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Abstract

We extend the discrete wavelet transform (DWT) to functions on the discrete
circle to create a fast and complete discrete periodic wavelet transform (DOPWT) for
bounded periodic sequences. In so doing we also solve the problem of non-invertibility
that arises in the application of the DWT to finite dimensional sequences as well as
provide the proper theoretical setting for previous incomplete solutions to the
invertibility problem. We show how and prove that the same filter coefficients used
with the DWT to create orthonormal wavelets on compact support in /” (Z) may be
incorporated through the DPWT to create an orthonormal basis of discrete periodic
wavelets. By exploiting transform symmetry and periodicity we arrive at easily
implementable, fast, and recursive synthesis and analysis algorithms. We include
Matlab functions for DPWT experimentation.

"This work was supported in part by NASA under grant NAG 2-243 and by NSF under
grant IRI 90-14490.
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I. Introduction

The discrete wavelet transform (DWT) provides a means of decomposing sequences of
real numbers in a basis of compactly supported orthonormal sequences each of which is
related by being a scaled and shifted version of a single function. As such it provides the
possibility of efficiently representing those features of a class of sequences localized in both:
position and scale. Compactly supported wavelet bases, like complex exponential bases,
carry the significant advantage that fast, numerically stable algorithms exist for sequence
analysis (decomposition into the wavelet basis coordinates) and synthesis (reconstruction
from the coordinates in the wavelet basis).

The Discrete Wavelet Transform

The DWT has found application in acoustical analysis, image processing, and data
compression. It holds promise for use in edge detection, finite element analysis, and, in
particular, for optimization where the high computational overhead of many optimization
algorithms strongly motivates a search for more efficient representations of useful classes

of functions.

The standard form of the DWT analysis algorithm applied to a real valued sequence
f €*(2) is defined recursively by the level p decomposition

Pl — [ fP
{f f W

wP!l = pr

where f?=f and L and H are respectively 1*(Z) — I*(Z) low-pass and decimate and
high-pass and decimate linear filter operators. The decimation is usually, and throughout
this paper, by a factor of 2 (Decimation by 2 of a sequence x produces a sequence y
defined by y, =x,,,neZ). The inverse discrete wavelet transform (IDWT) creates
sequences f?, peZ from the set of wavelet coordinate vectors {w"}, keZ, with

w* € I*(Z), and is defined recursively by the level p reconstruction
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fP=Lf" + H'w" )

where L' and H* denote the adjoints of the maps L and H with respect to the standard
inner product on 1*(Z). We will sometimes refer to both the forward and inverse algorithm
pair as the DWT. (We discuss the difference between level and the more standard scale
below.)

Let *(R) denote the square integrable functions over the real numbers. The wavelet
basis of L*(R) is implicit in the DWT. The basis functions are indexed by level and shift.
The basis function corresponding to level g and shift n is the limit as p goes to infinity,
when such a limit exists, of the interpolated sequences f? produced by the inverse DWT
with w{ =0, ,, k€Z, and all other w/ zero. The convergence of these limits and the
particulars of the interpolation scheme are discussed thoroughly in [Daubl] and we refer
the reader to this reference for the details. We will be more concerned with sequence spaces
and will describe bases of wavelet sequences below.

In order for the algorithm (1), (2) to correspond to an orthogonal DWT we require that

L and H obey the following perfect reconstruction criteria:

LL =1 A3)
HH =1 )
LH =0 &)
LL+H'H=I (6)

where /, and 0 refer respectively to the identity operator and zero operator, 1*(Z) — I*(Z).

In practice the DWT (1) is implemented through the sums

=Y W
k

)
wi = Z LY
x

where / and & are equal length finite impulse response (FIR) filter coefficients and are



N. Getz: A Fast Discrete Periodic Wavelet Transform 3

designed such that (3), (4), (5), and (6) are satisfied. The IDWT (2) is implemented by the

sum
£ = Y A e v W Ry, ®
k

By choosing ! to have support Q, ={0,1,...,2N -1} and to satisfy (3) one may easily
create an h which allows satisfaction of (4) and (5) with

he=(=1)"Ly,_, ©

for some g in Z. In this paper we will always take ¢ = N in (9) so that we will have what
will turn out to be the computational convenience of ! and 4 having the same support Q,,.
For convenience later we tag / and A by their support size and will refer to them as /¥ and
h" . With each 1", h" pair we will associate the finite impulse response FIR filters L and
H" having I, and A", respectively, as their impulse responses. Since L and H are FIR
we may relax the requirements on f” and w” to being bounded sequences in 1~(Z) rather
than square summable sequences />(Z). However, we will continue to consider /¥ and A"
to be drawn from /2(Z).

In terms of /Y and A", and using the form (7) of the DWT, criteria (3), (4), and (5)
become

Zl.l.v-zk I:ﬁz: = 8&.1 (10)
S Y by =6, (11)
S B y=0 (12)

where J,, denotes the Kronecker delta. Note that (11) and (12) follow from (10) with
relation (9). Criterion (10) says that ¥ is orthogonal to shifted versions of itself when that
shift is by an even integer. Criterion (11) says the same for A". Criterion (12) says that "
and A" are orthogonal as are all of their even shifts.

There are additional conditions on /" which assure that (6) is true and that the
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corresponding continuous wavelet bases of L*(R), where the correspondence is through
interpolation, have some degree of regularity. Maximum regularity for a particular choice of
N is guaranteed by choosing the FIR low-pass filter associated with I" to have N zeros at
-1. This regularity then increases as N increases. For an in depth study of these conditions
and a chart of I"'s for N <10 we refer the reader to [Daubl]. Here we will always assume
that /" is such that (10), (11), (12), and (6) are satisfied.

If IY corresponds to the impulse response of an FIR half-band low-pass filter, then the
reversed impulse response h" represents what we will refer to as its conjugate FIR
half-band high-pass filter, meaning that / — L'L = H"H . The halfbandedness of the filters
allows, according to the Nyquist sampling theorem, a reduction of the sampling rate by 2.
This filter-and-decimate process is then repeated on the decimated output of the low-pass
filter.

Shortcomings of the DWT

The discrete wavelet transform (7) is not without its problems. Small shifts in a sequence
may yield large changes in the wavelet transform of that sequence as discussed in [SFAH].
The shift problem will not be covered here except to say that useful sequence domains exist
where shifted versions of the same sequence are not considered to be close, so that some
degree of coordinate instability with respect to shift is not a problem. Examples abound in

the analysis of spectra. We also note that the shift problem decreases as N increases.

Another problem with the DWT (7), one that we will address here, may be seen as
being due to windowing or filter truncation as the operators L and H are restricted to finite
dimensional subspaces of /”(Z). The nature of this problem will be illustrated and clarified
in section III. We will show that windowing results in non-orthogonal wavelets and lack of
invertibility of the DWT. The problem arises from the fact that the shift operator and its
adjoint are inverses on [”(Z) but not on finite dimensional subspaces of I~(Z). It is
amplified by the recursive nature of the DWT. We will show that these errors may be
entirely eliminated by casting finite length sequences as single periods of periodic sequences
where the natural shift operator is a rotation and is thus unitary on finite dimensional
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subspaces of I”(Z).

Mathematical Context of Discrete Periodic Wavelets

We will take a finite dimensional point of view and will consider subspaces of 1(Z)
sequences f* and w” on support Z,={0,1,...,2" —1} and their periodic counterparts f*
and w” in copies of P, the sequences over the discrete circle of period 2°. Let 8 be a
subset of Z. By support 8 we mean that if sequence s is in I(8), ge{1,2,..., o}, then
s, =0 for all £ in the complement of § with respect to Z. We define the relation of £ to
fPand #* to w” by fP=fF ., W =wP ., ieZ.Fromnowon f” and w” will
refer to real valued sequences in [ (Z p) c I”(Z). More specifically, we consider f” and
W’ to be vectors in copies of P,, namely ¥, and W, respectively. We will often suppress
the specificity of ¥, and W, by referring to both as P,. Sometimes we will refer to the
vector representations of f7ad wPsf? =[ff fr - fh ladwP=[ws wf - wi_],
both 2”-tuples in R”. Also we may refer to the matrix representations of our linear
operators in bold face, e.g. L, and H,. Often, when context will prevent a sacrifice of
clarity, we will not distinguish abstract vectors and operators from their coordinate
representations. We denote the restrictions of L and H to domains l”(Z P) by L, and H,
which have codomains [~ (Z p_l). We will also continue to refer to L, and H, when we do
not wish to refer to an explicit N, and L and H when we wish to generalize beyond a
particular N or p. Later, in defining the DPWT, we will use tildes to distinguish between
the DPWT filters and their DWT counterparts.

Given the notation and distinctions of the previous paragraph we rephrase the wavelet

decomposition and reconstruction algorithms as

{fp-l = Ll,f"
(13)
wPl = prp
and
f"’=L:,f""l +H‘;w"'1 (14)

where we now index the filters by level p. Criteria (3), (5), (4), and (6) become
LL =1, (15)
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HH =1, (16)
LH =0, an
LL +HH =1 (18)

and an orthogonal wavelet decomposition must satisfy (15), (16), (17), and (18) at all
decomposition and reconstruction levels p. Thus L, and H, are surjective (onto) and L;
and H; are injective (one-to-one). Note that (18) along with (13) and (14) yield

fP=Lf" + Howk
= L,(L,f*)+ H,(H,f")
=(L,L, + H;H,)f*
= fP

As a consequence of our finite dimensional point of view the recursion (13) bottoms
out at the level 1 decomposition

fo =L
w®=H, f'

This is in contrast to the /(Z)— [>(Z) DWT which does not bottom out since each
decomposition product is of infinite length. Of course we may choose to stop the decomposition
at any non-negative level of interest. The IDWT (14), on the other hand, may proceed
indefinitely. We will sometimes refer to f° as the residue or as w™, whereas w° is the
level 0 wavelet coordinate.

Wavelet Bases

The basis of orthonormal wavelets for l”(Z p) corresponding to the filter sequence
[L,) k€{L,2...., p}, which, via (9), uniquely determines a conjugate filter sequence
[H,]. k€{1,2,..., p}, may be indexed by level and shift. Level ranges from 0 to p-1 and
shift, at each level &, ranges from O to 2* —1. Let 0,, denote the zero vector in I”(Z,,). To



N. Getz: A Fast Discrete Periodic Wavelet Transform 7

construct the level , shift ¢ wavelet, [y**], neZ, at base level p one sets wX =3, ,,

neZ, with f*=0,, and w"=0,, for me{k+1,..., p—1} and performs the inverse
DWT to get

wk'q'p - L‘ L‘

. ] k
'pp-1 ° 'Lk+2Hk+lw

To complete the basis for I (Z P) we also include what we will call the level -1 wavelet or

residue wavelet at base level p,
Ye=ppr .Lf°
4 = ~pHp-1 lﬂf

Basis element y**7 is then a real valued discrete function in- I“"(Z p).

Scale versus Level

As we have already begun to do we will index the stages of forward and inverse
wavelet transforms by p and refer to p as the level: e.g., The products of the level p
decomposition are level p—1 sequences f”~' and w”™ in the p—1 dimensional spaces
¥,.,and W, _,. The use of level is in contrast to the usual practice in the wavelet literature
of referring to wavelet basis functions and the coordinates of analyzed functions as being at
particular scales. We may convert between scale and level as follows: If the original
subject of analysis is f”, then f” is the scale 0 or base level p sequence and w?
corresponds to the scale p— g wavelet coordinates. We see that scale increases as level
decreases, and, in the domain of finite length sequences, scale bottoms out at p. Scale may
be negative as a result of applying the inverse transform past scale 0, just as level may
become greater than the base level. Using level instead of scale provides a more convenient
handle on the dimensions of operator domains and codomains. In the /*(Z) — I*(Z) DWT
this does not matter. For the DPWT it does.
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Tree Structure of the Wavelet Transform

The analysis and synthesis algorithms for our finite length sequences have the tree-like
structure illustrated, after Strang [Strang], in figures 1.a and 1.b,

’—»f”“—» P2 .. f——-—> f! ———»—f

NN

Fig. 1l.a. Tree diagram for discrete wavelet transform decomposition.

O 0 ‘ .

’-4_ f"‘«—— F72 o f<—— f! <—— f°

NN NN

Fig. 1.b. Tree diagram for discrete wavelet transform reconstruction.

where w? =[wg,wi,...,ws_ ] eR”and £*=[f7,£,.... £5_] €R” with g in the non-

negative integers Z,.

We will call

£ = [0’ W, w2 WP

p—2 P2 p-1

~2
4 ’ w] 9 w2r2 -1? wo

= [.foo,wgsw(lpwll» Wy ,sz- goo sz;ll 1]
the complete wavelet transform of f?. Note that f7 has 1+20+42'+..+271=2°
coordinates, precisely as many wavelet coordinates as there are coordinates of f”. In those

instances where we do not require the complete wavelet transform of f” will refer to
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for = [£o.w,w™,....w",wP™] as the partial wavelet transform of f* down to level q.

Note that %7 also has 2* coordinates.

Overview

After section II summarizing the symbols to be used in our exposition, we demonstrate
the non-invertibility problem in section Il with a detailed example. In section IV we derive
the DPWT from the DWT. Section V explores, via an example, the representational symmetries
of our algorithm that lead to the fast implementations of section IV. We follow with section
VI where we prove that the same " and A" used in the creation of filters for the *(Z2)
DWT may be used to derive appropriate filters for the DPWT and, consequently, to create
an orthonormal wavelet basis for P, or l""(Z P) for any peZ,. In the discussion of
section VI we point out some features and caveats relating to use of the DPWT. Section VI
is followed by conclusions, a list of references, and a set of Matlab [Matlab] functions that
will allow the interested reader to experiment with the DPWT and IDPWT.

Occasionally we will be intentionally verbose, presenting expressions in a number of
different but equivalent forms, including matrix forms, that could be stated more tersely
with sums. In doing so it is our intention to afford the reader a window into the structure of
the DPWT, its operator components, and the problems associated with the DWT.

Previous Work

Orthogonal wavelets have been developed by Meyer [Meyer], Mallat [Mallat], and
Daubechies [Daubl] among others. Rioul and Duhamel [RD] have studied the efficiency of
implementations of the DWT though they focus on non-orthogonal wavelets and do not
discuss the issues we address here. Continuous wavelets on the circle have been studied by
Holschneider [Hols). Kovacevic and Vetterli [KV] generalize the DWT to a nonseparable
multidimensional form and Vetterli and Herley connect wavelet transforms with perfect
reconstruction filter banks in [VH]. We draw mainly on the theoretical foundations of
wavelet theory as presented in [Daub1] and [Mallat].
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In [Daub2] Daubechies discusses, in the context of the characterization of functional
spaces, the topic of wavelets for L'([0, 1]), the space of absolutely integrable functions over
the real interval [0, 1] and introduces periodized wavelets each of which is constructed as
a sum of copies of a periodically shifted continuous wavelet having suitable decay. The
present paper may be regarded as an extension of Daubechies construction to an easily
implementable and fast algorithmic form. The finite dimensional arguments, proofs, and
derivations presented here will, we believe, be considerably more accessible to a wide

range of readers.

Attempts at a remedy for the non-invertibility of the DWT have appeared before in [SE]
as well as [PTVF]. We will briefly describe the methods of these authors in section III

where we demonstrate the nature of the non-invertibility.

Contributions of this Paper

Our main result is the extension of the DWT to discrete periodic sequences to create a
discrete periodic wavelet transform (DPWT), an inverse transform (IDPWT), and an
associated basis of discrete periodic wavelets. Figure 2 shows an example of the periodic
discrete wavelets produced for N = 4 and base level 7. More examples will be shown in the

discussion of section VI.
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Figure 2. Periodic wavelets on the discrete circle. These were obtained by
applying the IDPWT to unit impulse wavelet coordinates at the levels indicated
below each graph. These are length 2’ and arise from Daubechies filters of length
8 (N = 4). They have been linearly scaled so that their maxima and minima fall
on -1 or 1. The inner and outer dotted circles represent -1 and 1 respectively, and
the solid lined middle circle represents 0. Their lack of symmetry has been
proven necessary in [Daubl].

Unlike many others we avoid frequency domain derivations in favor of remaining in the
shift (time or space) and scale domain. In addition to providing the reader with an alternative

point of view to that normally appearing in the signal processing and wavelet literature, the
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shift domain derivations have greatly facilitated the determination of the details of the
design of the fast algorithm presented here. We do not address the derivation of perfect
reconstruction filter pairs, though certainly we depend upon their properties. Only the
structure of a discrete periodic wavelet transform though which one may use the perfect
reconstruction filters one has at hand is derived. In particular the reader may plug in
Daubechies' low pass filter coefficients, which appear in [Daubl] into our scheme as has

been done in the creation of many of the figures.

The main contribution of this paper is the derivation of a fully specified implementation

of a fast discrete periodic wavelet transform.

II. Symbols and Notation

The following is a reference table of symbols that will be used in this paper. Symbols
are explained more fully where they are introduced.

R The real numbers.

R* The k-tuples of real numbers.
The integers.

Z, The non-negative integers.

{0, 1,2, ..., 2°-1}.

Qy {0, 1, ..., 2N - 1}. L

I°(8) Real valued sequences x satisfying (ZI.ku’) 4 <o, e.g. P(Qy).
I~(S) Real valued bounded sequences withk:;pport set 8,e.g. I” (Z p).
F.W,P, Subspaces of [”(Z) consisting of periodic sequences with period 2°.

Vector space ¥, holds sequences f?, W, holds periodic wavelet

coefficients w*, and P, is used to represent either ¥, or W,.
S, -8, Indicates the domain, 8,, and the codomain, 8,, of a map.

Xy Indicates action of a mapping on an object x of the map's domain, with
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y as the image of x through the mapping and in the map's codomain.

1, 0, The identity and zero operators, respectively, l"(Z p) -1 (Z p).

0, The zero vector in [” (Z P). (The italicized 0, distinguishes the operator
0, from the vector 0,.)

271
(), The real valued inner producton P, i.e., for x,yeP,, (x,y), = > x .
i=0

(-+) The standard real inner product on /*(Z), i.e., for x,yel*(2),
(xa y) = 'in yi °

wh, wt The n'™ wavelet coefficient at scale p, non-periodic and periodic
respectively.

P fP The '™ sequence element at scale p, non-periodic and periodic respectively .

fr The complete wavelet transform of f°.

for The partial wavelet transform of f? down to scale g.

L,H) Low-pass and decimate and high-pass and decimate, respectively, filter
operators [” (Z p) - I"'(Z p_,) associated with sequences IV € I*(Z).

. ay " Low-pass and decimate and hi gh-pass and decimate, respectively, filter
operators P, — P,_, associated with sequences I € I*(2).

S* Right shift by k operator 1*(Z) = I*(Z), y, - y,_,-

Sy, Right shift by k operator *(Q,)— *(Qy), x,~0 if n<k, and
x,x _ifn2k, n—keQ,.

R Right shift operator P, - P,.

@5 Wrap @ :1*(Z) > P,, y, zysmk , iI€Z,

k=~oo

Ty The natural projection operator 1*(Z) — I*(Q,)

N One-half the number of non-zero elements of I, k" € 1*(Q,) € I*(2).

™, pY Filter sequences in 12(Q, ).

T n™ coefficient of 1", A",

A A linear operator.
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(a)

A‘

(A)
(AL,
[x];
{G},
(2)'

W

amod b

range(A)

null(A)

[q]

Symbols and Notation

Adjointof A.
AoAoAo-.--0A, k times, where o denotes map composition.
Matrix realization of linear operator A.

Transpose of A (we will be using only real valued matrices and standard

inner products).

Matrix A to the k™ power.

The row i column j element of matrix A.
The i*" element of vector or sequence x.
The i*" element of an indexed set G.

The k™ power of scalar g. We use parentheses for powers to avoid
conflict with other superscripts. In practice we will only need squares,
ie. k=2.

The periodic counterpart of a finite length sequence s defined by §, =sf__,,,,
keZ.

The Kronecker delta, equal to 1 if i = j and 0 otherwise.

The positive remainder after division of a by b, e.g. 6 mod 4 = 2, -1
mod 4 = 3.

The range space of the linear operator A:U — V), ie. the set
{ax|xeu}.

The null space of the linear operator A:U — 1V, i.e. the set

{x €U | Ax =0} where 0is the zero element in the vector space U.

The ceiling of real number g, meaning the least integer greater than or
equal to q.

for all
such that

there exists
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III. DWT Non-invertibility on Finite Length Sequences

In this section we illustrate the non-invertibility problem of the DWT (7) with an
example. Though this problem has been patched to some extent by others using techniques .
described later in this section, we believe, and hold the existing patch techniques as evidence,
that the nature of the problem has not been well understood. This section is offered as a
remedy to any such misunderstanding.

Symbolic Demonstration

We will use a 4 tap filter for the low-pass-and-decimate filter associated with the
transform (7) and its conjugate high-pass-and-decimate filter. We will show that each of the
four criteria (15), (16), (17), and (18) break down to some extent. Consider a real valued
length 8 vector f = f* € 1”(Z,). The first step in the decomposition algorithm, when restricted
to I(Z,) is specified as

7 7
Wf = Zﬁshsz-zk sz = Zﬁgliz-zk
i=0 i=0
or in operator form w’ = H.f* and f* = L;f. For a particular choice of phase relationship
with ¢ = N in (9) the values of h* and /” are related by hZ =2, b =-I*, K} =1?, and
h} =—I3 where both /* and h? have support {0, 1, 2, 3). This gives matrix representations
of L2 the form

AW
2 2 2 2
Ly= Wk Ii 132 2 2
L & L L
b ¥
and H; has the same form as L but with I replaced by 42. Blanks in L2 should be

understood to represent zeros. Note that each successive row of L2 and H? are related by
right shifts by 2 and that the last row displays truncation of /> and A? due to the restriction
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of the domains of I and H; to the subspace I*(Z,). For surjective operators L3 and H7
we require, according to (18), that

L +HIH: =1,
Note, however, that the upper left 2 by 2 block of L2 'L2 + H2'H? is actually

[(zg)%(z:)’ B -1 Hl 0]

- (Y +(@)| Lo 1

We could achieve equality with J, =, =1, =, = 0 but then we would not have LL" =1. At
every step p of the analysis algorithm we will have the same upper left 2 by 2 block of
L>'L? + H2'H2. We may chose to modify the phase relationship of /* and h? but this will
only move the distortion elsewhere in Li.sz + Hﬁ‘Hi. Will we have the same problem for
all N? The answer is that for every N greater than 1 when the level p is such that
2N -2 < 2" the size of the distortion block will be 2N —2 by 2N —2. In the course of the
wavelet decomposition when p becomes small enough to make 27 <2N —2, the size of the
distortion block will be the entire matrix LY L" + HY 'HY and the analysis algorithm breaks
down completely. The distortion may be thought of as being due to the truncation of the
shifted versions of I" and A" in the last 2N -2 rows of L and H}, an inescapable
result, for N > 1, of the restriction of the domains of L and H,, as defined by the DWT
(7), to the finite dimensional subspace of I” (Z P) sequences. We note that when N =1 no
distortion occurs at any level. This is the Haar wavelet case, and this is the only case where
the decomposition algorithm (13) may be completed to the p = 0 stage with complete
invertibility through the synthesis algorithm (14).

The other three criteria (15), (16), and (17), are also violated. In particular the 4,4

entries of the appropriate matrices are

(a2, = (@) +(@) =1

4,

(2], =(2) +(8) =1

4.
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(3], =RE+55 =0

where inequality follows from the fact that for equality we would need I2 to be identically
0.

As a preventative measure we may choose to stop the wavelet decomposition at a level
p, such that 2” is much greater than 2N —2 (so that only a small part of L'L+ H'H is
distorted, but this is obviously too severe a restriction in cases where we wish to analyze or
filter the sequence at scales p, and below. We may apply zero-padding but this results in
reduced computational efficiency of the algorithm.

Numerical Demonstration

We graphically and numerically demonstrate the affect of this distortion on a sequence
consisting of 2’ ones with N = 4. First we perform a complete DWT and then reconstruct
the sequence from the resulting wavelet coefficients. We will call the original sequence of
16 ones f* and the successive results of the decomposition will be referred to as f*, f2,
f', and f°. We will denote the successive results of the inverse decomposition applied to
the wavelet transform of f* by f°, f', f2, f°,and f*. Thus the decomposition chain is

f3=L:f4 f2=L'§f3 f1=[‘;f2 f°=Lffl
w'=H f* |W=H{f* |w=Hjf* (w'=H'f
and the reconstruction chain is, with f° = f°
Fr=rf+HW
=L +Hw
PLP e W

PP e H W

Figure 3 shows the inverse transform result f*.
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2
1.5} -
1F o 0 .0 P PP O 0 0 0 O @ 0 D -
o5k 1
0 T
0 2 4 6 8 10 12 14 16

Figure 3: f*, the result of performing standard discrete wavelet transform
followed by an inverse discrete wavelet transform on f*, a sequence of 16 ones.
The N = 4 Daubechies coefficients were used in both the decomposition and the
reconstruction. The resulting distortion can be seen in the first 6 elements of f*.

The distortion in the first 6 elements of f* is readily apparent. We note that if we had
started with a much longer sequence that the distortion region would still have the same size
of support and would consequently be much smaller in relation to the entire signal length.
The following figures 4.a through 4.d reveal, however, that at small p the support of the
distortion is a large part or all of the sequence.
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3 2
]
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2t 1
15} 1 osp "
. 3 .
' . ° T
ost 4 05t
° E X 03 T T3 % E 0 1 2z 3 2
Figure 4d.a. f' - f, the error at level 1. Figure 4.b. f* - f7, the error at level 2.
1 1
os| ! os|
° 1 grereseet [ - 0 . L e o o o o o —s
0.5} J 0.5}
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Figure 4.c. f’ - f°, the error at level 3. Figure 4.d. f* - f*, the error at the top level, 4.

Figure 4.a shows the difference between the decomposition product f*' and the
reconstruction product f. If the DWT were truly invertible on sequences of length 2 we
would expect ' = f'. This is seen to not be so. Figures 4.b, 4.c, and 4.d reveal the level
and distribution of the reconstruction errors back up to the base level 4.

The non-invertibility problem of the DWT has been approached, within the context of
subband coding of images, by Smith and Eddins in [SE] using circular convolution. Unlike
Smith and Eddins, however, we derive an explicit realization that does not involve periodically
extending sequences at the level of algorithm realization. We do not address, however, the
robustness of the DPWT with respect to quantization errors as is done in [SE] and we refer

the reader to that paper for such a discussion.

Another attempt at solving the non-invertibility problem of the DWT is shown in
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[PTVEF]. Those authors show a matrix realization of the DWT in which filter coefficients
are wrapped around the filter matrix so that, for instance, those coefficients shifted off of
the right end of the bottom row of the filter operator matrix are shifted back into the row at
the left end of the same row. This solves the invertibility problem down to a level p where
2N = 2°. The authors stop the algorithm there. By coming to an understanding of the nature
of the partial solution yielded by the wrap-around of coefficients we will see the true
context of this partial fix and will be able to extend it to its ultimate goal of perfect
invertibility down to level 0.

We will show in the sequel that the errors demonstrated in the examples above may be
eliminated by applying the discrete periodic wavelet transform, which we derive in the next
section, to the l"(Z p) sequence. A finite length sequence may then be cast as a single
period of a periodic sequence. If the sequence is not truly periodic, e.g. a piece of a longer
non-periodic sequence, there is some cost to the casting with respect to interpretation of the
wavelet decomposition. This cost is discussed in section VI.

IV. A Discrete Periodic Wavelet Transform

In this section we will work from the standard form of the DWT (7) to produce the
DPWT and IDPWT. Later, in section VI we will introduce operators which will lend more
transparency to the forms of the DPWT derived below.

We retain the algorithmic structure symbolized by the tree diagrams of figures 1.a and
1.b, but we restrict the domains and codomains of the filters operators. We identify f?,
which we consider to be an element of l"(Z p), with its periodic counterpart defined by
fZ = f2 uor» k € Z, which we consider to be an element of the subspace F, of I°(2)
periodic sequences of period 2°. Likewise, we identify our wavelet coefficient vector
w{, k € Z ,, which we also consider to be an element of I”(Z,,), with W =wf,__,,.keZ
in another vector space of period 27 I7(Z) sequences, W,. At the same time we leave our
filters in their original non-periodic form I;', h', k € Z where the support of ¥ and A" is
Qy={0,1,....2N -1}, ie. I",h" €*(Q,).
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Applying the I”(Z) = I"(Z) DWT (7) to f? gives

=Y, ieZ
ko= (19)

Wi = zhfﬁizi: ieZ
k==—co
where we have non-periodic operators operating on periodic sequences. We note that the
decomposition products are also periodic, but with half the period of f7.

We may take advantage of the compact support of the filters as well as the identification

between f and £, and w’ and w? to obtain the decomposition form

fip-l = 2 ﬁp ilﬁzuzmi ieZ

keZ, m==—co

ﬁ’ip_l = 2 fkp ihf—mz’m’ ieZ

keZ, m=-—oo

(20)

(If the equivalence between (20) and (19) is not immediately clear it will be made so by
observation of the DPWT matrix forms in section V.) Note that for those decomposition
stages p such that 27 > 2N, i.e. such that the period of f? is greater than or equal to the
length of the index N filter, we have

N — N
Z Ik-2i+2’ m = lk—z;‘

zhﬁ-Zi-&Z"m = hf—z:
Consequently, i we identify f7 with its counterpart f” €1=(Z,,), the first 2°~ — (2N -2)
samples of f”' and w”™ from transform (20) are identical to the corresponding transform
products of the standard DWT (7) applied to f*. Thus, for the case of N = 1, corresponding
to the Haar wavelet, the transform (20) is identical to (7) at all stages of the decomposition.

Exploiting the compact support of /" and 4" and defining

IV and kY, vectors in P, by
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- [(2v-1)/2x |
I:i Elilfnodz’-t-z’k’ ieZ 21

k=0

~ [(21»'-1)/2?_]
= D Hyzrie i€2 22)

k=0
we may express what we will call, in conjunction with (21) and (22), the discrete periodic

wavelet transform:

- = =y .
ff '= Zﬂp L2 i€Z
keZ,

(23)
W= Y fP kY, . ie2

kezZ,

Note that when 27 22N the sums on /Y and A" in expressions (21) and (22) have no
affect in that there is only one filter coefficient summed. Indeed, for 2* 22N, I¥ =" and
h' =h" forall ieZ ,- The sums (21) and (22) are most easily thought of as being the
result of applying a linear operator, which we call a wrap, to I" and #". Wraps will be
illustrated and explained in section VI.

Utilizing the isomorphism between [ (Z P) and P, we may express the DPWT by

= TR
P k=2i? p—l
keZ,

(24)
wit= N PR . P2,

kez
which we refer to as the I"(Z p) form of the DPWT. We see that once i,," and ﬁ:’ are
computed from (21) and (22) that the DPWT is formed by taking the inner product of a

single period of f” with even rotations of l-p" and I;P" . It will be shown that unlike the
DWT applied to I”(Z,,), the DPWT is perfectly invertible.

The algorithm (24) may be made more concise by realizing that IPN,‘_Z‘ and h 1-2i are
nonzero only when 0 <k —2i <min(2N —1,2° —1). In other words we may restrict the

summation index integer k to k € {2i, ceey 20+ min(ZN -1,27 - 1)} Letting n=k—2i, and
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defining the integer subset
$%()={2i,2i +1,..., 2+ min(2N, 2*) - 1} mod 2°
the DPWT may then be rephrased in a computationally economic form as

2 n p (n—2¢')mod2” ie Zp-l
neSk (i)

1 LN >
;= Ef;P hp. (n—2i)mod 27 * l€ zp-l
nesSf (i)

DPWT: (25)

which we refer to as the l“(Z p) form of the DPWT.

We will refer to the DPWT versions of L and H by L and H . As with the 1%(Z) — I*(Z)
DWT the inverse DPWT is obtained by utilizing the adjoints of L and A . That this actually
works for the I and A" corresponding to /¥ and h" when it did not work for the DWT
applied Iz(Z p) - lz(Z p) requires proof. In section VI we will prove that the DPWT and
IDPWT are indeed an orthonormal wavelet transform pair.

The I7(Z,) form of the IDPWT is
z p i-2k kp-l Z i=2k W:_l’ ie zp (26)
keZ keZ .

Since I -2t and hp ;-2¢ are non-zero only when 0<i-2k < m1n(2N 1,27 - l) we may
further restrict the range of the summation index integer & in (26) to

) = {[’ : 1]- L [‘ ! 1]- 200 [%]- min(N, 2"‘)}mod2”

where [x] denotes the smallest integer larger than x. Consequently the IDPWT may be

rephrased in a computationally economical manner as

IDPWT: ff= 2 P, (i—2k)mod 2P f;’-l + h:.,(i-zk)modz’ wy W, e zp @7
keTh(i)
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Complexity

The transform pair (25) and (27) is fast. For each level p such that 2” 2 2N the number
of arithmetic operations needed to obtain each element of the transform products is 2N
multiplications and 2N - 1 additions. When p is such that 27 < 2N there are 2” multiplications
and 2° —1 additions needed for each element of the transform pfoducts. The number of
elements of the transform products is halved at each level. Consequently, assuming that the
sequence to be analyzed is of length 27, the number of operations for a complete DPWT
decomposition using /(Q, ) filters is

2N x(27* =2"1)+2*" —1 multiplications
N -1)x(27" =2")+2"' —1-k additions

where k is the largest integer such that 2* < 2N . Thus the number of multiplications in the
complete DPWT of a length n sequence is bounded above by 4Nn. Compared to a fast
Fourier transform (FFT) the DPWT is faster by approximately a factor of log,n. In
addition the DPWT does not require the use of complex numbers, '

In the next section matrices will afford insight into the structure of the DPWT.

V. Demonstration of the DPWT

Like Strang [Strang] with the DWT we believe that the DPWT is best illustrated in
matrix form. Consequently we arrange the filter coefficients into a matrix realization of the
filter operators. We illustrate our algorithm with the simplest possible example that displays
all its important symmetries. Sequence f> will be decomposed into its wavelet coefficients
down to level O and its residue f°=w". Those wavelet coefficients will be gathered
together to form the wavelet transform vector f°. Then we will reconstruct the original >
starting from the wavelet coefficients.
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Analysis Tree

We will assume that ¥ and A" satisfy (10), (11), and (9). We perform the DPWT and
the IDPWT in their I™ (Z p) forms. We may choose to think of f” as being the coordinate
representation of f?. We start with a sequence f° of length 8. We operate on the left of the

sequence with a matrix realization of the low-pass and decimate operator 3 to obtain .
2 _73¢3
f —Lsf .

-f:
j;S
Aeeeees %
2 _ | L 855 LB BI(IE
== PP BB pB P 3 28)
2 P > o b L LN
F 2 I S A P L B
3
£ ]

Note the right circular shift by two of the low-pass filter coefficients in the matrix as well as
the wrapping around of the filter coefficients on the bottom two rows.

The symbol geometry of the matrix forms of the high-pass-and-decimate operation are
identical to that of the low-pass-and-decimate cases. Accordingly we obtain w? = Hf?, the
coordinate representation of the wavelet coefficients of f° at scale 2, by replacing f;" with
w;, and [2 with b} in (28). We have created this convenience by placing /¥ and A" on
common support. If we had placed 4" on different support than ¥ the forms of the
matrices H3 and L}, would have been related, row for row, by a common and even circular
shift.

As mentioned in section III the wrap-around of the coefficients shown in the matrix of
(28) has appeared in [PTVF] and elsewhere. According to the technique shown in [PTVF]
the decomposition stops at this stage (28). By our understanding of the DPWT as gleaned

from the last section we may now continue the decomposition.

In the next step of the algorithm we obtain f' = [3f> and w' = H3f2. At this stage our

filter matrices take on widths less than the lengths of the filter coefficient vectors, i.e.
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p=2,and n = 3. are such that 2” <2N.

sz

AR AR I A

f_[f:']_[ BB R+E p+B| R (29)
f32

and the corresponding w equation is obtained by replacing f’s and I's with identically
indexed w's and h's. Here we see the effects of the sums (21) and (22) defining I" and
h" . Similar to the previous step (28), in (29) we see again a circular right shift by 2 of the
filter coefficients and a circular left shift by 2 of the scale 2 sequence coefficients in the
matrix representations.

Now, in the final analysis step we form f° = Lf' and w® = H>f" from f'.
0 _ 0] _[;3 3 3 3 3 3 f:
' =[f]=[B+5+L F+5+E] £ (30)
1

=[wh]=[R+B+H B +8+k] [ﬁ] 31)

Note that, for instance,

P+2+1

VTRES VIR VTN

DL =[R+5+8 P+E +I3][l3 o+ +13]

m+m+m]
B+ + R

=YBE +2(213 P+ 21’ 13_,,) =

HH = [B+B+K B+E+ @1

and
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e WK+HE+h
D =[p+5+1 "3+l’3+153][hf+h;+h:3
=YER+YLE, B+Y L h,

+Y B +Y L, =0

as well as
mabma e B+2+p
LD +A'R = [I:;H:s”‘s;][lgﬂgﬂf E+5+1]
B+B+L [ 5. 5 3 3. 13
H s 5 Is +13+11 -14-12_10]
—-L=-L-h
- [all al2:|+|:bll blz]
a4 an by by
where
a, = (BY +(B) +(B) +2(82 + B2 +£82)
Gy = Gy = BB+ B3+ R B8+ B+ B+ 5 + B + 18
2 2 2
ay =(B) +(B) +(8) +2(58 + 5 + B1)
b,=ay,
b, =b, =-a,
by, = a,
and therefore

D'+ B =1,

It may be verified in a similar manner that the pairs Z,, H,, and L,, H, also satisfy criteria
(15), (16), (17), and (18). The wavelet transform of f° is then
f"=[w",w°,w',w2]=[fo°,wg,w},,wl‘,wg,wf,wg,wf] and this completes the analysis

algorithm.

Synthesis Tree

The synthesis portion of the algorithm starts from f* and proceeds as follows: First we

use w'=f; and w° to obtain f' = L3'f° + H¥w°.
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(R [B+B+E] 0 [R+B+E] ,
I ] L R

The filter matrices in (32) are the transposes of the level 1 filter matrices in the level 1
analysis step (30). Similarly we obtain f2 = L3'f' + H2'w':

R [e+2 8 BB B
a_|R|_|gee B |[R],|ReE B |[w
5 A A B R+E
gl lg g+ B OB+R

and f* = L3'f* + HS w” with

Sl 8 & & h K K]
R |E A ke KoK
23 123 Ig I: o2 hz? hg hf Wg
R R VA A T
AR AN I
F - IV £\ B B w;
AN RN BB R
£l L B B P | K B ORE]

This completes our example. Note that the synthesis algorithm may be continued to
interpolate f* to higher levels by letting w” =0, forall p>3.

In section VI we will formalize some mathematical notions that generalize and afford
mathematical insight into those symbol symmetries that are readily apparent in the above
matrices. During a reading of section VI the reader may wish to refer back to this section
and compare its symbol symmetries to the symmetries of the operators that will be found
there.
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VI. Filter Coefficients for the DPWT

Here we prove, after some mathematical preliminaries, that if /" €7?(Q,) can be used
tocreate a [”(Z) — I”(Z) DWT (7) then it can also be used, according to (21), (22), (24),
and (26) of section IV to create a DPWT.

This section may be thought of as providing an alternative to the derivation of the
DPWT in section IV where we now start from the filter vectors ip” (21) and f::’ (22) and
prove that in the context of (25) they produce a wavelet transform for and a basis of I”(Z).

Mathematical Preliminaries

We first remind the reader of a few properties of the Kronecker delta §, , which for our
purposes will be defined as follows: Let A and B be subsets of Z.Let R denote the real
numbers. For ae A and be B,if a=b then §,, =1eR,andif a= b then §,, =0eR.
Alternatively the delta may be thought of as an indicator function for the event that its
arguments are equal. We note the following useful properties of &, ,:

6,,=0,, commutativity of arguments (33)

Vg:A-oR,Va,be ACR,
3., 8(a)=2(b) Sifting property (34)

beAd

We point out some consequences of these properties that will prove useful later in this
section:

Fact: Noting that amod p = (b + c)mod if and only if (a—c)modk = bmod k

gives

)

amodk, (b+c)modk — a(a-c)modk. bmodk (35

Fact: Let A and C be subsets of Z. Forany a,b € A andany ¢ € C,
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254.5 55.: = 64,: (36)
- beA
Fact: LetA, B, and C be subsets of Z with AA < B. Let f be an arbitrary
function f:B — Z. Then forany a€ A and any ceC

2 6a,:’ 5[ (OX] = 6] (a),c (37)

icB

Wraps

As above we let P, denote the subspace of I”(Z) consisting of periodic functions of
period 2° and Z , denotes {0, 1, 2, ..., 2°-1}. We define a mapping which we call a wrap,

@ :I'(2)- P,

- (38)
YoNEZH zyimod2’+2’k’ ie2

k=—c0
The sum in (38) will converge for all /'(Z) sequences y, where I'(Z) denotes the space of
all absolutely summable sequences.

The action of the wrap @” may be visualized by imagining taking an /'(Z) sequence s,
wrapping it into a right handed helix of circumference 2?, summing all entries along the
length of the helix corresponding to a common circumference coordinate, and mapping that

sum to the element of @”s with the same circumference coordinate.
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Figure 5. The wrap @?” acts on an infinite length sequence sin I'(Z) to create
a periodic sequence in P, c!”(Z). The 0 and 1 in the diagram indicate
corresponding indices and orientation in the infinite length sequence, the helix,
and the periodic sequence.

In practice we will restrict @” to 1*(Q,) < 1'(Z) consisting of sequences with compact
support Qy ={0, ..., 2N - 1}, N <eo. Of course 1>(Q,) is then isomorphic to R2"-!
from which we draw its coordinate representation. Note that by *(Q,) we restrict only the
support of /*(Z) sequences and not the range of their indices. Thus if x is in I*(Q x)» then,
for example, x,y = 0, x., = 0. We denote the restriction of the wrap to 1*(Q,) by

@} :P(Qy) - P,

1% (39)

4
Yon€Qy- zyimod2’+2’k’ ieZ
k=0
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The restricted wrap @4, has a matrix representation
[@Z],'_j = 8i,jmod21'9 i€ z,,, JjeQy (40)
(Note that in referring to matrices we will consider first rows and columns to have index

0.) A restricted wrap is invertible if and only if 2N < 2 in which case [@%, ¥/,
If @?, is invertible then its left inverse is its adjoint @,

=y,l€l.

mod 27

As an example of a wrap with 2N >2” we let N = 3 so that Q, = (0, 1,..., 5)}.
Choosing p =2 we have as the matrix representation of @? with respect to the standard

bases for domain Q, and codomain P,

1 00010
010001 . .

@ = 001000 =[8‘.Jm,4], ie{0,...,3}, je{0....,5}
000100

For an example of the case where 2N <2° welet N =2 and p =3 to get

1

P

O O O O O O = O
O O O O O —= O O
O O O O = O O O

©O O O © © © O

The invertibility of @ shows up as the left invertibility of its matrix representation by its
transpose @> .
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Two Shifts

We will need two shift operators; one for /*(Z) and one for P,. For *(Z) we have for
keZ

St 12(2) > *(2)
Y.n€Z—y, ,,neZ

-1,j asin

representable by the kemel J,

[Sky],, = Y00 Yj

Jmeoo

aright shift by k. We have the following useful properties of S, :

(S*)" =(s*) =s* unitarity (41)
Stsi = Sis* commutativity (42)
SISk = git* group property (43)

and we see that {S" }ke , 18 @ unitary group under the operation of map composition.

To connect S* with its finite dimensional restriction we will use the projection operator

ny 12(2) > I*(Qy)
mw MEQy (44)

x
X, n€Z > [myx] = 0, meQ,meZ

Pertaining to the projection operator and the /*(Z) inner product (-,-) we have the
following:

Fact: Forany x in /*(Q,) and any y in 1*(Z),

(%, y)={x, myy) (45)
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- 2N-1 -
Proof: (x,y)= zxkyk = Zxkyk = zxk[”rvy]k =(x, ﬂu)’)- L
ko k=0 P

We use fact (45) immediately to conclude that for any x in /*(Q,) and any y in I*(Z)
(%, 8*y)=(x, muS*y) (46)

We will refer to the operator x,,S* restricted to *(Q,) by Sy which is 1*(Q,) - 1*(Q,).
Using the standard basis of R to represent /(Q,) we have as the matrix representation
of Sy,

[S‘;]‘,_j=6,._k.,, i,jeQy (47)
For example,
0 00O
s = 0000
211 oo o0
0100

It is clear that Sy, is nilpotent for k #1 meaning that there exists an m Z, such that

(Sx)" =0, the zero operator.

It is important to note that in general, for arbitrary &, j€Z, S} Sk # Si*. For an

example consider

Sy Sa =

o O O O
o O O O
o = O O
- O O O

The reason that the naive application of the DWT to I“(Z P) does not work is the fact that
7, S/ Sk = Si SE.

The shift operator on P, is circular. For integer &:
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k.
R,,.PP—>P,

(48)
Xpmod2r NE LW Xy pymoares NEZ

It too is a right shift. R:, having finite dimensional domain and codomain, has the matrix
representation with respect to the standard basis of P,

[R:]‘_J = 6(i-k)mod2’,j’ i’j € ZP (49)

Letting k and j be in Z, with p in Z, we have the following properties

(R =(R) =R;* unitarity (50)
R'R! =RIR: commutativity (51)
Rk, =Ry group property (52)

Inezs(R:) =R! (53)

We see that {R‘f,t }kez is also a unitary group over composition of operators. If n is the

smallest 7 satisfying (53) then R: is said to be n-potent. For an example particularly

relevant to our current context we have that foranypinZ,

(R =1

14

For an example of a matrix representation of R: weletp=2and k =1 to get

R, =

o O = O
S = O O
—_ O O O
o O O =

Filters for the DPWT

For our DPWT analysis and synthesis algorithms we need two filter operators at each

scale p. We will call these linear operators L} : P, > P, and AY :P, » P,_,. In order to

-1
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have a discrete wavelet transform E’: and I:!;’ must satisfy criteria (15), (16), (17), and

(18) which we repeat here using L and H,.

D=1 (54)
(7N [yN* _
YAV =1 (55)
-~ ~N‘ _
naY =0 (56)
FN*T FIN* TN _
D +HVHY =1 (57)

The adjoint maps L) and H)" are defined through the P, inner product: For any
p €2, and for any pair of sequences canddin P,,

27 =1

{c. d)p = zck a,

k=0

With this inner product the matrix representations of L} and H) are the transposes of
those of L and A7 .

We choose to construct our filters as follows: We take two sequences " and A" from
I*(Qy) = *(Z) and wrap them onto P, with @%. Then we operate on the result with even
rotations Ry,i€Z,,. Thus I and 4} (21), (22) are defined by I,' = @5 " and
l;:' = @% h". We form ff;’ with

-
L, .:P, - PP_,

xe [(Ri@s, %) ], iez,,

and HY with
-~
H :P,->P,,

p-1

xb [(RE@pA".x),|, iez

4

Given the forms of our operators L} and HY, satisfaction of (54), (55), and (56) is
equivalent to the following requirements on /" and 2" for ieZ,_, and jeZ, :
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(@M, R @y 1") =8, (58)
(RF@yn". R @i h") =8, (59)
(RI@;n", R @}1") =0 (60)

Satisfaction of (57) follows from satisfaction of these three criteria with L, and A, being
surjective. Using the definitions of 1" and & as well as the unitarity and group properties
of R}, and letting k = j—i we have that Ve, Be P,

(R o, R B) = (e, B3I B)

- (),
This yields as equivalent forms of (58), (59), and (60) with k€ Z o’
(B REDY) =8, 1)
(RY, R B} >,, =58, (62)
R R =0 (63)

We contrast our maps L} and A} with the standard DWT maps L and H?,

:12) - P(2)
x> [(Sf," v, x)]i, ieZ

HY :1(2) > P(2)
X [(Sf,‘ h, x)]i, ie2Z

where we point out that unlike L} and A , the domains and codomains of L} and H) are
infinite dimensional. Maps L] and H}' satisfy criteria (15), (16), (17), and (18). Given the
forms of L} and H', criteria (15), (16), and (17) are equivalent to the following requirements

onYand h" foriceZ and jeZ:
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(s%1V, 821"} =, (64)
(s*n",8%h")=85, (65)
(s*n", 81"} =0 (66)

Using the definition of the adjoint of a linear map as well as the unitarity of S*, ke Z

we have that for any " and B" in 1*(Q,) and any integers i and j,

(Sz«'an,sszn)= (an, (Szi)‘SziﬁN)
(aN’ s—2iszjﬂN)

Applying the group property of S* gives
- (.50
Fact (46) tells us that
= (a" , Ty S2I-I BN )
and the definition of S;, gives
- (o, 520-0p")

Applying this and letting k = j—i we obtain the alternative forms of (64), (65), (66) for
keZ:

(1", ¥ =8y (67)
(B, S3h")=6,, (68)
(", sy1")=0 (69)

Thus (15), (16), and (17) are equivalent to (67), (68), and (69).
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DPWT Filters from DWT Filters

We will prove that if I" and A" satisfy (67), (68), and (69), then they will satisfy (61),
(62), and (63), but first we will need two lemmas.

Lemma: LetNandpbein Z,.Let @}, R}, and Sy be defined as above with
keZ. Then

2N-1
@P‘Rk@;’: i trmotar Si
n K, @y .'=-(22~-1() £)mod2?,0 ON (10)

Proof: By definition of @ (40) and R} (48) we have

[R: @;]‘.J = Za(i-k)modz’.j 0 nmotzrr 1€Z,,n€Qy

jeQy

Applying fact (36) gives us
= Oikymod2? mmod2?> L€ Z,,neQy
Substituting this result into @%, R @, yields
3R @5 = @ [Sitymotrrommesr | 1€2,,n€Qy

We apply the definition of @}, (40) again, along with the commutativity of the arguments
of the Kronecker delta (33) to get

= [ zammodz’.i 8(i—k)mod2’.nmod2":|’ m,neQy

ieZ,

and apply fact (35) to get
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= [zammod?.i 8imod2'.(n+k)mo¢2r], m,ne QN

u—:Z‘,

For i restricted to Z , we have that imod2” =i. Using this and fact (37) we have

= [6mmod2',(n+k)mo¢2r ], mneQ,

Another application of (35) gives

= [6(""")m°d2’.kmod2' ]’ m,ne QN

Since m and n are both in Q, = (0, .., 2N - 1}, m-n is in
{-(2N-1),...,-1,0,1,...,2N —1}. Using this we may apply (37) to get

2N-1
= [ Zaimodz’.kmodz’ 5m-n,i:|7 m,ne QN

i==(2N-1)

and another application of fact (35) brings us to

i==(2N-1)

2N-1
= za(i-k)modz'.o am—n"' s, m,ne QN

Now note that the summation is independent of m and n so we may bring the sum outside

of the bracket to obtain
. 2N-1

= Y Sbymoazr.0 [5.,.-,.,,- , mneQ,

i=—(2N-1)

Finally we recognize from (47) that the m and n dependent term is just S}, and we have our
proof. |

From lemma (70) easily follows another
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Lemma: Forany a", " € *(Q,)
2N-1
@ @), = Sl 5) 01
n=—(2N-1)

Proof: Application of the definition of the adjoint, properties of the projection 7, and

the definition of the inner product gives

(@ﬁa", R:k @: pN)p (aN’ @;" R:k @, ﬁN)
(aN, @50 R:k @; ﬂ.NBN)

(«") @ R* @} (myB")

We now use lemma (70), some algebra, and the projection property (46) to get

. 2N-1

= (aN) za(i-2k)mod2’,0 S:I(”NﬁN)

n=—(2N-1)
2N-1

= za(n-zk)modz'.o (aN, S;ﬂNﬁN)

n==(2N-1)
2N-1 )

= za(n-Zk)modZ’,o (aN’ Snﬁn)

n=-(2N-1)
proving our assertion. |
Now a straightforward lemma (71) will prove the following theorem:
Theorem: For IY=@}1", b} =@} h" with I and k" in 1(Q,),
VkeZ,., (", S51")=8,, = Vkez,,(I".R¥[") =5,, (2
P

VkeZ, . (h' S¥h)=6,, = Vkez,.(h",R*H") =5,, (13)
14
VkeZ,.. (b, 51")=0 = vkez,,(i",R¥I") (74)

p

1’
P P
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Proof: We prove (72) by substituting [" for ¥ and B" in lemma (71) to get for each
keZ,,
k N £ N onN
(@1 RE@ 1) = Y Sntpmern.o (I SIY)

a==(2N-1)
2N-1

= za(n-Zk)modZ’.O 6..,0

a=—(2N-1)

= 6(-2k)mod2’.0 = 6(—k)mod2"‘,0

Sincei andj arein Z ,_, kisin {(-(277-1), ..., 0, ..., 2°7'-1}. Thus, &_; 0s0r1.0 = Oy o-

By substitution of A" for a” and B” into the above argument and using (68) we

immediately obtain that foreach k€ Z ,_,
(@ n". R @5 h") =8,

proving (73).

Letting " = 1" and B" = I" and applying (69) gives for each ke Z,,_,

2N-1
(@1 R2@41) = Y Sziymeanr.o (B SHIY)
P aal@N-)
2N-1
= za(n-2k)mod2’.0 0
n=—(2N-1)
so we have that (69) implies (63) proving (74).
This completes our proof. n

An important consequence of the theorem is that we may use Daubechies' filter coefficients,
which satisfy (67), (68), and (69) by construction, to obtain a basis of orthonormal
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periodic wavelets for P, and the associated multiresolution decomposition of P,,.

In the symbolism of this section we restate the DPWT with [,' = @5 1" and k) = @5 A"

as

= (BT 1),

(RY Y we) |

P

ie2

-1

wh

and

fr= zpf(kfj MY £+ (RE ) we

i=0

VII. Discussion

Though the DPWT is perfectly invertible in any signal domain, it may be expected to be
particularly convenient in the study of discrete and truly periodic functions such as sequences
of measurements taken in a spatially closed loop, or strongly non-linear oscillations. Since
the DPWT may be stopped at any level, it contains, as a special case, DWT implementations
of the type presented in [PTVF]. The DPWT is simply stopped at the smallest level £ such
that 2* >2N.

A consideration in applying the DPWT to non-periodic sequences is that the largest
scale wavelet components, corresponding to the lowest level coefficients, wrap around the
support of the sequence as if the sequence were periodic. This may be considered to be a
problem in some applications though it is easily avoided by simply not taking the DPWT to
the lowest levels.

Multidimensional Discrete Periodic Wavelets

The discrete periodic wavelet transform is easily extended to a separable transform in n

dimensions. Conceptually the n-dimensional sequence is cast to an n-dimensional discrete
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torus and the DPWT is applied along each dimension in succession. For example, if the
torus is a 2-torus and is represented by a matrix, the DPWT may be applied to first replace
each row by its wavelet transform, and then replace each column of the resulting matrix by
its wavelet transform. The creation of a non-separable transform from the DPWT is a

subtler problem that we will not address.

Edge Effects

Highly irregular sequences give rise to high concentrations of energy in the wavelet
coefficients at the higher levels. The small scale wavelets are needed in creating a convergent
expansion at the irregularities. A consequence of this is that when the DPWT is applied to a
sequence that has a difference between its endpoints that is large with respect to differences
between all other pairs of successive points, then a relatively great deal of energy will
appear at small scales in locations near the end points at those scales. Consider, however,

the following economical and invertible transformation:

Assume that the number of sequence elements along each dimension £ €{1, ..., n}
is 27, where p, is a positive integer. Let the sequence be represented by
[s(2+ &, +-+,4,)] i, €2, For convenience define

@)= s(is s by b byporerdy)y P€Z,

Now, for each dimension & from 1 to n, replace [s,(i)), i€ Z,, by
[5.()),., defined as

[5:0),5:(2). ... 5,277 - 2), 5, (227"), 5,(227 -1), 5, (227 - 3), .. 5, (3), 5, (1))

If, for instance, s,(m) for m € {1, 2, 3, 4} are close then the ends of §, will also be close.
Thus, if the original multidimensional sequence has a suitable covariance structure in its
interior, then the sequence created by this transformation will have a closely related covariance
structure when considered as an n-torus, i.e. without endpoints or boundaries. It is doubtful

that this rearrangement will provide any advantage in sets of sequences obtained from
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critically sampled continuous signals. But there are many useful signal domains, e.g. video
images, where continuous signal sources are, on average, sampled well above their critical

Nyquist rate.

Local Event Filtering

We illustrate the utility that the DPWT shares with the DWT in the selective filtering of
local events. The sequence shown in the upper graph is a sequence of 256 samples of an
electromyograph signal, all 256 of which are non-zero. The lower graph was obtained by
applying the DPWT using a Daubechies filter corresponding to N = 4, setting to zero all
those wavelet coefficients whose magnitudes were less than 0.24 times the maximum
wavelet coefficient magnitude, and then applying the IDPWT to the resulting wavelet
transform vector. The lower graph is represented by only 35 non-zero samples. The
threshold value of 0.24 was chosen to be just small enough to capture the event centered
around sample 8.
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_ -

0 50 100 150 200 250

Figure 6: The top graph is a plot of 256 samples of a zero mean EMG signal.
The bottom plot was obtained by applying the DPWT to the EMG signal,
setting to zero all those wavelet coefficients whose magnitude fell below 0.24
times the maximum wavelet coefficient magnitude, and applying the IDPWT.
Daubechies coefficients corresponding to N = 4 were used. The bottom plot was
obtained using 35 non-zero coefficients.

We see that in the appropriate signal domain, the increase in coding efficiency can be
dramatic. Of course the efficacy of this sort of filtering is best evaluated in the context of a
specific application. It is clear, however, that the illustrated filtering technique can be of
great utility in the reduction of computational load in the analysis of signals with localized
features.

More Discrete Periodic Wavelet Bases

In figure 2 we showed the basis set for P, corresponding to N = 4 that is associated

300



N. Getz: A Fast Discrete Periodic Wavelet Transform 47

with the DPWT. In figures 7a and 7b we display the basis sets of P, corresponding to N =

1 and N = 10 respectively. We show only those basis elements corresponding to the 0 shift
at each level.

=
S

>

Figure 7a: Orthogonal basis of discrete periodic wavelet basis for periodic
sequence of period 2’ using Daubechies filters corresponding to N = 1. This is a
Haar basis for the discrete circle. Basis elements have been normalized so that the
peak value of each has magnitude 1. Only the shift 0 elements are shown.
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Figure 7b: Orthogonal basis of discrete periodic wavelets for periodic sequences
of period 2’ using Daubechies filters corresponding to N = 10. Only the shift 0
elements are shown.

In every case the basis elements corresponding to f° are seen to be the constant

function.
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Hybrid Discrete Periodic Wavelet Bases

At any level of the DPWT decomposition we are free to switch N's with the assurance
that we will still produce an orthonormal basis. We call the result a hybrid DPWT basis
and illustrate such a basis for P, in figure 8 where the 0, 1, and 2 basis elements
correspond to the Haar, or N = 1, wavelets, the 3 and 4 basis elements correspond to N =
2 wavelets, and the rest of the basis elements correspond to the N = 8 wavelets. Again, we

show only the shift O elements of each level.

Figure 8: Hybrid DPWT basis for P,. The 0, 1, and 2 basis elements are N =
1 wavelets, the 3 and 4 basis elements are N =2 wavelets, and the rest of the
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basis elements are N = § wavelets. Daubechies coefficients have been used.

Such a hybrid basis may be useful in those situations where one must insist upon compactly

supported wavelets at all levels but wishes a higher degree of smoothness where available.

VIII. Conclusions

We have introduced a discrete periodic wavelet transform and have shown that unlike
the standard recursive realization of the orthogonal /*(Z) — I*(Z) DWT, the DPWT is
perfectly invertible when applied to sequences of finite length, and, unlike previous solutions
to the invertibility problem, the DPWT permits complete analysis in the wavelet basis. We
have also proven that from the same filter coefficients used for the DWT we may construct
filters for the DPWT.

For the reader's convenience we collect the DPWT and IDPWT in their I~ (Z P) forms

in a box here.
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- TN .
fp '= 2 np lp (n—2i)mod 27 » L€ zp—l
neS% (i)

DPWT : ' _ .
w” Z f (n-Zx) mod2rs € z p-1

neS% (i)

846) ={2i, 2i+1, ..., 2+ min(2N, 2*) -1} mod 2*

IDPWT: fFf= Z  (i-2k) mod 27 5 +h~(c-2k)modz’ W, . iezp
ke’l'ﬁ(l)

To(0) = {[‘;1]—1, Hl]—z, [%-l—min(N, 2"")}mod2"

- L2n-1)/27 |
IP?‘. zlilgvnodzfq.szg i € z

k=0

|_(2N-1)/2’J
h:i = 2 imod 27 4+2P k» e2

k=0

No one basis set can ever hope to be the best basis set in too wide a range of
applications. The most that can be hoped for is that expansion of sequences in a domain of
interest are easily obtained, meaningful, and brief. It is hoped that the discrete periodic

wavelet transform may prove to be such a tool in a domain of interest to the reader.
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Programs

Here we include a number of Matlab programs that will enable the curious reader to
experiment with the DPWT and IDPWT. Those familiar with Matlab will note that these
programs have not been optimized for speed in that for-loops have been used where they
may have been avoided. The code has been designed to approximate pseudocode and
correspond clearly with the DWT and DPWT as presented in the main part of the article.
This should facilitate the translation of the algorithms to other programming languages or to
hardware implementations. The reader who wishes faster, C-language realizations of the
algorithms may contact the author.

As an example of how one might use the listed functions the following script is offered:
Assume that the function daubcofs(N) returns Daubechies' low-pass filter coefficients of
length 2N. This short script performs the corresponding DPWT to obtain wavelet coefficient
vector w, and then applies the IDPWT to w to obtain ff. The difference between each
element of sequences f and ff are then calculated to obtain the reconstuction error er. The
I and I? norm of the error is then calculated and displayed.

% Calculate reconstruction error.

rand ('normal') ;
p=35;
N =8;

1 = daubcofs (N) ;
f = rand(1,2%p);

w = dpwt (f,1);
ff = idpwt (w,1);
er = ff - £;

max (abs (er) ), sum(er.”2)
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File: dpwt.m

function w = dpwt (£, 1, level)
% FUNCTION: dpwt

SYNOPSIS: w = dpwt(f, 1, [, levell)

DESCRIPTION: This is the discrete periodic wavelet transform
using the low-pass filter corresponding to 'l°.
The DPWT transform is performed down to level ‘'level’.
The resulting 'w' has the same length as f. If level is
not specified, or if level = 0 then the complete DPWT
is calculated. Vector 'l' is assumed to consist of
the low-pass half of a perfect reconstruction
filter pair. The high-pass half 'h' is made from
1.

The returned row vector 'w' is w = [f0, w0, wl, ..., wp]
where f0 is length 1 and wp is a length 2”p row. These
are the wavelet coordinates of 'f'.

This routine does some argument testing and calculations
which are then passed on to the recursive function
r dpwt () which actually implements the dpwt.

The length of 'f' must be an integer power of 2.
Filter sequence 'l' is not checked for satisfaction of
perfect reconstruction criteria. It must be of

even length.

For a faster C-language version of dpwt () and idpwt ()
contact the author via email to
getz@rcbotics.Berkeley.EDU.

d° o o O O P P O A I I O P O N W N O N N O P I O P I P R IO o

% NEEDS: r dpwt () which needs mod() and 1h tilde()

%

% SEE ALSO: r dpwt (), idpwt(), r_idpwt(), lh tilde()

%

% REFERENCE: N. Getz, "A Fast Discrete Periodic Wavelet Transform",
% Electronics Research Laboratory, U.C. Berkeley, 1992.
%

% AUTHOR: Neil Getz

%

% ORGANIZATION: University of California
% Department of Electrical Engineering
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and the Electronics Research Laboratory
Cory Hall
Berkeley, CA 94720

DATE: 12-11-92

o0 oP dP o o o

p = log(length(f))/log(2);
N = length(l)/2;

% Argument checking.
%
if (nargin < 2 | nargin > 3),

help dpwt;

return;
elseif (round(N) ~= N),

error ('Length of arg 2 must be an even integer.')
elseif (p ~= round(p)),

error ('Length of arg 1 must be an integer power of 2.')
elseif (nargin = 3),

if((level > p) | (level < 0))

error(['lLevel (arg 3) must not be greater than’',
' log 2 of length of arg 1.'])

end
erd
%

MATSHIFT = 1; % Matlab indices start at 1, not 0.
Conjugate filter calculation
% For length.

1;
k = 0:2*N-1,
( TSHIFT + k ) = (-1)”~(MATSHIFT + k) * 1(MATSHIFT + 2*N - 1 - k);

H 5 00 op
B

(@)

"85

% If level is not specified then go all the way.
level = 0;

erd

%

% The beef.
w=r dpowt(f, 1, h, level);

% END dpwt () .
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File: idpwt.m

function f = idpwt (w,1, level)

%
%
%

P o P o P P P O O A A P I O O O P K N I I P P R O I P N I M N N N I W P NP W P

FUNCTION:

SYNOPSIS:

DESCRTPTION:

i

AUTHOR:

ORGANIZATION:

idpwt
f = idpwt (w,1 [,level])

This is the inverse discrete periodic
wavelet transform using filter 'l'. The
wavelet coefficient vector is assumed

to be the product of a DPWT decomposition
down to level 'level'. The output

vector 'f' is the same size as 'w' whose
size should be an integer power of 2. Wavelet
coefficient vector w should have structure,
w = [flevel, wlevel, ...w(p-1l), wp]

where flevel and wlevel are the row vectors
that are the level 'level' decomposition
products of the DPWT applied to fp.

This routine does some argument testing and calculations
which are then passed on to the recursive function
r idpwt () which actually implements the idpwt.

The length of 'w' must be an integer power of 2.
Filter sequence 'l' is not checked for satisfaction of
perfect reconstruction criteria. It must be of even

length.

For a faster C-language version of dpwt () and idpwt ()
contact the author via email to
getz@robotics.Berkeley.EDU.

r_idpwt () which needs mod() and lh tilde()

r_idpwt (), dpwt(), r_dpwt(), lh tilde()

N. Getz, "A Fast Discrete Periodic Wavelet Transform"”,
Electronics Research Laboratory, U.C. Berkeley, 1992.

Neil Getz
University of California

Department of Electrical Engineering
and the Electronics Research Laboratory
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% Cory Hall
% Berkeley, CA 94720
%
% DATE 12-11-92
%
p = log(length(w))/log(2);
N = length(l) /2;
% Argument checking.
%
if (nargin < 2 | nargin > 3),
help idpwt;
return;

elseif (round(N) ~= N),

error('Length of arg 2 must be an even integer.')
elseif (p ~= round(p)),

error('Length of arg 1 must be an integer power of 2.')
elseif (nargin = 3),

if ((level > p) | (level < 0))

error(['Level (arg 3) must not be greater than', ...
' log 2 of length of arg 1.'])

end
erd
%
MATSHIFT = 1; % Matlab indices start at 1, not 0.
% Conjugate filter calculation
%
h=1; % For length.
for k = 0:2*N-1,
h( MATSHIFT + k ) = (-1)~( MATSHIFT + k ) * 1(MATSHIFT + 2*N - 1 - k);

o\og

% If level is not specified then go all the way.
if (nargin = 2),
level = 0;

erd

%

% The beef
f=ridpwt(w, 1, h, level);

% END idpwt().
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File: r_dpwt.m
function w = r dpwt (£, 1, h, level)
% FUNCTION: r_dpwt
%
% SYNOPSIS: w =r dpwt (f, 1, h, level)
%
% DESCRIPTION: This is the recursive portion of the
discrete periodic wavelet transform using
filters 'l' and 'h', which are assumed to be
a perfect reconstruction filter pair of even
length. Decomposition is performed to level
'level'. For a description of the functionality
of dpwt see the documentation for dpwt () or
enter "help dpwt".
The returned row vector 'w' is w = [f0, w0, wl, ..., wp]

o o0 o AP O° IO P IO I O O I N O P I o O P O I o P I P o
g [92]

% AUTHOR:
%
% ORGANIZATION:

dP o o° P o J° o
%
B

where f0 is length 1 and wp is a length 2”°p row. These
are the wavelet coordinates of 'f'.

The length of 'f' must be an integer power of 2.
Filter sequence 'l' is not checked for satisfaction of
perfect reconstruction criteria. It must be of

even length.

For a faster C-language version of dpwt () and idpwt ()
contact the author via email to
getz@robotics.Berkeley.EDU.

mod (), 1lh tilde()

N. Getz, "A Fast Discrete Periodic Wavelet Transform”,
Electronics Research Laboratory, U.C. Berkeley, 1992.
Neil Getz

University of California,

Department of Electrical Engineering

and the Electronics Research Laboratory

Cory Hall

Berkeley, CA 94720

12-11-92
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lenf = length(f);

if (lenf = 2"level),
% Then we've hit bottom.
w=£f;
else,
% Haven't hit bottom yet.
MATSHIFT = 1; % matlab indices start at 1, not 0.

% Initialization and local constants

%

lenfpml = lenf/2; % Saves a couple of divisions.
fpml = zeros(l, lenfpml);

wpml = fpml; % For size

Nt2 = length(l);

% Make DPWT filters 1 tilde and h_tilde
%

[1 tilde,h tilde] = lh tilde(l, h, lenf);
%

% The DPWT calculations.
%
for i = O:lenfpml - 1,
two_1 = 2*i; % Saves a couple of multiplications.
for n = mod([two_i: (two_i + min(lenf,Nt2) - 1)],lenf),
dexmod = mod(n - two i, lenf);
fpml (MATSHIFT + i) = fpml (MATSHIFT + i)
+ 1 tilde (MATSHIFT + dexmod) *f (MATSHIFT + n);
wpml (MATSHIFT + i) = wpml (MATSHIFT + i)
+ h_tilde (MATSHIFT + dexmod) *f (MATSHIFT + n);
end
end
%

% The recursion
%

w = [r_dpwt (fpml,1,h,level), wpml);
%
erd

% END of r dpwt ().
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File: r_idpwt.m

function fp = r_idpwt (w, 1, h, level)

%
%
%

O o o o O o AP A N O I A AN P P N P I I P N I I P NP o P P

o0
%
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FUNCTION:

SYNOPSIS:

DESCRIPTION:

%

%

DATE:

r_idpwt
fp = r_idpwt (w, 1, h, level)

This is the recursive portion of the inverse
discrete periodic wavelet transform using filters
'l' and 'h', which are assumed to be a perfect
reconstruction filter pair of even length.
Decomposition is performed to level 'level'.For a
description of the functionality of dpwt see

the documentation for dpwt() or enter "help dpwt".

Wavelet coefficient vector w has structure,

w = [flevel, wlevel, ...w(p-1l), wp]

where flevel and wlevel are the row vectors

that are the level 'level' decomposition

products of the DPWT applied to fp. The length

of 'w' must be an integer power of 2. Filter
sequence 'l' is not checked for satisfaction of
perfect reconstruction criteria. It must be of even

length.

For a faster C-language version of dpwt () and idpwt ()
contact the author via email to
getz@robotics.Berkeley.EDU.

mod (), lh tilde()

N. Getz, "A Fast Discrete Periodic Wavelet Transform",
Electronics Research Laboratory, U.C. Berkeley, 1992.

Neil Getz

: University of California

Department of Electrical Engineering
and the Electronics Research Laboratory
Cory Hall

Berkeley, CA 94720

12-11-92
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lenw = length(w); % lenw is 27p;

if (lenw == 2"level)
% Then we've hit bottom.
fo = w;
else,
% Haven't hit bottom yet.
MATSHIFT = 1; % Matlab indices start at 1, not 0.

% Initialization

%

fp = zeros(l, lenw); % Place to put resuilt.

halflenw = lenw/2; % Saves a couple of divisions. This is 2~ (p-1)
N = length(l)/2;

DPWT filters 1 tilde and h tilde

1 tilde,h tilde] = 1h tilde(1, h, lenw);

00— P oo o°

% The recursion.
%
fpml = r_idpwt (
w( (MATSHIFT + 0): (MATSHIFT + halflenw - 1) ),
1, h, level
);
%

% The IDPWT calculations
%
for i = 0:lenw - 1,
firstcol = ceil ((i+1)/2)-1;
for k = mod (
[firstcol:-1: (firstcol - min([halflenw, N]) + 1)1,
halflenw
),
dexmod = mod (i-2*k, lenw) ;
fp (MATSHIFT + i) = fp (MATSHIFT + i)
+ 1 tilde (MATSHIFT + dexmod)
* fpml (MATSHIFT + k)
+ h tilde (MATSHIFT + dexmod)
* w(MATSHIFT + halflenw + k



N. Getz: A Fast Discrete Periodic Wavelet Transform

erd

% END of r idpwt ().
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File: 1h_tilde.m

function [ 1_tilde, h_tilde ] = lh tilde(l, h, two2p)
FUNCTION: 1h tilde

SYNOPSIS: [ 1_tilde, h tilde ] = lh tilde(l, h, two2p)
DESCRIPTION: Make DPWT filters 1 tilde and h tilde.

The vectors 'l' and 'h' are assumed to be

the values of the finite impulse response

low-pass and high-pass filters over their interval
of support {0,1,...,length(l)-1}. The filters

are not checked to see if they form a perfect
reconstruction pair. Nor are they checked for
common length though this is assumed. '

NOTE: For more speed in dpwt () and idpwt () these could be
precalculated and either passed as function
parameters or made globally available.

AUTHOR: Neil Getz

ORGANIZATION: University of California
Department of Electrical Engineering
and the Electronics Research Laboratory
Cory Hall
Berkeley, CA 94720
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MATSHIFT = 1; % matlab indices start at 1, not O.

Nt2 = length(l); % Saves some multiplications.
if (Nt2~=length(h)),

error ('Arg 1 and arg 2 must be the same length.');
end

if ( length(l) <= two2p ),
% In this case 2N<=2"p, so the first 2N taps
% of 1 tilde and h tilde are identical to
% those of 1 and h, respectively.
1l tilde = 1;
h tilde = h;
else,
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% Here we have 2N>2”p and we need to apply a wrap.

1l tilde = zeros(l, two2p) ;
h_tilde = 1 _tilde; % for size
for i = 0:min([Nt2,two2p])-1,
imod2to p = i - two2p*floor (i/two2p);
for k = 0:floor ((Nt2-1-imod2to_p) /two2p),
1l tilde( MATSHIFT + i ) .
=1 tilde( MATSHIFT + i ) ...
+ 1( MATSHIFT + imod2to p + k*two2p);
h tilde( MATSHIFT + i )
= h tilde( MATSHIFT + i ) .
+ h( MATSHIFT + imod2to p + k*two2p);
end
end
end
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File: mod.m

function y = mod(x,n)
% FUNCTION: mod
%

% SYNOPSIS: y = mod(x,n)

%

% DESCRIPTION: mod(x,n) gives the remainder on division

% of x by n. The result always has the same

% sign as n. This function is essentially just

% an alias that makes the other functions easier
% to read.

%

% AUTHOR: Neil Getz

% DATE: 10-17-92

y = X - n*floor(x/n);
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