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Abstract

We extend the discrete wavelet transform (DWT) to functions on the discrete

circle tocreate a fast and complete discrete periodic wavelet transform (DPWT) for

bounded periodic sequences. In so doing we also solve the problem ofnon-invertibility
that arises in the application of the DWT to finite dimensional sequences as well as

provide the proper theoretical setting for previous incomplete solutions to the

invertibility problem. We show howand prove that the same filter coefficients used

with the DWT to create orthonormal wavelets on compact support in f°(Z) may be
incorporated through the DPWT to create an orthonormal basis ofdiscrete periodic
wavelets. By exploiting transform symmetry and periodicity we arrive at easily
implementable, fast, and recursive synthesis and analysis algorithms. We include
Matlab functions for DPWTexperimentation.

'This work was supported in part by NASA under grant NAG 2-243 and by NSF under
grant IRI90-14490.
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I. Introduction

The discrete wavelet transform (DWT) provides a means ofdecomposing sequences of

real numbers in a basis of compactly supported orthonormal sequences each of which is

related by being a scaledand shifted version of a single function. As such it provides the

possibilityofefficiently representing those features of a classof sequenceslocalizedin both

position and scale. Compactly supported wavelet bases, like complex exponential bases,

carry the significantadvantage that fast, numerically stablealgorithms exist for sequence

analysis (decomposition into the wavelet basis coordinates) and synthesis (reconstruction

from the coordinates in the wavelet basis).

The Discrete Wavelet Transform

The DWT has found application in acoustical analysis, image processing, and data

compression. It holds promise for use in edge detection, finite element analysis, and, in

particular, for optimization where the high computational overhead of many optimization

algorithms strongly motivates a search for moreefficient representations of useful classes

of functions.

The standard form of the DWT analysis algorithm applied to a real valued sequence

/ € l2(Z) isdefined recursively bythe level p decomposition

(1)

where fp = f and L and H are respectively /2(Z) -»l2(Z) low-pass and decimate and

high-pass and decimate linear filter operators. The decimation is usually, and throughout

this paper, by a factor of 2 (Decimation by 2 of a sequence x produces a sequence y

defined by yn = x2n, ne Z). The inverse discrete wavelet transform (IDWT) creates

sequences fp,peZ from the set of wavelet coordinate vectors {w*}, fceZ, with
wk e /2(Z), and isdefined recursively by the level p reconstruction
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fP=£!fp~l+H*wp-1 (2)

where V and //* denote the adjoints of the maps L and H with respect to the standard

inner product on l2(Z). We will sometimes refer to both the forward and inverse algorithm
pair as the DWT. (We discuss the difference between level and the more standard scale

below.)

Let L2(ft) denote the square integrable functions over the real numbers. The wavelet
basis of L2(H) isimplicit in the DWT. The basis functions are indexed by level and shift.
The basis function corresponding to level q and shift n is the limit as p goes to infinity,

when such a limit exists, of the interpolated sequences fp produced by the inverseDWT

with wqk = Sk n, k g Z, and all other w£ zero. The convergence of these limits and the

particulars of the interpolation scheme are discussed thoroughly in [Daubl] and we refer

the reader to this reference for the details. We will bemore concerned with sequence spaces

andwill describe basesof wavelet sequences below.

Inorder for thealgorithm (1), (2) to correspond to an orthogonal DWT we require that

L and// obey the following perfect reconstruction criteria:

LV=I (3)

////* =/ (4)

L/T =0 (5)

L*L +//*// =/ (6)

where /, and 0 refer respectively tothe identity operator and zero operator, l2(Z) -> l2(Z).

In practice theDWT (1) is implemented through the sums

H>r=i/A-* (7)
k

where / and h are equal length finite impulse response (FIR) filter coefficients and are
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designed such that (3), (4), (5), and (6) are satisfied. The IDWT (2) is implemented by the

sum

^=I/r'u+wrt-« (8)
k

By choosing / to have support QN ={0,l,...,2N-l} and to satisfy (3) one may easily

create an h which allows satisfaction of (4) and (5) with

A*=(-1)V-. ©>

for some q in Z. In this paper we will always take q = N in (9) so thatwe will have what

will turn out to be the computational convenience of / and hhaving the same support QN.
For convenience later we tag / andh by theirsupport size andwill refer to them as lN and

hN. With each lN, hN pair we will associate the finite impulse response FIR filters LN and
HN having lHk and hHk, respectively, as their impulse responses. Since Land Hare FIR
wemay relax the requirements on fp and wp tobeing bounded sequences in r(Z) rather
than square summable sequences l2(Z). However, wewill continue to consider lN and hN
to bedrawn from /2(Z).

In terms of lN and hN, and using the form (7) of the DWT, criteria (3), (4), and (5)
become

i^^=*w (id
SC»£« =0 (12)

where Skl denotes the Kronecker delta. Note that (11) and (12) follow from (10) with
relation (9). Criterion (10) says that lN is orthogonal to shifted versions of itselfwhen that

shift isbyan even integer. Criterion (11) says the same for hN. Criterion (12) says that lN
and hN are orthogonal as are all of their even shifts.

There are additional conditions on lN which assure that (6) is true and that the
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corresponding continuous wavelet bases of L2(Jl), where the correspondence is through
interpolation, havesomedegree ofregularity. Maximum regularity for a particular choice of

N is guaranteed by choosingthe FIR low-pass filter associated with lN to have N zeros at

-1. This regularity then increases asN increases. For anin depth study of these conditions

and achart of lN,s for N^ 10 we refer the reader to [Daubl]. Here wewill always assume
that lN is such that (10), (11), (12), and (6) are satisfied.

If lN corresponds to the impulse response of an FIR half-band low-pass filter, then the
reversed impulse response hN represents what we will refer to as its conjugate FIR

half-band high-pass filter, meaning that / - VL = //*//. The halfbandedness of the filters

allows, according to the Nyquist sampling theorem, a reductionof the sampling rate by 2.

This filter-and-decimate process is then repeated on the decimated output of the low-pass

filter.

Shortcomings of the DWT

The discrete wavelet transform (7) is notwithout its problems. Smallshiftsin a sequence

may yield largechangesin the wavelet transform of that sequence as discussedin [SFAH].

The shift problemwill not be coveredhereexcept to say thatuseful sequence domains exist

where shifted versions of the same sequence arenot considered to be close, so that some

degree of coordinate instability with respect to shift is not a problem. Examples abound in

the analysisof spectra. We also note that the shift problemdecreases as N increases.

Another problem with the DWT (7), one that we will address here, may be seen as

being due to windowing or filter truncation as the operators L and H are restricted to finite

dimensional subspaces of /~(Z). The nature of this problem willbeillustrated and clarified

in sectionm. We will show that windowing resultsin non-orthogonal wavelets and lack of

invertibility of the DWT. The problem arises from the fact that the shift operatorand its

adjoint are inverses on l°°(Z) but not on finite dimensional subspaces of /~(Z). It is

amplified by the recursive nature of the DWT. We will show that these errors may be

entirely eliminated by casting finite length sequences as single periods of periodic sequences

where the natural shift operator is a rotation and is thus unitary on finite dimensional
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subspaces of /~(Z).

Mathematical Context of Discrete Periodic Wavelets

We will take a finite dimensional point of view and will consider subspaces of H(Z)

sequences fp and wp on support Zp s {0,1,..., 2P -1} and their periodic counterparts fp
and wp in copies of Pp, the sequences over the discrete circle of period 2P. Let S be a

subset of Z. By support S wemean that if sequence s is in /*(S), q e {l, 2,..., «>}, then

sk = 0 forall k in the complement of S with respect to Z. We define the relation of /' to

/' and wp to wp by /' =JZ^y, wp =<mod2,, / eZ. From now on /' and wp will

refer to real valued sequences in /~(Zp) c T(Z). More specifically, we consider fp and
wp to be vectors in copies of P,, namely Tp and W, respectively. We will often suppress
the specificity of Tp and \0p byreferring to both as Vp. Sometimes we will refer to the
vectOTrepresentationsof/paTiiv/,sf''=[/0p // ••• /^.Jad wp =[wp wp ••• w^.J,
both 2/>-tuples in H2\ Also we may refer to the matrix representations of our linear
operators in bold face, e.g. Lp and H^. Often, when context will prevent a sacrifice of

clarity, we will not distinguish abstract vectors and operators from their coordinate

representations. We denote the restrictions ofLand Hto domains /~(Zp) by L and H
which have codomains /"(Z^). We will also continue to refer to Lp and Hp when we do
not wish to refer to an explicit N, and L and H when we wish to generalize beyond a

particular N or p. Later, in defining the DPWT, we will use tildes to distinguish between

theDPWT filters andtheir DWT counterparts.

Given the notation and distinctions of theprevious paragraph we rephrase thewavelet

decomposition andreconstruction algorithms as

\rx=Lpfp
K"1=//,/'

(13)

and

fp =Epfl+H'y-x (14)

wher<e we now index the filters by level p. Criteria (3), (5), (4), and (6) become

p p p-1 (15)
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//„//;=/,-, (i6)

v;=0,-. <17>
l;l,+#;//„=/, as)

and an orthogonal wavelet decomposition must satisfy (15), (16), (17), and (18) at all

decomposition and reconstruction levels p. Thus L and H are surjective (onto) and L*

and H' areinjective (one-to-one). Note that(18) along with (13) and(14) yield

=i;(v')+«;(v)

As a consequence of our finite dimensional point of view the recursion (13) bottoms

out at the level 1 decomposition

This is in contrast to the /2(Z) -> /2(Z) DWT which does not bottom out since each

decomposition productis of infinite length. Of course we may chooseto stopthe decomposition

at any non-negative level of interest. The IDWT (14), on the other hand, may proceed

indefinitely. We will sometimes refer to f° as the residue or as w"1, whereas w° is the

level 0 wavelet coordinate.

Wavelet Bases

The basis of orthonormal wavelets for /~(Zp) corresponding to the filter sequence
[ij,&e{l,2,...,/?}, which, via (9), uniquely determines a conjugate filter sequence
[//ft], ke {1,2,..., /?}, may be indexed by level and shift. Level ranges from 0 top-l and
shift, at each level k, ranges from 0 to 2* -1. Let 0m denote the zero vector in /~(Zm). To
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construct the level k, shift qwavelet, [vt*,p], n€Z, at base level pone sets w* =Sn ,
«eZ, with /* =0k, and wm =0m, for me{£ +l,...,/?-l} and performs the inverse
DWT to get

¥^p =vpap.l^vk+2H;+y

To complete the basis for l"(Zp) we also include what we will call the level -1 wavelet or
residue wavelet at base level p,

Basis element y/k' ••p is then areal valued discrete function in l°°(Z p).

Scale versus Level

As we have already begun to do we will index the stages of forward and inverse

wavelet transforms by p and refer to p as the level: e.g., The products of the level p

decomposition are level p-1 sequences fp~l and wp~x in the p -1 dimensional spaces

T^ and W^. The use of level isincontrast tothe usual practice inthe wavelet literature

of referring towavelet basis functions and the coordinates of analyzed functions as being at

particular scales. We may convert between scale and level as follows: If the original

subject of analysis is fpy then fp is the scale 0 or base level p sequence and wq

corresponds to the scale p - q wavelet coordinates. We see that scale increases as level

decreases, and, in the domain of finite length sequences, scale bottoms outatp. Scale may

be negative as a result of applying the inverse transform past scale 0, just as level may

become greater than the base level. Using level instead of scale provides a more convenient

handle onthe dimensions of operator domains and codomains. In the /2(Z) -»/2(Z) DWT
this does not matter. For the DPWT it does.
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Tree Structure of the Wavelet Transform

The analysis and synthesis algorithms for our finite length sequences have the tree-like

structure illustrated, after Strang [Strang], in figures l.a and l.b,

Fig. l.a. Tree diagram for discrete wavelet transform decomposition.

Fig. l.b. Tree diagram for discrete wavelet transform reconstruction.

where w* 3[wg,wJ,...,wJl_1] eft*and ^[j?.#,...,.#_,] eH* with q in the non-
negative integers Z+.

We will call

f'B[/°yy ^

the complete wavelet transform of fp. Note that fp has l +2°+21 +---+2P"1 =2P

coordinates, precisely as many wavelet coordinates as there are coordinates of fp. In those

instances where we do not require the complete wavelet transform of fp will refer to
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p,p _ [f*9w*9w**\„.9wp~2tWp~l] as the partial wavelet transform of fp down to level q.
Note that V'p also has 2P coordinates.

Overview

After section II summarizing the symbols to be used in our exposition, we demonstrate

the non-invertibility problemin section IE with a detailed example. In section IV we derive

theDPWTfrom theDWT. Section V explores, viaan example, therepresentational symmetries

ofour algorithm that lead to the fast implementations of section IV. We follow with section

VI where we prove that the same lN and hN used in the creation of filters for the /2(Z)
DWT may be used to derive appropriate filters for theDPWT and, consequently, to create

an orthonormal wavelet basis for Pp or l°°(Zp) for any /?eZ+. In the discussion of
section VI we point out some features and caveats relating to useof theDPWT. Section VI

is followed by conclusions, a listof references, and a setof Matlab [Madab] functions that

will allowthe interested reader to experiment with the DPWT andIDPWT.

Occasionally we will be intentionally verbose, presenting expressions in a number of

different but equivalent forms, including matrix forms, that could be stated more tersely

with sums. In doing so it is our intention to afford the readera window into the structureof

theDPWT, its operator components, and theproblems associated with the DWT.

Previous Work

Orthogonal wavelets have been developed by Meyer [Meyer], Mallat [Mallat], and

Daubechies Paubl] among others. Rioul and Duhamel [RD] have studied the efficiency of
implementations of the DWT though they focus on non-orthogonal wavelets and do not

discuss the issues we address here. Continuous wavelets on the circle have been studied by

Holschneider [Hols]. Kovacevic and Vetterli [KV] generalize the DWTto anonseparable

multidimensional form and Vetterli and Herley connect wavelet transforms with perfect

reconstruction filter banks in [VHJ. We draw mainly on the theoretical foundations of

wavelet theory as presented in Paubl] and [Mallat].
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In Paub2] Daubechies discusses, in the context of the characterization of functional

spaces, the topic ofwavelets for ZJflO, 1]), the space ofabsolutely integrable functions over
the real interval [0,1] and introduces periodized wavelets each of which isconstructed as

a sum of copies of a periodically shifted continuous wavelet having suitable decay. The

present paper may be regarded as an extension of Daubechies construction to an easily

implementable and fast algorithmic form. The finite dimensional arguments, proofs, and

derivations presented here will, we believe, be considerably more accessible to a wide

range of readers.

Attempts at a remedy for the non-invertibility of the DWT have appeared before in [SE]

as well as [PTVF]. We will briefly describe the methods of these authors in section HI

where we demonstrate the nature of the non-invertibility.

Contributions of this Paper

Our main result is the extension of the DWT to discrete periodic sequences to create a

discrete periodic wavelet transform (DPWT), an inverse transform (IDPWT), and an

associated basis of discrete periodic wavelets. Figure 2 shows an example of the periodic

discrete wavelets produced forN = 4 and base level 7. More examples will be shown in the

discussion of section VI.
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-1 0

Figure 2. Periodic wavelets on the discrete circle. These were obtained by
applying the IDPWT to unit impulse wavelet coordinates at the levels indicated
below each graph. These are length 27 and arise from Daubechies filters oflength
8 (N = 4). They have been linearly scaledso that their maxima and minima fall
on-1 or 1.The inner and outer dotted circles represent -1 and 1respectively, and
the solid lined middle circle represents 0. Their lack of symmetry has been
proven necessary in [Daubl].

11

Unlike many others we avoid frequency domain derivations in favor ofremaining in the
shift (time orspace) and scale domain. In addition to providing the reader with an alternative

point ofview to that normally appearing in the signal processing and wavelet literature, the
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shift domain derivations have greatly facilitated the determination of the details of the

design of the fast algorithm presented here. We do not address the derivation of perfect

reconstruction filter pairs, though certainly we depend upon their properties. Only the

structure of a discrete periodic wavelet transform though which one may use the perfect

reconstruction filters one has at hand is derived. In particular the reader may plug in

Daubechies' low pass filter coefficients, which appear in Paubl] into our scheme as has

been done in the creation of many of the figures.

The main contribution of this paperis the derivation of a fully specified implementation

of a fast discrete periodic wavelet transform.

II. Symbols and Notation

The following is a reference table of symbols that will be used in this paper. Symbols

areexplained more fully where they areintroduced.

ft The real numbers.

Jl* The ^-tuples of real numbers.

Z The integers.

Z+ The non-negative integers.

Zp {0, 1,2,..., 2^-1}.

QN {0, 1, ..., 2AT- 1}.

( Y"lq (S) Real valued sequences x satisfying £ \xk f <°°, e.g. I2(Q N).
\keS J

/~(S) Real valued bounded sequences with support set S, e.g. r(Zp).

Tp, Wp, Pp Subspaces of l"(Z) consisting of periodic sequences with period 2P.
Vector space Tp holds sequences fpy \t>p holds periodic wavelet

coefficients wp, and Pp isused torepresent either Tp or Wp.

S, —»S2 Indicates the domain, Sj, and the codomain, S2, of a map.

x i-» y Indicates action of a mapping on an object x of the map's domain, with
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',> oP

o.

<•. •)p

<•> •)

WP .*»'

fp l:

fW

»p

»p

y as the image ofx through the mapping and in the map's codomain.

The identity and zero operators, respectively, r(Zp) -»r°(Zp)-

The zero vector in /~(zA (The italicized 0p distinguishes the operator
0p from the vector 0p.)

The real valued inner product on Pp, i.e., for jc, ye Pp, (x, y) s ^ jc, y,.
i=0

The standard real inner product on /2(Z), i.e., for Jt,ye/2(Z),

i=-oo

The nth wavelet coefficient at scale p, non-periodic and periodic

respectively.

The nth sequence element at scale/?, non-periodic and periodic respectively.

The complete wavelet transform of fp.

The partial wavelet transform of fF down to scale q.

Low-pass anddecimate and high-passand decimate, respectively, filter

operators r(Zp) -> /"(Z^) associated with sequences lN e l2(Z).

Low-pass anddecimate and high-passand decimate, respectively, filter

operators Pp —»Pp_j associated with sequences lN € /2(Z).

Sk Right shift by koperator /2(Z) -» I2 (Z), yn h-> yn_k.

SkN Right shift by k operator l2{QN)-^l2(QN), xnH>0 if n<k, and
xn\-^xn_k\f n>k, n-keQN.

Rp Right shift operator Pp -> Pp.

@£ Wrap @' :/2(Z) -> Pp, yn h> JT j^ , /€Z„
% The natural projection operator /2(Z) -» /2(Q#)

iV One-half the number ofnon-zero elements of lN, hN e I2 (Q w) c /2(Z).

/*, /** Filter sequences in /2(Q/V).

/", tf «lh coefficient of lN,hM.

A A linear operator.
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A'

(Af

A

A'

(A)*

{G}.

a mod 6

range(AJ

null(A)

M

V

3

Symbols and Notation

Adjoint ofA.

AoAoAo-..oA,fc times, where o denotes map composition.

Matrix realizationof linearoperator A.

Transpose of A (we will be using only real valued matrices and standard

inner products).

Matrix A to thek* power.

The row / column j element of matrix A.

The ith element of vector orsequence x.

The Ith element of an indexed set G.

The kA power of scalar g. We use parentheses for powers to avoid

conflict with other superscripts. In practice we will only need squares,

i.e. k = 2.

The periodic counterpart ofafinite length sequence s defined by sk =spknsoAV,
k<=Z.

The Kronecker delta, equal to 1 if i =j and 0 otherwise.

The positive remainderafter division of a by b, e.g. 6 mod 4 = 2, -1

mod 4 = 3.

The range space of the linear operator A: U -» V, i.e. the set

{Ax\xeU}.

The null space of the linear operator A:U-»V, i.e. the set

{x eU|Ax =0} where 0is the zero element in the vector space U.

The ceiling of real number q, meaningthe least integer greater thanor

equal to q.

for all

such that

there exists
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III. DWT Non-invertibility on Finite Length Sequences

In this section we illustrate the non-invertibility problem of the DWT (7) with an

example. Though this problemhas been patched to some extent by others using techniques

described later in this section, we believe,andholdthe existing patchtechniques asevidence,

that the nature of the problem has not been well understood. This section is offered as a

remedy to any such misunderstanding.

Symbolic Demonstration

We will use a 4 tap filter for the low-pass-and-decimate filter associated with the

transform (7) andits conjugate high-pass-and-decimate filter. We will show thateachof the

fourcriteria (15), (16), (17), and (18) breakdown to some extent. Consider a real valued

length 8vector / =/3 € /~(Z3). The first step in the decomposition algorithm, when restricted
to /~(Z3) is specified as

»t=lfM-» /* ~Z^fi k-lk
i=0 «=0

or in operator form w2 =H2f and f2 =I$f*. For aparticular choice ofphase relationship
with q =N in (9) the values of h2 and I2 are related by hi =%, h\ =-£, h\ =/2, and
h\ - -/2 where both I2 and h2 have support {0,1,2,3). This gives matrix representations
of l\ the form

L2 =

'o *1 *2 h

ll ? £ £
£ A2 £ Z

il h2

and H2 has the same form as L2 but with l\ replaced by h\. Blanks in L2 should be
understood torepresent zeros. Note that each successive row of L2 and H2 are related by
right shifts by 2 andthat the lastrow displays truncation of I2 and h2 due to therestriction
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ofthe domains of l\ and H2 to the subspace r(Z3). For surjective operators l\ and //2
we require, according to (18), that

Z2*Z2 +//32*//2 =/3

Note, however, that theupper left2 by 2 block of L2 L| +H2 H2 is actually

\i2f+(lf W-M
W-W (A2)2+(lfJ'L

We could achieve equality with l0 =^ = l2 =^ =0 but then we would nothave LL* =I.At

every step p of the analysis algorithm we will have the same upper left 2 by 2 block of

L2 L2 +H2 ¥L2. We maychose tomodify the phase relationship of I2 and h2 but this will

only move the distortion elsewhere in \}p \}p +H2 H2. Will we have the same problem for
all N? The answer is that for every N greater than 1 when the level p is such that

2N - 2 < 2P the size of the distortion block will be 2N - 2 by 2N - 2. In the course of the

wavelet decomposition when p becomes small enough to make 2P < 2N - 2, the size of the

distortion block will be the entire matrix L* L^ +Hjf Hjf and the analysis algorithm breaks
down completely. The distortion may be thought of as being due to the truncation of the

shifted versions of lN and hN in the last 2N-2 rows of L^ and Hp, an inescapable
result, for N>I, of the restriction of the domains ofLNp and Hp, as defined by the DWT
(7), to the finite dimensional subspace of l°°(Zp) sequences. We note that when N=1no
distortion occurs at any level. This is the Haar wavelet case, and this is the only case where

the decomposition algorithm (13) may be completed to the p = 0 stage with complete

invertibility through the synthesis algorithm (14).

The other three criteria (15), (16), and (17), are also violated. In particular the 4,4

entries of the appropriatematrices are

[L3L3V('02)2+tf)2*l

'1 0'
*

0 1_

[h^V^)2-^2)2*1
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[L2Hr]44=A%2 +/0%2^0

where inequality follows from the fact that for equality wewould need I2 tobeidentically

0.

As a preventative measure we may choose to stop the wavelet decomposition at a level

ps such that 2Pm is much greater than 2N-2 (so thatonly a small part of CL+H*H is

distorted, but this is obviously too severe a restriction in cases where we wish to analyze or

filter the sequence at scales ps and below. We may apply zero-padding but this results in

reduced computational efficiency of the algorithm.

Numerical Demonstration

We graphically andnumerically demonstrate the affect of this distortion on a sequence

consisting of 27 ones with N = 4. First weperform acomplete DWTand then reconstruct

the sequence from theresulting wavelet coefficients. We will call the original sequence of

16 ones /4 and the successive results of the decomposition will be referred to as /3, /2,
f\ and /°. We will denote the successive results of the inverse decomposition applied to
the wavelet transform of /4 by /°, /*, /2, /3, and f4. Thus the decomposition chain is

f=lif* f = lif3 Y-Zf* 'fml*f

w3 = HAtf w2 = Htf y=ff272 w"=Htf

and thereconstruction chain is,with f° = f°

/,=Z147° +<vf0

/4=Lr/3+//;v

Figure 3 shows the inverse transform result f4.
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0.5-

8 10 12 14 16

Figure 3: f\ the result of performing standard discrete wavelet transform
followed by aninverse discrete wavelet transform on /\ a sequence of 16ones.
The N = 4 Daubechies coefficients were used in both the decomposition and the

reconstruction. The resulting distortion can be seen in the first 6 elements of f*.

The distortion in the first 6 elements of /4 is readily apparent. We note that if we had

startedwith a much longer sequence that the distortionregion would still have the same size

of support and would consequently be much smaller in relation to the entire signal length.

The following figures 4.a through 4.d reveal, however, that at small p the support of the

distortion is a large part or all of the sequence.
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Figure 4.a. fl -f\ theerror at level 1.
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Figure 4.b. f2 -j, theerror atlevel2.

"5 2 4 6 8 it5 12 14 16

Figure 4.c. f3-f\ the error atlevel 3. Figure 4.d. /4 - /\ the error at the top level, 4.

Figure 4.a shows the difference between the decomposition product f1 and the

reconstruction product f\ If the DWT were truly invertible on sequences of length 2 we

would expect f1 = f. This is seen to not be so. Figures 4.b, 4.c, and 4.d reveal the level

anddistribution of the reconstruction errors backup to the baselevel 4.

The non-invertibilityproblemof the DWT has been approached, within the context of

subband codingof images,by Smith andEddins in [SE] using circular convolution. Unlike

Smith and Eddins, however, wederive an explicit realization that does notinvolve periodically

extending sequences at the level of algorithmrealization.We do not address, however, the

robustnessof the DPWT with respect to quantization errors as is done in [SE] and we refer

the reader to that paper for such a discussion.

Another attempt at solving the non-invertibility problem of the DWT is shown in
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[PTVF]. Those authors show a matrix realization of the DWT in which filter coefficients

are wrapped around the filter matrix so that, for instance, those coefficients shifted off of

the right end of the bottom row of the filter operator matrix are shifted back into the row at

the left end of the same row. This solves the invertibility problem down to a level p where

2N = 2P. The authors stop the algorithm there. By coming to an understanding of the nature

of the partial solution yielded by the wrap-around of coefficients we will see the true

context of this partial fix and will be able to extend it to its ultimate goal of perfect

invertibility down to level 0.

We will show in the sequel that the errorsdemonstrated in the examples above may be

eliminated by applying the discrete periodicwavelet transform,which we derive in the next

section, to the /~(Zp) sequence. A finite length sequence may then be cast as asingle
periodof a periodic sequence. If the sequenceis not truly periodic, e.g. a piece of a longer

non-periodic sequence, there is some cost to the castingwith respect to interpretation of the

wavelet decomposition. This cost is discussed in section VI.

IV. A Discrete Periodic Wavelet Transform

In this section we will work from the standard form of the DWT (7) to produce the

DPWT and IDPWT. Later, in section VI we will introduce operators which will lend more

transparency to the forms of the DPWT derived below.

We retain the algorithmic structure symbolized by the tree diagramsof figures l.a and

l.b, but we restrict the domains and codomains of the filters operators. We identify fp,

which we consider to be an element of r(Zp), with its periodic counterpart defined by
f' s //mod2'» * e ^» which we consider to be an element of the subspace Tp of /"(Z)
periodic sequences of period 2P. Likewise, we identify our wavelet coefficient vector

wgykeZp, which we also consider to be an element of f(Zp), with h£ s wpmoA2, ,keZ
inanother vector space of period 2P r(Z) sequences, Wp. At the same time we leave our

filters in theiroriginal non-periodic form lk,hkikeZ wherethe support of lk and hk is

Qw ={0,l,...,2iV-l},i.e. lNthNel2(QN).
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Applying the /"(Z) -> T(Z) DWT (7) to // gives

fr=pkfkP^ i*Z
wr=t,h?fp+2i, ieZ

21

(19)

where we have non-periodic operators operating on periodic sequences. We note that the

decomposition products are also periodic, but with half the period of fp.

We may take advantage of the compact supportof the filters as well as the identification

between fkp and //, and wk and wk to obtain the decomposition form

keZp m=—-

JkeZ. m=-~

(20)

(If the equivalence between (20) and (19) is not immediately clear it will be made so by

observation of the DPWT matrix forms in section V.) Note that for those decomposition

stages p such that 2PZ2N, i.e. such that the period of fp is greater than or equal to the

length of the index N filter, we have

YlN =1NJ^lk-2i+2pm lk-2i

5X - hN
2i+2fm "~ nk-2i

Consequently, ifwe identify fp with its counterpart fp er(Zp), the first 2p~l - (2N - 2)
samples of fp~l and wp~l from transform (20) are identical tothe corresponding transform

products of the standard DWT (7) applied to fp. Thus, forthe caseof N = 1,corresponding

to the Haar wavelet, the transform (20) is identical to (7) at all stages of the decomposition.

Exploiting the compact support of f and hN and defining

// and h" vectors in P. by
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[(2iV-l)/2'J
/*.s JiNp.i ^*iniimod2'+2'*»

k=0

ieZ

[(2JV-1)/2"J

np.i - <Zrf"imod2'+2'*» IG^
*=0

(21)

(22)

we may express what we will call, in conjunction with (21) and (22), the discrete periodic

wavelet transform:

keZ,
(23)

JfceZ.

Note that when 2P > 2N the sums on f and hN in expressions (21) and (22) have no

affect in that there is onlyone filter coefficient summed. Indeed, for 2P>2N, l? = l.N and

h? =h? for all / e Zp. The sums (21) and (22) are most easily thought of as being the
result of applying a linear operator, which we call a wrap, to lN and hN. Wraps will be

illustratedand explained in section VI.

Utilizing the isomorphism between /~(Zp) and Pp we may express the DPWT by

keZp

keZ.

(24)

which we refer to as the r(Zp) form of the DPWT. We see that once 7/ and hp are
computed from (21) and (22) that the DPWT is formed by taking the inner product of a

single period of fp with even rotations of lp and hp . It will be shown that unlike the
DWT applied to /~(Zp), the DPWT is perfectly invertible.

The algorithm (24) may be made more concise by realizing that lPtk.2i and ^p,k-2i are
nonzero only when 0<k- 2/ <min(2iV -1,2P -1). In other words we may restrict the
summation index integer kto k€J2i,..., 2/+min(2N-1,2P -1)j. Letting n=k-2i, and
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defining the integer subset

SpN(i) s {2/, 2/+1 2/+min(2iV, 2')-l}mod2'

the DPWT may then be rephrased in a computationally economic form as

fi ~~ irf/n *p.(«-2i)mod2'» ieZp-\
neSfr(i)

Wi = ^fn np.(n-2i)mod2" *G^p-1
DPWT:

«€S&(i)

which we refer to as the r(Zp) form ofthe DPWT.

We will refer to the DPWT versions ofLand Hby Land H. Aswith the /2(Z) -> /2(Z)
DWT theinverse DPWTis obtained by utilizing theadjoints of L and H. Thatthisactually

works for the LN and HN corresponding to lN and hN when it did not work for the DWT

applied l2(Zp) -> l2(Zp) requires proof. In section VI we will prove that the DPWT and
IDPWT are indeed an orthonormal wavelet transform pair.

The r(Zp) form of the IDPWT is

fi' = Xft-a* fr + !*,% <\ i*Z, (26)
keZ^ keZ^

Since lpNti_2k and hpi_2k are non-zero only when 0</- 2k <min(2iV -1,2P -1) we may
further restrict therange of the summation indexinteger k in (26) to

TJ5(0 s
i + 1

-1,
7 + 1 -2,..., |—l-min(N, 2'-1)|mod2',

(25)

where fx~\ denotes the smallest integer larger than x. Consequentiy the IDPWT may be
rephrased in a computationallyeconomicalmanneras

IDPWT: /'- X^i^^/r'+^V")^^'. tmZ, (27)
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Complexity

The transform pair (25) and (27) is fast For each level/? such that 2P £ 2N the number

of arithmetic operations needed to obtain each element of the transform products is 2N

multiplicationsand2N -1 additions. When p is such that 2P < 2N thereare 2P multiplications

and 2P -1 additions needed for each element of the transform products. The number of

elements of the transform products is halved at each level. Consequentiy, assuming that the

sequence to be analyzed is of length 2P, the number of operations for a complete DPWT

decomposition using l(QN) filters is

2N x(2'+1 - 2*+1) +2*+1 -1 multiplications
(2N -1)x(2'+1 - 2*+1) +2*+1 -1 - k additions

where k is the largest integer such that 2k <2N. Thus the number of multiplications in the

complete DPWT of a length n sequence is bounded above by ANn. Compared to a fast

Fourier transform (FFT) the DPWT is faster by approximately a factor of log2n. In

addition the DPWT does not require the use of complex numbers*

In the next section matrices will afford insight into the structure of the DPWT.

V. Demonstration of the DPWT

Like Strang [Strang] with the DWT we believe that the DPWT is best illustrated in

matrix form. Consequentiy we arrange the filter coefficients into a matrix realization of the

filter operators. We illustrate ouralgorithm with the simplest possible examplethatdisplays

all its important symmetries. Sequence /3 will bedecomposed into its wavelet coefficients

down to level 0 and its residue f° = w'1. Those wavelet coefficients will be gathered

together to form the wavelet transform vector f . Then we will reconstruct the original /

starting from the wavelet coefficients.
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Analysis Tree

We willassume that lN and hN satisfy (10), (11), and (9). We perform theDPWTand

the IDPWT in their l°°(Zp) forms. We may choose to think of fp as being the coordinate
representation of fp. We start with asequence /3 of length 8.We operate onthe leftof the

sequence with a matrix realization of the low-pass and decimate operator l\ to obtain

f2 = L3f3.

f2 = A2

lA J L*2

il A3 «
« K

c *

« « n n

« ? ?

"J?"
fi
fi

fi fi
fi fi
A3. //

fi
.fi.

(28)

Note the right circularshift by two of the low-pass filter coefficients in the matrix as well as

the wrapping around of the filter coefficients on the bottom two rows.

The symbol geometryof the matrix forms of the high-pass-and-decimate operation are

identical to that of the low-pass-and-decimate cases. Accordingly weobtain w2 =Hf,f3, the

coordinate representation ofthe wavelet coefficients of /3 at scale 2, by replacing ff with
w*, and /3 with h\ in (28). We have created this convenience by placing f and hN on
common support. If we had placed hN on different support than lN the forms of the

matrices H3 and L3 would have been related, row for row, byacommon and even circular

shift.

As mentioned in section HI the wrap-aroundof the coefficients shown in the matrix of

(28) hasappeared in [PTVF] andelsewhere. According to the technique shown in [PTVF]

the decomposition stops at this stage (28). By ourunderstanding of the DPWT as gleaned

from the last sectionwe may now continuethe decomposition.

In the next step of the algorithm weobtain fx =L32f2 and w1 = H3f2. At this stage our

filter matrices take on widths less than the lengths of the filter coefficient vectors, i.e.
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p = 2, and n = 3. are such that 2p < 2N.

f' =
L/i1

7n3+/l /?+§•0 T*4

/3

/3*2

*0 ^'4

/o2
/:2

J?.

(29)

and the corresponding w equation is obtained by replacing f's and I's with identically

indexed w's and /i's. Here we see the effects of the sums (21) and (22) defining 1N and

hN. Similar to the previous step (28), in (29) we see again acircular right shift by 2ofthe
filter coefficients and a circular left shift by 2 of the scale 2 sequence coefficients in the

matrix representations.

Now, in the final analysis step we form f° = L3f! and w° =Hff1 from f1.

f-[>?] =[«+«+* 43+<?+'?]
//J

w° =K.]=[^+A23 +/l43 h^ +h\ +h\) '/„''

Note that, for instance,

and

fiH3H3'
3 , i3 . ;3

L31L?1- =[/3 +Z3 +fi. (l +^ll)

=I/3'3+2f2/3/3.2+X/3^4l=l
n \ #i n J

mr=[%+%+$ ti+hi+hi] kl+hl + hl

=xa3+2 2/3/3_2+£/3t4 =i
n \ n n J

(30)

(3D

=i
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as well as

where

and therefore

L3Hr=[/3+/3+/3 $+i]+i!] ti +hl +ti
Ikf+hl +hJi

+X'3A3-4 +I'3-<'<3 =0

'3*f3 3*ir3Lj Lj + Hj Hj ^=
fi+ij+fi
A3+£+£.

/|H3+A3
4 *2 *0

[/3H3+<3 A3+fi+fi]

_,3_,3+_,3['5H3+A3 -'43-/|-/.3]
Ia to In

bn bt12

.^21 ^J |Al ^22.

«,=(/03)2 +(£)^
*12 =*21 = ft3 +^2 +#?+#? +^4 +ft? +#? +#? +%3

** =(A3)2 +(/33)2 +(/53)2 +2(A%3 +ffi +&3)
&11 = fl22

^12 = ^21 = ~«12

&22 = «11

Lj L| + H| Hj = I]

27

It may be verified in asimilar manner that the pairs Z^, //2, and Z^, //3 also satisfy criteria
(15), (16), (17), and (18). The wavelet transform of f is then

f3 =[w"1,w0,w1,w2] =[/00,vvJ,wJ,w11,wJ,w2,W2,w2] and this completes the analysis
algorithm.

Synthesis Tree

The synthesis portion of the algorithm starts from f and proceeds as follows: Firstwe

use w-^/o0 and w° toobtain f1 =L3*f° +H3V.
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f' = fi
/i'J

fi + fi+fi
fi +fi +/53J [fi]*

Filler Coefficients for the DPWT

ti +hl +ti
K] (32)

The filter matrices in (32) are the transposes of the level 1 filter matrices in the level 1

analysis step (30). Similarly we obtain f2 =L32*fl +H^w1 :

f2 =

'fi'
fi
fi
.fi.

and f3 = L3*f2 + H3V with

f3 =

\fi]
fi
fi
fi
fi

=

fi
fi
fi

ll+ll

fi
. 1

fi

1
n
ll
ll

1 '
z

ll+ll
'/.''
/.'.

+

ll+ll.

ll 1]
£ n

ll [7o2l
ll fi

+

ll fi
I? fi\
ll ll
1 t

ho+h4

h\
. h\

hi

hi
hi

hi

hi
hi
hi
hi

hi
hi

hQ+hA

w,

w,

hi hi]
hi hi

hi Kl
hi •vf

hi wl

ti .<
hi hi
hi hi.

This completes our example. Note that the synthesis algorithm may be continued to

interpolate /3 to higher levels by letting wp =0p for all p>3.

In section VI we will formalize some mathematicalnotions that generalize and afford

mathematical insight into those symbol symmetries that are readily apparent in the above

matrices. During a reading of section VI the reader may wish to refer back to this section

and compare its symbol symmetries to the symmetries of the operators that will be found

there.
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VI. Filter Coefficients for the DPWT

Here we prove, after some mathematical preliminaries, that if lN € l2(QN) can be used
tocreate a /~(Z)-> /~(Z) DWT (7) then it can also beused, according to (21), (22), (24),

and (26) of section IV to create a DPWT.

This section may be thought of as providing an alternative to the derivation of the

DPWT in section IV where wenow start from thefilter vectors lp (21) and hp (22) and

prove thatin thecontext of (25) they produce a wavelet transform foranda basis of l°°(Z).

Mathematical Preliminaries

We first remind thereaderof a fewproperties of the Kronecker delta 8ab whichfor our

purposes will be defined as follows: Let A. and fi be subsets of Z. Let ft denote the real

numbers. For aeA andbefttif a = b then 8a b= 1e ft, andif a * b then 8ab = 0 e ft.

Alternatively the delta may be thought of as an indicator function for the event that its

arguments are equal.We note the following useful properties of 8ab:

8a.b - f>b.a commutativity of arguments (33)

Vg^-^Va^ylcft,

lSa,b 8(a) =g(b) siftin8 property (34)
beA

We point out some consequences of these properties that will prove useful later in this

section:

Fact: Noting that amodp= (& + c)mod& if and only if (a-c)modk = bmodk
gives

^omod*,(*+c)modJk = °(a-c)modk, bmodk (35)
•

Fact: LettA and C besubsets of Z. Forany a, b e A andany c e C,
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yLS*.,Kc=Kc (36)
beA.

Fact: LetA, fi, and C be subsets of Z with ^cB. Let/be anarbitrary

function /:fi -»Z. Then for any a e A andany c € C

yLSatiSf(i),c=Sf(a).c (37)
ieB

Wraps

As above we let Pp denote the subspace of /~(Z) consisting ofperiodic functions of
period 2P and Zp denotes {0, 1, 2,..., 2M}. Wedefine a mapping which we calla wrap,

@p:l\Z)^Pp

* V • * (38)y„,/ieZ»-» 2.y,mod2P+2^, i€Z

The sum in (38) will converge for all /'(Z) sequences y, where ll(Z) denotes the space of

all absolutely summable sequences.

The action of the wrap @p may bevisualized byimagining taking an /*(Z) sequence s,

wrapping it into a right handed helix of circumference 2P, summing all entries along the

length of the helix corresponding to a common circumference coordinate, and mapping that

sum to the element of @ps with the same circumference coordinate.
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se I\Z)

Figure 5. Thewrap @p acts onan infinite length sequence s in /'(Z) tocreate
a periodic sequence in Vp c/~(Z). The 0 and 1 in the diagram indicate
corresponding indices andorientation in the infinite length sequence, the helix,
and the periodic sequence.
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In practice we will restrict @p to l2(QN) c ll(Z) consisting of sequences with compact
support QN ={0, ..., 2N - 1}, N«*>. Of course l2(QN) is then isomorphic to ft2""1
from which we draw its coordinate representation. Note that by l2(QN) we restrict only the
support of /2(Z) sequences and not the range of their indices. Thus ifxis in /2(Qjy), then,
for example, xw=0, x. l=0. We denote the restriction ofthe wrap to l2(QN) by

@!1:/2(Q*)->P,

m
mod2',+2',A

*=0

(39)
,i€Z
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The restricted wrap @£ has a matrixrepresentation

[@PN]u =SiJmodVt ieZpJeQN (40)

(Note that in referring to matrices we will consider first rows and columns to have index

0.) Arestricted wrap is invertible ifand only if 2N <2P in which case [@£ y].m =y.9 i€Z.
If @J isinvertible then its left inverse isits adjoint @£*.

As an example of a wrap with 2N>2P we let N = 3 so that QN = {0, 1,..., 5}.

Choosing p =2 we haveas the matrix representation of @\ withrespect to the standard

bases for domainQ3 andcodomain P2

@\

10 0 0 10"

0 10 0 0 1

0 0 10 0 0

0 0 0 10 0

=[*u-4 /e{0,...,3},y<E{0,...,5}

Foran example of the case where 2N < 2P we let N = 2 and p = 3 to get

"1 0 0 0

0 1 0 0

0 0 1 0

@2 =
0

0

0

0

0

0

1

0

0 0 0 0

0 0 0 0

0 0 0 0

The invertibility of @\ shows up as the left invertibility of itsmatrix representation byits
transpose @2'.
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Two Shifts

We will need two shift operators; one for /2(Z) and one for Pp. For /2(Z) we have for
keZ

S*:/2(Z)->/2(Z)
ynyneZ\->yn_k,neZ

representable by the kernel 8t_k} asin

[*H-IWy
}=-

a rightshiftby k. We have thefollowing useful properties of Sk

-k

SkSJ = SJSk

sJsk=si+k

unitarity (41)

commutativity (42)

group property (43)

and we see that {S*}ft z is aunitary group under the operation of map composition.

To connect 5* with its finite dimensional restriction we will use the projection operator

*„:/2(Z)->/2(Q„)

*L r l K' meQ"
meZ

(44)

Pertaining to the projection operator and the /2(Z) inner product (•, •) we have the
following:

Fact: For any x in I2 (Q N) and any y in I2(Z),

(x,y) ={xixNy) (45)
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2N-1

Proof: (x,y)= ^xkyk = ^xkyk = X^K^], =(x^Ny).
Jfcss-ao k=0 Jki=—oo

Weuse fact (45) immediately to conclude that for any x in l2(QN) and any y in /2(Z)

(x,Sky) =(x,nMSky) (46)

We will refer to the operator nNSk restricted to l2(QN) by SjJ which is l2(QN) -» l2(QN).
Using the standard basis of ft2W to represent l2(QN) we have as the matrix representation
ofSkN,

For example,

[SJ,].. =$_,,,., iJeQN

"0 0 0 0

0 0 0 0
s2 =

1 0 0 0

0 1 0 0

(47)

It is clear that S£ is nilpotent for k* 1 meaning that there exists an mgZ+ such that
(S£) =0, the zero operator.

It is important to note that in general, for arbitrary k,jeZ, SJNS„*SJN*k. For an

example consider
0 0 0 0

0 0 0 0

0 0 10

0 0 0 1

•>-2 c25-i f»Z _

AT °N -

The reason that the naive application of the DWT to r(Zp) does not work is the fact that
Ttff o o 5^ Off Off.

The shift operator on P is circular. For integer k:
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Rk:Pp->Pp

XnmoA2'* n€^H •*(„-*) mod2''" € Z

35

(48)

It too is a right shift. /?*, having finite dimensional domain and codomain, has thematrix

representation with respect tothe standard basis of Pp

[Klj ~S(i-k)mod2>,p Ui eZi

Lettingk andy be in Z, with p inZ+we have the following properties

-k

P

RkBRi = RJDRkB
p p p p

RiRk=Rlfk
P P

371eZ3(Rky=Rk

(49)

unitarity (50)

commutativity (51)

group property (52)

(53)

We see that \Rk\. _ is also a unitary group over composition of operators. If n is the
smallest r\ satisfying (53) then Rk is said to be n-potent. For an example particularly

relevantto our current context we have that for any p in Z+

(«lfA=ip
For an example of amatrix representation of Rk weletp =2 and k = 1toget

R\ =

0 0 0 1'

10 0 0

0 10 0

0 0 10

Filters for the DPWT

Forour DPWT analysis and synthesis algorithms we need two filter operators at each

scale p. We will call these linear operators LNp:Pp-> P^ and Hp :Pp -> Pp_v In order to
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have adiscrete wavelet transform Z£ and Hp must satisfy criteria (15), (16), (17), and
(18) which we repeat here using LN and H*.

LNLN' = I
p p

hnphn;=i
lnphn;=o

LN;LNp+HfH^I

(54)

(55)

(56)

(57)

The adjoint maps L"* and Hp* are defined through the Pp inner product: For any
p g Z+ andfor anypair of sequences c and d in Pp,

2f-\

(c> d)P - Xc* 4*
*=0

With this inner product the matrix representations of Z£* and Hp* are the transposes of
those of L"and#".

We choose to construct our filters as follows: We take two sequences lN and hN from

l2(Qff) c /2(Z) and wrap them onto Pp with @J. Then we operate on the result with even
rotations /?J',i6ZH. Thus lpN and hNp (21), (22) are defined by lpN =@pNlN and
h" b @£ A"". We form ZJ with

£N.p _^p
p-\

XH[(W/.4 '̂ ,-1

and HNp with

.• /€Zp-i

Given the forms of our operators Z£ and #*, satisfaction of (54), (55), and (56) is
equivalent tothe following requirements on lN and hN for i g Z xand y g Z x:
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(*,* @j /", sym f)r=su (58)
(*? @Jh\R2J @>N k")r =Su (59)
(«?®5*".^®;^>,-0 (60)

Satisfaction of (57) follows from satisfaction of these three criteria with Lp and Hp being

surjective. Using the definitions of I'" and /i* as well as the unitarity and group properties
of Rkp, and letting lc = j - i we have that Va,Pe P,

This yields as equivalent forms of (58), (59), and (60) with k g Zp_x:

(lp\R2pklp»)p =8kt0 (61)
(h^R2kh^)p =8kt0 (62)
(lp\R2pkh?)p =0 (63)

We contrast our maps Z£ and #" with the standard DWT maps LNp and Hp ,

z£:/2(zH/2(z)

xh* [(#/".*)],, /gZ

//;:/2(Z)->/2(Z)

jth*[(S*/*",*)]., /gZ

where we point out that unlike LNp and Hpt the domains and codomains of L* and //" are
infinite dimensional. Maps LNp and Hp satisfy criteria (15), (16), (17), and (18). Given the
forms ofl£ and Hp ,criteria (15), (16), and (17) are equivalent to the following requirements
on lN and hN for /gZ and ;gZ:
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(S2ilNtS2JlN) =8iJ (64)
(S2ihN,S2ihN) =8iJ (65)
{!Fh",W) =0 (66)

Using thedefinition of theadjoint of a linear map as wellas theunitarity of Sk, k g Z

we have that for any aN and pN in l2(QN) and any integers i andy,

(SV, S2JfiN)=(aN, (S2|)*S2'/J")
=(aN,r2'52^JV)

Applying thegroup property of Sk gives

=(a\S*-i)pN)

Fact (46) tells us that

=(cxN,7tNS2^pN)

and the definition of S£ gives

=(aN,S*-»pN)

Applying this and letting k = j-i we obtain the alternative forms of (64), (65), (66) for

*gZ:

{lN,S2klN) =8kt0 (67)
(hN,S%hN) =8k,0 (68)

(hN,S2NklN) =0 (69)

Thus (15), (16), and (17) areequivalent to (67), (68), and (69).
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DPWT Filters from DWT Filters

Wewill prove that if lN and hN satisfy (67), (68), and (69), then they will satisfy (61),
(62), and (63), but first we will need two lemmas.

Lemma : LetiV and/7 bein Z+. Let @J, /?*, and S£ bedefined as above with

kgZ. Then

2N-1

i=-(2AM) (70)

Proof: By definition of @J (40) and Rk (48) we have

[K @*].« =X50-*)mod2',/ 5y.»mod2'» J^Z,, WGQ„
yeQw

Applying fact (36) gives us

="(i-*)mod2'.»mod2'' '' e ^/>» n€ Qtf

Substituting this result into @pN*Rkp @PN yields

@PsK @J =@PN%_k)moAVtnmoA2f\ ieZp,neQN

We apply the definition of @PN (40) again, along with the commutativity of the arguments
of the Kronecker delta (33) to get

Jirf mmod2'.i Hmmod2',t l/(/-*)mod2'\iirao<12''
.ieZ,

, m,neQN

and apply fact (35) to get
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£,&, ~i" ;8;mmod2',i uimod2r,(n+k)mo&2f
JeZ,

, m,nt=QN

For i restricted to Z we have that zmod2p = i. Using this and fact (37) we have

"" [^mmod2'.(»i+*)inod2'J» W»n€QjV

Another application of (35) gives

=|0(m-n)mod2'.fcmod2'J» m» n€$N

Since m and n are both in QN = {0, ..., 2N - 1}, m-n is in

{-(2N-1),...,-1,0,1,...,2W-1}. Using this we may apply (37) to get

2N-1

Amod2',*mod2' ^m-n,i , m,neQN
_i=-(2AM)

andanother application of fact (35) bringsus to

2AM

^(i-*)mod2'.0 ^m-«,i , m, n g QN
_i=-(2AM)

Now note thatthe summation is independent of m and n so we may bring the sum outside

of the bracket to obtain
2AM

- X^('-*)mod2',o [^m-«.i]» mtneQN
»=-(2AM)

Finally werecognize from (47) that the mand ndependent term isjust Sj, and we have our
proof. •

From lemma (70) easily follows another
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Lemma: For any aN, pN e l2(QN)

<@?«\ Rf @» P") = 2^-m^2'AccN, SW) (71)
F n=-(2AM)

Proof: Application of the definition of the adjoint, properties of the projection %, and

the definition of the inner product gives

(@? a", R? @"p p")p =(«", @>; R? @J p")

We now use lemma (70), some algebra, and theprojection property (46) to get

2AM

n=-(2AM)

2N-\

= 2rf"(»-2*)mod2'.0 \a »$NnNp /
n=-(2AM)

2AM

= l5(..„)mod2,.„(aw,S"r)
n=-(2AM)

proving our assertion. •

Now a straightforward lemma (71) will prove thefollowing theorem:

Theorem: For // =@pNlN, hNp =@pNhN with lN and h" in /2(Q„),

VkeZp_v(lN,S2NklN) =8kt0 => W6ZH,(/;,^/;)p =5M (72)
VkeZp_v(h\S2NkhN)=8k,0 => W€ZH,^/?»^=5M (73)

VkeZp_lt(hNtS2NklN)=0 => V*gZ^,(^*2%")'=0 (74)
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Proof: We prove (72) by substituting lN for aN and pN in lemma (71) to get for each

*eZ,-i

(@pNlN,R2Pk@pNlN)p = £ W-™ v^5"'")
P «=-(2AM)

2AM

= -2^^(n-2*)nw>d2',0 ^n,0
»=-(2A'-l)

= "(-2ft)mod2M> = ^(-t)mod2^l,0

Since/andy are in Zp.lt fcisin {-(2P_1-1), ..., 0, ..., 2P~1-1}. Thus, 5_tmod2M 0=^0.

By substitution of hN for a* and pN into the above argument and using (68) we

immediately obtain that for each £ g Zp_,

proving (73).

Letting aN = /** and /3W = lN and applying (69) gives for each kgZp_x

2AM

(@J A", *," @'„ l") = £v»hw <*"• s"»l")
n=-(2AM)

2N-1

= irf («-2*)mod2',0 0
n=-(2Af-l)

so we have that (69) implies (63) proving (74).

This completes our proof. •

An importantconsequenceof the theoremis thatwe may use Daubechies1 filtercoefficients,

which satisfy (67), (68), and (69) by construction, to obtain a basis of orthonormal
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periodic wavelets for Pp and the associated multiresolution decomposition of Pp.

In the symbolism of this section we restate the DPWT with lp =@PN lN and hp =@PN hN
as

and

fr=(*« v. /'),
wF =(r% ~h"p, w)

. i6ZH

r=I,{*2ir")'fr*(*2i;)'<1
i=0

VII. Discussion

Though the DPWT is perfecdy invertible in any signaldomain, it may be expected to be

particularly convenientin the studyofdiscrete andtrulyperiodic functions such as sequences

of measurements taken in a spatially closed loop, or strongly non-linear oscillations. Since

the DPWT may be stopped at anylevel, it contains, asa special case, DWT implementations

of the type presentedin [PTVF]. The DPWT is simply stopped at the smallest level k such

that 2kZ2N.

A consideration in applying the DPWT to non-periodic sequences is that the largest

scale wavelet components,corresponding to the lowest level coefficients, wrap around the

supportof the sequence as if the sequence were periodic. This may be considered to be a

problemin some applications thoughit is easilyavoidedby simply not taking the DPWT to

the lowest levels.

Multidimensional Discrete Periodic Wavelets

The discreteperiodic wavelet transform is easily extended to a separable transform in n

dimensions. Conceptually the w-dimensional sequence is cast to an /z-dimensional discrete



44 Discussion

torus and the DPWT is applied along each dimension in succession. For example, if the

torus is a 2-torus and is represented by a matrix, the DPWT may be applied to first replace

each row by its wavelet transform, and then replaceeach column of the resulting matrix by

its wavelet transform. The creation of a non-separable transform from the DPWT is a

subder problem that we will not address.

Edge Effects

Highly irregular sequences give rise to high concentrations of energy in the wavelet

coefficients at the higher levels. The small scalewavelets areneeded in creating a convergent

expansion at the irregularities. A consequence of this is that when the DPWT is applied to a

sequence that has a difference between its endpoints that is large with respect to differences

between all other pairs of successive points, then a relatively great deal of energy will

appear at small scales in locations near the end points at those scales. Consider, however,

the following economical and invertible transformation:

Assume that the number of sequence elements along each dimension k g{1,..., n}

is 2A, where pk is a positive integer. Let the sequence be represented by

[s(i,, ij, •••, /„)] ik gZft. For convenience define

**(0ss(h-.ki.*.W"»0» '€Zp>

Now, for each dimension k from 1to n, replace [sk{i)]t i gZpt by
ftvOL^ defined as

[sk(0)t sk(2),..., sk(2^1 - 2), sk(2»-1), sk(2^ -1), sk(2^1 - 3),..., sk(3)t sk(lj\

If, for instance, sk(m) for mg{1,2,3,4} are close then the ends of sk will also beclose.

Thus, if the original multidimensional sequence has a suitable covariance structure in its

interior, thenthe sequence created by this transformation will havea closelyrelated covariance

structure when considered as an /z-torus, i.e. without endpoints or boundaries. It is doubtful

that this rearrangement will provide any advantage in sets of sequences obtained from
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critically sampled continuous signals. But there are many useful signal domains, e.g. video

images, where continuous signal sources are, on average, sampled well above their critical

Nyquist rate.

Local Event Filtering

We illustrate the utility that the DPWT shares with the DWT in the selective filtering of

local events. The sequence shown in the upper graph is a sequence of 256 samples of an

electromyograph signal, all 256 of which are non-zero. The lower graph was obtained by

applying the DPWT using a Daubechies filter correspondingto N = 4, setting to zero all

those wavelet coefficients whose magnitudes were less than 0.24 times the maximum

wavelet coefficient magnitude, and then applying the IDPWT to the resulting wavelet

transform vector. The lower graph is represented by only 35 non-zero samples. The

threshold value of 0.24 was chosen to be just small enough to capture the event centered

around sample 8.
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Figure 6: The top graph is a plot of 256 samples of a zero mean EMG signal.

The bottom plot was obtained by applying the DPWT to the EMG signal,

setting to zero all those wavelet coefficients whose magnitude fell below 0.24
times the maximum wavelet coefficient magnitude, and applying the IDPWT.
Daubechies coefficients corresponding to N = 4 were used. The bottom plot was

obtained using 35 non-zero coefficients.

Discussion

We see that in the appropriate signal domain, the increase in coding efficiency can be

dramatic. Of course the efficacy of this sortof filtering is best evaluatedin the context of a

specific application. It is clear, however, that the illustrated filtering technique can be of

great utility in the reduction of computational load in the analysis of signals with localized

features.

More Discrete Periodic Wavelet Bases

In figure 2 we showed the basis set for P7 corresponding to N = 4 that is associated

300
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with the DPWT. In figures 7a and 7b we display the basis sets of P7 corresponding to N =

1 and N = 10 respectively. We show only those basis elements corresponding to the 0 shift

at each level.

-l o

Figure 7a: Orthogonal basis of discrete periodic wavelet basis for periodic
sequence ofperiod 27 using Daubechies filters corresponding to N= 1. This is a
Haar basis for the discrete circle. Basis elements have been normalized so that the

peak value of each has magnitude 1. Only the shift 0 elements are shown.
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-1 0 1

Figure 7b: Orthogonal basis of discrete periodic wavelets forperiodic sequences
ofperiod 27 using Daubechies filters corresponding to N = 10. Only the shift 0
elements are shown.

In every case the basis elements corresponding to / are seen to be the constant

function.
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Hybrid Discrete Periodic Wavelet Bases

At any level of theDPWT decomposition we are free to switch N's with the assurance

that we will still produce an orthonormal basis. We call the result a hybrid DPWT basis

and illustrate such a basis for P7 in figure 8 where the 0, 1, and 2 basis elements

correspond to theHaar, otN = 1,wavelets, the 3 and 4 basis elements correspond to N =

2 wavelets, and the rest of the basis elements correspond to the N = 8 wavelets. Again, we

show only the shift 0 elements of each level.

-l o

Figure 8: Hybrid DPWT basis for P7. The 0, 1, and 2 basis elements are N =
1 wavelets, the 3 and 4 basis elements are N = 2 wavelets, and the rest of the



50 Conclusions

basis elements are N=8 wavelets. Daubechies coefficients have been used.

Such a hybrid basismay be useful in those situations whereone must insist upon compactly

supported wavelets at all levels but wishes a higher degree of smoothness where available.

VIII. Conclusions

We have introduced a discrete periodic wavelet transform and have shown that unlike

the standard recursive realization of the orthogonal l2(Z) -»l2(Z) DWT, the DPWT is

perfecdy invertible when applied to sequences of finite length, and, unlikeprevious solutions

to the invertibility problem, the DPWT permits completeanalysis in the wavelet basis.We

havealso proven that from the same filter coefficients used for theDWT we may construct

filters for the DPWT.

For the reader's convenience we collect the DPWT and IDPWT in their r(Zp) forms
in a box here.
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DPWT: <

Ji ~ £jJn *p,(n-2i)mod2'» ' € ^ p-\

Wi = 2-1 fn "p,(n-2i)mod2'» ' G^p-1

SpN(i) s {2/, 2/+1,..., 2/+min(2iV, 2') - l}mod2'

IDPWT: fp= I/.V^oa^/r'+^-^od^^r1. ^Zj

Tj5(0 ^
7 + 1'

*<=Tj5(0

-1,
i + l

-2,...,
7 + 1" -min(W,2'"1)l

[(2*-l)/2'J

*p.i — Zrf'«n>od2'+2'*» ' fe ~

[(2JV-1)/2'J

np,i S Zrf^iraod2'+2''*» J^Z
Jk=0

mod2'
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No one basis set can ever hope to be the best basis set in too wide a range of

applications. The most thatcanbe hoped for is thatexpansion of sequences in a domain of

interest are easily obtained, meaningful, and brief. It is hoped that the discrete periodic

wavelet transform may prove to be such a tool in a domain of interest to the reader.
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Programs

Here we include a number of Matiab programs that will enable the curious reader to

experiment with the DPWT and IDPWT. Those familiar with Matiab will note that these

programs have not been optimized for speed in that for-loops have been used where they

may have been avoided. The code has been designed to approximate pseudocode and

correspond clearly with the DWT and DPWT as presented in the main part of the article.

This should facilitate the translation of the algorithms to otherprogramming languages or to

hardware implementations. The reader who wishes faster, C-language realizations of the

algorithms may contact the author.

As an example of how one might use the listed functions the following scriptis offered:

Assume that the function daubcofs(iV) returns Daubechies' low-pass filter coefficients of

length 2N. This short script performs thecorresponding DPWT to obtain waveletcoefficient

vector w, and then applies the IDPWT to w to obtain ff The difference between each

element of sequences / and ff are then calculated to obtain the reconstuction error er. The

/" and I2 norm of the error is then calculated and displayed.

% Calculate reconstruction error.

rand^nc-ntta!1);

p = 5;

N = 8/

1 = daubcofs (N)/

f = rand (1,2^);

w = dpwt (f, 1) /

f f = icfcwt (w, 1) ;

er = f f - f ;

max(abs(er)), sum(er.A2)
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File: dpwt.m

function w = dpwt(f, 1, level)
% FUNCTION: cpwt

SYNOPSIS: w = cpwt(f, 1, [, level])

DESCRIPTION:

%

%

%

%

% NEEDS:

%

% SEE ALSO:

%

% REFERENCE:

%
3.

% AUTHOR:

This is the discrete periodic wavelet transform
using the low-pass filter corresponding to '1•.
The DPWT transform is performed down to level •level'.
The resulting 'w' has the same length as f. If level is
not specified, or if level = 0 then the complete DPWT
is calculated. Vector '1' is assumed to consist of

the low-pass half of a perfect reconstruction
filter pair. The high-pass half 'h' is made from
'1'.

The returned row vector 'w* is w = [fO, wO, wl, ..., wp]
where fO is length 1 and wp is a length 2*p row. These
are the wavelet coordinates of 'f.

This routine does some argument testing and calculations
which are then passed on to the recursive function
r_dpwt() which actually implements the dpwt.

The length of 'f' must be an integer power of 2.
Filter sequence '1* is not checked for satisfaction of
perfect reconstruction criteria. It must be of
even length.

For a faster C-language version of dpwtQ and idpwt()
contact the author via email to

getzOrobotics.Berkeley.EDU.

r_dpwt() which needs mod() and lh_tilde()

r_c£wt(), idpwt(), rjLcpwtO, lhtildeO

N. Getz, "A Fast Discrete Periodic Wavelet Transform",
Electronics Research Laboratory, U.C. Berkeley, 1992.

Neil Getz

% ORGANIZATION: University of California
% Department of Electrical Engineering
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% and the Electronics Research Laboratory
% Cory Hall
% Berkeley, CA 94720
%

% DATE: 12-11-92

%

p = log(length(f))/log(2);
N = length(l)/2;

% Argument checking.
%

if(nargin < 2 | nargin > 3),
help dpwt;
return;

elseif(round(N) ~= N),
error('Length of arg 2 must be an even integer.')

elseif(p ~= round(p)),
error('Length of arg 1 must be an integer power of 2.')

elseif(nargin = 3),
if((level > p)|(level < 0))
error(['Level (arg 3) must not be greater than', ...

' log 2 of length of arg 1.' ])
end

end

MATSHIFT = 1/ % Matiab indices start at 1, not 0.

% Conjugate filter calculation
%

h = 1/ % For length.
for k = 0:2*N-1,

h( MATSHIFT + k ) = (-1) A(MATSHIFT + k) * KMATSHIFT + 2*N - 1 - k)/
end

% If level is not specified then go all the way.
if(nargin = 2),

level = 0;

end

%

% The beef.

w = r_cgpwt (f, 1, h, level) ;

% END c£wt ().
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File: idpwt.m

function f = idpwt(w,1,level)
% FUNCTION: iopwt
%

% SYNOPSIS: f = icpwt(w,l [,level])
%

% DESCRIPTION: This is the inverse discrete periodic
% wavelet transform using filter '1'. The
% wavelet coefficient vector is assumed

% to be the product of a DPWT decomposition
% down to level 'level'. The output
% vector 'f' is the same size as 'w' whose

% size should be an integer power of 2. Wavelet
% coefficient vector w should have structure,
% w = [flevel, wlevel, ...w(p-l), wp]
% where flevel and wlevel are the row vectors

% that are the level 'level' decomposition
% products of the DPWT applied to fp.
%

% This routine does some argument testing and calculations
% which are then passed on to the recursive function
% r_idpwt() which actually implements the idpwt.
%

% The length of 'w' must be an integer power of 2.
% Filter sequence '1' is not checked for satisfaction of
% perfect reconstruction criteria. It must be of even
% length.
%

% For a faster C-language version of dpwt() and idpwt ()
% contact the author via email to

% getz@robotics.Berkeley.EDU.
%

% NEEDS: r_icfc>wt() which needs mod() and lh_tilde()
%

% SEE ALSO: r_icpwt(), cpwt(), r_cpwt(), lh_tilde()
%

% REFERE2SICE: N. Getz, "A Fast Discrete Periodic Wavelet Transform",
% Electronics Research Laboratory, U.C. Berkeley, 1992.
%

% AUTHOR: Neil Getz

%

% ORGANIZATION: University of California
% Department of Electrical Engineering
% and the Electronics Research Laboratory
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% Cory Hall
% Berkeley, CA 94720
%

% DATE: 12-11-92
a.
"5

p = log(length(w)) /log(2) /
N = length(l)/2;

% Argument checking.
%

if(nargin < 2 | nargin > 3),
help idpwt;
return;

elseif(round(N) ~= N),
error('Length of arg 2 must be an even integer.')

elseif(p ~= round(p)),
error('Length of arg 1 must be an integer power of 2.')

elseif(nargin — 3),
if((level > p)|(level < 0))
error(['Level (arg 3) must not be greater than*, ...

» log 2 of length of arg 1.•])
end

end

MATSHIFT = 1; % Matiab indices start at 1, not 0.

% Conjugate filter calculation
%

h = 1; % For length.
for k = 0:2*N-1,

h( MATSHIFT + k ) = (-1)A( MATSHIFT + k ) * 1(MATSHIFT + 2*N - 1 - k) ;
end

% If level is not specified then go all the way,
if (nargin = 2),

level = 0;
end

% The beef

f = r_idpwt(w, 1, h, level);

% END idpwt().
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File: r_dpwt.m

function w = r_dpwt(f, 1, h, level)
% FUNCTION: r_cpwt

% SYNOPSIS: w = r dpwt(f, 1, h, level)

% DESCRIPTION: This is the recursive portion of the
%

% NEEDS:

%

% REFERENCE:

% AUTHOR:

discrete periodic wavelet transform using
filters '1' and 'h', which are assumed to be
a perfect reconstruction filter pair of even
length. Decomposition is performed to level
1level'. For a description of the functionality
of dpwt see the documentation for dpwt() or
enter "help dpwt".

The returned row vector 'w' is w = [fO, wO, wl, ..., wp]
where fO is length 1 and wp is a length 2*p row. These
are the wavelet coordinates of 'f.

The length of 'f' must be an integer power of 2.
Filter sequence '1' is not checked for satisfaction of
perfect reconstruction criteria. It must be of
even length.

For a faster C-language version of dpwt() and idpwt ()
contact the author via email to

getz@robotics.Berkeley.EDU.

mod(), lh_tilde()

N. Getz, "A Fast Discrete Periodic Wavelet Transform",
Electronics Research Laboratory, U.C. Berkeley, 1992.

Neil Getz

% ORGANIZATION: University of California,
% Department of Electrical Engineering
% and the Electronics Research Laboratory
% Cory Hall
% Berkeley, CA 94720

% DATE: 12-11-92
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lenf = length (f) ;

if (lenf = 2Alevel),
% Then we've hit bottom.

w= f;

else,
% Haven't hit bottom yet.
MATSHIFT = 1; % matiab indices start at 1, not 0.

% Initialization and local constants

%

lenfpml = lenf/2; % Saves a couple of divisions.
fpml = zeros(1,lenfpml);
wpml = fpml; % For size
Nt2 = length(1);

% Make DPWT filters ljtilde and hjtilde
%

[ljtilde, hjtilde] = lhjtilded, h, lenf);

% The DPWT calculations.

%

for i = 0:lenfpml - 1,
two_i = 2*i; % Saves a couple of multiplications,
for n = mod([two_i: (two_i + min(lenf,Nt2) - l)],lenf),
dexmod = mod(n - two_i, lenf) ;
fpml(MATSHIFT + i) = f£ml(MATSHIFT + i) ...

+ ljtilde(MATSHIFT + dexmod) *f(MATSHIFT + n) ;
wpml(MATSHIFT + i) = wpml(MATSHIFT + i) ...

+ hjtilde(MATSHIFT + dexmod) *f(MATSHIFT + n) ;
end

end

% The recursion

%

w = [r_o£wt (fpml, 1,h, level), wpml] ;
%

end

% END of r cpwt ().
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File: rjdpwtm

function fp = r_idpwt(w, 1, h, level)
% FUNCTION: r icpwt

% SYNOPSIS:

DESCRIPTION:

NEEDS:

% REFERENCE:

% AUTHOR:

fp = r_idpwt(w, 1, h, level)

This is the recursive portion of the inverse
discrete periodic wavelet transform using filters
'1' and 'h', which are assumed to be a perfect
reconstruction filter pair of even length.
Decomposition is performed to level 'level'.For a
description of the functionality of dpwt see
the documentation for dpwt() or enter "help dpwt".

Wavelet coefficient vector w has structure,
w = [flevel, wlevel, ...w(p-l), wp]
where flevel and wlevel are the row vectors

that are the level 'level' decomposition
products of the DPWT applied to fp. The length
of 'w' must be an integer power of 2. Filter
sequence '1' is not checked for satisfaction of
perfect reconstruction criteria. It must be of even
length.

For a faster C-language version of dpwt() and idpwt()
contact the author via email to

getzQrobotics.Berkeley.EDU.

mod(), lh_tilde()

N. Getz, "A Fast Discrete Periodic Wavelet Transform",
Electronics Research Laboratory, U.C. Berkeley, 1992.

Neil Getz

% ORGANIZATION: University of California
% Department of Electrical Engineering
% and the Electronics Research Laboratory
% Cory Hall
% Berkeley, CA 94720

DATE: 12-11-92
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lenw = length (w); % lenw is 2^p;

if (lenw = 2*level)
% Then we've hit bottom.

fp = w;
else,
% Haven't hit bottom yet.
MATSHIFT = 1; % Matiab indices start at 1, not 0.

% Initialization

%

fp = zeros(1,lenw); % Place to put result.
halflenw = lenw/2; % Saves a couple of divisions. This is 2A(p-l)
N = length(l)/2;

%

% DPWT filters ljtilde and hjiilde
%

[ljtilde,hjtilde] = lhjtilded, h, lenw) ;
%

% The recursion.

%

fpml = r_idpwt(
w( (MATSHIFT + 0) :(MATSHIFT + halflenw - 1) ), ...

1, h, level

)/
%

% The IDPWT calculations

%

for i = 0:lenw - 1,
firstcol = ceil((i+1)/2)-1;
for k = mod(

[firstcol:-l:(firstcol - min([halflenw, N]) +1)], .
halflenw

),
dexmod = mod(i-2*k,lenw);
fp(MATSHIFT + i) = fp(MATSHIFT + i) ...

+ ljtilde(MATSHIFT + dexmod)
* fpml(MATSHIFT + k)

+ hjtilde(MATSHIFT + dexmod)
* w(MATSHIFT + halflenw + k

);
end

end
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end

% END of rJLdpwtO .
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File: lh tilde.m

function [ l_tilde, h_tilde ] = lh_tilde(l, h, two2p)
% FUNCTION: lh tilde

Programs

SYNOPSIS: [ ljtilde, h_tilde ] = lh_tilde(l, h, two2p)

DESCRIPTION: Make DPWT filters l_tilde and h_tilde.

The vectors '1' and 'h' are assumed to be

the values of the finite impulse response
low-pass and high-pass filters over their interval
of support {0,1,...,length(1)-1). The filters
are not checked to see if they form a perfect
reconstruction pair. Nor are they checked for
common length though this is assumed.

NOTE:

AUTHOR:

ORGANIZATION:

DATE:

For more speed in dpwt() and idpwt() these could be
precalculated and either passed as function
parameters or made globally available.

Neil Getz

University of California
Department of Electrical Engineering
and the Electronics Research Laboratory
Cory Hall

Berkeley, CA 94720

12-11-92

MATSHIFT = 1; % matiab indices start at 1, not 0.

Nt2 = length(1); % Saves some multiplications,
if(Nt2~=length(h)),
error('Arg 1 and arg 2 must be the same length.1);

end

if ( length(1) <= two2p ),
% In this case 2N<=2Ap, so the first 2N taps
% of l_tilde and h_tilde are identical to
% those of 1 and h, respectively.
l_tilde = 1;
h_tilde = h;

else,
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% Here we have 2N>2*p and we need to apply a wrap
l_tilde = zeros (1, two2p);
h_tilde = l_tilde; % for size
for i = 0:min([Nt2,two2p])-l,

imod2to_j> = i - two2p*floor(i/two2p);
for k = 0: floor ((Nt2-l-imod2to_p)/two2p),
l_tilde( MATSHIFT + i ) ...
= l_tilde( MATSHIFT + i )
+ 1( MATSHIFT + imod2to_jp + k*two2p) ;

h_tilde( MATSHIFT + i ) ...
= h_tilde( MATSHIFT + i )
+ h( MATSHIFT + imod2to_p + k*two2p);

end

end

end
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File: mod.m

function y = mod(x,n)
% FUNCTION: mod

% SYNOPSIS: y = mod(x,n)

% DESCRIPTION: mod(x,n) gives the remainder on division
% of x by n. The result always has the same
% sign as n. This function is essentially just
% an alias that makes the other functions easier

% to read.

% AUTHOR: Neil Getz

% DATE: 10-17-92

y = x - n*floor(x/n);

Programs
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