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Abstract

In this paper, we study the scheduling and optimization problems of parallel query

processing using inter-operation parallelism in a shared-memory environment and propose

our solutions for XPRS. We first study the scheduling problem of a set or a continuous

sequence of independent tasks that are either from a bushy tree plan of a single query or

from the plans ofmultiple queries, and present a clean andsimple scheduling algorithm.

Our scheduling algorithm achieves maximumresource utilizations byrunning anIO-bound

task and a CPU-bound task in parallel with carefully calculated degrees of parallelism

and maintains the maximum resource utilizations by dynamically adjusting the degrees

of parallelism of the tasks whenever necessary. Real performance figures are shown to

confirm the effectiveness of our scheduling algorithm. We then revisit the optimization

problem of parallel execution plans of a single query and extend our previous results to

also consider inter-operation parallelism by introducing a new cost estimation method to

the query optimizer based on our scheduling algorithm.

'This research was sponsored by the National Science Foundation under contract MIP 8715235.



1 Introduction

There have been growing research efforts in the area of parallel database systems during the

past few years. Several research systems have been designed and/or constructed including

shared-nothing [STON86] systems such as GAMMA[DEWI90] and BUBBA[COPE88] and

shared-memory systems such as XPRS[STON88] and Volcano[GRAE90]. XPRS is a multi

user parallel database management system that we are developing based on the Postgres

next-generation DBMS[ST0N91]. It is implemented on a shared-memory multiprocessor and

a disk array as shown in Figure 1. In XPRS, all relations are striped sequentially, block by

block, in a round-robin fashion across the disk array to allow maximum i/o bandwidth. A

shared-memory system has two major advantages over a shared-nothing system. First, there

are no communication delays because messages are exchanged through shared memory and

synchronization can be accomplished by hardware spin locks. Second, the operating system

can automatically perform load balancing by allocating the next ready process to the first

available processor. Simulation results in [BHID88] show that the potential win of a shared-

memory system over a shared-nothing system to be as much as a factor of two. As we will

show in this paper, XPRS has been built to fully utilize these advantages of a shared-memory

system.

There are two forms of parallelism that can be exploited in a parallel database sys

tem: intra-operation parallelism and inter-operation parallelism. Intra-operation parallelism

is achieved by partitioning the input data to a certain operation and allocating multiple pro

cessors to perform the same operation on subsets of the input data, while inter-operation

parallelism is achieved by allocating some processors to one operation and some other proces

sors to another operation. In this paper, we continue our study on parallel query processing in

a shared-memory environment which has previously been reported in [H0NG91] and present

a more complete approach that exploits both intra-operation parallelism and inter-operation

parallelism.

[H0NG91] is unique in its two-phase optimization strategy to overcome the enormous

search space in the problem of optimizing parallel query execution plans. In the two-phase
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Figure 1: The Parallel Environment of XPRS

optimization strategy, wefirst, at compile time, optimize sequentialquery executionplans and

then in a second phase, at run time, optimize the parallelizations of the optimal sequential

plan chosen in the first phase. Obviously this two-phase optimization strategy greatly reduces

the plan search space because it only explores parallelizations of the optimal sequential plan

instead of the parallelizations of all possible sequential plans. It is also shown experimentally

that this two-phase optimization strategy does not significantly compromise optimality of the

resulting parallel plan. However, [HONG91] has only considered intra-operation parallelism

and left-deep tree plans (i.e., plans that always join the result of a join with a base relation).

Due to the sequential nature of left-deep tree plans, no inter-operation parallelism can be

exploited within a left-deep tree plan. On the other hand, in a bushy tree plan (i.e., plans

that allows joins of results of joins), we may be able to perform two joins in parallel before

joining them together. In this paper, we will consider bushy tree plans and both intra-

operation and inter-operation parallelism. Since the implementation and performance of

intra-operation parallelism have already been studied in [H0NG91], we will focus on inter-

operation parallelism in this paper. Specifically, we will address the following two problems:

• processor scheduling: given a set or a continuous sequence of runable operations, what

operations to execute in parallel and how many processors to allocate to each parallel

operation;



• query optimization: how to extend the two-phase optimization algorithm in [HONG91]

to handle bushy tree plans and inter-operation parallelism.

Most previous work on parallel query processing has been done on intra-operation par

allelism only, e.g., [DEWI90] and [H0NG91]. Some recent work has proposed to also apply

inter-operation parallelism to query processing. [SCHN90] presents an experimental analysis

of the query processing tradeoffs among left-deep and right-deep tree plans in a shared-nothing

enironment. An important finding is that right-deep trees are superior given sufficient memory

resources. However, there is no analytical cost expression which can be used by an optimizer

to decide whether and when to switch from a left-deep tree to a right-deep tree. Moreover, no

algorithms are proposed for determining the degree of parallelism for each parallel operation.

[PIRA90] shows through an example query the use of inter-operation parallelismin query pro

cessing and models the processor scheduling problem as a modified version of the well-known

6m packing problem. However, no general scheduling algorithm is proposed. [LU91] proposes

an optimization algorithm that considers bushy tree plans and inter-operation parallelism.

The algorithm only handles synchronized bushy tree plans, i.e., those without pipelining

between joins, and uses a greedy algorithm to choose a bushy tree plan that maximizes the

opportunities of inter-operation parallelism. Processor scheduling is not specifically addressed

in the paper.

In this paper, we present a clean and simple algorithm for processor scheduling given n

runable operations. Our main idea is to use inter-operation parallelism to combine IO-bound

and CPU-bound tasks to increase system resource utilizations. Our algorithm matches up

IO-bound and CPU-bound tasks with appropriate degrees of intra-operation parallelism to

make both the processors and the disks operate as close to their full capacities as possible

and thus to minimize the elapsed time. In order to avoid an NP-hard packing problem in

the optimization of task schedules, we have also developed a mechanism, taking advantage of

the low communication delay of a shared-memory system, to dynamically adjust the degree

of intra-operation parallelism of a running task so that the system stays at the IO-CPU

balance point as tasks start and finish. Having solved the scheduling problem, we revisit



the optimization problem of parallel execution plans of a single query and extend the two-

phase optimization strategy to consider bushy tree plans and inter-operation parallelism by

introducing a new cost estimation method to the query optimizer based on our scheduling

algorithm.

The rest of this paper is organized as follows. Section 2 describes our adaptive processor

scheduling algorithm including calculation of 10-CPU balance point, dynamic adjustment to

intra-operation parallelism and task re-ordering heuristics. Section 3 examines variations of

our scheduling algorithm and compares their performances through experimental results. Sec

tion 4, then extends the two-phase optimization strategy based on our scheduling algorithm,

and last, we conclude this paper in Section 5.

2 Adaptive Scheduling Algorithm for XPRS

In this section, wepresent our adaptive scheduling algorithmfor XPRS. First, we describe the

architecture ofXPRS query processing and define the scheduling problem that we are solving.

Then, we describe our classification of IO-bound and CPU-bound tasks and the calculation

of the IO-CPU balance point. Then, a mechanism for dynamic adjustment of parallelism is

presented. Last, we integrate our ideas into an adaptive scheduling algorithm.

2.1 Problem Definition

The architecture ofXPRS query processing isgiven inFigure 2. There areone master Postgres

backend and multiple slave Postgres backends. The master backend is responsible for all the

optimization andscheduling, while theslave backends process whatever tasksthat areassigned

to them by the master backend. XPRS query processing consists of two phases. In the first

phase, the optimizer takes one or more user queries andgenerates certain sequential plans for

each query. In the second phase, the parallelizer parallelizes the sequential plans chosen in the

first phase. In XPRS, a sequential plan is represented as a binary tree of the basic relational

operations, e.g., sequential scan, index scan, nestloop join, mergejoin and hashjoin. First,

the sequential plans are decomposed into plan fragments, i.e., a group of operations that do
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Figure 2: Architecture of XPRS Query Processing

not contain any blocking edges. Blocking edges are those between two operations where one

operation must wait for the other to finish producing all the tuples before it can proceed. In

other words plan fragments are the maximum pipelineable subgraphes of a sequential plan.

Plan fragments are used as the units of parallel execution and are also called tasks. By

inter-operation parallelism, we in fact mean inter-fragment or inter-task parallelism. After

identifying all the plan fragments, the paraUelizer has to find a processing schedule for the plan

fragments and choose a degree of parallelism for each plan fragment. If we only consider intra-

operation parallelism, i.e., we only execute one plan fragment at a time, the responsibiUty

of the paraUelizer is very simple. As presented in [H0NG91], intra-operation paraUeUsm in

XPRS achieves near-linear speedup untU it runs out of either available processors or the disk

bandwidth and there are severe performance penalties for excessive parallelism. Therefore,

the paraUelizer only needs to choose a runable plan fragment, i.e., one for which aU input data

are ready, and choose the maximum paraUelism according to the current number of available

processors and disk bandwidth. However, the paraUelizer's responsibiUty becomes much more

compUcated when inter-operation (inter-fragment) parallelism is taken into account. Here is



the scheduling problem that we are solving for the paraUelizer:

Given n runable plan fragments (tasks), /i,/2,...,/n> where the plan fragments may be

from a bushy tree plan of the same query or from different queries that are simultaneously

submitted,

1. decide a processing schedule for /i, /2,..., /„;

2. choose a degree of parallelism for each /,-,

such that the total elapsed time of processing /i,/2,.. .,/n «* minimized.

As we wiU see, our solution to the above described problem works for both a fixed set of

tasks or a continuous sequence of tasks. Namely, we also aUow n to be infinity in the above

description.

2.2 IO-bound and CPU-bound tasks

The key of our solution to the above defined scheduling problem is to combine IO-bound

and CPU-bound tasks through inter-operation paraUeUsm so that the utiUzation of both the

processors and the disks is maximized, thus the elapsed time is minimized. Before we describe

our solution, we need to define our classification of IO-bound and CPU-bound tasks.

Suppose that if task /,- is processed sequentiaUy, it generates i/o requests at rate d

(ios/second). When /,• is executed with paraUeUsm x, its i/o rate becomes IOi(x) = d x x.

Suppose that the total disk i/o bandwidth is B (ios/second) and the total number ofprocessors

is N. We caU task /,- IO-bound if d > B/N and CPU-bound if otherwise. Obviously, the

function y = 10{{x) is a straight Une with slope C,\ If we draw the Une with the rectangle

bounded by B and N as in Figure 3, we can see that IO-bound tasks are those corresponding

to the Unes above the diagonal Une and CPU-bound tasks are those corresponding to the lines

below the diagonal Une. As we can see, the paraUeUsm of a task is Umited by the rectangle

boundaries and the maximum paraUeUsm of a task is achieved at the intersection between

the Une corresponding to the task and one of the rectangle boundaries. An IO-bound task

wiU run out of disk bandwidth before it runs out of processors. Its maximum paraUeUsm

maxp(fi) = B/C{. On the other hand, the paraUeUsm of a CPU-bound task is only bounded
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by the number of processors JV, i.e., maxp(fi) = N.

2.3 Calculation of IO-CPU Balance Point

Intuitively, in order to maximize the utilization of both the disks and processors, we want the

system to be running at the upper right corner of the rectangle in Figure 3, i.e., the point

with coordinate (N, B). Obviously, if we run one task at a time using only intra-operation

paraUeUsm, unless the Une corresponding to a task is exactly the diagonal Une, the system

wUl not be running at the upper right corner of the rectangle. When we run two tasks /,-

with paraUeUsm zt- and fj with paraUeUsm Xj together, the system is running at the point

with coordinate (a;,- + Xj,C{Xi + CjXj). We can maximize the system resource utilization by

choosing £,• and Xj according to the foUowing equations:

Xi + xj = N

C{X{ + CjXj = B

By solving the above equations, we get,

Xi = (B-CjN)l{Ci-Cj)

xj = (CiN-B)/(Ci-Cj).

We call (x,-,Xj) the IO-CPU balance point for tasks /; and fj.
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Suppose that Ct- > Cj, in order to make X{ andXj bothpositive, we have to have C{ > B/N

and Cj < B/N. In other words, one task has to be IO-bound and the other CPU-bound. This

formula also teUs us that one IO-bound task plus one CPU-bound task can always achieve

maximum system resource utiUzation with appropriate paraUeUsm assignment. Although a

combination of more than two tasks may also achieve the same effect, it compUcates the

scheduling algorithm and consumes more memory. Therefore, in exploiting inter-operation

paraUeUsm, it is sufficient to only run two tasks at a time, i.e., we never need to run more

than twotasks in paraUel. This result significantly simpUfies the scheduling problem.

Figure 4 gives a graphical interpretation to the above analysis. Given an IO-bound task

and a CPU-bound task, if we draw the Une corresponding to the IO-bound task through the

origin and the Une corresponding to the CPU-bound task through the upper right corner of

the rectangle, there wiU always be an intersection within the rectangle between the two lines,

which is the IO-CPU balance point. We can see that if we run task i with paraUeUsm X{ and

task j with paraUeUsm Xj, the system wiU be running at the maximum utiUzation point.

The above calculation assumes that the disk bandwidth B is a predefined constant. How

ever, in reaUty, disks have two bandwidths, i.e., a sequential i/o bandwidth and a random i/o

bandwidth, where the random i/o bandwidth is about 1/3 of the sequential i/o bandwidth.

We have to take this into account and do a more careful calculation for paraUeUsm involving

sequential i/o tasks.



Suppose that tasks /,• and fj both generates sequential i/o's. Let Bs be the sequential

read bandwidth and Br be the random read bandwidth. Unfortunately the real effective

bandwidth B can not be pre-computed because it depends on the ratio of the time that

the disks spend in handling i/o's from each of the tasks. If the disks spend most of their

time handUng i/o's from one task, then in effect the disks stiU do mostly sequential i/o's, so

B « Bs. However, if the disks spend half the time on one task and half on the other, then the

disks have to seek between the blocks of one task and those of the other, so B « Br. From

the above equations, we know that the ratio is given by dxi/CjXj, or CjXj/dxi. Therefore

we can calculate the effective bandwidth B as below,

B= <
Br + (1 - dxi/CjXj)(Ba - Br) if dxi < CjXj

Br + (1 - dxi/CjXj)(Ba - Br) otherwise.

For inter-operation paraUeUsm between two sequential i/o tasks, we need to add this third

equation to the above equations to compute the correct IO-CPU balance point. Similarly,

we can also compute the correct IO-CPU balance point between a sequential i/o task and a

random i/o task. However, because of the disk bandwidth drop, inter-operation paraUeUsm

may lose its advantage over intra-operation paraUeUsm. In other words, for sequential scan

tasks it may be better to run the tasks one by one using only intra-operation paraUeUsm

to avoid disk seeking between tasks. Therefore, in considering running two sequential scan

tasks in paraUel, we need to compare the estimated time of execution using inter-operation

paraUeUsm based on the above equations and the estimated time of execution using only

intra-operation paraUeUsm and decide whether inter-operation paraUeUsm is worthwhUe.

2.4 Dynamic Adjustment of Parallelism

Even though we have known how to calculate the IO-CPU balance point given an IO-bound

task and a CPU-bound task, we have not yet solved the scheduUng problem, because by

running the two tasks at their IO-CPU balance point only guarantees fuU resource utiUzation

while both tasks are running, when one task finishes first and there is no other job to fiU in

the newly available resources, resources are stiU wasted. Now the question is how to order

10



the execution of tasks so that resource waste is minimized. We can model this problem as

a modified version of the bin packing problem or the multi-processor scheduling problem in

combinatorial optimization as in [PIKA90]. However, given the NP-hard complexity of the

problem, it wiUnot be efficient to try to solve this problem directly. In XPRS, this combinato

rial problem is avoided by a mechanism of dynamic adjustment of intra-operation paraUeUsm

taking advantage of the low communication overhead in a shared-memory environment.

As described in [HONG91], in XPRS, intra-operation paraUeUsm is implemented in two

ways, page partitioning and range partitioning. In page partitioning, we partition relations

across disk page boundaries and assign a subset of disk pages to each participating processors

to work on. SpecificaUy, given n processors, processor i processes disk pages {p \ p mod n = i},

where i = 0,l,...,n— 1. In range partitioning, we partition relations according to the value

of a certain attribute. We try to find a balanced range partition with data distribution

information in the system catalog or in the root node of an index. Page partitioning is used

for sequential scans whUe range partitioning is used for index scans. Joins are paralleUzed

using either page partitioning or range partitioning depending on the type of scans in their

inner and outer plans. Different paraUeUsm adjustment mechanisms have been designed for

page partitioning and range partitioning operations.

Suppose that the current degree of paraUeUsm for a task is n and we want to adjust it

to a new degree of n', where n' can be greater than n, which means that we are putting in

more available processors to work on this task, or smaUer than n, which means that we are

taking some processors away from this task to work on another task. We have implemented

dynamic paraUeUsm adjustment in XPRS as foUows:

• For Page Partitioning

The master backend sends asignal to aU participating slave backends onthe task. Upon

receiving the signal, each slave backend, i = 0,1,..., n- 1,sends back the current page

number curpagei that it is scanning. After receiving aU the page numbers from the

slave backends, the master backend computes the maximum page number,

maxpage = max{curpagei}y i = 0,1,..., n - 1.

11
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Then the master backend sends maxpage and new paraUeUsm n' to all the slave back-

ends, which completes the communications between the master and the slaves for the

paraUeUsm adjustment. If n' > n, the master backend wiU start n' —n free slave back-

ends to work on the task and make each of them start scanning after page maxpage.

After receiving maxpage and n', aU the slave backends wiU resume their work untU

they finish scanning aU the pages before maxpage, at which point, they wiU change

from scanning every nth page to scanning every n'th page and complete the paraUeUsm

adjustment. If n > n', upon scanning past maxpage, the slave backends i, i >= n' —1

wiU finish processing the current task and report back to the master backend of their

availability. The communication process between the master backends and the slave

backends for page partitioning paraUeUsm adjustment is shown in Figure 5.

• For Range Partitioning

The master backend sends a signal to aU the participating slave backends on the task.

Upon receiving the signal, each slave backend sends back the intervals of values that

remain for them to scan. For example, if a slave backend is assigned to scan for values

12
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in interval [l,h] and the current value that is being examined is c, the interval that

wiU be sent back to the master backend is [c,h]. After paraUeUsm adjustment, each

slave backend may get more than one intervals to scan instead of only one contiguous

interval. Upon receiving all the intervals from the slave backends, the master backend

redistributes the intervals among n' slave backends and sends each slave backend a new

set of repartitioned search intervals. If n' > n, the master backend wiU start n' —n

newly available slave backends to work on the task. MeanwhUe, the old slave backends

wiU resume their processing with the new search intervals. If n' < n, the extra slave

backends wiU finish the processing of the current task and report back to the master

backend as available. Figure 6 shows the communications between the master backend

and the slave backends for range partitioning paraUeUsm adjustment.

As we can see, our paraUeUsm adjustment mechanism is made possible only by the low

communication delay advantage of a shared-memory system.

13



2.5 Adaptive Scheduling Algorithm

The main idea of our scheduling algorithm is to use our dynamic paraUeUsm adjustment

mechanism to keep the system running at the IO-CPU balance point, i.e., at the maximum

system resource utilization. At the same time, the algorithm also considers the possibiUty that

inter-operation paraUeUsm may be disadvantageous when sequential i/o is involved because

of the disk seeks between tasks, in which case only intra-operation paraUeUsm wiU be used to

take advantage of the sequential disk bandwidth.

Given a set of n runable tasks, S = {/i, /2,..., /n}, suppose that the sequential execution

time of /,- is Tt-. And suppose that TintTa(fi) is the execution time of /,- using only intra-

operation paraUeUsm and Tinier (/t» fj) is the execution time of ft and fj running at their

IO-CPU balance point (a;,-, Xj) with inter-operation paraUeUsm. We have,

Tintratfi) = Ti/maxp(fi),

TinterifiJj) = min(Ti/xi,Tj/xj) + Tij/maxptj.

where Tij is the execution time of the remaining task when either /,- or fj finishes first and

maxpij is the maximum intra-operation paraUeUsm of the remaining task. We have,

Ta = <•%3

Ti - TjXi/xj if Ti/xi > Tj/xj

Tj —TiXj/xi otherwise,

maxpij = i
maxp(fi) if Ti/xi > Tj/xj

maxp{fj) otherwise.

The foUowing is the description of our algorithm.

1. Divide S into Su> and Sepu such that S = S%0 U Scow, Si0 contains all the IO-bound tasks

and Scpu contains aU the CPU-bound tasks.

2. Choose fi e Sio and £ € £<*«, Sio = Sio - {/,}, S^ = S^ - {fj}.

3. Calculate the IO-CPU balance point between /,- and fj, (xi,Xj) and Tinter(fi, fj)-

14



4. If TinteT(fi,fj) < Tintra(fi) + rtnlro(/j), execute /; with paraUeUsm x{ if /,- is a new

task or adjust the current paraUeUsm of /,- to Xi if /,• is a running task; execute fj with

paraUeUsm Xj if fj is a new task or, adjust the current paraUeUsm of fj to Xj if fj is a

running task. Otherwise, execute /,- alone with paraUeUsm maxp(fi) untU completion,

then execute fj alone with paraUeUsm maxp(fj) until completion.

5. If there is no task running, go to 2.

6. If fi finishes first whUe fj is stUl running, choose new /,- € 510, 5to = Si0 —{ft}, go to 3.

7. If fj finishes first whUe /,- is stiU running, choose new fj € ScpU, Scpu = Scpu - {fj}, go

to 3.

8. If Si0 = 0 or Scpu = 0) execute remaining tasks using intra-operation paraUeUsm only.

In the above algorithm, we use an obvious strategy to choose the pair of IO-bound and

CPU-bound tasks, /,- and fj to execute in parallel, namely, to pair up the most IO-bound

task, i.e., the task with the greatest i/o rate, and the most CPU-bound task, i.e., the task with

the smaUest i/o rate. In this way, we can keep the system running closer to the maximum

utiUzation point (the upper-right corner of the rectangle in Figure 4) when either IO-bound

or CPU-bound tasks run out first, becausethe remainingtasks wiU be those corresponding to

Unes closer to the diagonal in Figure 4. In a multi-user environment, if we want to minimize

the response time ofindividual queriesinstead of the the total elapsed time, a shortest-job-first

heuristic can be used, i.e., to execute the tasks from shortest queries first.

The above algorithm can be easUy extended to handle a continuous sequence of tasks

{f\,f2,h,-- •} instead of a fixed setof tasks. All we need to do is to represent 5to and Scpu as

queues. When a task arrives, it is put into either the 5to queue or the Scpu queue according

to its i/o rate. The rest of the algorithm stiU work as described.

15



3 Evaluation of Scheduling Algorithms

In this section we evaluate the performance of our scheduUng algorithm described in the

previous section through XPRS benchmark experiments. Currently XPRS is running on a

Sequent Symmetry system with 12 processors and 4 disks. In the experiments, we compare

the performance of the foUowing three scheduUng algorithms.

• INTRA-ONLY - No Inter-Operation ParaUeUsm

Execute tasks one by one using intra-operation paraUeUsm only.

• INTER-WITHOUT-ADJ - Inter-Operation ParaUeUsm without Dynamic Adjust

ment

Almost the same as the algorithm in the previous section, except that when one task

finishes first, no dynamic paraUeUsm adjustment is performed. The master backend

wiU simply start the task that can get closest to maximum utilization point if executed

using the currently available processors in paraUel with the running task.

• INTER-WITH-ADJ - Inter-Operation ParaUeUsm with Dynamic Adjustment

The algorithm described in the previous section.

We wiU run the foUowing four workloads against each of the three algorithms:

• aU IO-bound tasks,

• aU CPU-bound tasks,

• extremely IO-bound tasks with extremely CPU-bound tasks,

• random-mix tasks.

Each workload consists of ten tasks. Since our algorithms only depend on the i/o rate of

each task and other details of the operations in the tasks do not affect the performance, we

choose aU the queries to be one-variable selection queries for simpUcity. Hence, aU the tasks

wiU be either a sequential scan or an index scan. The length of each task is randomly chosen

16



between scanning 100 tuples and scanning 10,000 tuples. We adjust the i/o rate of each task

by varying the size of tuples that are scanned. AU relations in the workloads have the same

schema: ri(a = int4, b = text), where attribute 6 is a variable-size string and is used to adjust

the tuple sizes. AU queries wiU be a selection on ri.a. An unclustered index may be created

on a to make index scans possible. For sequential scans, the i/o rate is determined by the

tuple size. There is a fixed per-tuple overhead (evaluation of query qualifications) after each

tuple is read into memory from disks. Therefore, the time between two i/o requests is equal

to the time to read in a disk page plus the time to process aU the tuples that reside in the

read-in disk page. When tuple size is smaU, many tuples can be packed into one disk page,

thus it takes longer to process aU the tuples in a page and the i/o rate is lower, so the task

is Ukely to be CPU-bound. On the other hand, if tuple size is large, the i/o rate is higher

and the task is Ukely to be IO-bound. For index scans on an unclustered index, however, the

i/o rate is always high because index scans can foUow the pointer in an index to a qualified

tuple on a disk page and hence the time between two i/o requests is small. Index scans on an

unclustered index are most Ukely IO-bound. For index scans on a clustered index, it is more

or less the same situation as that of sequential scans.

In our experiments, the most CPU-bound task is a sequential scan on relation rmtn in

which the 6 attribute in all the tuples is set to NULL so that the tuple size is the smaUest.

The most IO-bound task is a sequential scan on relation rmax in which the 6 attribute in aU

the tuples is set large enough so that each disk page can only hold one tuple. In XPRS, the

disk page size is 8K bytes. We have measured the i/o rate of sequential scans on both rTOtn and

rmax* The rmtn i/o rate is 5 (ios/second) and the rmax i/o rate is 70 (ios/second). AU other

tasks wiU have i/o rate in between. We havemeasured the bandwidth of our disks (bandwidth

after file system overhead) to be 97 io's/second for sequential reads, 60 io's/second for almost

sequential reads and 35 io's/second for random reads. In paraUel executions, we at most see

the almost sequential read bandwidth because even for paraUel sequential scans, the reads

may become unordered due to the asynchronousness of the paraUel backends. Since we use

4 disks, we have a total i/o bandwidth of 4 * 60 = 240 io's/second, and because we use 8
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processors in our experiments, according to our definition, those tasks with i/o rate above

240/8 = 30 are IO-bound and those below 30 are CPU-bound. We choose the i/o rate of the

tasks in our experiments as in the foUowing table.

Type of Tasks 10 Rate (ios/second)

CPU-bound randomly chosen in [5, 30)

IO-bound randomly chosen in (30, 60]

Extremely CPU-bound randomly chosen in [5, 15]

Extremely IO-bound randomly chosen in [60, 70]

We run each workload in XPRS using each of the above three algorithms and measure

the turnaround time of each run. Our experiment result is presented in Figure 7. As we

can see, when the workloadis aU IO-bound or CPU-bound, aU three algorithms have roughly

the same performance and inter-operation paraUeUsm does not help. It is sufficient to use

intra-operation paraUeUsm only. However, when there is a mixed workload of IO-bound and

CPU-bound tasks, our proposed scheduUng algorithm INTER-WITH-ADJ can improve per

formance by as much as 25% over INTRA-ONLY. We can also see that INTER-WITHOUT-

ADJ loses to INTRA-ONLY because without paraUeUsm adjustment a task may have to run

with a low paraUeUsm even when other tasks have finished and more processors are available.

4 Optimization of Bushy Tree Plans for Parallelism

In the previous sections, we have studied the scheduUng problem of a set or a sequence

of runable tasks. Our algorithm can be used regardless of whether the paraUel tasks are

from a bushy tree plan of the same query or from different queries. In this section, we wUl

concentrate on the optimization problem of parallel execution plans for a single query and

propose an optimization strategy based on the scheduUng algorithm in the previous sections.

Since we have shown that a proper combination of intra-operation paraUeUsm and inter-

operation paraUeUsm wins over only intra-operation paraUeUsm given a workload of mixed

IO-bound and CPU-bound tasks, the left-deep-tree-only and intra-operation-paralleUsm-only
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Figure 7: Experiment Results of Scheduling Algorithms

optimization strategy proposed in [HONG91] obviously cannot always take fuU advantage of

aU available resources and thus cannot guarantee the optimality of the execution plan chosen.

However, in a multi-user environment, this problem can be easUy solved by combining the

two-phase optimization strategy in [HONG91] with our scheduUng algorithm. We still find

the best paraUel plan for each query using only intra-operation paraUeUsm with the algorithm

in [HONG91], but we rely on the tasks from different queries submitted by multiple users to

achieve maximum resource utiUzations using our scheduUng algorithm. In this section, we

wiU focus on the optimization problem of a single query in a single-user environment where

we have to depend on the the tasks within a same plan to achieve IO-CPU balance and where

bushy tree plans have to be considered. Our ideals to preserve the same optimization scheme

as in [HONG91], but use a new cost estimation method to estimate and compare the costs of

bushy tree plans.

Since use of paraUeUsm only helps reduce response time of a query execution, we only con

sider response time as our cost measurements in the foUowing discussions. For each sequential

plan p, let seqcost(p) be the cost of sequential execution of p and parcost(p,n) be the cost
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of paraUel execution of p on n processors. As described before, plan p can be decomposed

into a set of plan fragments which are what we call tasks in paraUel executions. Unlike the

situation in the previous sections, the tasks here have order-dependencies among themselves

because some task may take the output of another task as input. However, obviously our

scheduUng algorithm can be easUy modified to deal with the order-dependencies. It only

needs to check if a task is ready before choosing it to execute and only execute the ready

tasks. Suppose that F(p) = {/i,/2,...,/fc} is the set of plan fragments (tasks) of plan p.

Using the cost estimation methods in conventional query optimization, we can estimate the

sequential execution time of each task i, T,-. We can also estimate the number of i/o's of each

task i, Di. Thus, we can estimate the i/o rate of each task i as d = Di/Ti. Let Tn(S) be the

elapsed time of executing a set of tasks, S with n processors. We can compute T„(5) with

the foUowing recursive formula:

Tn(S) = {
Ti/maxp(fi) + Tn(S - {/,}) if /„• is run alone,

min(Tilx1,Tjlx2) + Tn((5 - {/,-,/,-})(J{/«j}) # /.' and /,- is run in paraUel.

where /,- and fj are two ready tasks chosen in S according to our scheduUng algorithm to

execute in paraUel at IO-CPU balancepoint (»i, £2), fij is the remaining task of the longer of

fi and fj when one of them finishes first. This formula is derived directly from our scheduUng

algorithm and is self-explanatory. We compute paraUel execution cost of a plan as,

parcost(p,n) = Tn(F(p)).

Now for each plan p, we can estimate parcost(p, n) given n and since we are assuming

a single-user environment, n is known beforehand. Therefore, we can find the plan that

minimizes parcost(p, n). The optimal plan can be found by a conventional query optimization

algorithm with parcost(p,n) replacing seqcost(p). Note that the calculation of parcost(p, n)

depends on the structure of the entire plan tree of p which makes local pruning, a common

complexity-reducing technique in conventional query optimization infeasible. Aside from this

factor, we can solve the paraUel optimization problem with the same algorithm complexity

as in conventional query optimization.
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5 Conclusion

In this paper, we have presented our approach to exploit inter-operation paraUeUsm in a

shared-memory environment. We have first studied the scheduUng problem of a set or a

sequence of independent tasks that are either from a bushy tree plan of a single query or from

the plans of multiple queries and proposed a clean and simple scheduUng algorithm. Our

scheduUngalgorithm achieves maximum resource utUizations by running two carefuUyselected

tasks in paraUel at their IO-CPU balance point, and avoids the combinatorial optimization

problem by dynamicaUy adjusting the degree of paraUeUsm of the tasks to keep the system

running with maximum resource utUizations. It takes fuU advantage of the low communication

overhead feature of a shared-memory system, which a shared-nothing system does not have.

We have also studied the optimization problem of paraUel executions of a single query and

extended our previous result to also consider inter-operation paraUeUsm by introducing a cost

estimation method for paraUel execution costs of a sequential plan based on our scheduUng

algorithm.

In this paper, we have neglected the memory constraints on paraUeUsm. For example,

we cannot run two hashjoins in paraUel unless there is enough memory for both hash tables.

As future work, we wiU integrate memory constraints into our scheduUng and optimization

algorithms. So far, we have only studied the paraUel optimization problem of a single query.

We also plan to extend our results to deal with paraUel optimization of multiple queries.
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