
Copyright © 1992, by the author(s).

All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.



LIBTP: PORTABLE, MODULAR

TRANSACTIONS FOR UNIX

by

Margo Seltzer and Michael Olson

Memorandum No. UCB/ERL M92/2

6 January 1992



LIBTP: PORTABLE, MODULAR

TRANSACTIONS FOR UNIX

by

Margo Seltzer and Michael Olson

Memorandum No. UCB/ERL M92/2

6 January 1992

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720



LIBTP: PORTABLE, MODULAR

TRANSACTIONS FOR UNIX

by

Margo Seltzer and Michael Olson

Memorandum No. UCB/ERL M92/2

6 January 1992

ELECTRONICS RESEARCH LABORATORY

Collegeof Engineering
University of California, Berkeley

94720



LIBTP: Portable, Modular Transactions for UNIX

Margo Seltzer
Michael Olson

University ofCalifornia, Berkeley

Abstract

Transactions provide a useful programming paradigm for maintaining logical consistency, arbitrating con
current access, and managing recovery. In traditional UNIX systems, theonly easywayof using transactions is to
purchase a database system. Such systems are often slow, costly, and may not provide the exact functionality
desired. This paper presents the design, implementation, and performance ofLIBTP, a simple, non-proprietary tran
saction library using the 4.4BSD database access routines (db(3)). On a conventional transaction processing style
benchmark, its performance isapproximately 85% that of the database access routines without transaction protec
tion, 200% that of using fsync(2) to commit modifications to disk,and 125% thatof a commercial relational data
base system.

1. Introduction

Transactions are used indatabase systems to enable concurrent users toapply multi-operation updates without
violating the integrity ofthe database. They provide the properties ofatomicity, consistency, isolation, and durabil
ity. By atomicity, we mean that the set ofupdates comprising a transaction must beapplied asa single unit; that is,
they must either all beapplied tothe database orall be absent Consistency requires that a transaction take the data
base from one logically consistent state toanother. The property of isolation requires that concurrent transactions
yield results which are indistinguishable from the results which would be obtained by running the transactions
sequentially. Finally, durability requires that once transactions have been committed, their results must be preserved
across system failures [TPCB90].

Although these properties are most frequently discussed in the context ofdatabases, they are useful program
ming paradigms for more general purpose applications. There are several different situations where transactions
can be used to replace current ad-hoc mechanisms.

One situation iswhen multiple files orparts offiles need to be updated in an atomic fashion. For example, the
traditional UNIX file system uses ordering constraints toachieve recoverability in the face ofcrashes. When a new
file is created, its inode iswritten to disk before the new file is added to the directory structure. This guarantees that,
if the system crashes between the two I/O's, the directory does not contain a reference toan invalid inode. Inactu
ality, the desired effect isthat these two updates have the transactional property ofatomicity (either both writes are
visible orneither is). Rather than building special purpose recovery mechanisms into the file system orrelated tools
(e.g. fsck(8)), one could use general purpose transaction recovery protocols after system failure. Any application
that needs to keep multiple, related files (or directories) consistent should do so using transactions. Source code
control systems, such as RCS and SCCS, should use transaction semantics to allow the "checking in"ofgroups of
related files. In this way, if the "check-in'* fails, the transaction may be aborted, backing out the partial "check-
in' ' leaving thesourcerepository in a consistent state.

A second situation where transactions can be used to replace current ad-hoc mechanisms is in applications
where concurrent updates to a shared file are desired, but there is logical consistency ofthe data which needs to be
preserved. Forexample, when the password file isupdated, file locking is used todisallow concurrent access. Tran
saction semantics on the password files would allow concurrent updates, while preserving the logical consistency of
the password database. Similarly, UNIX utilities which rewrite files face a potential race condition between their
rewriting a file and another process reading the file. For example, the compiler (more precisely, the assembler) may
have to rewrite a file to which it has write permission in a directory to which it does not have write permission.
While the ".o" file isbeing written, another utility such as nm(l) orar(l) may read the file and produce invalid
results since the file has not been completely written. Currently, some utilities use special purpose code to handle



such cases while others ignore the problem and force users to live with the consequences.
In this paper, we present asimple library which provides transaction semantics (atomicity, consistency, isola

tion, and durability). The 4.4BSD database access methods have been modified to use this library, optionally provid
ing shared buffer management between applications, locking, and transaction semantics. Any UNIX program may
transaction protect its data by requesting transaction protection with the db(3) library orby adding appropriate calls
to the transaction manager, buffer manager, lock manager, and log manager. The library routines may be linked
into the host application and called by subroutine interface, or they may reside in a separate server process. The
server architecture provides fornetwork access andbetter protection mechanisms.

2. Related Work

There has been much discussion in recent years about new transaction models and architectures
[SPEC88][NODI90][CHEN91][MOHA91]. Much of this work focuses onnew ways tomodel transactions and the
interactions between them, while the work presented here focuses on the implementation and performance of tradi
tional transaction techniques (write-ahead logging and two-phase locking) on a standard operating system (UNIX).

Such traditional operating systems are often criticized for their inability to perform transaction processing
adequately. [STON81] cites three main areas of inadequate support* buffer management, the file system, and the
process structure. Thesearguments are summarized in table one. Fortunately, much has changed since 1981. In
the area of buffer management, most UNIX systems provide the ability to memory map files, thus obviating the
need for a copy between kernel and user space. If a database system is going to use the file system buffer cache,
then a system call is required. However, if buffering is provided at user level using shared memory, as in LIBTP,
buffer management is only as slow as access toshared memory and any replacement algorithm may be used. Since
multiple processes can access the shared data, prefetching may be accomplished by separate processes or threads
whose solepurpose is toprefetch pages andwaiton them. There is still noway toenforce write ordering other than
keeping pages in usermemory andusing thefsync(3) system calltoperform synchronous writes.

In theareaof file systems, thefast file system (FFS) [MCKU84] allows allocation in units up to 64KBytes as
opposed to the4KByte and8KByte figures quoted in [STON81]. Themeasurements in this paper were taken from
an 8KByte FFS, butas LIBTP runs exclusively in user space, there is nothing toprevent it from being run onother
UNIX compatible filesystems (e.g. log-structured [ROSE91], extent-based, or multi-block [SELT91]).

Finally, with regard to theprocess structure, neither context switch time norscheduling around semaphores
seems to affect the system performance. However, the implementation of semaphores can impact performance
tremendously. This is discussed in more detail in section 4.3.

The Tuxedo system from AT&T is a transaction manager which coordinates distributed transaction commit
from a variety of different local transaction managers. At this time, LIBTPdoes not have its own mechanism for
distributed commit processing, but could be used as a local transaction agent by systems such as Tuxedo
[ANDR89].

The transaction architecture presented in [YOUN91] is very similar to thatimplemented in theLIBTP. While
[YOUN91] presents a model for providing transaction services, this paper focuses on the implementation and

Buffer Management

File System

Process Structure

• Data must be copiedbetweenkernel space and user space.
• Buffer pool access is too slow.
• There is no way to request prefetch.
•Replacement is usuallyLRU which may be suboptimal for databases.
• There is no way to guarantee write ordering.
• Allocationis done in smallblocks (usually4K or 8K).
>Logical organization of files is redundantly expressed.

• Context switchingand messagepassing are too slow.
• A process may be descheduled while holding a semaphore.

Table One: Shortcomingsof UNIX transaction support cited in [STON81].



performance of a particular system. In addition, we provide detailed comparisons with alternative solutions: tradi
tional UNIX services and commercial database management systems.

3. Architecture

The library is designed to providewell defined interfaces to the servicesrequired for transaction processing.
These services are recovery, concurrency control, and the management of shared data. First we will discuss the
design tradeoffs in the selection of recovery, concurrency control, and buffer management implementations, and
then we will presentthe overall library architecture and moduledescriptions.

3.1. Design Tradeoffs

3.1.1. Crash Recovery

The recovery protocol is responsible for providing the transaction semantics discussed earlier. There are a
wide range of recovery protocols available [HAER83], butwe can crudely divide them into two main categories.
The first category records all modifications to the database in a separate file, and uses this file (log) to back outor
reapply these modifications if a transaction aborts or the system crashes. We call this set the logging protocols.
The second category avoids the use of a logby carefully controlling when data are written to disk. We call thisset
the non-logging protocols.

Non-logging protocols holddirty buffers in main memory ortemporary files untilcommitandthenforce these
pages to disk at transaction commit While we can use temporary files to hold dirty pages that may need to be
evicted from memory during a long-running transaction, the only user-level mechanism to force pages todisk is the
fsync(2) system call. Unfortunately, fsync(2) is an expensive system call in that it forces all pages of a file todisk,
and transactions that manage more than one file mustissue onecall per file.

In addition, fsync(2) provides no way to control the order in which dirty pages are written to disk. Since
non-logging protocols must sometimes order writes carefully [SULL92], they are difficult to implement onUnix
systems. As a result, we havechosen to implement a logging protocol.

Logging protocols may becategorized based on how information is logged (physically orlogically) and how
much is logged (before images, after images or both). In physical logging, images of complete physical units
(pages orbuffers) are recorded, while inlogical logging adescription of the operation isrecorded. Therefore, while
wemay record entire pages ina physical log, we need only record the records being modified ina logical log. In
fact, physical logging can be thought ofas aspecial case oflogical logging, since the "records" that we log in logi
cal logging might be physical pages. Since logical logging isboth more space-efficient and more general, wehave
chosen it for our logging protocol.

In before-image logging, we log acopy of the data before the update, while inafter-image logging, we log a
copy of the data after the update. If we log only before-images, then there is sufficient information in the log to
allow us to undo the transaction (go back to the state represented by the before-image). However, if the system
crashes anda committed transaction's changes have notreached thedisk, we haveno means to redo the transaction
(reapply the updates). Therefore, logging only before-images necessitates forcing dirty pages at commit time. As
mentioned above, forcing pages atcommit isconsidered too costly.

If we log only after-images, then there is sufficient information in the log to allow us toredo the transaction
(go forward to the state represented bythe after-image), but we do not have the information required to undo tran
sactions which aborted after dirty pages were written to disk. Therefore, logging only after-images necessitates
holding all dirty buffers inmain memory until commit or writing them to atemporary file.

Since neither constraint (forcing pages on commit orbuffering pages until commit) was feasible, wechose to
log both before and after images. The only remaining consideration iswhen changes get written to disk. Changes
affect both data pages and the log. If the changed data page iswritten before the log page, and the system crashes
before the log page iswritten, the log will contain insufficient information to undo the change. This violates tran
saction semantics, since some changed data pages may nothave been written, and thedatabase cannot berestored to
its pre-transaction state.

The log record describing an update must be written to stable storage before the modified page. This is
write-ahead logging. If log records are safely written to disk, data pages may bewritten at any time afterwards.
This means that the only file that ever needs to be forced to disk isthe log. Since the log isappend-only, modified
pages always appear at the end and may bewritten todisk efficiently inany file system that favors sequential order
ing (e.g., FFS, log-structured file system, oran extent-based system).



3.1.2. Concurrency Control

The concurrency control protocol is responsible for maintaining consistency in the presence of multiple
accesses. There are several alternative solutions such as locking, optimistic concurrency control [KUNG81], and
timestamp ordering [BERN80]. Since optimistic methods and timestamp ordering are generally more complex and
restrict concurrency without eliminating starvation ordeadlocks, we chose two-phase locking (2PL). Strict 2PL is
suboptunal for certam data structures such as B-trees because itcan limit concurrency, so we use a special locking
protocol based on one described in [LEHM81].

The B-treelocking protocol we implemented releases locksat internal nodesin the tree as it descends. A lock
onaninternal page is always released before a lock onits child isobtained (that is, locks are not coupled [BAY77]
during descent). When a leaf (orinternal) page issplit, a write lock isacquired onthe parent before thelock onthe
just-split page isreleased (locks are coupled during ascent). Write locks on internal pages are released immediately
after thepageis updated, but lockson leafpagesare helduntil theendof the transaction.

Since locks are released during descent, the structure of the tree may change above a node being used by
some process. If that process must later ascend the treebecause of a pagesplit, any suchchange must not cause
confusion. We use the technique described in [LEHM81] which exploits the ordering of data on a B-tree page to
guarantee thatno process evergets lostas a resultof internal pageupdates made by otherprocesses.

If a transaction that updates a B-tree aborts, the user-visible changes to the tree must be rolled back. How
ever,changes to the internal nodes of thetreeneednotbe rolled back, sincethesepagescontain no user-visible data.
When rolling backa transaction, we rollbackall leafpage updates, butno internal insertions or page splits. In the
worstcase, this will leave a leaf page less than half full. This maycause poor space utilization, but does not lose
user data.

Holding lockson leaf pagesuntil transaction commit guarantees thatno otherprocess can insertor deletedata
that has been touched by this process. Rolling back insertions and deletions on leaf pages guarantees that no
aborted updates are ever visible to other transactions. Leaving pagesplits intactpermits us to release internal write
locks early. Thustransaction semantics are preserved, andlocks are heldfor shorter periods.

The extracomplexity introduced by this locking protocol appears substantial, but it is important for multi-user
execution. The benefits of non-two-phase locking on B-trees are well established in the database literature
[BAY77], [LEHM81]. If a process heldlocksuntilit committed, thena long-running update couldlockout all other
transactions by preventing any otherprocess from locking the rootpage of the tree. The B-tree locking protocol
described above guarantees thatlocks on internal pages areheld forextremely shortperiods, thereby increasing con
currency.

3.1.3. Management of Shared Data

Database systems permit many users to examine and update thesame dataconcurrently. In orderto provide
this concurrent access and enforce the write-ahead logging protocol described in section 3.1.1, we use a shared
memory buffermanager. Not only does this provide the guarantees we require, but a user-level buffer manager is
frequently faster than using the file system buffer cache. Reads or writes involving the file system buffer cache
oftenrequire copying data between user and kernel spacewhile a user-level buffermanager can returnpointers to
datapages directly. Additionally, if morethanoneprocess usesthesamepage,then fewer copies maybe required.

3.2. Module Architecture

The preceding sections described modules for managing the transaction log, locks, and a cache of shared
buffers. In addition, weneed to provide functionality for transaction begin, commit, andabort processing, necessi
tating a transaction manager. In order to arbitrate concurrent access to locks and buffers, we include a process
management module which manages a collection of semaphores used to block and release processes. Finally, in
order to provide a simple, standard interface we have modified the database access routines (db(3)). For the pur
poses of this paper we call the modified package the Record Manager. Figure one shows the main interfaces and
architecture of LIBTP.

3.2.1. The Log Manager

The Log Manager enforces the write-ahead logging protocol. Itsprimitive operations are log, logjcommit,
log_read, log-roll and logjmroll. The log callperforms a buffered write of thespecified logrecord andreturns a
unique log sequence number (LSN). This LSN may then be used to retrieve a record from the log using the
logjread call. The log interface knows verylittleabouttheinternal format of thelogrecords it receives. Rather, all
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Figure 1: Library module interfaces.

log records are referenced by aheader structure, alog record type, and acharacter buffer containing the data to be
logged. The log record type is used to call the appropriate redo and undo routines during abort and commit process
ing. While we have used the Log Manager to provide before and after image logging, itmay also be used for any
of the logging algorithms discussed.

The log_commit operation behaves exactly like the log operation but guarantees that the log has been forced
to disk before returning. A discussion ofour commit strategy appears in the implementation section (section 4.2).
Log_unroll reads log records from the log, following backward transaction pointers and calling the appropriate undo
routines to implement transaction abort In asimilar manner, logjoll reads log records sequentially forward, cal
ling the appropriate redo routines to recover committed transactions after asystem crash.

3.2.2. The Buffer Manager

The Buffer Manager uses a pool of shared memory to provide a least-recently-used (LRU) block cache.
Although the current library provides an LRU cache, itwould be simple to add alternate replacement policies as
suggested by [CHOU85] or to provide multiple buffer pools with different policies. Transactions request pages
from the buffer manager and keep them pinned to ensure that they are not written to disk while they are in alogi
cally inconsistent state. When page replacement is necessary, the Buffer Manager finds an unpinned page and then
checks with the LogManager toensure that the write-ahead protocol isenforced.

3.2.3. The Lock Manager

The Lock Manager supports general purpose locking (single writer, multiple readers) which iscurrently used
to provide two-phase locking and high concurrency B-tree locking. However, the general purpose nature of the lock
manager provides the ability to support avariety of locking protocols. Currently, all locks are issued at the granu
larity ofapage (the size ofabuffer in the buffer pool) which is identified by two 4-byte integers (a file id and page
number). This provides the necessary information to extend the Lock Manager to perform hierarchical locking
[GRAY76]. The current implementation does not support locks at other granularities and does not promote locks;
these are obvious future additions to thesystem.



If an incoming lock request cannot begranted, the requesting process isqueued for the lock and descheduled.
When alock isreleased, the wait queue istraversed and any newly compatible locks are granted. Locks are located
via a file and page hash table and are chained both by object and by transaction, facilitating rapid traversal of the
lock table during transactioncommit and abort

The primary interfaces to the lock manager are lock, unlock, and lock_unbck_all. Lock obtains anew lock
for a specific object There are also two variants of the lock request, lockjtpgrade and lockjhwngrade, which
allow the caller to atomically trade alock ofone type for alock ofanother. Unlock releases aspecific mode oflock
on aspecific object Lockjmlockjill releases all the locks associated with aspecific transaction.

3.2.4. The Process Manager

The Process Manager acts as auser-level scheduler to make processes wait on unavailable locks and pending
buffer cache I/O. For each process, a semaphore is maintained upon which that process waits when it needs tobe
descheduled. When aprocess needs toberun, itssemaphore iscleared, and the operating system reschedules it No
sophisticated scheduling algorithm is applied; if the lock for which a process was waiting becomes available, the
process is made runnable. It would have been possible to change the kernel's process scheduler to interact more
efficiently with the lock manager, but doing so would have compromised our commitment to auser-level package.

3.2.5. The Transaction Manager

The Transaction Manager provides the standard interface of txnj?egin, txn_commit, and txn_abort. It keeps
track of all active transactions, assigns unique transaction identifiers, and directs the abort and commit processing.
When a txn_begin is issued, theTransaction Manager assigns thenextavailable transaction identifier, allocates a
per-process transaction structure in shared memory, increments thecount of active transactions, and returns thenew
transaction identifier to the calling process. The in-memory transaction structure contains a pointer into the lock
table for locks held bythis transaction, the last log sequence number, a transaction state (idle, running, aborting, or
committing), an errorcode, anda semaphoreidentifier.

At commit, the Transaction Manager calls log_commit torecord the end of transaction and to flush the log.
Then it directs theLock Manager torelease all locks associated with the given transaction. If a transaction aborts,
the Transaction Manager calls on logjmroll toread the transaction's log records and undo any modifications to
the database. As inthe commit case, it then calls lock_unlock_all torelease the transaction's locks.

3.2.6. The Record Manager

The Record Manager supports the abstraction of reading and writing records to a database. We have
modified the the database access routines db(3) [BSD91] tocall the log, lock, and buffer managers. In order topro
vide functionality toperform undo and redo, the Record Manager defines acollection of log record types and the
associated undo and redo routines. The Log Manager performs a table lookup on the record type to call the
appropriate routines. For example, the B-tree access method requires two log record types: insert and delete. A
replace operation is implemented asadelete followed by an insert and islogged accordingly.

3J. Application Architectures

The structure of LIBTP allows application designers to trade off performance and protection. Since a large
portion of LIBTP's functionality is provided by managing structures in shared memory, its structures are subject to
corruption by applications when the library is linked directly with the application. For this reason, LIBTP is
designed to allow compilation intoa separate server process which maybe accessed viaa socket interface. In this
way LIBTP's data structures areprotected from application code, but communication overhead is increased. When
applications are trusted, LIBTP may be compiled directly into the application providing improved performance.
Figures two andthreeshowthe two alternate application architectures.

Thereare potentially two modesin whichone mightuseLIBTPin a server based architecture. In the first, the
server would provide the capability to respond to requests to each of the low level modules (lock, log, buffer, and
transaction managers). Unfortunately, theperformance of such a system is likely tobeblindingly slow since modi
fying a piece of data would require three or possibly four separate communications: one to lock the data, one to
obtain the data, one to log the modification, and possibly one to transmit the modified data. Figure four shows the
relative performance for retrieving a single record using the record level call versus using the lower level buffer
management andlocking calls. The 2:1 ratio observed in thesingle process case reflects theadditional overhead of



Application Program

txnjbegm
txn_commit

cin_tbort

• socket interface-*

Server Process

driver

LIBTP

db_ops

Figure 2: Server Architecture. In this configuration,
the library is loaded into a server process which is ac
cessed via a socket interface.

Single Process

Application

txn_bcgin /\
txn.commit / \ db_ops

txn_abon/ \

LIBTP

Figure 3: Single Process Architecture. In this
configuration, the library routines are loaded as pan of
the applicationand accessed via a subroutine interface.

parsing eight commands rather than onewhile the 3:1 ratio observed in the client/server architecture reflects both
the parsing and the communication overheard. Although there may be applications which could tolerate such per
formance, it seems far more feasible to support a higher level interface, such as that provided bya query language
(e.*.SQL[SQL86]). *

Although LIBTP does nothave an SQL parser, we have built a server application using the toolkit command
language (TCL) [OUST90]. The server supports a command line interface similar to the subroutine interfece
defined in db(3). Sinceit is based on TCL, it provides control structures as well.

4. Implementation

4.1. Locking and Deadlock Detection

LIBTP uses two-phase locking for user data. Strictiy speaking, the two phases in two-phase locking are a
grow phase, during which locks are acquired, and a shrink phase, during which locks are released. No lock may
ever beacquired during the shrink phase. The grow phase lasts until the first release, which marks the start of the
shrink phase. Inpractice, the grow phase lasts for the duration ofa transaction inLIBTP and in commercial data
base systems. The shrink phase takes place during transaction commit or abort. This means that locks are acquired
on demand during the lifetime ofa transaction, and held until commit time, atwhich point all locks are released.

Ifmultiple transactions areactive concurrently, deadlocks can occur andmust be detected and resolved. The
lock table can be thought of as arepresentation ofadirected graph. The nodes in the graph are transactions. Edges
represent the waits-for relation between transactions; if transaction Ais waiting for a lock held by transaction B
then adirected edge exists from Ato Bin the graph. Adeadlock exists ifacycle appears in the graph. By conven
tion, no transaction ever waits for alock italready holds, so reflexive edges are impossible.

Adistinguished process monitors the lock table, searching for cycles. The frequency with which this process
runs is user-settable; for the multi-user tests discussed in section 5.1.2, ithas been set to wake up every second, but
more sophisticated schedules are certainly possible. When acycle is detected, one of the transactions in the cycle is
nominated and aborted. When the transaction aborts, itrolls back its changes and releases its locks, thereby break
ing the cycle in the graph.

4.2. Group Commit

Since the log must be flushed to disk atcommit time, disk bandwidth fundamentally limits the rate atwhich
transactions complete. Since most transactions write only afew small records to the log, the last page ofthe log will
be flushed once by every transaction which writes to it In the naive implementation, these flushes would happen
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serially.

LIBTP uses group commit [DEWI84] in order to amortize the cost of one synchronous disk write across
multiple transactions. Group commit provides a way for a group of transactions to commit simultaneously. The
first several transactions to commit write their changes to the in-memory log page, then sleep on a distinguished
semaphore. Later, a committing transaction flushes thepageto disk, andwakes upall its sleeping peers. Thepoint
at which changes areactually written is determined by three thresholds. Thefirst is thegroup threshold anddefines
the minimum number of transactions which must beactive in the system before transactions areforced toparticipate
in a group commit The second is the wait threshold which is expressed as thepercentage of active transactions
waiting to be committed. The last is the logdelay threshold which indicates how much unflushed log should be
allowedto accumulatebeforea waiting transaction's commitrecordis flushed.

Group commit cansubstantially improve performance forhigh-concurrency environments. If only a few tran
sactions are running, it is unlikely to improve things at all. Thecrossover pointis thepointat which the transaction
commit rate is limited by the bandwidth of thedevice on which the logresides. If processes are trying to flush the
log fester than the log disk can accept data, then groupcommitwill increasethecommitrate.

43. Kernel Intervention for Synchronization

Since LIBTP uses data inshared memory (e.g. the lock table and buffer pool) it must bepossible for a process
toacquire exclusive access toshared data inorder toprevent corruption. Inaddition, the process manager must put
processes to sleep when thelock or buffer they request is in use bysome other process. In theLIBTP implementa
tion under Ultrix 4.01, we use System Vsemaphores toprovide this synchronization. Semaphores implemented in
this fashion turn out to bean expensive choice for synchronization, because each access traps to thekernel andexe
cutes atomically there.

On architectures that support atomic test-and-set, a much better choice would be toattempt to obtain a spin-
lock with a test-and-set, and issue a system call only if the spinlock is unavailable. Since virtually allsemaphores in

1Ultrix and DEC are trademarks of Digital Equipment Corporation.



LIBTP are uncontested and are held for very short periods of time, this would improve performance. For example,
processesmust acquireexclusive access to buffer pool metadata in order to find and pin a buffer in sharedmemory.
This semaphore is requested most frequently in LIBTP. However, once it is acquired, only a few instructions must
be executed before it is released. On one architecture for which we were able to gather detailed profiling informa
tion, the cost of the semaphore calls accounted for 25% of the total time spent updating the metadata. This was
fairly consistent across most of the critical sections.

In an attempt to quantify the overhead of kernel synchronization, we ran tests on a version of 4.3BSD-Reno
which had been modified to support binary semaphore facilities similar to those described in [POSDC91]. The
hardware platform consisted of an HP300 (33MHz MC68030) workstation with 16MBytes of main memory, and a
600MByte HP7959 SCSI disk (17 ms average seek time). We ranthree sets of comparisons which are summarized
in figure five. In each comparison we ran two tests, one using hardware spinlocks and the other using kernel call
synchronization. Since the test was run single-user, none of the the locks were contested. In the first two sets of
tests, we ran the full transaction processing benchmark described in section 5.1. In one case we ran with both the
database and log on the same disk (1 Disk) and in the second, we ran with the database and log on separate disks (2
Disk). In the last test, we wanted to create a CPU bound environment, so we used a database small enough to fit
completely in the cache and issued read-only transactions. The results in figure five express the kernel call syn
chronization performance as a percentage of the spinlock performance. For example, in the 1 disk case, the kernel
call implementation achieved 4.4 TPS (transactions per second) while the semaphore implementation achieved 4.6
TPS, and the relative performanceof the kernel synchronization is 96% that of the spinlock (100 * 4.4 / 4.6). There
are two striking observations from these results:

• even when the system is disk bound, the CPU cost of synchronization is noticeable, and

• when we are CPU bound, the difference is dramatic (67%).

4.4. Transaction Protected Access Methods

The B-treeand fixed length recno(record number) access methods havebeen modifiedto provide transaction
protection. Whereas the previously published interface to the access routines hadseparate opencalls foreach of the
access methods, we now have an integratedopen call with the followingcallingconventions:

DB *dbopen (const char *file, int flags, int mode, DBTYPE type,
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Figure 5: Kernel Overhead forSystemCanSynchronization. Theperformance of thekernel call synchronization is expressed asapercentage
of thespinlock synchronization performance. Indiskbound cases (1 Diskand 2 Disks), we seethat4-6% of theperformance is lostdueto kernel
callswhile in theCPUboundcase,we havelost 67%of the performance dueto kernelcalls.



int dbflags, const void *openinfo)

where file is the name ofthe file being opened, flags and mode are the standard arguments to open(2), type is one of
the access method types, dbflags indicates the mode ofthe buffer pool and transaction protection, and openinfo is
the access method specific information. Currently, the possible values for dbflags are DB_SHARED and DB_TP
indicating that buffers should be kept in ashared buffer pool and that the file should be transaction protected.

The modifications required to add transaction protection to an access method are quite simple and localized.
1.Replace fileopenwith bufjppen.
2. Replace file read and write calls with buffer manager calls (buf_get, bufjmpiri).
3.Precede buffer manager calls with an appropriate (read or write) lock call.
4. Beforeupdates, issuea logging operation.
5. After datahave been accessed, release the buffer manager pin.
6. Provide undo/redo code for eachtype of logrecord defined.

The following code fragments show how to transaction protect several updates to aB-tree.2 In the unprotected case,
an open call is followed by aread call to obtain the meta-data for the B-tree. Instead, we issue an open to the buffer
manager to obtain a file id and abuffer request to obtain the meta-data as shown below.

char *path;
int fid, flags, len, mode;

/* Obtain a file id with which to access the buffer pool */
fid = buf_open(path, flags, mode);

/* Read the meta data (page 0) for the B-tree */
if (tp_lock(fid, 0, READ_LOCK))

return error;

meta_datajptr = buf_get (fid, 0, BF_PIN, &len) ;
The BFJPIN argument to buf_get indicates that we wish to leave this page pinned in memory so that it is not
swapped out while we are accessing it The last argument to bufjget returns the number of bytes on the page that
werevalidso thatthe access methodmay initialize the page if necessary.

Next, consider inserting arecord on aparticular page ofaB-tree. In the unprotected case, we read the page,
call btjnsertat, and write the page. Instead, we lock the page, request the buffer, log the change, modify the page,
and release the buffer.

int fid, len, pageno; /* Identifies the buffer */
int index; /* Location at which to insert the new pair */
DBT *keyp, *datap; /* Key/Data pair to be inserted */
DATUM *d; /* Key/data structure to insert */

/* Lock and request the buffer */
if (tp_lock(fid, pageno, WRITE_LOCK))

return error;

buffer_ptr =» buf_get(fid, pageno, BF_PIN, &len);

/* Log and perform the update */
log_insdel(BTREE_INSERT, fid, pageno, keyp, datap);
_bt_insertat(bufferjptr, d, index);
buf_unpin (buf fer_ptr) ;

Succinctly, the algorithm for turning unprotected code into protected code is to replace read operations with lock
and bufjget operations and write operations with log and bufjtnpin operations.

2The following code fragments are examples, but do not define the final interface. The final interface will be deteimined after LIBTP has
been fully integrated with the most recent db<3) release from the Computer Systems Research Group at University ofCalifornia. Berkeley.



5. Performance

In thissection, we present the results of twoverydifferent benchmarks. The first is an onlinetransaction pro
cessing benchmark, similar to the standard TPCB, but has been adapted to run in a desktop environment The
secondemulatesa computer-aideddesignenvironmentand providesmore complexquery processing.

5.1. Transaction Processing Benchmark

For this section,all performance numbers shownexceptfor the commercial databasesystemwereobtainedon
a DECstation 5000/200with 32MBytesof memoryrunningUltrix V4.0, accessing a DEC RZ57 1GBytedisk drive.
The commercial relational database system tests were run on a comparable machine, a Sparcstation 1+ with
32MBytes memory and a 1GByte external disk drive. The database, binaries and log resided on the same device.
Reportedtimesare the meansof five tests and have standarddeviations within two percent of the mean.

The test database was configured according to the TPCB scaling rules for a 10 transaction per second (TPS)
system with 1,000,000 account records, 100 teller records, and 10 branch records. Where TPS numbers are
reported,we are running a modifiedversionof the industrystandardtransaction processingbenchmark,TPCB. The
TPCB benchmark simulates a withdrawal performed by a hypothetical teller at a hypothetical bank. The database
consists of relations (files) for accounts, branches, tellers, and history. For each transaction, the account, teller, and
branch balances must be updated to reflect the withdrawal and a history record is written which contains the account
id, branch id, teller id, and the amount of the withdrawal [TPCB90].

Our implementation of the benchmark differs from the specification in several aspects. The specification
requires that the database keep redundant logs on different devices, but we use a single log. Furthermore, all tests
were run on a single, centralized system so there is no notion of remote accesses. Finally, we calculated throughput
by dividing the total elapsed time by the number of transactions processed rather than by computing the response
time for each transaction.

The performance comparisons focus on traditional Unix techniques (unprotected, using flock(2) and using
fsync(2)) and a commercial relational database system. Well-behaved applications using flock(2) are guaranteed
that concurrent processes' updates do not interact with one another, but no guarantees about atomicity are made.
That is, if the system crashes in mid-transaction, only parts of that transaction will be reflected in the after-crash
state of the database. The use of fsync(2) at transaction commit time provides guarantees of durability after system
failure. However, there is no mechanism to perform transaction abort

5.1.1. Single-User Tests

These tests compare LIBTP in a variety of configurations to traditional UNIX solutions and a commercial
relational database system (RDBMS). To demonstrate the server architecture we built a front end test process that
uses TCL [OUST90] to parse database access commands and call the database access routines. In one case
(SERVER), frontend and backend processes were created which communicated via an IP socket In the second case
(TCL), a single process read queries from standard input, parsed them, and called the database access routines. The
performance difference between the TCL and SERVER tests quantifies the communication overhead of the socket
The RDBMS implementation used embedded SQL in C with stored database procedures. Therefore, its
configuration is a hybrid of the single process architecture and the server architecture. The graph in figure six shows
a comparison of the following six configurations:

LIBTP Uses the LIBTP library in a single application.
TCL Uses the LIBTP library in a single application, requires query parsing.
SERVER Uses the LIBTP library in a server configuration, requires query parsing.
NOTP Uses no locking, logging, or concurrency control.
FLOCK Uses flock(2) for concurrency control and nothing for durability.
FSYNC Uses fsync(2) for durability and nothing for concurrency control.
RDBMS Uses a commercial relational database system.

The results show that LIBTP, both in the procedural and parsed environments, is competitive with a commer
cial system (comparing LIBTP, TCL, and RDBMS). Compared to existing UNIX solutions, LIBTP is approximately
15% slower than using flock(2) or no protection but over 80% better than using fsync(2) (comparing LIBTP,
FLOCK, NOTP, and FSYNQ.
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5.1.2. Multi-User Tests

While the single-user tests form a basis for comparingLIBTP to other systems,our goal in multi-user testing
was to analyze its scalability. To this end, we have run the benchmark in three modes, the normal disk bound
configuration (figure seven), a CPU bound configuration (figure eight, READ-ONLY), and lock contention bound
(figure eight, NOJFSYNC). Since the normal configuration is completely disk bound (each transaction requires a
random read, a random write, and a sequential write3) we expect tosee little performance improvement as the mul
tiprogramming level increases. In fact, figure seven reveals that we are able to overlap CPU and disk utilization
slightly producing approximately a 10% performance improvement with two processes. After that point, perfor
mancedrops off, and at a multi-programming level of 4, we are performingworse than in the single process case.

Similar behavior was reported on the commercial relational database system using the same configuration.
The importantconclusion to draw from this is that you cannot attain good multi-user scaling on a badly balanced
system. If multi-userperformance on applicationsof this sort is important, one must have a separate logging device
and horizontally partition the database to allow a sufficiently high degree of multiprogramming that group commit
can amortize the cost of log flushing.

By using a very small database (one that can be entirelycached in main memory)and read-only transactions,
we generated a CPU bound environment By using the same small database, the complete TPCB transaction, and no
fsync(2) on the log at commit, we created a lock contention bound environment The small database used an
account filecontaining only 1000records rather than the full 1,000,000 records and ran enough transactions to read
the entiredatabase into the bufferpool (2000) beforebeginning measurements. The read-only transaction consisted
of threedatabase reads (fromthe 1000recordaccount file, the 100record tellerfile, and the 10 recordbranch file).
Sinceno data were modified and no history records were written, no log records were written. For the contention
bound configuration, we used the normal TPCB transaction (against the smalldatabase) and disabled the log flush.
Figure eight shows both of these results.

The read-only test indicates that we barely scale at all in the CPU boundcase. The explanationfor that is that
even with a single process, we are able to drive the CPU utilization to 96%. As a result, that gives us very little
room for improvement, and it takes a multiprogramming level of four to approach 100% CPU saturation. In the
case where we do perform writes, we are interested in detecting when lockcontention becomes a dominant perfor
mance factor. Contention willcausetwophenomena; wewill seetransactions queueing behind frequently accessed

1Although the log iswritten sequentially, wedo notget the benefit of sequentiality since the log and database reside onthe same disk.
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data, and we will see transactionabort rates increasingdue to deadlock. Given that the branch file contains only ten
records, we expectcontention to become a factorquickly and the NO-FSYNC line in figure eightdemonstrates this
dramatically. Each additional process causes bothmorewaiting and moredeadlocking. Figurenine shows that in
the small database case (SMALL), waiting is the dominant cause of declining performance (the number of aborts
increases less steeply than the performance drops off in figure eight), while in the large database case (LARGE),
deadlockingcontributes more to the declining performance.

Deadlocks are more likelyto occur in theLARGE test thanin the SMALL testbecause thereare moreoppor
tunities to wait In the SMALL case, processes neverdo I/O and are less likelyto be descheduled duringa transac
tion. In theLARGE case,processes willfrequently be descheduled since they have to perform I/O. Thisprovides a
window wherea secondprocess can requestlockson already locked pages, thus increasing the likelihood of build
ing up long chains of waitingprocesses. Eventually, this leads to deadlock.

5.2. The 001 Benchmark

The TPCBbenchmarkdescribedin the previous section measures performance under a conventional transac
tion processing workload. Otherapplication domains, such as computer-aided design, have substantially different
access patterns. In order to measure the performance of LIBTP under workloads of this type, we implemented the
OOl benchmark described in [CATT91].

The database models a set of electronics components with connections among them. One table stores parts
and another storesconnections. There are threeconnections originating at any givenpart Ninety percentof these
connections are to nearby parts (thosewithnearby ids) to model the spatiallocality oftenexhibited in CADapplica
tions. Ten percent of the connections are randomly distributed among all other parts in the database. Every part
appears exactly three times in thefrom field of a connection record, and zero or more times in the to field. Parts
havex and y locations set randomly in an appropriaterange.



The intent of OOl is to measure theoverall cost of aquery mixcharacteristic of engineering database applica
tions. There are three tests:

• Lookup generates 1,000 random part ids, fetches the corresponding parts from the database, and calls anull
procedure inthehost programming language with the parts' xand y positions.

• Traverse retrieves a random part from the database and follows connections from it to other parts. Each of
those parts isretrieved, and all connections from it followed. This procedure is repeated depth-first for seven
hops from the original part, for atotal of3280 parts. Backward traversal also exists, and follows all connec
tions into a given partto their origin.

• Insertadds 100new partsand theirconnections.
The benchmark is single-user, but multi-user access controls (locking and transaction protection) must be

enforced. It isdesigned to be run on adatabase with 20,000 parts, and on one with 200,000 parts. Because we have
insufficient disk space for the larger database, we report results only for the 20,000 part database.

5.2.1. Implementation
The LIBTP implementation of OOl uses the TCL [OUST90] interface described earlier. The backend

accepts commands over an IP socket and performs the requested database actions. The frontend opens and executes
aTCL script This script contains database accesses interleaved with ordinary program control statements. Data
base commands are submitted tothebackend and results are bound to program variables.

The parts table was stored as aB-tree indexed by id. The connection table was stored as aset offixed-length
records using the 4.4BSD recno access method. In addition, two B-tree indices were maintained on connection
table entries. One index mapped thefrom field to aconnection record number, and the other mapped the to field to a
connection record number. These indices support fast lookups on connections in both directions. For the traversal
tests, the frontend does an index lookup to discover the connected part's id, and then does another lookup to fetch
the part itself.

5.2.2. Performance Measurements for OOl
We compare LIBTP's OOl performance to that reported in [CATT91]. Those results were collected on aSun

3/280 (25 MHz MC68020) with 16 MBytes ofmemory and two Hitachi 892MByte disks (15 ms average seek time)
behind anSMD-4 controller. Frontends ran on an8MByte Sun3/260.

In order to measure performance on amachine ofroughly equivalent processor power, we ran one set ofteste
on a standalone MC68030-based HP300 (33MHz MC68030). The database was stored on a 300MByte HP7959
SCSI disk (17 ms average seek time). Since this machine is not connected to anetwork, we ran local tests where> the
frontend and backend run on the same machine. We compare these measurements with Cattell's local Sun 3/280
numbers.

Because the benchmark requires remote access, we ran another set of tests on aDECstation 5000/200 with
32M of memory running Ultrix V4.0 and aDEC 1GByte RZ57 SCSI disk. We compare the local perforrnancej of
OOl on the DECstation to its remote performance. For the remote case, we ran the frontend on aDECstation 3100
with 16 MBytes of main memory.

The databases tested in [CATT91] are

• INDEX, ahighly-optimized access method package developed at Sun Microsystems.
• OODBMS, abetarelease of acommercial object-oriented database management system.
• RDBMS, aUNIX-based commercial relational data manager at production release. The OOl implementation

used embedded SQL inC. Stored procedures were defined to reduce client-server traffic.
Table two shows the measurements from [CATT91] and LIBTP for a local test on the MC680xO-based

hardware. All cachesarecleared before eachtest All times are in seconds.
Table two shows that LIBTP outperforms the commercial relational system, but is slower than OODBMS and

INDEX. Since the caches were cleared at the start of each test, disk throughput iscritical in this test. The smgle
SCSI HP drive used by LIBTP is approximately 13% slower than the disks used in [CATT91] which accounts for
partof the difference.



Measure

Lookup
Traversal

Insert

INDEX

5.4

13

7.4

OODBMS

12.9
9.8

1.5

RDBMS

27

90
22

LIBTP

27.2

47.3

9.7

Table 2: Local MC680xO Performance of Several
Systems on OOl.

Measure Cache Local Remote

Lookup cold

warm

15.7

7.8
20.6
12.4

Forward traversal cold

warm

28.4

23.5
52.6
47.4

Backward traversal cold
warm

24.2

24.3

47.4

47.6

Insert cold
warm

7.5
6.7

10.3
10.9

Table 3: Local vs. Remote Performance of
LIBTP on OOl.

OODBMS and INDEX outperformLIBTP mostdramatically on traversal. This is because we use index look
ups to find connections, whereas theothertwosystems usea linkaccess method. The index requires us toexamine
two disk pages, but thelinks require only one,regardless of database size. Cattell reports thatlookups using B-trees
instead of links makes traversal take twice as long in INDEX. Adding a linkaccess method to db(3) or using the
existing hash method would apparently be a good idea.

Both OODBMS and INDEX issue coarser-granularity locks than LIBTP. This limits concurrency for multi
userapplications, but helps single-user applications. In addition, the fact thatLIBTP releases B-tree locks early is a
drawback in OOl. Since there is no concurrency in the benchmark, high-concurrency strategies only show up as
increased locking overhead. Finally, the architecture of theLIBTP implementation was substantially different from
that of either OODBMS or INDEX. Both of those systems do the searches in the user's address space, and issue
requests for pages to the server process. Pages are cached in theclient, and many queries can be satisfied without
contacting the serverat all. LIBTPsubmits all thequeries to theserverprocess, andreceivesdatabase records back;
it does no client caching.

The RDBMS architecture is much closer to that of LIBTP. A server process receives queries and returns
results to a client The timing results in table two clearly show that the conventionaldatabase cliem/servermodel is
expensive. LIBTP outperforms theRDBMS on traversal andinsertion. Wespeculate that this is duein partto the
overhead ofquery parsing, optimization, and repeated interpretation of the plan tree in theRDBMS' query executor.

Table three shows thedifferences between local andremote execution of LIBTP's OOl implementation ona
DECstation. We measured performance with a populated (warm) cache and anempty (cold) cache. Reported times
are the means of twenty tests, and are in seconds. Standard deviations were within seven percent of the mean for
remote, and two percent of the mean for local.

The 20ms overhead of TCP/IP on an Ethernet entirely accounts for the difference in speed. The remote
traversal times are nearly double thelocal times because wedoindex lookups andpart fetches in separate queries.
It would make sense to do indexed searches on theserver, butwewere unwilling to hard-code knowledge of OOl
indices into our UBTP TCL server. Cold and warm insertion times are identical since insertions do not benefit from
caching.

One interesting difference shown by table three is the cost of forward versus backward traversal. When we
built the database,we insertedparts in part id order. We built the indicesat the same time. Therefore, the forward
index hadkeys inserted in order, while thebackward index had keys inserted more randomly. In-order insertion is
pessimal for B-tree indices, so the forward index ismuch larger than the backward one4. This larger size shows up
as extra disk reads in the cold benchmark.

4The next release ofthe 4.4BSD access method will automatically detect and compensate for in-order insertion, eliminating this problem.



6. Conclusions

LIBTP provides die basic building blocks to support transaction protection. In comparison with traditional
Unix libraries and commercial systems, it offers a variety of tradeoffs. Using complete transaction protection is
more complicatedthan simply adding fsync(2) and flock(2) calls to code, but it is faster in some cases and offers
stricter guarantees (atomicity, consistency, isolation, and durability). If the data tobeprotected are already format
ted (i.e. use one of the database access methods), then adding transaction protection requires noadditional complex
ity, but incurs a performance penalty of approximately 15%.

In comparison with commercial database systems, thetradeoffs are more complex. LIBTP does notcurrently
support a standard query language. The TCL-based server process allows a certain ease of use which would be
enhanced with a more user-friendly interface (e.g. a windows based query-by-form application), for which we have
a working prototype. When accesses do not require sophisticated query processing, the TCL interface is an ade
quate solution. What LIBTP fails to provide in functionality, it makes up for in performance and flexibility. Any
application maymakeuseof its record interface orthemore primitive log,lock,and buffercalls.

Future work will focus onovercoming some of the areas inwhich LIBTP iscurrently deficient and extending
its transaction model. The addition of an SQL parser and forms front end will improve the system's ease of use and
make itmore competitive with commercial systems. In the long term, wewould liketoadd generalized hierarchical
locking, nested transactions, parallel transactions, passing of transactions between processes, and distributed commit
handling. In the short term, the next step is to integrate LIBTP with the most recentrelease of the database access
routines andmake it freely available viaanonymous ftp.
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