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CLUSTERING FORMALISM FOR SYNCHRONOUS DATAFLOW

Shuvra S. Bhattacharyya

ABSTRACT

This document presents a formalization of ‘‘clustering’’ nodes during the scheduling of a synchro-
nous dataflow (SDF) graph. The interpretation of clustering in this document is specific to our work in
scheduling for efficient iteration, and it is possible that this formalism may not apply to clustering in other
contexts. The goal of this document is to define our interpretation of a cluster; to define the process by
which a cluster in a graph derives a new graph; and then to show that scheduling this new graph is
equivalent to scheduling the original graph with the desired clustering effect.

The definitions and theorems presented here apply to the single-processor scheduling problem. The
intent presently is to gain intuition about the iteration problem alone, before attempting to combine these
considerations with parallel-processor scheduling. It is expected that this formalism will eventually be
extended to the multiprocessor case.

This document expands on the discussion in chapter 3 of [1] on “‘consolidating a subgraph’’ of an
SDF graph.

The following notation will be used throughout this document:

Notation

(N1)  An SDF graph is denoted by an ordered pair {X,Y}, where X is the set of nodes and Y is the set of
arcs.

(N2)  For an SDF arc o, source(a) and sink(or) denote respectively the source node and sink node of c.
p(0) denotes the number of samples produced on o for every invocation of source(c). Similarly, c(o)

denotes the number of samples consumed from ¢ by every invocation of sink(c). Finally, delay(c) denotes
the delay on o

(N3)  We use the term MPASS (minimuhi-PASS) to denote a PASS (periodic admissible sequential
schedule) of blocking factor one.

(N4)  For set operands, we use ““+”” and **-*’ to denote the union and exclusion operations respectively.

Definition 1Let G = {N, A} be an SDF graph; let S be a PASS for G; and let V be a connected subset of N.
Then we say that V is a cluster in G for S if and only if S can be expressed as

(1) EJNLEI, E, 1,5,

where each Z; is a (possibly empty) sequence of invocations of nodes in N ~ V, and each IT; is an MPASS
for the subgraph associated with V.

Observe that if the decomposition (1) exists for a schedule S and subset V, then it must be unique for
(S.,V). Thus we can define

E(S vva) = {EO’EI;.’ E:':n }: and
H(S’V'G) = [nl,rlla [} nn}
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whenever V is a cluster in G for S.
>
The following assumptions will be used throughout the remainder of this document.
Assumptions
(A1) LetG= (N, A} be an SDF graph for which a PASS exists.
(A2)  LetV beaconnected subset of N andlet G, = {V, A, } be the subgraph associated with V.
(A3)  Define anode n, (to represent an instance of the cluster V).

(A4)  LetT, be the topology matrix for G, and let ¢, be the smallest positive integer vector in the null
space of I', . The existence of g, is guaranteed by lemma 1 below and theorem 4 in chapter 2 of [1].

(AS)  Foreach arc a.e A which is directed fromanode ny € N-V to anode n, € V, define the arc at
be directed from n to n,, with p(cr) = p(0r), c(at) = g, [n,lc(cx), and delay(c) = delay(c).

(A6)  Similarly, for each arc B € A which is directed from a node n, € V t0 a node n; € N-V, define
the arc [ to be directed from n, to n,, with p(8) = g, [n,1p(B), c(B) = c(B), and delay(cr) = delay(c).

(A7) Let Ay = (Y€ Al source(y) € N-V, and sink(y) € V};
Az = (ye Al, source(y) € V, and sink(y) € N-V};
Ar=(Flve Ay);
A= (¥17€ Ag);and

A a

= A; + A,

>

Definition 2 We define F, (G), called the graph obtained by clustering V in G, by

F,(G)={N=V+{n), A=A, +A-A - A,)

Lemma 1 Assume Al-A2 and suppose § is a PASS for G. Then the schedule S’, obtained by eliminating
from § the firings of nodes not in V, is a PASS for the subgraph associated with V.

Proof The subset of firings in § which produce or consume data on arcs in G, is precisely S’. Letxbe a
firing in §* and suppose x does not have enough data on input arc o € A, to fire. Then there must be some
n € V, which is fired before x in § — but not fired in §” — to produce one or more of the samples which
§’ is ““missing”’ on o for x. But this contradicts our definition of S’, and it follows that §* is admissible.
Furthermore, since S leaves no net change in the number of samples on any arc in G, S’ leaves no net
change on any arc in G, . We conclude that S’ is a PASS for G, .

Definition 3 Let G be an SDF graph and let S be a schedule for G. Given an arc ¢.in G and a firing f in S,
we define

bs(of)=
{the number of times source(c) is invoked in § before £ } * p(c)
- {the number of times sink(ct) is invoked in S before £} * c(a)
+ delay(o)



If S, is a nonempty subschedule (a subsequence of firings) of S then we define bg(0.,S,) = bs (o, f 1), where
f1is the first firing in S ;.

The following fact is immediately apparent from definition 3:

Fact 1: If § is an admissible schedule, then bg(a.f) equals the number of samples on o immediately before
fisfiredinS.

Lemma 2 Assume the hypotheses and notation developed in A1-A7 above. Let S be a schedule for F, (G)
and let S’ be the schedule for G which results from replacing in § each firing of n, with an MPASS for G, .
Suppose §; is the i th MPASS for G, in S’. Then:

(A) a € A, => bg(q, the i th invocation of n,) = bg{0, S;); and

(B) e Ay=> bs(a, the i th invocation of sink(a)) = bs{c, the i th invocation of sink(c)).

Proof of A
From our assumptions, § and S’ can be decomposed as :

(2A) s’= E;Onvslnv";ﬂ—lnvzbl_
(2B)  §'= EJLE I, Ey Iy Ey,

where each E; is a subschedule involving nodes in N-V and each IT; is an MPASS for G,. We wish to
show that for 1 <i <M, bg{a,, IT;) = bs(a, the i th invocation of n,). Now,

3) bs4a, IT;) =
{the number of times source(a) is invoked in Z4°Z;_, ) * p(c)
- (i-1) * {the number of times sink(c) is invoked in an MPASS for G, } * c(c)
+ delay(o)

The second term in (3) is equal to

(i-1) * g, [sink(0)] * c(0)
=(i-1) * c(c). (from AS)

Also, from A5, p(0) = p(ct), delay(0) = delay(cr), and source(c) = source(cr), so (3) becomes
(the number of times source(q) is invoked in 0 EiL) *plo)

- (i=1) * (6
+ delay(o),

which, from definition 3, is clearly equal to b (a, the i th invocation of n).

Proof of B
Suppose the i th invocation of sink(cr) in 8’ is in =, of decomposition 2B. Then, since sink(c) is not
in V, it is clear that the i th invocation of sink(ct) — which is the same as sink(o) — in S is in £, of decom-
position 2A. Now since subschedules IT,", I, precede Z, in S,
bs{«, the i th invocation of sink(0y)) = kg, [source(a)]*p(a) - (i—1)*c(cx) + delay(cr),
which from A5-A6 equals :
k*p(0) - (i—1)*c(a) + delay(c)

= bg(a, the i th invocation of sink(c)).



QED.

Lemma 3 Let G = (N, A) be an SDF graph. Suppose V is a connected subset of N and let G, = {V, A}
denote the subgraph associated with V. Let I, T, and I's respectively denote topology matrices for G, G,
and F, (G). Finally, suppose that PASSes for G and G, exist, and let q. 4, and gr be the smallest positive-
integer vectors in the left-side-null-spaces of T, T, and I'f, respectively.

Then, x € V=>q[x]=gp[n,1*q,[x].

Proof
T can be expressed as

I o
I‘2 1.‘v ’

where I'y denotes the submatrix associated with the interaction between nodes in N-V and arcs in A - A,,
and I'; denotes the submatrix associated with Vand A - A, .

Also, g can be decomposed as
[‘11‘12] ’

where ¢, denotes the subvector associated with nodes in N-V and ¢, denotes the entries associated with
the elements of V.

With these decompositions, we have that

¥
[014:] [ri ro] =0

which implies that

gl + gl =0
and
qlrv = 0.

Thus ¢, must be some positive integer multiple £ of g, .1.e. g5 = kq, forsomek € (1,2,3,"}
Now from AS5-A®6, it can be deduced that we may express I'r as

I
quz ’

where ¢, I, determines the row corresponding to the node n, . It follows then, that

¢olas]

is in the null space of I'r, since



gl + kg T =gy + @l =0

Now suppose that there was an integer r >1 such that

’

9

r
was also a positive integer vector in N(T's). Then

q1 kqv

q1 92
— —7Ty = —T + =T, =
’ I, + - T, - T ’ =0
and thus ¢ /r is a positive integer vector in the null space of I'. But this contradicts our assumption that ¢
is the smallest such vector.

We conclude that
qr = [ q k ]

Thus, if x € V then g [x] = g,[x]1=kq, [x]= gz [n,]q, [x).
QED.

Theorem 1 Assume A1-A7. Let S, be an PASS of blocking-factor k& for F,(G). Then the schedule S,
obtained by substituting each occurrence of n, in S, with an MPASS for G, , is a PASS of blocking-factor
k for G, and V is a cluster in G for S”.

Proof

From these assumptions, S, and §* can be decomposed as S and S are (respectively) decomposed in 2A-
2B. Thus

@A) S, = EgnyEingEyn,Ey
@4B)  §'= EJLEILEy IIyEy,

and each Z; is a subschedule involving nodes in N-V, and each IT; is an MPASS for G, . It is obvious from
(4B) that Vis a cluster in G for S*.

Now we show by contradiction that §” is admissible. Suppose that x is the first firing in S’ which
does not have enough data to fire, and suppose x is *“‘missing’* samples from arc .

(A) Suppose @ € A - A, - A; - A;. Then a is in both G and F, (G). Since neither n, nor any II;
interacts with (A - A, - A; - A;), it follows that x € some Z;, and that x does not have enough samples
from a.in §, as well. This contradicts the assumption that S, is admissible.

B) Suppose o € A,. Then x € some II;. Since the E;’s don’t interact with A,, it follows that IT; is
not admissible, which is another contradiction.

© Suppose & € A,. Then x € some IT;. Since source(c) is outside G,, bs(a, IT;) < g, [sink(ar)] *
¢(e). From Lemma 2A and assumption A5, this inequality implies that bg, (e, the i th invocation of n)<
c(a). From fact 1, we see that this last inequality contradicts our assumption that S, is a admissible.

D) Finally, suppose that & € A,. Then then x denotes some firing, say the i th one, of sink(cr) and
bs{c , the i th invocation of sink(c)) < c(o).



From lemma 2B and assumption A5, this inequality implies that bs_(&, the ith invocation of sink(a)) <

A

¢(). From fact 1, this contradicts our assumption that S, is admissible.

(A)-(D) together prove that the assumption that S’ is not admissible cannot hold.

To prove that S” is periodic, we must show that §* produces no net change in the number of samples
on any arc o.in G.

E) Suppose 0 € A - Ay - A, - A,. Then o € F,(G) and source(or) and sink(cr) are the same in G and
F, (G). Furthermore, for both schedules, source(c) and sink(c) are fired only within the Z; subschedules of
decompositions 4A-4B. Thus the number of firings of source(o)) and sink(c) in S are the same, Tespec-
tively, as the number of firings of source(c) and sink(c) in S, . Since S, is periodic it follows that §’ can
produce no net change in the number of tokens on a..

® Suppose . € A, . Then in S’, source(cr) and sink(cr) are fired only within IT,, IT,,", IT,,. Since each
I1; is assumed to be an MPASS, it follows that there can be no net change on o.

(G) , Suppose o € Ay. Then from AS, each invocation of n, in S, consumes the same number of tokens
from o as each IT;, and thus the total number of samples consumed on o through §' is the same as the
number consumed from o through S, . Also source(a)=source(c) is not in V, so it is fired the same number
of times in both schedules. Since p(c:) = p(0), it follows that the net change on « is equal to the net change
on o, which is 0 since S, is a pass.

o Suppose 0. € A,, then sink(o)=sink(c) is outside V, so the number of samples consumed from o
during S is the same as the number consumed from o. during S, . Furthermore, each invocation of n, pro-

duces the same number of samples on o as each IT; produces on c.. Thus the net change on o equals the net
change on o, which is 0.

(E)-(H) show that S produces no net change in sample-population on any arc in G, and we conclude that
S’ is periodic,

Finally, we show that S” has blocking factor k. This is equivalent to showing that for some node x in G, S’
fires x (k * q[x]) times, where ¢ is the smallest integer vector in the null space of I'. Let our x be chosen
from within V. Also let gr and ¢, denote the smallest positive - integer - null - space - vectors for the
topology matrices of F, (G) and G, respectively. Then S fires k sets of gr[n, ] invocations of MPASSes
for G,, each containing g, [x] invocations of x, for a total of (¢ * grln,] * q,[x]) firings of x. From
lemma 3, this is equal to (k * ¢ [x]) firings.

QED.

Theorem 2 Assume Al-A7. Let S be a PASS of blocking-factor & for G, and suppose that V is a cluster in
G for S. Then the schedule S’, obtained by substituting in § each occurrence of an MPASS for G, with a
firing of n, , is a PASS of blocking-factor k for F, (G).

The proof is analogous to that of Theorem 1, and we omit it here for brevity. Theorems 1 and 2 together
indicate that scheduling the ““clustered’’ graph F, (G) is equivalent to producing schedules in G for which
V is cluster — every PASS for G in which V is a cluster can be obtained by scheduling F, (G), and from
every PASS for F, (G), we can derive a schedule for G in which V is a cluster.

We conclude this document with a fact that is useful when considering only two nodes as a cluster.
We have found that such pairwise clustering is useful for organizing looping in a schedule.

Fact: If V= {A,B} is a two-element subset of N then



qI[A] .
ged(q[A], q[B]) ’

qv [A] =

q[B]
ged(q[Al, ¢[B))

9y (B] =

; and

grln, ] = ged(qlAl,q[B]) .

(*‘ged’’ denotes the greatest common divisor)

Proof:

From lemma 3, each of the equalities above implies the other two. Here we will directly prove the
first two.

From lemma 1, we know that G, has a PASS, and thus that T, has rank 1. It follows that there are
integers a and b such that .

() [91920e n(T,) = g1a + g2b =0.

From lemma 3, we know that V x € V, g[x]=gr[n,] * g, [x], and thus [¢ [A] ¢[B]] € ®(T’,). Hence:
q[AJ*a + q[B]*b =0.

=> the smallest positive integer vector that satisfies the RHS of (5) is

qI[A] q[B]
ged(q[Al,q[B)) gecd(¢ql(A], q[B])

QED.
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