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Abstract

In this paper we present a control law for globally asymptotically stabilizing a class of con
trollable nonlinear systems without drift. The control law combines earlier work in steering
nonholonomic systems using sinusoids at integrally related frequencies, with the ideas in re
cent results on globally stabilizing linear and nonlinear systems through the use of saturation
functions. Simulation results for stabilizing a simple kinematic model of an automobile are
included.

1 Introduction

This paper focuses on the problem of point stabilization for a control system of the form

m

x = Z^Si(x)ui
1=1

x<=R\ (1)

where each # is a smooth vector field on Rn and the gfs are linearly independent for all x 6 Rn.
Systems of this form arise in the study ofmechanical systems with velocity constraints and have
received renewed attention as an example ofstrongly nonlinear systems. For such systems, control
methods based on linearization cannot be applied and nonlinear techniques must be utilized. We
are particularly interested in the case where the nonlinear system (1) is completely controllable,
corresponding to a set of maximally nonholonomic constraints which do not restrict the state of the
system to a submanifold of the state space. See [ll] for a more detailed derivation and motivation.
We refer to a system with these properties as a nonholonomic control system.

Afundamental problem in the study of nonholonomic control systems is the generation of open-
loop trajectories connecting two states. That is, given an initial state xQ and a final state x1? find
an input u(t), t <S [0,1] such that x(0) = x0 and x{l) = xx. Such an input induces a feasible
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state trajectory which automatically satisfies the constraints on the system. The condition for the
existence ofa path between two configurations is given by Chow's theorem. We let [f,g] be the Lie
bracket between two vector fields,

[f'9] =^f--^9'
and define the involutive closure of a distribution A as the closure of A under Lie bracket
ing. Briefly, Chow's theorem states that if the involutive closure of the distribution associated
with equation (1) spans Rn at each configuration, the system can be steered between any two
configurations. Initial work in constructing paths between configurations includes Laumond [7,
9], Li [10], and Sussmann [8, 17], as well as our own work [ll, 12]. In this paper we concentrate on
a different problem: stabilization to a point.

A control law u = k(x, t) stabilizes a point xo 6 Rn if x(t) -*• x0 as t -• oo for all initial
conditions of the system. For a nonholonomic control system, the dependence of a stabilizing
control law on time is essential since the system (1) does not satisfy Brockett's necessary condition
for smooth stabilization [l]. Hence there does not exist a smooth static state feedback law which
stabilizes the system to a point. Recent work by Coron has shown that it is possible to stabilize a
nonholonomic system using time-varying feedback [3]. Constructive approaches have been presented
by Samson [14] and Pomet [13]. In this paper we present some new control laws for a specific class of
systems, namely those in so-called chained form [12]. These control laws are based on earlier work
using sinusoids for open-loop planning and have connections with the recent work of Sussmann and
Liu [17].

Chained systems. We restrict attention to a special class of nonholonomic systems, called
chained systems [12]. A two-input system with a single chain has the form:

ii = vi
6 = v2

& = &*l

£$ = £n-l-

This system is controllable using the input vector fields and Lie brackets of the form ad^ (ft? where
ad/*/ is the iterated Lie bracket [/, [/,...,[/,g]...,]] (k copies of /).

Under some conditions, it is possible to convert a two-input nonholonomic system into a system
with the form of equation (2) using feedback transformations. Sufficient conditions for doing this
are presented in [12]. In particular, it can be shown that under certain regularity conditions all
two-input nonholonomic systems in R3 can be put into this form. More complicated examples of
nonholonomic systems which are locally feedback equivalent to a chained form include kinematic
models of an automobile and an automobile towing a trailer.

Chained systems can be steered between two arbitrary configurations using the following algo
rithm.

Algorithm 1

1. Steer fi and & to their desired values.



2. For each &+2, k > 1, steer fjt+2 to its final value using v\ = asint, v2 —6cosfct, where a and
b satisfy

^+2(27r)-6+2(0)=^^-27r.
This algorithm uses n path segments to steer the system. It is also possible to steer the system using
a linear combination of sinusoidal terms at different frequencies by solving a polynomial equation
for the coefficients of the sinusoids.

Power form. Related to chained form is a second canonical form which we refer to as "power
form":

(3)

Xi - Ui

x2 = U2

*3 = X\U2

X4 = \x\u2

n* _ 1

(n-2)!

Like chained form, the control Lie algebrafor this system is spanned by the input vector fields and
Lie products of the form ad*1^2« Power form is related tochained form through a global coordinate
transformation:

h u2-

Xi = fc
x2 = 6
*3 = -6 + 66
X4 = &-£i6 + J«?6 (4)

«- = (-i)"f-+Ea,(-i)'l5i!jjfir,'ei
The advantage of using power form over chained form is that given u\ and u2i we can quickly

solve for the motion ofany ofthe state variables using only the trajectory ofx\ andthe function u2.
This canonical form also arises in the work of Grayson and Grossman in the context ofgenerating
systems of vector fields which realize a nilpotent control Lie algebra ofa given order [4]. It is also
worthwhile to note that this form satisfies some ofthe simpUfying assumptions used by Pomet to
generate controllers for more general nonholonomic control systems [13].

In the sequel, we will restrict our results to those that apply to systems in chained form or,
equivalently, power form. The are several reasons for taking this action. Systems which are in
chained form characterize the fundamental difficulties of nonholonomic systems in a very simple
and useful form. By understanding the geometry of controllers applied to chained form, we hope
to understand the geometry of controllers applied to more general nonholonomic systems. This
point ofview has been used very successfully by Sussmann, who has shown how results applied
to a "symbolic" representation of the control system can be used to understand systems with a
compatible control Lie algebra [8]. Chained systems can be regarded as a realization ofa class of
"symbolic" control systems with a particular Lie algebraic structure.

The goal ofthis paper is to present a class ofcontrol laws with strong geometric intuition which
asymptotically stabilize an arbitrary chained system with a two inputs and a single chain. We
are very optimistic that the stabilizing controllers presented here can be extended to the more
general case and that by understanding their action on a canonical system we can understand their
extension to systems with a similar Lie algebraic structure.



2 Local Stabilization

In this section we propose a class oflocally stabilizing inputs for (3). To motivate our approach,
we consider first the simplest such system:

Xi — U\

i2 = u2 (5)
£3 = X\U2

From the discussion of chained systems above, we know that motion in the £3 direction can be
achieved using sinusoidal inputs u\ = asint and u2 = 6cost. Integrating the differential equations
over one period, the resulting motion is a closed curve in x\ and x2 and a net motion of -(ab)n in
£3. This suggests that the following control law

«i = -xi-xlsmt
U2 = -X2 - X3COSt ^ '

might be used to stabilize the system. The intuition is that if X3 is slowly varying then the average
motion (over one period) in the X3 coordinate can be approximated by setting a ——x§, 6 = —£3
which would give a net motion in x$ of —x§7r, i.e., £3 would converge to zero.

To prove stability in a more rigorous fashion we make use of center manifold theory and aver
aging. For the purposes of the proof, we realize the time-varying feedback law by augmenting the
controller with an exosystem

u>i = w2 u>i(0) = 0
1U2 = -w\ w2{Q) = 1,

and write the control law as
U\ = -Xi - x\w\
U2 = ~X2 - X3IU2.

The closed loop system (including exosystem) has a local center manifold given by

xi = iei(x3,wi,w2)
x2 = 7T2 (£3,^1,^2),

which is approximately given by

7Ti = -hxl(wi-w2)
t2 = -5X3(^1 +w2).

The dynamics of the system evaluated on the center manifold are (approximately) given by

*3 =—^l(wx-w2)2.

An averaging-like coordinate change can then be made to show that the complete system is locally,
asymptotically stable to the origin. For x$ small, the higher order nature of x% plays the role of
the small parameter e usually found in averaging results.

We now consider the stabilization of an arbitrary system in power form. We begin with a local
result and extend the controller to provide global convergence in the next section.



Theorem 2.1 Every pair of inputs

«i = -«i-(E?=i2^+2)(sinW-cos(0)
u2 - -x2 - YJjZ\ cjxi+2 cos{jt)

with Cj > 0 locally asymptotically stabilizes the origin of (3).

(7)

Remark. The control law given in theorem 2.1 is a generalization of the simple controller
presented earlier. We have added a cosine term to u\ to make the proof tractable. It can be seen
that, for the simple example, this extra term adds a term on the manifold of zero average. Sinusoids
at integrally related frequencies are used to generate motion in the different bracket directions in
such a way as to stabilize the system to the origin. We note that the control law requires neither the
use of high-frequency sinusoids, such as thoseused by Sussmann and Liu for open loop steering [17]
(see also [2l]), nor does it require the use ofa leading c coefficient as typically used when applying
averaging techniques. Furthermore, the weights Cj can be adjusted to control the rate ofconvergence
in the different coordinate directions in a straightforward manner.

Proof of theorem 2.1. The proof of theorem 2.1 will require applications of center manifold
theory (see [2]), techniques used in averaging theory (see [5] or [6]) and a case specific Lyapunov
result. Center manifold theory does not apply directly to (3), (7) because the time-varying terms
in (7) are 0(1). Nevertheless, we can demonstrate the following lemma regarding a class ofsystems
to which (3), (7) can be transformed. We use the notation of [2] so that /'(0,0,tu) refers to the
partial derivative of / with respect to all variables and evaluated at (y,z, w) = (0,0, w).

Lemma 2.1 ("Time-varying" Center Manifold) Consider the system

y

z

w

= By + g(y,z,w)
= Az + f(y,z,w)
= Sw

(8)

with y € Rn, z e Rm, w G Rp and where the eigenvalues of B have negative real part and the
eigenvalues ofA and S have zero real part. The functions f,g and h are C2 with /(0,0, w) = 0,
/ (0,0, w) - 0, jf(0,0, w) = 0, and #'(0,0, w) = 0. Then, given M > 0, there exists a center
manifold for (8), y = h{z, w) for \w\ < M, \z\ < 6(M), for some 6 > 0 and dependent on M, where
h is C2 and h(0, w) = 0, ti(Q, w) = 0.

Proof. See appendix.

To transform (3), (7) into a system for which lemma 2.1 applies, we begin by defining n - 2
linear oscillators which will generate the time-varying terms of (7). Let

Wi =
Wij

w2j
=

" o j'
. -3 0

Wij

W2j
= SjjWj (9)

We choose wij(0) = 0, w2j(0) = 1 so that wXj = sin(j't) and w2j = cos jt. If we define the vector

T
w = u>i Wn-2

we have

w = Sw (10)



where 5 is a block diagonal matrix with the jth block given by Sjj. Next, partition the original
state space as

x =

Xi

X2
yi

*3
=

2/2

Z

. *n .

so that y € R2 and z e Rm with m = n - 2. For the closed loop system we have

2/1 = -2/i - wTDzTz
2/2 = -2/2 - wrCz
« = f(y,z,w)
w = Sw

(11)

(12)

where / is C2 with /(0,0,w) = 0 and /(0,0,w) = 0. The matrix C GR2mxm is block diagonal
with the jth block given by the column vector

and D € R is given by

D =

Cjj —
0

Ci

1 -1 0

(13)

(14)

We then make a coordinate change in y2 to eliminate the linear time-varying dependence of z in
the y2 equation. We choose 2/2 = 2/2 —zTIL2w where II2 solves the matrix equation

n25 = -/n2 - CT (15)

(The solution to this matrix equation always exists because the spectrum of S is disjoint from the
spectrum of I.) We then have

2/2 = 2/2 - zTTL2w —zTU2w
= -2/2 —zTCTw - zTIL2Sw - fT(y, z, w)IL2w
= -2/2 + zTU2w - /T(y, z, w)R2w
= ~y2+92(y,z,w)

(16)

where 52(0,0, w) = 0 and <jf2(0> 0>w) = 0- We make the same kind of coordinate change for y\. We
choose jfi = 2/1 —zTzILiw where IIi solves the matrix equation

We then have

IIiS = -HIx - DT

y1 = yi —zTzTLiw —2zTzlliw
= —2/i - zTzDTw —zTzYL\Sw - 2zTf(y, z, w)ILiw
= -2/1 + zTzTLiw - 2zTf(y, z, w)Hiw
= -yi + 9i(y,z,w)

where <7i(0,0, w) = 0, ^(0,0, w) = 0 and pi'(0,0, w)= 0.

(17)

(18)



Now, from lemma 2.1 there is a center manifold y = h(z, w),\z\ < 6> \w\ < M for

y = -Iy + g(y,z,w)
z = f(y,z,w)
w = Sw

(19)

where /i(0,w) = 0 and h (0, it?) = 0. In fact, since g1 (0,0, w) = 0, one can use an approximation
theorem [2, theorem 3] or calculate to show that /^(O, w) = 0. Now it is sufficient to analyze the
dynamics of the reduced system

i = f(h(z,w),z,w)
w = Sw

(20)

Further, since h(0,w) —0 and the dynamics of w are autonomous with |w(0l < M for all i > 0
for some M > 0, it is sufficient to check the stability of z = 0 for the following "time-varying"
nonlinear differential equation:

z\ = (hi + zTzlliw)(-h2 + wTSTT!$z)

zm = is(hi+zTzJL1w)m(-h2-\-wTST^z)

First, because h(0, w) = 0, /i'(0, w) = 0 and /ii'(0, w) =0 we can write the dynamics of z as

ii = zTzILiwzTH2Sw + 0(z)4
z2 = \(zTz\i1w)2(zTU2Sw)-rO(zf

*m = ^(*T*niwH*rn2S«0 +0(z)2<m+1)

(21)

(22)

Now we determine expressions for IIi and U2 to examine the explicit time dependence of (22).
From the block structure of S and C it follows that n2 also has a block structure where the jth
block satisfies the matrix equation

It can be shown that

and, hence,

Thus we have

^2„Sjj = -m2i-clhi"33 33

n2*" = f -T+]*C3 ~lhC3

nhjS33 =[T±jTCj -j^yc

wTSTiqz =£ ^.[j-jL- ginyt) _-2— cos{jt)];

Now from (17) it can be shown that

IIi = 0 10 0

so that zTzUiw = zTzcos(t). We now consider the product

\{zTzJi1w)i{wTST\ilz)

(23)



given by
1 / m -2 \

if<?* «*(*»' IE c^TTpsin(jt) _IT? cosWt)l2'j (24)
Using the identity

cos(t) cos(kt) = -[cos((A: - l)t) + cos((fc + l)t)]

it can be shown that
i

cos''(t) = 2 «•* c°s([* - 2(* - l)]t) (25)
)fe=i

where a,-* > 0 and I = J + 1if i is even and ^ if i is odd.
At this point, we would like to apply averaging to the terms in (24) to conclude asymptotic

stability. However, since we are not using high frequency sinusoids and we do not have exponential
stability for the averaged system, general averaging results do not apply. Nevertheless, a very
specific averaging result which covers the class of systems we have can be asserted. We describe
this result in the next two lemmas. The uniformly higher order characteristic of our equations
eliminates the need for a small parameter (or alternatively, very high frequencies). We are able to
find a case specific Lyapunov function that demonstrates asymptotic stability in the presence of
small time-varying disturbances without requiring exponential stability.

Lemma 2.2 ("Averaging" transformation) Consider the time-varying nonlinear system

x = /(*,*) (26)

where f is ofperiod T in t and is Cr and the ith entry of the vector f satisfies fi = 0(x)2t+1. Then
there exists a Cr local change of coordinates x = y + $(y, t) under which (26) becomes

y = /(y) + /(y,0 (27)

where f is the time average of f and fi(y,t) = 0(y)2t+2 and of period T in t.

Proof. See appendix.

Lemma 2.3 (Case Specific Lyapunov result) Consider the system

V= f(v) + Kv,t) (28)

where y € Rn. //

IA(»,*)l-<AIWIa(1+0 (29)
for all y in some open neighborhood of the origin and

f(y) = A1>(y) (30)

where A is a square lower triangular matrix with an < 0 for i = 1,..., n and

*(») = WIMI* (31)

then the origin of (28) is locally asymptotically stable.



Proof. See appendix.
Now we make the coordinate transformation of lemma 2.2 to pull out the lowest order terms

on each line of equation (22) with nonzero average. Using (24) and (25) we can show that this
transformation yields a system possessing the (triangular) structure of the system in lemma 2.3.
In fact, the aj/s of lemma 2.3 are given by

a33 — ~o„'ll i A2a3lC3
LJl
2j!l + i2

Since ctjijCj > 0, the local asymptotic stability of the origin of (3), (7) then follows from lemma
2.3. •

It is also possible to deduce a locally stabilizing control law for (2) without using the transfor
mation to power form given in (4).

Corollary 2.1 Every pair of inputs

n = -6 - (E^&jXsiaW - cos(t))
t* = -fc-Epft-iyc^cosot) w>

with Cj > 0 locally asymptotically stabilizes the origin of (2).

Proof of corollary 2.1. Let the transformation (4) that takes us from chain form to power
form be written as x = $(f) = T£ + $(£) where $(£) is higher order. Let vchain(-) denote the
controls given by (32) and let upower(-) denote the controls given by 7. Then we have vchain(0 =
UpoweriT^x). For (2), (32) ifwe make the transformation x = $(f), we have a power form system
(3) with controls given by (7) plus higher order terms. Now the proof is exactly equivalent to the
proof of theorem 2.1 since the higher order terms would simply contribute higher order terms on
the manifold which were show to be unimportant. D

3 Global Stabilization

In this section we propose a class of smooth, time-varying, globally stabilizing inputs for (3). Near
the origin these control laws will exactly match the locally stabilizing control laws proposed in
section 2. We introduce saturation functions in these control laws to eliminate destabilizing affects
that take place away from the origin. This type of thinking has been used in a series of recent
linear and nonlinear global stabilization results. (See [19], [16], [20], [18].)

Theorem 3.1 Given any pair of inputs

u2 = -x2-Z?Z?CjCr(xj+2)cos(jt) W

with Cj > 0 and with a : R —• R a nondecreasing C3 function satisfying

1. cr(s) = s when \s\ < 6

2. \<r(s)\ < €for allseR

for some 0 < 6 < e, 3e0 such that if€< e0 then the origin of (3) is globally asymptotically stable.



Proof of theorem 3.1. The proof of theorem 3.1 is very much in the spirit of the proof for
theorem 2.1. We begin by defining the same oscillators as in (9) and we make the same partition
of the state space as in (11). For (3), (33) we have

where

2/1

fa
z

w

-yx-wTDa{\\z\\)2
-2/2 - wTCa(z)
f(y,z,w)
Sw

a{z) = a(zi) o(zm)
•\T

The matrices C and D are as defined in (13) and (14) respectively.
We make the coordinate change

2/1 = 2/1 -<7(||z||)2IIiu;
2/2 = 2/2 - vT(z)U2w

where III and n2 satisfy (17) and (15) respectively.
We then have

'yx = -h-MMti^Mr^ffaziW^w
= -2/1 + 9i(y,z,w)

h = -s/2- fT(y,z,w)^ u2w
= -2/2 +02(2/,*,w)

We now wish to show that given e sufficiently small, there is a center manifold y = h(z, w), z GRm,
\w\ < M for

y = -Iy + g(y,z,w)
z = f(y,z,w) (36)
w = Sw

where h(0,w) = 0 and h (0, w) = 0. To do so, following the proofof [2, theorem l], we must show
that given M > 0 and for € sufficiently small, there exists a continuous function «(e) with «(0) = 0
such that

l/(& z, w)\ + \g(y, z, w)\ < e«(e)
\f(y,z,w)-f(y\z',w)\ < K{e)(\y-y\ +\z-z\ +\w-w'\\ (37)
\g(y,z,w) - g(y,z\w)\ < *(e) (|y - y\ +\z- z\ +\w- w'\)

for all z,z € Rm, and all w,w € Rp with |w|,\w'\ < M and all y,y £ Rn with |y|,|y'| < e. It can
be shown that / satisfies this relationship, since every dependence on z in / is as the argument of
a saturation function bounded by €. Then since / satisfies these relationships, it follows from (35)
that g also satisfies these relationships by noting that a is C3 and hence its partials are bounded
and luffrI < bfor some positive constant 6.

Next we show that, for e sufficiently small, the manifold h(z,w) is globally attractive. First,
observe that the dynamics of y are of an exponentially stable linear system perturbed by bounded
disturbances of magnitude proportional to e. Consequently, after some finite time y is contained
in a ball of radius proportional to e. Then, by the nature of the coordinate change from y to y, y
is also contained in a ball of radius proportional to e. Now we know that the manifold is locally
attractive, so for e sufficiently small the e ball is contained in the basin of attraction for h(z,w).
Hence, the manifold h(z, w) is globally attractive.

10
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We will eventually establish that the dynamics

z = f(h{z, w) + (y- h(z, w))t z, w) (38)

have the "converging input bounded state" property of [15] with e = y —h(z,w) as input. Then,
since /i(0, w) = 0 it is sufficient to consider the dynamics of

z = f(h(z,w),z,w) (39)

For now, we simply consider the global stability property of (39). To do so, we begin by establishing
a bound on h(z, w). Wefollow the approximation of center manifolds in [2]. As in [2], for functions
<j>: Rn x Rp —• R2 which are Cl in a neighborhood of the origin we define the operator N to be

(N<f>)(z, w) =-^f(<f>(z, w), z, to) +-^Sw +Icf>(z, w) - g(<t>(z, w), z, w)
where g is defined in (35). We choose to approximate /i(z, w) by the function <j>(z, w) = 0. We then
have

(N<f>)(z,w)=-g(Q,z,w)

It follows from (35) and / that (N<t>)(z,w) = 0(a(||z||)3) for all z € Rm and all w € Hp with
\w\ < M. We can then mimic the proof of [2, theorem 3] to establish that

\h(z,w) - 4>(z,w)\ = \h(z,w)\ = 0(ct(\\z\\)3) (40)

for all z € Rm and all w G Rp with |w| < Af.
We are now ready to establish lemmas similar to lemmas 2.1 and 2.2 that apply to the global

stability problem.

Lemma 3.1 (Global "Averaging" transformation) Consider the nonlinear time-varying
system

x = f(xyt) (41)
where f is of period T in t and is Cr and where the ith entry of the vector f satisfies fi =
0OT(lkll)2,+1)- #toe e associated with the saturation function a is sufficiently small, then there
exists a Cr global change ofcoordinates x = y+*(y,t) under which (41) becomes

y = f(y) + f(yit) (42)

where f is the time average off and f is of period T in t with fi(y,t) =0(cr(||y||)2i+2).
Proof. See appendix.

Lemma 3.2 (Global Case Specific Lyapunov result) Consider the system

y = f(y) + f(y,t) (43)

where y 6 Rn. //

\Mv,t)\<fo(\\v\\)2{1+i> (44)
for all y £ Rn and

f(y) = A4>(y) (45)
where A is a square lower triangular matrix with an < 0 for i = 1,..., n and

MV) = ^.XIM!)2'" (46)
then, for e sufficiently small, the origin of (43) is globally asymptotically stable.

11



theta

Figure 1: Kinematic model of the car

Proof. See appendix.
Now using the expression for III and II2 from the proof of theorem 2.1 we can show that these

lemmas apply and thus the reduced dynamics are globally asymptotically stable. It remains to
verify that the z dynamics have the "converging input bounded state" property of [15]. Since /
is bounded for bounded e, and hence z is bounded for all finite time, it is sufficient to proof the
following result:

Lemma 3.3 (Converging input bounded state) Under the conditions of lemma 3.2, if the
perturbation in the equation

y = f(y) + f(y,t) + p(t) (47)

satisfies \p(t)\ < v, then, for v sufficiently small, y satisfies \y(t)\ < G for allt > 0 for some G > 0.

Proof. See appendix.
Now the main theorem of [15] provides global asymptotic stability for the system (3), (33). •

4 Simulation Results

Our example system will be a simple kinematic model of an automobile as shown in figure 1. This
system is controllable using two levels of Lie Brackets. A derivation of the kinematic equations
may be found in [ll]. A sketch of the car is found in Figure 1

x — cos(#)ui

y = sm{6)u\

4> = u2

6 = -tan(^)t*i (48)
Li

where (z, y) is the position of the car in the plane, 4> is the angle of the front wheels with respect to
the car (or the steering wheel angle), 9 is the orientation of the car with respect to some reference
frame, and the constant L is the length of the wheel base. For simplicity, we choose L = 1.
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Figure 2: Phase plane plot, x versus y, of the two simulations. Note the effects of the saturation
function on the limits of travel in the x direction.

The following change of coordinates will put the car into power from coordinates, locally:

X\ = x

x2 = sec3(0) tan(^)
xz - xsec3(0) tan(<£) - tan(0)

x4 = x2 + -x2sec3(0) tan(<£) - xtan(0)

with the following input transformation:

u\ = v\ sec(0)

«2 = -3vi sec(0) sin2(0) sin(0) + v2 cos2(<£) cos2(<£)

The control law used for the simulation was:

vi = -xx - a2 Uxl +x\J(sin(i) - cos(i))
V2 = -X2 - ka(x3) cos(t) - ka(x4) cos(2t)

The gain k was chosen to be 2, and the eof the saturating function a(-) was chosen to be e= 0.5.
The initial conditions chosen for these two simulations were (0, ±1,0,0). The plot demonstrates
the effect using a saturation function. At first the error is large enough to cause the saturation
functions to limit the magnitude of the input sinusoids, hence Umiting the x and <j> travel ofof the
car. After the error drops sufficiently, the controls are no longer saturated and the range of travel
drops.

5 Summary and Discussion

We have presented a control law which globally asymptotically stabilizes a system in power form.
This control law uses sinusoids at integrally related frequencies to achieve motion in bracketing
directions and saturation functions to achieve globally convergence. Convergence in the coordinate
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directions can be adjusted by setting the appropriate weights in the control law. By making use
of a feedback transformation to convert a nonholonomic system into power form, we have applied
this control law to a kinematic model of an automobile.

The primary limitation of the control law presented here is that it can only be applied to
systems which are feedback equivalent to a system in power form. However, there is strong
evidence to suggest that control laws of this form can be extended to more general nonholo
nomic systems by using an "extended system" such as that used by Sussmann and co-workers [8,
17]. The generalization of the results presented here would be to systems which are controllable
through the input vector fields and Lie products of the form adj^- Controllers for this same basic
class of systems can be found in the recent work of Pomet [13]. The extension of the ideas present
here to this more general situation is the subject of current research.

A Appendix

A.l Proof of lemma 2.1

The proofof lemma 2.1 mimics the proof of [2, theorem 1, pages 16-19]. Accordingly, let ip : R+ -•
[0,1] be a C°° function with ip(s) = 1 when s < 1 and if>(s) = 0 when s > 2. Then for e,M > 0
define F and G by

F(y,z,w) = /(y,^(MW(M))
G(y,z,w) = g{y,z^),w^))

We prove that, given M > 0, the system

y = By + G(y, z, w)
z = Az + F(y,z,w) (49)
w = Sw

has a center manifold y = /i(z,to), z € Rm, w € Rp for e sufficiently small. Then since F and G
agree with / and g for all \z\ < e and for all |iu| < M, this proves the existence of a local center
manifold for (8). The existence of the global center manifold for (49) can be demonstrated using
the same contraction mapping calculations as in the proofof [2, theorem l] since we can show, as
was needed in [2], that there is a continuous function k(c) with k(0) = 0 such that

\F(y,z,w)\ + \G(y,z,w)\ < eK(e)
\F(y,z,w) - F{y\z,w\ < «(e) (\y - y\ + \z- z'\ + \w- w\
\G(y,z,w)-G(y'yz\w'\ < «(e) (\y- y'\ +\z- z'\ +\w-w\

for all z,z e Rm, and all w,w € Rp and all y,y € Rn with |y|,|y'| < e. Following [2], these
inequalities yield a center manifold y —h(z, w) with h(Q, w) = 0 and h (0, w) = 0. d

A.2 Proof of lemma 2.2

The proofof lemma 2.2 follows closely the exposition of [5, pages 168-169]. We split f(x,t) as

/(*,*) = /(*) +/(*>*)

where / is the mean of / and / is its oscillating part. Now we make the coordinate change

ar = y + *(y,*) (50)
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where # will be specified. (We will show $ to be strictly higher order so that this is a valid
coordinate change locally.) Differentiating we have

[I +Dy*]y+^ =x=f(y +9) +f(y +*,t) (51)
Reorganizing we get

» = rrx n an-1irfr«x *u f7«i \d t\ _
dt

y=[/+/?y*]"l][/(y +*) +/(y +*,*)- ^7] (52)
We now choose f such that

(Since / has zero mean, ^ is bounded as a function of time.) This choice produces

y = [I+ Dy9]-l[f(y) + /(y + *,*) - /(y,*)] (53)

Expanding with respect to \P we have

y = [/-I?y* + 0(||i?y*||2)][/+i?y/«r + 0(||*||2)]
s /(y) + /(y,«)

Now we check the order of /,-. The first term we consider is the term

J[/(v + «,*)-/(v,0]

It suffices to check the order of the ith entry of

Accordingly, the entries of the ith row of Dyf are oforder 2i. Further, since

2* =/<(**)
it follows that tf, is of order 1+ 2i in y. Hence, the lowest order in wis 3 (i=l) and the product
yields terms of order 2i + 3.

The final terms we need to consider are given by Dy$iV(y,<) where

Ni(y,t) = fi(y) + fi(y + ¥,*)- fi(y, t)

By assumption, we know that Ni(y, t) is oforder 1+ 2i in y. Since *t- is oforder 1+ 2i it follows
that the entries of the ith row of DyV are of order 2i. The lowest order in N(y, i) is 3(i= 1) and
so the ith entry of DyVN(y, t) is of order 2i + 3. D

A.3 Proof of lemma 2.3

Consider the Lyapunov function

fe?2(n +l-i)% <55)
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where the at's will be specified later. The derivative of V along the trajectories of(28) is given by

v = £?=i<W(n-(,+l[/i(v) +/<(»,«)] ,„v
< [E?=ia0,?("")+1^(»)] +7ll»ll2<n+1»+1 l '

where A; is the t'th row of the matrix A and 7 is a constant that depends on a<, /3j for »= 1,..., n.
We claim that the a,'s can be chosen such that

S(y) =Y.aiy?"-^1 AMv) < -IMI2(n+1) (57)
1=1

This will give

V-<-(l-7ll»ll)IM|2(n+1) (58)
and hence asymptotic stability of the origin for ||y|| sufficiently small. The proof of this claim will
involve an iterative process of completing squares, bookkeeping coefficients and judiciously choosing
the at's.

We begin by multiplying the ith term (i = 1,.. .,n) in the summation S(y) by

for |M| j£ 0. This yields

f!MlV(""'+1)
VIMlJ

s(y) =IMI2(n+l> EfoJj '̂X) E«««]s \\v\\2in+1)ny) (59)
Now we begin to complete squares by first considering the quadratic terms (i.e. those terms gener
ated by i = n in the summation). Doing so, we have

^^I^^J^ga^+a^^V^g^.^)2 (60)
Here anj are positive constants that depend on annianjy and n. Now, by the definition of ||y||, we
have

yl = \\y\\*-y\-----yl-i («)
and choosing

«B = ~ (62)
Grin

we have

with the dnj's appropriately redefined positive constants.
Now we consider the quartic terms generated by i = n —1 in the summation. Again completing

squares, and using the fact that

(yn-\\2 ( yk \2 < / yk V
Vllyli; MlyllJ -viwu
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we have
2(n-t)+l

T(y) < -2 +E?=!2 «ijjJjp^TTT Ej=i "iiVj] +«„[££> anj (j^) j
+«_, *=}-=«• (W)4 +<*-. E£? a._,^(ft)2

We now choose an_i sufficiently large so that

"->—5— IimtJ +a"a-"-1 Km) -~ (65)
In fact, we continue this process of completing squares and choosing at- large enough such that all
the terms involving y,- are bounded by ^-. This can always be done because of the triangular
structure. Finally we have that

n-l ,

7"(y)<-2+£-—-<-l (66)
t=i n L

From this we conclude that

<%)<-||y||2(n+1) (67)
for ||y|| 7^ 0 and our claim is established. •

A.4 Proof of lemma 3.1

The proofof this lemma is a virtual duplication of the proof of lemma 2.2. We spht / as before
and make a similar coordinate change

* = y + *(y,0 (68)

This time we will estabUsh that for e sufficiently small, this is a globally valid coordinate transfor
mation. In fact, we again pick

"ft=/fo'0 (69)
Since /t(y,i) = 0(<r(||y||)2,'+1) and a is C3 it Mows that $ = 0(<r(||y||)2,'+1) and Dy$ =
0(^(1 Ml)2*)- We can now use the same kind of bookkeeping as in the proof of lemma 2.2 to
establish the result.D

A.5 Proof of lemma 3.2

The proofof this lemma is a virtual duplication of the proof of lemma 2.3. This time we start with
the Lyapunov function

»=i j°

(64)

(70)

where the at's will be specified. The derivative along the trajectories of(43) is given by

v = U=i^2^-^Hyi)[fi(y)-r fi(y,t)] ,7n
< E?=i ^2in-i)+1(xi)AnP(y)} +7<7(||y||)2(n+1>+1 (71)

where Ai is the ith row of the matrix Aand 7 is a constant that depends on at, /?,- for i = 1,..., n.
We claim that the a,'s can be chosen such that

n

S(y) =£ *.-*2(n-°+1(y.-)^(y) <-<r(\\y\\)2in+1) (72)
»=i
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This will give

V<-(l-7<r(||y||)>F(IWI)2(,,+1) (73)
and hence global asymptotic stability of the origin for e sufficiently small. To prove this claim we
now follow the proof oflemma 2.3, everywhere replacing ||y||* by <7(||y||)* and y? by <r(y,)*. The
only difficulty we have is that the equality (61) does not carry over. However, it is sufficient to
have the inequality

°{yn? > <KI|y||)2 - *(yif -... - <T(»n_,)2 (74)
Completely squares and judiciously choosing the a,'s again produces the result. •

A.6 Proof of lemma 3.3

The proof of this lemma follows from the proofof lemma 3.2. We use the same Lyapunov function
V as in (70). From lemma 3.2 and from the nature of the partial derivative of V with respect to
y, we have, for e sufficiently small, that the derivative of V along the trajectories of the perturbed
system satisfies

V<-[1 -V>l\M)" \{M^iLfHM\)2in+1) (75)
Since we are simply trying to establish that y is bounded we can assume without loss of generality
that tf2<n+1) < <7(||y||)2(n+1) < &"+*). Therefore we see that if

then V < 0 for \y\ sufficiently large. Since V is proper, this implies that \y\ is bounded. We see
that, given e such that 1 —76 > 0, (76) is satisfied for all u satisfying

£2(n+l)
„<(l-7e)—— (77)

a
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