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Sliding Mode Control of Perturbed Nonlinear
Systems

by

A. K. Pradeep

Abstract
wﬁ(

Professor Shankar Sastry

Chairman

In this dissertation, we present techniques and conditions for the robust
control of perturbed nonlinear systems.

First, we develob matching conditions i.e., conditions to be satisfied by per-
turbations such that the control objective, namely asymptotic regulation, is achieved
by the perturbed system, utilizing control laws for the unperturbed system. In the
first three chapters of this dissertation we present statements and proofs of matching

conditions for :
e Perturbed SISO systems.
e Perturbed, MIMO systems that possess vector relative degree.

o Perturbed MIMO systems that are invertible but do not possess vector relative
degrees. We consider control laws for such systems developed in the framework

of the zero dynamics algorithm and the dynamic extension method.

In chapter 4, we review in our notation some basic results on existence and
uniqueness of systems with discontinuous right hand sides. Finally in chapter 5 we
develop techniques that utilize sliding mode control theory to identify unknown pa-

rameters for a class of nonlinear systems. We then develop robust control laws using



a Lyapunov control method that ensure stabilization in the presence of mismatched
perturbations for a class of nonlinear systems. We utilize sliding mode control the-
ory for the purpose of synchronous regulation utilizing multiple sliding surfaces, and

conclude this dissertation with a conjecture on fractional control.
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Chapter 1 - -
Introduction

In this thesis we develop new and robust control techniques to achieve control
objectives for a class of nonlinear systems. Qur approach to the problem takes the

following paths.

1. We first characterize the set of all perturbations that can be effectively handled
by sliding mode control techniques in conjunction with the methodology of exact
input-output linearization. We develop the matching conditions that must be
satisfied by perturbations of SISO, and invertible MIMO nonlinear systems. In
each case, we present proof of achievement of the control objective and the
stability of the internal dynamics of the system. Chapter 1 and 4 contain
background material on the theory of exact input-output linearization, and
sliding mode control. Results, theorems and proofs of the analysis _of matching

conditions are contained in chapters 2 and 3.

2. While it is useful to know the classes of perturbations that can be effectively
handled by existiﬁg control theory, the control engineer is often faced with the
task of designing control laws for systems that are perturbed by disturbances
that do not satisfy the matching conditions. We now design control techniques
to handle such cases. We provide systematic robust control design methods
using nonlinear identification and Lyapunov control to achieve identification

and stabilization for certain classes of nonlinear systems. New sliding mode



nonlinear identifiers ensuring exponential convergence of parameters to true
values, and Lyapunov controllers capable of handling mismatched non-lipschitz

like perturbations are described in chapter 5.

3. The techniques of the theory of exact input-output linearization assume that
full state information is available to the controller. In the absence of full state
information, it becomes necessary to design observers to use the measurements
to estimate the states. We now extend some results in the theory of planar
sliding mode observers to ensure exponential convergence of the estimated state
to its true value. An extension to standard, planar sliding mode observer theory

is presented in chapter 5.

During the course of our investigations, we came across two novel extensions
to classical sliding mode control theory that we present in chapter 5. The extensions

are the following.

1. Synchronous control methods that ensure coupled motion through control. Con-
trol introduced synchronous motion is useful in many industrial scenarios. Multi-
fingered robot hands gripping an object, milling machines working in conjunc-
tion with X-Y tables, and a host of other manufacturing processes utilize con-
trolled synchronous motion. We present interesting control techniques that find

use in such scenarios.

2. Conjecture on fractional control.



Chapter 2

Basics Of The Thedry Of Exact

Linearization

In this chapter, we will present a bri:’ description of the theory of exact
input-output linearization of nonlinear systems. The material in this chapter is back-
ground material liberally adapted from the works of [19)].

2.1 Normal Forms for Single Input Single Output
Nonlinear Systems

Consider a nonlinear system of the form

i = f(z)+g(z)ult) (2.1)
y = h() (2:2)

where z € R", f(z),9(z) : R* — R" are smooth vector fields, the control input
u(t) : Ry — R, and the output k(z) : R* — R is a smooth nonlinear function.
We attempt to linearize the input-output behaviour of such a nonlinear

system by doing the following.

e By choosing a new set of states, diffeomorphic to the original set of states in

which the nonlinear system is described.



e Choosing an input such that in the new state space, the system is linear.

The choice of the new set of states is such that the new system description makes
obvious the choice of linearizing input. The methodology is quite similar to the linear
state transformations that transform controllable linear systems into the controllable
canonical form. Indeed, once the linear system is in the controllable canonical form,
the choice of pole-placement control law becomes obvious. We attempt to construct
similar canonical forms for nonlinear systems where the choice of control law becomes

intuitively obvious. We illustrate the idea with the following simple example.

Example 2.1.1 Exact Input-Output Linearization
Constider a scalar system of the form
z = f(z)+u(t) (2.3)
y = ¢ (2.4)

where z € R, f(z): R — R and the control input u(t) : Ry — R. Differentiating the
output y of system (2.8) once, we obtain

) dz
y = - (2.5)
= f(z)+u(t) (2.6)

It is immediately obvious that by choosing
u(t) = —f(z) + v(t) (2.7)

where v(t) : Ry — R is unspecified as yet, we recast the system equation (2.3) in the

form

y=v(t) (2.8)
which is a simple linear system. Indeed, in this case there was no necessity to con-
struct a diffeomorphism to a new state space. The particular choice of input (2.7)
(cancelling the nonlinearity, f(z) in equation (2.6)), rendered the system linear and
hence the name input-output linearization. Also, the input (2.7) cancelled the non-

linearity ezactly, and hence the name exact input-output linearization. Although the



methodology for higher dimensional systems is considerably more involved the tech-

nigque of cancelling nonlinearities through an appropriate choice of inputs and states

1s retained.

This simple illustrative example also provides the motivation for the first
portion of this thesis. If equation (2.3) was a model for a real physical system,
we would expect the real physical system to deviate from the considered model by
some small amount. We would then be interested in knowing the classes of such
deviations that permit the achievement of the control objective, when the control
law designed based on the model is applied to the real physical system. Indeed in
scenarios involving inexact knowledge of the controlled system, we wish to quantify in
some sense the mismatch between the design model and the physical system so that
the methodology of exact cancellation of nonlinearities (which in such situations is

bound to be approximate) is still valid. We illustrate this situation with an example.

Example 2.1.2 Matching Conditions
Consider a perturbed design model of the following form. .

& = f(z) + Af(z) + u(t) ' (2.9)

where z € R, f(z) : R = R, Af(z) : R — R is a perturbation, and the control input
u(t) : R4 — R. The choice of input (2.7) applied to the perturbed system (2.9) would

yield an equation of the form
= Af(z) + v(t) (2.10)

where the control input v(t) : Ry — RN is to be specified yet. It is clear that v(t) :
R. — R must be chosen to ensure robustness in the presence of the perturbation
Af(z): R — R. Indeed, if the control objective was stabilization of the system (2.9),
and the perturbation |Af(z)| < Kay, then the choice of control

v(t) = —K,sgn[z] (2.11)

where K; > Kay; would ensure achievement of the control objective despite the per-

turbation.



We now present a quick review of the theory of exact input-output lineariza-

tion for a single-input single-output system, abbrieviated in this dissertation as a SISO

system.

i = f(a)+g(@)ult) (2.12)
y = h(z) (2.13)

with z € R", f(z), g(z) : ®* — R are smooth vector fields, the output h(z) : 8" — R

is a smooth nonlinear function, and u(t) : ®; — R is the control input to the system.

Definition 2.1.1 The Lie derivative of a smooth real valued function h(z) : R* —
R with respect to a vector field f(z) : R — R" is a real valued function denoted by
Lih(z) : R* — R defined as

Lih(z) = 22 5(z) (2.14)

The notations L3h(z) stand for Ls(Lsk)(z) and LyLsh(z) := Ly(Lsh(z)) where g(z) :

R — K" is another smooth vector field.

Definition 2.1.2 Thke Lie bracket of two vector fields f(z) : R* — R" and g(z) :

R" — R, is a vector field denoted by [f,g)(z) : R* — R" and is given in coordinaies
b 0 of
=99

[fag] - azf(z) 61,9(3:) (215)

Definition 2.1.3 The SISO nonlinear system (2.18) is said to possess strict rela-

tive degree v at z¢ if

LgL}h(z) =0 Vz€ B.(x), 1=0,...,7-2

4 (2.16)
LyL} h(z0) #0

Comment 2.1.1 Such a definition of relative degree is compatible with the usual defi-

nition of relative degree for linear systems (as being the excess of poles over zeros).

Comment 2.1.2 The relative degree of some nonlinear systems may not be defined at

some points.



Given a SISO system of the form (2.13), with strict relative degree v € Z,,
we will now transform the nonlinear SISO system into a normal form. We commence
by defining the components of such a nonlinear state transformation. Define the

functions &(z) : R" - R :=1,2,...7 as follows.

L = hz)
= L;sh
b = L) (2.17)
& = L}-lh(x)
It follows from the definition of strict relative degree that
b = & (2.18)
P (2.19)
& = Llh(z)+ LyLY ' h(z) (2.20)

and LgL}-lh(x) :R" = R # 0 everywhere in a ball around z,.
As the vector field g(z) : R* — R" of equation (2.13) is trivially involutive,
there exist (by the theorem of Frobenius) functions 7;(z) : R* = R ¢ =1,2,....n—-1

such that the matrix ) i
dm(z)

dnz(z) (2.21)

| dnn-1(z) i

has rank n — 1 at zo and

dni(z)g(z) = 0 Vz € By(zo) i=1,2,....n~1 (2.22)



Comment 2.1.8 The matriz given by

dh(z)
dLsh(z)

dL} ' h(z) (2.23)
dm(z)

| daa(z)

has rank n at o € R".
We now formally define the coordinate transformation we had been seeking.
3!

dizeR | (2.24)
. £,

L 7]

Note that ®(z) : R* — R" is a local diffeomorphism. In the [, 5] coordinates, the

system equations (2.13) are recast in the form

L = &
& = &
5, P (2.25)
& = b(¢n)+a(é n)u(t)
= q(&m)
= §
where
b(E,n): R =R = L}h(z) ' : (2.26)
a(é,n): R >R = L,L7'h(z) (2.27)

gi(&n) : R" =R = Ly i=12,...,n~9 (2.28)



The choice of linearizing input is now obvious from equation 2.30). Choosing
1
a(é,n)
we exactly cancel the nonlinearity b(£,7) : ®* — R in equation (2.30) to yield,

u(t) = [—5(¢,m) + v(t)] (2.29)

L = &

£ = &

o (2.30)
& = o(t)

n = g¢(&n)

y = &

Thus a portion of the system, the £ dynamics is now linear. Such a choice of state

transformation, and control law is exactly what we attempted to set out to discover.

2.2 Normal Forms for Multi Input Multi Output

Nonlinear Systems

We now extend the theory developed for SISO systems to certain classes of

square MIMO nonlinear systems. Consider nonlinear systems of the following form

¢ = f(z)+TLigi(2)ui(t)

vi(z) = hi(z) i=12,....,m (2.31)

where the state £ € ®*, and f(z) : R" = R, gi(z) : R* - R* i=1,2,...,m, are
smooth vector fields, u;(t) : R, — ® ¢ =1,2,...,m are control inputs the outputs
yi(z) : R" = Ri= 1,2,'. ..,m are smooth nonlinear functions.

The development of the theory for MIMO nonlinear systems closely parallels
the development of the exact input-output linearizing technique for SISO nonlinear
systems outlined in the previous section. We commence by defining the MIMO equiv-

alent of the SISO concept of relative degree.
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Definition 2.2.1 The MIMO system represented by equations (2.31) is said to have

vector relative degree [11,72,...,7m]T at zo if
Lo L5hi(z) =0 for 1<j<m,0<k< -2 (2.32)

Jori=1,...,m and z € B,(zo), the matriz A(z) : R* — R™*™, referred to as the

decoupling matriz, and defined as

L LP ™ hy -+ Lo L77'hy
A(z) = . : (2.33)

Lo, L7" 'hm -+ Loy L} 'hm

ts nonsingular at zo.

As before, we will now attempt to find a normal form for the square MIMO
system (2.31) where the choice of linearizing input will be obvious.

Define the following functions

g=h() G=LhGE), - &=I}"h@)
& =ha(e), §=Lshle), - &=L} "ha) (234

& = hn(z), & = Lihm(z), -+ €0 = LI "hn()

where the functions {; R R i=12,....m j=1,2,...,4 qualify as a partial
set of coordinates. Complete the basis choosing n — v (y = 7%, i) more functions
ni(z) : R - R ¢=1,2,...,n —~. It is no longer possible as in the SISO case to
guarantee that
Lyni(z) =0 1<j<pl<i<n—v (2.35)
unless the distribution spanned by g;(z) : * — R is involutive. Using the notation
& .
eRi=| (2.36)

t
Vi
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we recast the system equations (2.31) in the [£2,...,£™,7] coordinates as

& = &

L= b€, € )+ T a6 n)uj(2)

P =8

6-3, = 62(61’”"6’"’7]) ,;';la?(éla"wgman)uj(t)

(2.37)

& = &

™= bn(E. €™ ) + T AP € )us(2)

o= qi(Ela“w{man)+Eﬁlpij(sla-ﬂafmvﬂ)uj(t) 1=12,...,n—1v

hr = }

Ym = 5{"

where,

bi(E,...,. &™) R =R = Lih(z) i=1,2,...,m (2.38)
ai(€..., &™) R = R = Ly LY hy(z) 1=1,2,...,m (2.39)
q,-(fﬂ...,f”‘,n)‘:??“—»%? = Limi(z) :=1,2,...,n—7 (2.40)

pii(€.. Em )R =R = Lyn(z)i=1,2,...,n—v j=1,2,...,n{(2.4])

in the [¢,...,£™,n] coordinates. Indeed, now choose the control inputs u;(t) : Ry —

Ri=12,...,mas

_bl(£1a° o »fman) + vl(t)
ui(t) = —A7(2) : (2.42)

- m(fla-- wfman) +‘Dm(t)

where v;(t) : ; — R are control inputs that are as yet unspecified to yield a partial
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linear MIMO system of the following form.

£ = &
1 = u(t)
£2 —  £2
1 =82

& vs(t)

Co (2.43)
& =&
- = m()
%= (€. M)+ T pG(€h €M nu(t) =12, n—
nhn = f}
ym = &

If the v(t): Ry = R ¢ =1,2,...,m are chosen with the objective of stabilizing the
nonlinear system, then the dynamics of the 5 variables with the control law of are
given by

1 = ¢(0,7) — P(0,7)A7(0,7)b(0,7) (2.44)

If f(zo) = 0,h1(z0) =+ = hm(zo) = 0 then it follows that 7 = 0 is an equilibrium
point of the zero dynamics of (2.44).
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Chapter 3

Generalized Matching Conditions
For Perturbed SISO Systems

3.1 Introduction

Matching conditions are conditions that the perturbations of a system must
satisfy in order to ensure robustness of the control objective. For instance, in a typical
control scenario, the engineer is presented with a model of the plant, and is asked to
prescribe a control law based on the model, which when applied to the plant would still
fulfill the control objective. It is helpful in such situations to view the deviation of the
plant from the model as perturbations of the design model. Thus designing a robust
control law for the model is equivalent to attaining control objectives in the plant. In
this chapter, we pose the dual question. Given a design model, a control objective,
and a control law that achieves the control objectives for the model, characterize
the set of all perturbations under which the control law is robust. In essence, by
specifying the matching conditions, we characterize the set of all plants that can be
controlled using the chosen control law and the specified design model.

In this chapter we restrict ourselves to considering robustness of control
laws that are based on the theory of exact linearization [17], [20] [3], [19], [26]. Ex-
act cancellations of nonlinearities is seldom achieved in real life and it therefore is

quite useful to understand the classes of perturbations that are permissible when an
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exact linearization methodology is used. The method of exact linearization renders
a portion of the system dynamics unobservable. This unobservable dynamics of the
system, referred to loosely as the zero dynamics, plays a vital role in detemining the
the kinds of perturbations that do not degrade achievement of the control objective.

It is our contention that the matching conditions as they are known in
literature [12], [11], [2] today suffer a drawback in that they cannot be naturally
extended to MIMO systems. This is especially true for MIMO systems which do not
possess a well defined relative degree. (We will refer to such systems as singular MIMO
systems, the singularity referred to is the singularity of the decoupling matrix in the
neighbourhood of interest.) The reason for the nonextendability of the matching
conditions (as known in literature, we will refer to our conditions as the generalized
matching conditions), is that they have always arisen out of considering the simple
case of SISO systems with unperturbed zero dynamics. Analysis of SISO systems
does not reveal the difficulties that arise in the context of MIMO systems as in most
cases the zero-dynamics of MIMO systems is perturbed.

It is here that we chose to explore the richer area of SISO systems with
perturbed zero dynamics, and come up with a set of generalized matching conditions.
Not surprisingly, these conditions have a simple and natural extension to the MIMO
nonsingular and singular cases as well.

The organization of the chapter is as follows. Section I presents the matching

conditions for SISO systems with perturbed zero dynamics.

3.2 Single Input Single Output Systems

Consider the SISO systems specified by the following equations.
Unperturbed System Equations

g = f(z)+9(z)u(t) (3.1)
y = h(z) 3.2)

where z € R* f(-) : ®* — R" is a smooth vector field, g(-) : R* = R" is a
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smooth vector field, h(-) : R — R is a smooth function, u(-) : R, — R

Perturbed System Equations

¢ = f(z)+Af(z) +[g(z) + Ag(z)]u(t) (3.3)
y = h(z) (3.4)

where Af(-) : * — R" is a smooth vector field, Ag(:) : R* —» R"is a
smooth vector field,

Comment 3.2.1 A wide variety of perturbations ranging from plant noise to para-
metric uncertainties are included in the structure of the perturbations specified by
(8.3) - (3.4). A notable exception however is the class of perturbations known as
measurement noise. Throughout this chapter we will assume that the systems under
consideration are unaffected by measurement noise, and that full state information is

available at all times.

Let zo be an equilibrium point of the undriven unperturbed system (3.1)
- (3.2), that is f(zo) = 0, such that the output of the nonlinear system is zero
at zo, i.e h(zo) = 0. We will now assume that the system (3.1) - (3.2) has strict
relative degree v at zo [19] (that is, in an open subset U containing the point zo,
LgL‘}h(:v) =0:=0,1,...,y—2and LyL'}'lh(x) is bounded away from 0.
Statement Of The Problem

The SISO Matching problem is formally stated as follows:
Given:

o An unperturbed system of the form (3.1) - (3.2) with a relative degree v € Z, <

n.
o The general classes of perturbations of interest specified by (3.3) - (3.4).
e A control objective - asymptotic output regulation. y = h(z) = 0 as ¢t — oo

Determine:
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e Conditions that must be satisfied by the perturbations Af(z) and Ag(z) of
(3.3) - (3.4) such that the control objective of asymptotic output regulation
is achieved by the control law developed based on the unperturbed system
equations (3.1) - (3.2), when applied to the perturbed system with all the state

variables z € R" remaining bounded.

Matching Condition As Known In Literature

We will now present the matching condition known in literature, [12], [23],
(18], [32], [9] and point out the difficulties associated with extending it to MIMO
systems. We will then present newer matching assumptions for SISO systems, that
can be easily extended to MIMO systems also.

We first develop the standard local normal form for the unperturbed system
(3.1) - (3.2) as in [19].

Define the following v functions.

d(z) = h(z) (3.5)
¢2(z) = Lsh(z) (3.6)

S (3.7)
$o(z) = L} 'h(z) (3.8)

As outlined in the preceding chapter, by the definition of strict relative
degree, the functions ¢;(-) : R* = R, i =1,...,7 < n defined in (3.5) - (3.8) possess
derivatives that are linearly independent over the ring of smooth functions. Pick n—+
other functions 7;(+) : R* = R, ¢ =4,...,n—vsuch that Lyni(z) =0, : =1,...,n—x
and dni(z), ¢ = 1,...,n — v are linearly independent of d¢;(-), ¢ = 1,...,5. The
functions ¢;(-) : R* — R, ¢ = ¢,...,7 < n, together with n;(-) : " = R, ¢ =
?,...,n — v are used to construct a nonlinear change of coordinates so as to exhibit
the unperturbed system (3.1) - (3.2) in a local normal form [19)].

Denoting & = iz)and € = [ & - & | andn=m(@) -+ maale) |
define the map ® to be

@:zGU—*[é

] € ®(U) (3.9)
n
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Note that @ is a diffeomorphism.

Using the diffeomorphism (3.9), construct a local normal form for the system
(3.1) - (3.2) as

b = & (3.10)
= (3.11)
& = b(&,n)+a(,n)u (3.12)
io= q(n) (3.13)

where,

b(&n): R =R = Liho®7'(¢,n)
aé,n): R >R = L,L}T 'ho®7'(¢,n)
q(é,n) : R* > R*T = Lmod7'(&,n)

The zero dynamics are defined to be the following dynamical system in
R~ consistent with the notion of holding the output y(t) to be identically zero, and

consequently { =€ =---=§£,=0

1 =q(0,7) (3.14)

Note that the specific choice of the 5 coordinates in (3.9) ensures that the
input u does not enter the n dynamics (as the 5 coordinates were chosen such that
Lyni(z)=0i=1,...,n—7). Consequently, perturbation vector fields Af(-), Ag(-) :
R" — R" that lie in the span of g(z), i.e Af(z) = aas(z)g(z) and Ag(z) =
aag(z)g(z) where aas(:) : R — R and ape(-) : R — R would also not en-
ter the zero dynamics as Laj)mi(z) = aas(z)Leni(z) = 0¢ =1,...,n — v and
Lagzyni(z) = aag(z)Lgni(z) = 0 i = 1,...,n — v The stability of the 5 dynamics
is therefore unaffected by the presence of perturbations. It is this intution that is
captured in the statement of the well known matching conditions presented in [12]
and [2]. ‘

A formal statement of the classic matching conditions is as follows:

Af(z), Ag(x) € span[g(z)] (3.15)
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Remarks:

e The matching conditions specify the relative degree of the system under the
perturbations. Indeed condition (3.15) ensures that the relative degree of the
system with respect to the input is not greater than the relative degree of the

system with respect to the perturbation vector fields.

e Matching condition (3.15) guarantees the n dynamics to remain unperturbed.
Since the input does not enter the zero dynamics of the system, it is necessary to
ensure that the perturbations also do not enter it. Condition (3.15) makes the
analysis simpler, but difficulties arise in extending it to MIMO systems except

under very special circumstances.

We will now present the theorem that guarantees achievement of the control

objective when the classic matching conditions are met.

Theorem 3.1 Generalized Matching Conditions for SISO systems with unperturbed
n dynamics:
Given (G1) A perturbed SISO system of the form (3.3) - (3.4).
(G2) The relative degree of the unperturbed system (8.1) - (3.2) to be 4.
(G3) A control objective of asymptotic output regulation, that is y = h(z) — 0

ast— oo

If (I1) The zero dynamics of the unperturbed system (8.78) is exponentially stable.
(12) |

Af(z), Ag(z) € span[g(z)] (3.16)

(14)
-1 y=-1 }h -1 6 ,
LAIL} h- LAng h = ©° i < Kay (3.17)
. LyLy™"h 7
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(15)
LagLY'h 3
Lo [
9-f n

everywhere in an open set Qapound S P(U)

(I7) Lyn, satisfy conic continuity in €, uniformly in n, with constants K,,in an
open set Qeonic C (V).

(I8) The control u (3.3) is chosen to be

1
t) = ——[—b(¢, 3.19
ult) = soslbEm + 1] (3.19)

where,

v = ay1by+ o+ a1 — K,sgn(S) (3.20)
§ = Ltayabyat+ab (3.21)
and is a Hurwitz polynomial (3.22)
sgn(S) = I—g-l VIS|>0 (3.23)

Then (T1) There exist a set @ C $(U) and a constant * and a choice of K such that
for all initial conditions belonging to Q, and K, > K* the output y = h(z)

tends to zero asymptotically while all the states z € R* remain bounded.

Proof: & b

We will prove the theorem in two simple steps similar to the proof in [2].

o We will first assume that the system trajectories remain in the set QaBounda €
®(U), satisfying the boundedness of the perturbations, and show that in such

a case asymptotic output regulation is achieved.

e We will then show, that there exists a set & C QaBouna € ®(U) such that for
all initial conditions [£(0),n(0)]T € £, the system trajectories remain in 2, and

asymptotic output regulation is indeed achieved.
ymp

Step 1.
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Assumptions (12) - (I8) specify a local normal form for the perturbed system

of the form,

&

é'v =
= ¢(&n)

7

&2

b(&,n) + Ab(¢,n) + [a(€,7) + Aa(é, n)]u

(3.24)
(3.25)
(3.26)
(3.27)

Note the presence of an input perturbation in the £ dynamics in (3.26).

Using the definition of S stated in theorem, we recast the coordinates from
(€,n) to [£,S,n])T where £ = [¢,,...,£,-1)7. Now rewrite the system equations (3.24)
- (3.27) in the [£, 5, 7] coordinates using the control u specified in the theorem.

where

A =

A, =

£ = AE+bS
$ = —K,sgn(S)+ A1+ A,
ﬁ = q(é)sv"')

| Q1 TA2 g0y geeey TOymd
NR PR )
¢ A“(f»saﬂ) 3
Ab(E, S, ) — —2)(E, S,
(5- 1) C.5.1) (€,5,7)
Aa(E, S, 1)

a(€, S,n)

Consider the Lyapunov function

S2
V=7

r=1]x[-1]

[ay=1€y + -+ + @16, — K,sgn(S)]

(3.28)
(3.29)
(3.30)

(3.31)

(3.32)

(3.33)

(3.34)

(3.35)
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Differentiating V along the flow of (4.37) we obtain,
V = S[-K,sgn(S) + A + Ag) (3.36)

Assume that the system trajectories remain in the set Qapouna S ®(U). Now note
that

Az < KaglSIlllelllIé]l + K] (3.37)
where a = [ Gyl o0 @y ]T
Using the bounds on Ab(£, S,7) and on [AT‘:E%‘%)-, we obtain
V< ~|S|Ks + [Kag + KDeltag[“a“”E“ + K.])|S| (3.38)

Now, let €mnaz = sup € € QaBound, then as we have assumed that the system trajecto-

ries remain in the set Qapound C ®(U) we rewrite V as

V < —|SIK, + [Kas + Kpetosll|a|€maz + KIS (3.39)
< —|S|[Ks(1 — Kag) — Koy — Kaglla||fmas) (3.40)
et Ko+ Kagllallé
« _ DAS + Agll@ gma:
K= K1 — Ka,) (341)
V now is equal to
V = -|S|[K, - K*] (3.42)

It is clear that when K, > K*, V is negative definite. Negative definiteness of 1%
implies that S = 0 is attractive for all trajectories that remain in QaBound C ®(U).
Indeed, for all initial conditions in QaBounda & ®(U), if QaBound is invariant, the
trajectories reach the manifold S = 0 in finite time. The choice of control renders
the manifold S = 0 invariant, and the dynamics on the manifold is such that ||¢||
tends to zero exponentially. (This is evident from setting S = 0 in the ¢ dynamics
and noting that A is a Hurwitz matrix. )

However, we need to ensure that the trajectories never leave the set Qapound
thus validating the boundedness of the perturbations. Indeed, we will now attempt

to find the largest set @ C QaBound that would also maintain stability of the internal



22

dynamics. To this end we consider a Lyapunov function that includes both the £ and

the n dynamics.
Step 2:

Since A is a Hurwitz matrix there exists a positive definite symmetric matrix

P solving the matrix Lyapunov equation [25]
ATP+PA=-1

(3.43)

Using a converse Lyapunov theorem [16], the exponential stability of the

zero dynamics (3.78) guarantees the existence of a Lyapunov function V, such that,

5 K|l £ V, < Kqlinlf?
Va 2
— < -

67] [Q(O, 77) = K3”’7“

av,
— <
520 < Kl

Now consider the composite Lyapunov function given by
V = ou|ET PE) + %32 + %54 + a3V,
where P is the solution of (4.47) and V,, satisfies (4.48) - (4.50).

Differentiating V' (4.51) along the flow of (4.36) - (4.41) we obtain

V = ey[[A€ +bS)TPE + £ PIAE + b))
+a;[S[—K,sgn(S) + A1 + Aj]]
+0[S3 [~ K,sgn(S) + Ay + Ag))

v, .

Assuming that (£,7) € QaBound, We obtain

a3

- . 1
Vo< =[Pl — 7] - eallS] + ISPIK, - K]
+K2|S|?
v, -
+aaa—,,"[<1(5, S,n) — 4(0,0,7)]

v,
+a3——¢(0,0,
3 an q( n)

(3.44)
(3.45)

(3.46)

(3.47)

(3.48)
(3.49)
(3.50)
(3.51)

(3.52)
(3.53)
(3.54)

(3.55)
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where
SVPE < KolISII (3.56)
Ks = Omes(P) (3.57)
_ £112
Kalisinél < B gzs (3.58)

and oma-(P) is the maximum singular value of P.

Now define Qv to be the largest non-empty subset of ®(U) such that
Qv = QaBound [ ) Nconic (3.59)
Choose ¢* € R.. such that
c=sup(c:V<c €y) (3.60)
Define Q = [(({,S,7): V < ¢*].

For all initial conditions in 0, we may rewrite V as

V< —lPlor - 31— alk, = KNISI - ek ISIP + ISIF) (31
—asKs|n||? (3.62)
e K| nlI[K L] + 11SIN) (3.63)
where,
lla(&, S,n) = a(0,0,n)l| < K, [II€]] + 11S]] (3.64)
Now define
K7 = a3K, (3.65)
and using the fact that '
K|InflIEN + 11SI) < l-l%lﬁ + K7IIEI* + K2IS11° (3.66)
we rewrite equation (4.58) - (4.163) as
Vo< Pl - 3 - K3 | (3.61)
K2 + K?

—a[K, — K*|[|IS|| - ISI® + ISP (3.68)

Q2 [I\’s - I(*]
' 1
—lInlPPlas[K3 — 3) (3.69)
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Note that the constants a; have not been chosen yet, and we now choose
them in such a manner as to ensure the negative definiteness of the Lyapunov function.

We choose them as

a > %+K3 ' (370)

a; > Ki+K? (3.711)
1

az > .2T’3 (3.72)

K, > K* (3.73)

Such a choice of constants ensure that V is negative definite for all initial
conditions in §2, and for all perturbations such that K, > K*.(Note that the coefficient
of ||S||? is always less than unity, and for all ||S|| > 1, ||S|[?> < ||S]|[?, and for all values
of [|S]| < 1, lIS|] > [IS]1%.)

We have shown that there exists of an invariant set (! and a constant K*
and a constant K, such that § is invariant, and for all K, > K*, the output of the
system is asymptotically regulated to the origin. The proof also yields that the states
[€,S,7]T are bounded, and therefore the states z € R" are also bounded. <1

3.3 SISO - Generalized Matching Condition

In order to study matching conditions for SISO systems with perturbed 5
dynamics, we discard the specific choice of 7 coordinates in (3.9). We now construct
another local normal form for the perturbed system by adding tothe §;: = 1,2,...,v
a set of 7;(z) : R" = R i =1,...,n—+v whose derivatives dn are linearly independent
of the d¢; i1 =1,2,...,7 (over the ring of smooth functions). We will no longer insist
that dn;(z)g(z) = 0. Denote this new diffeomorphism by @ : ®* — R". Under this
new coordinate transformation, the equations of the perturbed system (3.3) - (3.4)

may be recast in the form
& = & | (3.74)
: = : (3.75)
& = b(6,n) + Ab(E,n) + [a(6,n) + Aa(€,n)]u (3.76)
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7 = q(&n)+ Aq(é,n) + [p(€,7) + Ap(€,n))u (3.77)

where,

Be,) B o R = Ljhod i(E,n)
Ab(¢,n): R* >R = LasL} 'ho®7'(£,7)
a(é,n):R" =R = L, LT ho®7'(¢,n)
Aa(f,n) :R" >R = La L} 'ho®7'(€,n)
g(6n) :R* = R = Lmod'(4,n)
Ag(€,n): R > R = Lano®'(¢,7)
P&n) R = R = Lynod7'(¢,n)
Ap(E,n) :R* = R = Lagno®7'(¢,7)

Comment: As a result of the choice of ni(z) : R* - R i=1,2,...,n -7
coordinates whose derivatives do not annihilate g, both the input and the perturbations

enter the n states in (3.77)

The zero-dynamics of the unperturbed system is again consistent with the

notion of holding the ouput to zero, and is given by

1 = q(0,7) + [p(0,7)]u(0,7) | (3.78)

b(0,
Here, u(0,7) = —;%5'%))-.
We are now ready to state the conditions on perturbations under which
asymptotic regulation is achieved in the perturbed systems using the control law

developed based on the unperturbed plant equations.

Theorem 3.2 Generalized Matching Conditions for SISO systems with perturbed 7
dynamics:

Given (G1) A perturbed SISO system of the form (3.3) - (3.4).

(G2) The relative degree of the unperturbed system (3.1) - (3.2) to be v.

(G3) A control objective of asymptotic output regulation, that is y = h(z) — 0

ast— o0
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If (I1) The zero dynamics of the unperturbed system (3.78) is exponentially stable.
(I2)

Af(z) € ker[dh(z),dLsh(z)---dL} *h(z)] (3.79)

(13)
Ag(z) € ker[dh(z),dLsh(z)---dL}  h(z)] (3.80)
(I4) Af(€,n), Ag(€,n) satisfy conic continuity in €, uniformly in 7 with con-

stants Kaf—conic, K Ag—conic, everywhere everywhere in an open set Qaconic
®(U). That is,

“Af(f’ 7’) - Af(ov 7’)“2 < KA!-com'c“n” (381)
”Ag(ca n) — Ag(0, 7])“2 < KAg-com'c”ﬂ” (3°82)

(I5) LAfL}'lh < K, < K, everywhere in an open set Qapouna € ®(U)

(16) f(&,m), g(é,n)u(é,n) satisfy conic continuity in £, uniformly in 5, with
constants K;_conic, Kg—conic everywhere in an open set Qconic € ®(U).

(1) 1AF(0,7) + Ag(0,m)u(0, )| < Kagllnll everyuhere in an open set
Qals©m+somuom) € 2(U) (3.83)

(I8) The diffeomorphism ® has a bounded Jacobian.
(I9) The control u (8.8) is chosen to be

ult) = gl +0] (384)
where,
v = ay 1y + -+ a1 — K,sgn(S) (3.85)
S = L+aaba+caby (3.86)
and is a Hurwitz polynomzal (3.87)
sgn(S) = 5 ViS|>0 (3.88)

|S]
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Then (T1) There ezist a set @ C ®(U) and a constant K* such that for all initial
conditions belonging to 0, and Kp, < K* the output y = h(z) tends to

zero asymptotically while all the states = € R™ remain bounded.

Proof:

#® b Preliminary to proving the theorem, we make the following remarks
to clarify the meaning and need for the various matching conditions imposed on the
perturbations in the theorem.

Remarks:

Assumption (71) is not a matching assumption to be satisfied by the per-
turbation, but is needed in order to construct a converse Lyapunov argument [16], as
in [29]. Indeed this assumption will be required to prove achievement of the control
objective even for an unperturbed system. We will say more about this assumption
later.

Asssumption (I2) is a matching assumption to be met by the perturbation.
The assumption ensures that the relative degree of the perturbation vector field A f(z)
is at least as high as the relative degree of the input.

Assumption (I8) is again a matching assumption to be satisfied by the per-
turbation. This assumption on the perturbation of the input vector field is stronger
than (72) in that we require the relative degree of the input perturbing vector field
Ag(z) be strictly greater than the relative degree of the input. Thus the input to
the ¢ dynamics is not corrupted, but the input to the 7 dynamics may be affected by
the presence of Ag(z).

Assumption (74) is a matching condition to be satisfied by the perturbation.
It is needed to bound certain quantities that show up in the course of proving the
theorem. Note that the.conic-continuity requirement is not global, but is only needed
everywhere in a subset of ®(U) containing the point zo in which the linearization is
performed.

Assumption (I5) is again a matching assumption on the perturbation, and is
needed to ensure that the size of the sliding mode gain chosen in the control is strictly

greater than the size of the perturbation to ensure stability. Such an assumption
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eliminates the possibility of the pertﬁrbation showing up earlier than the input.

(I7) is an assumption on the control input, that in the absence of perturba-
tions would regulate the output to 0. We consider the same control input, and specify
the classes of perturbations which would not degrade achievement of the control ob-
jective.

We will prove the theorem in two simple steps similar to the proof in [2].

e We will first assume that the system trajectories remain in the set Qapouna C
®(U), satisfying the boundedness of the perturbations, and show that in such

a case asymptotic output regulation is achieved.

e We will then show, that there exists a set & C Qapound © ®(U) such that for
all initial conditions [£(0),7(0)]T € Q, the system trajectories remain in £, and
asymptotic output regulation is indeed achieved.

Step 1.
Assumptions (I2) - (I8) specify a local normal form for the perturbed system

of the form,

&L = & (3.89)
P o= (3.90)
& = b(¢,n) + Ab¢,n) + [a(6, n)u (3.91)
1 = q(¢n)+ Ag(€,n) + [p(€,n) + Ap(€,n)]u (3.92)

Note the absence of an input perturbation in the ¢ dynamics in (3.91).

Using the definition of S stated in theorem, we recast the coordinates from
(€,7) to [£, S, 7]T where' = [£,...,€,-1]7. Now rewrite the system equations (6.274)
- (6.281) in the [£, S,7)T coordinates using the control u specified in the theorem.

£ = AE+DbS | (3.93)
S = —K,sgn(S)+ Ab(E,S,n) (3.94)
n = q(&5n)+Aqé S,n) +[p(E, S 1) + Ap(E, S,)u(é, S, 1) (3.95)
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where
[ 1 ,., 0 0 ]
0 o 1 ,..., O
A = ce . : (3.96)
| A1 TG2 5.y geeey TQya) d y=1)xpr-1]
0
b = | | (3.97)
L 1] lr-1)x[1]
Consider the Lyapunov function
S?
=3 (3.98)
Differentiating V along the flow of (3.94) we obtain,
V = §[-K,sgn(S) + Ab(E, S, 7)) (3.99)

Assume that the system trajectories remain in the set Qagound € @(U).
Using the bounds on Ab(£, S, ), we obtain

V < —|S|[K, — Kysgn(S)) (3.100)

Negative definiteness of V implies that S = 0 is attractive for all trajectories that
remain in QaBound € ®(U). Indeed, for all initial conditions in QaBound S ®(U), if
QaBound 1s invariant, the trajectories reach the manifold S = 0 in finite time. The
choice of control renders the manifold S. = 0 invariant, and the dynamics on the
manifold is such that ||| tends to zero exponentially. (This is evident from setting
S =0 in the £ dynamics and noting that A is a Hurwitz matrix. )

However, we need to ensure that the trajectories never leave the set QaBound
thus validating the boundedness of the perturbations. Indeed, we will now attempt
to find the largest set  C QaBouna that would also maintain stability of the internal
dynamics. To this end we consider a Lyapunov function that includes both the £ and

the  dynamics.
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Step 2:
Since A is a Hurwitz matrix there exists a positive definite symmetric matrix

P solving the matrix Lyapunov equation [25]
ATP+ PA=-1 (3.101)

Using a converse Lyapunov theorem [16], the exponential stability of the

zero dynamics (3.78) guarantees the existence of a Lyapunov function V, such that,

Klnl? < Vi < Kollnll? (3.102)
aV,
#[q(O,an(O,n)u(O,n)] < —Ks|nll? (3.103)
WV,
— < .
1521 < Kl (3.104)

Now consider the composite Lyapunov function given by
FTpR 4 X202, @24
V=a,[6 PE)+ ?S + TS + a3V}, (3.105)

where P is the solution of (3.101) and V,, satisfies (3.102) - (3.104).
Differentiating V' (6.42) along the flow of (3.93) - (3.95) we obtain

V = a[[AE + bS]TPE + & P[AE + bS]
+ao[S[~K,sgn(S) + AbE.S, )]
+a2[S3[—K,sgn(S) + Ab(E, S, 1)]]
as 210 (€, 5,1) + Aa(E, S,1) + (€, 5,7 + Ap(E, Sy lu(E, Sum)

Assuming that (¢,7) € QaBound, We obtain

. ) . K?
< _ 2 I ’_ ___G__
Vo< ~liéPlen = 31 = ol Ko = KalllISI| = s

v,
+aa—a—n'1[<J(0, 0,7) + p(0,0,7)u(0,0,7)]

ISI* +1SP°]

+03%‘3[Q(£ Sa 77) - q(Ov 0, 7])]
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+as%b(§, S,n)u(£, S,n) — p(0,0,7)u(0,0,7)]
+oa 3 80(E,S,1) = £a(0,0,7)
+aa G Ap(E, S, 1)ulE, ) — 49(0,0,7)u(0,0,7)]
+aa g A4(0,0,7) + Ap(0,0,1)u(0,0,1)]

where

SHTPE < K|Sl

Ke = Umaz(P)
fl| < 4] 252
KolisiiEl < B+ k2

and omez(P) is the maximum singular value of P.

Now define Qv to be the largest non-empty subset of ®(U) such that
Qv = QaBound [ |Qaconic [ ) Reconic [ | Ralsom+eomu(m] (3.106)
Choose c* € R4 such that
c=sup(c:V<c € ) (3.107)

Define Q = [((¢,5,7): V < ¢].

For all initial conditions in {2, we may rewrite V' as

. - 1 K2
< Uy — =] — s -_—6 __ISII? 31(3.
V< —lélPlas - 3) - oolK, = KIS - o ISIP + [1SIFYS.108)
—asK||n|f? (3.109)
+asKa|Inl[[1E]] + ISINK; + Kp + Kag + Kap) (3.110)
+Q3I{4IX’QPIITIH2 (3111)

where,

lla(&, S,m) = ¢(0,0, )] < KL [IIE]1 + 1IS]]
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\Ip(€, S, n)u(€, S,n) — p(0,0,7)u(0,0,n)ll < KG[IIE]l + 1ISI]]

1Aq(E, S,n) — Aq(0,0,n)]] < KaolllEll +1ISI]]

1AR(E, S, n)u(£, S,n) — Ap(0,0,n)u(0,0,n)ll < KapllI€ll+1ISII]
114¢(0,0,7) + Ap(0,0,7)u(0,0,7)l] < Kaglinll

Indeed, noting that a bound on the Jacobian of the transformation ® gives

dn < K,,, and using assumptions (/4) — (I7), we observe that

Kq S Kan-com'c
Kp S Kan—com'c
Kay £ KyKap-conic
KAp S KnI(Ag-com'c
Kp < KyKag
Now define
K7 = asK4[K, + K, + Kaq + Kap) (3.112)
and using the fact that
- 2 -—
Kol €N + st < 0 4 ezéie + ks (3.113)
we rewrite equation (3.108) - (3.111) as
. - 1
Vo< @l — 7 - K (3.114)
' , KZ + K7 2 3
_02[‘[(8 - I‘b][“S” - 02[1"3 - I(b] ”S” + “S” ] (3‘115)
, 1
—|Inl[aa[ K3 — Kop) — E] (3.116)

Note that the constants a; have not been chosen yet, and we now choose
them in such a manner as to ensure the negative definiteness of the Lyapunov function,

provided K3 > K.
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We choose then such that

!

a > 4+K$ (3.117)
a; > K2+ K? (3.118)
1
> ————— 3.119
s 2[K3"qu] ( )
K.—-Ky, > 1 (3.120)

Such a choice of constants ensure that V is negative definite for all initial
conditions in 2, and for all perturbations such that K, < K3 < K*. (Note that the
coefficient of ||S||? is always less than unity, and for all ||S|| > 1, [|S]|*> < ||S][3, and
for all values of ||S]| < 1, ||S]] > |ISII?.)

We have shown that there exists of an invariant set {2 and a constant K* such
that €2 is invariant, and for all K, < K*, the output of the system is asymptotically
regulated to the origin. The proof also yields that the states [¢,S,7)7 are bounded,
and therefore the states z € R are also bounded. <I#
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Chapter 4

Generalized Matching Conditions

For Perturbed MIMO Systems

We present systematically, matching conditions for the following classes of

systems

e Non-singular MIMO systems perturbed zero dynamics.
¢ Singular MIMO systems, decoupled using the zero-dynamics algorithm.

e Singular MIMO systems, decoupled using the dynamics extension method.

The organization of the chapter is as follows. Section I presents the match-
ing conditions for nonsingular MIMO systems. Section II présents the generalized
matching conditions for singular MIMO systems, which are either left or right in-
vertible. The zero-dynamics algorithm is used when the system does not possess a
well defined relative degree, but is left invertible. The dynamic extension method is
used when the system does not possess a well defined relative degree, but is right
invertible. We then conclude this chapter with a brief comparison of the presented

methods of system inversion.

4.1 Non-Singular MIMO Systems

Consider square MIMO systems specified by the following equations.
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Unperturbed System Equations

i = 1) +3° gie)ui(t) (4.1)

=1
¥i = hi(z) i=1,...,m (4.2)
where z € R f(-) : R* — R" is a smooth vector field, g;(-) : R* = R", : =
1,...,m are smooth vector fields, h;(-) : R* — R, i =1,...,m are smooth functions,
ui(t): Ry =R, 1=1,2,...,m
Perturbed System Equations

i = f(z)+Af(z)+§[gi(z)+Age(z)]us (4.3)
¥i = hi(z) i=1,....m (4.4)

where Af(:) : ®* — R" is smooth, Ag;(:) : R* —» R" ¢ = 1,...,m are

smooth,

Comment 4.1.1 As in the case of SISO systems, we assume that the outputs are not

corrupted by measurement noise and that full state information is available.

Let zo be an equilibrium point of the undriven unperturbed system (4.1)
- (4.2), that is f(zo) = 0, such that the output is zero at zo, i.e hi(zo) = 0. We
will now assume that the system (4.1) - (4.. has strict vector —lative degre -~ =
[My--ym)T € ZT at zo [19] (that is, in an .« -<n subset U cont:ining the poii: zo,
Ly Lkhj(z) =0i=1,...,m j=1,...,m k=0,...,7; — 2 and the determinant of

the decoupling matrix is nonzero, that is, -

LoLP 'h(z) - . L ha(z)
det : : #0 (4.5)
Lg,L}'""lhm(z) e LgmL}"‘"hm(:z:) :

Statement Of The Problem
The MIMO Matching problem is formally stated as follows:

Given:
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o An unperturbed system of the form (4.1) - (4.2) with vector relative degree
[’71,...,7m]T € Z;_n.

o The general classes of perturbations of interest specifed by (4.3) - (4.4).

T
e Determine controls [ Up v Up ] such that the outputs y; = hi(z) =2 0¢ =

1,...,m as t — oo, with the states £ € R" remaining bounded.

Determine:

e Conditions that must be matched by the perturbations Af : * — R" and
Agi : R > R i=1,...,m of (4.3) - (4.4) such that the control objective of
asymptotic output regulation is achieved by the control law developed based on
the unperturbed system equations (4.1) - (4.2), when applied to the perturbed

system and the states z € R" remain bounded.

We will use the following notation to describe nonlinear coordinate transfor-
mations of MIMO systems. As the MIMO system was assumed to have a well defined

vector relative degree v = [ M o Ym ] there exists a standard transformation @
of the following form [19]

¥

o
b:zeU— f’" € o(U) (4.6)
L 7
where

| K
R = : (4.7)

L)}
: RS R = : (4.8)

=

v = D% (4.9)
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and each f; RS R= L'};lh;(z) i=1,...,mj=1,2,..., is a smooth functions
of z and each n; : " - R:=1,2,...,n — v is a smooth function of z such that 5 is
independent of £ i = 1,2,...,m, linear independence being defined over the ring of
smooth functions. Note that ® is a local transformation of coordinates, and is valid
for an open region U containing the operating point zo.

Using the transformation & specified by (4.6) a local normal form for the

unperturbed system equations (4.1) - (4.2) is written as

§ =4 (4.10)
b= (4.11)
= b‘(gl,...,g"',n)+fja;’-(§‘,...,§"*,q)u,- (4.12)

i=1,...,m - (4.13)
i = q(el,...,cm,n)+§;p,-(c‘,...,cm,n)u,- (4.14)

where

B(E,...,Emn) R o> R = LYhio®'(¢,n)
ai(€.. ., &™) R =R = L, L} 'hio@7'(€,n)
q(€y...,E™n): R =R = Lo d7'(¢,n)
pi(€y .. ™) R R = Lono® 7€) j=1,...,m

Comment: The assumption of a well defined relative degree for the unper-
turbed system (4.1) - (4.2) guarantees the invertibility everywhere in ®(U), of the

matriz A : R" — R™*™ defined as

.a}(fl""’fm’n) LA | a’:n(€17'°"£m7n)
A= : : (4.15)

a’ln(gl"‘°’€m)n) L | am(fli""gm’n)
Comment: Note that the input enters the 5 dynamics in (4.97). Indeed. we did not

assume the involutivily of the vector fields g; j = 1,...,m in the system equations

(4.1). Assuming involutivity of the input vector fields g; j = 1,...,m and invoking the



38

Frobenius theorem would give us the choice of a set of n coordinates with derivatives
that annihilate the g; j = 1,...,m vector fields.
Using the same diffeomorphism & (4.6), the equations of the perturbed sys-

tem transform to

& = & (4.16)
o= (4.17)
= (€., 6™ ) + AV, ) (4.18)
+ f:[a;i(gl, e £ )+ AGE, . €™ )]y (4.19)
:1, e ,m (4.20)
7 = q(€,...,&" )+ Ag(€. .., €™sm) (4.21)
+§[p,-(el,...,em,n>+Ap,-(c‘,...,zm,n)1u,- (422)

where

b€, ..., ) R*" =R = L}‘hgoq)'l(f,n)
- - AV (€, ..., 6™0): R =R = LagL} hio®7'(€,7)
aj.(fl,...,f"‘,q) PR = Lg,L}"lh,-o@‘l({,n)
Aaj-({‘, ) RP o R = LAgjL}"lh,- o ®71(&,7)
g€, €mm) s R S RV = Lyod(6,n)
Aq(g,...,Em ) : 8" = 8= = Lagod7(E1)
p,-(fl,...,f’",n):R"—»?R"'Z;;l"’ = L,no®'(¢n) j=1,...,m

3

APj(ﬁla---aﬁm,ﬂ)'i R — an-z’m-ﬁ = LAQ;'UOQ-I(E‘)TI) j= L...,m

The zero dynamics of the unperturbed MIMO system is a dynamical system
in 77 given by o '
7:’ = 4(01 77) + ij(oa T])'Uj(O, 7]) (423)

o
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where the control u(0,7) is specified to be

=5'(0,7) + v1(0,7)
u(0,9) = A7Y[ : (4.24)
=5™(0,7) + vm(0,7)
The controls v;(0,7) i =1,2,...,m are stabilizing controls for each subsystem.

Observe the similarity between (4.23) and (3.78)

[27] make the observation that the stability of this zero-dynamics is to be
maintained in the presence of perturbations. This indeed is a point of departure from
the considering SISO systems with unperturbed n dynamics.

We now present the first extension of matching to the MIMO case - the

instance when the input vector fields g;(z) : ®* — " j =1,2,...,m are involutive.

Theorem 4.1 The Generalized matching conditions for MIMO nonsingular systems

with perturbed zero dynamics are:
Given (G1) A perturbed MIMO system of the form (4.3) - (4.4).
(G2) The unperturbed MIMO system (4.1) - (4.2) has a vector relative degree
7=l
(G3) A control objective of asymptotic output regulation, that is y; = hi(z) —

0:=1,....m

If (11) The zero dynamics of the unperturbed system (4.23) is exponentially stable.
(12)
Af(z) € (kerldhi(z),dLshi(z)- - AL} ?hi(z)]
i=1
(13)
Ag;(z) € ﬁ ker[dhi(z),dLshi(z)--- dL}‘"lh;(a:)] j=1,...,m
i=1

(I4) Af(E,....€™,n), T Agi(E, ..., €™, n)ui(€..., €™, 7) satisfy conic con-
tinuity in [€,...,€E™]7, uniformly in n with constants Kas_ onic, I ag—conic:

everywhere in an open set Qaconic € P(U)
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(I5) LasL} by < Kii < Kyi in Qi goyna (V)

(16) f({l’ e 7{”‘, ”)1 2:1-1_-1 g'-(fl, MR ] £m7 n)u"(gl? MR | Em’ ’7) satisfy conic conti-
nuity in [£1,...,E™)7, uniformly in 5, with constants K;_conic, Kg—conic
everywhere in an open set Qeonic € (V)

(I7) 1a£(0,7) + iy Agi(0,7)ui(0,7)|| < Kagpllnl| everywhere in an open set
Qatsm)+somuom S 2(U)

(I8) The diffeomorphism ® (4.6) has a bounded Jacobian.

(I9) The control u is chosen to be

Uy -bl(cla‘”vém)") +vl
: | =A" : (4.25)
Um _bm({l,“.’{m’ 77) + U

where, A is specified by (4.15) and b(€%,...,6™,n)i=1,...,m are speci-
fied in (4.12), and

v; = —af;‘_lf.';..+, ooy tailh — Ksgn(SY) (4.26)

S = & +a bt tad (4.27)

and is a Hurwitz polynomial (4.28)

sgn(S') = l%—l v |S|>0 (4.29)

Then (T1) There ezist a set Q C ®(U) and a constant K* such that for all initial

(3.

conditions belonging to QU, and Kay, < K* the trajectories of the perturbed
system remain in ®(U) and the output y; = h;(z) tends to zero asymptot-

ically.
Proof:é b

The proof of the theorem, follows along the lines of the proof of theorem

Step 1:

We will first assume that system trajectories remain in the set N\, Q4 gouna €

®(U) where the bounds on the perturbations are satisfied. Under this assumption we
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will show that asymptotic regulation is indeed achieved. To complete the proof, we
will show that for appropriately chosen initial conditions belonging to an invariant
set © C N2, Y gouna S O(U) asymptotic regulation is achieved. Indeed, we will then
attempt to find the largest invariant set .

Consider the normal form of the perturbed system given by the equations
(4.16) - (4.22). Using the assumption (I2) and (I3) , the normal form equations (4.16)
- (4.22) reduce to

& = & (4-30)
S (4.31)
- b‘(ﬁ‘,...,ﬁ"‘,n)+Ab‘(§1,...,£"‘,n)+§:a§(§‘,...,§"‘,n)uj (4.32)
i=1,...,m - (4.33)
7 = q(€,..., €™ n) +Aq(,...,.E™\7) (4.34)
+j§[pj(el,...,sm,n)+Apj(e*,...,sm,n)1uj (435)

Note the absence of an input perturbation in the £ dynamics in (4.32).

Using the definition of S* stated in theorem, we split the coordinates [¢!,...,£™,7]7 as
(&%, 8Y),...,(E™,S™),n)T where £ = [£,...,& _,]7. Now rewrite the system equa-
tions (4.30) - (4.32) in the [[(£*,S?),...,(f™,S™),n)7 coordinates using the control u

specified in the theorem in chapter 2.

E = AT 45 (4.36)
S = —Kisgn(S) + AK((E,S"),...,(E",5™),n) (4.37)
i=1,...,m ' (4.38)

n o= Q((@,’Sl)a-na(f—masm),ﬂ)+A9((§751)a---a(fm,sm),ﬂ) (4.39)
+p((€*,5%),..., (€™, 8™),n)u((€",SY),- .., (E™,5™),n) (4.40)
+Ap((84,5Y),..., (™, 8™),n)u((€*,S),..., (€™, 5™),1) (4.41)
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where
1 ,..., 0 ]
. 0 0 1 )
A = _ ’ (4.42)
I -a'l a; 3 y y fy.'—l d [yi-1)x[vi-1)
. 0
¥ = ) (4.43)
L1 [vi-1]x01]
Consider the Lyapunov function
m 112
V=3 57 (4.44)
=1 2
Differentiating V along the flow of (4.37) we obtain,
V=3 S-K,sgn(S') + AK((E,5"),..-, (€™, 5™),1))] (4.45)

i=1
Assume that the system trajectories remain in the set N2, Q4 gouna € (V).

Using the bounds on b'((£*, S?),...,(£™,5™), 7)), we obtain
V < —|S([Ks — Kyisgn(S')) (4.46)

Negative definiteness of V implies that each §* = 0 is attractive for all trajectories that
remain in 2; Q4 gound © (U). Indeed, if =, 4 gouna 1S invariant, the trajectories
reach the manifold 2, S = 0 in finite time. The choice of control renders the
manifold N2, §* = 0 invariant, and the dynamics on the manifold is such that ||¢|| i =
1,...,m tends to zero exponentially. (This is evident from setting S* = 0 in the &
dynamics and noting that A’ is a Hurwitz matrix. )

However, we need to ensure that the trajectories never leave the set defined
as (2, 0% goungs thus validating the boundedness of the perturbations. Indeed, we

will now attempt to find the largest invariant set Q C N2, Q4 5,0 that would also

=1
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maintain stability of the internal dynamics. To this end we consider a Lyapunov
function that includes both the ¢ and the 7 dynamics.

Step 2:

Note that as A’ is a Hurwitz matrix there exists a positive definite symmetric

matrix P* solving the matrix Lyapunov equation [25)]
[A)TP 4+ PPA' = -1 (4.47)

Using a converse Lyapunov theorem [16], we assert that the exponential

stability of the zero dynamics (4.23) guarantees the existence of a Lyapunov function

V,, such that,

Kilnl? < V, < K|l (4.48)
avV,
j;,f[q(O,n)-Fp(O,n)U(O 1)) £ —Ks|ln|? (4.49)
av,
| "II < Kilnl (4.50)

Now consider the composite Lyapunov function given by

V=3 allEplE]+ oS 4 X

i=1 i=1
where P is the solution of (4.47) and V,, satisfies (4.48) - (4.50).
Differentiating V (4.51) along the flow of (4.36) - (4.41) we obtain

2L+ asV, (4.51)

Vo= SIGlIAE + ST PE + FTPIAE + 55

+ f:[a‘;[S"[—Kasgn(S‘) + AV ((E,5%), ..., (€™, S™), n]l]
=1

+ f:{a;[[S‘]3[—I<,-sgn(S‘) + Ab((E,8"),...,(E", ™), ]l
=1
A

% S5, (€ S™)m) + Bg(E, 51, (€7, 5™), )]
+aa G2 (€8s (€7, S8, (€, S

+aa%‘;—"[Ap((5’,S‘),---,(E'",S’”),n)U((f’~5‘),-.-,(5'",5"‘),71)]
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Assuming that [¢,...,6™,9]T € N2; YaBound> We obtain

where

- Sl - 51
- g[a‘;[K,e - Ky]llISN - a—,ﬁgféf—m‘—]nsfnz + 151

+a3%‘;ﬂ[q(o,n)+p(o,n)u(o,n)1

+03%‘;’1[Q((?a Sl)’ seey (Em, Sm)’ rl) - Q(O, T])]

+03%‘7/7n[1’((5‘,51), ceer (€7, 8™, m)u((E, 5%), - .-, (€™, ™), m)
—p(Oé;l/)u(O,n)]
+a3a—"[AQ((?, Sl)a AR ) (Em’ Sm)’ ’7) - AQ(O’ 77)]

+asf,,—‘,:[Ap((€,s’),...,<£'",sm),n)u<(£’,5‘),...,(e‘m,sm),n)
'_Ap(O’ n)u(07 'l)] ’
+a3%‘ﬂi[Aq<o,n)+Ap(o,n)u(o,n>1

SHIPE < KIS IIE (452
Ki = oma(P)II] (4.53)
Il =1 (4.54)
ismen < 0 ey (4.55

and Opmg:(P') is the maximum singular value of P'.

Now define Qv to be the largest non-empty subset of ®(U) such that

Qv € N[ zound[ ) Laconic [ Qoonic[ | Raf f(o,n)fg(o,,,)u(o,',,)]] (4.56)

=1

Choose ¢* € R such that

¢ =sup(c:V <c €8y) (4.57)
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Define 2 = [((¢%, S1),...,(£™,8™),n): V < ¢*].

For all initial conditions in {2, we may rewrite V as

Vo< - 2IEIr - g1 (4.58)
~ P lab K — KIS - sl 1SE (a59)
r=tliaand oi[Ky — Ky '
—as Ks||n|f? (4.60)
tasKallnlllKq + Ky + Kag + Kap) S UIE| + 151 (4.61)
=1
+a3K4K9,||1]||2 (4.62)
where,
19((@, 81, (™, S™), 1) — 9O, mI < K, SSNEN+ IS1] (4.63)
=1

Ip((", 5%),- ... (€™, 8™), (€', S*),..., (€™, 5™),m) = p(0,m)u(0,m)l| <
Kp Y NIEN+ 1S

i=1

lAq((€7, %), -, (€™, 8™),n) — Ag(0,9)]| < Ka, i[llfill +[15°]] (4.64)

1Ap((€', 5%, .-, (€™, 5™),n)ul((E, §%), - -, (€7, 8™),m) — Ap(0, n)u(0, )| <
Kap 2 _lIEN+ 115

1=1
HAq(0,7) + Ap(0,7)u(0,7)|] £ Kagpllnl| (4.65)

Indeed, noting that a bound on the Jacobian of the transformation @ gives

g—;‘ < K,, and using assumptions (I4) — (I7), we observe that

K, < KoK{conic (4.66)
K, < Ko Kgocomic . (4.67)
Koy, < KoKaj-conic (4.68)
Kay < KyKag—conic (4.69)
Kp < KoKag (4.70)
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Now define
K7 = a3K4[K, + K, + Kag + Kap) (4.71)
and using the fact that

m - . 2 m - m .
Kellnll S0 + 150 < 20 4 e SSpEe + 2SS IE @)

=1 =1 =1

we rewrite equation (4.58) - (4.163) as

Vo< -3 - - K2 (07
=1
moe e KRR o
= lealku - KlllSl - Zr— ISP+ IS (e7)
—llPfosla - Kyl + 2 s

Note that the constants aj~ i=1,...,mj=1,...,3 have not been chosen
yet, and we now choose them in such a manner as to ensure the negative definiteness
of the Lyapunov function, provided K3 > Kg,.

We choose them to be

1

o > Z+I\’$ (4.76)
oy > [Ki*+ K? (4.77)
m
— 4.
S 2 AR - Ky (4.78)
K,~-K, > 1 (4.79)

Such a choice of constants ensure that V is negative definite for all initial
conditions in £, and for all perturbations such that K, < K3 < K*.(Note that the
coefficient of ||S?||? is always less than unity, and for all ||S?|| > 1, ||S*||? < |ISF|I3,
and for all values of ||S%|| < 1, ||S|| > ||SF]|%.)

We have shown that there exists a set ) and a constant K™* such that for all
initial conditions in §2, and for all K, < K*, the output of the system is asymptoti-
cally regulated to the origin.<d#
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4.2 Singular MIMO Systems

In this section we will propose matching conditions to ensure asymptotic
regulation of the output for systems.which do not possess a relative degree. However,
assuming either left or right invertibility of such systems provide a means of output
regulation using the notion of an extended relative degree. The zero-dynamics algo-
rithm provides a solution under the assumption of left invertibility and the dynamic
extension algorithm suggests a decoupling methodology assuming right invertibility.
It is useful to prescribe matching conditions to be met by perturbations in either of
these two schemes.

Consider square MIMO systems specified by the following equations, as be-
fore.

Unperturbed System Equations

i = f(@)+ Y oo (4.80)

=1

v = hi(z) i=1,...,m (4.81)
where z € R f(z) : R* — R is a smooth vector field gi(z) : R* = R*i=1,2,...,m
are smooth vector fields, hi(z) : 8" — R i = 1,2,...,m are smooth functions,

u;, €ERI=1,2,...,m
Perturbed System Equations

t = f(z)+Af(z)+ i{gi(z) + Agi(z)ui (4.82)
yi = hi(z) i=1,...,m (4.83)

where Af(z) : R" — R" is a smooth vector field, Agi(z) : R — R" i =

1,2,...,m are smooth vector fields.

Comment 4.2.1 A minor change in notation from the previous sections is that the

lower indices on the functior. i., have ircn converted to upper indices hy. The lower
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indez 1 indicates that the output has not been been redefined yet. This will be needed

later for output redefinition.

Matching Conditions Assuming Left Invertibility
We present matching conditions for a MIMO system which does not possess a well
defined relative degree, but which is left invertible. The statement of the MIMO
singular matching problem is as follows.

Statement Of The Problem

Given:

e An unperturbed system of the form (4.80) - (4.81) which does not possess a

vector relative degree.
e The unperturbed system (4.80) - (4.81) is left invertible.

o The operating point z is a regular point of the zero dynamics algorithm in the
sense of [19]

e A control objective - asymptotic output regulation, that is, y; = hi(z) = 0i =

1,...,mast— oo.

e The zero-dynamics algorithm is utilized to generate a control law to attain the

control objective.
Determine:

¢ Conditions that must be matched by the perturbations Af(z) : ®* — R and .
Agi(z) : R* - R*i=1,...,m of (4.82) - (4.83) such that the control objec-
tive of asymptotic output regulation is achieved by the control law developed
based on the unpérturbed system equations (4.80) - (4.81), when applied to the
perturbed system keeping the states £ € ®" bounded.

Assuming that the system is left invertible, and that z, is a regular point
[9], [6], [8] of the zero dynamics algorithm of [19], for the system (4.80) - (4.81),
there exists a transformation ® exhibiting the system in a local normal form. The

transformation @ is specified by,
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o]
:z— | (4.84)
gm
L7
where -
&
E:R"a R = | ¢ (4.85)
i.
M
7: R = : (4.86)
L Mn—r
r = ET,’ (487)
=1
(r1,+..,7m)T € ZT is a vector of extended relative degrees . (4.88)

and each §§ R Re=1,2,...,mj=1,...,r; is a smooth function of z and each
7 :R" - Ri=1,2,...,n—ris a smooth function of z such that n’s and {’s possess
linearly independent differentials, linear independence being defined over the ring of
smooth functions. Note that ® is a local transformation of coordinates, and is valid
for an open region U containing the operating point zo.

Using the transformation @ specified by (4.84) a local normal form for the

unperturbed system equations (4.80) - (4.81), smiliar to the one in [19)], is written as:
& = & | (4.89)
P (4.90)
o= B+ Y (€ k(€6 ) (4.91)
k=1

.. . i-l . .
g = &+ 6,6, em b (E,....Em ) (4.92)

=1

+ 3 ad(e .. e (... €™ )] (4.93)
k=1
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D=k (4.94)

= B )+ 3 g (e £ ) (495)
k=1

1=2,...,m (4.96)

i = q(el,...,c’",n)+g:pk(c‘,...,em,n)uk(sl,...,gm,n) (4.97)
=1

where
Riy :R" >R = Lghi-— §[G;k(§l,...,£"‘,r,)b"(£l,...,f"‘,n)] (4.98)
2$i$k:zll_<_j$r;-1 (4.99)
Lo b : R >R = §5§k({1,...,§m,n)a§(§l,...,f’“,n) (4.100)
l;;iSmlSer;—llSpSm (4.101)
R o R i=2,...,mj=1,...,r;=1k=1,...,i—1 (4.102)
a;:R" =R = L, L7 7R} k=1,...,m (4.103)
a: R =R = L;,,:hi.. 2<i<m (4.104)
iR SR = L}A (4.105)
) ViR R = Lk 2<i<m (4.106)
SRR = Rj=1,.n (4.107)
R o R = R, 2<i<m1<j<n-1 (4.108)

The zero dynamics of the unperturbed MIMO system is a dynamical system
in "~ given by -
n= Q(O) 7’) + ij(os n)uj(oa 77) (4'109)

i=1 ~

where u;(0,7) is the stai)ilizing control input that renders the output identically zero.

Comment {.2.2 The first output has a relative degree vy in the usual sense of being
the number of times it is differentiated before input terms appear. On the other hand,
the numbers r; 1 = 2,...,m are termed eztended relative degrees, as they indicate

appearence of input terms after successive redefinition and differentiation.
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Comment 4.2.3 The redefined outputs are specified by (4.99). Note that each redefined

output is differentiated only once.

Comment 4.2.4 The functions §,(z) : R* — R are chosen based on the linear depen-
dence of rows of the decoupling matriz at each intermediate stage of the algorithm.
This is evident from equation (4.101).

Comment 4.2.5 It is to be noted that the zero-dynamics algorithm provides enough
structural information to be able to prescribe a control law to ensure asymptotic out-
put regulation. The actual control law uses steps of the zero-dynamics algorithm, and
provability of achievement of control objective imposes some restrictions on the per-
missible classes of 6ii(z) : R* — R considered above. Such restrictions limit the scope

of the application of the zero-dynamics algorithm.

Comment 4.2.6 Our assumptions on the functions &}, are less restrictive that the
conditions imposed in [12]. In [12], the functions é

¢ are required to be constants.

Define (m — 1) x r; matrices Dy : ®* = R>*™ i=2,...,m k=1,...,r—1

and (m—1) xr; vectorsdy : R* > R i=2,...,m k=1,...,r; — 1 as follows:

[ al(€ ™) s Gh(Eh ™) ]
Da = | ., . : : e : (4.110)
a7 (e, .. &™) e, ai (€. €M)
i Ly, ki e L, hi

[ LasL77'hY ]
Lagh?,
di[Af] = : (4.111)
Laghi!
Laghi

Comment 4.2.7 Note that the matriz Dy defined in equation ({.110) is such that its
last row is always linearly dependent on the other rows. This follows from the con-

struction of the redefined outputs outlined earlier, specifically from equation (4.101).
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Also define the decoupling matrix 4, as

a},(glﬂ”"gm?n) LA | ayln(ﬁl‘)'"’{m’”)
A= : .. : (4.112)
a;.n(fl""1£m’q) ;"“) a:(El”"’gm’ﬂ)
We now present two classes of matching conditions for asymptotic output
regulation for left invertible MIMO systems. The first set of conditions is more

restrictive, but ensures the asymptotic regulation of the output. The second set of

conditions is less restrictive, but only ensures regulation of the output to an arbitrary

€ ball about the origin.

Theorem 4.2 Strict Generalized Matching conditions for asymptotic regulation for

left invertible MIMO systems decoupled using the zero dynamics algorithm.

Given (G1) A perturbed MIMO system of the form (4.82) - (4.83).

(G2) The unperturbed MIMO system (4.80) - (4.81) has an eztended vector rel-
ative degree [r1,...,Tm]7.

(G3) A control objective of asymptotic output regulation, that is |€i| — 0 i =

1,2,...,m

If (I1) The zero dynamics of the unperturbed system, (4.109) is exponentially sta-

ble.
(12)
Af(z) € ker[dhi(z),dLshl(z)--- dL} " hi(z)] ﬂ[fﬁ2 ker[dh!,,...,, dhi ]
' - (4.113)
(13)
Agj(z) € ker[dh)(z),dLshi(z)---dL} " h}(z)] ﬂ[ﬁ ker[dhy,....,,dR.]]
= (4.114)

where j =1,...,m
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(I4) Af(€,...,6, 1), Lim Agi(€,...,E™, n)ui(€E ..., €™, n) satisfy conic con-
tinuity in [€2,...,€™]T, uniformly in n with constants Kas—conic, Kag-conic,
everywhere tn an open set Qaconic € ®(V)

(I5) LAIL}‘-lh; < Kb,' < K,i in QiABound - Q(U)

(I6) f(&,...,6™,n), =2, gi(£, ..., ™ n)u(E,...,E™,n) satisfy conic conti-
nuity in [€),..., &™), uniformly in 1, with constants Kj_conic, Kgconic
everywhere in an open set Qeonic C ®(U)

(I7) [|Af(0,n) + =71 Agi(0,7)ui(0,7)| < Kagllnl| everywhere in an open set
Qagsom+gomuomn) € (V)

(18) The functions &,(€',...,6™,9) < Ky i=1,...omp=1..,r—-1lk=
1,...1 — 1 everywhere in an open set 5 C ®(U)

(I9) The diffeomorphism ® (4.84) has a bounded Jacobian.

(110) The control u is chosen to be

uy —bl(€l$"-’£ma’7)+vl
4 —_ /Il-l E (4'115)
Um —bm(éla“'a{man)'l'vm

where, A; is specified by (4.112) and b'(€Y,...,6™,n) i = 1,...,m are
specified in (4.99) - (4.108), and

v = —d &, ..., +ai§ — K,.sgn(S’) (4.116)

S = g 4l & ..., +aif (4.117)

and s a Hurwitz polynomial (4.118)

sgn(SY) = I—g—l VS >0 (4.119)

Then (T1) There ezist a set @ C ®(U) and a constant K* such that for all initial
conditions belonging to Q, and Kagp < K* the output y; = hi(z) tends to

zero asymptotically.

Proof: & b
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Assuming matching conditions (12) and (I39) allows us to write down a local

normal form for the perturbed system (4.82) - (4.83) as

& =6

.:1 bl(El’ e ’€m’ 77) + i ai(fl’ e a§m$ ”)uk(fl, M ’€m$ ,’)

k=1
.. . '.-l . .
& = &+ 8, ... nb(E,....en)
=1

+ ia)’;(fl’ te ,fm,’?)“k(fla o "Em’ﬂ)]
k=1

k=1

= B ) 3 (e £ k(e £ )
t=2,...,m

o= q(€,....,6"n) + Ag(€,....Em 1)
+§lpk(f‘,...,e'",n)+Am(s‘,...,s"‘,n)]uk(e‘,...,em,n)

where the definitions follow from (4.99) - (4.108) with

AQ(F"'W{’“”]):‘SR"—’R"-? = Lasm
Ap;(€,.... 6" ) R o R = Lagin =1,2,...,m

Using the definition of S* stated in theorem, we split the coordinates [¢1,...,£™, 7] as
[(&*,5"),...,(E™,5™),n)T where & = [¢i,.. ., &._1]T. Rewrite the system equations
in the [[(£!,5),...,(™,5™),n]T coordinates using the control u specified in the
theorem. '

§ = AF+FS+¢ (4.120)
§' = —K,sgn(SY) | (4.121)

i=1,...,m (4.122)
n = q((€1’sl),.“,(£'m,sm),n)+Aq((?’sl),”.’(gm,sm),n) (4.123)
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+p((€',8Y)... (€™, ™), mu((€,5Y)... (€™, 5™), 1) (4.124)
+Ap((&,8Y)... (6™, 8™), (&, S")...(E",5™),n) (4.125)
where
[ 1 ,..., 0
. 0 0
A = : : 1 ’ : ’ ? i=1,...,m (4.126)
—a‘i G; ] T ] —aii-l d [ri=1)x[ri-1)

. 0
¥o= | i=1,...,m (4.127)
[ 1] [ri-1]x[1]
0
¢ = |. . (4.128)
L0 i
f;';l: 81;v;
. ol 6hsv;
é = E"‘. 203 i=2...m (4.129)

i-1 gi .
PILIORITLE P

As before, we will prove the theorem in two stages. We will first assume that
the system trajectories remain in the open set Qs C ®(U) where each of the functions
Eor(€ty.. . €™m) < Ks,i=2,...,mp=1,...,ri -1 k=1,...,2— 1. We will then
show that under such an assumption asymptotic output regulation is achieved. We
will then consider a composite Lyapunov function and find the largest set of initial
conditions such that the system trajectories do not leave the set ;.

Step 1.

Consider the Lyapunov function

V= fj @ (4.130)

i=1
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Differentiating V' along the flow of (4.121) we obtain,

vV = iS‘[—K,asgn(S")] (4.131)
- _ix,qsq (4.132)

Negative definiteness of V implies that each S¢ = 0 is attractive for all trajec-
tories that remain in ®(U). Indeed, the trajectories reach the manifold N%, $* = 0 in
finite time. The choice of control renders the manifold N2, S* = 0 invariant. Asymp-
totic regulation to the origin remains to be shown. Performing Filippov averaging

[13], we find the average dynamics of the system on the surface (7, S* = 0 to be

=1
given by
f = Af4& (4.133)
t=1,...,m (4.134)
where
- & =1, (4.135)
| 0 [r1-1)x[1]
6;1 e 61(‘_1) 6]
¢ = : : : : i=2,...,m (4.136)
| et o+ Gy | | i

. i [re-1)x01]
b = —a;&,...,+ai§ : (4.137)

Note that the difference between #; and v; is that the term — K, sgn(S)
is absent in ;. This is due to the fact that when S = 0, the average value of
sgn(S7) = 0.

If the trajectories of the system remain in the open set 5 C ®(U/) where each

of the functions 6:,(¢',...,6™,n) < Ky, i=2...omp=1...,r-1k=1,..,i-1
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then there exist two numbers K and a* such that

-1

18] < Ko S a8l i =2,...,m (4.138)
j=1
One choice of the constants is
Opp = sup sup b i=1,...,m (4.139)
k=1,..ri=1, j=1,...6=1 (€1,...6™ n)ENs

Ks = bmpli=1)i=1,....m (4.140)

ri—1
o = [Yle)Pri=i,...,m (4.141)

k=1

Note that as A' (4.126) is a Hurwitz matrix there exist positive definite

symmetric matrices P* solving the matrix Lyapunov equation [25)
[A)TP 4+ PiA = -1 ’ (4.142)
Now consider the Lyapunov function given by
V=Y oE TP (4.143)
i=1

Differentiating V (6.282) along the flow of (4.133) we obtain

V = AP PEHET P ALY o [AF +EITPE+ETPIAF+E]] (4.144)

i=2
Using (4.142) and (4.138), we get,

-1

V< —al|8F + = 3 I + 3120 omee (PIE K5 o8] (4.145)

=2 1=2 J=1

where Omq:(P') is the maximum singular value of P'.
We rewrite (4.145) as

= —[e’ - i of? (4.146)
k=2
—Ylo = 2 (P)KE = 30 [oMPIE (4.147)

=2 k=i+1
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where we have made use of the following fact:

m(P')Ilﬁ‘II[’i;[a*’llf’] < [020o (P PIIE | + i[a‘]’llf"llz (4.148)

Note that we have not chosen the o’ i = 1,...,m yet. We now choose them

so as to make the V negative definite. Choose

o > Y [ (4.149)
k=2 -
o > o2 (PYKE+ Y [@i=2,...,m (4.150)
k=i+1

Note that choice of @' ¢ = 1,...,m is recursive. We first choose a™, then
a™ 1, etc. upto a!. This implies that on the surface N7, S* = 0, the output
yi=hi - 0ast—o0,i=1,...,m.

To ensure that trajectories of the system do not leave the set {15, we now find
a nonempty open subset of initial conditions, 2 C Qs C ®(U), such that for all initial
conditions in the open set €, the system trajectories do not leave 5 thus maintaining
the validity of the boundedness of 6;;k. To this end we consider a composite Lyapunov
function that includes the 7 dynamics also:

Using a converse Lyapunov theorem [16], the exponential stability of the

zero dynamics (4.109) guarantees the existence of a Lyapunov function V; such that,

Kl < V, < Kflnlf? (4.151)
A%
—a;"[q(O,an(O,n u(0,7)] < —Ksllnll® (4.152)
1521 < Kl (4.153)

Now consider the composite Lyapunov function given by

V= Z[al[f ]TP'[f ]] + 2 2[[5‘]2 [5:14

=1 =1

—]+ a3V, (4.154)

where P! is the solution of (4.142) and V,, satisfies (4.151) - (4.153).
Differentiating V' (4.154) along the flow of (4.120) - (4.125) we obtain
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= YIAE + BSTPE + [P PIAE + 55T

+ i a4 St~ K,isgn(SY)]
=1
+f21a25‘13[—x..'sgn<s‘)1

0336_1;;’[9((517 Sl)v ceey (Emv Sm)a 7]) + AQ((Ela Sl)a ceey (Em’sm), 77)]
+a3"’a—‘;"[p((€,s’),...,(c"",s"‘),n)u((?,sm..,(Em,sm),n)]
+a3%—‘,’;'[Ap<(é‘,51),...,(Em,sm),n)u<(c",51),...,(Em,sm),n)l

Assuming that [¢1,...,™,7]7 € NZ; VaBoyns> Using (4.139) - 4.141), and
(4.147) we obtain

Vo< [Pl -1 - Yo akp

k=2

Z[al — 7~ Omaz(P)KG,

—[kgllaflzllllc'*ll’ - efomes(P)Ks X KU
- SIS - JEE s P + s

+ar 2 F21a0,1) + O, 7u(0,)]
+°‘3'6—1;'[q((€ asl)"'-a(fm’sm)an) "Q(O’n)]

+a3%"-[p(<él,51),...,(Em,sm),mu((c‘*,s‘),...,(s‘m,sm),n)
-—p(Oa,n)U(O,n)]
+asa—‘;[Aq((€,s‘),...,(c'm,s"'),n) — Ag(0, )]

+as%‘,§[Ap((E‘,s’) E ™) (@SN (™, 5™),m)
—AP(OW)U(O,TI)]



+aa%%lA¢1(0, 1) + Ap(0,7)u(0, 7))

where we have made use of the following fact:

. - :.-l . - . . - i_l . -
2007, (PIEIID_[a11E] < [02.(P)PIEIR + Y [«TPIIE?
Jj=1 k=1
and that,
SHITPE < KlISIIE
Ké = a'maz(Pi)”bi”
&l = 1

s < L ppsp

60

(4.155)

Now define Qv to be the largest non-empty subset of $(U) such that

m
Qv = [\ [QaBound [ 1 Qaconic [\ Reonic [ Vals@m+s@muom]

=1

Choose ¢* € R, such that
c=sup(c:V <e €Qy)

Define @ = [((€,5"),..., (", S™),n) : V < &*].

For all initial conditions in §, we may rewrite V as

V < —[@ei - ’}z,;aﬂz
DICES a,:a,(P*‘)Kz
1 5 P - afomer P K
~ SRS - eI+ 511
—asKs||n|[?

+a31\4l|n||[1\ + K, + Ka, + IxA,,]Z[lls I+ 1151)

=1

+asKqKgplln|f?

(4.156)

(4.157)

(4.158)

(4.159)

(4.160)

(4.161)
(4.162)

(4.163)
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where,

a(E, 5., (E™, 5™),m) — a(@ )| < Ko SIEN + 11571 (4.164)
=1
(@, %), .o E™, S™), (B, 5, .., (E™, 5™), 1) = OO M| <
K SNEN+ 1S

=1

IAG(E, S, .., (E™, 5™, 1) — AdO, )| < Kag STIEN+UST] (4.165)

=1

“Ap((gl,sl),_“,(Em’sm),n)u(({‘l,sl),”.’(Em,sm)’n) — Ap(0,7)u(0,9)|| <
Kap D IEN+11S°I1]

=1
11Aq(0,7) + Ap(0,7)u(0,7)|| < Kagllnl| (4.166)

Indeed, noting that a bound on the Jacobian of the transformation & gives

dn < K, and using assumptions (I4) — (I7), we observe that

K, < K,K;_conic (4.167)
K, < K,K; conic (4.168)
Kaq < KoKaj-conic (4.169)
Kyp < KK (4.171)

Now define
Ky = aslKy[Ky + Kp + Kag + Kap) (4.172)

and using the fact that

Kol SO0 + s < = | ez $™ e 4 k25 s 173
zllnll ZMEN+ NS < —— + K7 X _1IE11° + K7 3115 (4.173)

i=1 i=1 =1
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we rewrite equation V as

Vo< —[fPled - --KI- Y alP
k=2
- z;us'u[( -l ko (PKE - [kf: (A DIIE] - Kol
i= =i+1
irge anaiy _ Kel2 + K7 i
-’;[%[Kv][ﬂs [l - W‘”S 112+ 11511
~IInl *{es[Ks — Kep] + ]
where i
Ks = 20maz(P)Ks Y _Kfi=2,...,m (4.174)
i=1

Note that the constants af;- i=1,...,mj=1,...,3 have not been chosen
yet, and we now choose them in such a manner as to ensure the negative definiteness
of the Lyapunov function, provided K3 > K.

We choose them to be

al > E[a"]2+ + K2 (4.175)
k=2
- ol > ol (PYKE+ E [«*)?) > Ks =2,...,m (4.176)
b k=i+1
ob > [Ki?+ K? (4.177)
as = (4.178)

4[Ks — Kqp

Such a choice of constants ensure that V is negative definite for all initial
conditions in .

We have shown that there exists a set {2'and a constant K™* such that for all
initial conditions in 2, and for all K,, < K*, the output of the system is asymptoti-
cally regulated to the origin. A&

Theorem 4.3 Relazed Generalized Matching conditions for aéymptotic regulation for

left invertible MIMO systems decoupled using the zero dynamics algorithm.

Given (G1) A perturbéd MIMO system of the form (4.82) - (4.83).
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(G2) The unperturbed MIMO system (4.80) - (4.81) has an extended vector rel-

ative degree [ry,...,rm)7.

(G3) A control objective of asymptotic output regulation, that is |£j| — 0 i =

1,2,...,m

If (I1) The zero dynamics of the unperturbed system, (4.109) is ezponentially sta-

ble.
(12)
Af(2) € kerldhi(z), dLsRl(z) - AL} KA () kerldhi, ..., dhi ]
=2
(4.179)
and

dit|[Af] € row-span-off Dy

[ LagL}P b} ]
. Lash?,
dik[Af] = :
Laghi??
- Lagh;,
[ (™) e, ah(E ) ]
D = ai1(g! ) ..., aiTi(E £ n)
1 100098 3] 5eeey Cp 100098 7]
i Ly ki veees L, ki ]
i=1,2...,m k=1,2...,r—1
LasL7?7'hl < Kie®,

Lashi, < Kii=23,...,m

(13)

Ag;(z) € ker[dhy(z),dLshi(z)---dL}? ()] ker[dhi,,...,,dhL]]
=2
(4.180)

where j=1,...,m
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(I4) Af(E,...,6™,n), T, Agi(E,..., ™ n)u(E,...,E™, 1) satisfy conic con-
tinuity in [€',...,€E™]T, uniformly in n with constants Kas—conic, Kag—conic
everywhere in an open set Qaconic € O(U)

(15) LAJL}‘-lh.' <Ky <K, in QiAﬁmmd Cc &(U)

(16) f(€',....€™,0), L1 gi(€,. .., ™ mui(€L,...,€™,n) satisfy conic conti-
nuity in [£,...,€™)7, uniformly in y, with constants K _conic, Kg—conic
everywhere in an open set Qeonic € O(U)

(I7) ||A£(0,n) + 72y Agi(0,7)ui(0,)|| < Kagp|lnl| everywhere in an open set
Qalsomp+s@mnuiom) € 2(U)

(18) The functions 65, (€*,...,6™,n) < Kg,i=1,...,mp=1,..,r—1 k=
1,...1—1 everywhere in an open set Qs C ®(U)

(I9) The diffeomorphism @ (4.84) has a bounded Jacobian.

(I10) The control u is chosen to be
U _bl({l,_“,gm,n)_*_vl
: | =47 : (4.181)
Um "'bm(élr"’{m’")'*'vm

where, A, is specified by (4.112) and b'(€',...,€",n) i = 1,...,m are
specified in (4.99) - (4.108), and

v = —di &, ..., +ai&; — K, sgn(S') (4.182)

S = g.+a b HaG (4.183)

and is a Hurwitz polynomial (4.184)

sgn(S) = r‘z,:—l V|S'|>0 (4.185)

Then (T1) There ezist a set @ C ®(U) and a constant I{* such that for all initial
conditions belonging to U, and Ka,, < K* the output y; = hi(z) tends to

zero asymptotically.

Proof: & b
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Choosing the control law prescribed by the theorem, subject to the pre-

scribed matching conditions, the equations (??) - (??7) may be rewritten as

&

r1
71

..
1
Ti

&

0 + Abl(cla s ,gm, 7’)
-1

&+ 60+ AV(E, ..., )] + Lagh’

=

vi + A(E, ..., 6", 1)
t=2,...,m

Q(fla' €M)+ Aq(glv' €M)
+ Z[pk(gla cee acqu) + Apk(gl’ ce afm, ﬂ)]uk

k=1

Comment 4.2.8 Assumption I(2) guarantees that the term

[Z J:jAbl(Ela- .. ,ﬁmaQ)] + LAfhi =0

i-1
(4.186)

i=1

The equations (??) - (??) may be rewritten as

é

’1
T

..
£ 3
Ti

&

v+ Abl(fla-“’fmsﬂ)

-1
&+ Z 639
Jj=1

+

vi + AB(E, ..., 6™ n)
1=2,...
g(€'s. .- E™m) + Ag(E,...,€™,n)

+ 3l )+ Bl 7

,m
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Furthermore, from the definition of each v; i = 1,2,...,m it is clear that the problem
has been reduced to the hypothesis of the theorem on strict matching. Invoking the
results of the theorem on strict matching, the conclusions of the theorem on relaxed
matching are proved. 4é ,

Matching Conditions Assuming Right Invertibility

We now present matching conditions for a MIMO system which does not
possess a well defined relative degree, but which is right invertible [10].

Statement Of The Problem

Given:

e An unperturbed system of the form (4.1) - (4.2) which does not possess a well

defined vector relative degree.
o The unperturbed system (4.1) - (4.2) is right invertible.

e A control objective - Asymptotic output regulation y; = hi(z) = 0:i=1,...,m

ast — oo.

e The dynamic extension algorithm [5], [4], is utilized to generate a control law

to attain the control objective.

Determine:

¢ Conditions that must be matched by the perturbations Af(z) : R* — R" and
Agi(z):R* > R"i=1,...,mof (4.3) - (4.4) such that the control objective of
asymptotic output regulation is achieved by the control law developed based on
the unperturbed system equations (4.1) - (4.2), when applied to the perturbed

system.

Assuming that z, is a regular point [19] of (4.1) - (4.2) and that the system
is right invertible [10] there exists a transformation ® and a local normal form for the
system generated as follows:

The dynamic extension algorithm [8] systematically extends the dimension
of the state vector, at each step, and therefore we will start the algorithm with the

state € R" = z°. The algorithm proceeds in the following manner. [4]
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Step 1 Let r; be the relative degree of the ith output of (4.1) - (4.2), i.e the

largest integer such that
Ly, Lihi(z?)=0WIi<ri—1V1I<j<m (4.187)
and for all z° near z§. Define the ciecoupling matrix Ax(z°) to hae as its zjth entry,
aii(z) = L,,.L}"lh;(a,") (4.188)

and denote its normal rank by s;. If s, = m, stop.
Step 2 If s, < m assume that the first s; columns of Ax(z°) are linearly
independent at each point of an open, dense set of X*® (this can always be achieved

by a permutation of the components of the output.) Apply the regular static state
feedback law

u = ap(z®) + Bi(z%)v (4.189)

with ax, Bx analytic functions of z° such that the decoupling matrix with the control
law (6.134) is of the form

An(z®) = [ ]{;‘(’;‘:“) z ] (4.190)

This may be achieved by choosing ay, Bk to be the solutions of the equations

AL h(z%)(f(2°) + 9(z°)a)k(z%)) = OVI<i<s (4.191)
AL} h(z%)(g(z%)Bi(z®)); = 6;;V1<i<s 1<j<m (4.192)

where (g(z°)Bx(z°)); denotes the jth column of the matrix g(z®)Bx(z°).
Step 3 There exist g, columns of the matrix A;(z¢) (without loss of gen-
erality, the first gx) with two or more non zero elements. Put an integrator in series

with g corresponding input channels. Define the dynamic extension as
G=vii=1,...,q (4.193)

Extend the original system with new inputs v,..., vk, ug 41,...,un, and
return to step 1 to resume the procedure with & — k + 1 are new state variables

z°U .
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If the original system is right invertible, the procedure converges in a finite
number of steps to a system having vector relative degree [r$,...,r¢]7. Let the triple
(f¢, g5, h¢) characterize the new extended system thus obtained, with z¢ = (z, () as its
state, u. as its input, and y° as its output. Constructing a local change of coordinates
®(z) = (¢,n) with £ = col(¢;) by setting

& = col(hi(z®).Lyehi(z%),,...,, L2 hE(z%)) (4.194)
= col(§,.. ., &) (4.195)
and using complementary coordinates 5. Then the transformed system equations are
given by
& =6 (4.196)
Pl (4.197)
= B ) 4 (€ £ (4.198)
i=1,...,m = (4.199)
IR LGN SO o (GO (4200)
=
where

B(EL, ..., Emn) R = R = L7k
afj(ﬁl,. ) RT R = Lg;L;‘Z"lhf
¢, ., ™) R R = Lyen
Bi(E . ™) R o R = Len j=1,...,m
r = f:rf
i=1
The zero-dynamics is a dynamical system in R"~2:=1™ described by the

following equations. o |
7.] = qe(o’ 77) + Zp;(oa ﬂ)u:' - (4201)

J=1
It is clear that for the unperturbed system, the output can be regulated to

zero asymptotically by choosing first a decoupling and linearizing control law, and
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then applying any standard linear control law that guarantees asymptotic regulation

of the output.

We now prescribe matching conditions similar to [7] for the perturbed system
(4.3)- (4.4) such that the control law developed using the dynamic extension algorithm

will still ensure asymptotic output regulation in the presence of perturbations.

Theorem 4.4 Generalized Matching conditions for asymptotic regulation for right

invertible systems decoupled using the dynamic extension algorithm.

Given (G1) A perturbed MIMO system of the form (4.3) - (4.4).
(G2) The unperturbed MIMO system (4.1) - (4.2) has an extended vector relative

degree [r§, ..., )7,

(G8) A control objective of asymptotic output regulation, that is yf = hf(z) —

0z=1,....,m

If (I1) The zero dynamics of the unperturbed system (4.201) is ezponentially sta-
ble.

(12)

Af(z) € ﬁker[dhf(x‘),deehf(ze)---dL;‘Z'zhf(x")] (4.202)

(13)

Agi(zf) € () ker[dhi(z®),dLsehi(z)- - -dL;‘i—lhf(a:‘)] i=1l,...,m

=1

(14) DF(E - £ 0), TR AGEE, ... 6™ muS(E, .. €™, 7) satisfy conic con-
tinuity in [€,...,€™]T, uniformly in n with constants K ;- conic, Kag—conic,
everywhere in an open set Qaconic © ®(U)

(15) LagL ke < Kui < Ky in Qs poyna C 9(U)

(16) fc(El’ AR | Em’ 1')’ Z;’;l gf({‘? AR 7£m’ n)u$(€17 MR | 6’"’ ﬂ) satisfy conic con-
tinuity in [€1,...,E™)7, uniformly in 5, with constants K ;_conic, No—conic

everywhere in an open set Qe onic € ®(U)
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(I7) ||Af(0,n) + T%; Agi(0,7)ui(0,7)]| < Kagllnll everywhere in an open set
Daison)+smuom € 2(U)

(I8) The diffeomorphism ® (4.6) has a bounded Jacobian.
(I9) The control u is chosen to be

uj =b(&,..., ™) +u
| =A" : (4.203)

u, —b™(£,...,6™,0) + Unm

and

vi = —a &, ..., +aif — Kusgn(S') (4.204)
S = &g +d € ..., +ai§ (4.205)
and is a Hurwitz polynomial (4.206)
sgn(SY) = -lg—:l Y |S >0 (4.207)

Then (T1) There ezist a set @ C ®(U) and a constant K* such that for all initial
conditions belonging to Q, and Kpgp < K* the trajectories of the perturbed
system remain in ®(U) and the output y; = hi(z) tends to zero asymptot-

ically.

Proof:é b

The proof the theorem is obvious once we realize that the matching con-
ditions cast the extended system into the exact form of a perturbed non-singular
MIMO system, satisfying all the hypotheses of the theorem that guarantees output
regulation for perturbed nonsingular MIMO sysf,ems. Indeed the system equations

now look like
§ =46

.. m
re = BE(EN,.. €™ )+ AB(E, . € )+ D ag (€ €Ty
t=1,...,m
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o= ¢(€....,£"n) + Ag°(Es. .., €, n)
+Y (P57 ) + Ap5(E, - €™ m)u;

J=1
The system equations and the hypotheses of the theorem (4.4) satisfy the

hypotheses of the earlier proven theorem (4.1). Therefore invoking the conclusions of

theorem (4.1), the proof is complete. <ié

Example 4.2.1 Comparing inversion techniques
Consider the system represented by the following equations,

Unperturbed System Equations:

Ty = z3sinz; +uy (4.208)
&y = z3c0s’Ty— upsinz, (4.209)
I3 = up (4.210)
n = n (4.211)
Y2 = T2 (4.212)

where £ € R3, the controls u;(t) : Ry - R 1=1,2,3.
Perturbed System Equations:

Z, = z3sinz; + uy + Ay(z) (4.213)
T3 = =zacos’r; —uysinzg + Ay(z) (4.214)
E3 = uz+ As(x) (4.215)
n = n (4.216)
Y2 = I (4.217)

where the perturbations A;(z) : R2 = R i =1,2,3 are unknown.
The control objective is to ensure that the states are regulated to the origin
commencing from arbitrary initial conditions. We will choose two control laws based

on the zero dynamics algorithm, and the dynamic extension method, and the prescribe



72

matching conditions to be met by the perturbations Ai(z) : R2 = R i =1,2,3 such

that the control objective is still attained.

Control Using The Zero-Dynamics Algorithm

h} = I
h% = I
$h = Lgh

= z3sinz; + u;
g2 = Lgh}

= z3c052Z; —uysinz,

Now defining
h3 = z3 (4.218)
64,(z) = sinz (4.219)

we note that
'gz = T3 0082 I — 6?1(.'17)[3}1 — T3 sin :L‘1] (4220)
= z3[cos® z; + sin’ ;) — 6%, (z)% (4.221)
= z3—ysinz (4.222)
= h2—ysinz, (4.223)

Now note that

Lik2 = u, (4.224)

Consider the following change of coordinates
&
P:zeRPo | 2| e (4.225)
3
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where
£ = bl =2z (4.226)
£ = bl =z (4.227)
& = b} =23 (4.228)

-~

In these new coordinates, the system equations look like

£ = z3sin€] +u (4.229)
& = §-§sing (4.230)
& = u (4.231)

Now choose the control inputs u,, to be
uy = —z3siné] + v (4.232)

where vy(t) : Ry — R is to be chosen later. Such a choice of control yields,

& = (4.233)
& = &—-§sing (4.234)
& = u (4.235)

The same proceedure for the perturbed system equations would have yielded

a modified set of equations.
& = zasinél +uy + Ay(2)
& = §-&singl +[sinfl As(z) + Ao(a)]
& = uts(z)
Now choose the control inputs as before to be
u = —z3siné] + v (4.236)
where v1(t) : Ry = R is to b? chosen later. Such a choice of control yields,
& = vi+hi(2)
& = &-&singl +[5ing A(2) + Ag(s)]
& = wtlsz)
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The matching conditions that perturbations must satisfy are now obvious by inspecting

equations (4.237) - (4.237).

The matching conditions that could be imposed on the perturbations are of

the following three kinds.

Strict Matching Conditions

Al (:c) =0
Az(l') =0
As(.’B) =0

Relaxed Matching Conditions

Al(z) < KA) 682+

siné] Ay (z) + Ag(z) = 0

As(z) < Ka, € R4

Choosing the controls in (4.237) and (4.287) to be

- - v;
Uz

K,

I(z

a1+ &

= —Ksgn[§)
= —ayé] — Kasgnla:£] + €3]
> Ka,

Ka,

15

a Hurwitz polynomial

Note that the matching conditions specified in I satisfy the strict matching assumption,

while the conditions specified in II satisfy the relazed maiching assumptions. The

stabilization objective is therefore realized for cases I and II.

Dynamic Extension Algorithm

We will now prescribe matching conditions for the system if instead of the

zero dynamics algorithm, we had used the method of dynamic ertension. As before,
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we first develop a change of coordinates for the unperturbed system, and transform

the perturbed system equations into the new coordinates.

Differentiating the outputs y, and y; of (4.211) - (4.212), we get

Rl = z, (4.237)
R = z, (4.238)
§1 = Lyh! (4.239)
= z3sinzy+ U (4.240)
g2 = Ljh? (4.241)
= gz3cos’z; — u;sinz, (4.242)

Now using the methodology of dynamic-extension outlined in the previous section, we

set the following dynamic eztension

and thus make u; an element of the extended state vector. The extended state vector
is given by [ Ty Ty Tz W ]T. Using this extended definition of the state vector,
it is obvious that the inputs w and u; have not yet entered the equations (4.240) -
(4.242). So we differentiate them once again to obtain,

# _ cos z1[z3sin 21 + 4] (4.244)
2 —2cos 21 sin 7 [z3sin z; + wy] — uy cos z1[z3sinz; + uy)
1 .
+ i Bl et (4.245)
—sinz; cos®z, Ug
Note that
1 . sl
det [ oo } =1 (4.246)
—sinz; cos’z
Therefore the decoupling matriz is tnvertible. Now consider the following change of
coordinates, o
&
1
@;[’]em‘u 5; (4.247)
Uy &
| &
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where the coordinates are given by

f = n (4.248)
& = zasinzi+uy (4.249)
&§ = = (4.250)
§& = zacos’zy —wsing (4.251)
Note that
o= § (4.252)
23 = & (4.253)
z3 = £)sing] +&2 (4.254)
up = §eos’éy — £ singg (4.255)

In the new coordinates, the system equations are

& = & (4.256)

& = & (4.257)
[é%:' — [_bl(gisfévélzafg) + 1 sin z, :| [wl] (4258)
& ~by(¢1,63,€2,€3) —sinz; cos’z; | | us

Indeed choosing the controls to be

[wl] [ 1 singy J"l[—bl(e%,c;,&,e‘;‘)+vl]
U2

—sinz; cos’z, —by(€1,63,62,82) + v,
bi(€,6,6,6) = coséllsing] + &) cos® €l — 2 sinél]
ba(€},63,63,63) = —2coséysiné][[€3siné] + £]sin €] + & cos® €] — €2 sin€])

~uy cos£1[Ig}sin ] + €] sin gl + €} cos? €} — sin€]]

where

and the control inputs are

v = —aif) — Kisgn[a €] + €}]
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—a182 — Kpsgnfaa€? + €3]

a1} + & is a Hurwitz polynomial

a &2 + €2 is a Hurwitz polynomial

Such a choice of controls yields a system of the form

& =&
& = —af; — Kisgnlaf] +¢3)
g =8
§ = —af} — Kisgnja] + €]

The system is thus stabilized.

(4.259)
(4.260)
(4.261)
(4.262)
(4.263)

We will now consider the effects of dynamic extension on the perturbed sys-

tem equations.

In the new coordinates, the system equations are

&
&

H
&

6 + Ay(z)
£ + Do(z)

|

—bl(&,c;,f%,c%)] +[
_bz(ﬁiaé.;a&]zaf%)

[ d—A-j-,(-z-l+A3(a:)sin§} ]
a4 4 A () cost €

Indeed choosing the controls to be

wy
-]
bi(€1,6,60,6)
ba(&1, &2, €1, €2)

%1

: -1
1 sin z;
—sinz; cos?z;

cos &} [sin €] + £ cos® €] —

1 sin w,
—sinz; cos®zy Us

_bl(E}*){%’g]za{g) +u
—bZ(E‘},é.%’g??{%) + vz

€2 sin £])

|

(4.264)
(4.265)

] (4.266)

(4.267)

—2cos ) sin 3 [[§sin &} + €3] sin €] + & cos® & — € sin 7]

—uycos§{[[6; sin &y + &]sin &} + & cos? & — £ sin§]

—a1§; — Kisgnla§) + &)
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vz = - — Kasgnlas€] + £3)
a1é] + € is a Hurwitz polynomial

a1él + €2 is a Hurwitz polynomial

Such a choice of controls yields a system of the form

& = &+ (4.268)
8 = -af - Kogladl +81+ 2D 4 A)sing (0269)
& = &+Ma) (4.270)
g = -wt- Kool + 6+ L2 4 Aot (aam)

Matching Conditions

Inspecting equations (4.268) - (4.271) reveals that the matching conditions
sufficient to ensure stabilization are

o Ay(z)=0= Bl =g
o Ayz)=0=> "—Adlt(ﬂso

® A3(.’B) S I(As € 3’24.

4.3 Comparing Inversion Strategies

From a designer’s perspective, it becomes necessary to decide upon a strat-

egy for controlling an invertible MIMO system with no vector relative degree.

e Stabilization involving the dynamic extension method allows for uncertainties
only in the dynamic compensator that is being built. It is less tolerant of plant

uncertainties in those equations that involve an extension of the state vector.

o The relaxed generalized matching conditions of the zero-dynamics algorithm

permit disturbances that satsify an algebraic constraint that is a consequence
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of the algorithm. The price exacted for such a relaxation, is that in addi-
tion to satisfying conditions for invertibility, stabilization objective requires the
functions 65k to satisfy additional constraints. This algorithm however has
the flavour of a MIMO extension of the usual SISO matching condition that

requires the disturbances to lie in the span of the input vector field.

e The simplicity of the dynamic extension method is an attractive feature in the
design of control laws. Instead of searching for elements of the left null-space
of the decoupling matrix, as with the zero-dynamics algorithm, the method
extends the dimension of the state-space, and attempts to eliminate the singu-
larity of the system by embedding it in a higher dimensional space. This is a

conceptually elegant technique.

e There are however, systems that violate the conditions of the theorems, which
can still be stabilized. This is by virtue of the fact that the conditions of the
theorems are merely sufficient conditions, and provide ample scope for improve-

ment.

4.4 Closure

We presented the generalized matching conditions for SISO systems with
perturbed zerodynamics and MIMO nonsingular and MIMO singular systems. It is
to be noted that these are only sufficient conditions, and therefore are bound to be
conservative. Aside from helping to understand the classes of tolerable perturbations,
the matching conditions are useful when a choice is to be made between two competing
algorithms for control. It is prudent to choose a control methodology whose matching

assumptions are less restrictive, or more suited for a class of applications.
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Chapter 5

Foundations Of Sliding Mode
Control Theory

In this chapter we present a brief collection of facts and results that form
the basis of sliding mode control theory. We will present theorems concerning the
existence of solutions to differential equations with discontinuous righthand sides. We
present the proofs of existence, first for continuous righthand sides, and then relax the
continuity requirements to illustrate how the proof techniques change. We introduce
differential inclusions, and illustrate their use in proving existence for differential
equations with discontinuous righthand sides.

Finally we introduce the notion of a sliding mode and show that it is just
a special case of the presented theory. We will also demonstrate the construction of
simple sliding mode control laws for SISO and MIMO linear, and linearizable systems.
Finally we will show how the theory of input-output linearization [19] can be seen as

a way of constructing nonlinear sliding surfaces.

5.1 Mathematical Preliminaries

Qualitatively, sliding mode control theory involves dynamical systems con-
trolled by control inputs that are defined almost everywhere, excepting possibly on

sets of zero measure. Such discontinuous control inputs are designed to render a
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subspace of the state-space of the dynamical system, attractive and invariant. The
subspace rendered invariant by control, is such that, trajectories evolving on this in-
variant subspace achieve the required control objective. We will say more about this
later. We will now present some examples intended to stimulate interest in this topic,
and to illustrate the qualitative principles behind sliding mode control. We will say

more about these examples later.

Example 5.1.1 Linear Invariant Sliding Surfaces

Consider the simple double-integrator given by

il = 2 (51)
& = u(t) (5.2)

where z € R?, and the control u(t) : Ry — R. Choosing
u = —az, — Ksgnlaz, + z,] (5.3)

where the function sgn[z]: R2 — {0} — [—1,1] is undefined at the origin, renders the

1 dimensional subspace

az; +z,=0 (5.4)
attractive and invariant. That is to say, trajectories commencing from arbitrary initial
conditions reach this subspace (actually in finite time), and that once they reach this

subspace, they continue to remain on this subspace. This is an ezample of a subspace

rendered attractive and invariant through control.

Example 5.1.2 Finite Time Control With Saturation

Consider the double integrator system again, given by the equations

i] = T (55)

u(t) | (5.6)

T2
where T € R?, and the control u(t) : R, — R. Consider the following choice of control

u(t) = —sgnles + U2l |z, 4 minl) 5 0 (5.)
= —sgnfzs] if |21+ z—’l;—z'll =0 (5.8)
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It is easy to show that such a choice of control renders the 1 dimensional subspace

atiractive and invariant. Indeed, trajectories commencing from aribitrary initial con-
ditions reach this subspace in finite time, and slide on this surface to reach the origin

in finite time.

Example 5.1.3 Winding Algorithm

Consider the double integrator system given by the equations

il = T (5.10)
) (5.11)

where z € R?, and the control u(t) : Ry — R. Consider the following choice of control

u(t) = —kisgn[z,] — kasgn[z,) (5.12)
kv > k>0 (5.13)
(5.14)

Such a choice of discontinuous control guarantees that the 1 dimensional surface
Ty = 0 (515)

is invariant and attractive. Indeed the surface z, = 0 is attained in finite time, from
arbitrary initial conditions, and the states of the system slide to the origin in finite

time, along this surface.

The examples are interesting in that they admit a control input that involves

the function sgn|z] : R - [~1,1], which has the following attributes.

)= 4L
sgn[] - I[]I fl[]l>0 (’516)

undefined if |[-]| =0 (5.17)

The aforementioned examples are instances of using discontinuous control for the

purpose of stabilization of systems in the controllable canonical form.
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Comment 5.1.1 It is quite possible to define upper and lower semi-continuous versions
of the function sgn[z] : R* — [-1,1]. We will use such versions later in constructing

differential inclusions that model our system. We will say more about this later.

We wish to formalize, the intutive notion that for dynamical systems involv-
ing discontinuous control inputs, if the control inputs are undefined on sets of measure
zero, they are not too pathological and we might expect the dynamical system to ex-
hibit the desired behaviour in a general sense. There are a number of technical issues
that have to be resolved before we could quantify this intutive notion. The major
issues that have to be dealt with are really the definition of what we might call an
acceptable solution to differential equations whose righthand sides may not be de-
fined. As the righthand sides of some of the differential equations we consider may
be undefined at some points, we no longer define the trajectories of the dynamical
system using the Riemann integral, (as Riemann integration depends on the consid-
ered function being defined everywhere on its domain), but resort to measure theory
and Lesbegue integration. (which is more based on properties of functions based on
the properties of the projection of its graph onto its range) To do so, we need to
invoke simple notions about measurable functions. The usual technique in the theory
of differential equations is to construct approximate solutions, and show properties of
the solution using the properties of the constructed approximations. However, when
the righthandside of a differential equation is undefined on sets of zero measure, it
becomes critical to understand what the notion of an approximate solution might very
well be on such sets of zero measure where the vector field is not defined. Finally,
given certain approximate solutions to these differential equations with discontinuous
righthand sides, we wish to formalize the notion of convergence of these functions, in
measure, to some limit function. We then pass to the limit and consider properties

of the limit functions.
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5.2 Existence Of Solutions To Differential Equa-

tions

In this section we present basic results for the local existence of solutions of
differential equations with discontinuous righthand sides. We define a sliding mode,
and present conditions for the existence of a sliding mode. We then present briefly
the development of the sliding mode control law, and the various regularizations of
it.

We will now state without proof the following two important results from
analysis that we will need.

Arzela-Ascoli Theorem:

Let K be a compact subset of RP and let F be a collection of functions which

are continuous on K and have values in R?. The following properties are equivalent.
1. The family F is uniformly bounded and equicontinuous on K.
2. Every sequence from F has a subsequence which is uniformly convergent on I.

The theorem allows us to define a sequence of approximate solutions of a
differential equation, and guarantees convergence of the approximate solutions to a
limit function of the sequence is equicontinuous and uniformly bounded.

Filippov Convergence Lemma:

Given a differential inclusion of the form ¢ = F(z,t). If the inclusion
F(z,t) is closed, bounded, convezr, and uppersemicontinuous, the limit of any uni-
formly convergent sequence of approzimate solutions of the differential inclusion, is -
also a solution of this inclusion, in the domain of convergence.

That the limit function satisfies the differential inclusion, is the main reason
for invoking the lemma.

As a prelude we compare and classify ordinary differential equations based
on the nature of the right hand sides. Consider a differential equation of the following

form.
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& = f(z,t) : (5.18)
z(0) = =z (5.19)
zeR"teR, (5.20)

flz,t) : R* xRy - " (5.21)

(5.22)

The smoothness assumptions on f (a:,-t) determine the kind of differential
system referred to by (5.18).
The three major kinds of differential systems are

1. Cauchy Differen!:ial Systems: In the domain D of the (z,t) space,
o f(z,t): R" x R, — R™ is continuous in z.
o f(z,t) : R* x Ry — R is continuous in .
2. Caratheodory Differential Systems: In the domain D of the (z,t) space,

o f(z,t): R x R; — R" is continuous in z.

o f(z,t): R" x Ry — R" is discontinuous in ¢ on sets of zero measure.
3. Filippov Differential Systems: In the domain D of the (z,t) space,
o f(z,t) : R* xRy — R is discontinuous in = and ¢ on sets of zero measure.

We will henceforth refer to the assumptions made on the vector field f(z,t) : R* x
R+ — R" by the assigned system names. For each kind of differential system, we
define the solution concept, and present further assumptions necessary to ensure the

local existence of the defined solution concept in a domain D of the (z,t) space.

5.2.1 Cauchy Differential Systems

In this subsection we will first state the Cauchy problem and proceed to de-

fine the relevant solution concept. We will then state the equivalent integral equation



86

to the Cauchy problem. We will then derive conditions for the existence of a solution

to the Cauchy problem.

t = f(z,t) - (5.23)
z(0) = zo (5.24)
ze€R"andt e R, (5.25)

flz,t) : R" xR, - R" (5.26)

(5.27)

where, in a domain D of the (z,t) space
o f(z,t)) : R* x Ry — R" is continuous in z.
¢ f(z,t)): R* x Ry — R" is continuous in t.

Cauchy Solution Concept: A continuous vector function s(t) : Ry — R*
i a solution of the:Cauchy problem (5.23) if for any (z,t) € D

ds(t)
dt

le=er = f(s(t*), %) (5-28)

and 3(0) = z,
We will now show the equivalence between solutions of the differential equa-
tion (5.23) and the solutions of an integral equation, through the following proposi-

tion.

Proposition 5.1 We may state the conditions for equivalence of the Integral and

Differential forms of the Cauchy problem as follows.
Given (G1) A Cauchy differential system of the form (5.23).

If (I11) A continuous function s(t) : R, — R is a solution of the vector integral

equation ,
3(t) = zo +/o f(s(7),7)dr (5.29)

where integration is in the sense of Riemann.
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Then (T1) The continuous function s(t) : Ry — R* given by (5.29) is also a solution
of the Cauchy differential system given by (5.23).

Proof:

® &> The proof is trivially obvious using the Fundamental Theorem Of Cal-
culus. Indeed as s(0) = zo, and d—:‘(tﬂ = f(s(t),t), it is clear that s(t) is a so-
lution of the Cauchy differential system. Conversely, for all continuously differen-
tiable functions s(¢) : ®; — R", the Fundamental Theorem Of Calculus shows that
s(t) = z(0) + f3 %})-dr. If s(2) satisfies (5.23) then indeed s(t) = zo + f5 f(s(7), 7)dr.
We obtain the integral equation (5.29). <4

We will now prove the Peano-Existence Theorem for the local existence of

solutions to Cauchy differential systems.

Theorem 5.1 Local Ezistence Of Solutions To Cauchy Differential Systems
Given (G1) A Cauchy differential system of the form (5.23).

If (11) The domain D of continuity of f(z,t) is specified for
{(z,t) € 8 xRy : ||z — zo|| £ K, and t < K,} where K, € R, and
K; € %4.. '

(12) ||f(z,t)|l < K V (z,t) € D where K; € R,.

Then (T1) The Cauchy differential system (5.23) has atleast one solution s(t) : Ry —

R™ for t < min(K, %) satisfying the initial condition s(0) = zo.

Proof:

# > The method of proof will be used repeatedly in the solutions of the
Caratheodory and Filippov differential systems also.

The proof consists of the following steps.

Step 1. We will define a sequence of functions that form approximate solutions of the

integral equation equivalent to the Cauchy differential system.

Step 2. We will show that this sequence is uniformly bounded and equicontinuous.



88

Step 3. Invoking the Arzela-Ascoli theorem, we will show that there exists a uniformly

convergent subsequence.

Step 4. We will now pass to the limit of this subsequence, and show that the limit func-

tion satisfies the integral equation, and hence the Cauchy differential system.
Step 1.

Set Tnin = min(K,, %) For t € [0,Tnin), we construct a sequence of

functions s*(t),s = 1,2,... in the following manner.

s(t) = zeV0<t< T';,"" (5.30)
| t-Taim Tin _
= J Lt < T .
zo + /o F(s(7), " <4< Thin (5.31)
i=1,2,... (5.32)

The geometric interpretation of this formula is the method of constructing

Euler broken lines. Let us clarify by evaluating s*(t) for i = 1,2. For i = 1, we get

s(t) = zV0<t< T’i“" (5.33)
. t_l'nr‘.n. . Tmin
= o +/; f(s'(r),r)dr ¥ T St<Tnin (5.34)

Which is the initial condition itself over the entire interval. This indeed is the crudest

approximate solution, satisfying the initial condition. When i = 2, we get,

s(t) = zV0<t< T’;"‘ (5.35)
t—
= =z +/ s*(t),7)dr V Tmm <t < Thin (5.36)
It follows that the functions s'(t) are defined for 0 <t < Thin.
Step 2:
We show uniform boundedness as follows. For any integer i € Z,., we have,
: Tmin .
@Il < lzoll + II[; f(s'(r),m)dr|| (5.37)
Tmin .
< lleall + [ (%), 7)lldr (5.38)
Tmin
< leol| + /0 Kydr (5-39)
< lzol| + Tomin K (5.40)
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Hence the sequence of functions s*(t) i = 1,2,... is uniformly bounded.
We show equicontinuity as follows. For any ¢ € Z,, for all ; € R, and
t2 € R, such that Zﬂ:‘“ <t <ty < Thin we have

S0 = 2ot [T S i (541

s'(ta) = .'co+/ot2“n%mf(s"(r),r)dr (5.42)
() = el < [ (s, e (5.43
S Kifta—ta| (5.44)

Therefore, given any ¢ € Ry, it is possible to choose a & < Lf so that for
all ¢2,%, such that |[t; — || < 6, we can ensure, by (5.44) that ||s'(t;) — s‘(t1)|| <e
Equicontinuity is therefore shown for the family of functions si(t) i = 1,2,.

Step 3:

Having shown the uniform boundedness, and equicontinuity of the sequence
of functions s'(t) ¢ = 1,2,... on the closed interval [0, Tmin), we invoke the Arzela-
Ascoli Theorem to guarantee the existence of a subsequence s¥*(t) k = 1,2,... that
is uniformly convergent in the interval [0, Tpin)-.

We therefore claim that the sequence s*(t) k£ = 1,2,... converges to a
continuous function s(t) as 7, — co.

Step 4:

Having passed to the limit, we now verify that the limit function s(t) satisfies
the integral equation (5.29)

We rewrite equation (5.31) in the form

s*(t) = :z:oV0<t<T"“"

(5.45)

. ¢—Tmin
s*(t) = zo+ / F(s*(r),7)dr ¥ T":" t < Tmin (5.46)

= a4 /o F(s*(r), 7)dr — /O % (s (1), r)dr (5.47)
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Now as i — oo, fg f(s™(r),7)dr — [¢ f(s(r),T)dT because f(z,t) is uni-

formly continuous. Furthermore the last term of (5.47) tends to zero because,

. e
I / * Al < [ Kpdr (5.48)
< K, imn (5.49)

k
— 0asi — oo (5.50)

We have thus shown the local existense of a solution to the Cauchy differ-

ential system satisfying the specified initial condition. <Ié

5.2.2 Caratheodory Differential Syétems

We will now develop the theory in a manner quite analogous to-the develop-
ment for Cauchy differential systems. We will formulate the problem, and prescribe
the solution concept. We will then state the equivalent integral equation, and proceed
to derive conditions for existence of solutions.

We will now state and prove the ex_istense theorem for Caratheodory Differ-

ential Systems of the following form.

i = f(zt) ' (5.51)
z(t=0) = zo | (5.52)
zeR"teR, (5.53)

f(z,8) R x Ry — R (5.54)

(5.55)

where In the domain D of the (z,t) space,
o f(z,t): R" x Ry — K" is continuous in z € D.
o f(z,t): R* x Ry — R is discontinuous in ¢ € D on sets of zero measure.

e f(x,t): R* x §R+ — R" is measurable in ¢ € D for each z € D



91

o [|f(z,t)|]| < Ks(t) ¥ (z,t) € D where K;(t) : R, — R is summable.

The aforementioned conditions on the function f(z,t) are also called Caratheodory
conditions.
We now formally define the solution of a Caratheodory differential system.
Caratheodory Solution Concept: An absolutely continuous vector func-
tion s(t) : Ry — R is defined to be a Caratheodory solution of the Caratheodory
differential system (5.51) if for almost allt € D,

ds o ax
EZ'“‘* = f(s(¢*),t) (5.56)

Indeed, we require the Caratheodory solution to satisfy equations (5.51) only
in the domain of continuity the function f(z,t). Furthermore, the solution concept
requires that the Caratheodory solution s(t) : R, — R" be an absolutely continuous
function, instead of merely being continuous. Absolute continuity is needed to ensure

- the equivalence between the differential and integral formulations. Also absolute
continuity eliminates pathologies as ones proposeci by Vitali [1], [21]. |

We now bring out the equivalence betweenlCaIatheodory solutions of the

differential system and equivalent integral equation formulations.

Proposition 5.2 We may state the conditions for equivalence of the Integral and

Differential forms of the Caratheodory problem as follows.

Given (G1) A Caratheodory differential system of the form (5.51).

If (I1) An absolutely continuous function s(t) : . — R" is a solution of the

vector integral equation
’ t
s(t) = zo +/(; f(s(7),7)dr (5.57)
where integration is in the sense of Lesbegue.

Then (T1) The absolutely continuous function s(t) : Ry — R given by (5.57) is also
a Caratheodory solution of the Caratheodory differential system given by
(5.51).
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Proof:

@ b The proof is a virtual repetition of the proof provided earlier in this
chapter for Cauchy differential systems, and will not be repeated here. <

We now present the conditions for existense (local) of Caratheodory solutions
for differential systems of the form (5.51).

Theorem 5.2 Local Ezistence Of Solutions To Caratheodory Differential Systems
Given (G1) A Caratheodory differential system of the form (5.51).
If (I1) The domain D where f(z,t) is specified for almost all t
(z,t) €R® X Ry : ||z — zo]| < K, and t < K,
(12) f(z,t) : R" x Ry — R is measurable in t € R, for all z € R
(13) || (2, )|l £ Ks(t) V (z,t) € D where K;(t) : R, — R is summable.
(I4) There ezxists 0 < Kymin < K; such that

Kemin
/ Ky(r)dr < K, (5.58)
0

Then (T1) The differential system (5.51) has atleast one Caratheodory solution s(t) :
Ry — R* for t < min(Ky, Kimin) satisfying the initial condition s(0) = zo.

Proof:

The proof consists of the following steps.

Step 1. We will define a sequence of functions that form approximate solutions of the
integral equation equivalent to the Caratheodory differential system. Note that

the solutions are Caratheodory solutions.

Step 2. We will show that this sequence of proposed Caratheodory solutions is both

uniformly bounded and equicontinuous.

Step 3. Invoking the Arzela-Ascoli theorem, we will show that there exists a uniformly
convergent subsequence of Caratheodory solutions whose limit is the Caratheodory

solution to the Caratheodory differential system.
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Step 4. We will now pass to the limit of this subsequence, and show that the limit
function satisfies the integral equation, and hence the Caratheodory differential

system.

First we note two properties that follow from the assumption (I2) and (I3)
made on the vector function f(z,t). We will use these properties later in the proof.
The properties follow from elementary results in real analysis.

Property 1.

Given that f(z,t): ®" x R, — R" satisfies assumptions (I1), (I2) and (I3),
and that the function s(t) : 4 — R is measurable for all 0 < ¢ < K, then the
composite function f(s(t), t) : B x Ry — R™ is summable. (Proof is by invoking the
implicitness result in measure theory.) |

Property 2. '

The function f; K;(7)dr : R4 — R is contiriuous on the closed interval
[0, K:] and is therefore uniformly continuous. (Proof is by invoking the result that
continuous functions on compact metric spé.ces are uniformly continuous.)

Step 1.

Set Tinin = min(Ky, Kimin). For t € [0,Tin], we construct a sequence of

functions s"(t),‘i =1,2,... in the following manner.

s'(t) = zV0<t< T"“"‘ (5.59)
t- in

= I +/ T),T)d‘l' v Im <t < Tnin (5.60)

i=12,... (5.61)

Using assumption (I2), we note that the Lesbegue integral in (5.60) has
meaning. _

It follows that the functions s'(t) i = 1,2, ... are defined for 0 < t < Th;.

Step 2:

We show uniform boundedness as follows. For any integer i € Z,., we have,
. Tmin .
SO < Hleall +11 [ £(s%(r), )] (5:62)

Tmin
< leoll +11 [ ™ Ks(r)ar| (5.:63)
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< llzol| + K- | (5.64)

Here we have made use of assumption (I3) on the summability of the func-
tion f™" ||K;(7)||dr with the assumption [7™" ||K;(7)||dr < Kk, € R,

Hence the sequence of functions si(t) i = 1,2,... is uniformly bounded.

We show equicontinuity as follows. For any i € Z,, for all t;, € R, and
t2 € R, such that Iﬂ‘m < t; <t € Tmin We have

Tmin,

S(t) = zo+ /o"" ™ f(i(r), r)dr (5.65)
s'(ts) = :z:o+/ot2-—mimf(s"(1'),1')dr (5.66)
() = el < 11 [T Kyl (5.67)

Therefore, given any € € R, it must be possible to choose a § so that for all
ta, 1 such that ||t; — ;]| < 6, we can ensure, by (5.67) that ||si(ts) — si(t1)|| < e. By
invoking Property 2, we see from (5.67) that this is indeed the case. Equicontinuity
is therefore shown for the family of functions si(¢) i = 1,2,...

Step 3:

Having shown the uniform boundedness, and equicontinuity of the sequence
of functions s'(t) i = 1,2,... on the closed interval [0, Tmin), we invoke the Arzela-
Ascoli Theorem to guarantee the existence of a subsequence s*(t) k = 1,2,... that
is uniformly convergent in the interval [0, Thnin)-

- We therefore claim that the sequence s*(t) k = 1,2,... converges to an
absolutely continuous function s(t) as ix — co. Here we use an elementary result from
analysis that the limit of a convergent sequence of absolutely continuous functions is
also absolutely continuous.

Step 4:

Having passed to the limit, we now verify that the limit function s(t) satisfies
the integral equation (5.57)

We rewrite equation (5.60) in the form

s*(t) = ZV0<t< (5.68)
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s*(t) = zo+ ]o R f(s*(r),T)dr V T'z,’:" <t < Tmin (5.69)
= zo +/ot f(.s""('r),r)dr—‘/o—am f(s™(),7)dr (5.70)

Now as iy — 00, f§ f(s*(7),7)dT — [} f(s(7),)dT because f(z,t) is con-

tinuous in z. Furthermore the last term of (5.70) tends to zero because,

L[ sl < [ Krr (5.1)
— 0asi — o0 (5.72)

We have thus shown the local existense of a Caratheodory solution to the

differential system satisfying the specified initial condition. </

5.2.3 Filippov Differential Systems

In this section we will develop solution concepts and conditions for exis-
tence of solutions to differential equations with discontinuous right hand sides. Such
equations represent physical systems governed by switching behaviours.

Our method of analysis would be the following kind. Instead of describing
solutions for differential equations with discontinuous right hand sides, we will con-
sider differential inclusion which include the said discontinuity as a special case. We
will then describe generalized solution concepts for these differential inclusions, and
will present conditions for existense of generalized solutions to differential inclusions.

We consider Filippov Differential Systems of the following form.

& = f(z,t) (5.73)
z(t=0) = (5.74)
zeR teR, (5.75)

flz,t) : R" x Ry — R (5.76)

(5.77)

where In the domain D of the (z,t) space,
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o f(z,t): R* x R, — R is discontinuous in z € D on sets of zero measure.
o f(z,t): R" x Ry — R" is discontinuous in ¢ € D on sets of zero measure.
o f(z,t): R" x ?I?.,_ — R" is measurable in ¢ € D for each z € D

o ||f(z,)l| < K;(t) V (z,t) € D where K/(t): Ry — R is summable.

The aforementioned conditions on the function f(z,t)R" x R, — R" are
also called Filippov conditions.

We will now consider a differential inclusion that adequately describes the
discontinuous system. Though the function f (z,t) : R* xRy — R of equation (5.73)
is undefined on sets of zero measure, we choose instead to represent the function
f(z,t) : R* x Ry — R" by a set valued map on such sets of zero measure. That
is to say, if for instance the function is undefined at a point (z*,t*) € ®* x R, we
formally define the function to be set valued at the point (z*,t*). Indeed, depending
on the set-value attributed to the function at the point (z*,#*), we may show the
existense of certain generalized solutions to the system (5.73). To comstruct the
inclusion intelligently, we need some knowledge about the behaviour of the function
f(z,t) : ®* x Ry — R", in a neighbourhood of the point of discontinuity. To
justify the use of the inclusion, we must show that given any arbitrary e € R4,
there exists a small enough § € R, neighbourhood of the point of discontinuity,
such that, the trajectories of the differential equation in this § neighbourhood are ¢
close to the solutions of the differential inclusion. Furthermore, as the size of the set
containing the point of discontinuity shrinks to zero, that is § — 0, the solutions of
the differential equation tend to the solution of the differential inclusion. That is to
say, that the trajectories of the differential equation weakly converge to the solution
of the differential inclusion. We will say more about this later.

Indeed, given a discontinuous differential system of the form (5.73), henceon-

ward we will replace it (whenever possible) with a differential inclusion of the fol-

lowing form.

& € Fl(z,t) (5.78)
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o(t=0) = zo (5.79)
zERtER, (5.80)

Flz,t) : R xRy » SR (5.81)

(5.82)

where S is a set in ®" and in the domain D of the (z,t) space,
o the set valued map F(z,t): R* x R, — S € R" is upper semi-continuous.
o The Range[F(z,t)] € R" is compact and convez.

Comment 5.2.1 The definition of the inclusion F (z,t) is such that it is single-valued
in the domain of continuity of the function f(z,t), indeed it is equal to f(z,t) in the

domains of continuity, but is set valued in the domains of discontinuity of f(z,t).

Comment 5.2.2 It is important to note the properties of the set S € R™ which will be

used for the existence of solutions.

We now formally define the solution of a Filippov differential system.

Filippov Solution Concept: An absolutely continuous vector function
s(t) : Ry — R is defined to be a Filippov solution of the Filippov dzﬂ'erentzal system
(5.78) if for almost all t € D,

d - .
—limee € F(s(t7), ) (5.83)
where
F(s(t*),t*) = f(s(t*),t*) in the domains of continuity (5.84)
F(s(®),t) = () [\ convez-hull(B(z,6) — N,1) (5.85)
§>0 uN=0 .

and (\,n=o denotes the intersection over all sets N of Lebesgue measure zero where

the functionf(z,t) is either undefined or discontinuous.

Comment 5.2.3 In the domains of continuity of f(z,t) : R} — R", the inclusion
F(z,t) is the same as the function and therefore the set operation € in equation

(6.165) must be replaced with the strict equality =
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The utility of the Filippov solution concept is that it is indeed the limit of
solutions to (5.73) averaged over neighbourhoods of diminishing size. The key point
to be understood is that the Filippov trajectories of the discontinuous system remain
close to the true trajectories.

As was evidenced earlier in the proofs of the Cauchy and Caratheodory
systems, the method of constructing solutions to differential equations begins by
constructing sequences of approximating solutions, and then ensuring that the ap-
proximations converge in some sense. Indeed, it now becomes important to formalize
the notion of what an acceptable definition of an approzimate Filippov solution might
be. We now introduce some additional notation to help facilitate the definition.

We first denote the closed §-neighborhood of a set, by M?®.

The é-neighborhood of a function is a set valued map, associating to each
point in the projection of the graph to the range, a closed set of size 6 containing the
point. Formally stated, given a function f(z) : R™ — R*, the § — neighborhood of
the function is the set-valued map denoted by [f(z)]’ : zin®™ — B(f(z), ) € ®"

Example 5.2.1 Neighborhoods of Functions

Let p(z) : R* — R be a real-valued function, then [p(z)]’ : R* — [p(z) —
6,p(z) + 6] is a real, set-valued function, that maps every point R* to an interval in
R of length 26.

Qualitatively, we wish to describe an approximate solution of a differential
inclusion in the following manner. Given an instant of time t* € R, and a candidate

approximate solution s(t) : ®, — R, defined almost everywhere, we consider two

closed sets.
Sty e ® ~ (5.86)
(t*)° € R, (5.87)

Note that [s(¢*)]®

We formalize the notion of an approximate solution in the following manner.

An absolutely continuous vector function s(t) : Ry — R*, § € R4 is defined to be an
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approzimate Filippov solution of the Filippov differential system (5.78) if for almost
allt € D,

e € F(B(s(t),8), B(t",6)) (5.88)
where

F(B(s(tY), 6), B(t*,6)) = | F(s(@t*),t))° in the c{omains of continuity (5.89)

F¥(B(s(t*), 6), B(t*,6)) = [convez-hull f(B(s(t*),6) — N, B(t*,6))]° (5.90)

- where the intersection over all sets N of Lebesque measure zero where the functionf(z,t)
18 etther undefined or discontinuous.

We now state the theorem that guarantees the local existence of Filippov

solutions.
Theorem 5.3 Local Ezistence Of Filippov Solutions To Filippov Differential Systems
Given (G1) A Filippov differential system of the form (5.78).
If (I1) The domain D where f(z,t) is specified for almost all t
(z,t) ER* X Ry ¢ ||z — z0|| £ Kz and t < K,
(12) f(z,t): R x Ry — R is measurable in t € R, for all z € K"

(13) ||f(z,t)ll < Ks(t) ¥ (z,8) € D where Kf(t) : Ry — R is summable.
Furthermore there ezists K; € Ry such that K; > |K;(t)| Vt€ D
(I4) The differential inclusion in (5.78), F(z,t): R* x R, — S € R", where S
is a set in R™ and in the domain D of the (z,1) space satisfies the following
two assumptions.
* the set valued map F(z,t) : R* x Ry — S € R" is upper semi-
continuous.

* the set S € R™ is compact and convex.

Then (T1) The differential system (5.78) has atleast one Filippov solution s(t): Ry —

R for t < min(K,, %) satisfying the initial condition s(0) = zo.
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Proof:

The proof consists of the following steps.

Step 1. We will define a sequence of functions that form approximate Filippov solutions
to the Filippov differential system. We will use the method of Euler broken lines

to generate such approximate solutions.

Step 2. We will show that this sequence of approximate Filippov solutions is both uni-

formly bounded and equicontinuous.

Step 3. Invoking the Arzela-Ascoli theorem, we will show that there exists a uniformly
convergent subsequence of approximate Filippov solutions whose limit is a Fil-

ippov solution to the Filipov differential system.

Step 4. We will now pass to the limit of this subsequence, and show that the limit
function is a solution of the inclusion and hence of the the Filippov differential

system.

Step 1: .
Set Trmin = min(K, %) For t € [0,Tmin), we construct a sequence of
functions s'(¢),: = 1,2,... in the following manner. We consider a partitioning of the

interval [0, T}sin] given by,

Al = T",“"‘i=1,2,... | (5.91)

2
tho= jAt j=0,2,...,i (5.92)

Note here that the size of the ith partition is given by A and represents the the
finesness of the discretization of the interval. The step, or instant of time j, given a
step size or discretization A’t is referred to by t; We now construct an Euler broken

line in the following manner.

$(0) = o (5.93)
s'(t) = S'(t) + [t — ti]vl (5.94)
vi € F(s'(t), ) i<t <tiy, (5.95)

i=1,2... j=02...,i (5.96)
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To understand the constructed approximations, let us explicitly write out
the expressions for =1 and ¢ = 2
The first(z = 1) function in the sequence s!(t) is constructed with 1 partition
of the interval [0, T\nis], the length of the partition being At = T,;,. Indeed the
interval over which the function s'(¢) would be defined is [t},¢}] where
ty = 0 (5.97)
7 = Tmin (5.98)

The first function in the sequence, s'(t), is explicitly written as

s0) = g0 | (5.99)
stt) = 0)+[t—0Jv} 0<t< Thin (5.100)
v e F(s(0),0) ~ (5.101)

Comment 5.2.4 The the main difference between differential equations and inclusions
is that in equation (5.101) we would have strict equality = in the case of differential

" equations.

The second (i = 2) function in the sequence, s*(t), is constructed with 2
partitions of the the interval [0, Tonin], the length of each partitioned interval being
A?t = Imin, Indeed the two intervals over which the function s%(t) would be defined

are [t2,12] and [t2,12] where

£ =0 (5.102)
£ = T';‘" (5.103)
£ = Thin (5.104)
The second fupction in the sequence, s2(t), is explicitly written as
$2(0) = =z (5.105)
s}(t) = S(0)+[t—0d 0<t< % (5.106)
= 32(%‘1) +t- T';"‘]vﬁ % <t < Thin (5.107)
vg € F(s%0),0) . (5.108)
v € f(sz(%),%) (5.109)
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Though we are yet to show that any of these functions so constructed are
approximate solutions of the differential inclusion, the flavour of solution construction
using Euler broken lines is fairly obvious. However we will show later in the proof
that the functions s*(t) are indeed approximate solutions, (approximate in the sense
of our earlier definition of approximate Filippov solutions)

7 Step 2:

Now we note some properties of the functions s(t) : R, — R" defined in
equations (5.93) - (5.96). -

We show first that the graph of the functions s(t) : ®, — R" is contained
in D(z,t). Indeed,

|Is*(¢) = s'(0)]]. = O for t=.0 (5.110)

lIs(2) = s'(0)ll2 = [Is°(E5) + [t — £iJvl — S (O))}z - (5.111)
= |ls'(t}) = s"(O)lz + II[t — &)} (5.112)

< Kjllt; - 0|l + K|t — ]2 (5.113)

< Kgllt -0l (5.114)

< Kqlltll (5.115)
t>04i=1,2,... j=0,2,..., (5.116)

It is therefore obvious that si(t) : Ry — R* € D(z,1).
We will now show uniform boundedness of the functions s(t) : R, — R" as

follows. For any i € Z,, and for all ¢, we have

lIs'@)|ls = ||zollz for t=0 (5.117)
'Ol = [Is'(t) + [t — £i]vil. (5.118)
B B O [P e (5.119)

< lzollz + KsTmin (5.120)
t>0i=12... 0=12,...,3 (5.121)

Consequently the functions s'(¢) : R, — R" are uniformly bounded.
We will show equicontinuity as follows. For any i € Z,, given an € € R, we

will show that there exists a positive constant § € R, such that for any two instants of
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time t; < i; € Ry, satisfying the condition [t —1;| <& — ||s'(t2) —s'(t1)||2 < &. We
first note that the two instants of time ¢,, ¢, satisfy the following property. By virtue
of the construction of intervals of time A' outlined earlier there exists j; < ¢ € Z,
such that

- Tmin . Tmin
n——=< t <[h+]] : (5.122)
. Tmin . Tmin
(1 +m) ;S b S (h+m+1) - (5.123)

where m € Z, may take integer values satisfying 0 < m < i —j;. Indeed, m = 0
corresponds to the two instants of time ¢;,%; lying in the same interval, and the case
when m =1 correéponds to the instants ¢,,¢; lying in adjacent intervals of time. We

will say more about these two cases later. Now write

t2—t1 = [t2—tjem] + [tivtm — Gtmor] + - + [t — 1] (5.124)
si(t2) - si(tl) = [si(tz) - Si(t.ﬁ-l-m)] + [si(t.ﬁ+m) - 3£(t.7'1+m-1 )] +-- (5'125)

- . 4o+ [ (E41) — 81 ()] (5.126)
lls(t2) = $'(t)lla < |Is(t2) = S (tipam)ll2 + |18* (B bm) = 8 (Eizmer)||2 +(5.427)
4o |8t 41) = S' ()2 (5.128)

S Killtz = tj 4m] + Killtivem — tigm—a] + -+ (5.129)

+.. .+ Kftj41 — ta] (5.130)

lls'(t2) = s'(t)lla < Kylta — 1] (5.131)

Therefore, given any ¢ € .., we can choose a § = KL! such that the following is true

[t2'—t1] < 6 (5132)
€
<% (5.133)
lIs*(t2) = s"ta)ll2 < Kilts — t] L (5.134)
< Ky (5.135)
f
lls'(t2) = s'(ta)ll2 < e (5.136)

Equicontinuity is therefore shown by equations (5.132) and (5.136).
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To clarify the proof, we will illustrate the cases when ?;,; lie in the same
interval and the case when the instants 11,12 lie in adjacent intervals.
Indeed, when we have m = 0 and the two instants of time lie in the same

interval, we have.

le';f‘"s t 5U1+1]T’;.“"‘ (5.137)
(0722 < by < (o404 1) i (5.138)
si(t) = s‘(t§1)+[t;ft§1]v;:l (5.139)

s'(t)) = () +[ta—ti v} (5.140)
lls*(t2) — $'(ta)lla < |Ift2 — ta]vl, (5.141)
< Kflt; — 1] (5.142)

Equicontinuity is trivially obvious. Similarly, for the case when m = 1, we have

Tr;u'n

. Tmin . .

h=- S h Sh+l)—— (5.143)
. Tmin . Tmi’n

(r+1)==< & S(i+1+1) : (5.144)
0<m<i-j (5.145)
[t2—t] = [t2—tj41] + [Ejram — 1] (5.146)
s'(t) = s'(ts) = $i(ty) - 8 (5 4q) + 8 (8, 41) — $'(t2) (5.147)
lls(t2) = s'(t)ll2 < |Is*(ta) = S°(E5 p)ll2 + [16°(Eh, 40) = S°CR0)ll2 (5.148)
< Kifta =t ] + Kt 41 — 1] (5.149)
< Kifta - t] (5.150)

Equicontinuity is hence shown. .
We will now show that functions s(t) : R, — R" are indeed A’ approximate

solutions of the differential inclusion (5.78). Indeed, it would suffice to show that

e € P (B, 49, B, 9 (5.151)
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From the definition of the functions s'(¢) : R4 — R in (5.95) it is clear that
ds’

E|‘=‘* € F(s'(t),8) |tr—ti| < A

we only strengthen the inclusion by averaging over a neighborhood
€ F(B(s'(t"),AY), B(t*, AY))

we strengthen the inclusion further by
€ FA(B(s'(t*), A%), B(t, A%)

i=12,... 7=0,2,...,%

Hence the s'(¢) : R — R" in (5.95) are indeed A approximate solutions of the
differential inclusion (5.78).

Step 3:

Hé,ving shown the uniform boundedness, and equiconf;inuity of the sequence
of functions s*(t) ¢ = 1,2,... on the closed interval [0, Tnin], We invoke the Arzela-
Ascoli Theorem to guarantee the existence of a subsequence s*(t) k = 1,2, ... that
is uniformly convergent in the interval [0, Tiin].

We therefore claim that the sequence s*(t) k = 1,2,... converges to an
absolutely continuous function s(t) as iy — co. Here we use an elementary result from
analysis that the limit of a convergent sequence of absolutely continuous functions is
also absolutely continuous. |

| Step 4:

As the inclusion satisfies the assumption (I4) of the theorem, we now invoke

the Filippov lemma to conclude that the limit function s*(t) — s(t) as A’ — 0 also

satisfies the differential inclusion. This concludes the proof of the theorem. <

5.3 Design Of Sliding Mode Controls

In this section, we specialize the preceding theory to a special class of systems

of the following form.

t = fi(z)for [z: s(z) >0]» (5.152) |
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= f_(z)for [z: s(z) <0 (5.153)

where z € ", and f(z) : R* — R" and s(z) : R" — R. Note that S = {z : s(z) = 0}
is a manifold of dimension n — 1. This manifold S is called the sliding manifold or
sliding surface. The dynamics of the system on this manifold S is called the sliding
dynamics or sliding modes of the system. The design of the manifold S is such that it
is globally attractive, and trajectories commencing from arbitrary initial conditions
reach S in finite time. Furthermore, the dynamics on S achieves the control objective.

Local existence of solutions is verified by modelling the system represented
by equations (5.152) - (5.153) by the appropriate differential inclusions and verify-
ing whether the inclusion satisfies the hypotheses of the theorem concerning local

existence of Filippov solutions. A

- Uniqueness, in the sense of the Filippov solution is shown if either %;—’)- f+(z) <
0or 2Ef () > 0. This is shown in [30], [15], [14]. The physical interpretation of
these conditions is simply that the trajectories of the system are always directed

towards S , thus rendering it attractive.
Example 5.3.1

T = —ksgnlz] | ' (5.154)

sgnlz] = lifz>0 ' (5.155)
sgnfz] = —1ifz <0 (5.156)

Modelling the system (5.154) by a simple differential inclusion, we rewrite (5.154) as

z € F(z) (5.157)

where
F(z) = sgn[z]ifz#0 (5.158)
F(z) € [-1,1]ifz=0 (5.159)

The inclusion in (5.157) is closed, bounded, conver and uppersemicontinuous and
therefore by the theorem on ezistence of Filippov solutions, Filippov solutions exist

for this system.
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The sliding modes of a system, defined to be the Filippov solutions to the
system on the manifold S, are calculated by performing Filippov averaging, which
is a convex combination of dynamics on either side of the manifold S. Indeed, by
dynamics on either side of the manifold S, we merely refer to fy(z) and f_(z). The
simple extension of the notion of sliding manifolds to non-autonomous systems is
shown in [30].

While the theory of existense of solutions has been developed for general non-
linear systems with discontinuous controls, the methodology to design sliding mode
controls to achieve stabilization or tracking is well understood only for a restricted
class of systems. In the following sections, we will present the theory for Linear Time
Invariant Systems - SISO and MIMO.

Comment 5.3.1 The design of sliding surfaces for linearizable nonlinear systems, fol-
lows ezactly the design of sliding controls for linear time invariant systems. The only

difference is that the controls are designed using the transformed variables.

5.3.1 Sliding Mode Design For LTI Systems

Consider linear time invariant systems represented by the following equa-

tions

=A%+ Bu (5.160)

where z € R*, A € R**", B € R™*" and the controls u € R™. We will now prescribe
the sliding mode controller design procedure in a sequence of steps.

Step 1.

Check to see if the system is completely controllable. If the system is not
completely controllable, a sliding mode controller cannot be designed.

Step 2.

If the system is completely controllable, find a linear transformation of the
state that recasts the system in the controllable canonical form. That is find a trans-
formation

z=Tz T € R™*" (5.161)
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such that the state equations are of the form

, 0 1--- 0 0
I
D= +| " u (5.162)
. 0 0 0 1 0
Tn
R b] b2 bn | 1
Step 3.
We define S(z) : R — R as
S(z) = @171 + @222 + -+ + @ns1Tay + 24 (5.163)

where the coefficients a; ¢ = 1,2,...,n — 1 of (5.163) are such that the polynomial
S(z) is a Hurwitz polynomial. Furthermore, note that S = 0 is an n — 1 dimensional
manifold, called the sliding surface.

Indeed now choose the control input u of ("") to be

u(t) = —byzy — bozy- -+ — baTn — vy(2) (5.164)
v(t) = —a1z, —Va_zwa — -t —an-1Zn — ksgn[S(z)] (5.165)

Choice of control u enables us to rewrite system (??) in the form

Ty = (5.166)
43 = 3 (5.167)
Tp-1 = —@1T] — ATz — *++ — Gp_1Tn-1 + S(T) (5.168)
S(z) = —ksgn[s(z)] (5.169)

Indeed utilizing the theorems developed in the preceding section it is easy to show that
Filippov solutions exist, and that S(z) = 0 is reached in finite time from arbitrary
initial conditions. Furthermore on the n — 1 dimensional manifold S = 0, the reduced

order dynamics is exponentially stable. Consequently global exponential stability of

the system is shown.
The choice of discontinuous input induces chatter in the system. To reduce

the chatter, we utilize various regularizations and smoothings of the discontinuous
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sgn function. The common smoothing technique is the use of the saturation function,
which is presented in [30).
We now present a choice of continuous control input, that enables us to reach

the sliding surface S = 0 in finite time. Indeed, consider the control given by

u(t) = —bizy— by — bz — 0y(2) (5.170)
v(t) = —a132— 6Tz — -+ — Gn_1Tn — k|S(z)|% sgn[S(2)] (5.171)
m > 1 (5.172)
Such a choice of control u enables us to recast the system equations in the
form
4 = o (5.173)
&g = T3 (5.174)
Tpel = —G1T) — Q2T —+++ — én_lzn_l + S(z) (5.175)
S(z) = —k|S(z)|%sgn[s(z)] (5.176)

Indeed utilizing the theoréms developed in the preceding section it is easy to show
that Filippov solutions exist, and that the n — 1 dimensional manifold S(z) = 0 is
reached in finite time. Furthermore on the n—1 dimensional manifold given by S =0,
we see that the reduced order dynamics is exponentially stable. Consequently global
exponential stability of the system is shown. This control law u is interesting in that

it is continuous, but not differentiable.

Comment 5.3.2 The disturbance rejection properties of the discontinuous conirol law
are significantly better than that of the continuous control law. This indeed is the

design tradeoff involved in designing continuous control laws.

Comment 5.3.3 The extension of the sliding mode control techniges to controllable
MIMO systems that are decouplable is trivial. Once the system equations are trans-
formed into decoupled systems, each of which is in the controllable canonical form, we
apply the design method outlined earlier to design sliding surfaces for the decoupled
system. Note however that sliding occurs not at the individual surfaces, but at the

intersection of all these surfaces.
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In the following section, we will present a class of non-conventional discon-

tinuous control laws for a class of mechanical systems.

5.3.2 Novel Discontinuous Control Laws for Mechanical Sys-

tems

Many mechanical systems are described by differential equations which are
essentially of the second order. We will now describe a set of control laws for such
systems, the control objective being regula,tién to the origin. While the extension
of these control laws to systems of higher dimensions is non-trivial, these laws by
themselves are quite important from an applications point of view. They provide the
engineer with an additional set of nonlinear tools to control mechanical systems. In

this section, we will concern ourselves with planar dynamical systems of the form.

& = z, , (5.177)
P = u (5.178)

The various control laws that ensure finite time stabilization for the system
(6.316) - (6.317) are as follows.

| —sgn[z, + z—";—’[] if |z, + QJ;—’-II >0 5.179
Uoptimal = . za|z2 ( . )
—sgnz,)] if |z, + _I_.12 |=0
Uwinding = —klsgn[a:l] - kgsgn[mg] k1 >k>0 (5.180)
Unested = -kzsgn[&‘z - klsgn[z'l]] (5181)
Uswitching = —kasgn[z, + kllxll#sgn[ml]] ky is large (5.182)

We will now show that for all the aforementioned control laws the states of
the system are regulated to the origin in finite time.

We will examine each control law briefly, show the relevant properties and
present a phase portrait of the system subjected to the control law for a variety of
initial conditions.

Optimal Control Viewpoint
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Consider the minimum time optimal control problem with the functional to

be minimized, given by :
t

J= /0 " at (5.183)

Using standard method of optimal control, we write down the Hamiltonian function
H(z,u,\t) as
H(.’B, u, /\, t) =1+ )\1:1:2 + /\zu(t) (5.184)

Indeed mere inspection of equation reveals that the control u(t) that minimizes the
Hamiltonian is given by
u(t) = —sgn[A2)umazs (5.185)

where o is the maximum permissible value of control. Without loss of generality, -

we will assume that up., = 1.

where A; and A; are the co-state variables. The co-state equations are given

: by
M =0 . (5.186)
e = =) (5.187)

Integrating the co-state equations yields
Ma(t) = =M(0)¢ — Ao(0)  (5.188)

Therefore the optimal control is given as
u = sgn[—A1(0)t — X2(0)] ' (5.189)

The control can assume only two values +1 or —1. When u = +1, we integrate the

state equations to obtain

z2(t) = t+ z2(0) (5.190)
t2

z1(t) = 7 + z2(0)t + z,(0) (5.191)
Eliminating ¢ we obtain (5.192)
z3 z3(0)

2 2
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Similarly, when u = —1, integrating the state equations we obtain
t2
:z:l(t) = ——2' + (Cg(O)t + 271(0) (5195)
Eliminating ¢t we obtain (5.196)
2 2
5 = —2 440020 (5.197)
2 2
These curves describe a family of parabolas, whose switching curve may be written
as
S(z,t) =, + —“'2”2' (5.198)
In terms of the switching curve, the control Uoptimal May be written as
—sgn[z, + £zl2£zl] if |z, + ﬂjlel >0 )
uopﬁma( = . " . (5.199)
—3gn[z,) if |z, + ’—*IZ—’-II =0

The phase portrait of trajectories subject to the optimal control Uoptimal 18
given below. Note the trajectories converging to the switching curve, which is non-

linear. (while the switching curve in conventional sliding mode systems is linear)The

chosen control gains are

o= 1 - (5.200)
ko (5.201)

I
(X

Winding Algorithm ‘

The winding algorithm was introduced by [22] and makes use of continuous
switching between the surfaces 2, = 0 and z; = 0 to reach the origin. The interesting
feature of this control technique is that the control has two switches. One switch is
used to change the direction, and the other is used to change the magnitude. By
repeatedly switching between the surfaces z; = 0 and z, = 0, we wind closer to the
origin.

Let us first prove the stability and finite time stabilization of the algorithm.

To show stability, we use the extended Lyapunov theorem, proofs for which may be
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Optimal Control

Figure 5.1: Finite Time Stabilization With Optimal Control

found in [1). The theorem is primarily used to conclude weak-stability of differen-
tial inclusions by investigating generalized gradients of non-differentiable Lyapunov
functions. A brief statement of the theorem would be as follows.

Given a differential inclusion & € F(z,t) and a nondifferentiable Lyapunov
function V(z). If for every element v in the generalized gradient of V, there exists
atleast one element f € F(z,t), such that LgV < 0, then the zero-solution is weakly
asymptotically stable. Indeed, weak asymptotic stability is the best we could hope
for when dealing with set-valued differential inclusions. '

Now consider the system (6.316) - (6.317) subject to the controls Uwinding-

The system equations are
3.71 = T2 (5.202)
T3 = —kisgn[z,] — kasgn[z,) (5.203)
Consider a candidate Lyapunov function

T2

V= l$1l+ le

(5.204)
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The derivative for z;,z; # 0 is given by

14

_FaTy (5.205)
<0 (5.206)

Therefore z; — 0, and the reduced dynamics is such that z; — 0. However, when
z, =0, it is clear that we have to investigate the properties of the generalized gradient
of V. However, it is obvious that when z; = 0, for every element v of the generalized
gradient of V, (which in this case happens to be any real number in (-1,1) ) there exists
an element of the inclusion F(z,t) (indeed, choose f = v) such that the generalized
gradient of V' along the flow of the inclusion F(z, t) is negative definite. The conditions
of the generalized Lyapunov theorem are satisfied, and hence the result.

Finite time is shown by considering the state equations of the planar dy-
namical system in the various quadrants. Indeed, if the portrait of the system were

to be drawn with z, along the z axis and z; along the y axis, we would note the

following.
2 , .
z, = % ®2 _ in the first and third quadrants (5.207)
ky + k,
2 .
Z2 = Fy %2 : in the second and fourth quadrants (5.208)
1— k2

Every instance the trajectory moves from the first quadrant through the fourth quad-
rant to hit the y axis, we see a contraction occurring in the magnitude of z; in the

following manner.
k- k
z3(t1) = ﬁxi(m (5.209)

From the third quadrant through the second to strike the y axis again, we see the

following contraction.
ki —k,

ky + k;
The state trajectory therefore winds to the origin.

The phase portrait of the planar dynamical system subject to the winding
algorithm is illustrated in below. Note the very interesting way in which the state

trajectories wind to the origin.
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Winding Algorithm

Figure 5.2: Finite Time Stabilization With The Winding Algorithm
The values of chosen control gains are

by = 2 (5.211)

Nested Switching Control

Nested switching controls work well for planar dynamical systems. The ba-
sic approach is to permit chatter about the dual sliding surfaces z; = 0 and z, = 0. It
is to be noted that chatter for multiple sliding surfaces is the equivalent of limit-cycle
like behaviour. Consequently, by utilizing multiple sliding surfaces, and nondiffer-
entiable controls, we are willing to tolerate limit-cycle like behavious at the origin.
Indeed, the problems associated with eliminating chatter in one-dimensional systems
naturally extend to therhigher order systems also. The use of saturation functions to
perform nested switching is an extension of the idea of using saturation functions in
one-dimensional systems, to many dimensions. The basic control technique is well un-
derstood in considering the following non-differentiable Lyapunov function. Consider

the system (6.316)-(6.317) subject to the nested switching control law given by

i o= 2 (5.213)
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T3 = —kasgn[zs + kysgn[z,] (5.214)

Now consider the following nondifferentiable Lyapunov function

y = =t k‘;""’[‘”‘]P (5.215)
V = [z2+ ksgn[zy]][&2 + Ofif |z > 0 (5.216)
= —ky|zy + kysgnfzq]| (5.217)
<0 (5.218)

Therefore z; — —kisgn[z,]. Indeed, it is easy to see that this happens in finite time.

As in finite time z, = —k;sgn[z,], now consider the Lyapunov function
Vi = %% o (5.219)
Vi = zizp ' (5.220)
= x;[—kisgn[zy]] in finite time (5.221)
< kol ' (5.222)
<0 , (5.223)

It is clear that ; — 0 in finite time. However, when z; = 0, z; € [—k1, k1], and
is not equal to 0. This is where chatter commences, and the system limit cycles
between the surfaces 71 = 0 and z; = kysgn[z;]. Such limit cycling behaviour is
present as the gain k; is not slowly reduced as z; — 0. Indeed if the multiplicand of
sgn|z,] was to decrease in magnitude and finally equal 0 when z; = 0, we can expect
T to also be equal to 0 without chatter. This indeed is the principle behind using
saturation functions as opposed to sgn functions in nested control. We will now show
an extension of this method, without using saturation functions.

The phase plot shown below clearly shows the behaviour of the system sub-

ject to nested control. The values of chosen gains are

ko= 0.5 (5.224)
ky = 5 (5.225)

Switching Control
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Nested Switching

-2.

-4,

0. 2.5 S.
xl

Figure 5.3: Finite Time Stabilization Using Nested Control

We now try to eliminate the problem of limit cycling between switching
surfaces that was mentioned earlier. We do this using the sthchlng control law

mentioned earlier which is of the form.
Uswitching = —ka3gn[za + k1|21 |™ sgn[z:]] (5.226)

Denote S = z,+4k; Ia:llfn'sgn[xl]. Note that S is not differentiable at z; = 0. However,

almost everywhere, the derivative of S may be written as

(5.227)

8§ = —kysgn[S] + k1|

101'1
By choosing a large value of k,, we hope to swamp the term kl—Lf Indeed, only

in cases when this is posmble, it is possible to conclude that
Ty = —k1|:31|msgn[a:1] (5.228)

And the conclusions of the previous section follow, without the limit cycle behaviour.
The phase portrait shown below illustrates the properties of the control law.

The values of chosen gains are

ko= 0.5 (5.229)
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Switching Control

+2.

-2.

Figure 5.4: Finite Time Stabilization With Switching Control

kr = 5 (5.230)
m = 2 | (5.231)

For the same values of control gains, it is possible to choose a higher order

fractional index, and the resulting phase portrait is shown below.
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Switching Control

=2,

-4,

0. 2.5 S.
x

Figure 5.5: Finite Time Stabilization With Switching Control
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Chapter 6

New Applications Of Sliding
Mode Theory

6.1 Introduction

In this chapter we will present new and varied applications of sliding mode
control theory. By applications, we refer to the solution of certain theoretical problems
using the technique of sliding modes, as opposed to the control of a physical system
using sliding mode control theory. We will use sliding mode theory in the solution
of certain classes of problems in the areas of nonlinear identification, synchronous
control, lyapunov control, and in the construction of observers. We will conclude this
chapter with a conjecture that opens an interesting avenue for research in control
using sliding modes.

The organization of this chapter is as follows. Section 1 presents the new
theory of sliding mode identifiers. We attempt to identify bounded but unknown
parameters using a sliding mode identifier. Section 2 presents results in synchronous
sliding modes. Section 3 presents the lyapunov control of certain benchmark prob-
lems, and section 4 presents the extension of sliding mode theory to solving some
problems in sliding mode observers. Finally we present an interesting conjecture, and
its verification using simulation in section 5. Each section is self contained, and has

simple examples and simulation plots to elucidate the theory. Each section concludes
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with a critical appraisal of the presented methodology, possible advantages to the
technique and the implementation difficulties associated with it. We also present the

scope for future extensions of the technique.

6.2 Sliding Mode Identifiers

In previous chapters we identified matching conditions to be satisfied by
‘perturbations to ensure attainment of the control objective. In this chapter we will

present methods to identify unknown parameters in a nonlinear system. We view
the process of controlling a system by identifying unknown parameters as a way of
aysmptotically enforcing the matching conditions.

In this chapter we present a novel identifier that guarantees exponentially
convergent identification for a class of nonlinear systems affine in the unknown param-
eters.The identifier uses variable structure control methodology to ensure exponential
reduction of the parameter identification error. We show existence of generalized Fil-
ippov solutions for-the identifier equations and show pa,ra.met;af convergence using
standard Fillipov averaging techniques and the method of equiva,leht control.

Throughout this section, we assume that unknown parameters of the con-
sidered nonlinear systems are bounded, and the bounds are known. Given full state
information of a nonlinear plant, the identifier then uses this state information, and
the bounds on unknown parameters to ensure ezponential convergence of the identi-
fied parameters. We also note here that by exponential convergence of the identified
parameter, we refer to the average value of the parameter as prescribed by the gen-
eralized Filippov solution to the discontinuous differential system.

We present theoretical results for general nonlinear systems and present

simulation results for a simple scalar example to illustrate the theory.
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6.2.1 Scalar Nonlinear Systems

To develop the intution embedded in the construction of the identifier, it is

useful to consider a simple scalar case. Consider the following scalar system.

¢ = 0f(z) + g(z)u (6.1)
where z € R, 6 € R and is unknown, |0] < k¢, v € R and f(z),g(z) R — R.
Comment 6.2.1 The unknown parameter ;snters the system equation affinely.

This simple system (6.1) could represent the velocity dynamics of a mass-
spring-damper system with an unknown nonlinear damping coefficient. We will say
more about this example later.

The statement of the problem is as follows. Given the values of the state
variable z € R, construct a nonlinear identifier that adaptively identifies the parameter
0 € R so that the estimation error goes to zero ezponentially.

To achieve this objective, we construct an identifier of the following form

A

= 0f(@) +g(au+n (6.2)
0 = w (6.3)
v = 2k|f(z)|sgn(5] (6.4)
wy = kisgn[i]sgn[f(z)] (6.5)
T =z-2 (6.6)
kB >0 (6.7)

Comment 6.2.2 The value of theta used in equation (6.2) is given as [6 mod k]

In this section and throughout this chapter, we will define the function
sgn[(-)] : R — [-1, 1] as follows

= |
sgn()] = i 101> 0 (6.8)

sgn[()] € [-L1]if |()] =0 (6.9)
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Comment 6.2.3 Such a definition of the function sgn[(-)] : R — [~1, 1] merely asserts
that the function is single valued when the argument is nonzero, but is set-valued when

the argument is equal to zero.

Subtracting the plant equation (6.321) and the identifier equation (6.2), and

using the identifier control inputs specified in (6.4) - (6.5) the error equations are

written as
& = 6f(z) - 2ks|f(z)|sgn(3] (6.10)
6 = —kysgn[E]sgn[f(z)] (6.11)
E = z-% (6.12)
b = 04 (6.13)

We will concern ourselves with the state estimation error, and parameter
estimation error dynamics henceforth. We will show existence of generalized Filippov
solutions, and parameter convergence to true values using this state estimation er-

ror, and parameter estimation error dynamics, We now state the main result of this

section.

Theorem 6.1 Ezistence of trajectories for identifier and state estimation error dy-
namics, stability of state estimation error dynamics, and exponential convergence of

identified parameters to their true values in the sense of Filippov.

Given (G1) A nonlinear system of the form (6.321)

(G2) A nonlinear identifier of the form (6.2) resulting in state estimation and
parameter identification error dynamics of the form (6.10) - (6.11)

If (II) |0| < kg
(12) |f(z)| # O along the system trajectories.

(I3) In any compact region D, f(z) is bounded. That is there ezists kf =
sup[f(z)]V z € D.

Then (T1) Filippov solutions ezist for the system (6.10) - (6.11)
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(T2) The surface & = 0 is attractive.

(T3) The sliding dynamics on the surfaces = 0 are such that the parame-
ter estimate 0 converges to the true value 8 exponentially in the sense of

Filippov.

Proof: & > We will prove the theorem in three steps. First we show ex-
istence of solutions, then we show the existence of attractive sliding surfaces, and
finally we show parameter convergence to true values.

Step 1: Existence Of Filippov-Solutions

In a compact domain D of the (z, &, ) space, the righthandside of equations
(6.10) - (6.11) can be modelled by a differential inclusions of the following form

i € Fuz,%,0) , (6.14)
€ Fo(z,%,0) (6.15)

D

where the inclusions F;(z, %,0) and Fy(z, %,0) are defined to be-

Fa(2,8,0) = 0f(z)—2ke|f(z)|sgn(s] if &#0 (6.16)
€ [—3koks,3koks] if £=0 (6.17)
Fo(z,3,0) = —kysgn[i]sgn[f(z)] if & #0 (6.18)
€ [~ki,k] ifE=0 (6.19)

where k; is supremum of the function f(z): ® — R over all values of z € D. The

inclusions F;(z, ,0) and Fy(z, %,0) are
e closed, convex, bounded and upper-semicontinuous.

Therefore, invoking the theorem on existense of Filippov-solutions we show
that solutions exist for the system represented by equations (6.10) and (6.11).

Step 2: Attractivity Of Sliding Surface

We will now show that the surface # = 0 is attractive. Consider a candidate

Lyapunov function V(%) : 8 — R, given by

V= (6.20)

0o | 8
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Differentiating (6.20) along the flow of (6.10), we get

V = #0f(z) - 2k f(2)||3| (6.21)
< —|3[2kel f(z)| - 6 ()] (6.22)
<0 (6.23)

We have used the fact that 2ks|f(z)| > 0f(z), and that f(z) # 0 along the system
trajectories to conclude that V is negative definite and therefore the surface = 0 is

globally attractive.
Furthermore, as the term 2ky|f(z)| > 8f(z), the surface # = 0 is attained

in finite time and sliding occurs on the surface # = 0.
Step 3: Parameter Convergence
We will prove convergence of the identified parameter to its true value using
two methods of proof. The first method will be the method of Filippov averaging and
the second method will be using the Equivalent control method.

Proof By Filippov- Averaging

The sliding mode on the surface Z = 0 may be estimated to be a convex
combination of the the dynamics on either side of the surface. This indeed is the
principle behind the Filippov averaging technique. The averaged dynamics of the

estimation error on the surface Z = 0 takes the following form.

?aumge = 70f(z) - 2kalf (@) + [L - 7]6F () + 2k f()]]  (6.24)

Oaverage = Y[—krsgn[f(2)]] + [1 — 7][k1sgn([f(2)]] (6.25)

where 0 < v < 1. But as Zgyerage = 0 in finite time, set the left hand side of equation
(6.24) to 0 and solve for 4.

Taverage = V[0f(2) = 2kl f(2) ] + [L = 7][6f(2) + 2holf(z)]  (6.26)

0 = 1[0f(z) - 2ol f(2)) + [L = 1[0 (=) + 2kl f(2)]  (6:27)
bsgnlf(z)] 1

T = Tk, 2

(6.28)
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Comment 6.2.4 It is obvious from (6.28) that 0 < < 1.

To find the sliding dynamics of éa,,,,age along the surface # = 0, substitute
the value of « obtained in equation (6.28) in equation (6.25) to obtain,

Baverage = 7I—krsgn[f(z)]] + [1 — V[krsgnlf ()] (629)
= “UlhsgnlfE)] +bognlf(=)] (6.30)
= ~2busgnlr@ I L nisen e

5 ki ~

aauercge = "‘%0 ) (632)

Comment 6.2.5 Here we have made use of the fact that sgn][f(z)|sgn[f(z)] = 1. This
is true only as long as f( ) # 0. Hence we needed the assumption that f(zx) # 0 along

the trajectories of the system

It is clear from equation (6.32) that the averaged dynamics of the estimation

error 0 is such that the parameter estimation error is exponentially diminishing in

the sense of Lyapunov.

Proof By Equivalent Control

The equivalent control method finds the average symbolic value of the func-
tion sgn[#] : ® — [~1,1] necessary to ensure the invariance of the sliding surface.
This value of sgn[z] : ® — [—1,1] is used to find the reduced order dynamics on the
invariant sliding surface.

Using this method, we set the lefthandside of équation (6.10) to 0, and find

the value of sgn[#] : R — [—1,1] necessary to ensure that # = 0 is invariant. That is
& = 6f(z) - 2ks|f(c)|sgn[s] (6.33)

0 = Uf(a) - 2kl (2 lsgnla] (6.34)
sonfi] = 5r-bsgn () (6.35)
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Substituting the value of sgn[Z] : 8 — [—1,1] from equation (6.35) into
(6.11), we get,

§ = —k;sgn[:’é]sgn[f(z)] (6.36)
= -ékLaa (6.37)

Indeed the average dynamics of the estimation error is exponentially con-
vergent to 0 in the sense of Lyapunov.

This concludes the proof of the theorem. <1 &

Comment 6.2.6 It is interesting to note that we require that the term |f(z)| # 0 along
the solution trajectories. It is clear that such a requirement is not unreasonable as

there is no necessity for identification in the regions of the state space when |f(z)| =0
!

The simplicity of the identifier is obvious from the equations (6.2) - (6.7).

It is very simple to implement, but at the same time gives exponential parameter

convergence.

Example 6.2.1 Identifying Friction Coefficient

Consider a simple mechanical system represented by the following dynamical

equations.

Ty = T (6.38)
&2 = psgn[zs] + f (6.39)

where x € R?, p € R, is unknown but bounded with a known bound |u| < k, € R,
f € R is the mechanical force which is the control input to the system. The goal of
identification is to find the nonlinear damping coefficient p of the system.

We construct a sliding mode identifier for this system of the following form.

-
P

Z; = jgsgn[za)+ f+n (6.40)
h o= w (6.41)
v = 2k,sgn(z,] (6.42)
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x2-plant vs time plant-parameter vs time

300. 20.
0. . 18, .
0. 18, 0. 15.
X2-estimator vs time _parameter-estimate vs time
300. 15.]
0. 0.
0. 15. 0. 15.
x2-estimation error vs time parameter estimation error vs time
1 20,
-1. -20. . .
0. 15. 0. 1S.

Figure 6.1: Convergence Of Parameter To True Values

w = kisgn([Zs]sgn[z,] (6.43)
5,‘2 = 172—512 (644)
k, > 0 (6.45)

The convergence of the estimated parameter ji to the true value pu is easily
shown invoking Theorem 5.1.

Simulation of the system show the interesting features of the identifier. First
we note that the state estimation error goes to zero in finite time, as predicted. Then
the identified parameter converges to its true value, and the parameter identification
error gradually goes to zero. But as Filippov solutions are only solutions averaged
over neighbourhoods of diminishing size, the average value of the parameter error is

zero, though the actual value chatters about its true value.

6.2.2 Vector Nonlinear Systems - Special Structure

It is now possible to extend the identifier equations to more general systems.
As a first extension, consider the system of n € R, equations containing unknown

but bounded, affine parameters 6; i = 1,2,...,n The special structure endowed to
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these systems is each state equation contains utmost one unknown parameter. That

is, consider systems of the following form

B = B+ S (6.46)
b = Gfia) + Y ol (6.47)

(6.48)
-'i’n' = onfn(m)'*';gnj(x)ui (6'49)

where, z € ®", and 6; € R are unknown, but constant, and bounded. That-is to say,
|0:| < ks, and the bounds, ks, are known. The functions fi@)gri: R" =R k=
1,2,...,m. are smooth _

Construct n identifiers, of the following structure. The itk identifier identi-

fying the parameter ; has the following form.

& = é;f;(z)A+.[f;g,-,-(:c)u,-]+ve ’ (6.50)
b = w; (6.51)
v = 2kg|fi(z)|sgn[] (6.52)
wi = kisgn[E)sgnlfi(a)] C(653)
B o= zi— 8 (6.54)
ki > 0 (6.55)

i=1,2...,n (6.56)

Given such an identifier structure, the state and parameter estimation error

dynamics may be written in the following form,

ﬂ?i = 0 fi(z) — 2ke;| fi()|sgnlEi] | (6.57)
0; = —kisgn[Fi])sgn[fi(z)] (6.58)
1=1,2,...,n (6.59)
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We now show existense of solutions for the identifier, stability of state es-

timation error dynamics, and the convergence of the identified parameter to its true
value.

Theorem 6.2 Ezistence of trajectories for identifier and state estimation error dy-
namics, stability of state estimation error dynamics, and ezponential convergence of

identified parameters to their true values in the sense of Filippov.
Given (G1) A nonlinear system of the form (6.46) - (6.49).
(G2) A nonlinear identifier of the form (6.50) - (6.56) resulting in state esti-

mation and parameter identification error dynamics of the form (6.57) -
(6.58)

If (11) 16;| < ke Vi=1,2,...,n
(12) |fi(z)| # 0 along the _system trajectories.
(I3) In any compact region D € R*, each filz) : R =>Ri=1,2,...,nis

bounded from above and from below.

Then (T1) Filippov solutions ezist for the system (6.57) - (6.58).
(T2) The surfaces # =04i=1,2,...n are attractive.
(T3) The sliding dynamics on the surfaces #; = 0i = 1,2,...n are such that

the parameter estimate 0; — 9; i = 1,2,...,n exponentially in the sense of

Filippov.

Proof: &> As before we will prove the theorem in three steps. First we
show existence of solutions, then we show attractivity of the sliding surfaces, and
finally we show parameter convergence to true values using two methods of proof.
Step 1: Existence of Filippov Solutions

In compact domains D; i = 1,2,...,n of the (z,%;,0;) space, that is D; €
R™ x R x [R mod ky,], the righthandside of equations (6.57) - (6.58) can be modelled

by a differential inclusions of the following form

% € Fuls, 2,0 (6.60)

ai € fﬂ;(m)ii’éi) (6‘61)
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where the inclusions F,(z,%;,6;) i = 1,2,...,n and Fo(z,%:,0) i =1,2,...,n are
defined to be

Fu(2,50,8) = 8fi(z) — 2ke,|fi(a)|sgnlz] if & # 0 (6.62)
€ [—3kskys,3ko,ks] if 3:=10 (6.63)

Foi(z,%:,0;) = —kysgn[Z:|sgn[fi(z)]if 3 #0 (6.64)
€ [—kik] if =0 (6.65)
i=12...n - (6.66)

where ky, is supremilm of the function fi(z): R - R =1,2,...,n over all values of
z € D;. The inclusions F,(z, Z;, 8)i=1,2,...,n and Foi(z,%:,0)i=1,2,... nso

defined are
o closed, convex, bounded and upper-semicontinuous.

Therefore, invoking the theorem on existense of Filipov-solutions we show
that solutions exist for the system represented by equations (6.57) and (6.58). .

Step 2: Attractivity of Sliding Surfaces

We will now show that the surfaces #; = 0 ¢ = 1,2,...,n are attractive.
Consider a candidate Lyapunov function V(%,,...,%,) : R* — R, given by

n

v=y = (6.67)

i=1

) lﬁ,j,

Differentiating (6.67) along the flow of (6.57), we get

Vo= éiiéeﬁ(w)—2kaalfe(w)lliil (6.68)
< —gli.-nzko..lf,-(x)l-é.-f,-(z)] (6.69)
<0 (6.70)

Here we have used the fact that 2kq,|fi(z)| > 8fi(z), and that fi(z) # 0 along the
system trajectories. Thus V is shown to be negative definite thus showing the global

attractivity of the surface #; = 07 = L,2,...,n.
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As the term 2ky, | f;(z)| > 0; fi(z), it is clear that the surface #; = 0 is attained
in finite time and that sliding occurs at the surface #; = 0.

Step 3: Parameter Convergence

As before, we will show convergence of estimated parameter values to true
values using two methods of proof. The first method will be the method of Filippov

averaging, and the second one is by the equivalent control method.
Proof By Filippov Averaging

The sliding mode on the surface #; = 0 may be estimated to be a convex
combination of the the dynamics on either side of the surface. This indeed is the
principle behind the Filippov averaging technique. The averaged dynamics of the

estimation error on the surface &; = 0 takes the following form.

é;:iaverage = %ll:fi(z) - 2k ()] + [1 = Hl[6:fi(z) + 2k, |fi(2)]  (6.71)

Oisverage = Yi[—ksgn[fi(z)]] + [1 — ¥][kisgn[fi(z)]] (6.72)
i=1,2,...,n (6.73)

where 0 <9, <1i=1,2,...,n But as Tiqverage = 0 in finite time, set the left hand

side of equation (6.71) to 0 and solve for ;.

Tiaverage = Ul0:Si(2) = 2kalfi(@)]) + [1 = %][0:fi(2) + 2kai | fi2)]]  (6.74)

0 = ‘Z;[éi.fi(-‘b‘)-2ka.~|ﬁ'($)|]+[1—7i][éiﬁ($)+2k0;|ﬁ($)|]‘ (6.75)
Oisgn[fi(z)] | 1

vNo= —4,% + 5 (6.76)
t=1,2,...,n (6.77)

To find the sliding dynamics of égaumge along the surface #; = 0, substitute the value

of ; obtained in equation (6.76) into equation (6.72) to obtain,

~

oiavercgc = 75[-ki39n[fi(x)]] + [1 - '7,][k,3gn[f,(a:)]] (678)
= —2vylkisgn[fi(2)]] + kisgn[fi(z)] (6.79)

= ~sgnlf@ IO L Y sgnige) (50)
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~ k,' ~ o
eiaverage = - 2_ko"'02 (6’81 )
i=12,...,n (6.82)

It is clear from equation (6.81), from the averaged dynamics of the estimation error
that the parameter estimation error §; i = 1,2,...,n is exponentially diminishing
in the sense of Lyapunov. This in particular ensures that the average value of the

estimated parameter §; — 0; i = 1,2,...,n exponentially.
Proof By Equivalent Control

As before, we will find the value of the n functions sgn[3;] : R — [~1,1] i =
1,2,...,n necessary to ensure the invariance of the sliding surfaces #; = 0 i =
1,2,...,n. The values are obtained by setting the lefthandsides, of equation (6.57) to
0. That is,

= Bifi(z) - 2%, fi(z)|sgnlz] (6.83)

0 = Gifie) - 2kalfi(@sgnls] | (6.8)
sgn[%;] = 2,1f9‘5,-sgn[f;(.'z:)] (6.85)
i=1,2,...,n . (6.86)

Using equation (6.85) in equation (6.58), we rewrite the parameter estima-

tion error dynamics as

g

i = —k;:gn[ie]sgn[ﬁ(w)] (6.87)
i = "51;7‘.0‘ (6.88).
1=1,2,...,n (6.89)

The exponential convergence of the parameter identification error is obvious.

This concludes the proof of the theorem. <1

6.2.3 General Nonlinear Systems

As a final extension, we consider the general case when there are n € R,

state equations with m < n € R, affine, unknown but bounded parameters whose
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bounds are known.. We now make a crucial assumption related to observability of
the system, which states that there are as many dynamical equations containing the
unknown parameters, as there are unknown parameters. That is to say, the system

equations are of the following form.

3, ] [ fu@) - fm@) | [ 8] [ Sy
: | = - P+ : (6.90)
Tm i I fml(z) te fmm(m) Om i E;::l gm.‘i(m)uj
Tm41 fim+1)(2) + Li=1 Gma1; (T)u;
: = : (6.91)
En | | fa(®@) + iy gni(2)u;

wherez € R 6; € R i =1,...,m are unknown but bounded,|6;| < k5, 1 =1,...,m,
and fi(z),gij(z): R* >R i=1,2,...,n j=1,2,...,r.

Now consider the following identifier structure.

i | ful@) - fml) || 6 Zier 913(2)u;
o=l s |+ : (6.92)
ém fml(z) o fmm(x) .ém Zt=lgmj(x)uj
l
+ (6.93)
Um
él w
= (6.94)
ém Wi
Vi = ksupsgn[Z] i=1,...,m (6.95)
ksup = 2m8up[k9i][z Z | fi5] (6.96)
=1 j=1
-1
wy L -~ 0 fu(z) - fim(z)
: = Do : . : (6.97)

Wi 10 ol | | fma(®) o fm(2)
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kaupsgn[i'l]

ksupSgn(Zm)
.'i,‘ = - (ﬁ,‘ (698)
L > 0:i=1,....m (6.99)

The resulting state-estimation and parameter identification error dynamics

has the following forms

[ :%21 ] f]l(z) ce flm(m) él k{»'upsgn[i:l]
: | = P P - : (6.100)
i C:ém ] fma(z) - fmm(z) ém ksupsgn[Em]
[ 51 ] L -~~~ 0 Ju(z) -+ fim(z) -
: = = : " : : (6.101)
A 0 o | | @) - fam(@)
k,upsgﬁ[:'él]
(6.102)
ksupsgn[Zm)

We now show existense of solutions for the identifier, stability of state es-
timation error dynamics, and the convergence of the identified parameter to its true

value.

Theorem 6.3 Ezistence of trajectories for identifier and state estimation error dy-
namics, stability of state estimation error dynamics, and ezponential convergence of

identified parameters to their true values in the sense of Filippov.

Given (G1) A nonlinear system of the form (6.90) - (6.91).
(G2) A nonlinear identifier of the form (6.93) - (6.99) resulting in state esti-

mation and parameter identification error dynamics of the form (6.100) -

(6.102)

If (I1) 6] < ko Vi=1,...,m
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fu(@) - fim(e)

(I2) The matriz : ", : has rank m along the trajectories of

fml(z) te fmm(m)

the system.

(I8) In any compact region D € R*, each fii(z):R">Ri=1,2,....om j=

1,2,...,m is bounded from above and from below.

Then (T1) Filippov solutions egist for the system (6.100) - ( 6.102).
(T2) The surfaces % =01i=1,2,...n are attractive.

(T3) The sliding dynamics on the surfaces 3; = 04 = 1,2,...n are such that
the parameter estimate 6); converges to the true value 0; ezponentially in

the sense of Filippov.

Proof: &b As before we will prove the theorem in three steps. First we
show existence of solutions, then we show the existence of attractive sliding surfaces,
and finally we show parameter convergence to true values.

Step 1: Existence of Solutions

In compact domains D; i =1,2,...,n of the (z, %;, 0;) space, the righthand-
side of equations (6.100) - (6.102) can be modelled by a differential inclusions of the

following form

- él - [ le(mail’éh'“vém) -
€ : (6.103)
L ém J L fzm(x?imaél,---aém) i
N r . - -
01 -7'-01(13,521,01,-..,0",)
S : (6.104)
.ém. _‘Fom(xvimvél)---sém)_
where the inclusions 7, (z, #;, b,,... , 0~m) 1=1,2,...,m and Fy,(z, %, bi,... , ém) i=

1,2,...,m are defined as follows

.7'-,;‘(.’12, 5:', 51) KR 7ém). = Z[éthJ(m) - ksupsgn[ii]] Zf 'i'i 76 0

i=1



137

€ [~2ksups 2ksup] if 5 =0

0 -+ 0] ful -+ fim(z) sgn[z]
Foi(z,8:,0) = —| : I : : : :
0 --- 0 fmi(z) o fam(z) sgn[Em)
if % #0

e [—klkfmin’ klkfmin]if ii = 0
The inclusions are
e closed, convex, bounded and upper-semicontinuous.

Therefore, invoking the theorem on existense of Filipov-solutions we show
that solutions exist for the system represented by equations (6.100) and (6.102).

Step 2: Attractivity of Slidiné Surfaces

We will now show that the surfaces #; = 0 are attractive. Consider a candi-
date Lyapunov function i
| vy ¥ (6.105)

~ 2
=1
Differentiating (6.105) along the flow of (6.100), we get

fu(z) - fim(z) 6, ksupsgn[Ei)
Vo= (& &l ¢ Pl - F ]
fmi(z) - fum(z) bm | ksupSgn[Zm)
[ Ksup fu(@) -+ fim(z) 5lsgn[§:1]
< [l - il 2 (=] 0 P ]
| ksup Jmi(z) <o+ fom(z) émsgn[:im]

ksup — Ty F1i055gn[1]

i ksup - Z;n=l fmjéjsgn[im]
<0

Here we have used the fact that ks, > T fiib;sgnlE] i = 1,2,...,m, and that
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fu(z) - fim(z)
det : : # 0 along the system trajectories. Thus V is shown to

fm(z) - fmm(z)

be negative definite.

As the term k,yp > T f.-,-éj ¢t =1,2,...,m, it is clear that the surface
Z;=0:=1,2,...,m is attained in finite time and that sliding occurs on the surfaces
z;=0:=12,...,m

Step 3: Parameter Convergence

The sliding mode on the surfaces Z; = 0 = 1,2,...,m may be estimated
to be a convex combination of the the dynamics on either side of the surface. This
indeed in the principle behind the Filippov averaging technique. We will show the
stability first using Filippov avera.ging and then by the equvalent control method.

Proof By Filippov Averaging

Here again we perform Filippov averaging using convex combinations of
dynamics on either sides of the sliding surface. The averaging is a little more involved,
and sharply contrasts to the mmphcxty of the equivalent control method of proof. Let

() -+ gim(z) fu(@) -+ fim(z)
: : = : .. : (6.106)
qm1(:c) T qmm(x) fml(x) s fmm(x)
where ¢;j(z) : R* - Ri=1,2,...,m
The averaged dynamics of the estimation error on the surface #; = 0 i =

1,2,...,m takes the following form.

"El“"e"age = 71[2 flj sup] + [1 - 71][2 flJe + kaup] (6107)
j=1 j=1
(6.108)
x:';'naverage = 7m[z: fmjéj - ksup] + [1 - ’Ym][z fmjéj + ksup] (6.109)
J=1 j=1
% -1
alaverage ll - 0 q11($) v qlm(x) ksup[]- - 2’)’1]

-~

Omaverage 0 --- I, gm1(Z) ** gmm(z) koup[l — 29,]
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Setting the lefthandside of (6.107) - (6.109) to 0, we solve for v; ¢ =

1,2,...,m and use it to find the average dynamics of the parameter estimation error.

That is,
7 fu@) - fim(@) | [ &
= Sgl| S S
L Ym ‘ fml(z) s fmm(x) i Om
élaverage k_:; M 0 qu(‘t)
| o:naverage 0 Fl::; | qml(m) cr
fu(x) flm(l‘) él

fml(x) fmm(z) ém

Now using equation (6.106), we rewrite the above equation as

olaverage

.
~

amaverage

b g
ksup

i ~
-——T0
kuup 0

0,

m

]

(6.110)

(6.111)

Exponential convergence of the average value of the identifier to 0 is evident.

We will now show the same result from an equivalent control view point.

Proof By Equivalent Control

As before we estimate the values taken by the functions sgn[z;] : ® —
[-1,1] ¢ =1,2,...,m. Indeed, we see from equation (6.100) that

[ fulz)

[ fu(z)

RORE

| fma(z) -

fim(z)

fmm(‘l’) i

flm(z)

frm(@) | |

| Ksupsgn[Zm] |

I ksupSgn[Zm] ]

ksupsgn[z;]

ksupsgn(Z]

(6.112)

(6.113)
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sgn[z] 1 fu(z) -+ fim(z) 51
: = : : : (6.114)
sup ~
sgn[Zm] fmi(z) -+ fum(z) Om
Using (6.114) in the parameter error equation (6.102), we find
x -1
6 ' h --- 0 fu(z) --- fim(z) Sgn[ff?l]
Pl o= = o P (6.115)
ém 0 ™ fml(x) e fmm(z) sgn[im]
_k_:: b, |
= ; (6.116)
—m g

sup

It is obvious that the parameter estimation error is exponentially diminish-

ing. This concludes the proof of the theorem. <1

6.2.4 TIllustrative Example |

Consider a system represented by the following dynamical equations.

£y = #bycoszy —Ozsinzy + uy (6.117)

Ty = 0O1sinz; +0;cosz; + uy (6.118)

where z € R?%, 6; € R ¢ = 1,2, is unknown but bounded with a known bound
01 < kg; € Ry i=1,2, u; € Ri=1,2 are control inputs to the system. The goal of
identification is to estimate 6; and 6, of the system.

We construct a sliding mode identifier for this system of the following form.

3 = 6 cos 21 — Oy sinz; + ug + n (6.119)
3y = 6, sinz; + 0, cos z1 + ug + vy (6.120)
b = w (6.121)
b = w (6.122)

v = 2ksup[|(cosz1)| + |sin z,||sgn(F] (6.123)



141

xl-estim-error X2-estim error
1 1
-1. T v -1. T T —
0. 15. 0. 15,
theta-1 plant,estim theta-2 plant,estim
2‘ W 4.
0. -4.
0. 15, 0. 15.
theta-1 estim error theta-2 estim error
2. 4.
-2. . -4.
0. ) 15. 0. 15.

Figure 6.2: Convergence Of Parameter To True Values

v2 = 2kup[|(coszy)| + |sinz|]sgn[Ey] . (6.124)
ksup = kol + k03 ‘ . (6.125)
-1

wy _ L 0 cosr; —sinzg sgn|Z,] (6.126)
wo 0 I, sinz; coszy sgn[z,)

Z = x — i] (6127)

5?2 = Iy 5)2 (6.128)

L >0 (6.129)

I, >0 (6.130)

The convergence of the estimated parameters 6y, 6, to their true values is
easily shown invoking Theorem 5.1. '

Simulation of the system show the interesting features of the identifier. First
we note that the state estimation errors goes to zero in finite time, as predicted.
Then the identified parameters converges to their true value, and the parameter
identification error gradually goes to zero. But as Filippov solutions are only solutions
averaged over neighbourhoods of diminishing size, the average value of the parameter

error is zero, though the actual values chatter about their true values.
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6.2.5 Application And Commercial Importance

Identification of the operating parameters of a machine help us design better
and more robust control laws. Each operation of a machine is an opportunity to
identify the parameters of the machine, either for purposes of control, or even as
a system check to ensure that all the parameters are within operating ranges. For
the typical operation of an automobile, it could very well be possible to adaptively
identify the mass of the vehicle, and the tyre friction coefficient. Such identification
performed in real time allows the designer the opportunity to choose control laws
that depend in real time on the identification process. The class of identifiers which
formed the subject of this section are exciting in that they are nonlinear identifiers

that are capable of providing such exponential parameter convergence.

6.2.6 Criticism And Future Prospects

The following are the implementational difficulties associated with the iden-
 tifier. 4

e There is no a-priori guarantee that the multiplicand of the unknown parameters
will be non-zero along the system trajectories. This is a major assumption, and

its elimination virtually impossible.

e Parameter convergence is guaranteed only in the sense of Filippov. That is the

average value of the parameter converges to its true value, but there is no bound
on the chatter in the value of the parameter. However, it is possible to design

sliding mode identifiers such that the chatter in parameter values is minimized.

° Extending the theory to systems where the number of parameters exceeds the

number of dynamical equations is non-trivial.

o The use of the sliding mode technique provides a certain degree of robustness
to the identifier, though more careful analysis is necessary to identify those

perturbations which do not adversely affect robust identification.
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o While the parameter identifier specifies exponentially accurate values of the
parameter, incorporating the parameter identifier into a closed loop feedback

scheme, is considerably more involved.

6.3 Synchronous Sliding Modes

6.3.1 Introduction

In this section, we present an interesting property of a modified vector sliding
mode control law, and its possible application. The property of this modified vector
sliding mode control law is such that it achieves simultaneous regulation for a group
of n scalar systems with n inputs. The control law has the interesting property that
it can be prescribed without ezplicit reference to the initial conditions of the system. -

' The law is interesting in that it introduces coupling between decoupled systems to
achieve the synchronization objective.

We presént a simple example to verify the synchronization result. We then
apply this control law to the problem of tracking trajectories by a system of robots

or multifingered hands.

6.3.2 Synchronous Sliding

Consider a group of n scalar decoupled systems of the form

LA ] [ Uy
= : , (6.131)
Tn | | Un
z1(0) - [ 10
= : (6.132)
za(0) | | Zno
where the states z; € R, the controls u; € R i = 1,2,...,n the initial conditions

Tio € R =1,2,...,n. With minor abuse of notation, we create a new state vector

z € R", wherea::[:z:l cer T ]T.
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The control objective is to regulate the states from non-zero initial conditions
to the origin, in finite time. That is, that there exist instants of time tf < 00 €

R4 i=1,2,...,n such that the following is true.
() =0Vt>tri=1,2,...,n (6.133)

We choose n sliding mode control laws of the following form to ensure achievement

of the control objective.

xo
up = —ki—
T

ﬁ lflm,l#ﬂ i=l,2,...,n (6.134)

where k; € R,

Comment 6.3.1 We note here that the controls u; i = 1,2,... are decoupled, in that u;
is a function only of z;. Also note that the time taken by each state z;i=1,2,...,n
to reach the origin is a function of its initial value z;(0) i = 1,2,...,n and the control

gains k;1=1,2,...,n.

Comment 6.3.2 Also note in equation (6.134) we did not specify the control law at
|z:| = 0¢=1,2,...,n. Indeed, u; = —kisgn[z;] |z:| £ 0. We do not specify the
control at |z;] = 0. As the control is not specified only on sets of zero measure, it
does not affect the ezistence of Filippov solutions shown by modelling the system by a

differential inclusion.

We now present some interesting properties of a modified sliding mode con-
trol law that deliberately introduces coupling between the decoupled systems. We
present proof of existence of solutions, proof of stability, and proof of synchronous
finite time convergence for the modified sliding mode control law. In order to do s0,

we formalize the notion of synchronous finite time convergence.

Definition 6.3.1 A set of n € Z, variables zi(t) : Ry — R i = 1,2,...,n are
said to reach the origin synchronously commencing from nonzero initial conditions

zi(0) #017=1,2,...,n if there ezists an instant of time t* < co € R, such that the
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following is true.

zi(t) £ 0Vi<t (6.135)
zit) = OVED (6.136)
i=1,2,...,n (6.137)

That is to say, that the states with nonzero initial conditions (an assump-
tion we make without loss of generality) are regulated to 0 at the same instant of
time t*. There are many practical applications where such synchronous regulation is
important. A typical application is a multifingered robot hand that grips an objgct.
It is important to ensure that the fingers touch the object synchronously and thus
cause force closure without imparting motion to the object. We will say more about
this later.

It is possible to ensure synchronous motion using a simple sliding mode
feedback where the control gains are chosen with explicit dependence on initial con-
ditions. Indeed, given the initial conditions exactly, we choose a decoupled control
law that uses the values of initial conditions to derive control gains that guarantee

synchronous reaching of the origin. For the sake of completeness we state the control

law as follows.

Theorem 6.4 Synchronous regulation with explicit dependence on initial conditions.

Given (G1) A nonlinear system of the form (6.131) - (6.182).
(G2) A control law of the form (6.134)

If (I1) k; i =1,2,...,n are chosen such that

'z",ff))l = "”f,c(f])' i=1,2...,n j=12...,n (6.138)
i 7]

Then (T1) Filippov solutions ezist for the system (6.131 ) - (6.132) subject to the con-
trol law (6.134).

(T2) The surfaces z; = 0 i = 1,2,...n are reached synchronously at a time

t*_r-_x(gl
=5



146

Proof: # > The proof is quite straightforward and utilizes standard facts
from sliding mode control theory.

The existence of Filippov solutions is shown using the fact that the mod-
elling differential inclusions F;(z) : ® — [~1,1] are closed, bounded, convex and

uppersemicontinuous. Note that F;(z) : R — [—1, 1] are defined as follows

Fi(z) = -k,-%iﬂz.-l;éo (6.139)
€ [-1,1)if|z:| =0 (6.140)

Stability is shown using the candidate Lyapunov function V() : R — Ry
given by V(z) =Y, 522'- whose derivative along the flow of (6.131) - (6.132) is given
by V = -0, |z;|. Indeed V is negative definite proving global exponential stability
of the origin.

Finally, the time taken to reach the origin is given by ! = "k‘,o i =
1,2,...,n. Now using the assumption that lf%“@)_l = E-',';(;—)M 1 = L,2,...,n j =
L,2,...,n, we see that t} =¢... =% = ¢*.

T}iis completes the proof of the theorem. <1'Q

Comment 6.3.3 The control law is inelegant to implement as it explicitly depends on
the initial conditions. It would be desirable to develop a state feedback control law
that would achieve the same objective, but one whose control gains do not ezxplicitly

depend on initial conditions.

We now propose a state feedback control law that would ensure synchronous

regulation.
Theorem 6.5 Synchronous regulation with state feedback.
Given (G1) A nonlinear system of the form (6.131) - (6.132).

If (11) The controls u; i =1,2,...,n in equations (6.131) - (6.132) are chosen
to be

w o=~k if |zl >0 i=1,2,...,n  (6.141)
[EP
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el = (322} (6.142)

i=1

(6.143)
where k* € R,

Then (T1) Filippov solutions exist for the system (6.131) - (6.132) subject to the con-
trol law (6.141).

(T2) The surfaces z; = 0 i = 1,2,...n are reached synchronously at a time
= uﬁ(,;%)-"-’- where ||z(0)||2 is the 2-norm.of the vector of initial conditions,
given by ||z(0) |z = [T, z}(0)]*

Proof: & > We prove the theorem in three steps. First we show existence
of generalized Filippov solutions tc the system (6.131) - (6.132) subject to the control
law (6.141). We then show attractivity of the origin when subject to the control law
using a simple Lyapunov argument. Finally we show the achievement of synchronous
regulation, by explicitly computing the times taken to reach the origin. We first make

the following comments.

Comment 6.3.4 It is interesting to compare the control laws given by equations (6.134)
and (6.141). While the control specified by (6.134) decouples the system entirely, the
control specified by (6.141) introduces a coupling between the through the 2-norm of
the state vector ||z||;. Furthermore, note that the control gains k* remain the same

forallu; 1=1,2,...,n.

Comment 6.3.5 The discontinuous control law (6.141) is not deﬁned at the origin,
the same way the function sgn[(-)] : ® — [—1,1] is not defined when (-) = 0. But
also note that the control law specified by (6.141) is bounded by k*. Indeed, as —’*I-; <

]
l:=1,2,...,n,u; < k*1=1,2,...,n.

Step 1: Existence Of Filippov Solutions
To show the existence of generalized Filippov solutions we model the sys-
tem (6.131) - (6.132) subject to the control law (6.141) by the following differential
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inclusion.
:i!l fl(a:)
| € : (6.144)
T Fa(z)

where the inclusions Fi(z) : ® — [~k*, k*] are specified as

Fi(z) = - ” ” ——if ||z]]z >0 (6.145)
€ [k, Kif ||z]ls=0 (6.146)
i=12,....n (6.147)

The inclusions F;(z) ¢ = 1,2,...,n are
e closed, bounded, convex and uppersemicontinuous.

Invoking the theorem on the existence of generalized Filippov solutions, we conclude
that Filippov solutions exist for the system (6.131) - (6.132) subject to the control
law (6.141). 4

Step 2: Attractivity Of The Origin

Consider a candidate Lyapunov function V(z) : R* — R, given by

$T.’.8

=2 (6.148)

Differentiating V' along the flow of (6.131) - (6.132) subject to the control law (6.141),
we find

=
Z||2
V=lea ..a|l ¢ | (6.149)
—k* et
||| [3
= _pelell 6.150
Izlls (6.150)
= —k*|z||z if |||z #0 (6.151)
<0 (6.152)

Negative definiteness of V confirms the global exponential stability of the

origin.
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Step 3: Synchronous Reaching
From system (6.131) - (6.132) subject to the control law (6.141) the following

is true for any i,

$ = —k— 6.153
el (6.153)
s
&; —k i ”3:“2 (6.154)
da:,- T
= | (6.155)
Vi,j<ni#j|lz]#0 (6.156)

Solving (6.155), we obtain explicit expressions for constraints on state trajectories as

_ z;(0)
zdﬂ-_zﬂo)

Using (6.157) in (6.153), we recast (6.153) in the form

gi(t)Vi,j<n i#j||z||2#0 (6.157)

“ = L | (6:159)
= _.k*[&-;wklz (6.159)
B _k*[x +Zk=lzk;é: xk]’ (6:160)
= _]?*[z?-*‘z;::l,;#g%z?]% (6.161)
T
B _k*z.'[1+22=1,k¢£ 5%]% (6162
= ors Sy (6:163)
& = k*”ng;?b i=1,2,....n (6.164)

The righthandside of (6.164) is a real constant, and therefore the solution of (6.164)
is given by

(o — g _%i(0) ;=
zi(t) = -k EOR T———t + z;(0) L,2,. (6.165)

From (6.165), we obtain the time ¢* taken by zi(t) i = 1,2,... ,n to reach the ori-

gin, starting from arbitrary nonzero initial conditions by setting the righthandside of
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(6.165) to 0.
zi(0)

0 = —k* t* + z;(0 6.166
R 50 (6.166)
tr = Lz(ko—")-”—z 1=1,2,...,n (6.167)

Synchronous convergence of state trajectories commencing from nonzero initial con-

ditions is thus shown. This concludes the proof of the theorem. <1

6.3.3 Design Of Tracking Control Laws

The control laws that we have developed, are discontinuous. As a prelude
to presenting tracking control laws that involve discontinuities, let us analyze a sim-
ple linear pole-placement control law from another perspective. Consider a system

represented as a chain of integrators of the form,

& = T, (6.168)
o | (6.169)
Eni = Tn (6.170)
En = u (6.171)

where the state vector z € R" and the control input u € R. Given a desired smooth
trajectory z14(t) : R4+ — R to be tracked by the state z; we present a tracking control
law that uses succesive derivative of desired trajectories. We define recursively, a set
of desired trajectories for the states as

dx,‘_l,d(t)

zialt) = —4

— Ki-1 [:c;(t) - :E,‘,d(t)] 1=2,3,...,n (6.172)

While we are given a desired trajectory to be tracked by the state z1(t), we define de-
sired trajectories for the remaining states the tracking of which automatically ensures
the original tracking objective for z;(t). Indeed, the intution behind such a definition
of desired trajectories becomes clear when we look at Z24(t).

dz14(t)

mil) =g

— ku[z1(t) = 214(t)] (6.173)
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From (6.173) it is clear that when the surface z, = z24 the resulting dynamics for

z(t) is given as

s1(t) = za(t) (6.174)
= o) (6.175)
= Z_pe®) - autt) (6.176)

The dynamics of the system is such as to ensure that z;(t) — z,4(t) exponentially.
However, if the surface £; — z24 = 0 can only be reached exponentially, then the dy-
namics of z; is perturbed by an exponentially decaying signal, and therefore invoking
the result on the exponentially stable systems perturbed by exponentially decaying
perturbations, we conclude exponential convergence of z,(t) to 1,4(t). We now show
the relationship between control laws developed using the recursively defined desired

trajectories and the standard pole-placement control law.

Theorem 6.6 Connection between pole-placement and recursive trajectory defini-

tion.

Given (G1) A nonlinear system of the form (6.168) - (6.171).
(G2) Given a set of desired trajectories of the form (6.172)

If (I1) The controls u in equation (6.171) are chosen to be

dznq(t
u= “’d—;() — knla(t) — Tna(t)] (6.177)
where z;4(t) : R* x Ry — R i =2,3,...,n is specified by (6.172) and

kn € Ry

Then (T1) The control law specified by (6.177) is a stable pole-placement control with

the n eigenvalues each being equal to —k; i=1,2,....,n

Proof: & B> The proof is obvious by writing the dynamics for z; and z,.
Indeed,

L) _ pofaa(t) - aaa(t) (6.179)

$p =
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Using the definition of z,4(t) provided by (6.172), we rewrite (6.179) as

1 = 2 (6.180)

. d[ 28 _ [z, (8) — z44(2)]]

T2 d dt (6181)
~kafea(t) ~ (2229 _ o fa,0) - o] (6.182)

Which may be rewritten as

—[kl + kz]a:z(t) [kl ’Cg]a:l(t) (6185)
That is to say
[ o ] = [ 2 0 ] (6.186)
T2 _?{g'(')' + [k + k2] 2 4 [k1ka]z14(t) .

B U “"] (6.187)
~[krks] ~[ks+ ko] | | 2o '

The placement of poles through recursive trajectory definition is trivially obvious by

inspection of equation (6.187). This concludes the proof of the theorem. <1

Comment 6.3.6 It is to be noted that this tracking control law is valid for any specifica-
tion of desired trajectories that are smooth, the tracking of which guarantees achieve-
ment of the control objective. That is, we are free to specify any smooth set of trajec-
tories ziy(t) i = 2,3,...,n, the only constraint being z;(t) = z4(t) i = 2,3,....n =
Ti-1(t) = Ti—1,4(¢). Indeed, the linear pole-placement control law is just a special case

of control laws that achieve this tracking objective.

Comment 6.3.7 We now ask if it is possible to relaz the smoothness assumption on
the desired trajectories z;4(t). Indeed, the first relazation would be to consider desired
trajectories that are differentiable almost everywhere, ezcept possibly on sets of zero

measure. The Nested and Switching control laws presented in the previous chapter
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are examples of such discontinuous control laws, the discontinuities existing on sets
of zero measure. The proofs of such control laws are much harder in general, though
the regularization of such control laws that involve saturation functions have been used
in the recent literature. We have been inspired by the attempts of [31] in developing
control laws that use Filippov averaging instead of regularization. That is to say, that
we are prepared to tolerate chatter and limit cycling by using discontinuous control
laws. The drawback however is that we can show finite time synchronous stabilization
only on the average, whereas a regularized control law, by eliminating the discontinuity

would permit smooth stabilization, though exponentially, without the chatter.

Comment 6.3.8 Our interest in relazing the smoothness assumption on the desired
trajectories is merely enable us to utilize the discontinuous, synchronous control law

for a practical mechanical system.

We will first present the control law for a group of n € Z4 and then mechan-
ical systems, apply it to a well known example of a two fingered robotic hand. Many
mechanical systems are represented by Newtons force and torque balance equations

that assume the form

B = (6.188)
& o= o (6.189)

where z* € R? is the state of the ith mechanical system where : < n € Z,, and
u'(z,t) : R2 x Ry — R is the input force. Typically, z} represents the generalized po-
sition coordinate of the mechanical system, and ), represents the generalized velocity
coordinate. These equations, though simple in form, serve to illustrate the applica-
tion of the theory, and also represent a large class of useful physical systems. Given
desired trajectories zj,(t) : R4 — R to be tracked by the states zi(t), we attempt to
find control laws u¢ that ensure synchronous tracking for the states zi(t).

We now state the theorem that ensures synchronous tracking for the systems
of the form (6.188)-(6.189).

Theorem 6.7 Synchronous tracking for a class of mechanical systems.
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Given (G1) n mechanical systems, each of the form (6.188) - (6.189).

(G2) Given a set of desired trajectories of the form () : Ry - R i =
1,2,...,n

If (I1) The controls ui(z,t)i=1,2,...,n in equation (6.189) are chosen to be

1 dz;d * x;—z;d
u = - - - 6.190
& S o (6:190)
: dei, ., oi—azi,
zhy = - ——1d (6.191)
"’“ dt sn (o] — ol

whereky, k; € Ry

Then (T1) Filippov solutions ezist for system (6.188) - (6.189) subject to control
(6.190).

(T2) States zi(t) track their respective trajectories i (1) synch.ronously.

Proof: & b The proof is simple once we realize the validity of the system
equations (6.188) - (6.189) subject to the control law (6.190) for arbitrarily small
neighborhoods of the origin. Indeed, the coﬁtrol law is undefined only on a set of
zero measure. As this set of zero measure is indeed the set we desire to make invari-
ant, and the control law directs system trajectories to this set, and hence maintain
invariance, the conclusions of the theorem naturally follow. The theorem can also be
proved invoking the results of the nested, and switching control laws mentioned in

the previous chapter. <1

6.3.4 Application To Robotics

In this subsection we apply the proposed tracking control law to two robotic
manipulators, in order to have the joint angles track desired trajectories at the same
instant of time. Each manipulator is assumed to be a two link planar arm. The

practical visualization of such a system would a two fingered robotic hand when they

are contacting the same object.
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First we present a very brief description of a typical robotic manipulator.
The equations of motion of an n degree of freedom rigid robotic manipulator in the

joint-space may be written down as-

M(q(t))4(®) + C(a(2), §(£))a(2) + Bq(t) + g(a(t)) = T(2) (6.192)

where the vectors ¢(t) : R4 — R" are the joint angles, §(t) : R, — R" are joint an-
gular velocities, and §(t) : R, — R™ are joint angular accelerations. M(q(t)) : R, —
R"*" denotes the symmetric inertia matrix, which is positive definite for all g € R™;
the vector C(g(t), 4(t))4(t) denotes Coriolis and centripetal torques, while the vector
9(q(t)) denotes gravitational effects and the matrix B € R**" is a constant positive
definite (diagonal) matrix representing damping in the system. T'(t) represents the
vector of generalized forces applied to the manipulator joints.

Different tasks are accomplished by the robotic manipulators by designing
different control forces T'(¢). A widely used, and perhaps simplest control scheme is
the computed torque technique. This technique is based on the exact knowledge of the
manipulator dynamics, and results in a controller that achieves tracking .of desired

trajectories. One possible computed torque control is
T(t) = C(a(t), d()a(t) + Bi(t) + 9(a(®)) + M(g(®))u(t) (6.193)

where M(q(t))u(t) € R is an input applied at the manipulator joints. The computed

torque T is realized by measuring ¢(t), and ¢ for all ¢ > 0 and constructing the Coriolis,

damping, gravitational terms and the inertia matrix. The torque T applied to the
system (6.192) results in

§(t) = u(?) (6.194)

Now consider the two fingered robotic arm. The joint angles are denoted by

41,43, 43, 7. The equations of motion are of course similar to (6.192). The dynamics

of these manipulators therefore are of a form similar to (6.194), given by,
i = ¢ (6.195)
¢ = u (6.196)
i=1,2....4 (6.197)
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Given desired trajectories giy(t) ¢ = 1,2,...,4 to be tracked by the respec-
tive state variables ¢i(t) i = 1,2,...,4, We now define the following set of vectors.

() = git)—gu(t)i=1,2...,4 j=1,2 (6.198)
et) = [e{(t) oo ed(t) ]T (6.199)
et) = [edt) - edt)] (6.200)
where
dut) = D) BO=8O g0 am)
= Bl e, 1 =0 (6.202)

Now note that gi(t), is not strictly differentiable at the origin, but has a derivative

that exists almost everywhere. Indeed define the generalized derivative as
dgy(t) _ KEN;(?)

Gt = = TeaF Hllex®lla #0 - (0209
d‘b (t) _ '
2 it lea(t)ll2 = 0 (6.204)
where
Nit) = Y el@)ed®E() - i) i =1,2,3,4 j#i  (6.205)
G(t) = @i(t)-dt)i=1,2,...,4 (6.206)

We now choose u' i = 1,2,...,4 in the following manner.

wi(t) = ézd(t)—k;%f(ﬁnfuez(t)uz%o (6.207)
= %840 iy, = 0 (6.208)

Claim 6.1 Synchronous tracking for a system of robotic hands.

Given (G1) n mechanical systems, each of the form (6.197).

(G2) Given a set of desired trajectories of the form zid(t) : R, — R i =
1,2,...,n
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Figure 6.3: Synchronous Convergence Of Trajectories To Desired Values

If (I1) The controls u'(z,t) i = 1,2,...,n in equation (6.197) are specified by
(6.207). whereky, k; € R, '

Then (T1) Filippov solutions exist for system (6.197) - subject to control (6.207).

(T2) States zi(t) track their respective trajectories = ,(t) synchronously.

Proof: & > The proof of the claim is by invoking the theorem proved earlier
for the more general case of a group of mechanical systems.

Indeed, it is easily seen that the application of control (6.207) would cause
the states zi(¢) i = 1,2,...,4 to reach their desired values in finite time, and the de-
sired trajectories are so chosen that the reduced dynamics ensures finite time tracking
for zi,(t). <

Results of simulation are shown for the following conditions. The chosen
desired trajectories were as follows. ¢},(t) =sint, ¢3(t) =5, ¢,(t) = -2, gi4(t) =
9. The initial conditions were as follows ¢{(0) = 1, ¢}(0) =7, ¢3(0) = ~1, ¢*(0) =
2, ;(0)=0, ¢3(0) =0, ¢3(0)=0, ¢4(0)=0

Simulation results are in excellent agreement with the predicted behaviour.
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Indeed, note that the trajectory errors vanish identically at the same instant
of time. This indeed was the motivation for considering the synchronous tracking

control law.

6.3.5 Criticism And Future Prospects

e Though proof of robustness of synchronous control is hard, the simulation re-

sults indicate a high degree of tolerance of perturbations.

o The control law though bounded, tends to be ill-conditioned when implemented

on a computer. As a consequence some regularization has to be done.

o The control law works very well with a fractional control approach presented

later in this chapter. The rate of convergence is fast, as would be expected.

o The extensions of such an approach to chains of integrators of arbitrary length is
natural and can be accomplished; though it is very difficult to avoid chattering

about the intersection of the sliding surfaces.

6.4 Variable Structure Lyapunov Control Of Cer-

tain Benchmark Problems

6.4.1 Introduction

In this section, we will present techniques to control a class of benchmark
problems. This class of control techniques are called Lyapunov control methods as
they result in a choice of control law that ensures the negative definiteness of a
chosen candidate Lyapunov function. In choosing the control law, we choose variable
structure control laws to ensure negative definiteness of the derivative of the candidate
Lyapunov function. _

The class of benchmark problems we will consider are essentially linear sys-

tems in the controllable canonical form, which are perturbed by additive non-lipschitz,
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. ismatched perturbations with a triangular structure. We will impose further struc-
ture on them by specifying that the uncertainties enter as affine and unknown but
bounded parameters with known bounds multiplying known non-lipschitz functions.
Furthermore, we will assume that the class of non-lipschitz functions is such that, if
the parameters were known exactly, then the system is linearized by the methodology
of input-output linearization.

We will consider systems of the following form

Ty = Zy+401fi(z) (6.209)
&2 = za+0:f2(z1,72) (6.210)

N (6.211)
Tn = u+Onfa(z1,22,...,2,) (6.212)

where z € ", fi(z1,...,2:) : R = Ri=1,2,...,n are smooth, and u € R. The

following comments are in order.

Comment 6.4.1 The system comprises of an underlying controllable canonical form (a
chain of integrators ) perturbed by a vector of non-lipschitz, mismatched perturbations.
If each 0; 1 = 1,2,...,n were known, we can linearize the system through a change

of coordinates choosing the output to be z,.

While the methodology we describe will be true in general for n € Z,
dimensional systems, we restrict our attention to 3 dimensinal systems for the sake

of clarity, i.e.,

&1 = T2+ 01fi(21) , (6.213)

.’i:z = z3+4+ 02f2(x1, 582) (6214)
.’i:3 = u+ 03f3($1, T, .’123) (6215)

where z € 3, 0; € R i = 1,2, 3 are unknown but bounded, that is 16;| < kg, i =1,2,3
and the control u € R.

Our method of stabilization is a constructive proceedure:
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1. Find a nonlinear transformation of the state that helps to swamp out the un-
known perturbations through a Lyapunov argument. Such a transformation
may be difficult to prescribe ahead of time, so we incorporate enough freedom
in our prescription of the transformation to help us achieve the stabilization.

objective.

2. Consider a candidate Lyapunov function that is essentially quadratic, but has

some other positive definite terms to assist in the proof.

Step 1: .
Consider following change of state variables ® : z € %2 — y € ®3, given by,

B = n (6.216)
Y2 = T2+ ill(xl) (6.217)
Y3 = T3+ ha(z1,22) (6.218)

where hy(z;) : ® — R is smooth, and hg(xl,zg) R? — R is smooth. We reserve the
freedom to spec1fy the functions hy(z;) : ® — R, and ha(z1,z2) : R? — R later, but
only_ make the assumption that they are smooth.

Proposition 6.1 The coordinate transformation given by (6.216) - (6.218) is a dif-

feomorphism.

Proof: &b Utilizing the fact that ® : z € R — y € R is invertible
everywhere, we explicitly compute ! : y € ®2 — z € R to yield,

1 =y | (6.219)
T2 = ya—hi(n) (6.220)
T3 = y3— ha(y1,y2) (6.221)

N

Y2
is invertible everywhere, and is therefore a globally valid diffeomorphism. <1 é

where h3(y1,y2) = hyo®? [ ] Therefore the transformation @ : z € R — y € K3
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Differentiating (6.216) and using equations (6.219) - (6.221), we obtain

=y2— ha(y1) + 01 f1(11) (6.222)

It is clear from (6.222) that a candidate quadratic Lyapunov function would
result in y1[—h1(y1) + 61 f1(y1)] that has to be made negative definite. This fact gives
us enough information to make some further assumptions on f;(y;) and to be able to
specify the function h,(y;).

Assumption (Al):

We now assume that fi(y1) is such that there exists a function p, (y1) such

that the following is true

y1i;(y1) is  positive definite (6.223)
yhvy) < nip(y) : (6.224)

The assumption merely indicates that y, fi(y1) is swamped by a passive
function. We now define the function ky(y,) in the following manner.
Choice (H1):
h1(y1) = y1 + ko, p1(v1) (6.225)
Utilizing (6.225) in (), we rewrite (6.4.1) as

N=—-y1+y— [koxpl.(yl) = 01f1(11)] (6.226)

Set [kglpl(yl) - 01f1(y1)] = Fl(el,yl) a.nd ﬁote tha.t ylFl(Gl,yl) > 0
Define the set Q to be the set of all functions q(*) : ® = R, such that the

following is true.

q(v1) is positive definite (6.227)
7]
———qa(y‘)Fl(fh,yl) > 0 (6.228)
)
9q(y1)
— 2
Ny > 0 (6.229)

Assumption (A2):
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There exists ¢;(y1) € Q such that the following is true

(AP < yg% (6.230)

We will use a simple example to clarify the nature of the assumptions made.

Example 6.4.1 [llustrate Assumptions Made
For instance, let the function fi(y,) = y?. That is, the differential eéuation
is of the form,

h=y (6.231)
Now choose

n(n) = aayn + a2y} g, 00 > 1 ' (6.232)

Note the following
y1p1(31) = ory? + agyy (6.233)
>0 (6.234)
nlfitn)] = 4 (6.235)
< a1y} + ooy (6.236)
yip(n) (6.237)

IA

Thus Assumption (A1) is satisfied.
Note that [f1(11)]? = yi. Choose

4

() = @ a3 >1 (6.238)
The following are then true.
0
yla—;- = agy! (6.239)
> (6.240)
> [film)]? (6.241)
(6.242)

Thus Assumption (A2) is also satisfied.
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Continuing the ezample, let 0, f(y1) = 61y3. Choose p1(y1) = ko, [c131+0217)

where kg, > |0,|, and a1, 02 > 1. The following are true

Fi(61,11) = kofoay + Olzyf] - 0,y? (6.243)
4
a(y) = 013% az>1 ' (6.244)
7]
QI Fl(alvyl) = aayf'[ko, [y + azyf] - 011/12] (6.245)
> 0 (6.246)

Thus it is possible to swamp the unknown nonlinearity.

Now returning to the problem at hand, we differentiate y, of equation (6.217)

to get
Y2 = ys— ha(y1,92) + 0253(v1,%2) (6.247)
Oh
+%[‘y1 +y2 — ko, ;1 (1) — 61 f1(31)] (6.248)

" where f'(y1,92) = f,08"! [ “
: Z7

Assumption (A3):
There exist smooth functions ¢5(y2) € 2 : R — R and py(y2) : ® — R, such

} We now make the following assumption on f’ (y1,2)-

that,
(fayi,92)? < 0 q(.;(yl) + y2p2(y2) (6.249)
16";;"1") >0 (6.250)
y2p2(y2) > 0 (6.251)

The reason for these assumptions become clearer during the course of the
proof. We now choose the function ha(y;,y2) as
Choice (H3):

h3(y1,y2) = alv(’yl)[ —Y1 + Y2 — ko, p1(n1)] + 292 (6.252)

l(Jl)]z 2+a43q2(y1) + 9q1(y1)

+013P2 (y2) + an[——= B 01

+ 1(6.253)
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where the constants a; ¢ = 1,2,...,4 <1 and will be specified later. Such a choice

of the function h3(y1,y2) results in equation (6.248) being recast in the form

Y2 = —aayz — aspy(y2) +ys (6.254)
Oh Oh
+02f3(y1,¥2) + 61 al(yl) [—313(1:;]1)]2” (6.255)
3‘12(:91) a‘h(yl)
- 6.256
ayl ayl /31 ( )
We now differentiate (6.218) to get
y3 = u+03f3(y1,92,y3) (6.257)
Ohs(y1, vz, '
..Lya‘%l[_yl + Y2 — ko, p1(y1) + b1f1(31)] . (6.258)
ah 1J2 3
%ﬁ[—aﬂn — aspa(y2) + y3 (6.259)
Oha(y1, 2, oh Oh
+ 3(y1, ¥2 y3)[02f£(y1’y2)+01 l(yl) +a [ l(yl)]z 2] (6.260)
o I
4 Ohs(y1,y2,93)  Bar(y) Oas(m) |
oo ) S ) (6.261)
We now choose the control input u to be
Ohs(y1, Y2,
u = — 3(3161 Y2 ya)[-—y1+y2 (6.262)
N
Oh3(y1,y2,
ko, 00)] = i | 2N gy (6.269)
Oh3(y1, Y2,
_ 3(y61yi/2 ys) [—eays — aapa(y2) + ys] (6.264)
Ohs(y1,y2, dh oh
_0ha(y1, 92 ys)[o2f2(y1,y2)+01 1(3/1) ay [ 1(?/1)]2 2] (6.265)
Oy o
_3h3(y1,yz,y3) 9qx(y1) aQI(yl)
e I (6.266)
Oha(y1, y2, Oh
b |ty FBa0) gy (6:267)
Ohs(y1, y2,
N TP (6.268)
—Y3 — Y2 — ko, | f3(y1, 2, yasgnlys] (6.269)

Comment 6.4.2 The control law (6.269) is implementable as it does not involve the

unknown parameters 6,,0,,03.
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Using the control law spec1ﬁed by (6.269) in the equation (6.261), we rewrite
(6.261) as

Y3 = —ys—y2+0sf3(v1,2,93) — ko | f3(41, Y2, y3sgnlys] (6.270)

Aha(y1, y2, Oha(y1,92,
+0, T ) ) gy PRIy 1ty (6211

8h3(y1, Y2,¥3) o Fi(1,92) — ko, Oha(y1, Y2, ¥3)

Ay, Bus |1f2(y1, y2)|sgnlys)(6.272)
o, hay1,¥2,¥3) O (31) Oha(y1,Y2,ys) O (y1)
dys ik ey | |sgnlys] (6.273)

To summarize, let us collect the transformed state equations as

h = —-§n :*'yZ-[kOlpl(yl)_olfl(yl)] . (6.274)
Y2 = —oy2 —3pa(y2) +ys (6.275)
' / Ohi(y1) _  Oha(ya)
+02£2(y1,92) + 61 B, A B, y2 (6.276)
3‘12(3!1) _ 9q1(y1)
_ 6.277
ayl O (6.277)
Gs = —¥s— Yo+ 0af3(y1, Ya, s) — ke | F3(v1, 2, ys)lsgnlys] (6.278)
Ohs(y1, ¥2, Oha(y1, vz,
o, Pslinvnws) oy ol vnte)) 0 nt (6.279)
On o
6h , Y2, Ohs(y1, Y2,
0y ) g, 1) | ZEIII  1,gmly6.250)
Bh ,Y2,Y3) Oh Ohs(y1,ya,y3) ., Ok '
3(?/1 Y2 ‘!/3) 1(.1/1) — kg | 3(?}1 Y2 ya)” 1(y1)| gn[y3] (6.281)
3?/2 ayl

We will now show global exponentiai stability of the system represented by
(6.274) - (6.281).

Theorem 6.8 Proof of global ezponential stability of system with mismatched non-

lipschitz perturbations.
Given (G1) A system of equations represented by (6.274) - (6.281 )
If (I1) The unknown parameters 6,,0,,0; are bounded by constants ky, , kg, , ks, .

Then (T1) ||z||ls = 0 ast —
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Proof: # b Consider a candidate Lyapunov function V(y1,¥2,93) : R —

R+ of the form,
yi 13yl
V= 5+ 5t 5t 4q2(1) + asqi(y1) (6.282)

where a4, a5 € R, but will be chosen later. Note that V is postive definite. Differen-
tiating (6.282) along the flow of (6.274)-(6.281), we obtain,

Vo= =y~ ylkspi(y1) — 1 fi ()]
, oh Oh
~oay} — aspapa() + i) + 0,20 _ g, Balon) g
[} YN

= lysll f3(y1, ¥2, y3) (ks — O359n[f5(y1, y2, vs)|sgnys]]
~luall Iy 4k, — 5y DI 38) o

on O
ol )y
["70: — Oasgnfys e'(:lg“’yzw-fz(yh y2)]]
—|y3ua"3(”5;f””3)||"’“(y‘)f1( )l
ks, Oragnlys T2 )
—a.;a—qg%lyl aq2(yl)[kalpl(y1) 01f1(y1)]

) 0
—as qalg(/!lll)yl - as%[kﬁﬁ(yl) = 0fi(y)]

Now we use the fact that

2 :
Oafi(une) < kot + [y, va)]? (6.283)
2 0
< k92%+yzpz(yz)+y1a—;1% (6.284)
Bh
o Tgt) < BBhWpg g (6.255)
k oh 0
< 01[ 1(!/1)] Y2 +yl“q.dl?('h) (6-286)
n

Choosing the constants o; i = 1,2,...,5 to be

k2
o > —Z—2 (6.287)
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a > 3
27y
a > 1
ay > 1
as > 1

We rewrite V as

V =

=Yy — y1lka,p1(y1) — 01 f 1(11)]

~lon = 5132 o0~ Uyapay)  [on - A

= lysll fa (91, ¥2, y3)|[kay — O35gn[f3(y1, y2, ys)]sgn(ys]]
Fheli b Oha(u1, 13,
—lysll—s(%mll Fi(y1)|[ke, — 9lsgn[y3M)_

O

Bha(v1, v,
el Iy
Y2

[k, = Brsglys I8 1y
Y2

—Iy IlahS(yl,y21y3)“ahl(y1) ( l)l

[k92 _ Ozsgn[ya (yal;y% y3) ahl(yl)fl( 1)]]

o=y, — 0, 20 5 1) - )

0 0
~fos - 11700, _ o, 20l

ap1(v1) — 01 fi (1))

167

(6.288)
(6.289)
(6.290)
(6.291)

fily)]]

Note that by the assumptions on the functions p;(y;), P2(y2), @1(v1), g2(v2), the fol-
lowing are true. :

yilke,p1(31) — 01 f1(m1)] = 0
yapa(y2) = 0
9g2(y1)
ayl n 2 0
0q: (1) w > 0
oy -

7]
qal_(yl—)'[kalpl(yl)_olfl(yl)] >0
/51

(6.292)
(6.293)
(6.294)

(6.295)

(6.296)
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It is therefore obvious that V is indeed negative definite. This confirms the global
exponential stability of the origin. <Ié

Example 6.4.2 Variable Structure Lyapunov Control Technigue.
Consider a simple ezample to clarify the methodology outlined earlier. In-

deed, consider the following two state ezample given by

& = zo+ 6,22 (6.297)
2 = u (6.298)

where z € R? and |6,] < ks, Now consider a coordinate change given by

ho= (6.299)
Y2 = o +h1(y1) (6300)

Note that the function fi(y:) satisfies assumptions (A1) and (A2) prescribed in the

previous section. Indeed, choosing py(y1) = ky? k > 1, we see that

yfi(y) < yip(n) | (6.301) |

Thus assumption (A1) is satisfied. Furthermore, choosing

a(y) = kyilk>1 (6.302)
) = of (6.303)
< kf]k>1 a (6.304)
< ylaqu?(;lh—) | (6.305)

Thus assumption (A2) is also satisfied. Now in accordance with the theory outlined

in the earlier section choose hy(y;) to be

hi(y1) = ko, y? (6.306)

Indeed, in the new coordinate system, the system equations are given by

o= y2—yilks, — 0] (6.307)
Y2 = u+3ksyilys — yilke, — 01]] (6.308)
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Now choose the control u to be

u = —yz —y1 — 3ke, y2y2 — 6k*|yf|sgn[ys] (6.309)

where k* = magz(ke,, k). Such a choice of control yields system equations of the

form

h = y2—y;lke — 6y] (6.310)
Y2 = —y2—uy1 — [v3|[6k*sgnly,] + 3kg, 615gn[y;] (6.311)

Choosing a candidate Lyapunov function of the form
. .
v=9_,¥% (6.312)

and differentiating V' along the flow of (6.310) - (6.311) we find

V = —yilks, -6 (6.313)
=3 — |y3lly2[6k* + 3ks, O15gm[yy,] (6.314)
=0 (6.315)

- Negative definiteness of V guarantees global ezxponential stability.
Simulation results indicate that the states are regulated to the origin. Note

however the large control effort required.

6.4.2 Criticism And Future Prospects

The methodology presented in this section is a systematic means of sta-
bilizing this class of benchmark problems. The technique however suffers from the

following shortcomings.

e The class of systems that can be handled are limited, to those that can be

exactly linearized should the unknown parameters be known.

e The feedback strategy, being the result of a Lyapunov analysis is extraordinarily

conservative, and asks for unrealistic control efforts.
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Figure 6.4: Sta.biliza.tion- Of Mismatched Systems

o The strategy assumes full state feedback which is a serious setback in an indus-

‘trial scenario.

® More work needs to be done in identifying the class of perturbations that can

be handled by a Lyapunov design.

e The problem begins to be increasingly difficult if instead of the stabilization

objective, the goal were to be tracking.

6.5 Sliding Mode Observers For Mechanical Sys-

tems

6.5.1 Introduction

In this section, we present a correction to an existing result in sliding mode
observer theory, [24] and remark on using the result and its modifications as helpful
design rules towards designing observers for mechanical systems. The sliding mode

observer problem for s;ystems with more that 2 states is yet unsolved, and the available
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results require a number of assumptions to be made on the system. Even in the
important class of planar dynamical systems, the theory is incomplete, in that the
observers are very sensitive to measurement noise.

We first present the basic theory of sliding mode observers for mechanical
systems, and prove the existence of generalized Filippov solutions and stability. We
then show the convergence of the observer state errors to zero. We then present the
problem with existing theory, and present bounds on variables that would prevent
observer failure. Finally we remark on the utilization of the computed bounds as a
design rule to help design such sliding mode observers.

The problem of designing observers using sliding mode theory was first in-
troduced and studied by [24]. Here the observation problem is treated as a special
case of a state regulation problem. Sliding surfaces are designed based on the error
’dyna.mics, and reaching a sliding surface is equivalent to the error in the estimate of
the measured state decaying to zero. In sliding mode control, the surface $ = 0 is
reached in finite time, and on that surface the states decay exponentially. Similarly,
in sliding mode observer theory, the error in the estimate of the measured state decays
in finite time. All other state errors decay exponentially.

Consider a simple mechanical system of the form

i = o (6.316)

where z € %% and u € R. Now consider an observer of the following form.

1 = Z3+4 kisgn(z] (6.318)
2, = kysgn[E,) (6.319)
i =z-3 (6.320)

Such an observer structure equation leads to error dynamics of the form

I = ig-klsgn(il) (6321)
Ty = —kgsgn[i:l] (6322)
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Theorem 6.9 Convergence of the state estimation errors:
Given
(G1) Error dynamics of the form (6.321)- (6.322)
If
(I1) |Z2] < k1
Then
(T1) Generalized Filippov Solutions exist for the system (6.321)- (6.322)
(T2) The one-dimensional manifold #, = 0 is attractive

(T3) The averaged dynamics of %, about the surface 3, = 0 decays ezponentially.

Proof: & b Existence of Filippov solutions is due to the fact that the gov-
erning differential inclusions are closed, bounded, convex and uppersemicontinuous.
We will prove the theorem using simple Lyapunov analysis. Consider the

candidate Lyapunov function,

yv=21 (6.323)
Differentiating V' along the flow of the system(6.321), we get,

V = %2+ ksgn[z]] (6.324)
< —||21[|[kr — £25gn[E4]] (6.325)

Thus as long #, < ki, V< 0, indeed the surface # = 0 is attractive.

Comment 6.5.1 The Theorem asserts the existence of a tubular neighbourhood around
the T, = 0 azis where, the trajectories converge to the manifold given by z, = 0. It
is to be noted that T, must not be greater than k; until the trajectories converge to

z; = 0. Some additional conditions are necessary to prevent such an occurence.
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The dynamics of the system when constrained to evolve on the surface
£1 = 0, can be derived using the Fillipov solution concept. Thus, taking a convex
combination of the dynamics on either side of the sliding surface, we get,

31 = qlE + k] + (1 —7)[E2 — ki (6.326)
T2 = vk + (1= 7)(—k) (6.327)
From the above equations, we eliminate v, and from the invariance of the sliding

surface, we get,

g =0 (6.328)
g, = -ﬁéz (6.329)
kx

Exponential decay of #; is clear from the above equation. The proof of the theorem

is complete. <&

Comment 6.5.2 It is interesting to note the roles played by the constants ky and k,.
Increasing ky, increases the region of of attractivity of the surface ¥, = 0. But the
same time, it decreases the rate of decay of the state #,. Thus there is an obvious

design tradeoff to be considered here.

Comment 6.5.3 The hypothesis of this theorem is weak. Current literature makes an
important omission in this regard. The hypothesis asserts that the surface £, =0 is
attractive, only as long as £y < k;. Now it is not clear, that the condition %, < k,
will not be violated before %, = 0 If this condition is violated, then the surface , =0
is no longer attractive. It is therefore necessary to clearly understand the conditions
under which such a pathology may not occur. By choosing gains ky and k; carefully,
we may prevent the occurrence of such circumstances. Furthermore, assumptions on

mazimum bounds on the initial conditions become necessary to the analysis.

We now state the following theorem that ensures the stability of the per-

turbed error dynamics.

8
-
i

.’52 - klsgn[:il] (6330)
[w(t)] < Wmes (6.332)

8
)
Il



Theorem 6.10 Sufficient Conditions For Attractivity of Sliding Surface:

Given

(G1) Error dynamics of the form (6.830)- (6.981)

If
(11)
1 \/§[k2 + wmaz]%
< ky — €2
» 2= kl 61[ [k2 - wma:c] ]
where,
12:(0)] < @
12200)] < €
Iw(t)l < Wmaz
Then

(T1) The surface £, = 0 is locally attractive.
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(6.333)

(6.334)
(6.335)
(6.336)

Proof: & > We will prove the theorem in the following manner. Firstly, we

will find the minimum time ¢,,;, it takes for %, to get outside the tubular neighbour-

hood defined by ||Z5(t)|| < k1. Then we will find the maximum time it takes for &

to become zero, given the time evolution of the ;. Then we will derive the condition

that ¢min > tmez. This ensures local attractivity of the manifold z; = 0.
As the first step, let us find the time it takes for ||Z(2)|| = k;.

Integrating the Z,, equation, it is clear that
iz(t) = [—kgsign[:i'l] + ‘I.U]t + 5)2(0)

Therefore, the minimum time for ||3,(t)|| = k; is given by

kl — €2
[|k2 + Winaz||

tmin =

(6.337)

(6.338)
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Substituting for ,(t) in the equation (6.330) and solving for the maximum
time £, = 0, we get,
\/§[k2 + wmaz]%
[k2 - wmcz]
For the surface #; = 0 to be attractive, it is sufficient that tmin > tmae.
Comparing (6.338) and (6.339), it is clear that

] (6.339)

i
tmaz = € [

ky — e 1 \/-2-[’92 + 'wmar]%
—_— > € 6.340
”k2 + wmaa:“ 61 [ [k2 - wmaz] ] ( )

\/§[k2 + wmaz]%

[kZ - 'wma.:-c]

& < ki —eff ] (6.341)

The theorem is therefore proved. <&

Comment 6.5.4 For the case of no uncertainity, meaning w(t) =0, we get

€2 < ky — 261k (6.342)

This equations makes sense. The intution is that an increase initial conditions on 7,
lead to a higher value of ky. Futhermore, if the initial value, or a bound on the initial

value of &5 is known, ky can be selected based on the a knowledge of z,(0).

Comment 6.5.5 The eztension of the results of the theorem to higher dimensions is

nontrivial.

6.5.2 Increasing Regions of Attractivity

It is clear from the results of the previous section that the domain of attrac-
tion for the sliding surface &, = 0 is the chosen sliding gain k;. Now with an increase
in the perturbation of the initial condition of Z, it becomes necessary to increase k.
Such an increase helps to give sufficient time for #, to decay to zero, while at the
same time enfofcing a bound on the norm of #;(¢). The price to be paid, as seen
by comments in previous sections is a sharp decrease in the decay of Z,(¢). In this
section, we ﬁresent a simple way to alleviate this problem. We now consider a slight

modification of the observer structure with the introduction of the linear term,
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&1 = &3+ hiE + kisgn(3,) (6.343)
22 = kysgn(z,) ' (6.344)
Such an observer structure equation leads to error dynamics of the form

) = Z3— ME — ksgn[i] (6.345)
T3 = —kysgn[z,) (6.346)

We now state the result concerning the domain of attraction and stability

of the modified observer.

Theorem 6.11 Domain of Attraction and Stability of the Modified Observer:
Given

(G1) Error dynamics of the form (6.845)- (6.346)

If

(11) 1|22l < k1 + ha||Z:0)]
Then

(T1) The one dimensional manifold 3, = 0 is attractive.

(T2) Z; decays to 0 ezponentially.

The proof of the proposition follows verbatim the proof of the previous

theorem, and therefore will not be repeated.

Comment 6.5.6 Note that for large values of &, the system behaves as a linear system,
meaning a Luenberger observer. Then as the #, decreases in magnitude, the observer
operates as a nonlinear observer owing to the presence of the switching term. This
is interesting as there is a clear demarcation of linear and nonlinear regimes, and we
deliberately introduce a nonlinear regime in order to ensure the reduction of the error
of the observed variable to zero in finite time. Operation in the nonlinear regime has

the additional effect of ensuring the stability of the averaged dynamics.
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Comment 6.5.7 Also note that the introduction the linear term k1%, has no effect on

the Fillipov averaged dynamics of the observer, as this term vanishes when z;=0.

Comment 6.5.8 The bounds derived on initial conditions derived using the theorem
are unaffected. Only that now a significantly larger value of perturbation in initial
conditions can be tolerated. The introduction of the hy term permits a reduction in
the value of ky and k.

6.5.3 Smoothing And Reduction of Chattering

The use of the signum function in the observer equations leads to a lot of
chattering in the estimates of the observer. There is a simple technique to overcome
this. We replace the signum function with the saturation function, with a specified
boundary layer. Analogous to sliding mode control, the observer dynamics also has
a boundary layer, and Fillipov averaging is performed about the boundary layer.
Furthermore, the use of the boundary layer indicates that in the presence of very
small errors; the filter again operates in the linear regime, and functions essentially
as a steady state Kalman estimator. The sliding gajns can be chosen such that for
* very small innovations the filter uses steady state Kalman gains.

With a very large estimation error, the 4, term predominates, and the filter
starts out as a linear observer. Then, as the estimation error decreases, the filter starts
to perform as nonlinear observer with the signum term predominating. This ensures
the confinement of the observed variable to within the boundary layer. Furthermore,
the averaged dynamics of the the system about the boundary layer is exponentially
stable, leading to a decay of Aestimation errors in the other state variables.

The sliding mode observer tries to capture the essential features of the Lu-
enberger observer, the sliding mode observer, and the steady state Kalman filter. For
all this, and more, the increase in computational complexity is minimal. Comparison
of the Kalman filter equations and the equations of the sliding mode observer re-
veal the salient feature of the sliding mode observer - operational and computational

simplicity with no loss of robustness.
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6.5.4 Criticism And Future Prospects

The sliding mode observers presented, while being applicable to most me-
chanical systems, suffer from serious technical problems when applied to systems of

higher dimensions. The major problems with sliding mode observers are the following.
o Sensitivity to measurement noise.

e The chattering nature of the observer prevents achievement of the desired lev-
els of accuracy. The average value of the observer is zero, but to be useful,
the instantaneous values of the observer estimate must be used. However this
instantaneous value is corrupted with the noise that results from chattering,

and consequently the purpose is not served.

6.6 Fractional Control - Conjecture;, Open Prob-

lem

6.6.1 Introduction

In this section, we will present an interesting variable structure control law
for a vector dynamical system, that is a bounded control law, but whose convergence
rate is faster than a comparable linear control law, and whose robustness properties
are much better than comparable linear control laws. We will clarify what we mean by
comparable linear control laws in the following subsections. We use the term fractional
control law to indicate that this is a particular form of variable structure control law
where the powers of indices are positive fractions.

We will present qualitative arguments for the conjecture, and will provide
simulation results that are in agreement with the conjecture. However the proof of
this conjecture has been quite elusive, and we have been unable to present anything ‘

more tangible than this conjecture. We leave the proof of this control method as an

open problem to the reader.
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6.6.2 Finite Time With Continuous Control - Scalar Sys-

tems

Consider a scalar dynamical system of the form
t=u (6.347)

where z € R and the control u € R. Given the control objective of regulating the
state of the system (6.347) to the origin commencing from arbitrary initial conditions

in finite time, we choose u in the following manner.
u= —klxlﬁsgn[:c] (6.348)
where £k € R, and r > 1.

Comment 6.6.1 The choice of u is novel since the control is obviously continuous,
but not differentiable at the origin. Also note that the control law involves raising the

power of |z| to a fraction, and hence the term fractional control.

We now make the following claim regarding existence of trajectories, stability

and convergence for the system (6.347)

Claim 6.2 Ezistence of solutions, stability and convergence for fractional control of

scalar systems.
Given
(G1) System dynamics of the form (6.347)
If
(I1) The control u is specified as in (6.348)
Then
(T1) Cauchy solutions ezist for (6.347) subject to (6.348).

(T2) z =0 is stable.
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o)~k

(T3) Indeed = — 0 in finite time t*, given by t* = k[l ]

Proof: & > Existence of Cauchy solutions is easily seen by the fact that
the righthandside of the differential system is continuous.

Considering the candidate Lyapunov function V(z) : R — R, given by

2

V= % (6.349)
Indeed V = —k|z[i+F < 0. Attractivity of the origin is therefore confirmed.
To show finite time convergence we solve the equation
z= —klxl*sgn[a:] ‘ (6.350)

to obtain that ¢* = l?é[%u_% The proof of the claim is complete. <1
k .
We now make a comparison between three kinds of control laws that regulate
the state of the system (6.347) to the origin.

Ulinear = —kT . (6351)
k.

Usliding = —mm if |z]>0 (6.352)

U fractional = T 13’ if I(L‘I >0 (6.353)

Comparison of control efforts reveals something interesting. For all |z| > 1, the linear
controller has the maximum gain, closely followed by the fractional controller, and
the sliding mode controller has the smallest gain. However the situation is reversed
when |z| < 1. .

Similarly, the times taken to reach the origin from initial conditions z(0) #0

are
tiinear = 00 (6354)
tslidt'ng = Iw_(kO)—l' (6.355)
|=(0)[*~*

tfract:'onal = m (6356)
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We now formulate an alternative control law that combines the best of both

the linear and the fractional control law to give

vt = —kz if |z|>1 (6.357)

k
p > 1 (6.359)

Note that we do not bother to define the control law at the origin.

There is yet another viewpoint as to why this control law does better than a
linear control law when [z| < 1. The linear control law has an eigenvalue —, and but
u* has an eigenvalue I;I_:;" (we use the term eigenvalue \;ery loosely here, since strictly
speaking even the term eigenvalues does not make sense in a nonlinear context) that
is increasing to oo as [z| — 0. Though both control laws are bounded, qualitatively,
the fractional control law converges much faster to the origin as seen in the following

scalar example.

Example 6.6.1 Fractional Control - Scalar Case

Consider the simple scalar ezample given by the equations

t=u . (6.360)
Choose

Ulinear = —kz (6.361)
v = —kz if |z|>1 (6.362)
= o< <a (6.363)

|z[?
k = 2 (6.364)
p = 2 (6.365)

1t is clear from the simulation plots that the modified fractional control law outper-

forms the linear control law.
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' | Figuré 6.5: Comparison of Linear and Fractional Control Laws
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Now consider a linear system in the controllable canonical form, given by

the following equations.

where z € R*, u € R.

Now choose the control u to be of the following form

u = —klxl—kzmz—'“— nTn if ”Z”z)l
k
= T — ez = = —gy if 0 < |2]|2 < 1
|1 [l]|2" [E41H

where

n
llzll: = >z
i=1
r > n

8" + kns™ ' + ... + k; is a stable Hurwitz polynomial

We now formulate the following conjecture.

(6.366)
(6.367)
(6.368)

(6.369)
(6.370)

(6.371)
(6.372)

(6.373)
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Conjecture 6.1 Erzistence of solutions, stability and convergence for fractional con-

trol of controllable linear systems.

Given

(G1) System dynamics of the form (6.366) - (6.868)
If
(I1) The control u is specified as in.(6.369) - (6.873)
Then

(T1) Filippov solutions ezist for systems (6.366) - (6.368) subject to control (6.369)
- (6.373)

(T2) z =0 is globally stable

(T3) Indeed z — 0 faster than a comparable linear control law of the form ujinea, =

—k1z1 — k2zy — - -+ — bz,

Qualitative Proof:
First we note that within the unit ball (||z|]; < 1), the control effort is
bounded by
e (6.374)

i=1

So the control does not blow up at any instant of time. We have used the notion that in
the nonlinear setting, within the unit ball, we have each eigenvalue \; 1 =1,2,...,n
of this system being replaced by —"'? where r > n. Consequently, from the way the
Ai 1 =1,2,...,n combine to forrlllzlizie k; of the control law, the form of the control
law is intutively obvious.

We find by simulation that the robustness, and rate of convergence of the
proposed nonlinear law are much superior to a linear control law. The proof of this

conjecture, however, has eluded us.
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Figure 6.6: Fractional Control for Systems in Canonical Form

Example 6.6.2 Fractional Control for Linear System in Controllable Canonical Form.

We present simulation results for a system of the form

Ty = z (6.375)

T = z3 : (6.376)

3 = u (6.377)

where

U = —kizy — kyzo — kazz if ||z > 1 (6.378)

= — klgml— k21x2— k*"_,_za f0<||z|]2 <1 (6.379)

l=lls =l llell3

khk = 6 (6.380)

k, = 11 (6.381)

ks = 6 (6.382)

The results show the faster convergence of the state subject to fractional

control.
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6.6.3 Criticism And Future Prospects

The modified fractional control law is interesting in that it seems to provide
some desired features of both linear and nonlinear control laws. The major problems

with this control law however are implementational dificulties.

o Computating the fractional powers of [lz||2 requires significant real time com-

puting power.

o Accuracy of fractional control starts diminishing rapidly with lower fractional

exponents.

e While the robustness of fractional control is quite high, it is not significantly
better than a well designed H,, controller designed to minimize the effect of the
disturbance on the regulation error. In simulation runs, the performance of a

comparable H,, controller was just -as good.

o While we were unable to come up with an acceptable proof of the control law,
this control law seems to be a good alternative to a standard pole-placement

control law.
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Chapter 7

Conclusions And Future Work

7.1 Cbnclusiohs of This Thesis

We conclude this thesis with a brief summary of the contributions of this

thesis. We presented the following extensions to nonlinear control theory.

¢ Generalized matching conditions for perturbed SISO systems with perturbed

zero dynamics.
¢ Generalized matching conditions for perturbed nonsingular MIMO systems.

o Generalized matching conditions for perturbed singular MIMO systems which

are left invertible.

o Generalized matching conditions for perturbed singular MIMO systems which

are right invertible.

e Existence theorems for differential equations and inclusions with discontinuous
righthand sides.

e Novel discontinuous control laws for finite time stabilization of nonlinear sys-

tems.

¢ Novel sliding mode identifiers for affine nonlinear systems.
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e Synchronous sliding mode control theory.

e Variable structure lyapunov control of controllable systems perturbed by mis-

matched, non-lipschitz perturbations.
o Extensions to planar sliding mode observer theory.

o Conjecture regarding the use of fractional control for controllable linear systems.

7.2 Scope For Future Work

There is a lot of scope for future work in the areas mentioned above. We

will outline some interesting problems that are worth looking into.

e Matching conditions relaxing the requirement of exponential stability of the

zero dynamics.
° Combining sliding mode identification with control.
o Utilizing chattering control as a form of persistent excitation.
¢ Developing the generalization of the winding algorithm.

o Develop generalized state space sliding using n — 1 switches to regulate to the

origin.

¢ Extending Lyapunov control techniques to handle systems that cannot be input-

output linearized.
¢ Extending sliding mode observer theory to handle non-planar systems.

e Extensions of the work on synchronous sliding and fractional control using other

forms of nonlinearities.

e Formulating the Lyapunov and invariant set theorems for non-differentiable

Lyapunov functions and differential inclusions.
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o Adaptive control techniques for differential inclusions.
¢ Combining sliding mode identification with adaptive control.
o Applying synchronous control to physical examples.

We conclude this dissertation with a deep sense of fulfillment of having

explored to some depth.some aspects of nonlinear control theory.
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