0,...,n-l}
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As aresult, xo,..., xn_i, y0i •••>yn-i and 0,..., tn-i are known before computing xn and
yn. It is necessary to choose tn as a first step for computing xn and yn.

Consider Acn = en - en_i, the extra error in y(t) between timepoints tn and tn_i.
This is zero if tn is chosen equal to in_i, and its absolute value wiU increase from zero when

tn > *„_!. Aen is therefore the local error at time tn. A criterion for choosing tn, therefore,

would be to ensure that theabsolute value ofthelocal error Aen is less than some specified
tolerance €max. Thus the foUowing condition must be satisfied:

|A*nl = |e„ - e„_i| < emax (3.23)

where €max is a specified constant. It is assumed that estimates are avaUable for the x"(r*)
(using, for instance, a divided-difference scheme [6]).

From the definition of €n,

+£ *"W) [(<t'"2t,"l) Wfc,*n "i*-l) +F{h,tn - ti)

+(?(fc,*n-«.-)-^»<n-*i-l)

-G(Mn-l - ti) + G(Mn-l - U-l) (3.24)

If /i(r) = 1, then F(t) = y, G(t) = ^. If these are substituted into Equation
3.24, it can be shown after algebraic manipulation that the coefficients of x"(r*) inside the

X) become identicaUy zero, and the expression reduces to the first term which simpHfies to

x"(t*) \ n~12~1' i the local truncation error estimate for the trapezoidal method.
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Chapter 4

Experimental Results

In this chapter, experimental results obtained by applying these new techniques

to several industrial circuits are presented. In Section 4.1, the analytic convolution and

state-based methods are compared to the lumped RLCG method in simulations of simple

lossy Hnes. In Section 4.2, examples containing Unes with skin effect are simulated by the

convolution and state-based methods.

4.1 Simple Lossy Lines

Waveform and computation speed comparisons of the state-based, analytic con

volution and the lumped-RLCG methods for four circuits are presented in this section.

Execution times are summarised in Table 4.1.

The first circuit raytheonl is shown in Figure 4.1. It consists of a fast BJT

inverter driver connected to a diode-resistor receiver through a 24 inch lossy transmission

Hne. The parameters (per inch) of the transmission Hne are as foUows: R = 0.2ft, L =

9.137iff, C = 3.65p.F, G = 0. When modeUing with lumped RLC segments, each inch of

the Hne is spHt up into ten lumped segments; for the R-Lossless case, each Hne is spHt up

into five segments. The characteristic impedance of the Hne is 50.012ft and the delay per

inch is 0.18255ti$. The nonHnear elements in the BJT driver comprise 12 transistors and

20 diodes. The nonHnear elements in the passive receiver circuit are 5 diodes.

Waveforms from the simulation of this circuit are shown in Figs. 4.3 (near-end

voltage) and 4.2 (far-end voltage). The input voltage pulse to the inverter in the circuit

had the foUowing specifications: rise time = Ins, faU time = Ins, pulse width = 20ns, total
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Circuit Simulation Length Execution Time0

lumped-RLC Convolution State-Based
raytheonl 60 ns 739 s 19.43 s 20 s

120 ns 1550 s 62.31 s 41.3 s
180 ns 2237 s 131.32 s 60s
240 ns 3002 s 220s 78s

raytheon2 60 ns 336.35 s 37 s 28.7 s

120 ns 668.3 s 110 s 52 s

180 ns 1027 s 239 s 78.7 s

240 ns 1372 s 380 s 99.6 s

1000 ns 5646 s 6301s 428 s

raytheon3 60 ns 885 s 40 s 28 s
120 ns 1791s 141s 57 s

180 ns 2700 s 529.41 s 95.3 s
mosaic 10 ns 44.44 s 0.9 s 2s

20 ns 93.18 s 3.6 s 2s

40 ns 181.3 s 12.9 s 3.5 s

80 ns 371s 49.5 s 6s

°CPU times on a DEC 5000/200 running Ultrix 4.1

Table 4.1: Simple Lossy Lines: Comparison of Execution Times

24 inch lossy line

BJT Driver ^

R=0.2Ohms, L=9.13nH, C=3.65pF
per inch

Figure 4.1: raytheonl circuit

J- Passive Rcvr
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simulation time: 60ns. It can be seen that the waveforms for all three methods agree weU.

voltage raytheonl

S.OO

4.00

3.00

2.00

1.00

0.00

-1.00

-2.00

0.00 10.00 20.00 30.00 40.00 SO.OO
Time x Iff9

Figure 4.2: raytheonl receiver-end voltage

For this circuit, the convolution and state-based methods consume about the same

computation for a simulation length of 60ns. As the simulation duration is increased to

240ns, the quadraticcomplexity ofconvolution becomes apparent from the disproportionate

rise in execution time. The rise in execution time for the state-based and lumped-RLC

methods is approximately Hnear. At 240ns, the state-based method is more than twice

as fast as convolution, which in turn is more than a factor of 10 times faster than the

lumped-RLC method. The accuracy of the convolution and state-based methods is seen

to be simUar. On account of the large number of segments used, the waveform for the

lumped-RLC method is also accurate.

The second circuit raytheon2 (Figure 4.4)) consists ofa BJT driver driving three

receiver circuits through several branched transmission fines. The parameters of the trans

mission Hne are the same as above; the driver and receiver circuits are also the same.

Waveforms from the simulation of this circuit are shown in Figs. 4.5 - 4.8, by

increasing order of increasing distance from the BJT driver.

For raytheon2, the waveforms of the three methods are again very simUar. The
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Voltage

O.OO 20.00 30.00 40.00 50.00

Figure 4.3: raytheonl near-end voltage

15in 4in 5in

BJT Driver

Figure 4.4: raytheon2 circuit

60.00

Passive Rcvr
2

35
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0.50

O.OO 60.00

Figure 4.5: raytheon2, voltage at driver

raytheon2

l.OO

o.oo

-l.OO

O.OO 10.00 20.00 30.00 40.00 SO.OO

Figure 4.6: raytheon2, voltage at stub end 21 inches from driver

Titncx iff9
60.00

36
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10.00 30.00 40.00 30.00 60.00

Figure 4.7: raytheon2, voltage at stub end 23 inches from driver

0.00 10.00 20.00 40.00 50.00 60.00
Time x 10"°

Figure 4.8: raytheon2, voltage at far-end of main Hne
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state-based method is computationally advantageous over both lumped-RLC and convolu

tion methods, for simulation lengths over 60ns. At 1000ns, the advantage in speed is more

than a factor of 10 over the other methods. It is to be noted that the quadratic complexity

of convolution makes it slower than the lumped-RLC method for this long simulation.

The third circuit raytheon3, shown in Figure 4.9, consists of a BJT driver con

nected to a receiver through two 2-inch single-conductor lossy Unes and a 20-inch two-wire

multiconductor Hne. The self-parameters of the coupled Hne are the same as in the previous

circuits; the mutual capacitance and inductive coupling coefficient are l.SpF per inch and

0.482, respectively. The sense wire of the multiconductor Hne is terminated at both ends by

the nominal characteristic impedance of the Hne, 5012. The input pulse specifications are

the same as in the previous circuits.

BJT Driver

2" lossy line

50

20" two-wire lossy

multiconductor line

Z=50ohms

2" lossy line

50

Figure 4.9: raytheon3 circuit

Passive Rcvr

The near end drive Hne voltage at the 2-wire coupled Hne is shown in Figure 4.10

and the near end sense Hne crosstalk is shownin Figure 4.11. The far end drive Une voltage

is shown in Figure 4.12 and the far end crosstalk is shown in Figure 4.13.

It is observed that aU three methods again yield very similar results. For a sim

ulation of 180ns, the state-based method is more than 5 times faster than the convolution

approach and 20 times faster than the lumped-RLC method.

The fourth circuit mosaic, shown in Figure 4.14, consists of a voltage source

connected through a series terminating resistor to one end of a transmission Hne. The other

end of the transmission Hne is left open, save for two clamping diodes whose purpose is

to Hmit the voltage swing to within about -0.7 to 5.7 volts. The interconnect parameters

for this Hne are: C = 0.468pF, L = 8.792nH, R = 12.4512 per cm, with the length being

16cm. The nominal characteristic impedance of the Hne is 137(2, and the delay of the Hne is

1.024ns. The physical parameters of the Hne are: thickness=2/jm, width=ll^m, aluminium
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Voltago

4.00

3.SO

2.SO

2.00

l.SO

0.50

-0.50

O.OO lO.OO 2O.O0 3O.0O 40.00 50.00 60.00
Time x 10r9

Figure 4.10: raytheon3, drive line near end voltage at coupled line

0.00 10.00 40.00 50.00 60.00

Time x 10r9

Figure 4.11: raytheon3, sense line near end voltage crosstalk
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OO 20.00 30.00 40.00 50.00 6O.O0
Time x 10~9

Figure 4.12: raytheon3, drive line far end voltage at coupled line

Voltage raytheon3
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-0.40

-0.80

-I.OO

Figure 4.13: raytheon3, sense line far end crosstalk
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Rs

VH

Figure 4.14: mosaic circuit

conductor, Si02 dielectric. The input pulse parameters are: rise and fall times of lOOps,

pulse width Ins, 0-5V swing. The series resistor Ra is 10ft.

The voltages at the near and far ends of the transmission line are shown in Figs.

4.15 and 4.16. Using the lumped RLC method, which has 64 segments for the line, results

in significant spurious oscillations in the far end waveform. In contrast, the state-based and

convolution methods yield accurate waveforms. The speed advantage of the state-based

method for an 80ns simulation is more than 8 and 60 over the convolution and lumped
RLC methods, respectively.

The interconnect of the mosaic example is also used to illustrate the accuracy

of the state-based and convolution methods compared to the Pade approximation method

[31]. The linear driver in Figure 4.14 is replaced by a simple CMOS inverter and the
receiving end oftheinterconnect is left open.1. Comparisons between theconvolution/state-
based, lumped-RLC and Pade approximation methods are shown for the voltage at the
unterminated end of the line in Figure 4.172. The close match between the lumped-RLC

and the convolution/state-based methods can be seen, whereas the Pade approximation

method's waveform is seen to have extraneous non-physical features. This is due to the

inaccuracy of the model for significant R (in this case, 12.45ft per cm). The inaccuracies

increase with increase in R: setting R = 50ft per cm results in the waveforms of Figure
4.18. Reducing the value of R for this line to 0.2ft per cm improves the performance of

aThis circuit is used in the suite of examples for testing SWEC and SPICE3-Pade, programs that imple
ment the algorithms in [31].

Comparisons performed using the SWEC implementation of Pade approximation, latest version as of
Nov. 1, 1992. The SPICE3 implementation of Pade approximation was not stable and produced erroneous
results in most examples, hence comparisons against the SPICE3 implementation are not shown.
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Figure 4.15: mosaic near end voltage

2.0O 4.00

Figure 4.16: mosaic far end voltage
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Figure 4.17: modified mosaic, far end voltage (Pade approx. method)
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Figure 4.18: modified mosaic, R = 50ft cm-1, far end voltage (Pade approx. method)
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Figure 4.19: modified mosaic, R = 0.2ft cm-1, far end voltage (Pade approx. method)

the Pade approximation method, as seen in Figure 4.19. For the R = 12.45ft per cm case,

execution times for the lumped-RLC, convolution/state-based and Pade methods were 98s,

lis and 1.24s, respectively; for the R = 50ft per cm case, the times were 43.7s, 31.2s

and 1.24s, respectively; and for the jR = 0.2ft per cm case, they were 286s, 2s and 1.13s,

respectively3. This demonstrates that the techniques of [31], while significantly faster than
the convolution, state-based and lumped-RLC methods, can lead to large inaccuracies for

thin MCM interconnect with high series resistance.

The fifth circuit xerox-sun-lsi is shown in Figure 4.20. The circuit consists of a

high-speed bus, modelled as an 8-wire coupled transmission line, connecting three chips with

CMOS Gunning Transceiver Logic (GTL) drivers [24]. The chips are clocked at 400Mhz

(2.5ns cycle), with rise and fall times of 0.25ns. The bus is 1 foot long and is terminated

at both ends by 50ft resistors, the nominal characteristic impedance of the lines. The

parameters of the coupled line (per inch) are: R = 0.2ft, L = 9.13ra.ff, C = SMpF, G = 0,

k (coefF. of inductive coupling) = 0.482 and Cm (coupling capacitance) = l.SpF. Note

that very thin interconnect, as in the mosaic example, cannot be used in GTL technology,

3DECstation 5000/125 running Ultrix V4.2A.



CHAPTER 4. EXPERIMENTAL RESULTS

50 Ohm
termination! *

Figure 4.20: xerox-sun-lsi coupled line circuit

SO Ohm

terminatIon

45

because the high series R of the line will dominate the parallel termination resistance.

In the simulation, the chip at B (Figure4.20) drives the bus with the other two

chips acting as receivers. Each chip connection has a pad capacitance of 2.5^. The bus
wires are inactive when at the high voltage level (Vt) of 1.2V, and active at the low voltage
level of 0.2V. In order to estimate the worst-case crosstalk, all wires of the bus except the
fourth from one end were switched simultaneously.

Execution times (for a 5ns simulation) were 24s for the convolution/state-based
waveforms and 178s for a partial simulation using the lumped-RLC method4 on a DECsta-

tion 5000/240 with 128MB ofmemory. The CMOS transistors caused convergence problems
in SPICE3, hence RELTOL was increased to a value of 0.1, but without noticeable degra
dation of results. The circuit was also simulated using linear drivers approximating the
GTL technology and the default RELTOL of0.01. For the linear simulation, the execution

times were 17.8ns for the convolution/state-based waveeforms and 121s for thelumped-RLC
method. Figures 4.21, 4.22, 4.23 and 4.24 depict the progress of the waveform on Line 1

at points A, B, C and Dof Figure 4.20, respectively. (Note that the circuit is being driven
at B). The delays caused by the transmission line are clearly seen. Figures 4.25, 4.26, 4.27
and 4.28 depict the crosstalk on Line 4. As expected, the crosstalk centers around Vu the
DC level of the quiescent bus. Figures 4.29, 4.30, 4.31 and 4.32 depict the progress of the
waveform on Line 5, and Figures 4.33, 4.34, 4.35 and 4.36 do the same for Line 7.

It is seen from Figures 4.21 - 4.36 that using linear approximations to GTL tech

nology leads to significant degradation of results, hence nonlinear models must be used.

4The lumped-RLC simulation did not complete.
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Voltage

O.OO 4.00 5.00

Conv/SL-Bsd.: OTL

EmpcCKCcTSTir"******
cVnv/St.-B^r:lIincar"
£ixi|x£J&Ccl Linear """

Time x 10"Q

Figure 4.21: xerox-sun-lsi voltage at A, Line 1

l.OO 3.0O

Conv/St.-Hsd.: OlL
ICmpcf-KilcTSTlC
ClanvTSL-Bt&7:1Cfi>ear"
Lmpd^&llc': Linear ~ "

Time x IO-*

Figure 4.22: xerox-sun-lsi voltage at B, Line 1
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Voltage

O.IO

O.OO

O.OO

Voltage

O.OO

l.OO 2.00 3.00 4.00 5.00

Conv/St.-Bsd.: QTL.

L"mpd-RLC:"QTiC"
Co^v/sL-Bsd^lRjiear"
LmpcfR^Zcl Linear ~ *

Time x 10"°

Figure 4.23: xerox-sun-lsi voltage at C, Line 1

l.OO 2.QO 3.00 4.00 5.00

Conv/St-Bsd.: OTL

ICmpd-RLCTQTiC
CVnv/SL-B^7:"Linear"
LmpcCtfJCc": Linear ~ *

Time x 10"^

Figure 4.24: xerox-sun-lsi voltage at D, Line 1
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Voltago

Voltage

O.OO l.OO 2.00 4.0O 5.00

Conv/St.-Bsd.: OTt.

Lmpd-KLCTGTL*
Conv^t.-Bsd.":'Cincar"
LmpfALC7 Linear ~ *

Timo x 10"°

Figure 4.25: xerox-sun-lsi crosstalk voltage at A, Line 4

3.00 5.00

Conv/St.-Bsd.: OTt

Lmpd-RLCTOTL"
Co*nv/§L-Bsd7:lL&car*
Lmpc£iSLCl Linear

Time x 10"°

Figure 4.26: xerox-sun-lsi crosstalk voltage at B, Line 4
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Voltage

0.70

Voltago

O.OO l.OO 2.00 5.0O

Conv/St.-Bsd.: GTL.

Cmpd-KilcVOTL*
Ctmv/SL-Bi^r:"Linear"
LmpcCSLCl Linear ~ "

Timo x 10-°

Figure 4.27: xerox-sun-lsi crosstalk voltage at C, Line 4

O.OO l.OO 4.0O 5.00

Conv/Sc-BscL: GTL.

EmpeuKLersTi:
Osm^SL-Bodr:"Linear '
LmpfJELcl Linear ~ *

Time x 10"°

Figure 4.28: xerox-sun-lsi crosstalk voltage at D, Line 4
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Voltage
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Voltage

l.OO 2.0O 4.00 5.00

Conv/St.-Bsd.: GTL

Lmp£KLC":"OTL""
Co"nV/sL-B^.~:TLincar'
Lmpc£fiLC7 Linear

Time x 10"°

Figure 4.29: xerox-sun-lsi voltage at A, Line 5

Conv/St.-Bsd.: GTL

LmpeCRLCTOTL*
CVnv7sL-BsdT:')Cinear"
Lmpc£tfLC': Linear ~ "

Time x 10"°

Figure 4.30: xerox-sun-lsi voltage at B, Line 5
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Voltage
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Time x lO-9

Figure 4.31: xerox-sun-lsi voltage at C, Line 5
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CVriV/St.-Bsdr:"Linear"
LmpcCSLC": Linear ~ "

Time x 10*°

Figure 4.32: xerox-sun-lsi voltage at D, Line 5
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Voltage

O.OO 2.0O 3.00

Conv/St.-Bsd.: GTL

Lmj^-KLCTGTL"
Orav^t.-Bsd.~:"Cihear"
Lmp<£ftLC*: Linear

Time x 10*°

Figure 4.33: xerox-sun-lsi voltage at A, Line 7

2.00 3.00

Conv/St.-Bsd.: GTL

Lmpd-KLCVOTL"
C<wrv7St.-BsdT:TCfiicar"
Lmpc£&LCl Linear ~ "

Time x 10"°

Figure 4.34: xerox-sun-lsi voltage at B, Line 7
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Figure 4.35: xerox-sun-lsi voltage at C, Line 7

l.OO 2.00 3.00 4.00 5.00

Conv/St--Bsd.: GTL

Lmpd-KLCTOTL*
CVnv75L-B^r:"Linear"
Lmpf££LCl Linear ~ "

Time x 10"°

Figure 4.36: xerox-sun-lsi voltage at D, Line 7
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Figure 4.37: modified mosaic: execution time vs simulation length

Figure 4.37 is a plot of execution time vs. simulation length for the three methods.

Both the state-based and lumped-RLC methods grow linearly with time, but the graph for

lumped-RLC method displays a much greater slope than that for the state-based method.

Convolution is seen to have quadratic time complexity, with execution times comparable to

the state-based method for short simulations, but rising disproportionately as the length of

the simulation is increased.

From Table 4.1 and Figure 4.37, it is observed that the state-based method can

speed up simulations by factors of more than 10 and 50 over the convolution and lumped-

RLC methods respectively. Note also that the convolution method can be more than 5-10

times faster than the lumped-RLC method. The state-based and convolution methods are

equally accurate, equivalent or superior to the lumped-RLC method.

4.2 Lines with Skin Effect

The techniques for frequency varying lines outlined in Section 2.5 were used to

simulate interconnect with skin effect, a high frequency nonideality.
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The physical parameters of the aluminium interconnect (taken from [14]) are:

width = ll^m, thickness = 2/*m, height above ground plane = 10/tm, Si02 dielectric, length

of line = 10cm, Rdc = 12 ohms/cm, Ldc = 8.79 nH/cm, Cdc = 1 pF/cm. Dielectric loss

(parallel conductance G) is assumed to be zero at all frequencies. Skin-effect is accounted

for using two models, one with a sharp transition point between the DC and skin effect

regimes (the abrupt model), and one with a smooth transition region (the smooth model,
[29]).

4.2.1 Abrupt Skin Effect Model

The abrupt model is based on the following equations:

*(/) =<7V' JrfJT (4-1)f RoVJ f >
[Rdc f<

Lext + lf. />/T
Hf) = { v* (4.2)

Ldc f < h

C(f) is assumed constant at Cdc] It, the transition frequency after which skin-

effect becomes significant, is taken to be 1 GHz from [11]; Lexty the inductance external to

the wire and less than Ldc, is taken to be 4 nH/cm. From these, Rq and i0 are calculated

to be 3.7947 x 10"4 and 1.5147 x 10"4 respectively. Theideal delay T = ly/Ldc Cdc is 0.9375
ns.

The impulse responses of the pure nonideality Ahy, Ah^ and Ah^y contain im
pulse (delta function) components which are first separated out. AhfY, Ahi^ and Ah'Y, the
components without impulses, were calculated by numerical inversion of the Fourier trans

form, and are shown in Figs. 4.38, 4.39 and 4.40. The following relations can be shown to
hold:

AM*) = MYS(t) + AhY(t) (4.3)

Ah^(t) = M^6{t-T) + Ah^(t) (4.4)

Ahiy(t) = Af7y tf(* - T) + A^y(t) (4.5)

For this example, MY = 0.42021, M7 = -0.53263, and M^y = -0.51601. In

order to obtain a quantitative estimate of the error caused by truncation, the functions
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Figure 4.38: Abrupt model: AhY(t)
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3.00 4.00
Tiito x lO-9

6.00
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Figure 4.40: Abrupt model: Ah'^Y(t)

f0 AhY(T)dT, JoAft^rJdr, and /0*A^y(r)dr are useful. Plots of these functions for
this example are shown in Figs. 4.41, 4.42 and 4.43; the point after which these functions

achieve a steady value is the effective length of the response. An upper bound estimate
of the relative error caused by truncation at time t = k of (for example) Ah!Y(t) under
appropriate assumptions is easily seen to be given by:

£ ^\5?&hY(T)dT-SZAhY{T)dT\
\IohY(r)dT\

That /0°° AhY{T) dr is finite follows from that /0°° Ahy{r) dr - AHy(0) =0, aconsequence
of the high-frequency nature of the nonideality.

For this example, the effective durations of Ah'Y, Ah'^ and Ah'^Y were 600ps, 3ns
and 3ns respectively, as seen from the plots of their integrals. Convolution was performed
using the numerical formula in Chapter 3.

The circuit was the same as the fourth example ofSection 4.1 (Figure 4.14). Rise
times of lOps and Ins were used.

Figure 4.44 illustrates the voltage at the load end for the lOps rise-time case.

Simulation by pure convolution and the state-based/conv. technique of this paper are seen
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O.OO 200.00 400.00 600.00

Figure 4.41: Abrupt model: /0' AhY(r)dT
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Figure 4.42: Abrupt model: /„' A/^(r)dr
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Tiiiic x lO-9

Figure 4.43: Abrupt model: /„'A/^y(r)dr

to yield identical results. Also shown is the results of simulation without skin-effect and only

DC losses considered. The rise-time degradation caused by skin-effect, and the rounding of
edges, can be seen clearly.

It is seen that the skin effect waveforms have a sharp undershoot at the delay of the

line, a surprising and unexpected phenomenon. This undershoot is non-physical, caused by
a modelling error, namely the abrupt transition in the frequency-domain impedance model

[29, 41]. The smooth model described in the next section eliminates this undershoot.

Figure 4.45 shows the load voltage for a rise-time of Ins. It is seen that skin-effect

makes virtually no difference to the waveform in this case.

An interesting feature is that it is possible to simulate just the high-frequency non-

ideality without simulating DC losses (Figure 4.46). Though such a situation is physically

impossible, it offers some insight into features of the waveform caused purely by skin-effect.

Table 4.2 and Figure 4.47 show computation time as a function of total simulation

length for the state-based and the pure convolution techniques. The linear and quadratic
complexities of the two methods are apparent from the figure.
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State-based/conv

P^convV

No skin-effect

Time x 10"
0.00 1.00 2.00 3.00 4.00 5.00

Figure 4.44: Load voltage, lOps rise-time

0.00 1.00 2.00 3.00 4.00 5.00

Figure 4.45: Load voltage, Ins rise-time

State-based/conv.

Pureconv.

No skin" effect
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2.00 3.00 4.00

Figure 4.46: Load voltage, skin losses only (no dc loss)

Computation Time (s) x10^

6.00

0.00 200.00 400.00

Pureconv.

State-based/conv.

600.00
Simulation Length(ns)

Figure 4.47: Execution time vs. simulation length
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Simulation Length Execution Time0

State-based/conv. Convolution only
10 ns 6.82 s 4.90 s

20 ns 13.4 s 12.83 s

40 ns 26.72 s 38.26 s

60 ns 40.35 s 75.8 s

80 ns 53.59 s 126 s

100 ns 70.16 s 186.2 s

200 ns 140.78 s 695 s

300 ns 253.8 s 1619.5 s

400 ns 302.4 s 2635.1 s

500 ns 383.5 s 4110.6 s

600 ns 473.2 s 5839.9 s

aCPU times on a DEC 5000/200 running Ultrix 4.2

Table 4.2: Skin Effect: Comparison of Execution Times

4.2.2 Smooth Skin Effect Model

62

The smooth model is based on the classical model [38]. The parameters for the

interconnect for this model were the same as for the abrupt, with the exception of Ldc

being 10.27nH per cm. The corner frequency for this model was also 1GHz. The nominal

characteristic impedance Zq for this example is 101.36ft.

As in the abrupt model, the impulse responses Zq Ahy, A/i7 and Zq Ah^y contain

impulse (delta function) components which are first separated out. ZoAh'Y, Ah'n and

ZoAh'^y, the components without impulses, were calculated by numerical inversion of the

Fourier transform, and are shown in Figs. 4.48, 4.49 and 4.50.

For this example, Z0My = 0.05683, Af7 = 0.5574, and M^y = 0.55481.

For this example, the effective durations of ZoAhY, Ah'^ and ZoAh'Y were Ins,

2.08ns and 2.38ns respectively, as seen from the plots of their integrals.

The circuit was the same as for the abrupt model of the previous section. Rise

times of lOps, lOOps and Ins were used.

Figure 4.54 illustrates the voltage at the load end for the lOps rise-time case. The

rise-time degradation caused by skin-effect, and the rounding of edges, can be seen clearly.

It is seen that the use of the smooth model for skin effect has eliminated the spurious

undershoot that appeared in the abrupt model results of the previous section.
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Figure 4.50: Smooth model: Zq Ah'yY(t)
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Figure 4.51: Smooth model: Z0 /0* AtiY{r)dT
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Figure 4.52: Smooth model: /0'A/i'(r)dr
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Figure 4.53: Smooth model: Zq /0' A/^y(r)dr

TiAo x 10-9
10.00

Tixbe x lO-*
1O.0O

65



CHAPTER 4. EXPERIMENTAL RESULTS 66

Voltage

O.OO 3.O0 S.OO
Timo x lO-9

Figure 4.54: Smooth model: load voltage, lOps rise-time

Figure 4.55 illustrates the voltage at the load end for the lOOps rise-time case.

Rise-time degradation caused by skin effect can be seen in this case too.

Figure 4.56 shows the load voltage for a rise time of Ins. It is seen that skin-effect

makes virtually no difference to the waveform in this case, as expected.
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Figure 4.55: Smooth model: load voltage, lOOps rise-time
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Figure 4.56: Smooth model: load voltage, Ins rise-time
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Chapter 5

Conclusion

It has been shown that uniform simple lossy lines may be accurately simulated

using techniques based on analytic formulae.

The convolution technique for simulating SLLs has been extended by identifying

analytic expressions for the impulse responses of the lossy line. Numerical convolution

with these impulse responses is performed using a technique obtained by generalizing the

trapezoidal integration method, which has higher-order accuracy than previous convolution

methods and also leads to further closed-form expressions that can be applied directly. This

technique suffers from the disadvantage of quadratic complexity, which leads to dispropor

tionately high execution times for simulations of many time-points. Despite this, example

simulations demonstrate that the technique can be an order of magnitude faster than the

lumped-RLC method for short simulations, while being superior in accuracy.

A technique for solving the quadratic complexity problem while maintaining ac

curacy (the state-based method) has been developed. Unlike previous methods for lin

ear complexity which use a reduced-order approach for linear complexity, the state-based

method relies on utilising the dynamic internal stateof the transmission line. The technique

substitutes convolution by a fixed-length space integral, thereby eliminating the quadratic

complexity problem associated with convolution. Analytic formulae are used for the impulse

responses of the line. Analytic formulae are also identified for the kernels of the space inte

grals. The use of these analytic formulae leads to higher accuracy compared to techniques

using numerical inversion. Essential to the efficiency of the technique is the dynamic sam

pling of the internal state during simulation, with sample locations varying both in number

and position from time-point to time-point. Dynamic state sampling automatically ensures
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that lines with little internal activity use little computation, resulting in the exploitation
of latency in circuits with several transmission lines. Example simulations confirm the
linear complexity property and demonstrate significant computational advantage over the
convolution and lumped-RLC methods for long simulations.

Skin effect and other high-frequency nonideal phenomena can also be modelled by
this approach. Augmenting the Telegrapher equations with additive terms can be used to

incorporate nonideal phenomena into the state-based formulation if the terms are chosen

appropriately. It is shown that thenon-ideal line may betreated as two almost independent
parts, one consisting ofa simple lossy line and theother the additional nonideal part. Under

the assumption that the purely nonideal part of the line has short responses that can be
truncated, the overall simulation of the line can be performed in linear time. An example
with thin multi-chip module interconnect demonstrates that skin effect can be simulated

accurately in linear time for some real situations.

A previous result by other authors [19] makes it possible to use the techniques
developed in this work to simulate the special case of identical, locally-coupled multicon
ductor lines. It is anticipated that the linear time property of the state-based method will

carry over to general multiconductor lines, with the limitation that impulse responses and

space integral kernels must be determined numerically as it is unlikely that closed-form

expressions will be available. Techniques for the efficient and accurate inversion of func

tions with time-domain discontinuities need to be developed for the state-based simulation

of general multiconductor lines to become practical. The parallel implementation of the
state-based method holds promise for increased speed because ofan intrinsic decoupling in
the computation procedure for the internal line state.
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Appendix A

Dealing with an nonzero initial

DC condition

Consider the Telegrapher Equations (Equations 2.1 and 2.2), reproduced here:

£ =-(*£+*«) (")
£ =-(*SH <a*>

Assume there exist two sets of solutions (va(x,t),ia(x,t)) and (vb(x,t),ib(x,t)) to
the above equations. Since the Telegrapher Equations are linear PDEs, any linear combi

nation of the above solutions (with coefficients not involving x or t) is also a solution of

the Telegrapher Equations. The DC solution (yDC(x),iDC(x)) of the Telegrapher Equa
tions is independent of time. Therefore, given any other solution (v(x,t),i(x,t)), the linear

combination (v^(x,t),i\x,t)), where v*(x,t) =v(x,t) - vDC(x), i*(x,t) =t(*f *) - iDC(x),
satisfies the Telegrapher Equations.

Therefore, v and t can be replaced by v+ and i* in all the equations in Chapter 2.

This has the advantage that if the simulation is assumed to start when the circuit is in a

DC steady-state, then v\x,0) = i*(x,0) = 0, and some computation is saved.
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Analyticexpressions for E(h^, t), F(Ly,t) andE(Lyy, t) (refer Chapter 2) havenot

been found yet, hence these functions must be computed numerically. While these integrals

may be computed using any standard numerical integration method, it has been found that

using piecewise-linear approximations for h(') leads to insignificant lossof accuracy in many

cases. The following formulae find application if this assumption holds. h(r) is assumed

known at two points ti and ^ and to be linear, i.e.:

«T) =h(h)+hM-_^\r-tl) (B.1)
It is desired to calculate the following:

u(t) = / h{r)dr (B.2)
Ja

v(t) = / u{r)dr (B.3)

w(t) = / v(r)dr (B.4)

Using Equation B.l in Equation B.2 leads to:

t,(t) =(t -a) h(U)+fe^~jy {(t -hf - (e -tl)2} (B.5)
Using Equation B.5 in Equation B.3 results in an expression for v(-):
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{('-ir-p-^.fr.^.qj (B.6)
Using Equation B.6 in Equation B.4 yields an expression for w(-):

(t-a)3-(c-af
-(6-a)2(*-c)

M<2)-M<i)
2(<2-ti)

Mr-Mi4-^-^^,,)

-(a-^-^'C^tf (B.7)

Using the above formulae, E(h^,t), F(L,,t) and £(V><) may be calculated.
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