
Copyright © 1992, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

SYS_VIEW: A VISUALIZATION TOOL FOR

VIEWING THE REGIONS OF VALIDITY AND

ATTRACTION OF NONLINEAR SYSTEMS

by

Raja R. Kadiyala

Memorandum No. UCB/ERL M92/21

1 March 1992

SYS_VIEW: A VISUALIZATION TOOL FOR

VIEWING THE REGIONS OF VALIDITY AND

ATTRACTION OF NONLINEAR SYSTEMS

by

Raja R. Kadiyala

Memorandum No. UCB/ERL M92/21

1 March 1992

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

Sys- View : A Visualization Tool for Viewing the
Regions of Validity and Attraction of Nonlinear

Systems *

Raja R. Kadiyala

Department of Electrical Engineering
and Computer Science

207-59 Cory Hall
University of California

Berkeley, CA 94720
email: raja@robotics.berkeley.edu

March 1, 1992

Abstract

We present a visualization tool which allows one to view the stabil
ity characteristics of nonlinear ordinary differential equations in three
dimensions. We find that these computations may be carried out in
parallel and present an algorithm for multiple networked workstations.
We also discuss various viewing alternatives for the visualization of
these dynamics.

'Research supported in part by the Army under grants DAAL-88-K-0106 and DAAL-
91-G-0191, and NASA under grant NAG 2-243

1 Introduction

So called phase portraits have been used to study the stability characteristics
of planar two dimensional dynamical systems with a good deal of success,
but we are truly limited by this visualization scheme since we have the
restriction of two dimensions. We extend the concept of phase portraits to
three dimensions with Sys-View .

Sys.Viewdoes not createthree dimensional phaseportraits per se. Rather,
it allows one to view the stability characteristics of a three dimensional sub
set of the dynamics. By this we mean that one is able to see where a
system is stable and hence the region of attraction and validity of a control
law. Sys.View also allows one to view the characteristics of how a system is
unstable. In short, Sys.View allows the user to interactively view the sta
bility characteristics of a three dimensional system or a three dimensional
submanifold of the system.

As one might imagine the task of computing the stability characteristics
of a three dimensional system is a rather large computational undertaking.
Fortunately we note that a majority of the calculations do not depend on
each other, hence the algorithm is ideal for parallel computing. We will show
such a procedure for this problem using multiple networked workstations to
offload the computation.

We start with some simple definitions and an overview of the types of
systems we can handle in section 2 and discuss the parallel algorithmin sec
tion 3, and lastly in section 4 we look at the visualizationmethods developed
to survey all the information inherent in these plots.

2 Extension into Three Dimensions

Sys- View was motivated by a discrete time version which looked at extended
two dimensional Mandelbrot sets into three dimensions. We first discuss the

discrete time case.

2.1 Discrete Time

The defining equation for a Mandelbrot set is given by:

*fc+i = /(**) + * (1)

where x, R 6 C. This gives rise to the familiar vanilla mandelbrot set shown
in figure 1, where one plots all the points which converge (a discrete version

Figure 1: Unenhanced Mandelbrot Set

of the region of attraction).
These sets may be enhanced by color to give a more artistic flair and

display more information about the system dynamics. A typical mapping
is to assign each point a color according to how many iterations it takes to
escape some finite area (the so called escape time).

Equation (1) is very similar to a general class of nonlinear discrete time
systems which is affinein the control input. These systems may be described
by:

Xk+i = /(**) + g{xk)uk (2)

where

• x is known as the state vector (€ Rn)

—The state vector x describes the current configuration of the sys
tem.

• u is called the control input (€ R)

- The control input u is what you have control over to move the
- system.

• /(•) and <7,(-) describe how the system behaves.

It is quite easy to see that the Mandelbrot sets are a subclass of the above
system definition. Hence we have a simple natural extension into three
dimensions. Interestingly enough, it was found that systems such as

a?i(& + l) = c™^*^*))**^*)
2(+ l) = e8^*2**))**2**) (3)
ar3(Ar + 1) = e^*^*))**^*)

and other similar equations did indeed create Mandelbrot like subsets filling
three space.

2.2 Continuous Time

The continuous time story is similar to discrete time, except we have the
defining equation as

m

x= f(x) + J29i(x)ui (4)
t'=l

we may broaden this class to include systems which are not affine in the
control input u such as:

x = f(x,u) (5)

where we now have u € R"1.

The evaluation of (5) is not as straight forward as (2), and requires
numerical integration to achieve a solution for x. Simple iteration would
achieve a solution for Xk in the discrete time case.

The inherent complexity in integrating differential equations causes the
computation time to naturally rise and also leads to problems under certain
conditions. One in particular is the integration of stiff systems.

Definition 1 Stiff System
A differential equation is said to be stiff if for some i,j \\x\\\ > ||afj||.

A typical method of integrating stiff systems is to us the slow variable
(xj) as a parameter in the equation for the fast dynamics (xt). Then one
updates the fast dynamics at one rate and updates the slow dynamics at a
slower rate.

We use the Lsoda ordinary differential integration package developed at
the Lawrence Livermore Labs (see [Hindmarsh, 1983, Petzold, 1983]). This
package has automatic detection of stiff systems and switches integration
algorithms accordingly. Hence we avoid the above problem.

2.3 Description of Dynamics

The user may describe the dynamics of his system by a simple C program
which defines the state equations. A template is given below.

usr(init, x, xd, t, neq)

int

init;

double

xQ, xdQ, t;

int

neq; 10

{

register
i;

if (init)
{

/ put initialization code here /
} 20

/ compute xd here /

return;

}

The routine has five arguments. The first (init) is a flag variable that is
true if it is the first call to the routine and allows the subroutine to initialize
any variables. The second argument is the state vector x, which contains
the current state of the system, xd is equivalent to x in (5) and t is the
current time. Finally neq is the number ofequations (currently this is fixed
at three).

In summary the user is supplied with the current state, simulation time,
and number of state equations and then must generate x.

u

Figure 2: Gridding of the State Space

3 Computational aspects

The computation of the dynamics in three space can become quit large very
fast since we essentially grid up a cube of specified size (see figure 2) and
compute the characteristics of each subcube based on the characteristics for
a random point within the subcube (the necessity for the randomness will
be explained later). Since the calculation of the dynamics in each subcube
depends only on itself we can carry on the computations in parallel.

With this in mind, a graphics server/computational client scheme was
set up to offload the calculations. This also alleviated the need to write a full
blown parser to gather the information necessary to define the system equa
tions since some prewritten utilities could be used which would dynamically
link in a subroutine.

These utilities exist for Sun workstations hence the logical choice of using
the Sun as the computational server was made. The inherent graphics power
of the Silicon Graphics series of workstation made it the obvious choice as the
graphical server. This in turn talks to the various Sun computational clients
using BSD sockets with the TCP/IP protocol over ethernet to disseminate
information.

The steps to compute the stability characteristics may be listed as fol
lows:

1. Server initiates communication to each client (max of 64).

2. Server downloads (to each client) a source file which describes the
dynamics of the system.

3. Each client compiles and dynamically links in the routine and is ready
to compute.

4. Server grids up the state space and divides it into equal portions for
each client.

5. Clients integrate all initial conditions and assign each with a number
representing if a point is stable or unstable. If the point is unstable it
is also assigned a number which represents how fast the trajectory is
moving away from the initial condition.

6. Clients report back with results.

Note: if we are only changing the grid size/shape parameters and not the
subroutine describing the system, then only steps 4 and 5 need be repeated.

One may argue that a better way to compute the region of attraction
would be to start a cluster ofpoints about an equilibrium point and integrate
backwards in time. One must continually add points to fill in three space
while the trajectories are dispersing. Then the boundary of the trajectories
will eventually form the region of attraction. We feel that this approach
may be somewhat faster but would also be more ill conditioned and easily
fooled.

The problemof determining if a point is stable or not is not particularly
well defined. For example, imagine a trajectory which initially leaves the
region around the initial conditionand then slowly comes back in. Currently
Sys.View integrates the system for a user specified time and then checks to
see if the trajectory at the end time is closer to the center point; the center
point is a user defined point whichdefines the point to compute the stability
characteristics about - the center point is assumed to be an equilibrium
point. Thus the above problem may be alleviated if the end time was made
large, but computational speed suffers as the end time is increased.

It would be easy to have Sys~Viewallow the user define the criterion for
stability by having a C routine dynamically linked in to return whether a
point is stable or not. Furthermore, the user could be allowed to increase the
end time dynamically to alleviate the above problem in a more intelligent
way.

3.1 Server-Client Communication

A simple language had to be defined for communication between the server
and each client. These include commands to download code, receive a set
of points and send back the results. Error and warning commands also

had to be incorporated along with another set of commands to handle the
computation of surfaces.

Extra effort was made to insure the connections be as robust as possi
ble. Communication takes place asynchronously with a maximum latency
response to a message of 1.5 seconds and is carried through at a maximum
rate of 1 Mbit/sec. If a client for some reason fails, the server is notified
and redistributes the computation while closing the connection to the de
funct client. In addition, if a client does not receive a command for some
period of time (currently 30 minutes), the client reports to the server and
terminates itself. This prevents rogue processes from running indefinitely.
Furthermore, a client does not use any resources while it is waiting for a
new set of computations.

Dynamic load scheduling is also used. This basically distributes the
computational load equally amongst the clients. Prior to a computation each
client is asked to return the time it took to compute a benchmark problem.
This benchmark is included in each client as a subroutine and does not have

to be sent nor is it linked in dynamically. This computation typically takes a
couple of seconds and based on the returned result the server then prorates
the number of points to be integrated. Hence if a machine is either inherently
slow or is currently heavily loaded then its work will be accordingly scaled
back.

Thus, with this setup we gained the ability to do parallel computation
and had a simple way to specify the system equations (i.e. the equations
could be described in a simple C or FORTRAN subroutine). In the current
version there can be up to sixty four computational clients that would receive
the subroutine, dynamically link it in and wait for commands to act on and
report back to the server. A pictorial description of the setup is given in
figure 3

A benchmark problem which required the integration of over 14,000ini
tial conditions on a system which was stiff and included trigonometric func
tions in its dynamics was completed in less than a minute on ten Sparc
Station l's as computational clients.

Since computations are essentially done in parallel we get an N times
speed up, with hardly any overhead, and we again get the advantage of
using dynamic linking to pull in the system description in the form of a C
or FORTRAN subroutine.

Son SparcStationi

CHentl

Client 2

O

O

o

Client N

Figure 3: Graphics Server/Computational Client Set Up

4 Viewing the Results

One of the original ideas to view the data was to traverse along some axis
and look at 2-D slices of the system (much like CAT scans). Multiple slices
could be stored and in conjunction with transparency one could look past
the initial slice to get more global information. This type of visualization
may still be implemented but we feel that it would not be particularly easy
to visually parse these images into a meaningful picture, that the global
information lost would make this option not as attractive.

The route taken was to create a portrait cloud of points that was not
fully dense (thus allowing us to see through things to view the behavior of
the system at various points). This was accomplished by defining a random
point constrained to be in a subcube of the gridded cube from figure 2. This
allows us to see quite a bit of detail in the global aspect of the dynamics
while still allowing us to view the local nature. Depth cueing is also available
to give some depth perception in the visualization.

The randomness of the state space points was necessary to see the distant
points. It should also be noted that it is much easier to view the data in an
orthonormal projection then in a perspective projection.

A control panel was created as the main user interface (see figure 4). It
allows the. user to chose from the plethora of combinations given to view
the data, and a complete description is given in the man pages for sys-view.
A couple of features worth mentioning are the ability to record a sequence

O »>W fl • Ifmml

I —Wto. | Q^tkOMlaa

EifiSBL

gj

Egg

rVnMM,>t»«

Qftw it

ritUfclllf tmrlm*

e^BOttUffl

O

Qkmleatote

Oi «

EE
•Mate Trmlct*

,_ ' tWWfl

no sua ™i7i

sua ata

a a a a
tala

sin

3D-

• sua

Oitta&L.

i—-X"—« nrfc.nET

]|>.«C

Figure 4: Sys-view Control Panel

of button clicks in the control panel and then play them back for a sort
of movie to traverse the escape portrait and secondly the ability to define
your own color map for the escape portrait. Along with the control panel
a plotting window to view the data is opened (see figure 5 for a black and
white version).

The region of attraction for a system is the locus of initial conditions
whose trajectories steer towards the origin and is valuable piece of infor
mation to compute for a system. The region of attraction may be simply
plotted by using a predefined color map which defines the 0th entry to be
white and all others to be black. Hence the points that do not leave the
region are white while all points that do leave are black, thus giving us the
region of attraction. One can play similar games for viewing all unstable
points.

4.1 Creating Approximating Volume for the Region of At
traction

While the above solution for viewing the region attraction is quick, it is not
the most visually pleasing. We would like to construct a a polyhedron which
closely resembles the cloud of points.

10

Figure 5: Sys-view Plotting Window

Interestingly enough this problem is very similar to one investigated
in the post processing of CAT, MRJ, and SPECT scans in the medical
information field. The problem facing them is to reconstruct surfaces based
on density slices made through the body.

A CAT scan creates a two dimensional slice through the body with each
slice containing a grid of numbers representing how dense that particular
point was. Thus if we wanted to reconstruct a face or the bone structure of
an individual we simply focus on the points which have the desired density.

This is virtually the same problem we face with the construction of a
polyhedron which represents the region of attraction. We have two dimen
sional slices which contain data representing stability of a point and we wish
to focus in on only the stable points.

The approach taken by [Lorenson and Cline, 1987], which is the algo
rithm we choose, was the so called marching cubes algorithm. In short one
basically looks at two slices of data at a time (see figure 6). We then restrict
ourselves to look at eight vertices which form the so called marching cube
as in figure 7. The three vertices define a face which constructs the local
surface for the particular cube. We continue on repeating the process for
each cube to construct the whole surface.

11

Slice

Slice i

Figure 6: Slice view for Surface Reconstruction

It turns out that if one factors in rotational symmetry and symmetry
due to vertex complements (ie. same configuration as case i except where
there were points there are not and vice versa) there are only 14 unique
configuration of the points within a cube. Thus we examine each cube in
the data set and match it with one of the 14 basis cubes modulo rotational
and complementary symmetry. Then retrieve the face structure for the
basis cube and include it in the surface data structure with the rotation and
complement operations applied.

It should be noted that these computations are carried out in a parallel
fashion similar to the computationof the stability characteristics. The only
drawback with this algorithm for our task at hand is that it may create an
overabundance of triangles depending on the density of the point clouds.
Alternatively, we do achieve an accurate approximation of the region of
attraction.

5 Conclusions

A tool for viewing the dynamics of three dimensional continuous time sys
tems has i>een developed in an interactive environment. With the addition
of computational clients on remote machines the calculations necessary can
be carried through relatively quickly. Possible additions for the future would
be to include the CAT scan like slices mentioned above as another possible

12

Slice i+1

Slice i

Figure 7: Marching Cube

viewing scheme. Sys-View combined with APJLIN (see [Kadiyala, 1992])
provides a powerful set of utilities for controlling and viewing nonlinear dy
namics.

References

[Hindmarsh, 1983] A. C. Hindmarsh. Odepack, a systematized collection of
ode solvers. In R. S. Steplemanet al., editor, Scientific Computing, pages
55-64. North-Holland, Amsterdam, 1983.

[Kadiyala, 1992] R. R. Kadiyala. ApJin: A tool box for approximate lin
earization of nonlinear systems. In Proceedings of the 1992 IEEE Sympo
sium on Computer-Aided Control System Design, 1992.

[Lorenson and Cline, 1987] W. E. Lorenson and H. E. Cline. Marching
cubes: A high resolution 3d surface construction algorithm. Association
of Computing Machinery, Computer Graphics, 21, no. 4:163-169,1987.

[Petzold, 1983] L. R. Petzold. Automatic selection of methods for solving
stiff and nonstiff systems of ordinary differential equations. Siam Journal
of Scientific Statistical Computing, 4:136-148,1983.

13

A Manual Pages for Sys-View

14

SYS_VIEW(6) GAMES AND DEMOS SYS_VBEW(6)

NAME

sys.view - Interactively view a threedimensional nonlinear dynamic system

SYNOPSIS

sys_view [-b boxmode] [-c colormapping] [-d cloud density] [-h hush mode] [-i -j -k position of bound
ing box] [-1 login name to use onclient] [-m remote machine] [-o outputfile] [-p useperspective projec
tion] [-q turn ondepth cueing] [-r routine] [-s sourceJUe] [-t end time] [-x -y -z dimensions ofbounding
box]

DESCRIPTION

sys_viewcreates a three dimensional stability portrait of a dynamical systemdescribed by the subroutine in
sourceJUe, which maybe either C or FORTRAN and is called by the name in routine. sys_view creates
connections up to the machines specified through repetitive usesof the -m option(Le. sys.view -m machl
-m mach2 ...) and then downloads the file to the clients. The clients then dynamically link in this routine
and compute equal portions of the trajectories. The results are then reported back to the server machine
and a plot is createdwhich the usermay interactively view. Up to 64 machines may be used as clients.

OPTIONS

-b go intobox mode which will draw cubesinstead of pixelsat the gridpoint This is useful if a low den
sity is used.

-c color mapping;Use the file contained in color mapping to define the colors to use in the escape por
trait Thisshould beanASCII file with each line containing four integers ranging from 0 to 255 specifying
the index and thestandard red, green, and blue (rgb) color values. (Le. 012 87 39would specify entry 0 to
have a red valueof 12,a green valueof 87, anda blue valueof 39). Typically entry 0 will be black and
entry 255 will be white.

-d density; Use floating point valuedensity as the parameter defining how dense of a pixel cloud to use
when generating the escape portrait; validrange is 0 to 1, the default is 0.25 (anything larger than 0.6 will
take more than a few minutes to run).

-h go into hush mode which limits the number of messages sent to the window which sys.view was ini
tiated in.

-i -j -k centerof boundingbox;Use these three numbers todefine theorigin of thebounding box. This
is useful forstudyingbehavioraway from the origin; the defaultis zero.

-1 login name; If the account name on the remote machine is different than on the local machine then this
option mustbe set accordingly. The remote machine should allow entry of the local account through an
entry in jhosts.

-m machine; Specifies whichmachines to runthecalculations of the trajectories on. For a low density it
is not necessary to specify too manymachines. In fact thismay hurtyou sincethe overhead involvedin the
communication may slow things down. For large densities it will be well worth the effort to spread the
computing across as many machines as possible. A maximum of 64 machines may be specified in the fol
lowing fashion: sys_view -m mach -m mach2...

-o output file;Use outputfile as the file to save to; the default is sys_.view.out

-p perspective projection; This allows the userto specifya perspective projection be usedas opposed to
the default orthonormal projection.

-q turn on depth cueing; This will allow the user to gain some depth perception as points further away
aredarkerthancloser points. This will, however, slow down the redrawing of the plot in interactivemode.

Sun Release4.1 Last change: 1 March 1992

SYS_VIEW(6) GAMES AND DEMOS SYS_VIEW(6)

-r nwtine; Use rourin* to teUsys_viewuwnaine of te

-s soorceJife;Usewi<rceJife astheffletodyi^

-t cod tine; Use the floatingpoint valueendtime as the length to numericaUy imegrate thesystembefore
determining the stability characteristics; the default is 2.0 seconds.

-x-y-z bounding box dimensions; Use these threenumbers to define the boundary of the plot If not
specifiedsys_view tries to set them automatically.

USER INTERFACE

Theuserinterface maybe divided intotwosections. TTie first being thecontrol paneland thesecond being
the interactive or plot window. The control panel is partitioned into sevengroups. The characteristics of
thebounding box may be defined in theAxis Defgroup, while various attributes may be toggled on andoff
in the Toggles group. These attributes includedepthcueing,perspective projection,box/cube mode,draw
it turn on and off the bounding box, and createa surface approximation for the region of attraction. This
last toggle will create another graphics window with the surface displayed. The third subgroup is the
Actions group which allows the user to start calculations, download a new source file, disconnect recon
nect to the clients and to quit Note that this is the only way to quit sys.view. The Computation group
allows the user to specify the density and end time and also allows the addition of a new machine to the
client list which is also displayed. It is suggested that a disconnect occur before the addition of a new
client followed by a connect The next subgroup is the Scripting group which allows the user to record a
series of button clicks thus creating a movie to be playedback. Typicallyone records the actions from the
View group which allows the user to rotate, translate, and scale the portrait in a precise manner. The Face
Views section is a simple pair of up-down buttons which allows the user to view all six of the viewing
cube's faces in an easy manner. The final group is the Files group which allows the user to specify the
load/save files and the source and routine names.

The plot window allows for interactive viewing of the portrait much like the View group above, but in a
less precise but faster manner. The left mousebuttoncontrolsscaling,while the middlemousebuttoncon
trols rotations and the right mouse button controls translations. All operations are made with the given
mouse button down and moving the mouse on the pad in the appropriate direction. Z axis rotation and
translation may be obtained by holding the shift key down and performing the normal rotation or transla
tion. Pressing the c key will recenter the portrait

Example C Program
The following is an example C program which willshow the format necessary to be linked in and run by
the remote computational server. The routinetakesfivearguments with the firstbeing initwhich is true for
the initialization caU(ie. if init 3 1 then the routine should do any initializationit needs to do). The second
argument is the state variable x which is of length neq (currently neq is three). The third argument is xd
which is the return information for the system(ie. the user sets xd to the proper dynamicsfor the differen
tial equation). The variable t represents the current simulation time.

#include <mathJi>

usrtfnit, x, xd, t, neq)
int init, neq;
double *x, *xd;

{

if (init)
{

Initialize code here

SunRelease 4.1 Lastchange: 1 March 1992

SYS_VIEW(6) GAMES AND DEMOS SYS_VTEW(6)

1

Compute dynamics here
}

AUTHOR

RajaR. Kadiyala, Dept of EECS U.C.Berkeley, email: raja@roboticsJberkeley.edu

BUGS

There is no error checkingon the validityof the subroutine specifiedin source.file.

Sun Release4.1 Last change: 1 March 1992

Sys- View : A Visualization Tool for Viewing the
Regions of Validity and Attraction of Nonlinear

Systems *

Raja R. Kadiyala

Department of Electrical Engineering
and Computer Science

207-59 Cory Hall
University of California

Berkeley, CA 94720
email: raja@robotics.berkeley.edu

March 1, 1992

Abstract

We present a visualization tool which allows one to view the stabil
ity characteristics of nonlinear ordinary differential equations in three
dimensions. We find that these computations may be carried out in
parallel and present an algorithm for multiple networked workstations.
We also discuss various viewing alternatives for the visualization of
these dynamics.

'Research supported in part by the Army under grants DAAL-88-K-0106 and DAAL-
91-G-0191, and NASA under grant NAG 2-243

1 Introduction

So called phase portraits havebeen used to study the stability characteristics
of planar two dimensional dynamical systems with a good deal of success,
but we are truly limited by this visualization scheme since we have the
restriction of two dimensions. We extend the concept of phase portraits to
three dimensions with Sys.View .

Sys.Viewdoesnot create three dimensional phaseportraits per se. Rather,
it allows one to view the stability characteristics of a three dimensional sub
set of the dynamics. By this we mean that one is able to see where a
system is stable and hence the region of attraction and validity of a control
law. Sys.View also allows one to view the characteristics of how a system is
unstable. In short, Sys.View allows the user to interactively view the sta
bility characteristics of a three dimensional system or a three dimensional
submanifold of the system.

As one might imagine the task of computing the stability characteristics
of a three dimensional system is a rather large computational undertaking.
Fortunately we note that a majority of the calculations do not depend on
each other, hence the algorithmis idealfor parallel computing. We will show
such a procedure for this problem using multiple networked workstations to
offload the computation.

We start with some simple definitions and an overview of the types of
systems wecan handle in section 2 and discuss the parallel algorithm in sec
tion 3, and lastly in section 4 welook at the visualization methods developed
to survey all the information inherent in these plots.

2 Extension into Three Dimensions

Sys.View was motivated by a discrete time version which looked at extended
two dimensional Mandelbrot sets into three dimensions. We first discuss the
discrete time case.

2.1 Discrete Time

The defining equation for a Mandelbrot set is given by:

zjfe+i = f(xk) + R (1)

where x, R € C. This gives rise to the familiar vanilla mandelbrot set shown
in figure 1, where one plots all the points which converge (a discrete version

Figure 1: Unenhanced Mandelbrot Set

of the region of attraction).
These sets may be enhanced by color to give a more artistic flair and

display more information about the system dynamics. A typical mapping
is to assign each point a color according to how many iterations it takes to
escape some finite area (the so called escape time).

Equation (1) is very similar to a general class of nonlinear discrete time
systems which is affine in the control input. These systems may be described
by:

xk+i = f(xk) + g(xk)uk (2)

where

• x is known as the state vector (€ Rn)

- The state vector x describes the current configuration of the sys
tem.

• u is called the control input (€ R)

- The control input u is what you have control over to move the
• system.

• /(•) and gi(') describe how the system behaves.

It is quite easy to see that the Mandelbrot sets are a subclass of the above
system definition. Hence we have a simple natural extension into three
dimensions. Interestingly enough, it was found that systems such as

i(fc + l) = e-infoWW)
x2(k + l) = e*i(*a(*))«2(*) (3)
£3(& + 1) = c«in(*3(fc))**3(fc)

and other similar equations did indeed create Mandelbrot like subsets filling
three space.

2.2 Continuous Time

The continuous time story is similar to discrete time, except we have the
defining equation as

m

* = /(*) +!>(*)«.• (4)

we may broaden this class to include systems which are not affine in the
control input u such as:

x = f(x,u) (5)

where we now have u € Rm.

The evaluation of (5) is not as straight forward as (2), and requires
numerical integration to achieve a solution for x. Simple iteration would
achieve a solution for Xk in the discrete time case.

The inherent complexity in integrating differential equations causes the
computation time to naturally rise and also leads to problems under certain
conditions. One in particular is the integration of stiff systems.

Definition 1 Stiff System
A differential equation is said to be stiff if for some i,j \\xi\\ > ||a?j||.

A typical method of integrating stiff systems is to us the slow variable
(xj) as a parameter in the equation for the fast dynamics (aft). Then one
updates the fast dynamics at one rate and updates the slow dynamics at a
slower rate.

We use the Lsoda ordinary differential integration package developed at
the Lawrence Livermore Labs (see [Hindmarsh, 1983, Petzold, 1983]). This
package has automatic detection of stiff systems and switches integration
algorithms accordingly. Hence we avoid the above problem.

2.3 Description of Dynamics

The user may describe the dynamics of his system by a simple C program
which defines the state equations. A template is given below.

usr(init, x, xd, t, neq)

int

init;

double

xQ, xdQ, t;

int

neq; 10

{

register

i;

if (init)
{

/ put initialization code here f
} 20

/ compute xd here /

return;

}

The routine has five arguments. The first (init) is a flag variable that is
true if it is the first call to the routine and allows the subroutine to initialize
any variables. The second argument is the state vector x, which contains
the current state of the system, xd is equivalent to x in (5) and t is the
current time. Finally neq is the number of equations (currently this is fixed
at three).

In summary the user is supplied with the current state, simulation time,
and number of state equations and then must generate x.

p

Figure 2: Gridding of the State Space

3 Computational aspects

The computation of the dynamics in three space can become quit large very
fast since we essentially grid up a cube of specified size (see figure 2) and
compute the characteristics of each subcube based on the characteristics for
a random point within the subcube (the necessity for the randomness will
be explained later). Since the calculation of the dynamics in each subcube
depends only on itself we can carry on the computations in parallel.

With this in mind, a graphics server/computational client scheme was
set up to offload the calculations. This also alleviated the need to write a full
blown parser to gather the information necessary to define the system equa
tions since some prewritten utilities could be used which would dynamically
link in a subroutine.

These utilities exist for Sun workstations hence the logical choice of using
the Sun as the computational server was made. The inherent graphics power
of the Silicon Graphics series of workstation made it the obvious choice as the
graphical server. This in turn talks to the various Sun computational clients
using BSD sockets with the TCP/IP protocol over ethernet to disseminate
information.

The steps to compute the stability characteristics may be listed as fol
lows:

1. Server initiates communication to each client (max of 64).

2. Server downloads (to each client) a source file which describes the
dynamics of the system.

3. Each client compiles and dynamically links in the routine and is ready
to compute.

4. Server grids up the state space and divides it into equal portions for
each client.

5. Clients integrate all initial conditions and assign each with a number
representing if a point is stable or unstable. If the point is unstable it
is also assigned a number which represents how fast the trajectory is
moving away from the initial condition.

6. Clients report back with results.

Note: if we are only changing the grid size/shape parameters and not the
subroutine describing the system, then only steps 4 and 5 need be repeated.

One may argue that a better way to compute the region of attraction
would be to start a cluster of points about an equilibrium point and integrate
backwards in time. One must continually add points to fill in three space
while the trajectories are dispersing. Then the boundary of the trajectories
will eventually form the region of attraction. We feel that this approach
may be somewhat faster but would also be more ill conditioned and easily
fooled.

The problem of determining if a point is stable or not is not particularly
well defined. For example, imagine a trajectory which initially leaves the
region around the initial condition and then slowly comes back in. Currently
Sys.View integrates the system for a user specified time and then checks to
see if the trajectory at the end time is closer to the center point; the center
point is a user defined point which defines the point to compute the stability
characteristics about - the center point is assumed to be an equilibrium
point. Thus the above problem may be alleviated if the end time was made
large, but computational speed suffers as the end time is increased.

It would be easy to have Sys.View allow the user define the criterion for
stability by having a C routine dynamically linked in to return whether a
point is stable or not. Furthermore, the user could be allowed to increase the
end time dynamically to alleviate the above problem in a more intelligent
way.

3.1 Server-Client Communication

A simple language had to be defined for communication between the server
and each client. These include commands to download code, receive a set
of points and send back the results. Error and warning commands also

had to be incorporated along with another set of commands to handle the
computation of surfaces.

Extra effort was made to insure the connections be as robust as possi
ble. Communication takes place asynchronously with a maximum latency
response to a message of 1.5 seconds and is carried through at a maximum
rate of 1 Mbit/sec. If a client for some reason fails, the server is notified
and redistributes the computation while closing the connection to the de
funct client. In addition, if a client does not receive a command for some
period of time (currently 30 minutes), the client reports to the server and
terminates itself. This prevents rogue processes from running indefinitely.
Furthermore, a client does not use any resources while it is waiting for a
new set of computations.

Dynamic load scheduling is also used. This basically distributes the
computational load equallyamongst the clients. Prior to a computation each
client is asked to return the time it took to compute a benchmark problem.
This benchmark is included in each client as a subroutine and does not have
to be sent nor is it linked in dynamically. This computation typically takes a
couple of seconds and based on the returned result the server then prorates
the number of points to be integrated. Hence if a machineis either inherently
slow or is currently heavily loaded then its work will be accordingly scaled
back.

Thus, with this setup we gained the ability to do parallel computation
and had a simple way to specify the system equations (i.e. the equations
could be described in a simple C or FORTRAN subroutine). In the current
version there can be up to sixty four computational clients that would receive
the subroutine, dynamically link it in and wait for commands to act on and
report back to the server. A pictorial description of the setup is given in
figure 3

A benchmark problem which required the integration of over 14,000ini
tial conditions on a system which was stiff and included trigonometric func
tions in its dynamics was completed in less than a minute on ten Sparc
Station l's as computational clients.

Since computations are essentially done in parallel we get an N times
speed up, with hardly any overhead, and we again get the advantage of
using dynamic linking to pull in the system description in the form of a C
or FORTRAN subroutine.

Sun SpncStations

Figure 3: Graphics Server/Computational Client Set Up

4 Viewing the Results

One of the original ideas to view the data was to traverse along some axis
and look at 2-D slices of the system (much like CAT scans). Multiple slices
could be stored and in conjunction with transparency one could look past
the initial slice to get more global information. This type of visualization
may still be implemented but we feel that it would not be particularly easy
to visually parse these images into a meaningful picture, that the global
information lost would make this option not as attractive.

The route taken was to create a portrait cloud of points that was not
fully dense (thus allowing us to see through things to view the behavior of
the system at various points). This was accomplished by defining a random
point constrained to be in a subcube of the gridded cube from figure 2. This
allows us to see quite a bit of detail in the global aspect of the dynamics
while still allowing us to view the local nature. Depth cueing is also available
to give some depth perception in the visualization.

The randomness of the state space points was necessary to see the distant
points. It should also be noted that it is much easier to view the data in an
orthonormal projection then in a perspective projection.

A control panel was created as the main user interface (see figure 4). It
allows the user to chose from the plethora of combinations given to view
the data, and a complete description is given in the man pages for sys-view.
A couple of features worth mentioning are the ability to record a sequence

.>-"-1

II t»

lammimt

ti«

•Mat* Tnmlrtt

Qwtk CMla«
l**lMl ••,!!»•

CV» It

5j£

o «

c«t»»»n«lwl

»CDia no [aa,.. H Hi

to* It

CD 51

C

Q* ltltw«d.i
——| but nm •
S=— fc»_H«...* "I[>• "(B£_

u— a
l»i.»i».«»» I [J. itI

Figure 4: Sys-view Control Panel

of button clicks in the control panel and then play them back for a sort
of movie to traverse the escape portrait and secondly the ability to define
your own color map for the escape portrait. Along with the control panel
a plotting window to view the data is opened (see figure 5 for a black and
white version).

The region of attraction for a system is the locus of initial conditions
whose trajectories steer towards the origin and is valuable piece of infor
mation to compute for a system. The region of attraction may be simply
plotted by using a predefined color map which defines the 0th entry to be
white and all others to be black. Hence the points that do not leave the
region are white while all points that do leave are black, thus giving us the
region of attraction. One can play similar games for viewing all unstable
points.

4.1 Creating Approximating Volume for the Region of At
traction

While the above solution for viewing the region attraction is quick, it is not
the most visually pleasing. We would like to construct a a polyhedron which
closely resembles the cloud of points.

10

Figure 5: Sys-view Plotting Window

Interestingly enough this problem is very similar to one investigated
in the post processing of CAT, MRJ, and SPECT scans in the medical
information field. The problem facing them is to reconstruct surfaces based
on density slices made through the body.

A CAT scan creates a two dimensional slice through the body with each
slice containing a grid of numbers representing how dense that particular
point was. Thus if we wanted to reconstruct a face or the bone structure of
an individual we simply focus on the points which have the desired density.

This is virtually the same problem we face with the construction of a
polyhedron which represents the region of attraction. We have two dimen
sional slices which contain data representing stability of a point and we wish
to focus in on only the stable points.

The approach taken by [Lorenson and Cline, 1987], which is the algo
rithm we choose, was the so called marching cubes algorithm. In short one
basically looks at two slices of data at a time (see figure 6). We then restrict
ourselves to look at eight vertices which form the so called marching cube
as in figure 7. The three vertices define a face which constructs the local
surface for the particular cube. We continue on repeating the process for
each cube to construct the whole surface.

11

Slice

Slice i

Figure 6: Slice view for Surface Reconstruction

It turns out that if one factors in rotational symmetry and symmetry
due to vertex complements (ie. same configuration as case i except where
there were points there are not and vice versa) there are only 14 unique
configuration of the points within a cube. Thus we examine each cube in
the data set and match it with one of the 14 basis cubes modulo rotational
and complementary symmetry. Then retrieve the face structure for the
basis cube and include it in the surface data structure with the rotation and
complement operations applied.

It should be noted that these computations are carried out in a parallel
fashion similar to the computation of the stability characteristics. The only
drawback with this algorithm for our task at hand is that it may create an
overabundance of triangles depending on the density of the point clouds.
Alternatively, we do achieve an accurate approximation of the region of
attraction.

5 Conclusions

A tool for viewing the dynamics of three dimensional continuous time sys
tems has i>een developed in an interactive environment. With the addition
of computational clients on remote machines the calculations necessary can
be carriedthrough relatively quickly. Possible additions for the future would
be to include the CAT scan like slices mentioned above as another possible

12

Slice i+1

Slice i

Figure 7: Marching Cube

viewing scheme. Sys.View combined with APJjIN (see [Kadiyala, 1992])
provides a powerful set of utilities for controlling and viewing nonlinear dy
namics.

References

[Hindmarsh, 1983] A. C. Hindmarsh. Odepack, a systematized collection of
ode solvers. In R. S. Stepleman et al., editor, Scientific Computing, pages
55-64. North-Holland, Amsterdam, 1983.

[Kadiyala, 1992] R. R. Kadiyala. ApJin: A tool box for approximate lin
earization of nonlinear systems. In Proceedings of the 1992 IEEE Sympo
sium on Computer-Aided Control System Design, 1992.

[Lorenson and Cline, 1987] W. E. Lorenson and H. E. Cline. Marching
cubes: A high resolution 3d surface construction algorithm. Association
of Computing Machinery, Computer Graphics, 21, no. 4:163-169,1987.

[Petzold, 1983] L. R. Petzold. Automatic selection of methods for solving
stiff and nonstiff systems of ordinary differential equations. Siam Journal
of Scientific Statistical Computing, 4:136-148,1983.

13

A Manual Pages for Sys.View

14

SYS.VIEW(6) GAMES AND DEMOS SYS.VIEW(6)

NAME

sys.view - Interactively view a three dimensional nonlinear dynamic system

SYNOPSIS

sys_view [-b box mode] [-c color mapping] [-d cloud density] [-h hush mode] [-i -j -k position ofbound
ing box] [-1 login name to use onclient] [-m remote machine] [-o output file] [-p use perspective projec
tion] [-q turn on depth cueing] [-r routine] [s sourceJUe] [-t end time] [-x -y -z dimensions ofbounding
box)

DESCRIPTION

sys_viewcreates a three dimensional stability portrait of a dynamical systemdescribed by the subroutine in
sourceJUe. which maybe either C or FORTRAN and is called by the name in routine. sys_view creates
connections up to the machines specified through repetitive usesof the -m option(i.e. sys.view -m machl
-m mach2 ...) and then downloads the file to the clients. The clients then dynamically link in this routine
and compute equal portionsof the trajectories. The results are then reported back to the server machine
and a plot is created which the usermay interactively view. Up to 64 machinesmay be used as clients.

OPTIONS

-b go into box mode which will drawcubes instead of pixels at the grid point This is useful if a low den
sity is used.

-c color mapping; Use the file contained in color mapping to define the colors to use in the escape por
trait. This should be an ASCII file witheach linecontaining four integers ranging from 0 to 255 specifying
the indexandthe standard red, green, and blue(rgb) color values. (Le. 012 87 39 wouldspecifyentry0 to
have a red value of 12,a green value of 87, and a blue valueof 39). Typically entry 0 will be black and
entry 255 will be white.

-d density; Use floating point value density as the parameter defining how dense of a pixel cloud to use
when generating the escape portrait; valid range is 0 to 1, the default is 0.25 (anything larger than 0.6 will
take more than a few minutes to run).

-h go into hush mode which limits the number of messages sent to the window which sys_view was ini
tiated in.

-i -j -k center of bounding box; Use thesethree numbers to define the originof the bounding box. This
is useful for studying behavioraway from the origin; the default is zero.

-1 login name; If the account name on the remote machine is different than on the local machine then this
option must be set accordingly. The remote machine should allow entry of the local account through an
entry in .rhosts.

-m machine; Specifies which machines to run the calculations of the trajectories on. Fora low density it
is not necessary to specify too many machines. In fact this may hurt you since the overhead involved in the
communication may slow things down. For large densities it will be well worth the effort to spread the
computing across as many machines as possible. A maximum of 64 machines may be specified in the fol
lowing fashion: sys_view -m mach -m mach2...

-o output file; Use output file as the file to save to; the default is sys_.view.out.

-p perspective projection; This allows the user to specify a perspective projection be used as opposed to
the default orthonormal projection.

-q turn on depth cueing; This will allow the user to gain some depth perception as points further away
are darker than closer points. This will, however, slow down the redrawing of the plot in interactive mode.

Sun Release 4.1 Last change: 1 March 1992

SYS_VT£W(6) GAMES AND DEMOS SYS_VTEW(6)

-r tautiait; Use routine to teUsys.view thenanie of trie routme to caU to execute the s

-s sourceJUe; Use sourceJUe as the file to dynamically link in to get the systemequations.

-t end time; Use the floating point valueend time as the lengthto numerically integrate the system before
determining the stability characteristics; the default is 2.0 seconds.

-x -y -z bounding box dimensions; Use these three numbers to define the boundary of the plot If not
specified sys.view tries to set them automatically.

USER INTERFACE

The user interface maybe divided into twosections. The first being thecontrol panel and thesecond being
the interactive or plot window. The control panel is partitioned into seven groups. The characteristics of
thebounding box maybe defined in theAxis Defgroup, whilevarious attributes maybe toggled on and off
in the Toggles group. These attributes include depth cueing, perspective projection, box/cubemode, draw
it, turn on andoff the bounding box, and create a surface approximation for the region of attraction. This
last toggle will create another graphics window with the surface displayed. The third subgroup is the
Actions group which allows the user to start calculations, download a new source file, disconnect, recon
nect to the clients and to quit Note that this is the only way to quit sys.view. The Computation group
allows the user to specify the density and end time and also allows the addition of a new machine to the
client list which is also displayed. It is suggested that a disconnect occur before the addition of a new
client followed by a connect The next subgroup is theScripting group which allows the user to record a
series of buttonclicks thuscreating a movie to be played back. Typically one records the actions from the
View group which allows the user to rotate, translate, and scale theportrait in a precise manner. The Face
Views section is a simple pair of up-down buttons which allows the user to view all six of the viewing
cube's races in an easy manner. The final group is the Files group which allows the user to specify the
load/save files and the source and routine names.

The plotwindow allows for interactive viewing of the portrait much like the View group above, but in a
less precise but faster manner. The left mouse button controls scaling, while the middle mousebutton con
trols rotations and the right mouse button controls translations. All operations are made with the given
mouse button down and moving the mouse on the pad in the appropriate direction. Z axis rotation and
translation may be obtained by holding the shift key down and performing the normal rotation or transla
tion. Pressing the c key will recenter the portrait

Example C Program

The following is an example C program which will show the format necessary tobe linked in and run by
theremote computational server. Theroutine takes five arguments withthe first being initwhich is true for
the initialization call(ie. if init= 1then theroutine should doany initialization it needs to do). The second
argument is the state variable x which is of length neq (currendy neq is three). The third argument is xd
which is thereturn information for thesystem (ie. theuser sets xd to the proper dynamics for thedifferen
tial equation). The variable t represents the current simulation time.

#include <mathJi>

usr(init, x, xd, t, neq)
int init, neq;
double *x, *xd;
{

if (init)

{
Initialize code here

Sun Release 4.1 Last change: 1March 1992

SYS_VIEW(6) GAMES AND DEMOS SYS_VTEW(6)

}

1

Compute dynamics here

AUTHOR

Raja R. Kadiyala, Dept of EECS U.C. Berkeley, email: raja@roboticsJberkeley.edu

BUGS

There is no error checking on the validityof the subroutinespecifiedin source_file.

Sun Release 4.1 Last change: 1 March 1992

