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Abstract

A new formulation for finding the existence of a Boolean match between two
functions with don’t cares is presented. An algorithm for Boolean matching is de-
veloped based on this new formulation and is used within a technology mapper as a
substitute for tree matching algorithms. The new algorithm is fast and uses symme-
tries of the gates in the library to speed up the matching process. Local don’t cares
are computed for each function being mapped in terms of its inputs. To reduce the
frequency in which Boolean matching is used, the gates in the library are grouped
into classes such that it is sufficient to try‘to match a function with the class repre-
sentative. Experimental results show significant improvement in the final area of the
mapped circuits.

*This project was supported in part by NSF/DARPA under contract number MIP-8719546 and MIP-
9002962 and grants from IBM and DEC.



1 Introduction

Detection of equivalence of Boolean functions, also called matching, is a problem aris-
ing in logic synthesis when a boolean network is to be implemented in terms of reusable
building blocks. Many solutions have been proposed for this problem almost since the
introduction of packaged logic gates. In [4], a tree matching algorithm is used to im-
plement a network in terms of the gates in a library which is similar to the one found
in programming language compilers for generation of optimal code for expression trees.
Mailhot and DeMicheli present Boolean methods for technology mapping in a more re-
cent paper [5]. Unlike tree matching, the Boolean matching techniques allow the use of
don’t care information. This can result in better quality circuits because some matches
that could not be detected with tree matching techniques are now found. Additionally,
there is no need to add inverters to the circuit because both input phases of a function
being matched are considered at the same time.

Mailhot and DeMicheli [5] proposed two different algorithms for Boolean matching:
one that uses don’t cares and another that does not. When matching without don’t cares,
symmetries are used to speed up the matching process. This technique was the basis
of the algorithm of Dietmeyer and Schneider [3] and has also been applied recently by
Morrison et al. [6] in a technology mapping algorithm based on a covering approach.
Dietmeyer and Schneider computed symmetries in the presence of don’t cares, but com-
putation of larger symmetries becomes expensive, because in this situation symmetry sets
do not form an equivalence class. For matching with don’t cares the algorithm of Mail-
hot and DeMicheli uses a matching compatibility graph which is built during the setup
phase. Each node of this graph corresponds to an NPN-equivalent [7] function. The size
of this graph grows exponentially with the size of the variable support of the functions,
and has limited the usage of don’t cares to the matching of functions with at most 4 in-
puts. Symmetries are not used with this algorithm. The algorithms in [5] and [3] compute
the symmetries of both functions being matched. The computation of symmetries is rel-
atively expensive, as it requires O(n2) cofactor computations for a completely specified
function (no don’t cares) with  inputs. Consequently, cofactor computations dominate
the cost of finding a boolean match in such algorithms.

We present a new Boolean matching algorithm which uses both symmetries and don’t
cares at the same time, and requires only the computation of the symmetries of one of
the functions. This Boolean matching technique is used both for technology mapping
and organizing the gate libraries. In technology mapping, one of the functions to be
considered for the matching is a library function whose symmetries can be computed in a
setup phase. This speeds up the matching considerably and has enabled the application of
Boolean matching techniques to much larger circuits with run times comparable to those
obtained using tree matching while obtaining circuits with smaller area.

We use this new Boolean matching technique within a technology mapper which
uses the principles previously developed by Keutzer[4], Detjens et al.[2] and Rudell[10].



This is based on finding a tree decomposition of the graph associated with the network
and using dynamic programming to map each of the trees. The dynamic programming
algorithm visits the nodes of each tree in depth first order and for each node, finds the best
match of a subtree, rooted at the node, with the tree representation of a gate in a given
library.

In [12], efficient ways are given for computing local don’t cares which are applied
to node simplification in multi-level logic networks. We use the same don’t care com-
putation techniques to find local don’t cares at the leaves of each cluster function being
mapped to a library gate. These are then used to find the best match for the cluster func-
tion. Although we have only used this Boolean matching technique to find the best area
for the circuit, the algorithm is very general and can be used in other contexts such as
delay optimization, or layout driven technology mapping [9].

As demonstrated in [10], the inclusion of complex CMOS gates in the library is use-
ful because it may lead to a significant reduction in the required area for implementing
some combinatorial functions. However, larger cell libraries require more matchings and
imply the use of functions with more inputs, making technology mapping with very large
libraries computationally expensive. Mailhot and deMicheli [5] proposed a technique for
speeding-up the matching by grouping gates in the library in such a way that after finding
a match with a representative gate the match with all gates in the group is determined.
We have also developed a technique for grouping gates, using our matching algorithm.
The gates in the library are matched with each other and the ones that match with inverted
inputs or output are stored in the same data structure.

The rest of this paper is organized as follows. Section 2 introduces the notation and
terminology used throughout the paper. In section 3, we introduce techniques for simpli-
fying the Boolean matching problem. Section 4 presents a Boolean matching algorithm
used for technology mapping. We also explain the significance of symmetries and how to
generate different supports of a Boolean function in this section. Section 5 explains the
computation of local don’t cares to be used for Boolean matching. Section 6 discusses
the organization of the library. Finally we present the experimental results in section 7
and conclusions in section 8.

2 Terminology and Notation

Let (z1,22,...,7,) be the variables in the Boolean space B™. A literal is a variable in
its true or complement form (e.g. z;, or ;). A product term or cube is the conjunction
of some set of literals (e.g. z12,%3). A Boolean network N, is a directed acyclic graph
(DAG) such that for each node in A there is an associated representation of a Boolean
function f;, and a Boolean variable y;, where y; = f;. There is a directed edge e;; from
¥i to y; if f; depends explicitly on y; or 7;. A node ¥; is a fanin of a node y; if there is
a directed edge e;; and a fanout if there is a directed edge e;;. A node y; is a transitive



fanin of a node y; if there is a directed path from Yi to y; and a transitive fanout if there is

a directed path from y; to y;. Primary inputs x = (z1,...,2,) are inputs of the Boolean
network and primary outputs z = (21,..., 2;,) are its outputs. Intermediate nodes of the
Boolean network have at least one fanin and one fanout. The support of a function fis
the set of variables that f explicitly depends on.

The cofactor of a sum-of-products f with respect to a literal zi(Z7), denoted by
fz:(f=), is a new function obtained by substituting 1(0) for z ;(%7) in every cube in f
which contains z;(F7).

The Shannon’s expansion of a Boolean function f with respect to a variable z is

f=zf:+Zf5

BDD’s [1] are compact representations of a recursive Shannon decomposition. They
are unique for a given variable ordering and hence are canonical forms for representing
Boolean functions. They can be constructed from the Shanon’s expansion of a Boolean
function by 1) deleting a node whose two child edges point to the same node, and 2) shar-
ing isomorphic subgraphs. Technically the result is a reduced ordered BDD, (ROBDD),
which we shall just call BDD.

The consensus operator or universal abstraction applied to a function f with respect
to a variable z; is

cz.'f = fzifi."

This is the largest Boolean function contained in f which is independent of z;.
The smoothing operator or existential abstraction applied to a function f with respect
to a variable z; is

Sz.‘f = fz.- + f':E."

This is the smallest Boolean function independent of z; which contains f.
The Boolean difference of a function f with respect to a variable z is defined as

0 - =
L e f Rt Tt
This function gives all the conditions under which the value of f is influenced by the

value of z, Its complement therefore is all the conditions under which f is insensitive to
z.

2.1 Don’t Cares in a Boolean Network

If y; is the variable at a node and f; its logic function, then y; = f;; therefore, we don’t
careify; # f;. Theexpression ;(y; # fi)iscalled the satisfiability don’t care set (SDC)



of N. SDC is defined in the extended space B"*™ which is composed of both input and
intermediate variables. The observability don't cares (ODC’s) at each intermediate node
of a multi-level network are a set of input minterms under which the function at the
node can be either 1 or 0 while the functions generated at each primary output z; remain
unchanged. If z = (zy,..., z;) are the primary outputs, then ODC at node y, is

ODC, = {m € B"|z,,(m) = zg,(m)}.

In practice, it is computationally expensive to compute the full observability don’t
care at each node. Thus subsets of observability don’t cares are used. Subsets of ob-
servability don’t cares are compatible [8] if the function at each node can be changed (as
allowed by its observability don’t care subset) independent of allowable changes in the
functions at other nodes in the network. These compatible subsets can be computed for
all the nodes by traversing the Boolean network once [11].

In general, we don’t care about the value of every single output for every single input
combination. The external don’t care for each output z; of the network N is composed
of vertices in B™ which correspond to the input combinations that a) never happen or b)
the value of 2; for that particular input combination is not important.

The local don’t cares [12] at y; are don’t cares computed for the node in terms of its
immediate fanins. The local don’t cares can also be computed in terms of any cutset of
nodes that can express the function f;.

3 Boolean Matching

We address the Boolean matching problem for two functions f(z1,...,2m)and g(y1,.. ., Ym)
with the same number of inputs and don’t care sets ds(z1,...,Zm,) and dg(y1y. -y Ym)
in this section. The objective is to find an assignment of variables z to y such that there
exists a function that is a cover of both f and g.

A particular assignment of variables of g to f (i, = zj,,¥;, = TipeeesYim = Tjp)
can be represented by a new function

Ai(z,y) = (44,075 )(¥5,0%5) - - (Yim®T;)-

In general, both (y;,®z;,) and (y;, @ zj) are possible assignments. The first sets y;, =
zj; the second sets y;, = F;,. The function ji under variable assignment A, is simply
Gk(z) = SyAi(z,9)9(v).

Lemma 3.1 Let § and Jg represent the new function obtained from g and d 4 by switching
Yy's with the corresponding z's for a particular assignmentof y’sto z’s. A matching under
this assignment exists ifand only if § — dg < f + dy and f — dy < §+ d.



Proof Assume amatching exists under the given variable assignment and let / represent
the function for which the matching exists. j—d, < h < §+dgand f—ds < h < f+dy;
therefore, § —dy < f +dy and f — dy < §+ d,. Onthe other hand, if § — d, < f + d;
and f —dy < §+d,, weleth = (f—ds)+(§—dy). Clearly, §—d, < h < d+d,and
f—deth'i‘df.l
Lemma 3.2 The matching under variable assignment Ay, exists if and only if

Mg = cz(sy(Ak'(df + dg + f@g))) =1 (1)

(The significance of consensus operation is shown in the next Lemma).

Proof Let§ = S5,Axg and d;, = S,Axd, then

M = Co(Sy(Ax(dy + dg + fBg)))

= Cz(SyArdy + SyArdg + SyArfg + SyALfT)

= Co(dsSyAr + dy + fS,Akg + TS, ArD)

= Cu(dy +dy + f59)
Ca(ds+dy+ fB9) = lifandonly if (ds+d,+ f@5) = 1. Assume (ds+d,+ f@3) = 1.
Letm be aminterm in §—d,. Thenm € f+dy, otherwise ds+dy+ f&§ # 1. Asaresult,
§—d, < f+d;. Inthe same way, (ds+dy+f®§) = 1implies f—d; < §+d,,. Therefore,
if Co(dy + (ig + 89 =1, amatchexists_._l_ff -ds < g+ d_;, and § — dqg <ds+ f,
men§f+df+¢fg = g+ds+d, andf§+df+Jg = g+d;+d}. Therefore
(df+dg+ fB3) = 1. m

We can organize equation (1) in a more computationally efficient way by using the

result of the following lemma.

Lemma 3.3 Ifi # j, C;,Sy;(z;8y;)h(z,y) = Sy;(z;85y;)Cz;h(z, y)-
Proof

CziSy; (zj®y)h = czesyj(zjyjhvj + ijjhﬁj)
Cza(""jhw + fjhﬁ,-)

= (-"’J'(Cz.'h)yj + Ej(c"’ih)i‘-j)
Sy;(2;0Y;)Cz;h.

Lemma 3.4 Let Ax = (11021)(42872) . . .(ym®m). Then My = Co(Sy(Ar.(ds +
dg + f®g))) can be expressed as

Mg = (szsw(mm§ym) .. -czlsyl(zl§yl)(d.f +dq + f@g))



Proof The statement of the lemma follows by induction and lemma 3.3. =

All the possible assignmets of variables y to = are not required to check whether a
matching exists. First we express necessary conditions for a matching to exist. Let |f|
represent the number of minterms in the function f. Once BDD’s are built for functions
f and g, then | f| and |g| can be easily found by traversing the corresponding BDD’s only
once. Given node n in the BDD of f with children n! and nr, the number of minterms
in the function represented by = in the ordered BDD of f can be found if this number is
known at nl and nr. We represent the difference between the variables n and n! in the
variable ordering by [ (if n appears right before n/, ! = 1) and the difference between the
variable of n and nr in the variable ordering by . The number of onset points for the
function at n is |n| = 2'~!|nl| + 27!|n7|. Initially, the number of minterms at node I is
set to 1 and node 0 is set to 0. Also, if the root of the BDD is not the first variable in the
ordering we multiply the count at the root node by 2% where & is the difference between
the root node and the first variable in the ordering.

Theorem 3.5 A matching between f and g exists under any variable assignment only if
|f —dsl <19+ dgl. [F - ds| < |5+ dgl, |9~ dy| < |f + dyl, and |7 ~ dy| < [F + dy]-
In particular, ifdy = 0 and dg, = 0, | f| = |g|.

Proof Each onset point of f must be mapped to an onset point or don’t care point of g
and each offset point of f must be mapped to an offset point or don’t care point of g. If
|f — dg| > |9+ dgy| some onset points in f cannot be mapped to any onset or don’t care
point of g. The proof is similar for other cases. =

Lemma 3.6 A matching under the assignmentz; = y; exists only if| fz, —dy =l < lgy;+
dyyjl’ |7¢; ‘dfz,-| < |§yj +dg,2-.|»|gyj-dgw| < |fz.-'|'df:,-|'l."7yj —dgy,-l < |73i+dfz‘|’
\fes = dyz,| < 195, + dag ). Fz; = drg) < 1Ty, + dog, 1. o5, — dog| < | + dpg
andlyyj - dgyjl <Ifs + dgz.|. Inparticular, ifdg = 0 andd, = 0, | ;| = |gy;| and
|fz:] = Ig‘ﬁ,l

Proof If z; = y;, each onset point of (f,, — dy J,.,) must be mapped to a pointin (g,; +
dgw ), therefore, | £, — dy_.| < |gy; — dgyj |. Other cases can be proved in the same way.
| |

Corollary 3.7 A matching under the assignment T; = y; exists only if | fz, — d f,,-,-' <
195+ dag, | Fe = di | < 18+ dog 11195, ~ g, | S |fesdg 11 1T, dog, | < [+
df |\ fm —dsz | < lgy; +dg, | |F5 —dsz ] < |9, +dg,. . 19y; —dg | < |fz:i+dsz ),

andl—g-yj - dgy,'l < IT?.' + d'f'fil'



From now on, we concentrate on the use of Boolean matching in technology mapping
where we try to match a cluster function having some local don’t cares with a library
function which has no don’t cares (d, = 0).

4 Boolean Matching for Technology Mapping

The objective of a technology mapper is to map a circuit into a set of gates in the library.
The given circuit is first decomposed into a set of 2-input gates and then into a set of
disjoint trees. As in [4, 2, 10], we use dynamic programming to map each of the trees
into a set of library gates. The trees are mapped in topological order; each tree is mapped
after all its fanin trees. Mapping is a two step process. In the first step, called matching,
we find the minimum cost matching for the root of the tree. In the second step, called
gate assignment, we implement the logic function of the tree in terms of library gates as
determined in the matching phase.

The first phase of technology mapping is to traverse the target tree bottom-up from
the primary inputs. At each node, all possible functions up to a given number of inputs
having that node as output are considered. These functions are called cluster functions;
their corresponding subgraphs are called clusters [5). In our formulation, a cluster is
represented by a root node and a set of leaf nodes (cutset of nodes) separating the root
node from the rest of the network. We use an iterative algorithm for cluster generation,
that starts with a cluster consisting only of the root node, and generates new clusters
by expanding every cluster. Expansion of a cluster is done by removing each of the
nodes of the cutset one at a time and adding its fanin nodes to it. If some of the clusters
generated in this process have been generated before, or contain more nodes than the
maximum number of inputs in any gate of the library, they are simply discarded. Each
iteration expands the clusters generated on the previous iteration only. Cluster generation
is stopped after an iteration that does not produce more clusters.

During gate assignment we build a new network that contains the best map at each
tree. Ateach tree, we need to choose the phase of the root node of the tree. The less costly
phase in terms of area is currently chosen unless the root node is a primary output where
the positive phase is chosen. The penalty for using the phase that is not implemented is the
cost of an inverter. After all the trees in the network are mapped, we traverse these trees
inreverse order, and check what phase of the root is used in each tree. If the implemented
phase in the new network for a particular tree is always inverted before it is used by its
fanout trees, we switch to the other phase of that tree to reduce cost.

The matching problem is to find any library function that can be matched with a clus-
ter function. The correspondence between the inputs of the cluster function and the library
gate is sought first, then one checks if the functions are equivalent under such condition.
In the presence of local don’t cares the matching problem can be formulated as follows.
Let f(z1,%2,...,2,) be a cluster function with local don’t-care d(z,, z2,...,Z,), and



9(¥1,92,...,¥m) be a library function where m < n. If m > n, some of the inputs of
the library gate must be set to 0, 1, or tied together. Such gates can be added to the library
in a preprocessing step. For architectures composed of particular types of gates where
the case m > n is important, special techniques can be devised to do Boolean matching.
If m < m, a matching exists only if the support f can be reduced using the given don’t
care set. This is unlikely in a well-optimized circuit because most redundant connections
are already removed. For each cluster function we generate all the possible supports and
match each one with a library gate of the same number of variables.

4.1 Generating all Supports

We divide the matching problem into two parts. First, we generate f and d for each
possible support of a cluster function f with don’t care d. The circuits given for mapping
are usually well optimized and do not have many redundancies; therefore, we expect few
possible supports by which f can be represented. Each function f is then compared to
all the library gates which have the same number of inputs.

Let f be a cluster function with the support X. A support X; C X (X; = X - X;)
is a valid representation for f if and only if Sx.(f = d) £ (f + d), or equivalently
(f~d) < Cx,(f +4) (Sx,(f—d) < (f+d) implies that S, (f —d) < Cx,(f+d)). This
new function f can be represented as f = Sy (f — d) with don’t care setd = Cx.(f +
d) — Sx.(f — d). The algorithm shown in Figure 1 is used to generate all the possible
supports for a cluster function f. The original arguments given to generate_support are
fi= f—d, fo = f+d,varsisall the variables in f and d (this is also saved as a possible
support for f), and start = 0.

Other techniques have been recently suggested for generating all possible supports
of a function [14]. We are still investigating such techniques.

4.2 Boolean Matching Algorithm

The algorithm for finding the existence of a match between a library gate g(y1, .. ., Ym)
and a cluster function f(z1,...,zm) with don’t care set d(z, ...,z ) is shown in Fig-
ure 2. f and g have the same number of inputs. The argument M is originally set to
M = d + f@g. The argument i shows the variable in f for which a match is sought. i
is set to 0 originally. Before calling boolean_match, we check the necessary condition
given by theorem 3.5. If that condition is not satisfied, f and g cannot be matched. Each
input z; of f must be matched with an input y; of g.

z; can be equal to y; if the necessary conditions as given by lemma 3.6 are satisfied.
If they are not satisfied, Z; = y; is tried. If that is not possible either, y; is not a possible
match for z; and is skipped. If no input of g can be set equal to z;, f and g cannot be
matched.



function generate_support(fi, fr, vars, start)
begin
for (i = start;i < number(vars); i++) begin
z; = vars(i)
if (2, fi < fn) begin
newvars(k) = vars(k) fork < i
newvars(k) = vars(k+ 1) fork > i
save newwvars as a possible support

newf; = Sy, fi
newf h = c.t.' .f h
generate_support(new fi, new fn, newvars, i)
end
end
end

Figure 1: Generating Supports

4.3 Symmetries

Most gates in the library have many symmetries. We find all such symmetries for all the
gates in the library in a preprocessing step. For example, gate g might have two inputs
Y& and y; which are symmetric. If z; = y; is not possible, then clearly z; cannot be set
equal to y; either and is skipped. There is another kind of symmetry which can be used to
speed up Boolean matching. Given alibrary gate g = y1y,+ Y3Y4+ ysye, Y1 is symmetric
with i3, y3 is symmetric with y4, and ys is symmetric with y. If we switch the variables
¥3 and y4 with y; and y;, we get exactly the same function. In this example, y,y; are
group symmetric with y3y4 and ysys. Therefore if a variable z; cannot be matched with
Y1, it cannot be matched with any other variable in g and no matching exists. On the other
hand, if y; has been matched with some other variable j and z; cannot be matched with
Y2, we still need to try z; = y3. Symmetries and group symmetries are found for each of
the gates in the library.

4.4 Heuristic

Once we find a variable y; that can be set equal to z;, we reduce the size of the matching
problem at hand by one variable and try to match the rest of the variables in f and g.
Using the result of lemma 3.4, we compute newM = Cz; Sy;(zi®y;)M. A necessary
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function boolean_match(f,d, g,i, M)

begin
if(M =0)
return match_not_found
ifM=1

return match_found
z; = ith variable in f
for each variable y; of g not matched yet begin

if y; is symmetric to a y. already tested
continue

/* check the necessary conditions for z; = y; ¥
if (1fz; — dz] < lgyjl) and (lzz; —dg| < l?y,-l) and
(Ifz - dz| < lgg,|) and (|7, — dz,| < [75,])) begin
newM = C,; Sy, (z:®y;)M
(newf, newd, newg) = choose (fzisdzis 9y;) or (fz;, dz,, gy,)
if (boolean_match(new f, newd, newg, i + 1, newM ) == match_found)
return match_found
end

/* check the necessary conditions for T; = y; ¥
if (| fz; — dsi| < lgﬁjl) and(l_?z; —dg| < I?yjl) and
(Ifz = dz| < lgy;]) and (|F; — dzil < [3,,,])) begin
newM = C;, Sy, (z: ® y;)M
(new f, newd, newg) = choose (fs;, dz;, 9g;) or (fz;, dz;, 9y;)
if (boolean_match(new f, newd, newg, i + 1, newM) == match_found)
return match_found
end
end
return match_not_found
end -

Figure 2: Boolean Matching
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and sufficient condition for the matching to exist is that newM = 1 after all the variables
are matched as in lemma 3.2.

The necessary condition given by lemma 3.6 to match z; and Y5 requires computing
both f;; and fz, and comparing them with 9y; and gy, respectively. When we match a
second pair of variables z; = yx, we need to compute frizys frims Foimy and fzz, and
compare it with gy;y, , 9y,5, , 9g;u,» and 95,9, This number grows exponentially as we
match more variables.

When we setz; = y;, the pairs ( fs,, 9y;) and (fz;, 9y;) must be matched respectively.
We only choose one of the pairs (f;,, gy;) and (fz;, 95;) to be passed to the next step of
the algorithm to be used for checking necessary conditions as given by lemma 3.6.

For example, let f = z1z2z3 and g = y;y,y3. First we try to find a match for variable
T). T1 = y satisfies the necessary condition ( f;, = z,z3, fz = 0,9y, = v293, and
gy = 0). The pair (fz, = 0, g5, = 0) cannot give us any further information because the
necessary conditions are always satisfied for this pair irrespective of what variables are
matched. On the other hand, the pair ( f,, g,,) contains all the information that we need.
The following heuristic is used to choose one of the two pairs. If (fz; — dz; = 0), 0r
(gy; = 1), the necessary conditions as given in lemma 3.6 are always satisfied. Therefore
the other pair ( f5;, 9y;) is used to guide the matching. This same principle is used to check
the other pair. If the above check is not enough, we choose either of f;; or fz, which has
the larger difference between the number of onset points and offset points. The difference
between the onset and offset points is computed as follows, absolute_value(]| foi—dz| -
|fz; — dz;]) and absolute value(|fz, — dz| - |f3, - dz]).

This algorithm runs in linear time in the number of input variables for a library gate
with one minterm in the onset or offset (AND, OR, NAND, NOR).

S Don’t Care Computation

The network is first decomposed into a set of trees. We compute compatible external plus
observability don’t cares at each of the nodes of the network as explained in [12]. These
trees are sorted in topological order. Each tree is mapped after all its fanin trees. Image
computation techniques are then used to find local don’t cares at the leaves of the tree that
is being mapped. The leaves of the tree correspond to primary inputs or roots of other
trees that have been already mapped therefore their functions are fixed and the computed
local don’t cares are valid.

First we build BDD’s corresponding to global functions (functions in terms of primary
inputs) at each of the leaves of a tree. The observability plus external don’t care set at the
root of the tree is already computed. We find the care set at the root node and cofactor
(generalized cofactor [15]) the global functions at the leaves with respect to the care set.
The recursive image computation method [15] is then used to find all the reachable points.
The inverse of the reachable points gives the local don’t cares at the leaves of the tree.
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To compute the local don’t cares for a cluster function within the tree we repeat the
above procedure. The tree itself is considered like a network and its local don’t cares are
treated as external don’t cares or input combinations that never occur. We build BDD’s
for each of the leaves of a cluster function in terms of the leaves of the tree and cofactor
them with respect to the care set of the whole tree. We then find all the unreachable points
for the cluster function in terms of its leaves. We have found the best match at the leaves
of the cluster function already. Because of the observability and external don’t cares, the
positive and negative phase functions at the leaves of a cluster are not necessarily inverses
of each other; therefore, the local don’t cares computed are not necessarily valid for both
phases. Let f7,..., fP and f7,..., f be the positive and negative matches found for
the leaves, y,...,¥,, of a cluster. Let E, be the external don’t care for the tree, and let
di = f7 @ f?. A valid local don’t care set for both phases of the cluster is

D = S(Ey®f +d) .. B + 7).

This local don’tcare set is correct whether fP or f plus an inverter is used as the function
for the ith leaf. If only external don’t cares of the tree are used but not the observability
don’t cares within the tree, then d; E; = 0; therefore, there is no need to compute d;.

It must be also mentioned that, the choice of the functions at the leaves of a cluster
affects the local don’t cares of that cluster. Hence, dynamic programming might not give
the best result for the mapping of a tree when observability don’t cares are used within a
tree. The choice of the best function at the leaves may shrink the local network for the
cluster and thus worsen the final results, although this is not very likely in practice.

In a circuit with large trees, there are usually many clusters that one has to consider.
Computing local don’t cares for all such clusters is a costly operation.

6 Library Organization

Before technology mapping, a setup phase is used to process gates in the library and
generate particular data structures called NUTS. The term NUT is the abbreviation for
Negative Unate Transform introduced in [S]. All the gates in a NUT are equivalent to a
NUT representative in the sense that the function of each gate can be obtained by inverting
some of the inputs of the NUT representative. The NUT structure reduces the number
of calls to the Boolean matching algorithm. Finding the best match between a cluster
function and the set of gates in the library is therefore reduced to the use of the matching
algorithm on the cluster function and all the NUT representatives with the same number
of inputs. The matching with the remaining gates is derived directly from the assignment
information computed during the setup phase.

In the groups we build, we also consider the inversion of the outputs of the gates.
This reduction is possible because our matching algorithm considers the matching with
both phases of the input nodes at the same time. In our implementation, the 2-input
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functions NOR, NAND, AND and OR are in the same NUT and any of them can be the
representative. Matching both phases of a node with these gates requires either a single
call to the Boolean matching algorithm if a matching is found with the first phase being
tried or just another call to find if the other phase matches or no match is possible.
Instead of computing the negative unate transforms of the input variables as in [5),
we use the Boolean matching algorithm to place each gate in its corresponding NUT
structure. The setup phase parses the library, reading one gate at a time. A gate is added to
aNUT if itor its complement matches the NUT representative. If the gate does not match
any of the existing NUT’s, then a new NUT is created with the gate as its representative.
Symmetries and symmetry groups are also computed for each representative at this time.

7 Results

We run the new technology mapping algorithm on a set of benchmarks chosen from
MCNC and ISCAS combinational circuits and compared the results with technology
mapping for area in SIS. Table 1 shows the result for combinational circuits without
any external don’t cares. These circuits are well optimized using the rugged script [13]
in SIS. The MCNC library lib2 is used for the mapping. The column start shows the
literal count in factored form for each of these circuits. The columns SIS, bm_no_dc,
bm_tree_dc, and bm_full_dc show the area of mapped circuits. We divide numbers given
by the mapper by 464 (half the area of the smallest inverter) to get round small numbers.
As shown in the table, considerable improvements are obtained for some circuits by just
using Boolean matching without any don’t cares (bm_no_dc). For these circuits, we get
8 percent improvement in area compared to technology mapping in SIS while spending
3.9 times as much time. The best improvement is obtained for C6288 which is about
25 percent. The column bm_tree_dc shows the obtained area when don’t cares are com-
puted only for the leaves of each of the trees. The CPU times and the circuit areas are
almost the same as the case with no don’t cares. The BDD’s cannot be built for some of
these trees as shown in the table. The column bm_full_dc shows the result obtained by
computing don’t cares for each single cluster. The times spent for mapping are an order
of magnitude more than SIS while there is 12 percent improvement in the final area of
the mapped circuits. Although the time spent is substantially more than the time spent
by tree matching algorithms, it is comparable to the time spent for circuit optimization.

If these circuits are not optimized first, the improvement over the technology mapping
in SIS is very substantial. This is because by computing local don’t cares and performing
Boolean matching we do redundancy removal and a much stronger optimization on each
circuit as opposed to tree matching. Even though the results on unoptimized circuits are
better than the ones obtained from SIS, they are suboptimal to the ones obtained after
running rugged script on each circuit.
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[circuit T start lm CPU -PU J[ bm_treedc T CPU || bm full.dc | CPU ]
[Cas2 | 218 ][ 437 | 5 || 398 397 | 157 | 381 574 ]
C880 | 414 || 783 10 734 49 734 59 734 343
CI1355 | 552 i1 914 11 || 738 8 738 87 724 1184
C1908 | 535 || 933 11 H 810 27 810 118 793 1774
C2670 | 748 || 1339 | 20 1236 103 - - - -
C3540 | 1283 || 2269 | 36 2176 213 - - - -
C5315 | 1763 || 3055 [ 45 3025 173 3025 229 3003 2285
C6288 | 3367 || 5453 | 68 4070 111 - - - ~
C7552 | 3022 || 4076 | 58 3690 190 - - - -
Z4ml 43 86 1 69 3 69 6 68 69
f51m 80 150 2 148 6 148 9 112 53
apex5 | 768 || 1473 | 19 1362 91 1361 127 1355 1180
apex6 | 732 || 1390 | 19 1345 97 1341 120 1336 882
alud 102 200 2 196 10 196 11 180 103

rot 664 || 1283 | 16 1270 62 1267 74 1255 466
des | 4214 [} 5947 | 137 5698 596 5501 789 5498 11926
Table 1: Boolean Matching for Technology Mapping

start: number of literals in factored form for the optimized circuits

SIS: mapped using map -s in SIS

bm_no_dc: mapped using boolean matching in SIS without don’t cares

bm._tree.dc: mapped using boolean matching in SIS with DC computed at the leaves

of each tree.
bmfulldc:  mapped using boolean matching in SIS with DC computed for each cluster
CPU: in seconds on a IBM Risc System/6000 530

8 Conclusion

We have presented a new Boolean matching algorithm that can use don’t cares and sym-
metries efficiently. We have applied this algorithm to technology mapping and have
shown that the results of the mapper can be improved compared to tree matching tech-
niques. The computation of local don’t cares for each cluster function are discussed and
techniques for such computations are presented. We have also organized the library of
gates in an efficient way that reduces the number of times the Boolean matching algo-
rithm is used. We developed ways to reduce the number of clusters generated in each tree
and also more efficient don’t care computation techniques to speed up the Boolean map-
per. The same technique can be used for delay optimization and layout driven technology
mapping.
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