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Abstract

A new formulation for finding the existence of a Boolean match between two
functions with don't cares is presented. An algorithm for Boolean matching is de
veloped based on this new formulation and is used within atechnology mapper as a
substitute for tree matching algorithms. The new algorithm is fast and uses symme
tries ofthe gates inthe library tospeed up the matching process. Local don't cares
are computed for each function being mapped interms of its inputs. To reduce the
frequency in which Boolean matching is used, the gates in the library are grouped
into classes such that itis sufficient to tryto match a function with the class repre
sentative. Experimental results show significant improvement inthe final area ofthe
mapped circuits.
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1 Introduction

Detection ofequivalence ofBoolean functions, also called matching, is aproblem aris
ing in logic synthesis when aboolean network is to be implemented in terms ofreusable
building blocks. Many solutions have been proposed for this problem almost since the
introduction of packaged logic gates. In [4], a tree matching algorithm is used to im
plement a network in terms of the gates in a library which is similar to the one found
in programming language compilers for generation ofoptimal code for expression trees.
Mailhot and DeMicheli present Boolean methods for technology mapping inamore re
cent paper [5]. Unlike tree matching, the Boolean matching techniques allow the use of
don't care information. This can result inbetter quality circuits because some matches
that could not be detected with tree matching techniques are now found. Additionally,
there is no need to add inverters to the circuit because both input phases of a function
being matched are considered at the same time.

Mailhot and DeMicheli [5] proposed two different algorithms for Boolean matching:
one that uses don'tcares and another that does not. When matching without don'tcares,
symmetries are used to speed up the matching process. This technique was the basis
of the algorithm of Dietmeyer and Schneider [3] and has also been applied recently by
Morrison et al. [6] in a technology mapping algorithm based ona covering approach.
Dietmeyer and Schneider computed symmetries in the presence of don'tcares, butcom
putationoflarger symmetries becomes expensive, because inthis situation symmetry sets
do notform an equivalence class. For matching with don't cares the algorithm of Mail-
hot and DeMicheli uses amatching compatibility graph which isbuilt during the setup
phase. Each node of this graph corresponds toan NPN-equivalent [7] function. The size
of this graph grows exponentially with the size of the variable support of the functions,
and has limited the usage of don't cares to thematching of functions withat most4 in
puts. Symmetries are not used with this algorithm. The algorithms in [5] and [3] compute
thesymmetries of both functions being matched. Thecomputation of symmetries is rel
atively expensive, as it requires 0(n2)cofactor computations for acompletely specified
function (no don't cares) withn inputs. Consequently, cofactor computations dominate
the cost of finding a booleanmatch in such algorithms.

We present anew Boolean matching algorithm whichusesbothsymmetries and don't
cares at the same time, and requires only the computation of the symmetries of one of
the functions. This Boolean matching technique is used both for technology mapping
and organizing the gate libraries. In technology mapping, one of the functions to be
consideredfor the matchingis a library function whose symmetriescanbe computed in a
setup phase. This speedsup the matchingconsiderably andhasenabled the application of
Booleanmatchingtechniquesto much larger circuits with runtimes comparable to those
obtained using tree matching while obtainingcircuits with smaller area.

We use this new Boolean matching technique within a technology mapper which
uses the principles previously developed by Keutzer[4], Detjens et al.[2]and Rudell[10].



This is based on finding a tree decomposition of the graph associated with the network
and using dynamic programming to map each of the trees. The dynamic programming
algorithm visitsthenodes ofeach tree indepth first order and for each node, finds thebest
match of a subtree, rooted atthe node, with the tree representation of a gate in a given
library.

In [12], efficient ways are given for computing local don't cares which are applied
to node simplification in multi-level logic networks. We use the same don't care com
putation techniques to find local don't cares at the leaves ofeach cluster function being
mapped to a library gate. These are thenusedto find the best matchfor the cluster func
tion. Although we have only used this Boolean matching technique to find the best area
for the circuit, the algorithm is very general and can be used in other contexts such as
delay optimization, or layout driven technology mapping [9].

As demonstrated in [10], the inclusion ofcomplex CMOS gates in the library is use
ful because itmay lead to asignificant reduction in the required area for implementing
some combinatorial functions. However, larger cell libraries require more matchings and
imply the use offunctions with more inputs, making technology mapping with very large
libraries computationally expensive. Mailhot and deMicheli [5] proposed atechnique for
speeding-up the matching by grouping gates in the library in such away that after finding
amatch with arepresentative gate the match with all gates inthe group is determined.
We have also developed atechnique for grouping gates, using our matching algorithm.
The gates inthe library are matched with each other and the ones that match with inverted
inputs or output are stored in the same data structure.

Therest of this paper isorganized as follows. Section 2 introduces the notation and
terminology used throughout the paper. In section 3, we introduce techniques for simpli
fying the Boolean matching problem. Section 4 presents aBoolean matching algorithm
used for technology mapping. We also explain the significance of symmetries and how to
generate different supports of aBoolean function inthis section. Section 5explains the
computation of local don't cares to be used for Boolean matching. Section 6 discusses
the organization of the library. Finally we present the experimental results in section 7
and conclusions in section 8.

2 Terminology and Notation

Let (xi, a?2,..., xn) bethe variables inthe Boolean space Bn. A literal isavariable in
its true or complement form (e.g. a?,-, or x?). Aproduct term or cube is the conjunction
ofsome set ofliterals (e.g. x\X2X$). ABoolean network A/", is adirected acyclic graph
(DAG) such that for each node inM there is an associated representation of aBoolean
function /,-, and aBoolean variable yit where yt- = /,. There is adirected edge ey from
Vi to yj if fj depends explicitly on y; or y,-. A node yt- is afanin ofanode yj if there is
adirected edge ey and afanout if there isadirected edge Cj-,-. A node y,- isa transitive



fanin ofanode y7 ifthere is adirected path from y,- to yj and a transitivefanout ifthere is
adirected path from yj to y,-. Primary inputs x = (xi,..., xn) are inputs ofthe Boolean
network and primary outputs z = (z\,..., zm) are its outputs. Intermediate nodes of the
Boolean network have atleast one fanin and one fanout The support ofa function / is
the setof variables that/ explicitly depends on.

The cofactor of a sum-of-products / with respect to a literal xf(x7), denoted by
fxi(fsf)*is a new function obtained by substituting 1(0) for x,(x7) in every cube in /
whichcontainsxt(x7).

The Shannon's expansion ofa Boolean function / with respect toa variable x is

f = xfx + Xfe

BDD's [1] are compact representations ofa recursive Shannon decomposition. They
are unique for a given variable ordering and hence are canonical forms for representing
Boolean functions. They canbe constructed from theShanon's expansion of a Boolean
function by1)deleting a node whose twochild edges pointto thesamenode, and2) shar
ingisomorphic subgraphs. Technically the result is a reduced ordered BDD, (ROBDD),
which we shall just call BDD.

Theconsensus operator oruniversal abstraction applied toa function / with respect
to a variable x,- is

This is the largestBoolean function contained in / which is independent of x,-.
The smoothing operatororexistential abstraction applied toa function / withrespect

to a variable x,- is

This is the smallestBoolean function independent of x,- whichcontains /.
The Boolean difference of a function/ withrespect to a variablex is definedas

~jrT~ —JxJ'x'v JXJX

This function gives all the conditions under which the value of / is influenced by the
value ofx. Its complement therefore is all the conditionsunder which / is insensitive to
x.

2.1 Don't Cares in a Boolean Network

If yt- is the variable at a node and /,- its logic function, then y,- = /,-; therefore, we don't
care if y,- ^ /,-. The expression 52»(3/i # /i) iscalled thesatisfiability don'tcareset (SDC)



of N. SDC isdefined inthe extended space Bn+m which is composed of both input and
intermediate variables. The observability don't cares (ODC's) at eachintermediate node
of a multi-level network are a set of input minterms under which the function at the
node canbe either 1or0 whilethe functions generated ateach primary outputZ{ remain
unchanged. If z = (z\,..., z{) are the primary outputs, thenODC at node yQ is

ODC0 = {me Bn\zyo(m) = zVo(m)}.

In practice, it is computationally expensive to compute the full observability don't
care at each node. Thus subsets of observability don't cares are used. Subsets of ob
servability don'tcares are compatible [8] if the function ateach node can bechanged (as
allowed by its observability don'tcare subset) independent of allowable changes in the
functions atother nodes in the network. These compatible subsets can be computed for
all the nodes by traversing the Booleannetworkonce [11].

In general, wedon't care about the value ofevery single output for every single input
combination. The external don't care for each output z,- of the network N is composed
of vertices inBn which correspond to the input combinations that a)never happen or b)
the value of Z{ for that particular input combination is notimportant.

The local don't cares [12] atyt are don'tcares computed for the node in terms of its
immediate fanins. The local don't cares can also be computed interms of any cutset of
nodes that can express the function /,-.

3 Boolean Matching

We address the Boolean matching problem for two functions f(x\,..., xm) and#(yi,..., y,
with the same number of inputs and don't care sets d/(xi,..., xm) and dg(yh..., ym)
in this section. The objective is to find an assignment of variables x to y such that there
exists a function thatis a coverofboth / and g.

A particular assignment of variables ofg to /(y,-, = xjl1yit = Xj2,...,y,m = xjm)
can be represented by a new function

-4*(*,y) = (yilBxjl)(yii®Xjl).. .(ytmixim).

In general, both (y^©^,) and (y,-, 0 x^,) are possible assignments. The first sets y,-, =
xjx ; the second sets y,-, = x^. The function & under variable assignment Ak is simply
9k(x) = SyAk(xiy)g(y).

Lemma 3.1 Letgandig represent the newfunction obtainedfromgand dg by switching
y'swith the corresponding x'sforaparticular assignmentofy'stox's. Amatching under
this assignment exists ifand only ifg- ig< f + dj and f -dj < g+dg.



Proof Assume amatching exists under the given variable assignment and lethrepresent
the function for which the matching exists. g-dg <k< g+dgandf-df <h< f+df;
therefore, g- dg <f+df and / - df <g+dg. On the other hand, ifg- ig <f +d)
and/-(i/<^ +4,welet/i= (/-d/) +^-4).Clearly,^-4</i<p +dA0and
f-df<h<f + df.n

Lemma 3.2 The matching under variable assignment Ak exists ifand only if

Mk = Cx(Sy(Ak.(df + dg + f®g))) = 1 (l)

(The significance ofconsensus operation isshown in the next Lemma).

Proof Let g = SyAkg and dg = SyAkdg then

Mk = Cx(Sy(Ak(df+dg + fWg)))

= CX(SyAkdf + SyAkdg + SyAkfg+SyAk7g)
= Cx(dfSyAk + Jg + fSyAkg + 7SyAk§)
= Cx(d, + Jg + f&D

Cx(df+dg+f@g) = lifandonlyif(<f/+4+/©£) = 1. Assume{df+dg+fWg) = 1.
Letmbeaminterminy-4. Thenm e f+df,otherwisedf+dg+f$g # 1. Asaresult,
9~dg <f+df. Inmesameway,(d/+4+/©$) = 1implies/-d/ < g+dg. Therefore,
if Cx(df + dg + f§g) = 1, amatch exists^ If / - df < g+dg and g- dg < ds +f,
then gf + df + dg = g+ df + dg and f g+ df + dg = g+ df + dg. Therefore
(df + dg + fWg)=l. m

We can organize equation (1) in a more computationally efficient way by using the
result of the following lemma.

Lemma 3.3 Ifi ^ j, Cx.Sy.(xj®yj)h(x,y) = Syj(xj®yj)CX{h(x,y).

Proof

CxiSy.(xj^yj)h = C^Syjixjyjhyj+Xjfjhjf.)
= Cxi(xjhy.+xjhv.)
= (zjiCxMyj+XjiC^y-.)
= Syi(xj^yj)CXih.

Lemma 3.4 Let Ak = (yi©xi)(y2©a:2)...(ym©xm). Then Mk = Cx(Sy(Ak.(df +
dg + fWg))) can be expressed as

Mk = (CxmSynixnWym).. -CXlSm(xiWyi)(df + dg + fWg))



Proof The statementof the lemmafollows by induction and lemma3.3. •
All the possible assignmets of variables y to x are not required to check whether a

matching exists. Firstweexpress necessary conditions for a matching to exist. Let |/|
represent the number of minterms in the function /. Once BDD's are built for functions
/ and g, then |/| and \g\ can be easily found by traversing the corresponding BDD's only
once. Given node n in the BDD of / with children nl and nr, the number of minterms
in the functionrepresentedby n in the orderedBDD of / can be found if this number is
known at nl and nr. We represent the difference between the variables n and nl in the
variable ordering by / (if n appears right before n/, / = 1)and the difference between the
variable of n and nr in the variable ordering by r. The number of onsetpoints for the
function atn is |n| = 2,_1|n/| + 2r-1|nr|. Initially, the number ofminterms at node I is
set to 1 and node 0 is set to 0. Also, if the root of the BDD is not the first variable in the
ordering we multiply the countat the root node by 2* where k is the difference between
therootnode andthe first variable in the ordering.

Theorem 3.5 Amatching between f andg exists under any variable assignment only if
\f ~df\ < \g+dg\, |7- ds\ < \g + dg\, \g-dg\ < |/+d}\, and\g- dg\ < |J+ df\.
Inparticular, ifdf - 0 anddg = 0, \f\ = \g\.

Proof Each onset point of/ must be mapped to an onset point ordon't care point ofg
and each offset point of / must bemapped to an offset point ordon'tcare point ofg. If
\f - df\ > \g+ dg\ some onset points in/ cannot be mapped to any onset ordon't care
point ofg. The proof is similar for other cases. •

Lemma 3.6 Amatching under the assignmentxi = y> exists only if\fx. - dfx, \< \gy. +
dgyjl\7Xi-dfXi\ <|yw+4gaU*w-«gwl <l/x.-rrf/X|.M^.-^.| <\7Xi+dfXi\,
\M - df-\ < \gv. +d9Vj I I/,,, - df¥i\ < \gv. +dg-\, \gv. - dg-. | < I/a, +df9t\.
and\gv. - da-,\ < \fT. + d/yJ. In particular, ifdf = 0anddg = 0, |/x,.| = \gy.\ and
IAI = lfltol.

Proof IfX,- = yj, each onset point of(fx. - dfx.) must be mapped to apoint in {gy. +
dgyj)»therefore, \fx. - dfx. \ < \gyj - dQy. |. Other cases can be proved in the same way.
•

Corollary 3.7 Amatching under the assignment x» = yj exists only if\fXi - df ,\ <
l^+^y>l7*,-rf/a,l ^ lfy +̂ l.tafc-^1 <\f*i+dfXi\,\9yj-dgv.\ <|7x,- +
df^Afxt-df-l <\_9yj +dgy.\,\fWi-dfTi\ < \jfVJ+dgyi\,\gui-dgifJ\ <Ite +df-l,
^d\gy.-dgy,\<\f^ + df-\.



From now on, we concentrate on the use ofBoolean matching in technology mapping
where we try to match acluster function having some local don't cares with alibrary
function which has no don't cares (dg = 0).

4 Boolean Matching for Technology Mapping

The objective ofatechnology mapper is to map acircuit into aset ofgates in the library.
The given circuit is first decomposed into a set of 2-input gates and then into a set of
disjoint trees. Asin [4, 2, 10], we use dynamic programming to map each of the trees
into aset oflibrary gates. The trees are mapped in topological order; each tree is mapped
after all its fanin trees. Mapping is atwo step process. In the first step, called matching,
we find the minimum cost matching for the root of the tree. In the second step, called
gate assignment, weimplement the logic function of the tree in terms of library gates as
determined in the matching phase.

The first phase of technology mapping is to traverse the target tree bottom-up from
the primary inputs. At each node, all possible functions up to agiven number of inputs
having that node as output are considered. These functions are called cluster functions;
their corresponding subgraphs are called clusters [5]. In our formulation, a cluster is
represented by aroot node and a set of leaf nodes (cutset of nodes) separating the root
node from the rest of the network. We use an iterative algorithm for cluster generation,
that starts with a cluster consisting only of the root node, and generates new clusters
by expanding every cluster. Expansion of a cluster is done by removing each of the
nodes of the cutsetone at a time and adding its fanin nodes to it. If someof the clusters
generated in this process have been generated before, or contain more nodes than the
maximum number of inputs in any gate of the library, they are simply discarded. Each
iteration expands the clusters generated onthe previous iteration only. Cluster generation
is stopped after aniteration that does notproduce more clusters.

During gate assignment we build a new network that contains the best map at each
tree. Ateach tree, weneed tochoose the phase of the root node of the tree. Theless costly
phase in terms of area iscurrently chosen unless the root node isaprimary output where
the positive phase ischosen. Thepenalty for using the phase that isnotimplemented isthe
costof an inverter. After all thetrees in the network are mapped, we traverse these trees
inreverse order, and check what phase of the root isused ineach tree. If the implemented
phase in the new network for a particular tree is always inverted before it is used by its
fanout trees, we switch to the otherphase of thattree to reduce cost.

The matchingproblemis to find anylibrary function thatcanbe matchedwith aclus
terfunction. The correspondence between theinputs of thecluster function and thelibrary
gate is sought first, then one checks if the functions are equivalentunder such condition.
In the presence of localdon't cares the matching problem can be formulated as follows.
Let /(xi, X2,..., xn) be acluster function withlocal don't-care d{x\, xi,..., x„), and



9(yu V2i •••,ym) be a library function where m < n. Ifm > n, some ofthe inputs of
the library gate must be set to 0,1,ortied together. Such gates can be added to the library
in a preprocessing step. For architectures composed of particular types ofgates where
the case m > n isimportant, special techniques can be devised to do Boolean matching.
If m < n, a matching exists only if the support / can be reduced using the given don't
care set. This is unlikely in a well-optimized circuitbecause most redundant connections
are already removed. For each cluster function we generate all the possible supports and
match each one with a library gate of the same number of variables.

4.1 Generating all Supports

We divide the matching problem into two parts. First, we generate / and d for each
possible support ofacluster function / with don't care d. The circuits given for mapping
are usually well optimized and do not have many redundancies; therefore, we expect few
possible supports by which / can be represented. Each function / is then compared to
all the library gates which havethesame number of inputs.

Let / bea cluster function with the support X. Asupport X{ C X (Xt; = X - Xfi
is a valid representation for / if and only if%.(/ - d) < (/ + d), orequivalently
U-d) <CY.(/+d)(SY.(f-d) < (f+d) implies that STi (/-«*) <CY.(f+d)). This
new function / can be represented as / =%.(/ - d) with don't care set d=Cy.(/ +
d) - <%.(/ - d). The algorithm shown in Figure 1is used to generate all the possible
supports fora cluster function /. The original arguments given togenerate^support are
fi = f-d,fh = f+d, vars isall the variables in/ and d(this isalso saved as apossible
support for /), and start = 0.

Other techniques have been recently suggested for generating all possible supports
of a function [14]. We are still investigating such techniques.

4.2 Boolean Matching Algorithm

The algorithmfor finding the existence ofamatchbetween alibrary gatep(yi,.. .,ym)
and a cluster function f(x\,..., xm) with don't care setd(xi,..., xm) isshown inFig
ure 2. / and g have the same number of inputs. The argument M is originally set to
M = d+ f$g. The argument i shows the variable in / for which a match is sought i
is set to 0 originally. Before calling booleanjnatch, we check the necessary condition
givenby theorem 3.5. If thatcondition is notsatisfied, / andg cannotbe matched. Each
input x,• of / must be matched with aninput yj ofg.

X{ can be equal to yj if the necessary conditions as givenby lemma3.6 are satisfied.
If they are not satisfied, x,- = yj is tried. If that isnot possible either, yj is not a possible
match for x,- and is skipped. If no inputof g can be set equal to x;, / and g cannotbe
matched.



function generatejsupport{//, fh, vars, start)
begin

for (i = start; i < number(vars);i++) begin
x$- = vars(i)
tt(SXifi<fh) begin

newvars(fc) = var$(&) for fc < i
newvars(k) = vars(k + 1)for A: > i
save newvars as a possible support
newfi = Sx.fi
newfh = CxJh
generate^support(newfi, newfh, newvars, i)

end

end

end

Figure 1: Generating Supports

4.3 Symmetries

Most gates inthe library have many symmetries. We find all such symmetries for all the
gates in the library in a preprocessing step. For example, gate g might have two inputs
yk and yj which are symmetric. Ifxt- = yk isnot possible, then clearly xt- cannot be set
equal to yj either and isskipped. There isanother kind ofsymmetry which can be used to
speed up Boolean matching. Given alibrary gate g = yiy2+y3y4+y5y6,yi is symmetric
with y2, y3 issymmetric with y4, and y5 issymmetric with y6. Ifwe switch the variables
y3 and y4 with yx and y2, we get exactly the same function. Inthis example, yiy2 are
group symmetric with y^yA and ysy6. Therefore if a variable x,- cannotbe matched with
yi, itcannot bematched with any other variable ing and no matching exists. On the other
hand, ify\ has been matched with some other variable xj and xt- cannot be matched with
y2, we still need totry xt- = y3. Symmetries and group symmetries are found for each of
the gates in the library.

4.4 Heuristic

Once we find a variable yj that can be set equal to x,-, we reduce the size ofthe matching
problem at hand by one variable and try to match the rest of the variables in / and g.
Using the result of lemma 3.4, we compute newM = CXiSyj(xi(Byj)M. Anecessary
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function booleanjmatch(f, d,g, i,M)
begin

if (M = 0)
return match_notJbund

if (M = 1)
return matchJbund

x ,• = ith variable in /
for each variable yjofg notmatched yetbegin

if yj is symmetric to a y* already tested
continue

/* check the necessary conditions for x,- = yj */
if ((l/a, - dx.\ < \gyj\) and (17*, - dXi\ < \gy.\) and

(l/x.- - dx,| < l^l)_and(|/F. - dx.\ < \gv.\)) begin
newM = CXiSy.(xi@yj)M
(newf, newd, newg) =choose (/,., dXi, gy.) or(fXi, dTi, gy.)
if(booleanjmatch(newf, newd, newg, i + 1, newM) == matchJbund)

return matchJound

end

/* check the necessary conditions for x,- = yj */
if ((|/x.. - dXi\ < |^.|) andd/x,- - <*x.| < \gy.\) and

(l/x, -dXi\< \gyi\) and(|/y. - dT{\ < \gy.\)) begin
newM = CXiSyj(xi ©yi)Af
(new/, newd, newg) =choose (/x., dx.,gv.) or (/*., d?., 0yj.)
if(booleanjnatch(newf, newd, newg, i+ 1, newM) = matchJound)

return matchJound

end

end

return matchjiotJound

end

Figure 2: Boolean Matching

11



andsufficientcondition for the matching to existis thatnewM = 1after allthe variables
are matched as in lemma 3.2.

The necessary condition given by lemma 3.6 to match x, and yj requires computing
both fXi and /?|. and comparing them with gy. and gv. respectively. When we match a
second pair of variables x/ = yki we need to compute fXiXl, fXiX-t, f^.X(, and fWl and
compare it with gyjyk, gyjVk, gg.yk, and gg.Vh. This number grows exponentially as we
match more variables.

Whenwesetx,- = yjy the pairs (/x^^and^.,^.) must be matched respectively.
We only choose one ofthe pairs (fxtigVj) and (/*,., gVj) to be passed to the next step of
the algorithm to be used for checking necessary conditions as given bylemma 3.6.

For example, let/ = xix2x3 and g = yiy2y3. First wetry to find amatch for variable
a?i. xi = yx satisfies the necessary condition ( fXl = x2x3,/Fl = 0,gyi = y2y^, and
0j7, = 0). The pair (/y, = 0,g^ = 0) cannot give usany further information because the
necessary conditions are always satisfied for this pair irrespective of what variables are
matched. On the other hand, the pair (fxx, gyi) contains all the information that weneed.
The following heuristic is used to choose one of the two pairs. If (fXi - dx. = 0), or
(9yj = 1), the necessary conditions as given in lemma 3.6 are always satisfied. Therefore
the other pair (fe, gv.) isused to guide the matching. This same principle isused to check
the other pair. Ifthe above check is not enough, we choose either of fx. or fXi which has
the larger difference between the number ofonset points and offset points. The difference
between the onset and offset points is computed as follows, absolute joalue(\fXi - dx. \-
I7xi -dXi\) and absolute.value(\ fa - d^.\ - |J- - d^\).

This algorithm runs in linear time in the number of input variables for alibrary gate
with one minterm in the onset oroffset (AND, OR, NAND, NOR).

5 Don't Care Computation

The network is first decomposed into aset oftrees. We compute compatible external plus
observability don't cares ateach of the nodes of the network as explained in [12]. These
trees are sorted intopological order. Each tree is mapped after all its fanin trees. Image
computation techniques are then used to findlocal don't cares at the leaves of the tree that
is being mapped. The leaves of the tree correspond to primary inputs or roots of other
trees that have been already mapped therefore their functions are fixed and the computed
local don't cares are valid.

First webuild BDD's corresponding toglobal functions (functions interms ofprimary
inputs) ateach of theleaves of atree. Theobservability plus external don'tcare setatthe
root of the tree is already computed. We find the care set at the root node and cofactor
(generalized cofactor [15]) theglobal functions at the leaves withrespect to the care set
The recursive image computationmethod [15] is then used to find all thereachable points.
The inverse of the reachable points gives the local don't cares at the leaves of the tree.

12



To compute the local don't cares for acluster function within the tree we repeat the
above procedure. The tree itself is considered like a network and its local don't cares are
treated asexternal don't cares or input combinations that neveroccur. We buildBDD's
for each of theleaves of acluster function in terms of theleaves of thetree and cofactor
them with respect to the care set ofthe whole tree. We then find all the unreachable points
for thecluster function in terms of its leaves. We have found thebestmatch attheleaves
of the cluster function already. Because of the observability and external don't cares, the
positive and negative phase functions at the leaves ofacluster are not necessarily inverses
ofeach other; therefore, the local don't cares computed are not necessarily valid for both
phases. Let ff,..., ff and /f,..., /rn be the positive and negative matches found for
the leaves, y\,..., yr,of acluster. LetEt bethe external don't care for the tree, and let
di = ff ® fp. A valid local don't care set for both phases of the cluster is

D = Sx(Et(y&ft + di) •••(yrWf? + dr)).

This local don't care setiscorrect whether ff or//»plus an inverter isused as the function
for the ith leaf. Ifonly external don]t cares ofthe tree are used but not the observability
don't cares within the nee, then diEt = 0; therefore, there isno need to compute if,-.

It must be also mentioned that, the choice of the functions at the leaves of a cluster
affects the local don't cares ofthat cluster. Hence, dynamic programming might not give
the best result for the mapping of atree when observability don't cares are used within a
tree. The choice of thebest function attheleaves may shrink the local network for the
cluster and thus worsen the final results, although this isnot very likely in practice.

In a circuit withlarge trees, there are usually many clusters that onehas to consider.
Computing local don't cares for all such clusters isacosdy operation.

6 Library Organization

Before technology mapping, a setup phase is used to process gates in the library and
generate particular data structures called NUTS. The term NUT is the abbreviation for
Negative Unate Transform introduced in [5]. All the gates ina NUT are equivalent toa
NUT representative inthe sense that the ftinction ofeach gate can be obtainedbyinverting
some of the inputs of the NUT representative. The NUT structure reduces the number
of calls to the Boolean matching algorithm. Finding the best match between a cluster
function and the set of gates inthe library is therefore reduced tothe use of the matching
algorithm on thecluster function and all the NUTrepresentatives with the same number
of inputs. Thematching with theremaining gates isderived direcdy from theassignment
informationcomputed during the setup phase.

In the groups we build, we also consider the inversion of the outputs of the gates.
This reduction is possible because ourmatching algorithm considers the matching with
both phases of the input nodes at the same time. In our implementation, the 2-input
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functions NOR, NAND, AND and OR are inthe same NUT and any of them can be the
representative. Matching both phases ofa node with these gates requires either a single
call to the Boolean matching algorithm ifa matching is found with the first phase being
tried orjust another call to find if the other phase matches orno match ispossible.

Instead of computing the negative unate transforms of the input variables as in [5],
we use the Boolean matching algorithm to place each gate in its corresponding NUT
structure. The setup phase parses the library, reading one gate ata time. Agate isadded to
aNUT if itoritscomplement matches the NUT representative. Ifthe gate does not match
any ofthe existing NUT's, then a new NUT iscreated with the gate as its representative.
Symmetries and symmetry groups are also computed for each representative atthis time.

7 Results

We run the new technology mapping algorithm on a set of benchmarks chosen from
MCNC and ISCAS combinational circuits and compared the results with technology
mapping for area in SIS. Table 1 shows the result for combinational circuits without
any external don't cares. These circuits are well optimized using the rugged script [13]
in SIS. The MCNC library Ub2 is used for the mapping. The column start shows the
literal count in factored form for each of these circuits. The columns SIS, bm_no.dc,
bm_tree_dc, and bm_full_dc show the area ofmapped circuits. We divide numbers given
bythe mapper by464 (half the area of the smallest inverter) togetround small numbers.
As shown inthe table, considerable improvements are obtained for some circuits by just
using Boolean matching without any don't cares (bm_no.dc). For these circuits, we get
8percent improvement inarea compared to technology mapping in SIS while spending
3.9 times as much time. The best improvement is obtained for C6288 which is about
25 percent. The column bm_tree_dc shows the obtained area when don't cares are com
puted only for the leaves of each of the trees. The CPU times and the circuit areas are
almost the same as the case with no don't cares. The BDD's cannot be built for some of
these trees as shown inthe table. The column bmjull.dc shows the result obtained by
computing don'tcares for each single cluster. The times spent formapping are anorder
of magnitude more than SIS while there is 12 percent improvement in the final area of
the mapped circuits. Although the time spent is substantially more than the time spent
bytree matching algorithms, it is comparable to the time spent for circuit optimization.

Ifthese circuits are notoptimized first, the improvementover the technology mapping
inSIS isvery substantial. This isbecause by computing local don'tcares and performing
Boolean matching wedo redundancy removal and a much stronger optimization on each
circuit as opposed to tree matching. Even though theresults onunoptimized circuits are
better than the ones obtained from SIS, they are suboptimal to the ones obtained after
running rugged script on each circuit.
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circuit start SIS CPU bm_no_dc CPU bmJreejdc CPU bm_full.dc CPU

C432 218 437 5 398 31 397 157 381 574
C880 414 783 10 734 49 734 59 734 343
C1355 552 914 11 738 8 738 87 724 1184
C1908 535 933 11 810 27 810 118 793 1774
C2670 748 1339 20 1236 103 - - - —

C3540 1283 2269 36 2176 213 - - - _

C5315 1763 3055 45 3025 173 3025 229 3003 2285
C6288 3367 5453 68 4070 111 - - - —

C7552 3022 4076 58 3690 190 - - - —

z4ml 43 86 1 69 3 69 6 68 69
f51m 80 150 2 148 6 148 9 112 53
apex5 768 1473 19 1362 91 1361 127 1355 1180
apex6 732 1390 19 1345 97 1341 120 1336 882
alu4 102 200 2 196 10 196 11 180 103
rot 664 1283 16 1270 62 1267 74 1255 466

des 4214 5947 137 5698 596 5501 789 5498 11926

Table 1: Boolean Matching for Technology Mapping

numberof literalsio factored formfor theoptimized circuits
mapped using map -s in SIS
mapped using boolean matching in SIS without don't cares
mapped using boolean matching inSISwithDCcomputed at the leaves
ofeach tree.

mapped using boolean matching inSISwithDCcomputed for eachcluster
in secondson a IBM RiseSystem/6000 530

start:

SIS:

bm_nojdc:

bmJreejdc:

bmJTulljdc:

CPU:

8 Conclusion

We have presented anewBoolean matching algorithm that can usedon'tcares and sym
metries efficiently. We have applied this algorithm to technology mapping and have
shown that theresults of the mapper can be improved compared to tree matching tech
niques. The computation of local don't cares for each cluster function are discussed and
techniques for suchcomputations are presented. We have also organized the library of
gates in anefficient way that reduces the number of times the Boolean matching algo
rithm isused. We developed ways toreduce thenumber of clusters generated ineach tree
and also more efficient don't care computation techniques to speed up the Boolean map
per. The sametechnique canbe used for delay optimization and layoutdriventechnology
mapping.
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