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CLUSTERING FORMALISM FOR SYNCHRONOUS DATAFLOW

Shuvra S. Bhattacharyya

ABSTRACT

This document presents a formalization of "clustering" nodes during the scheduling of a synchro
nous dataflow (SDF) graph. The interpretation of clustering in this document is specific to our work in
scheduling for efficient iteration, and it is possible that this formalism maynot apply to clustering in other
contexts. The goal of this document is to define our interpretation of a cluster; to define the process by
which a cluster in a graph derives a new graph; and then to show that scheduling this new graph is
equivalent to scheduling the original graph with thedesired clustering effect

The definitions and theorems presented here apply to the single-processor scheduling problem. The
intent presently is to gain intuition about the iteration problem alone, before attempting to combine these
considerauons with parallel-processor scheduling. It is expected that this formalism will eventually be
extended to the multiprocessor case.

This document expands on the discussion in chapter 3 of [1] on "consolidating a subgraph" of an
SDF graph.

The following notation will be used throughout this document:

Notation

(Nl) An SDF graph is denoted by an ordered pair {X,Y}, where X is thesetof nodes and Y is thesetof
arcs.

(N2) For an SDF arc a, source(a) and sink(ct) denote respectively the source node and sink node of a.
p(a) denotes the number of samples produced on a for every invocation of source(a). Similarly, c(a)
denotes the number ofsamples consumed from a by every invocation ofsink(oc). Finally, delay(a) denotes
the delay on a.

(N3) We use the term MPASS (minimum-PASS) to denote a PASS (periodic admissible sequential
schedule) of blocking factorone.

(N4) For set operands, we use "+" and *'-'' to denote the union and exclusion operations respectively.

Definition 1LetG= {N, A) bean SDF graph; letSbeaPASS for G; and letV beaconnected subset ofN.
Then wesay that V isa cluster in GforS if and only if S can beexpressed as

(i) H0n1s1n2"sn_1nl,sB,

where each St isa(possibly empty) sequence ofinvocations ofnodes in N- V,and each II; isan MPASS
for the subgraph associated with V.

Observe that if the decomposition (1) exists for aschedule Sand subset V, then itmust be unique for
(S.V). Thus we can define

E(S,V,G) = {E03i»". HB},and
n(s,v,G) = {n,ji1;;nll}
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whenever V is a cluster in G for S.

* * * * *

Thefollowing assumptions will be used throughout theremainder of this document.

Assumptions

(Al) LetG = {N, A) be an SDFgraph forwhich a PASS exists.

(A2) Let Vbeaconnected subset ofN and let Gv = {V, A,} be the subgraph associated with V.

(A3) Define a node ziy (torepresent aninstance ofthe cluster V).

(A4) LetTv bethe topology matrix for Gv and letqv bethe smallest positive integer vector inthe null
space ofTv. The existence ofqv isguaranteed bylemma 1below and theorem 4 inchapter 2 of [1],

(A5) For each arc a e Awhich isdirected^om a node nxg N-V to &node n2 g V,define the arc a to
bedirected/rom n^on*, with p(a) =p(a),c(a)= qv [n£c(CL), and delay(a) =delay(a).

(A6) Similarly, for each arc P g A which is directed/rom a node nxg V to a node n2 g N-V, define
the arc p to be directedyrom nv to n2, with p(p*) =qv [nJptP), c($) =c(P), and delay(a) =delay(a).

(A7) Let Ax = [ye AI source^) e N-V, andsink(y) eV);

A2= (y e AI, source(Y) g V, and sink(y) e N-V);

A! = {yIyg Ai);

A2={YlYe A2};and

A =s A] + A2.

Definition 2 We define Fv (G),called the graph obtained by clustering VinG,by

Fv(G)={N-V+{nv},A-Av+A-Al-A2}

Lemma 1 Assume A1-A2 and suppose S is a PASS for G.Then theschedule S', obtained by eliminating
from S thefirings of nodes not in V, is a PASS for thesubgraph associated with V.

Proof The subsetof firings in S which produce or consume dataon arcs in Gv is precisely S'. Letx be a
firing in S' and suppose x doesnot haveenough dataon inputarc a g Av to fire. Thentheremustbe some
n g V, which is fired before x in S — butnot fired in 5' — to produce oneor more of the samples which
S' is "missing" on a for x. But this contradicts our definition of S\ and it follows that S' is admissible.
Furthermore, since S leaves no net change in the number of samples on any arc in G, 5' leaves no net
change on any arc in Gv. We conclude that S' is a PASS for Gv.

Definition 3 LetG beanSDF graph andletS bea schedule for G. Given anarca in Ganda firing/ inS,
we define

^(a/) =
{thenumberof timessource(a) is invoked in S before/} * p(a)
- {thenumberof times sink(a) is invoked in S before/} * c(a)
+ delay(a)

-2-



If 51 is a nonempty subschedule (a subsequence of firings) of S then we define 65(a,Si) = bs(aji), where
fi is the first firing in S \.

The following fact is immediately apparent from definition 3:

Fact 1: If S is an admissible schedule, then bs(af) equalsthe numberof sampleson a immediately before
/ is fired in S.

Lemma 2 Assume the hypothesesand notationdeveloped in A1-A7above. Let S be a schedule for Fv(G)
andletS' be theschedule forG which results from replacing inS eachfiring of nv with an MPASS for Gv.
Suppose Si is the i th MPASS for Gv in S'. Then:

(A) aeAj=> bs(a, theith invocation of /ly) = 65<a,5,); and

(B) a g A2 =>bs (a, the i th invocation ofsink(d)) =bs{a, the ith invocation ofsink(d)).

ProofofA

Fromour assumptions, S and S' canbe decomposed as:

(2A) S = Eo/»v—i»v "E.m-\*K2'M
(2B) S' = Stfl^IIa"SW-in^,

where each S,- is a subschedule involving nodes in N-V and each n, is an MPASS for Gv. We wish to
show thatfor 1< iis M, bs{a, n,-)= bs(a, thei thinvocation of^). Now,

(3) Ma,H) =
{the number of times source(a) is invoked inS0"S,_i} *p(a)
- (z'-l)* {the number oftimes sink(a) is invoked inan MPASS for Gw} *c(a)
+ delay(a)

The second term in (3) is equal to

(*"-l)**v[sink(a)]*c(a)
= (i-1) * c(ct). (fromA5)

Also, from A5, p(a)=p(a),delay(a) =delay(a), and source(a) =source(a), so(3) becomes

{the number of times source(a) is invoked inH0"' S,- j} *p(a)
-0-l)*c(a)
+ delay(a),

which, from definition 3,isclearly equal tobs(a, the zth invocation of«v).

ProofofB

Suppose the i th invocation ofsink(a) inS' is in S* ofdecomposition 2B. Then, since sink(a) is not
in V, itisclear that the i th invocation ofsink(a) —which isthe same as sink(a) —inSisinZk ofdecom
position 2A. Now since subschedules nlt", Tlk precede Ek inS',

bs{a,the /th invocation ofsink(a)) =kqv [source(a)]*p(a) - (z-l)*c(a) +delay(a),

which from A5-A6 equals:

**P(a) - (/-l)*c(a) + delay(a)

= bs(a, the j th invocationof sink(a)).
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QED.

Lemma 3 Let G={N, A) be an SDF graph. Suppose V isaconnected subset ofNand let Gv = {V, Av}
denote the subgraph associated with V. Let T, Tv, and TF respectively denote topology matrices for G, Gv
and Fv (G). FinaUy, suppose that PASSes for Gand Gv exist, and let q, qv and qF be the smallest positive-
integer vectors inthe left-side-null-spaces ofT, Tv and rF, respectively.

Then,* g V=> q[x] = qF[nv] * qv[x].

Proof

r can be expressed as

r, o
r2 rv

where ^ denotes the submatrix associated with the interaction between nodes in N-V and arcs inA - Av,
and T2 denotes the submatrix associated with V and A - A„.

Also, q canbe decomposed as

[q\ qi\.

where qx denotes the subvector associated with nodes in N-V and q2 denotes the entries associated with
the elements of V.

With these decompositions, we have that

[tfl^J

which implies that

Ti 0
r2 rv = o,

<lF\ + q^2 = 0

and

?2rv = 0.

Thus q2mustbe some positiveinteger multiple k of qv. I.e.q2 = kqv forsomek g {1,2,3,"}
Now from A5-A6, it can be deduced thatwe may expressTF as

Ti
?vr2

where qvT2determinesthe row corresponding to the node ny. It follows then, that

q'*[qx *]

is in the null space of r>, since
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qfo + kqvT2 = qfo + q2T2 = 0

Now suppose that there was an integer r>\ such that

r

was also a positive integer vector in i\(TF). Then

—i i + — r2 = — ij + — r2 = o

and thus q Ir isa positive integer vector in the null space ofT. But this contradicts our assumption that q
is the smallest such vector.

We conclude that

<1f =[ qx k]

Thus, ifx g V then?[x] = ? 2[x] = fyv[x] -qF[nv]qv[x].

fiED.

Theorem 1 Assume A1-A7. Let Sv be an PASS of blocking-factor k for FV(G). Then the schedule S',
obtained by substituting each occurrence of/iy inSv with an MPASS for Gv, isaPASS ofblocking-factor
k for G, and V is a cluster in G for S\

Proof

From these assumptions, Sv andS' canbe decomposed as S and 5' are (respectively) decomposed in 2A-
2B.Thus

(4A) Sv = EonvE1rtv-H3/..1nyEjif
(4B) s'= Eon^n^-in^,

and each E4 isa subschedule involving nodes inN-V,and each n,- isanMPASS for Gv. It isobvious from
(4B) that V is a cluster in G for S'.

Now we show by contradiction that 5' is admissible. Suppose that x is the first firing in S' which
does not have enough data tofire, and suppose x is "missing" samples from arc oc.

(A) Suppose a g A- Av - Aj - A2. Then a is in both Gand FV(G). Since neither n? nor any II,
interacts with (A - Av - Ax - A^, it follows that x g some St-, and that x does not have enough samples
from a in 5V as well. This contradicts theassumption that Sv is admissible.

(B) Suppose a g Av. Then x g some 11;. Since the E, 's don't interact with Av, itfollows that II,- is
not admissible, which is another contradiction.

(C) Suppose a g Aj. Then x g some n,-. Since source(a) is outside Gy, 65(a, n,) < qv [sink(a)] *
c(a). From Lemma 2A and assumption A5, this inequality implies that Z?5.(ct, the ith invocation of nj) <
c(a). From fact 1,we seethat this last inequality contradicts our assumption that Sv isa admissible.

(D) Finally, suppose that a g A2. Then then x denotes some firing, say the i th one, ofsink(a) and
bsta, the ith invocation of sink(a)) < c(a).
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From lemma 2B and assumption A5, this inequality implies that 6&(d, the ith invocation of sink(d)) <
c(a). Fromfact 1, thiscontradicts ourassumption thatSv is admissible.

(A)-(D) togetherprovethat the assumption thatS' is notadmissible cannothold.

To prove that S' isperiodic, we must show that S'produces no net change in the number ofsamples
on any arc a in G.

(E) Suppose a g A- A! - A2 - Av. Then a g Fv (G) and source(a) and sink(oc) are the same inGand
Fv (G). Furthermore, for both schedules, source(a) and sink(a) are fired only within the E,- subschedules of
decompositions 4A-4B. Thus the number of firings of source(a) and sink(a) in S are the same, respec
tively, as the number of firings of source(a) and sink(ct) in Sv. Since Sv isperiodic it follows that 5' can
produce no net change in the number of tokens on a.

(F) Suppose a g Av. Then inS',source(a) and sink(a) are fired only within III,n2,", TlM. Since each
Tli isassumed tobeanMPASS, it follows that there can benonetchange onol

(G) ^ Suppose a g Al4 Then from A5, each invocation of fly inSv consumes thesame number of tokens
from a as each n,-, andtfws the total number of samples consumed on a through S' is the same as the
number consumed from a through Sv. Alsosource(a)=source(a) is not in V, so it is fired thesamenumber
oftimes inboth schedules. Since p(a)=p(a),it follows that the net change on a isequal tothe netchange
on a, which is 0 since Sv is a pass.

(H) Suppose a g A2, then sink(a)=sink(a) is outside V, so the number of samples consumed from a
during S' isthe same as the number consumed from d during Sv. Furthermore, each invocation offly pro
duces the same number ofsamples on d as each II,- produces on a. Thus the net change on a equals the net
change on a, which is 0.

(E)-(H) show that S' produces nonet change in sample-population on any arc in G,andweconclude that
S 'is periodic.

Finally, weshow that S' has blocking factor k. This isequivalent toshowing that for some node x inG,S'
fires x (k * q[x]) times, where q is the smallest integer vector in the null space ofT.Letourx bechosen
from within V. Also let qF and qv denote the smallest positive - integer - null - space - vectors for the
topology matrices of FV(G) and Gv respectively. Then S' fires k sets of qF[ny] invocations of MPASSes
for Gv, each containing qv[x] invocations of x, for a total of (k * qF[nv] * qv[x]) firings of x. From
lemma3, this is equal to (k * q [x]) firings.

QED.

Theorem 2 Assume A1-A7. LetS be a PASS of blocking-factor k forG,andsuppose thatV is a cluster in
G for S. Then the schedule S\ obtained by substituting in S each occurrence of an MPASS for Gv witha
firing of fly, is a PASSof blocking-factor k for Fv(G).

The proof is analogous to that of Theorem 1,and weomit it here for brevity. Theorems 1 and 2 together
indicate that scheduling the "clustered" graph FV(G) is equivalent to producing schedules in G for which
V is cluster — every PASS for G in which V is a cluster canbe obtained by scheduling FV(G), and from
every PASS for Fv (G), we can derive a schedule for G in which V is a cluster.

We conclude thisdocument with a fact thatis useful when considering only twonodes as a cluster.
Wehave found thatsuch pairwise clustering is useful fororganizing looping ina schedule.

Fact: If V = {A,B) is a two-element subset of N then
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qv[A] =
a [A] .

gcd(q[A],q\B}) *

<7[B]
<?v[Bl =

gcd(?[A],?[B])
; and

qF[nv] = gcd(^[A],^[B]) .

("gcd" denotes the greatest common divisor)

Proof:

From lemma 3, each of the equalities above implies the other two. Here we will directly prove the
first two.

From lemma 1, we know that Gv has a PASS, and thus that Tv has rank 1. It follows that there are
integers a and b such that

(5) fai q£ G Tt(Tv) <=>qia+q2b= 0.

From lemma 3,weknow that Vx g V,q[x]= qF [fly ] * qv [x],andthus [q [A] q[B]] g t\(Tv). Hence:

q[A]*a+q\B]*b=0.

=> thesmallest positive integer vector thatsatisfies theRHS of (5) is

q[A] <7[B]
gcd( q [A],q [B]) gcd( q [A],q [B] )

QED.
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