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A STRUCTURE THEOREM FOR

PARTIALLY ASYNCHRONOUS RELAXATIONS *

Summary of Results

Reza Gharavi and Venkat Anantharam

School of Electrical Engineering

Cornell University
Ithaca, NY 14853, U.S.A.

Abstract

We consider partially asynchronous computations with stationary ergodic interprocessor
communication delays. We focus on parallel iteration of a fixed matrix. Under these

conditions, by Oseledec's multiplicative ergodic theorem, there will exist only a finite
number of nonrandom rates, each with its own corresponding random subspace, such
that the computation will converge at the rate corresponding to the subspace which the
initial condition lies in. However, neither the convergence rates nor their corresponding
subspaces can be easily specified. Here we construct a computation graph by following the
interprocessor dependencies. By studying this graph, we discover a number of invariant
properties, and give a direct demonstration that there is almost surely a constant number
of subspaces of initial conditions corresponding to different dynamics of the computation.
We then relate oursubspaces with Oseledec'ssubspaces. Ourresultsareparticularlystrong
when both the matrix and the initial conditions arenon-negative. Undersuchassumptions,
we can relate each coordinate of the initial condition to a unique convergence rate based
on the invariant sets of initial conditionsit belongs to.

1. Introduction

We consider the asymptotic behavior of iterative linear systems in partially asynchronous
parallel computation environments. Let A be a p x p matrix. x(n) € Cp, n € Z+ =
{1,2,...}, is to be iteratively computed via the equation x(n +1) = Ax(n), with some
given initial condition.

Suchsystems arise in a wide range of applications, the most common of them being
in solving systems of linear equations My = c, where M is an p x p matrix, c is a vector
in Cp, and y is the desired solution to be determined. Even though direct methods, such
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under a Faculty Development award, by an AT&T Foundation Award, and by BellCore
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as Gaussian elimination, yield exact solutions after a finite number of steps, it may be

advantageous to use iterative methods when M is large and sparse. The reason is twofold-
iterative methods can yield very accurate results after a relatively small number of steps

and they have smaller memory requirements. Such large and sparse M arise naturally in
many important applications, one of the more important ones being in discretization of
partial linear differential equations. See [2] and [4].

In a parallel processing environment, there are p processors, each responsible for com
puting a component of the vector x(n). Due to communication delays among the proces
sors, or between each processor and a shared memory, at each time n, processor i may
compute Xi(n) using possibly outdated values, that is,

p

Xi(n) =^aijXj(n - dij(n))

where d,j(n) > 0 is the communication delay from processor j to processor i at processor
i at time n.

The advantages of such asynchronous algorithms are well known. Firstly, since fast
processors don't have to wait for messages from every processor, they can execute more
iterations, and so a potential speed advantage is gained over synchronous algorithms. See
subsection 6.3.5 in [2] for such cases. Secondly, synchronization overhead isreduced. There
fore, such algorithms are usually preferable to synchronous ones, specially in distributed
systems. See [2] for a thorough discussion of such algorithms.

In this study, we impose two conditions on the delays. Firstly, we will assume all the
delays to be bounded by some integer B > 0, that is, our system will be only partially
asynchronous, as defined in [2].

Secondly, we will assume that the statistics of the delays can be described by a sta
tionary process. By ergodic decomposition theorem (see [6]), we lose little generality by
assuming ergodicity, so we do so. We impose no other condition on the delays; in par
ticular, messages between two processors may overtake each other and da may be bigger
than one, which may occur, for example, when processors share a common memory. On
the other hand, the statistical model is sufficiently versatile that such assumptions can be
imposed if they are appropriate for the situation being modeled. For example if d a = 1,
we would use a statistical model where this event has probability 1.

Since the assumed bound on the delays makes x(n) depend linearly on the components
of x(n—1),..., x(n—B), it is possible to construct a Bp-dimensional system with x(n) =
[xT(n) xT{n - 1) ... xT(n - B + 1)]T € CBp, and a sequence of Bp x Bp matrices A(n)
satisfying A(n + l)x(n) = x(n + 1) for n > 0. The statistical assumptions on the delays
make the sequence of matrices {A(n),n > 1} stationary and ergodic. In addition, since
A(l) attains at most Bp2 different values and its elements are either zero, one, or those of



A, 22(max(0,log||A(l)||)) < co. It is therefore natural to apply Oseledec's multipHcative
ergodic theorem (OMET) to our system (see [1],[3]).

OMET. H{A(n)} is a stationary ergodic sequence such that £?(max(0, log||A(l)||)) < oo,
then thereexists an integers < Bp with nonrandom constants—oo < Aa < ... < Ai <oo
called Lyapunov exponents, and nonrandom nonzero integers 6i,...,6s satisfying ^2 t>k =
Bp, such that the following hold almost surely:

1. The random sets

V(k) d= {y e CB*>: lim n'1 log ||A(n) •••A(l)y|| < A*}
n *oo

are subspaces andif 9 is the shifton the probability spaceforwhich A{n,9w) = A(n+1, w),
then A(l,w) V(k,u>) C V(k,9u)),

2. dimy(fc) = Ei>fc^
3. Uy e V{k) \ V(k +1), with V(s + 1) d= 0, then

for k = 1,... ,8.

w"1
n—»oo

Urn n"1 log||A(n) •••A(l)y\\ = Xk

Therefore, depending on the initial condition, our computation may converge at one

of only * growth rates Ai,...,A«. In particular, x(n) converges to zero for all initial
conditions if and only if Ai < 0. (For a sufficient condition on A for this to occur, see
[5]). It is thus seen that if a reasonable model of statistics of the interprocessor delay is
available, the Lyapunov exponents and associated subspaces give substantial information

about the convergence properties of the asynchronous iteration.

In general, besides their existence, little else is known about the Lyapunov exponents

and their corresponding subspaces. Our aim in this paper is to examine characteristics
of the iteration by constructing a computation graph which describes the interproces

sor influences in time. In section 2 we describe our model and construct our graphical

representation. In section 3 we state a number of invariant structural properties of our

representation. In section 4 we relate this structure to the random subspaces of the OMET.

Section 5 is devoted to the case where A is a positive matrix and the iteration is started

from positive initial conditions. Compared to the general results of section 4, these results

are particularly strong.

2. Model

Let (H, T, P) be a probability space and 9: ft —* CI be an invertible transformation on ft. We
assume (P, 9) to be stationary and ergodic. We characterize the delays by the measurable



mapping d: Z x ft -» {1,... ,B}pXp, which is compatible with 9, that is, d(n,9w) = d(n +
l,o>) for all u> and n € Z (and thus by induction, d(n,9mu) = d(n + m,u>) for all u) and
n, m € Z.) Given a scenario lj € ft andsome initial condition {xi(n)',n = —B+l,..., 0; 1 <
*< rf> the value of processor i at time n, a;t(n,u>) € C, evolves according to the relation

v

Xi(n, u>) =^2a>ijXj{n - dij(n, u>)), (2.1)

with t = l,...,p, n € Z+ = {1,2,3,...}, and it(n,w) = *,-(n) for-£ + 1 < n < 0.
Recalling the definition of A(n) from the first section, we can verify that {A(n);n e Z+}
are compatible with 9 and that the sequence is indeed stationary and ergodic.

We now describe a graphical representation of our system. For each cj, we define a
directed graph G(u>) = (C7, E(u)) by

tf = {l,...,p}x {-£ + 1,-£ +2,-5 + 3,...}

E(u) = {< (qi,n1),(q2,n2) >:aq2tqi ^ 0, na =n2 - dg2,qi(n2,u>), n2 >0}

In words, < (qi,ni), (fl2, n2) >€ jE7(u>) if processor g2 at time n2 directly uses the value
of processor q\ at time n\ in computation (2.1). In the definition of E(u), it is required
that n2 > 0 because the value of the initial condition nodes are fixed and thus cannot
influence each other. To simplify notation, we use it,v as typical members of U, and define
T((g,n)) = n, t* + i = (g, n +1) for 1* = (q, n) whenever denned and say that node u is
shifted by 1 time units. We also define I(u,w) to be the set {v : < v,u >€ £(<*;)}, and
the 6<we W to be the set {u € J7:T(u) < 0}. With no loss of generality we assume A to
have no zero rows, making I(u,o>) ^ 0 for all u € tf \ W. We will later find it useful to
order the elements of U by the following relation: We say (gi,ni) > (<fe»**2) if and only if
a) ni > rc2 or b) ni = n2 but gi > g2. Using the compatibility of d with 9, it is easy to
show that:

Lemma LI.

E(9w) = {<u,v >:<u +l,v +l >€ E(u>) and T(v) >0}.

In words, to obtain G(9u) from G(u>), shift every edge < u,v > in £(u>) with T(v) > 1
to<w —l,t> —1>. If T(v) = 1, then the shifted version of < u,v > does not appear in
G(9u>).

We next define H: U x ft -+ 2U by

tf(«,a;) =JUu,6/Kw)(j^ w) u{M/}), otherwise;



C:(U \W)x SI->2W by

C(u,u) = {ve H(u,u):T(v) < 0},

and Uc(u) by {u€U\W: C(u,u;) = C}.
We call H{u,ui) and C(u,u) the history and color of node u in G(u>), respectively

and call I7c(<*>) the universe of color C. Note that since I(u,u) ^ 0 for all w € U \ W,
H(u,u>) ^ 0 and C(u,a;) ^ 0 for all u € J7 \ W. It is also straightforward to see that
v € H(u,u) if and only if there exists a nontrivial directed path v = ui„, tun-i, •.., too = «
from v to u in G(u>). By a nontrivial path we mean w,-+i € 7(tu,-,c«;) for i = 0,... ,n —1
and n > 1. Therefore, if v £ iT(tt,o;), then the value of v in no way affects the value of
u, and in particular, if (g,n) £ C((g',n'),u>), then the initial condition xg(n) in no way
affects the value of xqi(n',w).

Using LI, the next lemma describes the behavior of H under 9:

Lemma L2. For u£U\W,

H(u,9u) = {v: 3v' such that T(v') > 1, < v +1,v' >€ E(u>),
and v' € H(u +1, w) U{«+ 1}}.

It is possible for v € #(t*,o>) while v - 1 £ #(« - l,0t*;). This happens if all influences
from v to u in u; travel through nodes with time index 1. In particular this always happens
for v with T(v) = —B + 1. The lemma asserts that if there is some influence from v to u
that does not travel through nodes with time index 1, then v —1 € H(u —1,9u>).

Next, define S: ft -> 22^ by

S(u>) = {C € 2^:Vn0 > 1, 3ti € C7" such that
T(u) > n0 and C(u,u) = C}

and for each C € £(0;), we define Fc(w) by

Fc(o;) = {u: T(u) > 1 and Vno > 1, 3v € U such that

T(v) > n0,C(v,u>) = C and u € #(v,u>)}.

S(u>) is called the spectrum and Fc(w) is called the filament of the color C.
In words, C € 5'(a;) if and only if there are infinitely many C-colored nodes in G(u>),

and v € Fc(u) if and only if v is in the history of infinitely many C-colored nodes in
G(lS). Note that there are only a finite (< 2Bp) number of possible colors for infinitely
many nodes, implying that S(u>) ^ 0, and, furthermore, by definition of S(u>),

\{u: C(u,u) £ S(u)}\ < 00.



Example El: We provide here a simple example to better illustrate these concepts. Let
A be a 2 x 2 matrix with no zero elements. Let B = 2 and ft = {wo,<*>i} with P(u>i) = .5 and
9wi = W(i+1)mod2- Clearly, (P,0) is stationary and ergodic. Let d(n,t*;,) = d(n mod2,u;t)
(i.e., the delays are periodic with period 2), with

'^^(l 2) and d(2'wo)=f2 2J.d(l

To make d compatible with 9, we let d(n,u>i) = d((n + 1) mod 2,u>o).
After constructing C(u>o) (see Fig. la), it is easy to showthat, for example,

fT((2,l),w0) = {(1,0), (2,-1)}
iT((l,2),o;o) = {(2,0),(l,0)}
#((2,3),a;o) = (i?((2,l),u*) U{(2,1)}) U(if((l,2),u;o) U{(1,2)})

= {(1,2),(2,1),(2,0),(1,0),(2,-1)}

and so on, which implies

C((2,1),W0) = {(1,0),(2,-1)}
C((l,2),c<;o)=C1

C((2,3),a;0)=C2

with d = {(2,0),(1,0)} and C2 = {(2,0),(1,0),(2,-1)}.
In a similar way, we can show that the colors of (1,3), (2,2), and (1,2) in G(u>o) are

all C\. Then using C(u,w0) = Ut,€/(a,u,0)C(i;,a;o) (easy to show) andthe periodicity of the
delays we can show that

UCl = {(l,l + 2n),(2,2 +2n),(l,2 +2n):n>0}
tfc2 = {(2,l + 2n):n>l}.

Since \U \ (UCx UUc2)\ < 00, we get S(u>0) = {C1} C2}.
With slightly more work, we can show that

FCx(uo) = {(2,2 +2n),(l,2 + 2n):n > 0}
irc2(wo) = {(2,2 +2n),(l,2+2n),(2,l+2n):n>0}.

Now consider G(wi) (see Fig lb). LI can be visually verified. Now note that

#((2,2),^) = {(1,1),(2,0),(2,-1),(1,-1))},
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as predicted by fT((2,3),o>o) and L2.
Repeating what was done for G(u>o), (see Fig 2b), we get S(u>i) = {C^C^} with

C{ = {(2,-1), (1,-1)} andC^ = {(1,-1), (2,-1), (2,0)}. Similarly, we get

C7Ci = {(l,l + 2n),(2,l + 2n),(l,2+2n):n>0}
!7C, = {(2,2 + 2n):n>0},

and

Fc<(u>i) = {(2,l+2n),(l,l + 2n):n > 0}
Fc2(wi) = {(2,2 + 2n),(2,l + 2n),(l,l+2n):fi>0}.

Returning to our general model, we next observe the following :

Lemma L3. For any C 6 S(w), Fc(w) contains a node in every B-Block of the type
W + n,n> B, implying \Fc(w)\ = oo.

We remark at this point that S(w) is defined for each w individually and that there is no
obvious correspondence among colors of S(u) for different w's. In particular, C € S(u) is
not a priori a random function, (unless |5| = 1), as there is no canonical way of assigning
C to u>. However, there are certain important properties of S(u>) that belong to an almost
sure set. We study these properties in the next section.

3. Preliminary Results

In this section we will examine some of the invariant properties of colors in S(u>). Using
ergodicity, we can show that these properties must be uniform in an almost sure set. This
invariance will allow us to obtain some of the above introduced concepts at scenario 0(*>,
namely the spectrum and the filaments of the colors in the spectrum, directly in terms of
those at scenario u>. We will finally state some of the invariant structures related to the

colors of the spectrum in P4.

Given C € S(lj), let us define

Sc(e>) = {C € 2W: \{u € Uc(w) : T(u) > 1 and C(u - l,9u>) = C'}| = oo}.

It is easy to see that Sc(v) *fi 0 for all C € S(u) and that

Vces{uj)Sc(u) C S(9u).

In words, Sc(w) is the collection of all colors that show up infinitely often as the colors
under scenario 9lj of the nodes that have colors C under w. With some work, we can show



that for any two distinct colors Ci,C2 € S(o;), Sd 0 Sc2 = 0- w^ can thus make the
following key observation:

Proposition PI. For all u, \S(u)\ < \S(9u)\.

An immediate consequence of PI and ergodicity is the following:

Proposition P2. For some nonrandom constant a < 2Bp, \S\ = a almost surely.

P2 indicates that the spectrum S(u>) is central to understanding invariant properties of
the computation. In order to examine the relation between the spectrums of scenarios u
and 0w, we need the following definition. GivenC € S(u>), define 9C = C1 + C°, where

C1 = {u - l:t* € C, 3v 6 Fc(v) such that T(v) > 1 and <u,v>€ E(u>)},

C° = {(q,0):(q,l)eFc(u)}.

Note the implicit dependence of 9C on G(u>) and Fc(u)> Also note that if u is in C1 (C°),
then T(«) < 0 (T(u) = 0, respectively). The next result describes the behavior of S(w)
under 9.

Proposition P3. Foralmost all fa.a.) w,ifC€ S(u), then Sc(u) consists of the single
element 9C. Hence for a.a. w,ifS(w) = {Cu..., Ca}, then S(9u>) = {9CU..., 9Ca) with
9Ci ± 9Cj for all i ^ j.

According to P3, in an a.s. set we can characterize S(9lj) directly in terms of notions
defined for scenario w. In a similar vein, in an a.s. set we can characterize F$c(9ui)
directly in terms of .Fb(w). The next Lemma describes the behavior of Fc(u>) under 9.

Lemma L4. For a.a.u, ifC € S(u), then

Fec(9u)) = {ue Fc(w): T(u) > 1} -1.

Let ftps be the a.s. set satisfying P3. We now make two remarks. Firstly, by applying P3
to 0ftps, we see that for an a.s. subset of ftps (recall that P9~x = P), if C € S(u), then
Sec{9u>) is well-defined (since 9C G S(9u>)) and is equal to {02C}, where 92C = 99C is
defined as a function of 9C and F$c(9u>) in the same way as 9C was defined as a function
of C and Fc(u>).

Secondly, since 9 is invertible and (P,0) stationary, for an a.s. subset of ftp3, if C E
S(lj), then there must exist a unique map C i-* 9~XC € S(9~xw) such that So-\c(9~xu) =
{C}. Using this fact in conjunction with L4, we get

FcH = {ue Fe-xC(P~luY T(u) > 1} - 1.

We can by induction extend the two remarks to obtain a generalization of P3 and L4

to all shifted scenarios 9nu>.

8



Corollary CI. For a.a.u>, for all n e Z, if 5(w) = {Ci,..., Ca}, then:

1. S(9nu>) = {9nCu..., 9nCa} and 9nd ^ 9nCj for all i + j, and

2. FenC(9nu) = {ue Fc(v): T(u) >n}-nforn>0 and
Fc(w) = {u € F$nC(9nu): T(u) > -n} + nforn<0.

In particular, it is easy to show that for n > B,

9nC = {ue Fc{u) n (W + n): <u,v>e E(u) for some

v € Fc(u) with T(v) >n}-n.

Our next result reveals more invariant properties relating to the structure of colors in

the spectrum.

Proposition P4. Let Clt C2 € S(u) and C\ ^ C2. Then the following hold:

1. HCi n C2 = 0, then FCl 0 FCi = 0 and 0Ci O0C2 = 0 for al/ w.

2. If Ci fl C2 ^ 0, then 0Ca n 9C2 ^ 0 for a.a. w.

3. HCiHC2^ 0, then there exists C3 € S(u>) such that C3 C Ci n C2 for a.a. u>.

4. HCX £ C2, then 9C\ <£ 9C2 for a.a. u>.

5. HCiC C2, then 9C\ C 9C2 for a.a. u>.

It is also easy to generalize P4 to 9nC\ and 9nC2 for arbitrary n. To illustrate P4, we give
another example.

Example E2. Let A be a 2 x 2 matrix with no zero elements. Let B = 2 and
ft = {u>o,<*>i,W2, u>3} with P(ui) = 1/4 and 0u>i = u>(i+i)mod4 for 0 < i < 3. Clearly, (P,0)
is stationary and ergodic. Let d(n,u>i) = d{n mod 4,0;*) (i.e., the delays are periodic with
period 4) with

d(l,u;0) =<*(2,u,0)=(} }), <*(3,u>0)=(j j), <*(4,u;o)=(j j),
and d(n,u>i) = d((n + 1) mod 4,o>(t_1)mod4) to make the delays compatible with 9. (See
Fig 2a). Then by induction (on sections of the graph with temporal length of 4) we can
show that S(a>o) = {Ci,C2,C3}, with

d = {(1,0), (2,0)},

C2 = {(1,0), (2,0), (1,-1)},

C3 = {(1,0), (2,0), (2,-1)},



and

FCl(u>o) = {(M + 4n),(2,4 + 4n):n>0},

^c2(^o) = {(l,l+4n),(2,l + 4n),(2,2 + 4n),(l,3 + 4n),(l,4 + 4n),(2,4 + 4n):n>0},
irc8(wo) = {(l,l+4n),(2,l + 4n),(l,2 + 4n),(2,3 + 4n),(l,4 + 4n),(2,4 + 4n):n>0}.

Therefore, we get
0d= {(1,-1), (2,-1)},

9C2 = {(1,0), (2,0), (1,-1), (2,-1), (1,-2)},

9CZ = {(1,0), (2,0), (1,-1), (2,-1), (2,-2)}.

Note that since lj\ = 9u>o, using C(wi) one can verify that S(u>i) = {0Ci,0C2,0C3}, as
predicted by P3. See Fig 2b.

For certain cases, P4 will allow us to canonically distinguish the colors of S(lj) a.s. For
example, as in El, say |S| = 2 and for a set of positive probability, one color of S is the
subset of the other color. By part (5), (and ergodicity), this property must apply to an
a.s. set. Therefore, given an a; in this set, we can define random functions

C«(w) = {Ce S(u): C C C for C € S(u>) \ {C}}
and

C6(w) = {C€SM:C£Ca(W)},

which imply Ca(u;) C C&(u>) for a.a. w.
As a second example, say |S| = 3 with the property that for a.a. a;, C,r(i) £ Cff(2),

^w(2) £ ^w(i)» an<^ ^»r(3) C Cn(i) HC7r(2), where C,- € S(w) and it is a (random) permuta
tion. This was the situation in E2. By parts (2), (3), and (4) of the theorem, this happens
with either probability one or zero. Again, we can canonically differentiate Cff(3) from
the other two colors by its unique feature, while the other two colors cannot be differen

tiated from each other. In this sense, in many situations, we may be able to canonically

differentiate between colors that have some unique properties in an a.s. set.

4. Main Results

In this section we make the connection between the structure of the computation graph

described above and the random subspaces of OMET. The structure is particularly clear

when p = 1. This is because each node is influenced by exactly one other node, i.e.,
\I(u,lj)\ = 1 for all u,u). Thus, C(u,u>) € {-£ +1,..., 0}. (Note that when p = 1, we can
simplify the notation and identify U with {—B +1, —B + 2, —B + 3,...}.) A consequence
of this observations is the following Theorem:
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Theorem Tl. Fora.a. a;, there exists a partition {S*(u>), k = 1,...,«} ofW such that:

1. \S»(u>)\ = Sk,

2. S*(u) =W\ 5(w) if Xa = -oo and S(w) = W otherwise, and

3. Vr(A:,a;) = ©i>jb(©i€5((u;)spanei).

Therefore, for the case p = 1, Tl completely characterizes Oseledec's subspaces in terms

of colors of the spectrum.

The case p > 1 is much more complicated. Here we cannot expect the simple picture
of each color having a single Lyapunov exponent. The main difficulty is due to the fact
that each node is affected by more than one node. It thus possible to have the values to
two nodes canceling each other at a future node. Indeed, even for deterministic delays the
situation is significantly deeper. For example, let

~(-2 4)'
B = 1, and dij = 1 for all 1 < i,j < 2, which corresponds to a synchronous iteration.
There is clearly only one color {(1,0), (2,0)} in S(u>), but there are two growth rates,
namely the eigenvalues 2 and 3.

Before stating our main theorem for p > 1, we make the following definitions. Let fti
be the a.s. set satisfying both CI and P4. Recalling OMET, let V(k,u),k = 1,... ,a, be
the orthogonal complement of V(k + l,w) in V(k,u). Note that V(s,w) = V(a,ui). Thus
dimV(k, o>) = 6k and ©9kssl V(k, u>) = CB? for a.a. u>. Define P(k, u>), k = 1,..., s to be
the projection mapping onto the subspace V(k,u).

Theorem T2. For any subset C C S(u),

1. i(l,u>) mapsC^\u*€cC mio cw\uC€CeCf and

2. Forallk = l,...,8, for which Xk > —00,

dimP(k,w)Cw\UcecC = 6imP(k,9u>)Cw\Ucec9C

for a.a. u>.

One interprets the theorem as follows: Initial conditions whose support is disjoint from any
color can never influence nodes of that color. The inclusion partial order on the 2 * subsets

of S(u) induces a containment partial order on the corresponding subspace C w\ucecC
Any initial vector in the minimal subspace Cw\Uc£s(«)c influences only finitely many
nodes and so lies in the subspace corresponding to the Lyapunov exponent —00. For any

CC S(u>) the subspace Cw\Uc^cC may differ in dimension from Cw\Uc^c6C, but for each
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Lyapunov exponent Xk > -oo, dim(V(fc,u;)n C^\u<^c)- dim(y(fc+l,o,)n Cw\u<^c)
is the same as dim(y(fc,0u;)n Cw\uc<*ec)- 6im{V(k + l,flw)n CW\U°<*6C) for a.a. «.

Recall the example of the previous section that had |5| = 2. In cases such as this, we
candefine Ccanonically bya randomfunction. Inourexample, we cansetCa(u) = {^o(u>)}
and associate scalars dimP(k,u)Cw\UcecC to the nodes of C&(w) \ Ca(u>) for k with
\k > —oo m an a#s. set. We used OMET here only to associate such nonrandom scalars
to a subspace which is characterized independently of OMET.

5. Positive Case

When A is positive (when all elements of A are nonnegative), the influence of two initial
condition nodes with non-negative values cannot cancel each other at a future node. For
this reason, one expects that, in some sense, subspaces corresponding to each color give
riseonly to a single Lyapunov exponent, and a more detailed picturealong the lines ofTl
should be possible. For the remainder of this section we will assume both A and the initial
conditions to be positive.

In the following discussion, we will limit ourselves to the a.s. subset £11 that satisfies
OMET. Next, we will order the elements of 5(w) using the lexicographic convention that
was introduced in Section 2. For |5| = a we then write

*(«)='(Ci(«),...,C,(w)),

an ordered set, where Ci(u>),... ,C„(u) are the lexicographically ordered colors in 5(w).
Thus, C{, i = 1,..., a are now a.s. well defined random functions. (Previously, for each u>,
Ci was just a picked member of 5(w)). We also define 0Cj(u>) using C,(u;) € S(a>) as 9C
was defined using C € S(w). Let Sa be the set of permutations of a set of size a. It is
important to note that in general, Ci(9u) ^ 9Ci(u). However, since C i-* 9C is a bijection,
there must exist a unique permutation 7r(u;) € Sa such that

9d(u) = C*<llW)(«w) (5.1)

for i = 1,..., a.

We next define the random function C: {0,1}* x Cl —> 22 by

C(6,u>) = {C;(u;):&,= l},

where hi is the 2-th component of b. For ir € Sa, we define ir(b) = ir(bi"-ba) =
67r-i(1) •••6w-i((T). The action of n on b is chosen so that (ni7r2)(b) = 7ri(7r2(6)). We may
write C(b) and Ct- wheneveru> is fixed. As an example, let a = 4; then C(0101) = {C2,C4}.

12



For notational simplicity, we write 9C(b,u>) for {0C,(u>): 6j = 1}, write J(n,C,u>) for
Clcec9nC \ UceS(u)\c9nC, and write L(y,u) for lim„-.oo n"1 log ||A(n,u;) •••A(l,w)y\\.

We will next state that for a.a.u>, the following hold for all b (i.e., 6 € {0,1}*) and for
all 7r € Sa.

(Al) 9C(b,u>) = C(tt(6,«), 0u>),

(A2) J(n,C(6,u>),u;) = X(n —l,C(?r(6,u>),0u>),0u;) for n > 0, where 7r was denned in
(5.1).

With the help of (Al) and (A2), we can show the following:

Theorem T3. LetA bepositive. Then fora.a.w, thefollowinghold: IfT{n,C(b,u),ui) ^ 0
for some n, then Z(n,C(b,u>),u>) ^ 0 for infinitely manyn. Moreover, ifn\ < n2 are such
that l(m,C(b,u),u>) ^ 0, fori = 1,2, then:

1. For ally € C2*"1'^6'"^ such that y > 0, L(y,9niu>) = X € {Ai,...,A,} with
X > —oo, and

2. For ally € CI<na'c(6't")'u,) such that y > 0, £(2/,0n2u;) = A, whichis the same A as
the one in part (1).

To demonstrate the need for the first part of the theorem, recall E2. Let C = {C2, Cz}.
Then J(0,C,w0) = (C2 n C3) \ Cx = 0 whereas J(l,C,w0) = (0C2 n 0C3) \ 9CX =
{(1,0),(2,0)}. It is therefore possible to have J(n,C(6,u>),u>) ^ 0 for some n while
X(m, C(6, a;), u>) = 0 for some m. Let firs C Hi be the a.s. set that satisfies T3 and
OMET.

We now make a number of remarks. Firstly, note that every node u € S(w) belongs
to J(0,C(tt),u>) where C(u) = {C € S(u>):u € C}. Therefore, every node in S(u) has an
associated Lyapunov exponent which gives the growth rate of the norm of 5-blocks with
initial condition eu. Furthermore, if two initial condition nodes lie in precisely the same
set of colors, then they must have the same Lyapunov exponent. In particular,if there is a
single color, allnodes in that color havethe same Lyapunov exponent (with the rest of the
nodes having the exponent —oo). This contrasts with the situation in T2 for matrices A
that have negative entries. In our example with |5| = 2, we can associate an exponent A*
to the nodes of C& \ Ca and Aa to the nodes of Ca (recall that C0 C C&). In this example,
by P4, since OcecC \ UCe?C =£ 0, necessarily Hcec9C \ UC€^C ^ 0 for C= {Cb} and
{CaiCb}.

Secondly, it is clear that for any ui,u2 € S(u), if C(ui) C C(u2), then L(ettl,u;) <
L(eU2,(jj). That is, the set-theoretic relationship among colors can provide some infor
mation concerning the rates of convergence for different subspaces. Going back to our
example again, we get A0 > A&.
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Fix a; € 12ts, and for C€ 25<w\ define A(u>): 2S<W> -+ {Xu...,X9,(/>} by

a<n \ - J ^(y» *"w) for all y € Cr<n'c>w>, if J(n, C, u>) ^ 0 for some n > 0;
A^,c*;) - ^ ifJ(n,C,w) =0 for all n >0.

According to T3, A(C(6,u>),a>) is well defined for all a; € J2ts and if J(n0,C,w) ^ 0 for
some n0, then l(n,C,u) ^ 0 for infinitely many n. Let C(u) = {C € S(o>):u GC}. Then
T3 implies that

L(x,u>) = max{A(C(g,n),u;): xq(n) > 0}.

The next result describes the behavior of A under 9.

(A3) For all lj € firs* the following holds for all 6, and for all tt € S„:

A(C(6,a;),u>) = A(C(*(b,u),9w),9u>).

Now let £= {Ai,..., A.,^}2'. Then (A(C(6,a;),a;))6:={0 1}. € £ for all lj € J2TS. We
next lexicographically order elements of C using the ordering Ai > ••• > Xa > <l>. Given
any A € £ define Al to be the largest element of {?r(A): ir € Sa}. Here 7r(A) € C is defined
as (ir(A))b = K-Hb) for all 6€ {0,l}a. So if for some A, A' € C we have AL ^ A'L, there
exists no permutation ir such that tt(A) = A'. Therefore, if we let Cl = {Al- A € £},
we can partition C into equivalence classes ({tt(A): 7r € £r})A€£ • This is turn induces a
partition on 12ts with elements

J2a = {w € firs: 3n- € S„ such that A(C(7r(6),w),w) = Aft for all 6}

with A € £l-

Let u> € firs and £ = tt(uj). Now by (A3), if A(C(ir(b),w),Lo) = A for some it € Sv
and some A € Cl, then A(C((7r • ir)(b),9io),9u;) = A, that is, 12a C 012a- We therefore
have by ergodicity that for every A E Cl, P(J2a) is either zero or one. Since Cl has finite
number of elements, and since {12 a: A € Ci} partitions the almost sure set 12t3, we get:

Theorem T4. There exists a constant A*, largest in its equivalence class, such that for
a.a.to, there exists a 7r(u>) € S9 with

A(C(ir(b,b>),u>),u>) =AJ

foraIZ6€ {0,1}.

Therefore, each initial condition node will activate a certain convergence rate. The conver
gence rate is determined by the set of colors to which the node belongs to. Furthermore,
such set of colors, modulo some permutation, are invariant under 9. So given any arbitrary
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positive initial condition, let U be all the nodes (q,n) of the initial condition that have
values that are strictly positive. To each of these node we can attribute an exponent. Then
our system's convergence rate, i.e., the convergence rate of the norm of the B-blocks, will
equal to the maximum of these exponents.

We next define

II(u>) = {tt e S<r: A(C(ir(b),w),u>) = AJ for all &},

for all u> satisfying T4 and let it € II(u;). Then by definition of H(o;) and (A3) we can show
that |n(w)| < |II(0u>)|. We again use ergodicity to obtain the following result.

Corollary C2. |H| = const almost surely.

Note that if |H| = 1 we can in a canonical way differentiate among all the colors using
OMET.

Until now, all of our results dealt with the convergence rate of the norm of the l?-blocks,
which provides very little information concerning the asymptotic values of individualpro
cessors themselves. All we can infer is the existence of a sequence of nodes which have
values that converge at that rate. Our last result, which has an involved proof, describes in
detail the asymptotic behavior of individualprocessors. In particular, it asserts that every
increasing sequence of nodes belonging to certain color has values that do have a rate of
convergence. This fact further emphasizes the importance of colors in our construction.

Theorem T5. Let A be positive. Then for a.a.u> and a given nonnegative x(0), the
following holds: For anysequence of nodes (qk^nk) € Uc, C £ S, with lim*—oofifc = oo,

lim n^logx^nk) = <,
k—*oo

where ( is either in R U{—00} or is —00, depending respectively on whether the initial
condition x(0) makes the value of any nodeu € C € S(u>) positive or not.

At this point, we do not know whether these ('s are Lyapunov exponents or not. However,
when g = 1, T3 asserts that the rate of convergence of the norm of S-blocks is either a
Lyapunov exponent larger than —00 or —00, depending on whether the initial condition
5(0) makes the value ofany nodein the unique color of the spectrumpositive or not. Then
T5 implies that any increasing sequence of nodes will have that same rate of convergence.
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Figure 1: The graphs G(lo0) and G(u>i) of El. In Fig. la, the nodes belonging to the
universe and filament of color C2 = {(2,0),(1,0),(2,-1)}, and in Fig. lb, the nodes
belonging to the universe and filament ofcolor C'2 = {(2,0), (2, —1), (1, —1)} are marked.
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Figure 2: The graphs G(u>o) and G(wi) of E2. In Fig. 2a, the nodes belonging to the
universe and filament ofcolor Ci = {(1,0), (2,0)}, and in Fig. 2b, the nodes belonging to
the universe and filament ofcolor 0Ci = {(1, —1), (2, —1)} are marked.
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