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Abstract

We examine the benefits of using a nonlinear feedback in the nonlinear regulator problemto
induce larger domains of attraction to the zero-error manifold. We illustrate such benefits on
the "ball and beam" example, using a recently developed semi-globally stabilizing control law
for this system that employs saturation functions [8].

1 Introduction

As in [7], we seek toexpand the region ofattraction ofthe zero-error manifold ofnonlinear regulator
theory developed in [l]. In [7], we approached this problem by deforming the manifold so that the
initial state of the system started close to the deformed manifold and then allowed the deformed
manifold to decay slowly to the zero-error manifold. We then used standard linear feedback to
regulate to this deformed manifold. For somesystemsthis approach yielded dramatic improvements.
Nevertheless, the result was still inherently local. A further drawback to this approach was that
(approximate) knowledge of the initial state of the system was needed. Also, dynamic states equal
to the number of states of the system were added to the compensator.

In this paper, we seek to expand the region of attraction without deforming the manifold. We
propose replacing the standard linear feedback used to regulate to the manifold with nonlinear
feedback based on global or semi-globally stabilizing control laws for unperturbed systems. We
show that this approach yields theoretical reasons for an increased domain of attraction. We
demonstrate an application of this approach using the frequently studied "ball and beam" example
presented in [3]. For this example, we choose arecently developed semi-globally stabilizing control
law recently developed in [8].
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2 Problem Statement

The task at hand is to achieve (perhaps approximate) tracking for the system

* = f(x) + g(x)u + p(x)w
y = h(x) W

where x € Rn, u € Rm and w € W C R* is a disturbance. As usual, / and the columns of g and p
are assumed to be smooth vector fields and h(x) is a smooth mapping on Rn. We assume that the
desired trajectory and the disturbance are generated by an autonomous, Poisson stable exosystem

yd = -q(u>) v '

where 5 is a smooth vector field and q(w) is a smooth mapping defined on W. The Poisson stability
of the exosystem implies that the eigenvalues of the linear approximation of the exosystem lie on
the imaginary axis. For simplicity we assume that /(0) = 0, 5(0) = 0, /i(0) = 0 and q(0) = 0 so
that, for u = 0 the composite system (1), (2) has an equilibrium state (x,w) = (0,0) which yields
zero tracking error.

We will focus on finding a state feedback u = a(x, w) that yields (perhaps approximate) track
ing.

3 The solution

As is standard in nonlinear regulator theory (see [l], [5]) our starting point will be to assume that
we can solve the following partial differential and algebraic equations (at least approximately) for
ir(w) and c(w) which characterize the zero-error manifold and the feedforward that renders the
manfold invariant, respectively:

£j£a(w) = f(w{w)) +g(ir(w))c(w) + p(Tr(w))w ( .
h(*(w)) + q(w) = 0 W

The standard nonlinear regulator solution is then to choose the feedback

u = c(w) + K[x - tt(w)] (4)

where if is a linear gain matrix that stabilizes the Jacobian linear approximation of (1). This,
of course, implies that the linear approximation of (1) is controllable. For the nonlinear regulator
problem, the feedback (4) solves the tracking problem for sufficiently small (x(0),w(0)). We will
retain the requirement that w(0) is sufficiently small, but we will allow x(0) to be large.

Consider the system (1) disconnected from the exosystem:

x = f(x) + g(x)u (5)

Let u = <f(x), with <p(0) = 0, be a smooth control that renders the equilibrium x = 0 of (5) globally
asymptotically stable and locally exponentially stable. We then have the following result.

Theorem 3.1 3<r0 such that for any € < e0, if \w(t)\ < e for all t > 0, then the control u =
c(w) + <p(x - -k(w)) solves the nonlinear regulator problem with basin of attraction containing the
ball \x(Q)\ < «(M for some class-K function «(•).



Proof. The proof uses the total stability result of Sontag [6]. Define

F(xt w) := f(x) + g(x)[c(w)+ <p(x - ir{w))] + p(x)w (6)

Since c(0) = 0 and tt(0) = 0, we have that x = F(x, 0) is globally asymptotically stable. Therefore,
there exists a smooth positive definite and proper Lyapunov function

V : Rn - R

such that

dV(x)-F{x,Q)<0 .

for all nonzero x. It then follows that

dV(x)-F(x,w)<Q (7)

for all |ty| < 0(\x\) for some continuous function 9 : R+ —• R+ such that 0(0) = 0 and that is
decreasing on [l,oo). (See [6, Lemmas 3.1,3.2].) Then, for some e0 sufficiently small and any
e < €0, we can deduce from the function &(-) two class-K functions «i and «2 such that

dV(x)-F{Xiw)<0 (8)

for all x 6 Rn satisfying

«i(«) <M<«2(i) (9)
If c0 sufficiently small then for all €< €0 we have returned to the local nonlinear regulator problem.
Since, u = <p(x) locally exponentially stabilizes the origin of (5) the linear approximation of the
composite closed loop is in the form for which center manifold theory applies. Since <p(0) = 0,
u = c(w) + <p(x - tt(w)), and c(w) and ir(w) satisfy (3) and since ip is a locally exponential
stabilizer, x = ir(w) is an attractive, invariant manifold for the closed loop. Finally, also from (3),
the tracking error approaches zero asymptotically. •

Remark. Although we will not show it here, the results of the theorem extend readily to the
approximate regulator problem (where the manifold equation (3) is solved up to some arbitrary
order), and to theuse ofsemi-globally stabilizing controls (u = y(x,p) where thebasin ofattraction
of the system (5) can be made arbitrarily large by choice ofp.)

4 Example

We demonstrate the capabilities of this approach on the "ball and beam" example which has been
studied with regard to approximate tracking in [3], [2], [4] and [7]. The dynamics of this system
can be modeled as

Xi = X2

&2 = X\x\-Gsm(xz)
xz - x4 (10)
£4 = U
y = xi

where xi is ball position, x2 is ball velocity, ar3 is the angle of the beam, and x4 is the beam's
angular velocity. (For a derivation of these equations, see [3].) For simplicity, we have normalized



the acceleration due to gravity to be G = 1 in our simulations. In [8] it was shown that the control
law

u = (p(x) = -4x3 - 4x4 - <r(yi + 3fe) (11)

where

and <7(«) satisfies

1. 0"(s) = s for all |s| < 6

2. \<r(s)\ = tf for all \s\ > 6

for some 6 > 0 is an example of a semi-globally stabilizing control law for (10). The basin of
attraction for x = 0 can be made arbitrarily large by making 6 arbitrarily small.

The task at hand is to cause the ball position xi to (at least almost) track a sinusoid generated
by the exosystem

W\ = -\U)2
W2 = Au?i (13)

q(w) = -wi

As seen in [2] and [4] approximating the manifold to either first or third order yields nice approx
imate tracking results. A first order approximation to the mappings x = tt(w) and u = c(w) are
given by

m(w) = w\
ir2(w) = -\v)2
n3(w) = ^AV (14)
TT4(w) = -l\3W2
c(w) = -JA4IUi

For simulation purposes, for the exosystem (13), we chose A = 55, w?i(0) = 15 and ^(O) = 0.
Consequently, the task is for the ball position, Xi, to track 15 •cos(gji). We choose the control

u = c(w) + <p(x —tt(w)) (15)

with c(w) and n(w) specified in (14) and <p specified in (11). To demonstrate regulation from a
difficult initial condition, we choose the initial angle of the beam to be 90° and the ball to be a
position slightly below the pivot of the beam at xi = —1. We give the ball zero initial velocity and
the beam zero initial angular velocity. The results of the simulation are demonstrated in figures 1,
2 and 3.

5 Conclusion

We have demonstrated that the use of nonlinear feedback in place of linear feedback in the nonlinear
regulator problem expands the domains of attraction when the nonlinear feedback is known to be
a global or semi-global stabilizer.

yi = -hx\ - §x2+ 5x3 + x4
y2 = -§x2 +4x3 +x4 ^ '



Figure 1: Tracking Results for the "ball and beam"

Figure 2: Transient performance
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Figure 3: Steady-state performance
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