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Introduction to Technology CAD
Frameworks

Technology computer-aided design (TCAD) tools can help technologists

analyze, understand, and predict the results of integrated-circuit processing technology

in a timely and economical manner with computer simulations. TCAD tools can also

calculate device behavior and offer insight into process latitude and design

manufacturability. As process technologies become more complex, these capabilities

make TCAD not only adesirable but an increasingly necessary part of the integrated-

circuit design and manufacturing process.

The effective use of TCAD is highly dependent on theunification of

specializedTCAD tools and seamless interfaces between TCAD and relatedCAD

domains. The jobof aTCAD framework is to provide facilities that enable TCAD

tools, and tools inrelated domains, to work together. Current TCAD systems are still

in their infancy - abroad and important set of framework topics must still be

addressed. These include common wafer representations, graphical user interfaces,

common process flow specification and execution, and ways to couple design,

technology, and manufacturing information.

This dissertation examines the diverse and large number of framework issues

facing process technology CAD. Solutions in domain interfaces, semiconductor wafer

representation, process management, and graphical user interfaces are proposed and

implementedin anexperimental framework named the Process Simulation

Environment (PROSE). PROSE explores these issues through anew open-architecture



that allows tools to be easily integrated through common interfaces. PROSE also

brings together integrated-circuit design, technology, and computer-integrated

manufacturing CAD domains through the OCT/VEM/RPC framework. A graphical

user interface based onthe VEM layout editor isdeveloped toallow for simultaneous

wafer and mask editing, and interactive process simulation capabilities. A Binary

Profile Interchange Format (BPIF) toolkit provides common tool interfaces for

accessing, storing, and manipulating wafer data such as device topography and

impurity fields. A manager for process simulators has been implemented. An

interpreted command language, named Pel, allows users to specify process

parameters, querywaferdata, and invoke simulators. A Pel shell supports graphical

and textual interfaces for entering and executing process flows.

The development of PROSE has been guided by avaluable early prototype

described in the author's masters report [1], The implementation has been

substantiated through the integration ofdisparate process simulators and the linkage of

these simulators to IC CAD through the OCT/VEM/RPC CAD framework. The

development of aglobal phase-shifting mask application takes advantage of PROSE's

merged design and technology CAD facilities. PROSE hasalso influenced, andhas

been influenced by, other framework projects and representation standards work

within the research community. An updated version of the BPIF toolkit, BPIF++, uses

many object and function definitions proposed by the Semiconductor Wafer

Representation standards group, of which the author is Chairperson. Driving TCAD

tools with Pel and coupling with CIM has been demonstrated with an exploratory

implementation using SIMPL.



This chapter introduces therole of IC processing technology simulation tools

in thedesign cycle, evaluates therequirements theyplace on integration frameworks,

and surveys existing systems and standards efforts.

1.1 CAD for Integrated Circuit Technology

Mainstream technology CAD tools can be grouped by tools simulating

integrated-circuit fabrication processes (process simulation), tools simulating device

behavior (device simulation), and support tools such as input parsers and output

visualizers. When used together, these tools can explore device processing technology

and device behavior through computer simulation. For example, the device in Figure

1-1 is fabricated on "virtual silicon" using process simulation. With device simulation,

the current-voltage characteristics ofthe resulting device are computed. In this section,

the types of tools used in process and device simulation are described. For amore

detailed discussion ofprocess and device simulators, several texts are helpful [2]

[3][4] [5].

Process Simulation Device Simulation

Current I

"* Voltage V

Figure 1-1. Technology CAD can be roughly grouped into process simulators,
device simulators, and support tools such as those that display cross-sectional
profiles and and current-voltage characteristics.



1.1.1 Process Simulation

Although cross-sectional profiles can be estimated with geometric simulators

such as SIMPL-2 [6] and OYSTER [7], combining several specialized, "expert" tools

results in a more accurate profile. These experts can be loosely divided into above-

silicon and below-silicon simulators. Figure 1-2 shows how avariety oftools working

together are needed to produce the example CMOS cross-sectional profile.
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FEDSS

Figure 1-2. Conceptual CMOS wafercross-section. To obtain the most accurate
profile, several differentTCAD tools, such as the ones shown above, must be
used.

Above-silicon process simulators handle the processing technology that

occurs, not surprisingly, above the silicon wafer surface. Pattern transfer, chemical

vapor deposition, and device interconnect methods are all above-silicon processes.

Pattern transfer is accomplished by a lithographic process involving photoresist

application, exposure, and development. Commonly available programs for

lithography include DEPICT-2 [8], PROLITH [9] and SAMPLE [10] . For depositing

a material using chemical vapor deposition orselectively etching a material using wet



or dry processes, ESPRIT [11] and SPEEDIE [12], as well DEPICT, PROLITH and

SAMPLE [13], can be used. Metallization for device interconnect is also a deposition

process. In addition to the programs mentioned abovethat treat the advancing surface

as a string, atomistic approaches have alsobeen taken,e.g., the SINBAD simulator

[14].

Below-silicon processes cover thermal process steps such as dopant diffusion,

ion implantation and thermal oxidation.1 Because ofthe complex interactions between

oxidation and diffusion, these steps are usually handled by a single simulator such as

CREEP[15], FEDSS [16], PREDICT [17], PROMIS [18], orSUPREMIV [19].

1.1.2 Device Simulation

Device cross-sections generated by process simulation can be fed intodevice

simulators for device characterization and calculation. Three equations are important

in device simulation: the Poisson equation, the electron current-continuity equation,

and thehole current-continuity equation. Many two-dimensional simulators that solve

these equations have been developed, such as FIELDAY [20], PADRE [21], PISCES

[22], and SIFCOD [23]. They can handle general structures for both bipolar and MOS

devices, but are computationally intensive. A faster simulation can be achieved if the

structure is limited to MOS devices, because then only the Poisson and majority-

carrier equations need to be solved. This isthe approach of CADDET [24] and

MINIMOS [25].

1. Oxidation, which grows at the silicon interface, is generally grouped into the below-silicon category
because it involves thephysics of high temperature processes similar todiffusion.



Parasitic resistance and capacitance values may also be computed by solving

the Poisson equation. This is particularly important due to the interesting and irregular

topographic structures present in most advanced devices. Programs that can calculate

parasitic values with arbitrary geometries include FCAP2 [2] and RACPLE [26].

1.2 TCAD Framework Requirements

Anenvironment that supports the development and integration ofTCAD tools,

such as process and device simulators, is called aTCAD environment orframework.

The ideal framework provides facilities for the TCAD "ABCs", that is, the ability to

apply tools easily tonew problems, build new tools, and chain tools together.

A common complaint from users is the large initial effort required in learning

howto use TCAD tools incomparison with other types of CADtools. Thistimesinkis

compounded by the observation that technologists typically use TCAD for sporadic

but intense periods of time. They must therefore re-learn the tooleach time it is used

(since they have undoubtedly forgotten how to use them from their previous

encounter). These problems hinder the ability toeasily apply TCAD tools tonew

technology problems. Providing user-friendly interfaces for TCAD has been

demonstrated to bean effective solution. Programs such as SIMPL-DIX [27] contain

menu-driven interfaces but lack the ability touse command macros. For example, an

analytical oxidation simulation requires the entry of six cryptic oxidation parameters

each time itisinvoked. Some forms ofinherently graphical data, such as mask layout,

must also be entered textually. To fully satisfy the ease-of-application requirement, the

user-interface must provide menu and keyboard driven input mechanisms for single

and multiple macro commands, and graphical means for entering graphic data such as

mask layout and initial wafer profiles.



A TCAD framework should also aid the TCAD model developer, who is

typically not a computerscientist but is often askedto be one when implementing a

new model andtool. By providing generic routines that are common to all programs,

such as input parsers, visualization routines, and math libraries, this task can be

reduced significantiy. Forexample, a breakdown of the SUPREM IV program shows

that less than half of the source code is used to implement the actual models; the

supporting routines make up the larger half [28]. Figures forother process simulators

are similar. The time saved in buildinga new tool is valuable becauseit allows the

developer to spend more timeon model development

Tool chaining is the third and final requirement of aTCAD framework.

Researchers whomodel IC processing usually focus on a particular area of the

technology, such as lithography, thermal processing, deposition, oretching. Thus, the

resulting simulators are naturally developed along process technology boundaries.

Although these individual simulators are valuable in understanding and advancing

specific parts of IC technology, amuch greater gain may be realized bycombining

these pieces into an integrated package that can handle acomplete process flow. This

integration can be accomplished through tool chaining.

1.3 The Role of Technology Simulation in CAD

Customer expectations of smaller, faster, and less expensive chips in ahighly

competitive marketplace places a tremendous burden on all aspects of CAD.

Shortened product design cycles require speedy technology development and

characterization that results in circuit models early in the life of anew technology.

Aggressive design constraints require that these models are timely and accurate. The

difficulty of these tasks is compounded by the rising complexity of both the

technology and the circuit design. The results of integrated-circuit design CAD (IC
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CAD) and technology CAD ultimately wind up in manufacturing, which also pushes

CAD within the context of an automated factory. Computer-integrated manufacturing

(CIM) can assist in wafer tracking, equipment allocation, process monitoring, process

flow, and equipment modeling, and can also make use ofdesign and wafer data from

design and technology CAD.

Avertically-integrated CAD system that supports a full range oftasks from

synthesis, circuit simulation, and mask layout in IC CAD, to process and device

simulation in TCAD, to equipment modeling and process flow specification in CIM, is

important to realize the needs offuture designers and technologists. As shown in

Figure 1-3, this system should provide pipelines for exchanging several key pieces of

data among all three environments. In this organization, TCAD plays the central role

of filling the gap between design and manufacturing.

1.3.1 TCAD and IC CAD

The distinction between IC CAD and technology CAD is blurring due tothe

increasing amount ofprocess technology knowledge required to design achip and the

increasing amount ofdesign information needed to drive the technology. In the future,

one could imagine how designers can use IC CAD not only to design circuits, but also

to see how their designs affect circuit characteristics and technology concerns such as

manfacturability, yield, and reliability. Technologists, with the help ofTCAD, can

potentially produce an optimized technology for each design type, thereby giving

designers more freedom in their layouts, or reverse engineer from product to design in

order to solve manufacturing problems. The future isnot as far away as one may think.

There exist tools that make use ofboth IC CAD and TCAD data, e.g., mixed device

and circuit simulators that calculate device characteristics based on layout [29],
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Figure 1-3. Avertically integrated CAD system with data connections between
environments. Arrow labels suggest the types ofinformation exchanged.

resistance and capacitance solvers that generate parasitic values due to mask

topography [30], statistical simulators that predict process latitude and manufacturing

reliability [31], and topography simulators that rely on mask data [6].



IC CAD provides three major types of information toTCAD: physical mask

layout information for topography process and device simulation; topological mask

information that describes themask shapes and their relationships with each other

(useful foroptical imaging and other tools that depend heavily on themask layout);

and cut information that specifies the location on the layout associated with a cross-

section view. TCAD, on theotherhand, provides ICCAD with thenecessary rules for

layout and circuit design, including: design rules (also known as ground rules) for

mask design; circuit models from device simulation; parasitic resistance and

capacitance values for a particular topography; and mask layout information with

processing effects.

1.3.2 TCAD and CIM

Interaction between TCAD and CIM is also necessary to transfer technology

from the design phase into manufacturing. Because TCADaims to model the

fabrication processes that occur in the factory, it needsprocess flow, equipment

parameters, and other data from the factory.These can be provided by CIM, which,

incidentally, needs TCAD waferinformation for verifying process flow accuracy,

calibrating equipment parameters, etc.This information loop can feed-back upon

itself, leading to a situation where TCAD wafer dataandCIMratedata areexchanged

multiple times. For example,pattern transferof highnumerical-aperture features may

require increasedetch time or benefit from changes in etchingconditions, and

interactions between oxidation and diffusion may reduce diffusion time.

Process flow representation is another area where TCAD and CIM intersect It

is very desirableto have the sameprocess flow recipefor boththe actual and simulated

manufacturing process. The Berkeley ProcessFlowLanguage (BPFL)is a merged

10



description that can drive both simulators andequipment [32]. If BPFLis used, the

process flow requires both TCAD data, e.g., mask data for pattern transfer steps, as

well as CIM data, e.g., equipment models and wafer tracking.

1.3.3 Programming Point of View

These CAD domains are also intertwined from a programming viewpoint. For

example, Figure 1-4 shows how the most basic CAD components, such as operating

systems, storage managers, and user interfaces, can be shared between IC CAD and

TCAD. It makes sense not only to link different types of CAD, but also to take

advantage ofcode re-use through common underlying platforms.

TCAD Tools ar; ions

Task Level .
Utilities and Interfaces

Tool Level
Utilities and Interfaces

Storage User
Management Interface

TCAD
Systems

TCAD
Framework

CAD

Infrastructure

Figure 1-4. A proposed TCAD framework architecture based on a CAD
infrastructure [55].
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1.4 Survey of Existing Implementations

True frameworks require a setof commonly agreed to infrastructural

components and "plug and play" compatibility between tools. The latter is the so-

called holy-grail of the TCAD framework community. On the evolutionary path to this

long-term goal, many implementations that are framework-like. These include

programs that pool models, systems that combine multiple tools, and environments

that provide favorable surroundings for tool integration and development.

Early integration efforts resulted in large, monolithic programs that gathered

multiple TCAD models. Examples include SAMPLE for photolithography and above-

silicon processes and SUPREM-IV for thermal processing. SAMPLE was originally

designed to allow modules to plug into the program [33]. In this architecture, each

model is assigned a unique TRIAL statement number. Some,butnot all, data is shared

between modules and makes use of several common functions, such as those for input

parsing and surface de-looping. The lack of full data sharing led to incompatible

modules within SAMPLE. For example, the output of the non-planar etch module

cannot be passed to another module since completely different data structures are

used. SUPREM IV isalso alarge program with several, but not all modules, sharing

common functions. Its input format fordata andcontrol has become somewhatof a de-

facto standard because of its popularity.

One ofthe first two-dimensional programs with the ability to simulate avariety

ofmodels at the process level was SIMPL-1 [34]. Ituses elementary analytical models

for deposition, etch, development, and implantation tocreate rectangular cross-

sections of the wafer. A polygon-based program named SIMPL-2, soon followed.

Advancements in operating system technology also allowed SIMPL-2 to connect to

external programs. For example, SIMPL-2 can execute the SAMPLE deposition

12



module transparently, from the user's point ofview, through UNIX operating system

file transfers and system calls. The OYSTER program, athree-dimensional program

that uses analytical models using asolid modeling approach, was also developed

during this period. Although these programs used analytical models and computed

cross-sectional profiles very quickly, their main weakness was the lack of physically

accurate numerical models for precise simulation.

Since the mid 1980s, many groups have published on integrated systems that

use time-consuming but accurate simulators to simulate acomplete process flow.

These include almost all large companies who use TCAD in the U.S., Europe, and

Japan [35][36][37][38][39][40][41][42][43][44], universities and other research

groups [45] [46], and TCAD vendors [47][48][49]. To acertain degree, all support

two-dimensional, numerical-based simulation of the complete process flow and

provide data and utility sharing, but within this group, some are more framework-like

than others. Generally, those with more framework features, e.g., common wafer

databases, shared utilities, etc., are still under active development. The VISTA system

[50] and the PROSE environment described here are examples of such TCAD

environments.

TCAD environments that target the development of new models are still a

research topic and, at the current level of research effort, should berealized within the

next five years. Systems such as PROSE and VISTA, although currently integration

systems, are making strides towards supporting model development by providing

common library routines for basic simulator functions. One system that has targeted

model development since its inception is PROPHET [51]. It has two differentiating

13



features. First, models in PROPHET do not use private data structures, but rely on C-

function calls to access acommon data area. Second, ashared set ofmath library

routines is available to the models.

Two systems that look at the TCAD world from adifferent perspective are

CAFE [52] and PREDITOR [31]. CAFE addresses the TCAD integration issue from

the computer-integrated manufacturing viewpoint. PREDITOR is a statistical

simulator that calls on fast analytical models many times rather than slow, numerical

models only once, tocapture the statistical variance that occurs in the factory.

A summaryofTCAD past, present, and future "frameworks" is collected in

Table 1-1. They are loosely divided into five classes: single monolithic programs,

integrated systems, statistical and extention language approaches, systems based on a

Profile Interchange Format (PIF)-like representation [53], and development or other

types of framework-based systems.

1.5 TCAD Framework Standards

TCAD researchers and users worldwide are working on standards toreduce the

number of different tool formats. The current situation is similar to that of the IC

design CAD community ten years ago, with each site using its own custom suite of

tools. Within the past five years, design CAD has been moving steadily towards

framework standards. Rather than re-invent the wheel, TCAD can take advantage of

manyexisting standards, such asthose for layout and visualization, butit mustalso set

new standards that are specific toTCAD, particularly for wafer and process flow

representation.

14



SURVEY OF TCAD SYSTEMS

Name Affiliation Notes

Monolithic General Process Simulators

MECCA AT&T Bell Laboratories AT&T Internal

FEDDS IBM IBM Internal

SAMPLE UC-Berkeley Above-Silicon Processes

SUPREM rv Stanford University Below-Silicon Processes

Integrated TCAD Systems

COMPOSITE Fraunhofer Part of STORM

HP's System Hewlett Packard HP Internal

IDDE Phillips Object-based Graphical Interface

MASTERPIECE Silvaco Data Systems Vendor Integrated System

P&D Workbench NEC Networked Computers

SATURN Siemans AG Process and Device Simulation

SIMPL-IPX UC-Berkeley X Window UserInterface withMaskLayout

STUDIO Tech.ModelingAssoc. VendorIntegratedSystem

Supervised Simulation Toshiba Geometric Data Interface

TITAN CNET/CNS Part of the STORM Project

Statistical and Extension Language Approaches

Hitachi's System Hitachi Includes Numerical Simulation

Preditor Carnegie Mellon Univ. Statistical simulation/Chip Database

SIM-C DawnTechnologies Vendor, CIMExtension language

Profile Interchange Format (PIF)-like Systems

CAFE MIT Emphasis on CIM

EASE Intel Uses a PIF Predecessor

PROSE UC-Berkeley This Work

VISTA TU-Vieima LISP Tool And Data Control

Development andOtherTCAD Framework-Based Approaches

Framework Prototype CFITCAD Framework Group EarlyStandards Prototype.

PROPHET AT&T Bell Laboratories Development Environment

Table 1-1. Summary ofTCAD programs, systems, and environments with
framework properties.
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The profile interchange format (PIF) effort was the first TCAD standards

group. It concentrated on a specification for cross-sectional profile information. This

effort resulted inadocument that described arepresentation philosophy and ASCII file

format [53]. PROSE and severalof the environments mentioned above use a PIF

approach.

The CAD Framework Initiative (CH) and the Electronic Design Interchange

Format (EDIF) organizations are current undertaking the definition of standards for IC

CAD. The TCAD community has piggy-backed onto these efforts through three sub

groups. The CFI TCAD framework group contains three working groups addressing

programming interfaces for semiconductor wafer representation (SWR),

semiconductor process flow representation (SPR), and information modeling

(DM&V). The information modeling effort isalso being pursued bytwo technical sub

committees within EDIF, the device modeling and verification (DM&V) group and the

process and device (P&D) group (which originally handled the PIF work). In August

1991, the TCAD framework group successfully demonstrated aprototype of their

standards [54], andefforts are beingmadeto commercialize the standard.

These committees are well represented by most TCAD researchers in theUS

and a few in Europe. Itis the hope that future work in the area ofTCAD integration

and development frameworks will endorse these emerging standards.

1.6 Summary

Technology CAD plays an important role in understanding and advancing

semiconductor technology development. There are many tools today that can simulate

process and device behavior in integrated-circuit technology. TCAD frameworks can

increase the value of these tools making them easier to apply, reduce the time needed

16



todevelop new tools, and allow tools tobe chained together. Most groups have

recognized the need for aTCAD framework and have developed their ownsystems,

and standards efforts are underway tounify semiconductor wafer and process

representations among tools.

1.7 Dissertation Outline

The goals of the Process Simulation Environment (PROSE) are todevelop a

TCAD system that enables the efficient application of process simulation to

technology problems by users, effortless integration ofTCAD tools bydevelopers and

system integrators, and the interaction between different types of CAD. In addition, a

conscious effort is made to assist in forging framework standards that benefit the

community at large.

The role of PROSE as aTCAD tool integration environment is covered within

the first five chapters of this disseration. Chapter 2 describes theoverall framework

architecture and summarizes each of the components. Component interaction is

explained from a user point of view through apractical example that simulates a

CMOS EEPROM bit-cell. Chapters 3through 5 tackle the difficult problem of

exchanging semiconductor wafer information between tools in a uniform and robust

manner, and agreeing on acommon representation between different groups. Wafer

representation requirements, standards efforts, and an object-oriented functional

interface to waferdata are presented.

Interactions withdesign and manufacturing environments are then covered.

Chapter 6describes how the joint use ofTCAD and IC CAD, especially strong in

PROSE because ofits access to ageneral CAD framework, can be used to advantage.

Chapter 7 describes aphase-shifting mask CAD toolkit application that makes use of
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both TCAD and design CAD within PROSE. This application is able toanalyze large,

non-regular cells for phase-shifting mask applicability using global and local

techniques. Chapter 8covers the management and description of process flow

information within PROSE using atool command language, and the link tocomputer-

integrated manufacturing systems through acommon process flow language.

Conclusions andperspectives on future trends in TCAD frameworks are discussed in

the final chapter.
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2

The Process Simulation Environment

In exploring TCAD issues it is important to balance unconstrained "what if'

thinking with the reality of what can be efficiendy implemented. PROSE has the

grounding in reality through the implementation of a TCAD system for tool

integration, yet also explores future sources of stimulation by working with available

resources in IC CAD. Starting with an overview of PROSE will give the general

reader an example of a TCAD system, and provide the experienced TCAD developer

with a survey of the strengths of PROSE.

The quest for a system that satisfies the ABCs ofTCAD (tool application, tool

building, and tool chaining) has led to advances in framework architecture, wafer

representation, and process flow specification. PROSE has the following features and

capabilities. A friendly user-interface contains graphical, menu, and textual editing

capabilities. This allows even casual users to use TCAD tools for their application.

Common utilities for input, output, and wafer manipulationhelp TCAD developers

implement new models more easily. A common TCAD database significantly reduces

the time required to integrate tools by providing a central repository for cross-sectional

device profile information and a functional interface to access that data. A new process

command language allows users to specify and execute process flows in a

programming language style, with procedure calls to access process simulators and

wafer data.
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An equally important emphasis in PROSEis on the couplingofTCAD to

different environments andthe development of industry standards forTCAD data

representation. PROSE was designed with an "open architecture", meaningall

components aremodular and communicate by way of standard interfaces accessible

from technology, design, and manufacturing CAD domains. Several ideas generated

by the TCAD community's standards efforts, such as the architecture described by the

SRC group [55] and the CFI TCAD Framework Group [56], have been incorporated

into PROSE and vice-versa.

Section 2.1 chronicles the history of the concept by amotivating example

taken from the SIMPL system. Section 2.2 describes the overall architecture of the

environment and summarizes each of thecomponents. The interaction of PROSE with

design and manufacturing CAD environments is discussed in Section 2.3. Section 2.4

describes the flow of data between components from theprogrammer's perspective.

Section 2.5 explains PROSE from a user's perspective, using an EEPROM device as

an example. A chapter summary is given in Section 2.6.

2.1 History

The idea for a process simulation environment began in 1987 afterthe

evolutionary nature of the SIMPL-DIX [27] architecture caused it to become

unwieldy. As shown in Figure 2-1, this fourth generation system has an architecture

where tools are directly connected using specific translators. Each arrow represents a

link between two programs, typically requiring a few graduate student-months to

develop. Therefore, the fifteen arrows linking SIMPL-DIX to other tools represents

almost three graduate student years of work for onlya partially connected system.
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Figure 2-1. The SIMPL-DIX system implementation.

The intent of PROSE is to definean architecture and implement a system

aimed at modularTCAD tool integration to ease the burdenof adding new tools. An

initialversion of the architecture and an exploratory implementation weredeveloped

in the Spring of 1989 [1]. The encouragingresults of this work led to a continued

effort in the area and resulted in the version of PROSE described in this dissertation.

2.2 Architecture

The architecture contains an interesting mix of newTCAD specific

components for wafer and process flow representation, and existing generic CAD

components for user interaction, data storage, and tool communication.Figure 2-2

summarizes this architecture in its component form. Tool and task level applications

are designed to plug direcdy into the system through interfacesprovidedby theTCAD

database and process flow manager.
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Figure 2-2. The PROSE architecture. Shaded components make use of the OCT/
VEM/RPC CAD Framework.

The TCAD database component uses the Binary PIF (BPIF) interface which

defines aset of geometry and mesh objects, and implements Cand C++ function

libraries that can access and manipulate them. The process flow manager combines

simulation, control, and BPIF commands in acommand language named Pel. Alayout

editor allows users to edit mask and wafer data, and invoke process commands, while

a separate graphical user-interface controls process flow execution.

2.2.1 OCT/VEM/RPC

Early in the definition process, itwas recognized that the requirements for

TCAD environments were similar to those ofIC design CAD environments, and

therefore IC CAD could provide hints and/or implementations for parts ofthe

architecture. PROSE takes advantage ofprevious CAD implementations in the user

interface, database, and communications areas by using the OCT/VEM/RPC CAD

22



Framework [57]. OCT (Octopus1) is an object-based data manager, VEM (View

Editor Monolith) is a combination layouteditor and user interface, and RPC (OCT

Remote Procedure Call) is a means for tool communications across different machines

and operating systems. In addition, theopen architecture of OCT/VEM/RPC allowsit

to be modified with relativeease. PROSEmakes use of these components where

possible, and providesextensions to thecomponents for specific TCAD needs to from

an infrastructural base for TCAD applications.

2.2.2 Graphical User Interface

The graphical user interfaceis an interactive shell and geometric editor.The

shell is menu and/or keyboard driven, withdialog-boxes that "pop-up" when

additional information from the user is required. The geometric editor supports the

display and editing of both mask layout and cross-section data. This editor is much

moreflexible than the SIMPL-DIX user-interface [27], which only allows layout and

cross-section viewing. Multiple windows and menus are supported in this X-windows

graphical environment.

2.2.3 The TCAD Database

The most important, and the mostdifficult to implement, componentwithin

PROSE is the TCAD database. Thisdatabase acts as the central repository for all

cross-sectional wafer data. Applications access this data through a standard functional

interface named theBinary PIFthat allows programs tostore, retrieve, and manipulate

wafer objects such as material boundaries and the fields within them [58]. Object types

arebased on theProfile Interchange Format (PIF) representation [53]. Thisphilosophy

is better.thanprevious wafer storageschemes, e.g., SIMPL-IPX, because a central

1. Thefirst Octtools database was named SQUID. OCTis itssuccessor. According to folklore, theterm
OCT stands for octopus, to suggest the database's manyarms.
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representation reduces the number of translators needed between tools and the time

required to add new tools. Theunderlying persistent database implementation uses the

OCT database.

Asecond responsibility of theTCAD database is toprovide a pipeline to and

from other CAD environments. ForICCAD, this primarily means mask layout and

wafer data. Because theOCT database is used forboth wafer and mask datastorage,

this link naturally exists within PROSE. Programs can access both types of data

through similar functional interfaces - theBinary PIFfor waferdata, and the standard

OCT interface for mask data. ForCIM, wafer and process flow datacan also be

exchanged through functional interfaces.

2.2.4 Manager

The manager coordinates allcomponents needed to accomplish a given task.

From the user'sviewpoint, input to themanager canoriginate eitherfrom interaction

with the user, or from a pre-determined process flow specification. In thefirst case,

process simulation commands can beinvoked from a menu within the VEM layout

editor. In the latter, a set ofprocess flow language commands can be interpretively

executed using the PROSE command language (Pel), which is a modified version of

the Tool Command Language (Tel) [59]. Pel contains many programming language

features such as variables for holding simulation parameters and conditional

statements for complex process flows.

AnX-window user-interface using theTk toolkit [60] allowsPel commands to

be run from a more friendly graphical environment. Process flow management by the

BerkeleyProcess Row Language (BPFL) [32],whichunifies simulation and

manufacturing process flow information, has also been investigated forusein PROSE.
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In either interactive or interpretive mode, the manager processes commands

one at a time. Upon receipt of a command, the manager uses either the RPC or UNIX

shell communication mechanisms to initialize and execute the necessary

component(s). Forexample, a lithography simulator might beinvoked to perform a

lithography step. The manager would handle the communications necessary to retrieve

the initial profile from the TCAD database, perform thesimulation, andwrite back the

resulting profile.

2.2.5 Applications

Both tool and task level applications are supported. Tool level applications are

generally a single program such as a process or device simulator. Task level

applications, on the other hand, can invoke one ormore tools multiple times, e.g., a

process parameter optimization program.

Three process simulators have been incorporated intoPROSE: the SAMPLE

topography simulator [13], the SIMPL-2 general process simulator [6], and the

SUPREM-IV thermal simulator [19]. FromSIMPL-2, translators are also available to

variety of otherprocess anddevice simulators [45]. PROSE utilities have been

developed fordisplay of profile boundary and impurity information. Additional

applications can be added with relative ease by replacing their specific interfaces with

the interfaces providedfor process flow and semiconductor waferdata.

2.3 Coupling with Other Types of CAD

In addition toproviding an environment for TCAD tools, an equally important

goal within PROSE is to coupleTCAD to related CAD environments.
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At best, currentTCAD systems have a very weak link to mask information,

which is the intersection point betweenTCAD and IC CAD. PROSE tightly couples

these two environments through the shared use of the OCT/VEM/RPC CAD

Framework. Programs may access both wafer dataand mask or higher level design

informationthrough similarOCT interfaces, thereby removing the distinction between

the two environments.

PROSE also attempts to providelinks betweenTCAD and CIM at the process

flow andequipmentmodelinglevels. Pel serves as a common input language for

TCAD toolsandcontains constructs fortoolinvocation, error handling, event looping,

and conditional branching. Callsto CIM canpotentially be made from this language to

invoke the BPFLinterpreter or the Berkeley EquipmentModeling system [61]. Wafer

information is transferred to CIM through the Binary PIF.

2.4 Data Flow

To explain the operation of PROSE in more concrete terms, this section

describes the dataflow between each of the components for a typical unit step.This

operation is summarized graphically inFigure 2-3. typically, each unit step causes

three sub-steps to occur. These are signified in Figure 2-3 by the annotated arrows.

Two types of information, control and physical, flow between the components.

Control information controls the component, i.e., inputcommands to a process

simulator, and is generated by the manager. Physical data, on the other hand, is the

physical quantity, such as the process flow, wafer, or mask layout data that the tool

needs to perform its task.
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Figure 2-3. Data flow within the environment. Process flow and mask layout
information is provided by the computer integrated manufacturing and IC
design CAD environments.

2.4.1 Invocation

The process begins when the managerreceives a command either from the user

through the menu interface in interactive mode, or from the next Pel command in

interpretive mode. The manager then determines which simulator should be invoked

based on thecommand type and initializes that program through theremote shell

mechanism. After the simulator is awakened, the manager either translates theprocess

command into a simulator input deck, or makes a direct function call to the simulator.

This sub-step consists entirely ofcontrol information - nophysical data is exchanged.
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2.4.2 Simulation

The simulator reads in the input deck that contains the commands to be

executed, and a pointer towhere themask and wafer data is stored. After retrieving the

physical datafrom the TCAD and/or IC CAD database, thesimulator performs the

simulation and stores theresulting databack intothedatabase.

2.4.3 Visualization

Since thecommunication is synchronous, the manager waits until thesimulator

completes its task before thevisualization utility is invoked. The visualizer, like the

simulator, reads themost recent versions of the profile and mask data, and transforms

it into a form compatible with VEM. The graphic is then displayed inVEM, and the

process step is marked "done".

2.5 EEPROM Bit Cell Example

This section shows how PROSE can be used togenerate a CMOS electrically

erasable read-only memory (EEPROM) bit-cell similar to the one described by

Chacherelis et al. [62]. The process flow and mask layout for the cell areshown in

Figures 2-4 and 2-5.

2.5.1 Interactive Mode

To use PROSE interactively, the user starts the session by invoking the VEM

layout editor, which also acts as the user interface shell (see Figure 2-6). The initial

mask layout is then drawn into the physical maskfacet of the cell using VEM mask

layout editing functions, a tutorial ofwhich can be found in [63]. The complete mask

layout as seen inVEM is shown inFigure 2-5. The OCT facet representing the cross-

sectional view of the device, named the crossfacet, must also be opened from the

VEM shell. The interactive manager is then invoked by selecting the PROSE

28



EEPROM PROCESS FLOW

Twin Well lum CMOS Front End

Modified Locos Isolation

Buried N+ Mask and Implant

Gate and Coupling Oxidation

Enhancement Vt Adjustment Implant

Poly Deposition/Definition

Interlayer Oxide

Metall Deposition/Definition

Interlayer Oxide

Metal2 Deposition/Definition

Figure 2-4. CMOS process flow for the EEPROM example [62].

Figure 2-5. EEPROM mask set [62].
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application in the VEMmenu from the cross facet After PROSE prompts the user for

the background substrate doping andthedesired cut-lineis entered into the cutline

facet, the starting silicon substrate is displayed in thecross facet, and thecut-lines

associated with the mask are shown in the cuts facet (see Figures 2-7 and 2-8).

vwr> *** prose ttrtMdtiB^'fcti^'^^r" ^-\; <*-<:

MMMniiiMm»«.i»............i.........M.. . ri—r-ri-nrm«rrrr«in»«i»rrrrrrif:rtit>>iji»r— ••

Figure 2-6. Starting PROSE byinvoking the VEM layout editor and selecting the
PROSE application. This creates a VEM console window and enables the
PROSE menu.

Wafer, process, and system commands can now be executed. The available

menu options are shown in Figure 2-9. Process steps are performed on the cross-

section facet either byselecting the process from the process menu, or by typing the

process step name intotheconsole window. Pop-up menus prompt the user for

additional information, such as resist thickness in the spin-on step, the mask layer and

polarity tobe used in the exposure step, and the layer tobedeveloped in the

development step. Theresulting profiles are then displayed as new cross facets. An

example CVD oxide deposition step is shown inFigure 2-10. Multiple tool invocation

is handled by the manager and is transparent to the user.
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Cancel

(M-Del)

Figure 2-7. The cross facet. Apop-up menu obtains the substrate background
doping from the user. The initial wafer profile, a piece of bare silicon, is then
displayed.

The final profile for the EEPROM cell is shown in Figure 2-11. Because it is

boundary-based, the VEM layout shows only the topography of the device, even

though both boundaries and fields are stored in the OCTdatabase. A separate viewer,

based on the SIMPL-DIX program [27], can be used to display the fields within each

layer (see Figure 2-12).

2.5.2 Interpretive Mode

In interpretivemode,The process flow can also be entered textually. This is

useful when the process flow is overly time consuming to accomplish interactively,

when a process flow has been previously defined and is run on a new cut-line or mask
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Figure 2-8. The cut-line is saved in the cut-line view (top). The cut-lines foreach
masklayerare automatically extracted from the general cut-line and shown in
the cuts view (bottom).

Wafer
Process
System

Initialize
Load
Save
APIFRead
APIF Write

Deposition
Development
Etch
Exposure
Implantation
Oxidation

Exit

Figure 2-9. The menu of PROSE commands.

32



&e&&2:"&r0$$~z»

mm®

•!!••:::•••

DEPOSITION T*P£

•i^^^^mM.

isatgbp&c
:^i&ie«ai

•••HH

;i Help
•:•• ='•: dp$• (F3>

DEPOSITION PARAMETERS
/

material »ame QXID

thickness 1.5

(K-Del)

X

Figure 2-10. Anexample deposition step. (Top) the original wafer, (Middle) the
menu invocation and dialog boxes, (Bottom) theresulting wafer.

set, or when only slightmodifications to an existing process flow are made. The

LOCOS oxidation and N+ implant steps for the EEPROM process flow, expressed in

Pel, are shown in Figure 2-13. Analytical SIMPL-2 models are used in this example.

The interpretive manager interprets the process flow one step at a time, much like a
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Figure 2-12. EEPROM substrate doping is displayed in thePROSE viewer.
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code debugger, e.g.,dbx [64], interprets a section of source codein a C-language

program. The flow is shown in the simple X-windows based user interface that assists

users inexecuting process flows. The filled incheck-boxes in the figure signifythatthe

LOCOS steps havebeencompleted, but that the implant steps havenot

2.6 Summary

This overviewchapter provides both an example of aTCAD system and

highlights some of the strengths ofPROSE.The architecture uses the OCT/VEM/RPC

CAD framework for its generic graphical-user interface, database, and

communications needs. Extensions have been made to the framework so that TCAD

specific requirements such aswafer data representation can be handled. Using a CAD

framework allows aclose coupling between TCAD and IC CAD, since exchange of

waferand mask layout information uses the same underlying interface. PROSE

operates on unit steps. Each unit step causes a seriesof interactionsbetween each of

the components, which reads in a starting cross-section, performs a simulation step or

steps, and writes backtheresulting cross-section. An EEPROM example showshow

PROSE can beused both ininteractive and interpretive modes. The following chapters

will examine thekey issues inTCAD systems and the PROSE implementation in

greater detail.
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Figure 2-13. The first two steps of the EEPROM process flow are specified using
SIMPL-2 models inPel and displayed through the user interface.
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3

Representing Wafer Information

Technology CAD (TCAD) places specific demands onthe representation,

access, and manipulation of semiconductor wafer information. TCAD tools, suchas

process and device simulators, need to store and exchange different types of

information, such asmulti-dimensional geometric, field and attribute data.

Furthermore, tools in other areas, e.g., integrated-circuit CAD and computer-

integrated manufacturing, also benefit from access to wafer information.

This chapter begins in Section 3.1 by describing what semiconductor wafer

information is and how it relates toother types of CAD data. Section 3.2takes a

pragmatic, bottom-up look athowexisting process and device simulators model wafer

information. Section 3.3 motivates the need for acommon wafer representation, and

Section 3.4 surveys previous approaches. The chapter is summarized in Section 3.5.

3.1 What is Wafer Information?

Semiconductor wafer information models the wafer state at aparticular time

instance. Pictorially, wafer data may be represented bydevice cross-sections and

impurity profiles, such as the MOSFET shown in Figure 3-1. These cross-sections

contain information such as device topography, impurity concentrations, and electrode

connections tothe outside world. Two related types of data are mask and process flow

information. Although they are used to generate the wafer cross-section, they are not

considered part of the waferrepresentation.
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Depending on the requirements of a particularTCAD tool, wafer data can be

represented in several ways. Tobetter understand these requirements, different TCAD

tools are examined in terms of how they represent andmake use of this data.

3.2 Who Uses Wafer Information?

Process simulators are arguably the most demanding users of semiconductor

wafer data. Topography, oxidation, and other simulators that model the fabrication

process have a varied set of requirements for manipulating cross-sections.

3.2.1 Boundary Representation Tools

Topography simulators that model deposition and etching processes generally

rely on boundary representations [12][13]. This is because topography simulators are

interested in profile shape and material adjacency information. Apopular

representation is the string-model and itsvariations [65][66], andan example

implementation is the SAMPLE non-planar etch machine [67]. In this model, each
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material layer isrepresented by astring ofvertices that are connected byline segments

(see Figure 3-2); the shape of the profile evolves bymoving the vertices based ontheir

etch rates. One drawback of this particular string model implementation is the

requirement that all strings span the cross-section. This is aproblem when materials

reach only halfway. A more general approach is the polygonal data structure in

SIMPL-2 [6]. In this representation, connectivity information is stored on vertices at

material boundaries (see Figure 3-3). This representation is similar to winged-edge

data structures used in graphics applications [68], but still does not properly handle

cross-sections with completely enclosed islands of material.

Figure 3-2. (Left) A string represented by aset of connected line segments.
(Right) A problem can occur when the string does not span the entire cross-
section.

Adifferent approach to topography simulation isthe use ofcells that represent

the atomistic nature ofmaterials. In the ballistic deposition model proposed by Brett

[14], circular shaped cells (or disks) with sticking and other coefficients are shot ata

profile (see Figure 3-4). Anapproximate boundary based on cell density can then be

computed. For etching, the cell-model can be used to remove "atoms" of the material

based on their exposure to the etching mechanism [69].
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Figure 3-3. The SIMPL-2 polygonal representation. Vertex nodes store
information about touching materials. If material name pointers are followed, a
clockwise outline of a material can be obtained.

Figure 3-4. Atomic-based approaches, such as ballistic deposition (left) and cell-
based etching (right).

3.2.2 Mesh Based Tools

In photolithography, meshes are used to track the amount of photoactive

compound in aphotoresist during exposure and development. The SAMPLE program,

for example, implements this model with a tensor product mesh.
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Thermal simulators for oxidation, diffusion, andimplantation are also

generally mesh-based due to the field nature of the data they manipulate. Awell

known thermal simulator that uses a triangular mesh is SUPREM IV [19]. Whether

finite-element, finite-difference, or other discretization methods are used, local

element neighbor information must be part of the structure for computational

efficiency. Global material boundary information, on the other hand, is lower priority

in these simulators, and is specified only implicitly through the material type for each

element (see Figure 3-5).

KxV>firVVWy<^W^
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^mmmmmmmmmmmmmmmm

Figure 3-5. Material boundaries are obtained through the slow process of
searching for boundary elements. Forexample, the boundary elements of the
lightly stippled material are cross-hatched.

The majority of TCAD simulation tools are mesh based. This is also true for

resistance and capacitance solvers and device simulators, which use meshes to solve

the Poisson and electron-hole current continuity equations. There are avariety ofmesh

types in use. Some ofthe most common are triangular, rectangular, and tensor-product

meshes, but others, such asOctrees [70], have also been successfully applied to

process and device simulation. Auxiliary representations are also necessary for

specifying boundary conditions in both mesh and boundary-based representations.
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Tools may also rely on analytical or unevaluated functions for wafer

representation. This is the case of the FABRICS statistical simulator [71]. Because

each complete simulation requires thousands of simulations (to account for the

statistical randomness of the process), full numerical simulation is too slow. Instead,

fast analytical solutions are used instead. Unevaluated fields also occur in device

simulator output such as current-voltage and capacitance curves.

In summary, wafer data is represented most commonly by its geometry and

field components (see Figure 3-6). The geometry view, also called the boundary or

topography view, provides information about the material boundaries of the cross-

section, and can answer questions like "which parts of the wafer are polysilicon" or

"where is metal exposed to the ambient". The field view best describes fields within a

cross-section, such as a MOSFET's sourceand drain regions or the gate threshold

voltage adjustment, as represented by the triangular mesh.
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Figure3-6. Separation of a MOSFET into geometry and field views.
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3.3 Issues in Common Wafer Representation

A common wafer representation goes along wayto helping solve the tool

connection orchaining TCAD framework requirement The mostobvious reason for

using a central representation is to reducethe numberof translators and thereforethe

amount of translator development time necessary between tools from 0(n2) to0(n),as

shown in Figure 3-7. Another important reason is the loss of data accuracy due to

incomplete representations and/or poor translation between them.

\

Simulator A

/ x - r ^Simulator D W -W Simulator R Simulator B ^ S~\ __ Simulator C

MSimulator C •+—•* Simulator E Simulator D * Simulator E

Figure 3-7. The number of translators grows 0(n2) with the number of simulators
to beintegrated. This can bereduced with acentral representation.

Unfortunately, wafer representations optimized for specific process steps, such

as those described inSection 3.2, do not necessarily produce an optimized common

representation when combined. For instance, pioneering integration systems used

evolutionary approaches to arrive atacommon representation. Often, the data

structure orthe associated savefile format of the most used tool in the system was

taken as the initial "common" representation. As additional requirements were

discovered, the database evolved to meet those new needs. In the SIMPL system, the

initial design goal was to integrate topography tools using the SIMPL-2 data structure.

When tools that made use of node and line segment representations were added to the

system, such as the creeping flow simulatorCREEP, the SIMPL-2 data structure was

extended with additional slots for marking tracing boundaries. The implementation of
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the SIMPL/SUPREM link has also led to some extensions of the SIMPL-2 mesh

structure but notenough to completely represent theinformation needed by SUPREM

IV. Since element dataremains with the SUPREM program, dataconsistency becomes

a problem. After four generationsof SIMPL, the latest version, SIMPL-IPX, has

turned into an "integration jungle,"with many specific translators and no central

location for wafer data.

The practical experiences gained from the SIMPL implementation have

identified several major issues that must be addressed when developing a common

wafer representation. These issues are now discussed.

3.3.1 Multiple Wafer Views

The scopeof the representation mustadequately cover all waferviews that are

needed by the TCAD tools using the framework. Forinstance, the MOSFET profile in

Figure 3-6 may need tosupply itsboundary nodes for an etching simulator, oritsmesh

nodes for anoxidation module. Maintaining consistency between the two major views,

i.e., field and geometry, isdifficult, since each time one view changes, the other one

must be updated, or at least be markedinvalid. As mentioned before, there are a

variety of different mesh types used in TCAD, each of which can be considered a

different view.

The situation is complicated even more if the tools within the framework also

use unevaluated functions, have special representations forboundary conditions, or

use custom views. Multiple views also place demands on storage requirements, since

each profile may need redundant information to meet performance constraints for a

particular view.
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3.3.2 Data Mapping

Associated with the multiple view problem is the problem oftranslating the

data between views, ordata mapping. The inaccuracies of translating between

boundaries and meshes inbetween SAMPLE and SUPREM is one example ofa data

mapping problem that has been,previously investigated [72]. Consider performing an

etch step with both view types. Many problems arise when theresulting boundary is

"stitched-back" into the mesh. For instance, imbalances in the boundary andmesh

densities must be equalized, or the boundary mayhave to "snap" to the grid (see

Figure 3-8). The quality of the translation is highly dependent on the way the data

mapping is performed.

Dense Boundary/Coarse Grid

a
^i" ♦ •• ^

i

f
Dense Grid/Coarse Boundary

Jf==^
1 ^

11

Ik

Figure 3-8. The "stitch-back"of a boundary etch-frontcauses a data mapping
problem. (Left) Mismatches in the boundaries and/or field densities must be
handled. (Right) Additional constraints might require the boundary to be
snapped to the mesh elements.

Translation between mesh-types is another example of data mapping.

Translators are needed for converting between different forms of uniform and non-

uniform'meshes. Even the straightforwardconversion of a rectangular mesh to a
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triangular one by dividing each rectangle into two triangles, for example, may lead to

problems of a mesh that is too dense for the TCAD tool to handle. Density adjustment

or other adaptive grid techniques must usually be employed.

3.33 Application Constraints

Wafer representation is dependent on thetype of application using it, i.e.,

whether the toolexistsboth in source code and binary forms, or only the latter, makes

a difference. When both areavailable, the internals of thetool can bechanged to

conform to the common wafer representation. In the binary only case, a tool wrapper

must be used. The wrapper translates the incoming common representation into the

tool's format, performs the function, and translates the tool's output back into the

common representation, as shown in Figure 3-9. Wrappers limitwafer representation

performance because the entire profile must usually be passed into and outof the

wrapped program, as opposed toonly passing the necessary data. Nevertheless,

wrappers can be used whenever it isdesirable toleave the TCAD tool in itsoriginal

form, as is true of most existing tools. New tools, however, should avoid the use of

wrappers.

Input Translator
(common representation -> tool representation)

Output Translator
(tool representation ->common representation)

Figure 3-9. Wrappers allow existing tools to use acommon representation
without modifying the internals of the tool.
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The types of data access provided are also dependent on whether the

framework is to be used for tool integration ordevelopment purposes. For example,

set operations are important when integrating tools toperform operations the stitch-

back function shown in Figure 3-8, which can be easily implemented with ageometric

"inset" ofthe etch front into the original profile. Their use in supporting TCAD model

development may be limited though, since algorithms usually operate on individual

elements and segments rather than entire geometries. "Move-point" and "move-

element" would be more helpfulin this case.

3.3.4 Performance

Performance requirements differ depending on whether TCAD tools plan to

use the data representation for tool integration ormodel development. In the first case,

performance is much less of an issue because the time spent within the tool is much

greater than the time taken in exchanging the data. Performance isobviously very

important when the representation is used within the tool.

3.4 Common Wafer Representation Approaches

Common wafer representation approaches currently in use are uniform file

formats, functional interfaces, and shared-data structures. The choice of

implementation is highly dependent on the level offunctionality desired and the

targeted application.

3.4.1 File Interchange Formats

Anapproach thatallows for a loose coupling between tools is the uniform file

interchange format. This conceptis similarto the textual formats used in IC CADfor

layout information, e.g., Caltech Intermediate Form (CIF) [73]. Tools exchange

information by reading and writing data files using the format. If the format is
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complicated, the parsing function can bedifficult to implement though. Generally, file

formats areused for integration. The Intersite Profile Interchange Format [53],

discussed in Chapter4, is an example of a common file format.

3.4.2 Functional Interfaces and Client-Server Models

Functional interfaces allow tools to access datadirectly without the need of a

file format, and have been used in the most recent wave of PIF-like environments

being developed [50][74]. These interfaces range incomplexity from low-level

interfaces that provide file parsing functions, medium-level interfaces that access

TCAD data asobjects, tohigh-level interfaces that can manipulate multiple or

composite objects. Low- tomedium-level interfaces usually address the integration

problem, while higher-level interfaces can beused for integration as well as

development purposes.

Arelated approach is theclient-server model. In thismodel, a wafer server

maintains the state of the wafer. ClientTCAD tools, such as simulatorsand

visualizers, request wafer data from the server through a functional programming

interface. Ineffect, the server acts asan oracle that answers questions about the wafer

state posed by the clients. This approach isgeared towards new tool development. The

functionality ofthe client-server model depends on the amount offunctionality placed

on the server side relative tothe client side. The Semiconductor Wafer Representation

Architecture [56], which ispresented in Chapter 4,aswell as the Chip Database

(CDB) [75] make use of the client-server model.

Both functional interfaces and the client-server model have the advantage of

being database independent, since the storage mechanism is hidden from the

programmer through the function call.
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3.4.3 Common Data Structures

The tightestcouplingof tools is achieved through a shareddata structure. This

can be quite effective if the same language is used for all tools, there are a limited

number of tools, and theagreed-upon datastructure doesnotchange. Shared data-

structures can suppon both integration anddevelopment, dependingagainon the level

of functionality that the common function library provides. Aprime example of this

type ofenvironment isDAMSEL [76]. Common data structures have thedisadvantage

ofhaving a high maintenance cost, because each time the data-structure ischanged, all

related modules must also be updated.

3.4.4 Performance Considerations

When considering data access performance, the data structuring approach is

the mostefficient, followed by functional interfaces, the client-server model, and file

interchange formats. The difference in performance between data-structures and

functional interfaces is minimal. Initial results show that the client-server model can

also becompetitive todatastructures to within tenpercent [77]. File formats area

factor of ten slower.

3.5 Summary

Understanding what wafer information is and how it canberepresented is an

important part ofbuilding a successful TCAD framework. Two widely representations

are boundaries and meshes. Multiple data views, data mapping, application type, and

data access performance make development ofacommon representation very difficult

Several different approaches that address this problem are currently in use, including

file formats, functional interfaces, and shared-data structures.
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4

Wafer Representation Standards

The useof standards in semiconductor manufacturing, such aswafer size, type,

andcrystal orientation, is analogous to the use of standards in TCAD. A standard

wafer representation is particularly valuable tothe TCAD community because of the

complex physics involved, requiring multiple areas of expertise.

Several de-facto wafer standards based onpopular simulator programs such as

SIMPL-2 [6], and SUPREM IV [19] are already in use, but their formats are over

burdened with the demands placed on themby new tools. Since 1986, two committees

addressing the Profile Interchange Format (PIF), andthe Semiconductor Wafer

Representation (SWR), have been actively developing standards based on input from

multiple groups in the U.S. and Europe. Finding the right path to standardization is

difficult. Technical considerations such as the choice of operating system,

programming language, and programming paradigms, e.g., theclient-server model, an

object-oriented approach, etc., must be sorted out. Development costs, membership

from universities and companies on different continents, and other political issues also

arise.

This chapter gives aperspective on the progress and key issues in developing

standards for wafer representation. Itis based on the author's experiences from co-

developing the SIMPL-IPX system, designing PROSE, participating in the PIF

standards, and chairing the SWR working group. Section 4.1 discusses themotivation

for astandard and the parties involved. The progress and potential of the PIF and SWR

efforts are then charted in Sections 4.2 and 4.3, respectively. Section 4.4 describes
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standards work on information modeling. A quantitative cost analysis of standards for

integration and development are given in Section 4.5. Major areas of concern in the

SWR are discussed in Section 4.6. Section 4.7 suggests smoother ways to run the

standards process. A possible scenario for future standardization is presented in

Section 4.8, and conclusions are made in Section 4.9.

4.1 Motivation

4.1.1 Benefits

There are three main arguments for developing and using a waferstandard.

First, a standard reduces the amount of efforteach group needs to devote to the

common representation problem. With thevastamount of workremaining in wafer

representation (especially in three-dimensions), thepooling of expert mindsmakes the

best use of limited resources. Second, a standard wafer representation allows tools to

share data, allowing them to beeasily connected to synergistically address new

technology issues. This is themain benefit of an integration standard. Third,

supporting routines written for the standard can be used by all TCAD tools, reducing

the development time for new tools and encouraging model development. This is the

motivation for a development standard.

4.1.2 Everyone Wins

Three types ofTCAD developers make up the wafer standardization interest -

universities, industry, and vendors - each ofwho have their motivations for promoting

a standard.

Professors and their students are interested first in development standards, and

second in integration standards. A development standard reduces the time necessary

for graduate students to develop and test out new models. A side benefit is the research
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content of development standards. Since it is still an active research area, publications

and degrees canresult from standards work. Integration standards are alsodesirable,

mainly because it allows researchers to accelerate technology transfer to industry and

other users, aswell as address new technology issues by combining simulators. Tool

sharing through integration standards also allows for testing a specific tool with other

tools. For instance, an etch tool may need tobelinked to deposition and lithography

tools to prove its usefulness. Finally, there should be flexibility in thestandard toallow

universitiesto explore andexpandon them in theirresearch.

Research and development groups inindustry require astandard for comparing

models and integrating the large number of tools provided by universities and

industrial partners. A wafer standard for tool integration is top priority for companies

who do not have away tolink their tools. Companies with integrated systems are more

inclined to support the development standard, which is along-term project. Either

way, the standard must be"industrial strength" in specification and implementation to

satisfy the requirements of these practical users, but still remain flexible enough to

support future extensions.

Vendors can also use an integration standard to help themconnect their tools

more easily. In the future, the ones who do will beatan advantage over those with

closed systems. This advantage isimportant because of the small number (certainly

less than five) of vendors that the market can support. The general opinion is that

vendors will bedriven to use standards only if demanded by the user, but there is also

a potentially lucrative business in standards documentation and implementation. To

date, thedevelopment standard has less of an impact onvendors because it is still in its

research and definition rather than implementation phase.
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Led by the universities, supported by the industry, and closely watched by the

vendor community, wafer representation standardization has been pursued since 1985.

The wafer standards effort was first organizedby Neureuther in an open letter mailed

to TCAD groupsworldwide [78]. This letter proposedthe formation of a committee to

standardize on a cross-sectional profile representation. Since then, two majorefforts

have taken on the challenge. The Profile Interchange Formataddressesmainly the

integration standard, while the Semiconductor Wafer Representation addresses both

integration and development.

4.2 The Profile Interchange Format (PIF)

The Process andDeviceTechnical Subcommittee of the Electronic Design

Interchange Format (EDIF) organization was formed in 1986 to formalize a wafer

standard by a working groupof university and industry researchers. The result of this

first effort was the publication of the textual Profile Interchange Format (PIF) in 1988

[53]. Since its initial definition, the PIF hasevolved into a storage file-format as well

as an object definition for a functional interface. These two versions are known as the

Intersite PIF and the Intertool PDF, respectively. When combined, the PDF provides the

features of a file format for exchanging data across sites, as well as anefficient

functional interface to wafer data (see Figure 4-1).

4.2.1 File Format

The Intersite PIF allows for data exchange between multipletoolsthrough files

that have aEDEF-like syntax. An example of an ASCII PDF file describing aMOSFET

can be found in [53]. This file format has gained only limited acceptance asa standard

file format for describing wafer information due to its parsing complexity. Several

tools have been modified to write to variations of the format [1][50][79][80][81], but

none are able to read in and understand all files generated by others. Another
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Figure 4-1. The Profile Interchange Format (PIF).

disadvantage is the inefficiency of writing and accessing data serially through a file ,

since tools areoften only interested in selected portions of the representation. To

address these problems, efforts have been made toprovide low-level parser functions

for retrieving data from a PIF file [82] [83], butonlya handful of tools have made use

of them due to their limited functionality.

4.2.2 Functional Interface

The next step in the evolution was the broadening the PIF concept in ways

more suitable for rapid interaction between simulators. The Intertool PDF uses the

same conceptual model as the Intersite PIF, butrepresents wafer dataas object

instances in a graph, and provides a functional programming interface that can access

and manipulate these instances. Besides allowing TCAD tools to access PIFdata

commonly, thefunctional interface has other advantages. It promotes code reuse. For

example, each tool no longer needs a PIF file-parser, since object data can be readily

retrieved through function calls. Programmers may also work with these objects at

different levels ofabstraction, e.g., as single objects such as apoint, oras higher-level

composite objects such asa geometry containing multiple points. Finally, storage of
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data as a graph ofobjects allows fordirectratherthan serial accessof PIFinformation.

These advantages lead to higher programmer productivity and moreefficient access to

the data.

Several TCAD database implementations use the Intertool PIF concept,

including an early PIF-like database developed at Intel [36], the Binary PDF described

inChapter 5,PIF/Gestalt [79], and the Binary PIF inVISTA [84]. Although these

implementations do not currendy conform to asingle standard PDF model, they are all

members of the PDF family.

4.2.3 Discussion

Technically, the PIF has the potential tobecome a standard for tool integration.

The Intertool PDF shows promise as a functional interface to wafer data. The PDF can

also help in development needs by providing shared utilities, but the levelof the

sharing that it can achieve will depend on future research. Unfortunately, the PIF is

remains aphilosophy and not astandard. Various groups working onthe PIF have and

continue to make new and necessary extensions to the initial file format version,

resulting in multiple PIF versions that are incompatible with one another. The PDF

puzzle now has all the pieces, but needs achampion to put it all together.

Politically, the PIF is a good first effort at an integration standard and has

played an important role in drawing together TCAD framework researchers from

CMU, UC-Berkeley, MIT, Stanford University, and TU-Vienna. The research era of

tool integration is almost over though asuniversities turn theirattention to a

development standard. Commercialization by companies and vendors is the next

logical step. Unfortunately, the PIF has not succeeded in obtaining the necessary
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backing from these groups. Other than the attendance of an occasional meeting and the

support university research efforts, thePIF has unfortunately fallen on the back-burner

of the commercial TCAD stove.

4.3 Semiconductor Wafer Representation

In June 1988, the Semiconductor Research Corporation (SRC) organized a

workshop onTCAD Frameworks at Stanford University. Discussion at theconference

ignited aten-man effort on this topic. Aninitial architecture document oudining the

requirements for such a framework was completed in March 1989 [55]. This work

generated a shopping listof capabilities that future systems should have. Outof this

list, wafer representation was identified as one of the two most important items for

standardization.1

In June 1989, theTCAD Framework Group was formed asa committee of the

CAD Framework Initiative (CFI). Within this group, the Semiconductor Wafer

Representation (SWR) working group was designed the task of standardizing on wafer

representation. The members spent one year developing an architecture and

programming interface that would suppon both integration and development needs.

The SWR contains the experiences of many groups who have looked atthewafer

representation problem inuniversity and industry. At the kick-offmeeting of the SWR,

ideas from many different implementations (FOXI, PREDITOR, PROPHET, PROSE,

SUPREM/PISCES) and previous standards (EDIF DM&V and EDIF P&D) were

collected, and their union was used as abasis for initial standards discussions [85].

1. Process representation was the other item identified as being very important
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4.3.1 Architecture

The architecture, which was approved by the committee for prototyping

purposes inApril 1991, is shown in Figure 4-2 [56]. It uses anobject-oriented

approach to describe wafer data and the client-server model to access it. The SWR

representation isdivided into field and geometry components, which provide boundary

and mesh based views of the wafer cross-section, respectively. Clients access wafer

data by way ofa standard programming interface defined inC++ [86]. The types of

calls that the client may make tothe server are shown inFigure 4-3. The SWR

architecture and programming interface documents are publicly available and can be

obtained through theCAD Framework Initiative. Ageneral discussion of the SWR

may be found in [87].

TCAD Clients

SimulatorA SimulatorB

C++ Interface J C++ Interface^

r Geometry Field Utilities

SWR Server

Figure 4-2. The SWRarchitecture [56].
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Geometry Server

Objects:
point, edge, face, cell, cell complex

Operations:

create, delete, access (general);
section, coalesce, inset (set)
create geometry from mesh (other)

Example: make a square
SwrgPoint<2>p(0,0);
SwrgPoint<2>q(l,l);
SwrgWafer2D cellComplex(p,q);

Field Server

Objects:
field, mesh, element

Operations:
conform, extract, mesh geometry, validate
(interactive); evaluate; update

Example: mesh an existing geometry
f = Field.mesh_geometry(celll, flag);

Example: evaluate function

f = Field<T>.evaluate(point)

Figure4-3. Example SWR objects and operations [86].

4.3.2 Prototype

Aprototype SWR standard was first demonstrated inAugust 1991. The

demonstration simulated the construction of a MOSFET from the initial field

oxidation through the source and drain formation sketched inFigure 4-4. The main

components of the SWR server are the geometry serverfrom IBM [88] and the field

server written by Giles, Chin, and Law [77]. Universities, companies, andvendors

contributed thenine clients listed inFigure 4-4. Simple new clients used the SWR to

test it outas a emerging development standard, while larger existing clients used the

SWR as an integration standard.
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Process Step Client Simulator

Initial Profile SUPREM IV

Deposit Polysilicon TI Deposition
Tool

Gate Lithography SAMPLE

Etch Gate Intel Etching Tool

SPEEDIE

Strip Photoresist TI Stripping Tool

Create S/D Junction SUPREM IV

Simulate Device PISCES

MINIMOS

Figure 4-4. SWR Prototype MOSFET process flow summary.

4.3.3 Discussion

The client-server approach to wafer representation is new to TCAD, as is the

use of the C++ language and an object-oriented programming style. The emphasis on

software engineering techniques from the computer-science field is a radical departure

59



for physicists and electrical engineers who are still used to the "old programming

ways." Some typical concerns expressed are the large existing base of FORTRAN and

Cprograms that must be wrapped or re-implemented, the steep learning curve for

C++, the applicability of the client-server model, and the assumption of the POSDC

operating environment.

Both the technical advantages and the difficulties of this approach have been

better understood through the SWR prototyping exercise. For example, adding tools to

the framework was amuch easier task than expected, once one understood the server.

Wang reported that wrapping SAMPLE for the prototype took about two weeks and

800 lines of code [90]. This is factor of twenty-five improvement in speed, and factor

of five improvement in size over the one student year and 4000 lines of code needed to

develop the stitch-back routines in SIMPL-IPX. The pre-existence of set operations in

the geometry server was the main reason for this improvement. The feasibility of a

development standard has also been shown with the implementation of new

elementary deposition and etching codes using the SWR.

Several concerns were also raised. Client developers complained about lack of

detailed documentation during the prototyping, although this seems to be typical of

any prototyping project. Machine requirements were more demanding due toserver

and wrapper size. The binary code size for each of the field and geometry servers was

about one mega-byte. Client wrappers were also about amega-byte apiece. Asystem

with ten clients therefore requires an extra twelve mega-bytes ofmemory when

integrated. The complexity of implementing the geometry and field servers, which are

68,000 and 10,000 lines of code respectively, is also an issue. Server overhead does

not seem to be a problem though. Field server calls for point examination is about a
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factor of two slower than direct C++ function calls, but this is still only ten percent of

the time used in function evaluations such as sqrt(x2+y2) [77]. In general, these issues

are not enough to offset the advantages of the SWR approach:

From a political point of view, the SWR has been somewhat successful at

working towards a standard. The group has more active industrial participation than

the PIF, which was mainly a university effort. The twenty active SWR members are

split evenly between universities and companies. A second difference is the strong

participation of computer scientists and mathematicians who have assisted with

software engineering and geometry issues, and who have pushed for approaches such

as the client-server model.

The SWR prototype was the committee's key accomplishment not only

because of the technical understanding gained, but also for political reasons. First, it

proved that the different groups within the TCAD community could work together on

a joint project. Thirteen organizations participated in the prototype. Second, it

generated interest, confidence, and credibility. The initial demonstration was seen by

over fifty people, and subsequent showings at member companies, Sematech, and the

International Electron Devices Meeting (IEDM) have been well attended by managers,

funding agency representatives, and the casual observer. Third, the prototype was a

concrete project with a set goal and deadline for the group. Standard specifics had to

be agreed upon in the documents, and had to be implementable within the allotted

period. On the downside, the time required to coordinate the effort was considerable.

Code integration and coupling tools between competitive companies required lots of

legal paperwork. Even with these barriers, the prototype was by far the most

productive three months spent by the SWR working group.
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During the tenth meeting of the SWR in February 1992, the architecture and

programming interface documents were updated to Version 0.9C.1 It is the hope that

Version 1.0of bothdocuments will represent the state of the SWR worldafterthe

prototype experience, will be geared asan integration firamework, and canbe usedto

support simple new tools. All concepts described in this versionhave eitherbeen

exercised in the prototype orare those that the committee feels are wellunderstood,

useful, and easily implementable extensions to the current framework. Ironically, the

success of the prototype has raised everyone's expectations, thus making it more

difficult to formulate future plans, e.g., how tocommercialize the software, whether to

work on integration ordevelopment issues, and most importandy, who will do the

work.

4.4 Information Modeling

Anunderlying information model for wafer data isbeing developed inparallel

with the PIF and SWR efforts. The EDIF Device Modeling and Verification

subcommittee, which became aCFI working group in 1991, has proposed an

information model for the PDF in 1989 and more recendy for the SWR [91]. Figure 4-5

shows the proposed device and geometry views in EXPRESS-G graphical notation

[92]. Device information is separated into segment and boundary parts. Segments

make up the layer materials and geometric information such as points, lines, and faces,

as well as mesh and field attribute information. Boundaries specify boundary

conditions for the device.

1. After voting approval bythe TCAD Framework Group, this version will be designated Version 1.0.
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Figure 4-5. Top level DM&V information model fora two-dimensional device
[91]. Segments and boundaries contain geometries, e.g., points, lines, and faces,
and fields, e.g., mesh and field attributes.

The information model is the most basic way ofexpressing wafer data

information, and may be the starting point of agreement between all groups. The

DM&V group was chosen to develop the information model because of their modeling

expertise and interest. An initial review of the model by members from the SWR and

VISTA groups shows no major inconsistencies with the SWR or VISTA architectures

[93]. Amore complete review is currendy underway by the DM&V and SWR groups.
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4.5 Cost Analysis

In this section, the cost ofdeveloping and using a standard iscompared to the

cost ofnot using a standard. Wafer standardization can progress along two paths:

agreementon a standardfor integration systems; and continuedresearch in the area of

wafer representation for development systems. These two approaches to standards are

addressed separately.

4.5.1 Integration Standard

The main advantages of an integration standard are: (1) a reduction of the time

required to integrate new tools, (2) the ability to compare different tools that perform

similar functions, e.g., judging the results oftwo lithography simulators; (3) the ability

toshare general utilities such asvisualization tools; and (4) increased opportunities for

smaller research groups tocontribute equally in the TCAD arena. Assuming ten

significantly different new models are developed by research groups each year

worldwide, two-man months ofeffort are required per module for understanding and

integration, and one month isneeded to make the tool user-friendly using current

techniques. Therefore, each integration organization (company) would spend

approximately three person-years on (1) and (2).1 The cost for (3) isalso included in

the three-months pertool estimate, since most sites already have a set ofcommon

utilities for their system. The cost for (4) isunknown but TCAD groups without

integration projects, such as those at the University ofAlberta and the University of

Wisconsin, would benefit. If we assume there are ten integration sites worldwide then

the total yearly effort spent on TCAD integration without standards is thirty person-

years. Thisestimate does not include the unknown costof (4).

1. Three person years is often more than acompany can afford. Because ofthis, often only asubset of
these models areintegrated. The cost of the technology that isnot transferred isunknown.
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The cost toproduce a document specifying theintegration standard based on

the PIF and SWR work isa two person-year effort (four people, each working half

time). The price ofdeveloping an implementation depends on the amount ofprevious

work that is both applicable and available, but can beconservatively placed at ten

person years. Thus, the total cost is approximately twelve person-years for

documentation and implementation ofan integration standard. Taking figures from the

SWR prototype, integration of a new tool into the framework should take no more

than a week if the standard is used, but the time necessary tounderstand how the tool

works remains constant. Thus, the cost toadd a new tool isroughly one month and one

week. The effort for ten tools at ten sites would be about ten person-years orless,

depending on whether there is integration sharing among sites. The tool integration

burden can also be shifted from the development group to the users using this

approach.

An integration standard is ripe for commercialization orcooperative

development because there is a savings ofatleast a full-time person per organization

per year, and the system could be developed with less effort that the savings from the

first year.

4.5.2 Development Standard

In SAMPLE and SUPREM, less than one-third ofthe code implements the

process models; the other two-thirds isfor model support, such as input parsing and

simulator output. This is thought to be typical for most simulators. Adevelopment

standard can conservatively reduce the coding time by one-half, substantially

increasing the productivity ofsimulator developers and reducting the duplication of
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work. For instance, halfof thegraduate student coding effort would be saved. A

development standard might also address how the scope ofTCAD tools can beused

through enhanced controllers such as task level managers.

There are more unknowns in costing outadevelopment standard because it is

further in the future than an integration standard. A paper definition is estimated to

take between two and four person-years. Since this is still an active research area, it is

hard to estimate the cost of an implementation, but it ison the order of tens of person-

years. A TCAD project of this scale is probably not manageable by any individual

organization, and will therefore require ajoint effort between universities, companies,

and vendors.

Some overlap between the integration and development standard exists. An

integration standard would allow some degree ofutility sharing, making it somewhat

easier for developers of newtools. The development standard, on theother hand, is a

superset of the integration standard, since tools in the integration framework can also

act as models in the development framework.

4.6 Outstanding Issues

Although we have come along way in defining wafer standards, many

outstanding issues, both technical and political, remain. The way that these issues are

resolved will gready affect the future of the standards work in general, and the SWR

working group in particular.

4.6.1 Technical Issues

Remaining technical issues can begrouped into issues created by the decisions

made, issues that have not yet been addressed, and future issues that are still

unknowns.

66



For each choice made in adefinition, many other choices are sacrificed. For

example, the major architectural decisions made in the SWR are the use of the client-

server model, the definition of the representation through the C++ language using an

object-oriented paradigm, the separation of the representation into geometry and field

components, and theimplementation of ageometry interface based on setoperations.

These decisions were made by theSWR group after careful consideration, butother

choices are also valid. The group could have selected a layered model instead of the

client-server model, aFORTRAN instead of C++ specification, unified instead of

separated geometry and field data, and moving boundaries rather than set operations.

There are reasonable arguments for each of these approaches, and the best choice is

still being debated.

Many issues related to the wafer representations must also be addressed before

a true standard exists, for example, error handling, data persistency, definition for

multiple programming language implementations, and intertool communications

mechanisms. Although there has been some work within the CH group to study these

issues, they have not been specifically addressed in the SWR.

Finally, there are still many remaining unknowns. Development frameworks

are in their infancy. Aswe continue to work towards them, they will no doubt bring up

more issues. Three-dimensional process and device simulation needs will place

additional demands on framework representation and performance requirements. The

magnitude of the legacy system problem, i.e., the headache of maintaining an old

monolithic system ortransferring all the tools to anew framework, mustalso be

considered.
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4.6.2 Political Issues

The main political barriers are the cost ofstandards and who will pay for them,

the issue ofcommittee membership by those inEurope and Asia (when funding is

mainly through US sources), and the complications ofimplementing standards by

committee.

The cost of standards development todate has been quite high and almost

completely supported through volunteer time. Future costs must not only be reduced,

but also charged toacustomer. The SWR group has sofar held ten meetings, with each

meeting averaging of two days induration.Writing the architecture and programming

interface documents have consumed one person-year, the prototype integration has

taken two person-years ofeffort, and chairing the group has been a half time job for

over a year. It is unlikely that these volunteers willagree to work for free for much

longer. New developers and new sources for dollars must be found. The large number

ofSWR meetings isalso an issue, as travel isalways a sore spot with companies and

funding agencies.

Participation by the Europeans and the vendors isalso key. It is imperative to

coordinate efforts with TCAD groups and standards projects within Europe, e.g., TU-

Vienna, ETH, DASSI, and the STORM project, and vendors such asDawn

Technologies, Silvaco, and TMA. There seems to be a general lack ofinterest among

the Europeans, who seem to view the SWR effort as a waste of time. A concrete

proposal that describes acoordinated effort would be a good first step. This would also

tie in the vendor community, which has expressed an interest in seeing standards

documents produced from the SWR work.
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Finally, the extent of the standard needs to be clarified on whether it includes

only documentation, ordocumentation with an implementation. The argument for the

latter is that a standard mustbe widely available and shown to be useful in orderfor it

to be accepted. But a standards implementation limits commercial possibilities for

vendors, brings up manycodeownership issues, and makes the coordination effort

between members more complex and more cosdy.

4.7 Moving Forward with the Standards Process

The number of issues raised inSection 4.6 is large but not overwhelming.

From the cost analysis ofSection 4.5, standards for wafer integration and development

are definitely worth pursuing. Given thecurrent stateof the SWR,this subsection

provides two suggestions for moving forward in the standards process: thedivision of

standards work into integration and development thrusts, and technically-oriented

meetings and project driven standards. Acommercialization plan for an integration

standard is presented to identify some more specific suggestions fora successful

cooperative arrangement. Aresearch plan for SWR Version 2.0 (the development

framework) should also be crafted to meet the needs of the TCAD framework

research community, but is left to future work.

Suggestion #1: Letthe researchers do research, and letthe implementors
implement.

People tend to do better at things that they like to do, rather than are forced to

do. Given that the SWR group is mostly university and industrial researchers, and the

fact that Version 1.0 ofthe SWR isalmost complete, it isunlikely that they will be

willing to devote any more time to an integration standard. It is betterto unleash them

on the specification and prototyping ofadevelopment framework, and to put them in

an advisory role for the integration standard. Companies whoshow an interest in the
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representation for integration should join forces with universities who have related

implementations, e.g., thePIFpeople, to formally develop a standard using new

blood. Theeffortspenton pursuing an integration standard is worthwhile for the

reasons citedin Section 4.1,even if only supported bya handful of companies.

Suggestion #2: Strive for technically oriented meetings and project driven
standards.

Themost productive SWR meetings have been theones where political issues

areeither notdiscussed, or discussed only briefly. Unfortunately, roughly a third of

SWR meeting time has been spent on politics, bureaucracy, orrehashing previous

decisions. In the future, political issues at technical meetings should bedelayed until

the lasthour of the last day. In addition, many discussions require only a small group

of people. Meeting in task groups of three or four appears to beeffective means of

making specific decisions that can be recommended tothe committee at large. Projects

are also extremely useful formotivating people andfachieving goals. The SWR

prototypeproject, and its deadline, encouraged the group to make decisions much

morereadily than multiple discussions without a practical application. The CFI

organization hasalso recognized the importance projects and is using them todrive the

standards process for design CAD.

1. The keyword here isdevelop. The integration standard isa development, and not a research project.
Thus, the burden ofdevelopment should mostly rest on industry, with universities providing help tothe
transfer of technology in their respective implementations by students and the undergraduate ormas
ter's level.

2. Thecommittee chairassumes only partial responsibility. SWR members liketo talka lot too!
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4.8 An Implementation Plan for SWR Version 1.0

Rather than specify specific recommendations for solving standards issues

such as implementation personnel, codeownership, andfunding, these elements are

presentedwithin an overallproposal for implementing Version 1.0of the SWR. This

framework would beuseful for tool integration and simple tool development. Such a

proposal has long been needed in guiding the future roleof theSWR. Only a summary

and key recommendations of this project-centered proposal arepresented here. Amore

detailed proposal has been distributed to the SWR group at large for comment and

consideration [94].

4.8.1 Project Goals

The key goals of this project are the commercialization of the SWR server and

itsdemonstrated use by four key TCAD client types: above-silicon (topography)

processsimulators, below-silicon (thermal) process simulators, device simulators, and

resistance/capacitance parasitic extractors (see Figure 4-6). Ascenario is proposed

where the SWR servers, based ontheir prototypes, are commercialized by vendors and

SWR client wrappers for proprietary tools are implemented by companies. These

wrappers would then be shared with the universities toassist them in wrapping their

tools. This should not be large burden on universities because most tools of the same

type are similar innature. Figure 4-6 identifies some possible industry and university

tools that could be wrapped in this project.

4.8.2 Benefits

Vendors would benefit because it would be easierto integrate theirtools, and

there would potentially bea new market based onSWR compliant applications.

Companies would be able to buy and use a supported server. Each company would
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Topography Simulator
(Intel Etcher)
(UC-Berkeley SAMPLE)

\

S
Device Simulator
(TUV/DEC MINIMOS)
(Stanford PISCES)

Geometry Server
(IBM/Vendor)

Field Server
(GCL/Vendor)

Thermal Simulator
(IBMFEDSS)
(Stanford SUPREM IV)

S

\

Parasitic Extractor
(HPFCAP2)
(UC-Berkeley RACPLE)

Figure 4-6. The SWR V1.0 would demonstrate robust servers working with the
four key client types. GCL stands for the Giles/Chin/Law prototype
implementation.

have their tool connected to the server at the end ofthe project, and would be able to

add more tools easily by modifying wrappers written by other participating

companies. Universities would have a skeleton server to use, and would no longer

have toworry about technology transfer issues to companies.

4.8.3 Costs and Funding

Avery rough guesstimate summarizing the work involved for this project is

listed in Table 4-1. The basic idea is as follows: companies would be expected to

contribute mostly person-power, consortiums such as Sematech (or possibly agroup
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of companies) would be asked to provide integration facilities and seed money to

vendors for serverdevelopment; and universitieswould receive some travel and

student assistance for their contributions.

Component Cost (in Person Years) Who Financial Support

Held Server Vendors Consortium/Sales

Geometry Server Vendors Consortium/Sales

ClientWrappers (Industry) 0.5 for each client Companies Companies

ClientWrappers (University) 0.2 for each client Universities Consortium

Project Management 0.5 Consortium Consortium

Facilities (Integration Site) Consortium Consortium

Totals 9.3 All Companies/Consortium

Table 4-1. Guesstimate ofcomponent costs for the SWR V 1.0 implementation
project.

4.8.4 Ownership

The paper definition of the standards should remain in the public-domain to

encourage worldwide participation. On the other hand, it isonly fair toallow parties

who implement the code to retain ownership. Servers are owned and supported by the

vendors, with special discounts available to the participants. Client wrappers are to be

shared among participants (so that they can more easily wrap their own proprietary

code). Binary versions of the clients may also be made available at the integration site.

Universities should be given versions of the SWR server at minimal or no cost

Arrangements could be maderelease areduced version of the server to research

partners, e.g., universities in Europe.
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4.9 Conclusions

Wafer standardization is exciting yet frustrating. The. whole committee smiles

when agreements are made. The committee frowns when bureaucracy ordifferences

get in the way. The PIF work addresses mainly the integration standard through file

format and functional interfaces. More recendy, the SWR working group has been

working onadevelopment and integration standard using new concepts such as the

client-server model and the object-oriented programming style. This is amulti-

disciplinary group with talents in physics, electrical engineering, and computer

science. A prototype of the SWR has provided many useful comments, and more

prototype projects should be pursued in theresearch of development frameworks, or

SWR Version 2.0. Integration frameworks, on the other hand, are ripe for

commercialization. In spite of the technical and political issues that remain, standards

can reduce TCADintegration and development time by a factor of three and should be

pursued. A plan for implementing Version 1.0 of the SWR that targets specific goals

and benefits all participants has been proposed as a starting point for discussion of

future efforts.

74



5

The Binary PIF

The"Binary PIF* (BPIF) defines asetof objects and alibrary of functions that

describe an intertool version of the profile interchange format (PIF), arepresentation

for semiconductor wafer information. The "BPIF Toolkit" function library enables

technologyCAD (TCAD) tools, such as process anddevice simulators, to access PEF

data through acommon interface, thus facilitating tool integration and encouraging

utility sharing. This approach defines atoolkit that is easy to use, and which meets the

tool integration and performance needs within aTCAD environment. The chosen

environment, PROSE, uses the OCT/VEM/RPC CAD framework, which gives BPIF a

convenient location for storing persistent data through the OCT database, and access

to mask information.

The definition and implementation of BPIF began in 1988, a year before the

Semiconductor Wafer Representation (SWR) working group, described inSection 4.3,

was founded. Therefore, it played arole in helping formulate the initial standard.

During its mid-life, BPIF development was carried out concurrently with the SWR

work. One of its main tasks then was to uncover issues in wafer representation by

carrying out experiments on next generation communications of cross-sections. The

BPIF has since been improved on to address these issues through anew BPIF++

toolkit that uses an object-oriented C++ interface.

Sections 5.1 - 5.7 describe an experimental BPIF Toolkit, based on C and the

OCT data manager. These sections were published asan article in IEEE Trans, on

Computer-Aided Design.1 Examples are shown of how TCAD tools may use the
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toolkit to access wafer data, such as grids and geometries, within agraph of PIF

objects. A BPIF package supporting the use of the intertool PIF within the PROSE

environment, which includes alink tothe PDF intersite file format, is then presented.

Performance measurements for BPIF are found tobe fast enough for general use.

Comparisons are made withthe PIF/Gestalt implementation to assist in the

standardization of the intertool PIF.

Sections 5.8 - 5.10 contain recent work on BPIF++. These include the

advantages and implementation of BPIF++, the link tothe Berkeley Topography

Utilities (BTU), and the interoperability potential of BPIF++. Chapter conclusions are

drawn in Section 5.11.

5.1 BPIF Object Definition

Conceptually, BPIF objects are designed to be the same asthose defined in the

intersite or ASCII file version of the PIF [53]. There are three object types -

geometries, grids, and attributes. A hierarchical approach is used torepresent the

geometries (boundaries) of the cross-section [83]. In this scheme, the most basic

geometric building block is the point. Lines are constructed from aset of points, and

faces are constructed from sets of lines, as shown in Figure 5-1. Fields are represented

on grids (or meshes). Grids are constructed similar to geometries byspecifying aset of

points and then connecting the points to form elements, or by using pre-defined grid

types. Doping impurities and other attributes can be associated with the grid. Certain

attributes may also beattached to geometries; for example, the association of an

electrode name to a material boundary.

1. A.Wong, et. al, 'The Intertool Profile Interchange Format: ATechnology CAD Environment
Approach," IEEE Trans, on Computer-Aided Design, September 1991 [58].
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Figure 5-1. Constructing a geometry hierarchically.

Several changes andadditions were made to theinitial BPIFdefinition, based

on findings from exercising BPIF. One change involves representing grid node indices

and elements as large arrays, as opposed to individual objects. Access time for large

numbers of individual node andelement objects was found to be too slowin

applications involving grids with many points. Storing nodes and elements as large,

array objects increases access efficiency. Specific objects for rectangular, triangular,

and tensor-product grids are also supported due toefficiency concerns. Additional

objects have been added to handle mask and cut-line information. The "cut" object

uses a PDF geometry to represent a cut through a mask ormask set; the cut may be a

point, line, or face. The "mask" object provides a reference, in the form of a character

string, to external layout information. Finally, attribute handling has been simplified.

Two pre-defined attributes, "name" and "impurity", are tested in the current prototype.

A"stranger" object has been included toallow for general attributes and other user-

definable data. Asummary of BPIF objects may befound in Table 5-1.

BPIF objects are described by C-language structures. The generic object

contains a union ofspecific PEF object types, and the field pifOb jectType

determines the type ofthe object. Each specific type isin turn defined by its own C-

structure. For example, Figure 5-2 shows the structures ofboth the generic object and
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Type

Organizational

Geometry

Grid

Layout Interface

Pre-Defined Attributes

Other

Objects

Hie, Snapshot

Geometry, Point, Line, Face Solid, Segment, Boundary

Grid, GridNodeArray, GridPointArray

Mask, Cut

NameAttribute, ImpurityAttribute

Stranger

Table 5-1. BPIFobjects used by the toolkit

the specific "point" object type. Values of the object are accessed through the

structure's datamembers. Since objects must beexplicidy stored andretrieved in the

database, there are generally two copies ofeach object: one inmemory, and another in

persistent storage. To create a new object in the database, the programmer first creates

and initializes the in-memory copy ofthe structure, and then calls the pifCreate

function with pointers to the object and its parent as arguments, e.g.,

pifCreate (*parent, *point). To update an in-memory copy of theobject from

the database, a call is made with pifUpdate, e.g., pifUpdate (*point). The

behavior of these two functions is shown pictorially in Figure 5-3.

b)

Figure 5-3. Use of(a) pifCreate and (b) pifUpdate to create and retrieve objects in
the OCT database.
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typedef int pifObjectType;

struct pifObject { /* PIF_OBJECT */

pifObjectType type;

union {

pifFile file;

pifSnapshot snapshot;

pifGrid grid;

pifGeometry geometry;

pifPoint point;

} pif;

In

pifStranger stranger;

struct pifPoint {

pifDimension dimension;

pifCoord x,y,z;

};

Figure 5-2. C-Structures for PIF_POINT and PIF_OBJECT.

Relationships between BPIF objectinstances are governed by a setof

attachment guidelines, or PIF Policy. An attachment is a bi-directional connection

between two objects that is maintained by BPIF; all of the required attachments

between instances are established upon object creation. Optional attachments, suchas

that associating attribute information with part of the geometry, may be established

with the pifAttach function. Currently, no automatic checks aremade on the

legality of an attachment. This has theadvantage of allowing newrelationship rules to

beexplored with relative ease, but places theresponsibility of adhering to PEF policy

on the programmer.
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Large collectionsof PIF objectsare not organized in a static file as in the

ASCII PIF, butrather in adynamic graph of instances of PIF objects. A fragment of a

PIF instance graph detailing the structure of atriangular face is shown in Figure 5-4.

A more general instance graph is shown in 5-5. Application programs generate,

manipulate, or access these instance graphs to: capture a wafer structure, to change

that structure by simulation or other means, and to examine the result. The instance

graph is an informal depiction of theobjects and therelationships between them;

programmers generally have these types of graphs in mind when usinga PDF Toolkit.

The purpose of the PIF toolkit is toenable application programs tocreate and direcdy

manipulate these instance graphs. Consistency of the attachments inthe object graph is

left to the programmer (which is defined by the PIF Policy).

P3

Line
Name: LI
Points:

Point
Name: PI
dim: 2
x:0.0
y:0.0

Face
Name: Fl
Orientation:
+1+1+1
Lines:

Line
Name:L2
Points:

Point
Name:P2
dim: 2
x:0.0
y:0.0

Figure 5-4. A graph of PEF object instances for atriangular face.
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Figure 5-5. An example PIF object instance graph.

5.2 BPIF Toolkit Functions

TheBPIFtoolkit provides a database independent set of functions that allows

programmers to access, modify, and store objects. BPIF functions are separated into

basic andextended toolkits. The basic toolkit is a minimal set of low-level functions

needed to manipulate the instance graph, as isused mainly by programmers. The

extended toolkit, on the other hand, provides higher-level functions that generally

operate on many objects and ismeant for both developers and programmers. InFigure

5-6, for instance, the function pifCreatePoint is a low-level function thatcreates a

point, whereas the pifDeleteGrid operates on multiple objects related to agrid, and

is therefore a high-level function.

5.2.1 Basic Toolkit

The set ofbasic PIF toolkit functions is separated into five groups. These

functions, summarized in Table 5-2, are described below.
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pifDeleteGrid
(deletes grid)

file

snapshot

grid \geogeometry

\ line\ /
point P@BDfiltl

(x,y,z)

pifCreatePoint
(creates point

at x,y,z)

Figure 5-6. Basic andextended toolkit function examples.

The "file" functions open and close aPIF file. This area delimits the working

name andaddress space fora set of PIF objects, andcorresponds to a file in the ASCII

PIF.

The "basic" functions create, retrieve, andmodify objects. Most of these

functions have an equivalent OCToperation; details may be found in the OCTUser's

Guide [95].

For walkingaround and retrieving instances in a graph, the BPIFtoolkit offers

a setof instance generator functions in the"traversar group. The function

pifinitGenerator (*object, pifObjectMask) creates a generator object that

contains all directly related instances specified by a PIF object mask. The object mask

allows the programmer to indicate the typesof objects thatare to be included in the

resulting generator. For instance, one can generate all combinations of points, lines,

and faces from a geometry withthe function call pifInitGenerator (*geometry,

pif_po-int_mask | pif_line_mask | PIF_FACE_MASK). This generator can

then beused by pifGenerate toretrieve each of these objects. In addition to single
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Group Name Function

file pifOpenFile

pifCloseFile

opens an instance file

saves an instance file

basic pifCopy

pifCreate

pifAttach

pifDetach

pifUpdate

copies an object

creates an object

attaches two objects

detaches an object

reads object from database

traversal piflnitGenerator

pifGenerate

pifGenNumber

pifReverseGenerator

finds objects based on criteria

gets next object

gets number of objects in generator

reverses the generator order

attribute pifGetByAttributeName

pifGetByAttributelmpurity

gets an object by name

gets an object by its impurity type

other pifError

pifPrintObj

pifVersion

error handler

"pretty prints" object

returns BPIF version number

Other Types Name Function

deep piflnitGeneratorDeep multi-level generator

recursive pifCopyRecursive

pifDeleteRecursive

recursively copy object tree

recursively delete object tree

extended pifCreate2DSubstrate

pif2DAddTopLayer

create starting substrate

add top layer to profile

Table 5-2. Summaryof functions in the BPIF toolkit,

level "shallow" generator functions, multiple level generators arealso available, and

are characterized by the "deep" suffix, e.g., piflnitGeneratorDeep. For example,

one could use a deep generator tofind all the points from the face inFigure 5-4.

The "other" group contains functions for debugging, error handling, and other

miscellaneous tasks. Examples ofthese are pifPrintOb j to"pretty print" the

contents of an object and pifVersion, which returns the current version of the

toolkit. Exception handling is through a common error routine pifError. All

functions return pif_status, which evaluates to eitherpif OK or PIF NOT OK.
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Functions in the"attribute" group have been implemented for frequendy used

attributes such as "name" and "impurity". These are pre-defined as special PIF objects

in the BPIF object model. For example, there isoften aneed toget an object by its

nameor its impuritytype.The functions pifGetByNameAttribute and

pifGetByImpurity perform this task.

5.2.2 Extended Toolkit

Commonly used, higher-level functions, which operate onmultiple objects, are

contained in an extended PIF toolkit. These functions are subroutines built on the basic

toolkit functions. Forexample, two extended toolkit functions that have been

implemented are pifCreate2DSubstrate and pifAddTopLayer.

PifCreate2DSubstrate creates a starting snapshot instance graph of a two-

dimensional substrate with athickness and doping concentration. This snapshot

contains the necessary sub-graphs of the geometry, grid, and attribute instances.

PifAddTopLayer modifies the snapshot by depositing a new material with a finite,

positive thickness onto an existing profile.

5.3 Layering on the OCT Database

The PEF toolkit is intended to be layered on an object-oriented database in a

manner transparent to the toolkit user. A standard PIF toolkit should allow

implementation across awide range ofprogramming languages and database types,

although this is limited by practical considerations, e.g., one rarely finds aTCAD tool

that uses COBOL. The implementation of the BPIF toolkit, whichis similar to other

PIF toolkit definitions such as [79], was found to be only amoderately difficult task.
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The BPIF toolkit implementation is built on OCT, a data manager that uses

object-oriented concepts. At the lowest level, all PIF objects are cast intoOCT

"stranger" objects, with an automatic translation between the PIF object and the OCT

strangerobject occurring each time an instance is stored into or retrieved from the

database. For instance, inthe pifCreate function, the data inthe PIF object union is

first copied into an OCT stranger object, and this resulting object is stored into the

database. Objects are retrieved by pifUpdate through the reverse procedure.

Although these implementation details are transparent to the programmer, they do

affect toolkit performance, as discussed in Section 5.6. This translation is eliminated in

the BPIF++ implementation described in Section 5.8

5.4 Illustrative Examples

The BPIF extended toolkit provides amechanism that makes it easy for

applications to access PIF data. Programming time is saved, since, unlike theASCII

PIF, there is no need to parse the input file. Instead, programs link in the BPIF library

and make function calls with high-level objects. Suppose a programmer has a

deposition routine that only needs to work with the top-string of aprofile. Figure 5-7

shows how the extended toolkit can be used to extract this string from the current

snapshot, allow the programmer to manipulate the string, and then write back the

resulting profile into the database.

Programmers may also use lower-level functions in the basic toolkit to access

PIF data. For example, assume aprogrammer wouldlike to construct a face from alist

of points, producing an instance graph such as the one shown in Figure 5-4. The

function makeFaceFromPoints, shown inFigure 5-8, implements this task. Line 9

uses the function makeLinesFromPoints to create an array of lines that make up the

face. Line 10 allocates memory for aPD?_FACE object and sets the face pointer to it.
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modifyTopString(file, snapshot, newString)

pifObject *file, *snapshot; /* PIF file and snapshot */

stringStructure newString; /* structure for new string */
{

pifObject *topString; /* holder for profile top string */

/* pifGetTopString is a function which retrieves the top string of
a profile within a given snapshot */

pifGetTopString(file, snapshot, topString);

/••A*****************************************************

programmer's routine to the modify top string goes here

pifPutTopString(file, snapshot, topString); /* replace string */
>;

Figure 5-7. Simple example showing how the BPIF extended toolkit may beused
by an application.

The fields of thePIF_FACE object are then set: f ace->pif. face. array is a

pointer to the array of lines, and f ace->pif. face. directory points to the

orientation of each line, which is assumed to be 1. Each field must contain a valid

value. Forexample, array may only contain a pointer toanarray of points, and

direction must be set to -1 or 1.Alistof objecttypes and their fields can be found

in [96]. Recall from the discussion in Figure 5-3 that the PIF object inmemory is not

automatically stored in OCT, butmustbeexplicitly saved. This is donein line 16with

the pifCreate command, which takes pointers to the object's parent (the geometry)

andtheobject (the face) as arguments. Finally, the result, a pointer to the new face, is

returned to the calling procedure.
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1 pifObject *makeFaceFromPoints(geo, pts, n)

2 /* This function creates a face from an array of points and
stores them in the database. Lines which make up the face
are also created in the process. The starting geometry and
point array are passed in as wgeo", "pts", and "n", the
number of points. These points are assumed to be in
counter-clockwise order around the face. This function
returns a pointer to the new face. */

3 pifObject *geo, *pts; /* pointers to geometry & points */
4 int n; /* # of points */
5 {

6 pifObject *lines[], *face;

7 int i;

8 /* makeLinesFromPoint creates a line from an array of points and
stores them in the database */

9 lines = makeLinesFromPoints(geo, pts, n); /* create lines */
10 face = AllocPIFObject(1); /* allocate pifFace object */
11 face->type = PIF_FACE; /* face points to pifFace object */
12 face->pif.face.array = lines; /* create face from lines */
13 face->pif.face.direction = AllocPIFInt(n);

14 for (i=0; i<n; i++) /* set line orientation */

15 face->pif.face.direction[i] =-J;
16 pifCreate(geo, face);

17 return(face);

18 };

Figure5-8. Example function using thebasic toolkit which creates a face from an
array of points.

Figure 5-8 demonstrates how this function isused tocreate atriangle. Line 3

reserves program memory for an array of three points. Next, each of therequired fields

in points p [0] through p [2] are set. The makeFaceFromPoint s function is called

to create the face in line 9. For comparison, this example implemented with the PIF/
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Gestalt toolkit using CommonLisp may be found in [79]. This function may beadded

to the BPIF toolkit if it is frequendy used,sincetheextendedtoolkitis intendedto be a

growing library of "helper" routines contributed from BPIF programmers.

1 /* Example use of makeFaceFromPoints */

2 /* Assumes the geometry "geo" to which the face is attached
already exists */

3 pifObject p[3];

4 p[0].type = PIF_P0INT; ./* create first point in memory */
5 p[0].pif.point.dimension = TWO;

6 p[0].pif.point.x=0; p[0].pif.point.y=0;
7 pifCreate(file, &p[0]); /* create point in OCT database */
8 p[l].type = PIF_P0INT;

9 p[l].pif.point.dimension = TWO;

10 p[l].pif.point.x=10; p[1].pif.point.y=0;
11 pifCreate(file, &p[l]);

12 p[2].type = PIF_POINT;
13 p[2].pif.point.dimension = TWO;

14 p[2] .pif.point.x=5; p[2]..pif .point.y=5;
15 pifCreate(file, &p[2]);

16 makeFaceFromPoints(geo, p, 3); /* create face */

Figure 5-9. Creating a triangle using the makeFaceFromPoints function.

5.5 Using BPIF in PROSE

BPIF is used by PROSE toexamine the practicality of the object model and

toolkit functions within the setting ofan environment for operating process and device

simulators. ABPIF package, consisting ofthe toolkit and PIF utilities, isused tostore,

access, manipulate and view this data from a common database, aswell asprovide a

link to the ASCII PIF. Figure 5-8 shows the scope ofthe BPIF package

implementation. The shaded components are part of the OCT/VEM/RPC CAD

framework [57]. Three process simulators - SIMPL, SAMPLE, and SUPREM, have
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been modified touse the toolkit. These tools were chosen because they represent

different types of simulators (analytical, topography, and thermal), and therefore can

be used as aproving ground for experiments on BPIF. Circuit designers would also be

interested in the results since they the cross-sections are linked to the layout through

SIMPL.

Several PIF utilities are also included with the package. A BPIF parser and

writer links the ASCII and Intertool versions of the PIF. The writer is able to generate

ASCII PIF, and the parser can read in PIF files written by the writer. Although the

capabilities of this parser are limited, it does enable comparisons between the intertool

and ASCII PIF. These results are given in Section 5.6. A second utility is the BPIF

viewer translator. Cross-sections manipulated using BPIF are stored using BPIF Policy

within OCT and are not direcdy displayable by the VEM layout editor. The viewer

utility translates BPIF facets a form that VEM can display, i.e., OCT physical facets.

SIMPL-2 [6] hasbeen modifiedto translate between its internal data structure

and the intertool PIF through the BPIF toolkit. Using this interface, any SIMPL-2

process function can be applied to aBPIF cross-section. Two routines, simpl2bpif,

and bpif2simpl, have been added to SIMPL to accomplish this. The former builds

an internal data structure compatible with the PIF object model, and then makes BPIF

calls to store them in OCT. The latter performs the inverse process. In addition, the

commands within SIMPLhaveconverted into OCT-RPC format andcan be invoked

using RPC menus within VEM. This version of SIMPL-2, named SIMPL-RPC,

contains functionality similar to SIMPL-DIX with the additional ability to edit mask

layout and cross-section information. SIMPL-RPC is the interactive component of the

general PROSE manager described in Chapter 8. For each step, the current state of the

profile is read from the OCT database into SIMPL-RPC using the toolkit. After
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completion of the processstep, the resulting cross-section is written back into OCT,

translated by the viewerroutine, and automatically displayed by VEM. Sincea

common database is used,bothlayout and cross-section geometries canbe displayed

simultaneously in the VEM editor.

The BPIF interface to SAMPLE uses the wrapper technique. Instead of

modifyingthe SAMPLEcode, a translator operates between BPIF and the SAMPLE

output file. This has the advantage of leaving theSAMPLEbinary intact, but the

disadvantage ofrequiring that all necessary data is stored in the savefile format. This is

the case for SAMPLE'S string-based algorithms, e.g., deposition, etching, and

lithography. The sample2bpif and bpif2sample routines allow these algorithms to

beaccessible from within PROSE. For example, Figure 5-10 shows a photoresist

profile generated by SAMPLE, storedin BPIF and viewed in VEM.

Figure 5-10. BPIF photoresist profile generated by SAMPLE.

The BPIF interface to SUPREM IV also uses awrapper. In this case, it is the

grids rather than strings that need to be translated between the two formats. The BPIF

reads and stores these grids using the pif_GRID attribute. Since VEMis string-based,
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it can not be used to display raw BPIF grid information, but there are two other ways

that this can beviewed. String contours can begenerated and displayed in VEM, or a

separate simple grid-viewer based on the SIMPL-DIX graphics routines can be used.

5.6 Performance

Measurements are taken on a DECstation 3100 workstation to determine the

relative data access and storage performance of the ASCII versus the Binary versions

ofthe PIF. The read and write access times, and storage sizes ofthree different types of

profile objects were tested: 10,000 point objects; a single object containing an array of

10,000 impurity values; and a DRAM bit-cell whose cross-section is shown in Figure

5-11. Results are summarized in Table 5-5.

cdx«iv.fpzz i'•%£'<:•£$•
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Figure 5-11. DRAM bitcell used in the performance measurements.

91



Access Type

10,000 Points 10,000Value Array DRAM Bit Cell

Read Write Size Read Write Size Read Write Size

ASCII PIF 3 1 400 1.5 0.5 140 <1 <1 43

Binary PIF 6 7 469 0.6 0.7 80 <1 <1 51

Table 5-3. ASCII andBinary PIFperformance numbers. All times are in seconds,
and sizes are in kilobytes (Kb).

The 10,000 PIFpoint test is used todetermine raw object storage and retrieval

performance. The ASCII PDF is two times faster than BPIF for reading inanobject,

and seven times faster in writing and object. This difference in performance is due to

the extra overhead imposed by BPIF on any object that is stored oraccess by the

program. The storage requirements ofboth are comparable atforty and forty-seven

bytes per point.

The 10,000 value impurity array test is used to determine speed andsize

performance for large objects. In this case, BPIF is three times faster than the ASCII

PIF for reading the object, and a litde slower writing it.Storage sizes range from eight

bytes per value for BPIF, tofourteen bytes for the ASCII version. When compared to

the point test, we can conclude that it is better to store a small number ofobjects that

are very large, rather than a large number of small objects, since object access

overhead remains relatively constant.

For typical cross-sections, Binary PIFperformance meets or beats theASCII

PDF. For example, the DRAM bit-cell contains 575 points, two 450 point impurity

arrays, and additional information such as the definition of the tensor product mesh,

simulation window, and cut-line information. In this case, ASCH and Binary access

times are both under a second, and storage requirements are comparable. This test is

more reflective ofreal performance because it takes into account object organization

and access style.
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In the ASCII PIF, alldata must be accessed serially, while BPIFuses a tree

structure. Thus, BPIF can easily make up for thedifference in raw access speed ifonly

aportion of the cross-section is used, which is usually the case. For example, a

SAMPLE deposition module needs only the top profile-string. With asimple analysis,

arough performance comparison can bemade. Assuming the"top-string" data

contains fifty turning points and is (on average) in the center of the PIF file, the total

number of objects that an ASCH PIF parser must read and search is fifty plus halfthe

number of objects inthe file. For asingle snapshot inBPDF, the average search through

agraph for the top-string is seldom more than ten objects; thus sixty total objects are

accessed. AssumingBPIF is three times slower than theASCH PIF in access time, an

equation for relative practical performance can be statedas follows:

ASCE PIF —• ObjectsToRead* Totalo*Jects s(10 +ObjectsToRead) x3<— Binary prp

50+r£r^f£ffMl0+50)x3

TotalObjects2260

Therefore, BPIF will be faster when there are more than 260 objects in the snapshot,

i.e., when the file size is larger than 10Kb. This performance gap increases with the

size and complexity of the cross-section.

Finally, acomparison was made to determine the relative times taken byBPIF

versus the OCT data manager. In this measurement, it was found that the creation time

for 10,000 OCT pointswas three seconds out of a total of seven seconds. This

indicates that access time is split about evenly between BPIF and OCT. These figures

are reasonable for this prototype and compare favorably to the performance of other
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intertoolimplementations such as [79], which uses arelational database and is 100

times slower. Anoptimized BPIF implementation on acommercial object-oriented

database would increase performance by atleast a factor of two.

5.7 Comparison with Other PIFImplementations

Toolkit performance and ease of programming are most important inBPIF. The

toolkit offers adequate performance in most one-dimensional and some two-

dimensional applications; some confidence of this fact isgiven bythe examples. The

use of C-structures toaccess data within object instances, and acompact set of

functions to manipulate this data, has also made the toolkit relatively easy to learn and

use. However, BPIF lacks a formal, object definition that guarantees consistency

between PIF objects,and between the intertool and ASCH versions of the PIF. A

formal object definition is better addressed by arelated Intertool PIF approach, PIF/

Gestalt [79], developed at MIT.

Besides PIF/Gestalt, two other PIFrelativesdeserve mention. The first is the

representation used in Intel's EASE system [36], which is a predecessor of the

intertool PIF. The rigid FORTRAN programming language and lack of a flexible

hierarchical file system such as UNIX made it difficult toextend this database, but

many of its concepts have been incorporated into the current intertool PIF. The second

is the wafer representation used in the VISTA system under development at TU-

Vienna [84]. This system makes extensive use of amodified PIF, both in intertool and

intersite forms, and has been successfully integrated the PROMIS process simulator

and MINIMOS device simulator. Through discussions among the groups working on

intertool PDF, it is the hope that asingle conceptual model and astandard interface can

be achieved in the future.

94



5.8 BPIF++

A logical step for BPIF is a toolkit implementation using an object-oriented

language and data manager. This extension has been made in a C++ version of the

BPIF toolkit, named BPIF++ [97].1 BPDF++ improves on the original in three ways.

First, anobject-oriented interface rather than C-structures areused to access the data

members, resulting in greater programming language independence through better

hiding of the data representation. This isimportant for future compatibility with the

SWR specification, which also uses C++, and other languages that do not use C-like

structures, such as LISP and FORTRAN. Second, performance and simplicity are

increased by the eliminating the extra translation step previously necessary when

displaying the cross-section in VEM.Object policies are compatible between the

layout-editor and BPDF++. Third, BPIF++ maintains consistency between the in-

memory object and the persistent object stored in OCT. Except for opening and

closing the BPIF file, automatic OCT creation and manipulation makes the underlying

database virtually transparent.

The BPIF object and function definitions have been changed in BPIF++ to

track the evolving SWR standards. BPIF++ objects are very similar to BPIF objects,

with minor changes to follow SWR naming convention. BPIF++ geometry objects are

stored as OCT geometry objects ,and grid objects are stored as OCT properties. A list

of BPIF objects and their OCT counterparts are shown inFigure 5-12. Each time a

BPIF object is created, acorresponding OCT object is also automatically created, e.g.,

creating aBPIF++ vertex creates an OCT point. Object instance graphs for aBPIF++

file, and its corresponding OCT representation, are shown in Figure 5-13. The major

difference between a BPDF++ and BPIF graph is the redundant information stored in

1. Another name for BPIF++ is FPIF, which stands for"finalized PIF'.
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the edge and face instances corresponding to the OCT edge and polygon instances.

Similarly in OCT, point information is maintained both in edges and polygons as well

as the point objects representing this data. The reason for this implementation is so that

VEM can draw the facet direcdy without additional translation.

BPIF++ Object OCT Object

file facet

layer layer
vertex point
edge edge
face polygon
gen generator

impurity property: real-array
window property: real-array

rectgrid property: real-array

Figure 5-12. BPDF++ objects and theirmapping into objectsin OCTphysical
policy.

The BPIF++ implementation providesa variety of functions equivalent to the

BPDF low-level function library for accessing andmanipulating instance graphs.

Specific functions rather than general onesare used. Forexample, a vertex vl is

created usingthecommand vl = new (container, x, y), instead of filling in

the fields for vl and issuing the pifCreate command.The values for x and Ycan be

retrieved usingthe getxo andgetYO commands, e.g., xlocation =

vl.getx(),orby accessing the member in the structure, e.g., xlocat ion = vl.x.

A summary of BPIF++ functions is shown in Table 5-2.

96



window

rectGrid ^

impurity ^y^ / I

Ige vertex vertex vertex vertex edge edge edge

property

property

property

impurity

face

property

edge point point point point edge edge edge polygon

Figure 5-13. Example object instance graphs. The top graph is the BPIF++
representation, while the bottom graph is thecorresponding OCT
representation.

Performance measurements of BPIF++ show asignificant improvement over

BPDF, and are listed in Table 5-5. Point access istwo to three times faster, while large

array access performance remains the same. BPIF++ file sizes are thirty to sixty

percent smaller due to the use ofcompact OCT structures rather than the larger general

PIF_STRANGER object type. The DRAM cross-section took undera second to read

and write, and was 25% smaller.

Translation routines between BPIF++ and SIMPL-2 were implemented to test

the practical usefulness of BPDF++. BPlF++2Simpl reads in an OCT facet and

converts it into the SIMPL-2 data structure. Simpl2BPlF++ performs the reverse

operation, the result of which can be graphically viewed in the PROSE environment.
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Object Function Name Description

all create

attach

print

printOct

getOct

creates an object

attaches two objects

prints object information

prints OCT version of object

delete object

gets OCT version of object

file open

close

opens an instance file

saves an instance file

layer setName

getName

sets layer name

gets layer name

vertex getX, getY

changeX, changeY

get X or Y coordinate value

modify X or Y coordinate value

edge getVertex

getPntX, getPntY

count

get array of vertices

get array of points

number of points

face getEdge

getPntX, getPntY

get array of edges

get array of points

gen gen create object generator

impurity getNumber

getData

setName

setData

get number of impurities in array

get impurity data

set impurity name

set impurity data

window getXmin, getXmax

getYmin, getYmax

setVals

get X simulation window boundaries

get Y simulation window boundaries

set boundary values

rectGrid setVals

getX, getY

getxArr, getyArr

set number of grid lines

get number of X and Y grid lines

get array of X and Y grid lines

attribute createName, createRef, createDim

setName,setRef,setDim, setlmp

getName,getRef,getDim,getlmp

create attribute

set attribute values

get attribute values

Table 5-4. Summary of functions in the BPIF++ toolkit.
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Access Type

10,000 Points 10,000 Value Array DRAM Bit Cell

Write Read Size (kb) Write Read Size (kb) Write Read Size (kb)

ASCII PIF 1 3 400 0.5 1.5 140 <1 <1 43

Binary PIF 7 6 469 0.7 0.6 80 <1 <1 51

BPIF++ 3 2 170 0.8 0.6 50 <1 <1 44

Table 5-5. ASCH, Binary PIF, andBPEF++ performance numbers. All timesare in
seconds.

The ability to use an object-oriented programming style made it much easier to

implement these translators when comparedto the translators for BPIF. The code size

for these translators was about210 linesfor Simpl2BPiF++, and 450 lines for

BPIF++2Simpl.

5.9 Berkeley Topography Utilities via the PROSE/SIMPL Interface

The Berkeley Topography Utilities (BTU) providea set of functions for

manipulatinggeometric boundary information [72]. Functions such as stitch-back for

non-planar etching and string to grid translation are provided in this set of functions.

The SAMPLE/SUPREM IV linkmakes use of these high-level functions in the stitch-

back of a SUPREM IV profileinto SIMPL-2cross-section.

BPIF and BPIF++ currendy do not have topography functions implemented

internally, but can take advantage ofBTU functionality through the PROSE/SIMPL

interface. For example, out-diffusions can be performed using this link. The original

profile is generated by the SIMPL program and stored in OCT using BPIF++. The

diffusion step reads the BPIF++ profile into the SIMPL-2 structure, performs the

SUPREM IV diffusion, and updates the mesh values using BTU functions. The

diffused profile is then saved back using BPIF++.
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5.10 Interoperability

When two programs are tighdycoupled and have a highcommunication

bandwidth between them, they are said to interoperate. For example, oxidation and

diffusion algorithms interoperate since the two processes intimately depend oneach

other during each time step. In this section, the potential of BPIF for handling separate

modules that need interoperability is evaluated through twoexamples - two-

dimensional oxidation/diffusion and three-dimensional deposition.

A typical oxidation step typically uses 5000 node points in the grid due to

equation solver limitations. Using BPDF++ performance figures, point write time is0.4

seconds and read time is 0.3 seconds for this case. Assume that there are ten scalar

attributes such as position, velocity, stress, and impurity doping at each point. If each

attribute is storedas an array, it will take three secondsto readand four seconds to

write. Therefore, the communication time for one tool is seven seconds per step. With

oxidation and diffusion tools working together, the total transfer time is fourteen

seconds per step (see Figure 5-14). If aone hour oxidation requires an exchange of

information every fifteen seconds, the total time spent transferring data between the

tools would beabout an hour. If the total computation time required is also an hour,

BPDF++ interoperability overhead is about 50%.

BPBF++ interoperability performance for three-dimensional topography is

similar. For example, in the three-dimensional SAMPLE-3D, about 2,000 triangular

elements (4,000 edges) and 1,000 points are used in the gaussian etching simulation of

a surface corner [98]. The total number of BPIF++ objects is therefore 7,000 (2,000 +

4,000 +1,000), which takes 1.4 seconds to read and 2.1 seconds to write. To exchange

this data between amovement/visibility calculation module and aregularization

module would require seven seconds (2 x (1.4+2.1)). If 50 regularization and 300
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e Diffusion
Module

Figure 5-14. Oxidation/diffusion interoperability example. Each transfer between
the two modules takes about one second.

movement steps are required, then the total timespentmoving the data around is forty

minutes (7 seconds x 350). A typical SAMPLE-3D run takes twenty minutes, sc-Ae

forty minute interoperability (200%) overhead is not acceptable, except for possibly

accessing a computationally intensive de-loop algorithm thatrequires a smaller

number ofdata exchanges, such as [99]. For instance, if ten de-loop calls are required

for the simulation described above, then the exchange time using BPIF++ would be

140 seconds (2 x (7 seconds * 10)). This is only twelve percent of the total simulation

time.

5.11 Conclusions

Three years ofexperimenting with the PIF wafer representation philosophy has

uncovered many TCAD requirements and issues in theareas of direct program access,

database support, and visualization. These items have been addressed in the BPDF

implementation. In the Intertool PIF style, BPIF consists of a library of functions that
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TCAD programs may use to create, access, manipulate, and store objects using objects

defined similarly to the textual PIF. During this time, this workhas evolvedfrom a C-

language interface in theoriginal BPIF toanobject-oriented, C++ interface named

BPIF++.

BPIF isa prototype toolkit that explores the feasibility ofintertool PIF usage

within a TCAD environment, PROSE, and is driven by the needs of tools.

Performance and ease-of-use requirements ofthe toolkit have been confirmed through

the development of a BPIFpackage used within PROSE, which connects the SIMPL,

SAMPLE, and SUPREM process simulators. BPIF is similar to other PIF-like

implementations and efforts are being made to unify the different approaches.

An object-oriented version of BPIF, namedBPIF++, has been defined and

implemented. BPIF++ objectsare stored in OCT, and a set of C++functions is

provided tomanipulate these objects. BPIF++ improves on BPIF inperformance and

ease ofuse. Consistency ismaintained between in-memory and database objects, and

objects follow the SWR programming interface style. Atargeted use of BPIF++ is to

suppon data transfer between modules that interoperate. Interoperability performance

for BPIF++ isplausible for solving oxidation/diffusion problems in two-dimensions,

and reasonable for special cases in three-dimensions, such as the computationally

expensive de-loop procedure. The BTU topography toolkit can also be linked into

PROSE by BPIF++ and SIMPL. The advantages ofBPIF++ make it the representation

of choice forfuture PROSE development.
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6

Coupling TCAD and IC Design CAD

A coupling between TCAD and ICCAD canbe a potent combination in

advancing the capabilities of CAD. It can foster increased understanding for both the

circuitdesigner andtechnologist, andcreate powerfulnew applications thatmake use

of both mask andwafer data. This chapter describes the philosophybehind theTCAD/

IC CAD coupling, several potential applications, and PROSE's contribution of wafer

and phase-shifting mask data andapplications to the OCT/VEM/RPC CAD

framework.

Section 6.1 describes the need for a TCAD/IC CAD coupling. Examples of

several potential applications of this link are described in Section 6.2. Section 6.3

discusses how PROSE adds TCAD components to the OCT/VEM/RPC CAD

framework to achieve a unified environment. Section 6.4 uses SIMPL as an example

to explain how new applications can be easily added. Section 6.5 summarizes the

chapter.

6.1 Introduction

In the past, CAD for technology (TCAD) andCAD for design (IC CAD) have

been treated as separate disciplines in both industrial and academic research groups.

Designers created circuit and mask designs based on "magic" technology parameters

supplied by technologists in the form of circuit models and layout ground rules.

Technologists had litde need for IC CAD becausethe TCAD did not really need

anything more than simple mask configurations such as lines and elbows. The
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situation today is different due to more aggressive designs and technologies. Circuit

designers and technologists mustwork together to balance design and technology

considerations that transcend traditional boundaries.

Coupling IC CAD and TCAD can significandy raise the level of

communication between designers and technologists by improving understanding,

knowledge transfer, and model accuracy. First, acombination IC CAD/TCAD system

cananswer designers' technology questions by providing device cross-sections and

circuit models for a particular layout situation. Second, this system can speed upthe

transfer of design and technology data by automatically updating circuit and layout

models within both systems, rather than relying on human transfers through files or

written memos. Third, the system can take advantage of more sophisticated models.

For instance, parasitic values can beextracted using TCAD tools and passed to the

circuit simulator, rather than relying on an average resistance per unit length value.

*JCAD tools, on the other hand, can use typical mask sections of the real design rather

than test pattern geometries. The main types of data that are exchanged between IC

CAD and TCAD were presented inFigure 1-3 and are reproduced inFigure 6-1.

There are also synergistic effects in thedevelopment ofTCAD and IC CAD

tools. Infrastructure and utilities can be shared among tools todisplay and edit cross-

section and layout information, store this data, and manipulate this data. For example,

the VEM layout editor and OCT data manager are used for editing and storing both

mask and wafer information inPROSE. CAD layout editors contain set operations for

manipulating masks, that can, if represented similarly, be applied to cross-sections for

merging geometries. Simulated annealing algorithms can beused for optimization

problems in both areas, such as cell placement in CAD and image optimization in

TCAD.
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ICCAD

Synthesis

Logic

Layout
ground rules
device mndelc

4

device parasitics
layout

Process
^

Device

mask layout
mask topology
cut-line

TCAD

Figure 6-1. Information exchanged between technology CAD and IC Design CAD
(or EDA) environments.

6.2 Examples of Potential Applications

ATCAD/IC CAD link has many potential applications from both the design

and technology points ofview. In this section, several examples ofeach type are given,

as well as a phase-shifting mask example that uses both views.

6.2.1 Designer's Point of View

From the designer's point ofview, having atool that can reach from synthesis

to layout to process and device simulation in TCAD opens the door to many new

applications. Ideally, this "CAD Microscope" allows designers to "see" not only mask

layout, but also cross-section, device, and manufacturing views of the wafer (see
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Figure 6-2). In addition to educating designers on these new views, the microscope

can also help in the improvement ofcircuit models and the understanding ofdesign-

rules.

ICCAD

TCAD

CIM

l.Gate Mask

2.Source/Drain

Implant

3.Metallization

4. . . .

Figure 6-2.The conceptual CAD Microscope. By inspecting an area in the mask
layout, the user would be able togenerate the TCAD cross section, device
simulation, and manufacturing process flow information.

Layout editors generally present aconceptual view ofthe mask patterns, which

can be quite different from the images incident on the actual wafer. These differences,

predictable by TCAD, result from the diffraction effects oflight, the imperfections of
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the optical imaging system, and the non-planarity of the wafer. The ability toview

patterns based on these parameters can play an important role inunderstanding mask

printability and defect tolerances.

Viewing cross-section data graphically within the layout can also be avery

powerful tool for understanding design rules. The number of design rules has

increased dramatically from 30 rules for a5micron, 6mask DRAM process to 100

rules for a 1.5 micron process with 13 masks [100]. Rules were meant to bebroken,

and the best designers are the ones who know when to "break the rules" toget the most

out of a technology. A cross-section display tool built on the integrated IC CAD/

TCAD system can help both amateur and expert designers decide howto trade-off

design rules for space and/or performance byquantifying the consequences. For

example, ametal-to-metal spacing design rule can be important in avoiding sharp

comers that cause reliability problems, but the difference between an acceptable or

unacceptable angle is dependent on device topography. With agraphical interface,

verification ofamask configuration can be achieved simply byviewing the cross-

section and identifying the most critical angle [27].

Model accuracy can beimproved byaccounting for TCAD results in the circuit

simulation loop. For instance, layout-driven device simulation can provide better

models to the circuit simulator as well as provide device sizing information. The same

ideas can also be used for parasitic resistance and capacitance elements, which can be

calculated more accurately based on layout when compared to the simple unit length

and width approach. This can be particularly important incases with severe

topography, where the actual resistance can be three times greater when compared to

the planar case.
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6.2.2 Technologist's Point of View

From the technologist's point of view, having a tool thatcanreach from

process simulation, process integration to layout, terminal conditions andcircuit

performance opens the door toother classes ofnew applications. Looking through the

microscope inreverse allows a broad view of the entire context ofproduct design.

Thus decisions indeveloping unit processes, integrating processes, predicting yields,

and making the process manufacturing worthy can bemade in the overall context of

the products.

The lithographer and mask maker inestablishing a base line process can, for

example, examine thekinds of patterns which will berequired to hold critical size.

The process integrator will be able toexamine area and speed penalties from various

metallization step-coverage approachs todecide which technology topursue.

Equipment modelers inpredicting tool yield impact will be able to realistically assess

interaction ofdefect size distributions with the variation in circuit vulnerability as a

function ofdefect location in the layout design. Manufacturing support will be able to

anticipate problems caused by device context issues such as problems in alignment

signal quality variations due to subtle film thickness changes, orresist notching due to

reflections from device topography. The entire design team will benefit from being

able to assess worst case scenarios from diverse factors such as changes in circuit

loading, layout hedges, tools, materials and process conditions.

6.2.3 Phase Shifting Masks

Phase-shifting maskdesign is singled out to illustrate in detail theTCAD/IC

CAD link because it has a strong dependence on both design and technology. Using

alternating (0 and 180 degree) phases oflight passing through transparent features

allow much closer packing ofmask patterns. The higher density for the same
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lithography tool results in potential feature-to-feature interactions for every pattern on

amask. These local effects are linked with global effects as the routing causes

different phase assignments over the entire chip, since the computation time needed by

the TCAD imaging tools isnot practical for large chips. These tools depend on

guidance from IC CAD for selecting the critical areas that require detailed simulation.

Local simulations mayalso identify areas where the global view is affected. Thisco-

dependence forms an iterative loop where trade-offs due to both IC CAD and TCAD

constraints must be considered. A phase-shifting mask analysis and design tool, using

both global IC CAD and local TCAD tools, isdescribed in Chapter 7.

6.3 Coupling TCAD and IC CAD in PROSE through a Framework

One of the main goals of PROSE is to explore the coupling ofTCAD with IC

CAD. PROSE is well positioned to do this because is built to be an application under a

general CAD framework. The chosen framework isOCT/VEM/RPC [57], which is

designed to support avariety of IC CAD tools. It does this by providing uniform user

interface, database, and communications facilities that CAD applications can make

use of.

6.3.1 City Analogy

The infrastructure that a framework provides is analogous to the infrastructure

provided by acity. Like the TV station, library, and highways of acity that attract

skilled workers and businesses, the framework concept encourages tools to work and

live together by supplying the basic CAD infrastructural components necessary for

tool operation. In Figure 6-3, t he OCT/VEM/RPC CAD framework provides the

infrastructural components such as the database flibrary), user interface (TV station),

and intertool communications (highways) necessary to support a"city" ofCAD tools.

This infrastructure can also support new suburbs, such as aTCAD framework, which
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will in turn build new infrastructure. In PROSE, TCAD specific representations and

design functions are addedto enhance the overall framework for TCAD and IC CAD

tools.

c

CO

1
TV

Station

(VEM
User

Interface)

ICCAD

Library
(OCT

Database)

1

Highway
(RPCCommunications)

TCAD

Figure 6-3. The OCT/VEM/RPC CAD framework provides the infrastructural
components necessary to support a "city" of CAD tools and outlying suburbs.
In this example, the downtown area isIC CAD, TCAD isa major suburb, and
the metropolitan area is CAD, which includes other suburbs such as automatic
digital signalprocessing synthesis tools.

6.3.2 OCT/VEM/RPC

The OCT/VEM/RPC CAD framework was developed in 1986 to support the

IC CAD tools at UC-Berkeley. Since that time, there have been four releases of the

Octtools, which contains the framework and the over fifty IC CAD tools that use it.

Logic synthesis, placement, and routing tools are examples ofapplications that had

traditionally used these framework facilities.
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The framework isdivided into three components: the OCTdata manager, the

VEM layout editor, and the RPC communications facility. OCT is a persistent object

like database for IC CADinformation. Physical mask layout, symbolic "sticks" mask

layout, and circuit schematics are themain viewsthat OCTrepresents. OCT function

calls enable applications toaccess these objects, which are stored in agraph structure.

VEM is an X-Windows application that allows one to visualize and edit OCT data

through a full-featured layout editor. Different functions are available in VEM,

depending on the view being edited. For instance, one can add, delete, and change

points, edges, and polygons when editing masks inthe physical view, oradd gates ina

schematicview. The OCT Remote Procedure Call (RPC) mechanism allows OCT and

VEM functions to be transparently calledover different machines.This makes it

possible to have a uniform interface between VEM and adesignated remote

application by enabling the application to take advantage of the menu, control, and

query interfaces supported by VEM. Even if theapplication resides on a different

machine, RPC still makes it appear to be asubroutine inVEM's address space.

Two of the framework's strongest features are itsability torepresent, display

and control multiple views of the design, and to allow user-supplied applications to

operate on these views across different machines. An example of an integrated IC

CAD application is shown inFigure 6-5. Three OCT facets representing different

levels ofdesign abstraction have been opened within VEM: the mask layout of agate;

acircuit diagram of adecoder, and an output driver cell schematic. The layout editing

functions inVEM are used to coordinate the viewing and editing of these facets. An

RPC application can also be dynamically associated with aview to add additional

functionality to the editor. These applications can be user-defined and require no
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changes tothe VEM source code. For instance, the layout ofthe gate might call on an

interactive design rule checker, while the output driver may be linked to a timing

simulatorcontributedby anotheruser.

Figure 6-4. The VEM shell allows multiple views that are stored in the OCT
database tobe edited and controlled. User supplied applications, such asa
design rule checker and timing simulator, can be added to the system through
the RPC mechanism.

6.3.3 PROSE TCAD Additions to OCT/VEM/RPC

PROSE makes anew class ofTCAD representations and applications available

through the OCT/VEM/RPC framework. These additional capabilities are shown in

Figure 6-5. The Binary PIF enables cross-section wafer data to be represented in OCT

and accessed through the BPIF toolkit. Mask layers can also be either ofsingle or

multiple-phases, with the the latter being for phase-shifting mask applications. Both of
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these new views can be displayedas in VEMin addition to its standard views. Process

simulation and phase-shifting mask applications have been linked to the framework by

RPC.

PROSE Added Representations andApplications

Phase Shifting
Mask Toolkit

Figure 6-5. PROSE couples IC CAD and TCAD by adding TCAD cross-section
and phase-shifting mask views, as well as process simulators and a phase-
shifting mask toolkit, to the OCT/VEM/RPC framework.

Mostof the CAD microscope concept discussed in Section 6.2 has been

realized through the PROSE extension with OCT/VEM/RPC, which implements a

dual TCAD/ICCAD system. Users have access to circuit design, mask layout (both
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regular and phase-shifting masks) and waferprofile information. Users can

indiscriminately make use ofall three types ofdata from single or multiple

applications.

6.3.4 Storing TCAD Information in OCT

Wafer, mask, and cut information is stored in a PROSE design directory that

can be accessed through a uniform setof OCT and Binary PEF function calls. Thisis a

significant improvement over current environments such as SIMPL, which only

loosely associate mask information with the cross-section.1 The pooled database links

mask layout areas with cross-section areas through the cut (see Figure 6-6). This

allows for TCAD programs toquery which mask is associated with a particular cross-

section, and IC CAD programs to ask a cross-section view of a particular mask. By

extending this association, circuit models andparasitics can also be included.

Cutl

Cutl

Cut2

Figure 6-6. Each mask may have many cross-sections associated with it. These
are determined by the different cut-lines.

1. InSIMPL-IPX, the cut,and the mask segments associated with the cut, arestored with thecross-sec
tion, but the mask itself is not linked. Inconsistencies can arisewhen the mask is modified because the
cut and mask segments are not notified of thischange.
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PROSE implements each design asaUNIX directory consisting offour sub

directories called views, oneeach forthephysical mask, cross, cut-line, andcutson the

mask (see Figure 6-7). Each sub-directory in turn contains a contents facetandan

optional interface facet, which arc UNIX files. The contents facet holds the actual data,

while the interface facet provides an abstraction ofthe data for tools that may only

needa subset of the view's information, e.g., the boundaries for a cell.The mask view

(also called the physical view) contains the geometric shapes ofthe mask and optional

parasitic values associated with each geometry. Thecross viewholdsthe device cross-

section and is accessible by the Binary PIF. The cut-line view contains the location of

the cut-line across the mask. The cuts view saves the one-dimensional openings

associated with the cut-line for the particular mask set(see Figure 6-8).

Mask

Cross

MyDesigri

Outline

technology facet Cuts

contents;

interface;

contents;

interface;

contents;

interface;

contents;

interface;

Figure 6-7. Organization of mask, wafer, andcut information for a PROSE
design.

6.3.5 Editing TCAD Views in VEM

The VEM editorprovides a uniform userinterface for bothIC CADandTCAD

applications, eliminatingthe need for the user to switchbetween two different

interfaces. Mask editing isaccomplished using standard VEM physical-mask
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Mask3

Mask2

Maskl IHllill

Figure 6-8. One-dimensional maskopenings are savedwith the cuts facet.

commands as described in [63]. Polygon cross-section editing is accomplished in

exacdy the same manner in VEM, but the results are stored in a BPIF wafer view. As

previously described, masks and cross-sections are associated by the cut. Users can

ask for a particularcross-section by drawing a two-dimensional cut-line across the

mask and invoking a menucommand to viewthecross-section. If one already exists,it

is displayed. Otherwise, the cross-section is generated by theTCAD Manager either

interactively or through batchprocessing. The interactive interfaceis demonstrated in

Section 2.5, and uses thesame editing style. Users can also open a cross-section and

query for the associated layout. In thiscase, twolayout viewsaredisplayed: the mask

and cut-line and the one-dimensional mask cuts.

6.3.6 Communicating with RPC

In PROSE, theTCAD Process Manager (orjust "the manager") andPhase-

Shifting Mask Toolkit described in Chapter 7 are implemented as RPCremote

applications to VEM. These applications have access to all VEM user-interface
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facilities including: (1) deck-of-cards menus; (2) dialog boxes; (3) graphical

"pointing"; and (4) console input commands. These facilities are explained in the

contextof theTCAD Interactive Manager.

The deck-of-cards main menu of the manager is created through aC-structure

that specifies the names that will appear on the menu and the corresponding routines

that will be invoked. When the manager needs more information from theuser, it can

use dialog boxes, such as those shown inFigure 2-10, toquery for additional

parameters. Graphical "pointing"capabilities canalsobe used in caseswhere menu or

textual entry is cumbersome. An example of how the manager uses this feature is in

identifying the mask required for an exposure step. In this case, The user can point to

the mask in the layout window rather than typing in the mask name. Commands from

the user can also be typed directly into the VEM console window, which passes the

command to the manager.

6.4 Using and Creating a New Application

The procedure for using PROSE in the framework is as follows. After the

VEM shell is started, the user can open an OCT facet, e.g., the cross-sectional view of

the device, by typing its nameinto the VEM console window. The PROSE RPC

application, e.g., an modified process simulator such as SIMPL modified to use the

RPC functions (SIMPL-RPC), is then invoked. This opens an RPC connection

between VEM and SIMPL that allows data to pass between VEM, SIMPL, and OCT.

User input is entered into VEM, which then directs it to SIMPL if appropriate. Wafer

and layout data are passed between SIMPL and OCT through VEM. Any changes to

the facet are also updated in the VEM graphical view. When the application is finished,

the RPCconnection is broken and full control returns to VEM. Each wafercross-

section can run adifferent RPC application, but no more than one application can be
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running at any time in a facet. All internal VEM functions remain accessible even

when there isan RPC application running, so capabilities such as geometry editing,

cell hierarchy querying, opening new windows, etc., are can also be used.

New applications can be easily added to PROSE to take advantage of the

features described above. Converting an existing program that uses BPIF and/or OCT

calls into an RPC application involves two major modifications and one minor one.

The major changes are the modification of the "main" routine of the program to

initialize the RPC link, and the modification ofroutines to use a"callback" setup. The

minor change involves using the RPC library rather than the OCT library during

program compilation. A tutorial on adding new RPC applications can be found in the

RPC Programmer's Guide [101].

The SIMPL program demonstrates how asimulation program can be modified.

First, the main routine in SIMPL is changed to SIMPLMain and aUserMain routine is

added. The UserMain routine is called when the RPC application is invoked by VEM.

VEM passes this information about the facet, mouse location, and status that led to its

invocation. SIMPL calls on its initialization routines, e.g., the routines originally in

SIMPLMain. Ifthere is no cross-section in the facet, SIMPL creates one by asking the

user for the substrate background doping and making BPIF calls tocreate it. If across-

section exists, then it is read into the SIMPL data structure. When the initialization is

complete, SIMPL returns control toVEM with apointer to the menu entries and the

associated routines that are called when the user selects that entry. For example, if the

deposition command is selected, the rpcSIMPLDepo routine is invoked. This routine

is shown in Figure 6-9. RPC menus prompt the user for the deposition type and
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parameters, such as the material to be deposited, the deposition thickness, and the

deposition model to be used.The SIMPLdeposition function is then called, the cross-

section is modified internally in SIMPL, andthe data is written back into OCT.

If a tool uses BPIF, then it is extremely easy to convert it into an RPC

application. One week's time was needed to switch SIMPL from the textual interface

over to the RPCgraphical interface. The most time consuming aspect of the

conversion was to write the userdialog menus foreach of the callback functions.

6.5 Summary

One of PROSE's greatest strengths is its ability to couple tools and data

between both IC CAD and TCAD worlds. This coupling has many new potential

applications from both the designer's and technologist's viewpoints. PROSE adds

TCAD components the OCT/VEM/RPC framework, implementing the IC CAD/

TCAD link. The result isasystem where mask layout (regular and phase-shifting) and

wafer information, and the tools that support them, are seamlessly presented using

uniform user interface, database, and communications mechanisms. Implementing

new applications in this integrated environment is easy, as demonstrated by the

conversion of the SIMPL program. This component of PROSEhas been shown to

meet the needsof an integrated IC CAD/TCAD system.
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/*** rpcDepo - SIMPL deposition example ***/
/* define deposition type menu shown in Figure 2-10 */
dmWhichltem depotype[] = {

{"anisotropic", 0,0},

{"isotropic",0,0},

{"vertical",0,0},

{"spin-on",0,0}} ;

/* define deposition parameter menu shown in Figure 2-10 */
dmTextltem depoitemsvert[] = {

{"material name",1,20,"POLY",0},

{"thickness",1,10,"1",0}};

int rpcDepo(spot,cmdList,uow)

RPCSpot *spot; /* where the mouse is */
IsList cmdList; /* params on VEM command stack */
long uow; /* user option word (not used) */
{

/* create depotype menu and wait for response, returned in "num" */
if (dmWhichOne("DEPOSITION TYPE",4,depotype,&num,0, help-

String) == VEM__NOSELECT)

return(RPC_OK); /* return if no selection */

/* vert, deposition - ask for parameters, returned in depoitems */
if (dmMultiText("DEPOSITION PARAMETERS",3,depoitems) == VEM -

NOSELECT) _

return(RPC_0K);

all answers are strings; convert thickness to floating point #

thickness = (float)atof(depoitems[1].value);

VEMMSG("Running Deposition...");

bpifpp2Sim(spot); /* read BPIF++ wafer into SIMPL */
/* perform SIMPL vertical deposition */
SIMPL_Deposition(depoitems[0].value, thickness, spin);
sim2bpifpp(spot,cmdList,uow); /* write back into BPIF++ */
VEMMSG("done!\n"); /* report to user that we're done */
return (RPC_OK) ;} /* notify VEM that we're done */

/

Figure 6-9. Acode fragment ofthe SIMPLdepo function showing how an
elementary SIMPL vertical deposition step is performed on aBPIF++ wafer.
The depotype menu structure creates the selection menu shown in Figure 2-10.
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7

PROSE for Phase Shifting Masks

A particularly challenging example that highlights theneed for aTCAD link to

IC CAD is the phase-shifting mask application. Using this technology, features can be

spaced more closely by using alternating phases of light passing through transparent

areas, resulting in higher resolution patterns using current generation lithography

equipment. Thischapter describes aPROSE Phase-Shifting Layout Toolkit,

nicknamed PLUTO, that implements aphase-shifting mask CAD system. PLUTO

contains an automatic analysis tool for determining the phase-shifting viability for a

particular design and atoolkit for designing phase-shifting masks within the layout

editor. These tools are applied tothe periphery circuits of a 16Mb dynamic RAM

scaled for 64Mb rules using phase-shifting technology.

Section 7.1 introduces thephase-shifting maskproblem and the architecture of

the PROSE implementation. Section 7.2 introduces the goals the PROSE phase-

shifting mask implementation. Major phase-shifting mask components are described

in Section 7.3.The analysis tool is discussed in Section 7.4, and the interactive toolkit

in Section 7.5. Section 7.6 investigates a 16Mb DRAM using the tools and is an

adaptation of material published in the 1991 Ind. Electron Devices Meeting Technical

Digest1. The advantages ofasymbolic layout approach are described in Section 7.7. A

summary of this chapter is presented in Section 7.8.

1. A.S. Wong, et.al, "Investigating phase-shifting mask issues using aCAD toolkit," Intl. Electron
Devices Meeting, Washington D.C.,Dec. 1991 [102].
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7.1 Introduction

Phase-shifting mask technology has recendy become more than just anovelty

due to its potential for increasing resolution using current-generation lithography

equipment as well as extending the ultimate limits of optical lithography. CAD tools

for phase-shifting masks have not been developed inalarge part because of the

difficulties in linking global IC data and tools with local TCAD analysis mentioned in

Chapter 6. This section gives some background ofphase-shifting mask technology and

proposes an architecture for a phase-shifting maskCAD system.

7.1.1 Levenson Phase Shifting

Emerging phase-shifting mask technologies have the potential of creating more

compact designs at the small cost of a few additional passes in writing the masks. First

proposed byLevenson for projection printing in 1982, this technique uses opposite (0

and 180 degree) phases of light so that features can be more densely packed [103].

This alternating approach is particularly attractive because the spill-over of light

between transparent areas that would normally add can now be subtracted, allowing

features to beplaced closer together. Image contrast can also beincreased and defocus

effects can be reduced, leading to asmaller printable feature size. Figure 7-1 compares

the phase-shifted and non-phase shifted case for an alternating line and space pattern.

The final intensity incident on the phase-shifted wafer has higher intensity and

therefore better resolution. Other phase-shifting techniques such as the use of rims

[104], outriggers [105], and achromeless technique [106][107], might also be

included in the toolkit but are not addressed here.
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Figure 7-1. Phase-shifting masks can increase image intensity, contrast, and
therefor feature density by using opposite phases of light. Intensity is
proportional to the square of the electric field.

7.1.2 Architecture

Ultimately, one would like to have aphase-shifting mask CAD system that can

automatically translate a traditional, single phase design into a phase-shifted one that

uses less area, while maintaining the same printability as the original mask (see Figure

7-2). Apossible flowchart for accomplishing this task isshown in Figure 7-15. The

first step determines the amount ofshrinkage that can reasonably be achieved using

phase-shifting mask techniques. This factor can either be set apriori by the designer

who requires a specific shrinkage amount, or can be basedon constraints such as

image contrast and intensity. Next, each mask region is phase-shifted by the chosen

approach, e.g., alternating line orrim shifter. Adesign-rule checker (DRC) then checks

the new design for violations. These violations are corrected, possibly resulting in a

different global phase assignment or even adifferent shrink factor. The proposed
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flowchart isonly one ofseveral possibilities. For example, phase assignment can occur

before shrinkage to allow for different shrink-factors to be used for different phases.

This has the disadvantage of not providing the phase assignment mechanism with data

about the shrink. Alocal feedback loop between these two steps may therefore be

necessary.

•
Phase-Shifting

Mask Synthesizer

Figure 7-2. The ideal automatic phase-shifting mask system takes a regular mask
as input, and magically produces a phase-shifting mask.

Theoretically, one would like to use detailed TCAD analysis to solve for or

optimize the entire chip through image simulation. Realistically, several constraints

make this level ofanalysis infeasible. Computation time increases as the fourth power

ofthe area, and storage requirements are proportional to area. Apractical example is

the SPLAT program, which uses transmission cross coefficients to compute the areal

image [108]. SPLAT requires ten minutes and forty seconds to compute the image ofa

0.8 X/NA sized contact hole in a5X/NA by 5X/NA region on a Sun 4/280 [109]. The

non-linear relation between the mask geometry and the image at the wafer also

requires optimization algorithms to compensate the mask pattern using non-linear

optimizers. Even using simulated-annealing techniques, thousands of SPLAT runs are

necessary for optimizing a twenty-by-twenty array of pixels [110].
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Figure 7-3. Phase-shifting mask synthesizer flowchart.

Trade-offs between detail versus size must be made. The inclusion of IC CAD

can relieve this problem by applying rule-based phase-shifting diagnostics at aglobal

level, and calling on TCAD only ininstances where design rules need tobeestablished

for new patterns. Using this global/local division, the IC CAD and TCAD components

required of such asystem are shown in Figure 7-4. In addition, several components,

such as a user interface and manager, mustspan both environments.

125



IC CAD/TCAD Components
User Interface

Manager
Database

Feedback Control

IC CAD Components:
MultiPhase-Mask Layout

Design Hierarchy
Mask Resizing

Global Mask Phase Assignment
Design Rule Checker

Violation Statistics Recorder
Region Extraction and Replacement

Compactor

TCAD Components:
Lithography Tools

Scaling & Movement Determination
Detailed Region Correction

Figure 7-4. Requirements for a two-level phase-shifting mask system using both
TCAD and IC CAD.

7.2 PROSE Implementation Goals

The goal of the PROSE implementation is to develop the major components

necessary for aphase-shifting mask design system that uses both global ICCAD and

local TCAD information. Four major components were built to perform automatic

phase assignment, design-rule checking, mask area capture and extraction, and phase-

shiftability analysis. Phase assignment uses aglobal recursive algorithm to assign

opposite phases to neighboring mask shapes. The design rule checker can flag

minimum space and width requirements for layers ofdifferent phases and shapes.

Small sections of the global mask can be extracted from the layout for local analysis,

redesigned, and replaced. An analysis tool uses design rule violation information to
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