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Sliding Mode Control of Perturbed Nonlinear
Systems

by

A. K. Pradeep

Abstract

Professor Shankar Sastry

Chairman

In this dissertation, we present techniques and conditions for the robust

control of perturbed nonlinear systems.

First, we develop matching conditions i.e., conditions to be satisfied by per

turbations such that the control objective, namely asymptotic regulation, is achieved

by the perturbed system, utilizing control laws for the unperturbed system. In the

first three chapters of this dissertation we present statements and proofs of matching
conditions for :

• Perturbed SISO systems.

• Perturbed, MIMO systems that possess vector relative degree.

• Perturbed MIMO systems that are invertible but do not possess vector relative

degrees. We consider control laws for such systems developed in the framework

of the zero dynamics algorithm and the dynamic extension method.

In chapter 4, we review in our notation some basic results on existence and

uniqueness of systems with discontinuous right hand sides. Finally in chapter 5 we

develop techniques that utilize sliding mode control theory to identify unknown pa
rameters for a class of nonlinear systems. We then develop robust control laws usiii"



a Lyapunov control method that ensure stabilization in the presence of mismatched

perturbations for a class of nonlinear systems. We utilize sliding mode control the

ory for the purpose of synchronous regulation utilizing multiple sliding surfaces, and

conclude this dissertation with a conjecture on fractional control.
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Chapter 1

Introduction

In this thesis we develop new and robust control techniques to achieve control

objectives for a class of nonlinear systems. Our approach to the problem takes the

following paths.

1. We first characterize the set of all perturbations that can be effectively handled

by slidingmode control techniquesin conjunctionwith the methodology of exact

input-output linearization. We develop the matching conditions that must be

satisfied by perturbations of SISO, and invertible MIMO nonlinear systems. In

each case, we present proof of achievement of the control objective and the

stability of the internal dynamics of the system. Chapter 1 and 4 contain

background material on the theory of exact input-output linearization, and

sliding mode control. Results, theorems and proofs of the analysis of matching

conditions are contained in chapters 2 and 3.

2. While it is useful to know the classes of perturbations that can be effectively

handled by existing control theory, the control engineer is often faced with the

task of designing control laws for systems that are perturbed by disturbances

that do not satisfy the matching conditions. We now design control techniques

to handle such cases. We provide systematic robust control design methods

using nonlinear identification and Lyapunov control to achieve identification

and stabilization for certain classes of nonlinear systems. New sliding mode



nonlinear identifiers ensuring exponential convergence of parameters to true

values, and Lyapunov controllers capable of handling mismatched non-lipschitz

like perturbations are described in chapter 5.

3. The techniques of the theory of exact input-output Unearization assume that

full state information is available to the controller. In the absence of full state

information, it becomes necessary to design observers to use the measurements

to estimate the states. We now extend some results in the theory of planar

sliding mode observers to ensure exponential convergence of the estimated state

to its true value. An extension to standard, planar sliding mode observer theory

is presented in chapter 5.

During the course of our investigations, we came across two novel extensions

to classical sliding mode control theory that we present in chapter 5. The extensions

are the following.

1. Synchronous control methods that ensure coupled motion through control. Con

trol introduced synchronous motion is useful in many industrial scenarios. Multi-

fingered robot hands gripping an object, milling machines working in conjunc

tion with X-Y tables, and a host of other manufacturing processes utilize con

trolled synchronousmotion. We present interesting control techniques that find

use in such scenarios.

2. Conjecture on fractional control.



Chapter 2

Basics Of The Theory Of Exact

Linearization

In this chapter, we will present a brief description of the theory of exact

input-output linearization of nonlinear systems. The material in this chapter is back

ground material liberally adapted from the works of [19].

2.1 Normal Forms for Single Input Single Output

Nonlinear Systems

Consider a nonlinear system of the form

x = f{x) + g(x)u(t) (2.1)

y = *(*)• (2.2)

where x € 9£n, f{x),g(x) : &n —• 9£n are smooth vector fields, the control input

u(t): 3ft+ —* 3£, and the output h(x) : 9ftn —* $1 is a smooth nonlinear function.

We attempt to linearize the input-output behaviour of such a nonlinear

system by doing the following.

• By choosing a new set of states, diffeomorphic to the original set of states in

which the nonlinear system is described.



• Choosing an input such that in the new state space, the system is linear.

The choice of the new set of states is such that the new system description makes

obvious the choice of linearizing input. The methodology is quite similarto the linear

state transformations that transform controllable linear systems into the controllable

canonical form. Indeed, once the linear system is in the controllable canonical form,

the choice of pole-placement control law becomes obvious. We attempt to construct

similar canonical forms for nonlinear systems where the choiceof control law becomes

intuitively obvious. We illustrate the idea with the following simple example.

Example 2.1.1 Exact Input-Output Linearization

Consider a scalar system of the form

x = f{x) + u(t) (2.3)

y = x (2.4)

where x € 3ft, f(x) : 3ft —• 3ft and the control input u(t): 3ft+ —• 3ft. Differentiating the

output y of system (2.3) once, we obtain

y=£ (2.5)
= /(x) + u(«) (2.6)

It is immediately obvious that by choosing

u(<) = -/(«) + v(t) (2.7)

where v(t) : 3ft+ —• 3ft is unspecified as yet, we recast the system equation (2.3) in the

form

y = »(*) (2.8)

which is a simple linear system. Indeed, in this case there was no necessity to con

struct a diffeomorphism to a new state space. The particular choice of input (2.7)

(cancelling the nonlinearity, f(x) in equation (2.6)), rendered the system linear and

hence the name input-output linearization. Also, the input (2.7) cancelled the non-

linearity exactly, and hence the name exact input-output linearization. Although the



methodology for higher dimensional systems is considerably more involved the tech

nique of cancelling nonlinearities through an appropriate choice of inputs and states
is retained.

This simple illustrative example also provides the motivation for the first

portion of this thesis. If equation (2.3) was a model for a real physical system,

we would expect the real physical system to deviate from the considered model by

some small amount. We would then be interested in knowing the classes of such

deviations that permit the achievement of the control objective, when the control

law designed based on the model is applied to the real physical system. Indeed in

scenarios involving inexact knowledge of the controlled system, wewish to quantify in

some sense the mismatch between the design model and the physical system so that

the methodology of exact cancellation of nonlinearities (which in such situations is

bound to be approximate) is still valid. We illustrate this situation with an example.

Example 2.1.2 Matching Conditions

Consider a perturbed design model of the following form. .

x = f(x) + A/(x) + u(t) (2.9)

where x € 3ft, f(x) : 3ft —> 3ft, Af(x) : 3ft —• 3ft is a perturbation, and the control input

u(t): 3ft+ —♦ 3ft. The choice of input (2.7) applied to the perturbed system (2.9) would

yield an equation of the form

x = A/(x) + v(t) (2.10)

where the control input v(t) : 3ft+ —• 3ft is to be specified yet. It is clear that v(t) :

3ft+ —» 3ft must be chosen to ensure robustness in the presence of the perturbation

A/(x) : 3ft —• 3ft. Indeed, if the control objective was stabilization of the system (2.9),

and the perturbation \Af(x)\ < K&j, then the choice of control

v(t) = -Kssgn[x] (2.11)

where Ks > K&j would ensure achievement of the control objective despite the per

turbation.



We now present a quick review ofthe theory ofexact input-output lineariza

tion for a single-input single-output system, abbrieviated inthis dissertation asa SISO

system.

x = f(x)+g(x)u(t) (2.12)

y = h(x) (2.13)

with x € 3ft", f(x),g(x): 3ft" -♦ ft" aresmooth vector fields, theoutput h(x): 3ft" -> 3ft

is a smooth nonlinear function, and u(t): 3ft+ —* 3ft is the control input to the system.

Definition 2.1.1 The Lie derivative of a smooth real valued function h(x): 3ft" —»•

3ft with respect to a vector field f(x) : 3ft" —* 3ft" is a real valued function denoted by

Lfh(x): 3ft" —• 3ft defined as

LlK*) =̂ /W (2-14)
The notations L2fh(x) stand for Lf(Ljh)(x) and LgLfh(x) := Lg(Ljh(x)) vfheieg(x):
3ft" —* 3ft" is another smooth vector field.

Definition 2.1.2 The Lie bracket of two vector fields f(x) : 3ftn -+ 3ft" and g(x) :

sr* __> sft^ ts a vector field denoted by [/,£](*): 3ft" —• 3ft" and is given in coordinates

If.ri-g/M-giM (2-15)
Definition 2.1.3 The SISO nonlinear system (2.13) is said to possess strict rela

tive degree 7 at xq if

LgL)h{x) =0 Vx€£r(x0), i = 0,...,7-2
, (2.10)

LgL)-lh(xQ) ^0

Comment 2.1.1 Such a definition of relative degree is compatible with the usual defi

nition of relative degree for linear systems (as being the excess of poles over zeros).

Comment 2.1.2 The relative degree of some nonlinear systems may not be defined at

some points.



Given a SISO system of the form (2.13), with strict relative degree 7 € Z+,

we will now transform the nonlinear SISO system into a normal form. We commence

by defining the components of such a nonlinear state transformation. Define the

functions &(x): 3ft" -f 3ft i = 1,2,,.. 7 as follows.

6 = h(x)

(2 = Ljh(x)

t, = L)-lh(x)

It follows from the definition of strict relative degree that

ix = &

& = L}h(x)-rLgL'}'1h(x)

(2.17)

(2.18)

(2.19)

(2.20)

and Lgl/j^hfe): 3ft" —»3ft ^ 0 everywhere in aball around xq.
As the vector field g(x) : 3ft" —• 3ft" of equation (2.13) is trivially involutive,

there exist (by the theorem of Frobenius) functions rji(x) : 3ft" —• 3ft i —1,2, n —1

such that the matrix

drji(x)

drj2(x)
(2.21)

dnn-i(x)

has rank n — 1 at xo and

drji(x)g(x) —0 Vx 6 Br{x0) i = 1,2, n —1 (2.22)



Comment 2.1.3 The matrix given by

has rank n at xq € 3ft".

dh(x)

dLjh(x)

diylh(x)
drii(x)

drjn^x)

We now formally define the coordinate transformation we had been seeking.

$ : x € 3ftn

(2.23)

(2.24)

Note that $(x) : 3ft" —• 3ft" is a local diffeomorphism. In the [£,»/] coordinates, the

system equations (2.13) are recast in the form

6 = 6
6 = 6

y = f i

where

&(£,?): 3ft" -♦ 3ft = L]h(x)

a{t,ti) :3ft"-* 3ft = LgL)-lh{x)

ft(£,if) :RB-*»n-nr = I/iy,- *= l,2,...,n-7

(2.25)

(2.26)

(2.27)

(2.28)



The choice of linearizing input is nowobvious fromequation 2.30). Choosing

we exactly cancel the nonlinearity 6(£, n) : 3ft" —• 3ft in equation (2.30) to yield,

6 = 6

6 = &

i, = v(t)

V = ««,*)

y = 6

(2.30)

Thus a portion of the system, the f dynamics is now linear. Such a choice of state

transformation, and control law is exactly what we attempted to set out to discover.

2.2 Normal Forms for Multi Input Multi Output

Nonlinear Systems

We now extend the theory developed for SISO systems to certain classes of

square MIMO nonlinear systems. Consider nonlinear systems of the following form

x = f(x)-rE?^9i(x)ui(t)

yi(x) = hi(x) i = 1,2,....,m

where the state x £ £", and f(x) : 3ft" -+ 3ft", #(x) : 3ft" -> 3ft" i = 1,2,... ,m, are

smooth vector fields, u{(t) : 3ft+ -• 3ft i = 1,2,... ,m are control inputs the outputs

yi(x) : 3ft" —• 3ft i = 1,2,..., m are smooth nonlinear functions.

The development of the theory for MIMO nonlinear systems closely parallels

the development of the exact input-output linearizing'technique for SISO nonlinear

systems outlined in the previous section. We commenceby defining the MIMO equiv

alent of the SISO concept of relative degree.
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Definition 2.2.1 The MIMO system represented by equations (2.31) is said to have

vector relative degree [71,72,... ,7m]T oi x0 if

LgiL)hi(x) =0 for 1< j < m,0 <k< 7, - 2 (2.32)

for i = 1,... ,m and x € Br(x0), tfie matrix A(x) : 3ft" -* 3ftmxm, referred to as the

decoupling matrix, and defined as

71-1LgiL/ hi ••• LgmLj hi
A(x) = (2.33)

T T'rm~1h r pm-li

is nonsingular at xq.

As before, we will now attempt to find a normal form for the square MIMO

system (2.31) where the choice of linearizing input will be obvious.

Define the following functions

fi = h^x), £ = L}h(x),

& = h2(x), i\ = XyM*),

where the functions £j : 3ft" -> 3ft i = 1,2,..., m j = 1,2,..., 7,- qualify as a partial
set of coordinates. Complete the basis choosing n —7 (7 = Y%Li7,) more functions

?/i(x) : 3ft" —• 3ft i = 1,2,... ,n —7. It is no longer possible as in the SISO case to

guarantee that

Lgjrii{x) = 0 1 < j < p 1 < 1< n - 7 (2.35)

unless the distribution spanned by gj(x) : 3ft" —• 3ft is involutive. Using the notation

C e ft7' =

4 J

(\1=Lj-%(x)
& = Lj-lh,{x)

d = Lylhm{x)

(2.34)

(2.36)
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we recast the system equations (2.31) in the [f1,... ,fm,»/] coordinates as

£ = a

On = fcKV —r.lJ +ESaaJK1 r,«?)«iW
£ = &

& = »»(«,.-.r,!j)+x3Li«3«1,...,r,,i»)«i(0

ff = s

m

e

Vi

u«1,—,r,i»)+i5a«5,({1,....r,"»)t«i(*)

*(c1,...,r,«j)+zsaft,-tt,,—,r,,7)«iW «-i,2,.

where,

*(e\...,r\>?)'

«,-((1,...,r,i?)

RB->8 = 17*•"(*) 2= 1,2,..., m

•7,-13ft"-* 3ft = LgjLJ-lhi(x) 1 = 1,2,..., m

(2.37)

.,n-7

(2.38)

(2.39)

3ftn->3ft = Lffii{x) i = l,2,...,n-7 (2.40)

3ftn-£ = I5i7/t(x)2 = l,2,...,n-7 ; = l,2,...,r7<2.41)

in the [f1,..., f", n] coordinates. Indeed, now choose the control inputs Ui(t): 3ft+

3ft i — l,2,...,m as

Ui(t) = -A-\x)
-^r-ir^l + flW

-bm((\--.,r,ri) + vm(t)

where V{(t) : 3ft+ —♦• 3ft are control inputs that are as yet unspecified to yield a partial

(2.42)



linear MIMO system of the following form.

£ = &
• • •

• • •

2 _ t28 = €2

12

:. : : (2.43)

* = ft-K11 •••,fm, 17) + EJLi pyK1. •••,f",i?)«iW «= 1,2,...,n - 7
vi = €i

If the u(*) : 3ft+ —• 3ft i = 1,2,..., m are chosen with the objective of stabilizing the

nonlinear system, then the dynamics of the 77 variables with the control law of are

given by

r, = ,(0, v) - P(0, v)A-\0, v)W, V) (2-44)

If /(xo) = 0,/ii(xo) = ••• = hm(xo) = 0 then it follows that 77 = 0 is an equilibrium

point of the zero dynamics of (2.44).
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Chapter 3

Generalized Matching Conditions

For Perturbed SISO Systems

3.1 Introduction

Matching conditions are conditions that the perturbations of a system must

satisfy in order to ensure robustness of the control objective. For instance, in a typical

control scenario, the engineer is presented with a model of the plant, and is asked to

prescribe a control law based on the model, which when applied to the plant would still

fulfill the control objective. It is helpful in such situations to view the deviation of the

plant from the model as perturbations of the design model. Thus designing a robust

control law for the model is equivalent to attaining control objectives in the plant. In

this chapter, we pose the dual question. Given a design model, a control objective,

and a control law that achieves the control objectives for the model, characterize

the set of all perturbations under which the control law is robust. In essence, by

specifying the matching conditions, we characterize the set of all plants that can be

controlled using the chosen control law and the specified design model.

In this chapter we restrict ourselves to considering robustness of control

laws that are based on the theory of exact linearization [17], [20] [3], [19], [26]. Ex

act cancellations of nonlinearities is seldom achieved in real life and it therefore is

quite useful to understand the classes of perturbations that are permissible when an
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exact linearization methodology is used. The method of exact linearization renders

a portion of the system dynamics unobservable. This unobservable dynamics of the

system, referred to loosely as the zero dynamics, plays a vital role in detemining the

the kinds of perturbations that do not degrade achievement of the control objective.

It is our contention that the matching conditions as they are known in

literature [12], [11], [2] today suffer a drawback in that they cannot be naturally

extended to MIMO systems. This is especially true for MIMO systems which do not

possessa well defined relative degree. (We will referto such systems as singularMIMO

systems, the singularity referred to is the singularity of the decoupling matrix in the

neighbourhood of interest.) The reason for the nonextendability of the matching

conditions (as known in literature, we will refer to our conditions as the generalized

matching conditions), is that they have always arisen out of considering the simple

case of SISO systems with unperturbed zero dynamics. Analysis of SISO systems

does not reveal the difficulties that arise in the context of MIMO systems as in most

cases the zero-dynamics of MIMO systems is perturbed.

It is here that we chose to explore the richer area of SISO systems with

perturbed zero dynamics, and come up with a set of generalized matching conditions.

Not surprisingly, these conditions have a simple and natural extension to the MIMO

nonsingular and singular cases as well.

The organizationof the chapteris as follows. Section I presents the matching

conditions for SISO systems with perturbed zero dynamics.

3.2 Single Input Single Output Systems

Consider the SISO systems specified by the following equations.

Unperturbed System Equations

x = /(x)+p(x)u(/) (3.1)

y = h(x) (3.2)

where x € 3ftn /(•) : 3ftn ->• 3ftn is a smooth vector field, g(-) : 3ftn -• £n is a



smooth vector field, h(>): 3ftn -> 3ft is a smooth function, u(-): 3ft+ -*• 3ft
Perturbed System Equations
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x = /(x) + A/(x) + \g(x) + Ag{x)]u(t) (3.3)

y = fc(x) (3.4)

where A/(-) : 3ftn -> 3ftn is a smooth vector field, A^(-) : 3ftn -• 3ftn is a

smooth vector field,

Comment 3.2.1 A wide variety of perturbations ranging from plant noise to para

metric uncertainties are included in the structure of the perturbations specified by

(3.3) - (3.4). A notable exception however is the class of perturbations known as

measurement noise. Throughout this chapter we will assume that the systems under

consideration are unaffected by measurement noise, and that full state information is

available at all times.

Let xo be an equilibrium point of the undriven unperturbed system (3.1)

- (3.2), that is /(xo) = 0, such that the output of the nonlinear system is zero

at x0, i.e h(xo) = 0. We will now assume that the system (3.1) - (3.2) has strict

relative degree 7 at xo [19] (that is, in an open subset U containing the point x0,

LgL%fh(x) = 0%= 0,1,... ,7 —2and Lglfj^hfe) is bounded away from 0.
Statement Of The Problem

The SISO Matching problem is formally stated as follows:

Given:

• An unperturbed system of the form (3.1) - (3.2) with a relative degree 7 € Z+ <

n.

• The general classes of perturbations of interest specified by (3.3) - (3.4).

• A control objective - asymptotic output regulation, y = h(x) —• 0 as t —» 00

Determine:
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• Conditions that must be satisfied by the perturbations A/(x) and A^(x) of

(3.3) - (3.4) such that the control objective of asymptotic output regulation

is achieved by the control law developed based on the unperturbed system

equations (3.1) - (3.2), when applied to the perturbed system with all the state

variables x € 8ftn remaining bounded.

Matching Condition As Known In Literature

We will now present the matching condition known in literature, [12], [23],

[18], [32], [9] and point out the difficulties associated with extending it to MIMO

systems. We will then present newer matching assumptions for SISO systems, that

can be easily extended to MIMO systems also.

We first develop the standard local normal form for the unperturbed system

(3.1) - (3.2) as in [19].

Define the following 7 functions.

<fo(x) = h(x) (3.5)

<t>2(x) = Lfh(x) (3.6)

i = i (3.7)

fa(x) = L)~lh(x) (3.8)

As outlined in the preceding chapter, by the definition of strict relative

degree, the functions &(•): 3ftn -* 3ft, i = 1,... ,7 < n defined in (3.5) - (3.8) possess

derivatives that are linearly independent over the ring of smooth functions. Pick n—7

other functions iyt-(«): 3ftn —• 3ft, s = i,..., n—7 such that Lgr)i(x) = 0, i = 1,..., n—7

and etyi(x), i = l,...,n —7 are linearly independent of </<£,(•), i = 1,...,7- The

functions &(•) : 3ftn —•. 3ft, i = *,...,7 < n, together with ?/,•(•) : 3ftn —• 3ft, i =

i,..., n —7 are used to construct a nonlinear change of coordinates so as to exhibit

the unperturbed system (3.1) - (3.2) in a local normal form [19].

Denoting(,- =&(x)and£= [& ... f7 ] and?? = [m(x) ••• t/„^(x) ]
define the map $ to be

$ :x € U € ${U) (3.9)
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Note that $ is a diffeomorphism.

Using the diffeomorphism (3.9), construct a local normal form for the system

(3.1) - (3.2) as

fi = 6 (3.10)

i = i (3.11)

It = *«.*)+«(€.*)« (3-12)

V = M,V) (3-13)

where,

*&*):*"-* = L}h o^^r,)

««,*): W-»R"-1' = Ljr,o •-»({,,)

The zero dynamics are defined to be the following dynamical system in

3ftn"')r consistent with the notion of holding the output y(t) to be identically zero, and

consequently {i = f 2 = •**= ty = 0

ij-«(0,i») (3-14)

Note that the specific choice of the 77 coordinates in (3.9) ensures that the

input u does not enter the r? dynamics (as the 77 coordinates were chosen such that

LgT)i(x) = 0 i = 1,..., n —7). Consequently, perturbation vector fields A/(-), A^(-):

3ftn —• 3ftn that lie in the span of g(x), i.e A/(x) = a&j(x)g(x) and A#(x) =

<*£ig(x)g(x) where a^/(-) : 3ftn —• 3ft and a^g(-) : 3ftn —*• 3ft would also not en

ter the zero dynamics as L&j(x)7)i(x) = a&.f(x)LgTji(x) = 0 i = l,...,n —7 and

L&g(z)*li{x) = a&g(x)LgT}i(x) = 0 i = l,...,n —7 The stability of the 77 dynamics

is therefore unaffected by the presence of perturbations. It is this intution that is

captured in the statement of the well known matching conditions presented in [12]

and [2].

A formal statement of the classic matching conditions is as follows:

A/(x), Ag(x) € span [g{x)] (3.15)
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Remarks:

• The matching conditions specify the relative degree of the system under the

perturbations. Indeed condition (3.15) ensures that the relative degree of the

system with respect to the input is not greater than the relative degree of the

system with respect to the perturbation vector fields.

• Matching condition (3.15) guarantees the n dynamics to remain unperturbed.

Since the input does not enter the zero dynamics of the system, it is necessary to

ensure that the perturbations also do not enter it. Condition (3.15) makes the

analysis simpler, but difficulties arise in extending it to MIMO systems except

under very special circumstances.

We will now present the theorem that guarantees achievement of the control

objective when the classic matching conditions are met.

Theorem 3.1 Generalized Matching Conditions for SISO systems with unperturbed

7? dynamics:

Given (Gl) A perturbed SISO system of the form (3.3) - (3.4).

(G2) The relative degree of the unperturbed system (3.1) - (3.2) to be 7.

(G3) A control objective of asymptotic output regulation, that is y = h(x) —* 0

as t —• 00

If (II) The zero dynamics of the unperturbed system (3.78) is exponentially stable.

(IS)

A/(x), Ag(x) € span[g{x)] (3.16)

(W

LinLi t ll
< KAf (3.17)



(15)

? .

everywhere in an open set fl&Bound Q ${U)

(17) Lfn, satisfy conic continuity in £, uniformly in n, with constants Kq,in an

open set Ctamic Q $(U).

(18) The control u (3.3) is chosen to be

L**LTlh Q$-i
LgL}-lh
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< K±g (3.18)

"W =̂ )l-»(€. l) +v] (3.19)
where,

v = Oy-if, + •••+ fli6 - K3sgn(S) (3.20)

5 = $y + ay-i{7-i + ---ai& (3.21)

and is a Hurwitz polynomial (3.22)

sgn(S) =jffV|5|>0 (3.23)
Then (Tl) There exist a setSIC $(£/) and a constant K* and a choice ofKs such that

for all initial conditions belonging to Q, and Ks > K* the output y = h(x)

tends to zero asymptotically while all the states x € 3ftn remain bounded.

Proof: 6 t>

We will prove the theorem in two simple steps similar to the proof in [2].

• We will first assume that the system trajectories remain in the set tt&Bound Q

$(?/), satisfying the boundedness of the perturbations, and show that in such

a case asymptotic output regulation is achieved.

• We will then show, that there exists a set H C Q.ABound Q &{U) such that for

all initial conditions [f(0),7?(0)]T € ft, the system trajectories remain in H, and

asymptotic output regulation is indeed achieved.

Step 1.
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Assumptions (12) - (IS) specify a local normal form for the perturbed system

of the form,

6 = 6

It = *>&*) +Ab&tf + la&tf + Aa&rjKu

(3.24)

(3.25)

(3.26)

(3.27)

Note the presence of an input perturbation in the { dynamics in (3.26).

Using the definition of S stated in theorem, we recast the coordinates from

(f, 77) to [{, 5,77]T where £= [&,... ,f7_i]T. Now rewrite the system equations (3.24)
- (3.27) in the [(,S,tj\t coordinates using the control u specified in the theorem.

(3.28)

(3.29)

(3.30)

where

A =

6 =

t = At + bS

S = -K8sgn(S)-r A! + A2

V = 9K,5,77)

0 1 ,..., 0 0

0 0 1 ,..., 0

. —fll -fl2 j • • • , , • • •, -a-v-i m
[7-lM-Y-l]

J b-l)x[l]

A2 = AC^5 ?) K-i£y +- •+ai6 ~K,sgn(S)}0(^^,77)

Consider the Lyapunov function

-¥

(3.31)

(3.32)

(3.33)

(3.34)

(3.35)
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Differentiating V along the flow of (4.37) we obtain,

V = S[-Kasgn(S) + Aj + A2] (3.36)

Assume that the system trajectories remain in the set Q^Bound Q ${U)' Now note

that

A2<KAg\S\[\\a\\\\i\\-rK8] (3.37)

where a= [a^_a •«• ax ]
Using the bounds on A6({, 5,77) and on [^s^p we obtain

V < -\S\K. -r [Kaj + ADe/ta5[||a||||f|| + K.]]\S\ (3.38)

Now, let £max = sup{ € £l&Bound, then as we have assumed that the system trajecto

ries remain in the set tlABound Q $(U) we rewrite V as

V < -\S\K8 + [KAj-rKDelta9[\\a\\UaX + I<s}]\S\ (3.39)

< -\S\[Ka(l-KAg)-KAf-KAg\\a\\Ux\ (3-40)

Let

K* _ K^ +^AgH0lienor (3 41)
Ks[l - I<Ag]

V now is equal to

V = -\S\[KS-K*} (3.42)

It is clear that when Ks > K*, V is negative definite. Negative definiteness of V

implies that S = 0 is attractive for all trajectories that remain in ftABound Q &(U)-
Indeed, for all initial conditions in SlABound Q ^(^)» if &ABound is invariant, the

trajectories reach the manifold S = 0 in finite time. The choice of control renders

the manifold 5 = 0 invariant, and the dynamics on the manifold is such that ||f||

tends to zero exponentially. (This is evident from setting S = 0 in the { dynamics

and noting that A is a Hurwitz matrix. )

However, we need to ensure that the trajectories never leavethe set flABound

thus validating the boundedness of the perturbations. Indeed, we will now attempt

to find the largest set HC Q,ABound that would also maintain stability of the internal
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dynamics. To this end we consider a Lyapunov function that includes both the { and

the 77 dynamics.

Step 2:

Since A is a Hurwitz matrix there exists a positive definite symmetric matrix

P solving the matrix Lyapunov equation [25]

ATP + PA = -I (3.43)

Using a converse Lyapunov theorem [16], the exponential stability of the

zero dynamics (3.78) guarantees the existence of a Lyapunov function Vv such that,

AilMI* < VV<K2\W\> (3.44)

^[,(0,,) <-tfalMI2 (3.45)
ll^ll <«ilMI (3-46)

Now consider the composite Lyapunov function given by

V=a,[fPfl +̂ S2 +̂ S4 +a3V„ (3.47)
where P is the solution of (4.47) and VJ, satisfies (4.48) - (4.50).

Differentiating V (4.51) along the flow of (4.36) - (4.41) we obtain

V = ^[[At* bS\TPt + FP[A{ + bS\] (3.48)

-ra2[S[-Kasgn(S) + Ax + A2]] (3.49)

+ct2[S3[-Kssgn{S) + Aa + A2]] (3.50)
dV -c*jjLq{t,S,r,) (3.51)

Assuming that ({,77) € Q>ABound, we obtain

V < -||f||2[ai-i]-a2[|5| +|5|3][A'a-A'1 (3.52)
+Kl\S\2 (3.53)

dVn -+«3-^[?«,5,77)-9(0,0,77)] (3.54)

+Q3^(0,0,77) (3.55)
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where

SbTP( < K6\\S\\\\i\\ (3.56)

Ke = <7ras*(P) (3.57)

tfellSlllffll <^ +KlS* (3.58)
and omax{P) is the maximum singular value of P.

Now define Cly to be the largest non-empty subset of $(U) such that

Hy = ^ABound f] Q>Conic (3.59)

Choose c* € 3ft+ such that

c* = sup(c : V < c etlv) (3.60)

Define ft = [((£,S, 77) :V < c*].

For all initial conditions in $7, we may rewrite V as

V< -HiH2^ - I] -<*[*. -A*]OT -^^i^llSH2+||5||3] (3.61)
-Q3^3||i?||2 (3.62)

+o»ff«IMIltf,[||£ll + l|S||]] (3.63)

where,

\\9(LS,v)-q(0Av)\\ < K,[\\£\\ + \\S\\] (3.64)

Now define

K7 = a3K4 (3.65)

and using the fact that

KMM\ +II5ID <l^f +«?IK"II2 +*?IPII' (3-66)
we rewrite equation (4.58) - (4.163) as

V < -IKIlV-j-A-?] (3.67)

-aAK. - A'UHSII - Jl+hlj\S\? +\\S\f) (3.68)
-|MI2MA-3-i] (3.69)
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Note that the constants a,- have not been chosen yet, and we now choose

them in such a manner as to ensurethe negative definiteness of the Lyapunov function.

We choose them as

(3.70)

(3.71)

(3.72)

(3.73)

Such a choice of constants ensure that V is negative definite for all initial

conditions in ft, and for all perturbations suchthat Ka > if*.(Note that the coefficient

of ||5||2 is always less than unity, and for all ||5|| > 1, ||5||2 < ||5||3, and for all values

of||S||<l,||5||>||S||2.)

We have shown that there exists of an invariant set ft and a constant K*

and a constant Ka such that ft is invariant, and for all Ka > K*, the output of the

system is asymptotically regulated to the origin. The proofalso yields that the states

[£,S,rj]T are bounded, and therefore the states x G3ftn are also bounded. <4>

3.3 SISO - Generalized Matching Condition

In order to study matching conditions for SISO systems with perturbed 77

dynamics, we discard the specific choice of 77 coordinates in (3.9). We now construct

another local normal form for the perturbed system by adding to the & i = 1,2,..., 7

a set of 77t(x) : 3ftn —• 3ft i = 1,..., n —7 whose derivatives dn are linearly independent

of the d& i = 1,2,..., 7 (over the ring of smooth functions). We will no longer insist

that dr)i(x)g(x) = 0. Denote this new diffeomorphism by $ : 3ftn —> 3ftn. Under this

new coordinate transformation, the equations of the perturbed system (3.3) - (3.4)

may be recast in the form

6-6 (3-74)

i = i (3.75)

i, = b((,Ti) + Ab(t,ri + {a(i,ri) + Aa(i,ri)}u (3.76)

<*1 > \+v
Ct2 > K6 + K7

1
<*3 >

2A'3

Ka > K*
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i) = «({,?)+ Aj«,ij) + btt,i») + Aptf,i»)]« (3-77)

where,

A6({, •»):«"-*» = lA/If'feot-'K.ij)

atf,*) :«"-»* = I,!}"1'* o•-»({,!»)

Ap«,if) :*•-.«"-' = i*,ijo •-»({,,)

Comment: As a result of the choice ofrn(x) : 3ftn —> 3ft i = 1,2,... ,n —7

coordinates whose derivatives do not annihilate g, both the input and the perturbations

enter the 77 states in (3.77)

The zero-dynamics of the unperturbed system is again consistent with the

notion of holding the ouput to zero, and is given by

«? = *(0,i?) + [p(Uitf)Mu,»?) (3.78)

Here,u(0,77) =-^.
We are now ready to state the conditions on perturbations under which

asymptotic regulation is achieved in the perturbed systems using the control law

developed based on the unperturbed plant equations.

Theorem 3.2 Generalized Matching Conditions for SISO systems with perturbed 77

dynamics:

Given (Gl) A perturbed SISO system of the form (3.3) - (3.4).

(G2) The relative degree of the unperturbed system (3.1) - (3.2) to be 7.

(G3) A control objective of asymptotic output regulation, that is y = h(x) —* 0

as t —*• 00
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If (II) The zero dynamics of the unperturbed system (3.78) is exponentially stable.

(12)

A/(x) € ker\dh{x),dLsh(x)--dLy2h(x)] (3.79)

(IS)

Ag(x) € ker[dh{x)idLjh(x)'"dLy1h(x)] (3.80)

(14) A/({,77), Ag(£,n) satisfy conic continuity in {, uniformly in n with con

stants KAj-conicy Kbg-conic, everywhere everywhere in an open set fi^Contc Q

$(£/). That is,

||A/(£,77)-A/(0,77)||2 < #A/-c<m,clMI (3.81)

||A<7(f,77)-A(7(0,77)||2 < KA9-conic\M\ (3.82)

(15) LAjLJ^h < Kb < Ka everywhere in an open set flABound Q$(U)

(16) /(f,77), 9(dv)u((jTl) satisfy conic continuity in £, uniformly in 77, with

constants Kj-conio Kg-conic everywhere in an open set ftCOmc Q ^(^)-

(17) ||A/(0,77)+ Aflr(0,77)7^(0,77)|| < Aa9P||t7|| everywhere in an open set

toMmT,)+g(o,r,)u(o,T,)) Q $(U) (3.83)

(18) The diffeomorphism $ has a bounded Jacobian.

(19) The controlu (3.3) is chosen to be

where,

U(*) =̂ [~6(f,7?) +U] (3*84)

v = a-y-if-y + r ai6 - K3sgn(S) (3.85)

S = 6Y + a.v-ity-i + ---a16 (3.86)

and is a Hurwitz polynomial (3.87)

sgn(S) = AV|5|>0 (3.88)
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Then (Tl) There exist a set ft C $(£/) and a constant K* such that for all initial

conditions belonging to ft, and KAqp < K* the output y = h(x) tends to

zero asymptotically while all the states x € 3ftn remain bounded.

Proof:

4 t> Preliminary to proving the theorem, we make the following remarks

to clarify the meaning and need for the various matching conditions imposed on the

perturbations in the theorem.

Remarks:

Assumption (II) is not a matching assumption to be satisfied by the per

turbation, but is needed in order to construct a converse Lyapunov argument [16], as

in [29]. Indeed this assumption will be required to prove achievement of the control

objective even for an unperturbed system. We will say more about this assumption

later.

Asssumption (12) is a matching assumption to be met by the perturbation.

The assumption ensures that the relative degree ofthe perturbation vector field A/(x)

is at least as high as the relative degree of the input.

Assumption (IS) is again a matching assumption to be satisfied by the per

turbation. This assumption on the perturbation of the input vector field is stronger

than (12) in that we require the relative degree of the input perturbing vector field

A<7(x) be strictly greater than the relative degree of the input. Thus the input to

the f dynamics is not corrupted, but the input to the 77 dynamics may be affected by

the presence of A^(x).

Assumption (14) is a matchingcondition to be satisfied by the perturbation.

It is needed to bound certain quantities that show up in the course of proving the

theorem. Note that the conic-continuity requirement is not global, but is only needed

everywhere in a subset of $(U) containing the point xo in which the linearization is

performed.

Assumption (15) is again a matching assumption on the perturbation, and is

needed to ensure that the sizeof the slidingmode gain chosen in the control is strictly

greater than the size of the perturbation to ensure stability. Such an assumption
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eliminates the possibility of the perturbation showing up earlier than the input.

(17) is an assumption on the control input, that in the absence of perturba

tions would regulate the output to 0. We consider the same control input, and specify

the classes of perturbations which would not degrade achievement of the control ob

jective.

We will prove the theorem in two simple steps similar to the proof in [2].

• We will first assume that the system trajectories remain in the set ClABound Q

$(t/), satisfying the boundedness of the perturbations, and show that in such

a case asymptotic output regulation is achieved.

• We will then show, that there exists a set ft C ^ABound C $(U) such that for

all initial conditions [{(0), rj(0)]T € ft, the system trajectories remain in ft, and

asymptotic output regulation is indeed achieved.

Step 1.

Assumptions (12) - (IS) specify a local normal form for the perturbed system

of the form,

6 = (2 (3.89)

i = i (3.90)

i, = Ktv) + ^K^,v) + H^v)h (3-9i)

i = q(Z,v) + &q(t,v) + \p(t,i) + &p(Lv)h (3-92)

Note the absence of an input perturbation in the { dynamics in (3.91).

Using the definition of S stated in theorem, we recast the coordinates from

(f, 77) to [{, 5,77]T where { = [&,..., f-y-i]7- Now rewrite the system equations (6.274)

- (6.281) in the [£,S,n]T coordinates using the control u specified in the theorem.

'l = Ai-rbS (3.93)

S = -K.sgn(S) + Ab(t,S,ri) (3.94)

V = 9(6 A1?) + A9(f, 5,77) + [p({, 5,77) + Ap({,5,77)]u(f, 5,77) (3.95)



where

A =

b =

J r>-i]x[il

Consider the Lyapunov function

V =
S2

J[-r-i]x[7-i]

Differentiating V along the flow of (3.94) we obtain,

V = S{-Kasgn(S)-rAb(t,S,V)]
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(3.96)

(3.97)

(3.98)

(3.99)

Assume that the system trajectories remain in the set Q>ABound Q $(^)-

Using the bounds on A6(£, 5,77), we obtain

V<-\S\{Ka-Kbsgn(S)] (3.100)

Negative definiteness of V implies that S = 0 is attractive for all trajectories that

remain in ClABound Q ${U)> Indeed, for all initial conditions in ClABound Q $(^0i if

ftABound is invariant, the trajectories reach the manifold S = 0 in finite time. The

choice of control renders the manifold 5 = 0 invariant, and the dynamics on the

manifold is such that ||f|| tends to zero exponentially. (This is evident from setting

5 = 0 in the { dynamics and noting that A is a Hurwitz matrix. )

However, we need to ensure that the trajectories never leave the set ClABound

thus validating the boundedness of the perturbations. Indeed, we will now attempt

to find the largest set ft C ClABound that would also maintain stability of the internal

dynamics. To this end we consider a Lyapunov function that includes both the £ and

the 77 dynamics.
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Step 2:

Since A is a Hurwitz matrix there exists a positivedefinite symmetric matrix

P solving the matrix Lyapunov equation [25]

ATP-rPA = -I (3.101)

Using a converse Lyapunov theorem [16], the exponential stability of the

zero dynamics (3.78) guarantees the existence of a Lyapunov function Vn such that,

tfilMP < V, < K2\\r,\? (3-102)

^U(0,V) +P(0,lM0,r,)] <-KM? (3-103)
ll^ll <KfclMI (3-104)

Now consider the composite Lyapunov function given by

V=a, [FJ^ +̂ S2 +̂ S4 +a3V, (3,105)

where P is the solution of (3.101) and V„ satisfies (3.102) - (3.104).

Differentiating V (6.42) along the flow of (3.93) - (3.95) we obtain

V = ^[[Ai+bSfPt + fPlM+bS]]

+Q2{S[-K.sgn(S) + A6(£S,ij)D

+a2[S3[-K,sgn(S) + Ab(£, S,r,)]}
dV - - - - -

as-^r[?(£, S, V) +Wt, S, v) +W, S, v) +Ap«, S,,)]«({, S, r,)]

Assuming that (^, 77) € ^ABoundi we obtain

v < -\\m*-\]-<*2[Ks-m\s\\--T1pnrAs\*+\s\3}
4 o;2lAs - hb\

dV+ct3-QIL[q(0,0,77) +p(0,0,77)1/(0,0,77)]
dV+o»^b({,51iy)- 9(0,0,77)]



dV+<*3-t£\p(L S,?)«(£, 5,77) - p(0,0,77)1/(0,0,77)]
dV

-ra3—[Aq(^ 5,77) - A9(0,0,77)]

dV
+a3—{Ap(t, 5,*)«({, 5,77) - Ap(0,0,77)1/(0,0,77)]

dV
+a3—[Aq{0,0,77) + Ap(0,0,77MO, 0,77)]

where

SbTP{ < Ke\\S\M\\

Kq = Gmax(P)

IICll '2n2

and amax(P) is the maximum singular value of P.

Now define ftv to be the largest non-empty subset of $(U) such that

ftv = ^ABound Pi ®>AConic f] ^Conic f] ^A[f{0,n)+g{0,ri)u(0,v)} (3.106)

Choose c* € 3£+ such that

c* = sup(c :V<c € ftv) (3.107)

Defineft = [((f,5,77):V<c*].

For all initial conditions in ft, we may rewrite V as

V < -||fll% - ;] - «»[*. - Kb][\\S\\ - n *l h. JI5H* +l|5||3)(3.108)
-a3A"3||i?l|2 (3-109)

+"3tf4lMI[IKII+ H5||][A', + Kr + A'A, + K&,] (3.110)

+a3K<Kqr\\r,\\2 (3.1H)

where,

Il9({,5,i?)-«(0,0,ij)|| < A-,[||{|| + ||5||]

.31



lb(^5,77)W(e,5,r7)-p(0,0,77)U(0,0,77)|| < K,[\\(\\ + WSW\

\\Aq(lS,77)-Ag(0,0,77)|| < irA9[||f|| + ||5||]

||Ap(f,5,77)u(f,5,77)-Ap(0,0,77)u(0,0,77)|| < A^H-h1|5||]

||A9(0,0,77)+ Ap(0,0,77)u(0,0,77)|| < KAqP\
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Indeed, noting that a bound on the Jacobian of the transformation $ gives

dn < An, and using assumptions (74) —(77), we observe that

ftp ^ A^/ijj—conjc

KAq < KrfKAf-eonic

**Ap S AjjiiAj—conic

A'qp < KvKAqp

Now define

A7 = a3A4[A9 + KP + Aa, + Kap] (3.112)

and using the fact that

A-tIMIIIKII +||5||] <̂ +KM||2 +A-2||5||2 (3.113)
we rewrite equation (3.108) - (3.111) as

V < -\\l||2[a, - \ - A"2] (3.114)
Kj + A?

c*2[K, - K„]-ai[K, - Kb][\\S\\ - ..VI, \\S\\2 + ||S||3] (3.115)

2[a3[A'3 - K„) - \) (3.116)
Note that the constants a,- have not been chosen yet, and we now choose

them in such a manner as to ensure the negative definiteness of the Lyapunov function,

provided A3 > A'op.
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We choose then such that

a2 > i +A72 (3.117)
4

a2 > A62 + A-72 (3.118)

*3 >211^] (3-119^
Artf-A6 > 1 (3.120)

Such a choice of constants ensure that V is negative definite for all initial

conditions in ft, and for all perturbations such that Kqp < A3 < K*. (Note that the

coefficient of ||S||2 is always less than unity, and for all ||5|| > 1, ||5||2 < ||5||3, and

for all values of ||5|| < 1, ||5|| > ||5||2.)

We have shown that there exists of an invariant set ft and a constant A* such

that ft is invariant, and for all Kqp < A*, the output of the system is asymptotically

regulated to the origin. The proof also yields that the states [£, 5,77]T are bounded,

and therefore the states x € 3Rn are also bounded. <4>
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Chapter 4

Generalized Matching Conditions

For Perturbed MIMO Systems

We present systematically, matching conditions for the following classes of

systems

• Non-singular MIMO systems perturbed zero dynamics.

• Singular MIMO systems, decoupled using the zero-dynamics algorithm.

• Singular MIMO systems, decoupled using the dynamics extension method.

The organization of the chapter is as follows. Section I presents the match

ing conditions for nonsingular MIMO systems. Section II presents the generalized

matching conditions for singular MIMO systems, which are either left or right in

vertible. The zero-dynamics algorithm is used when the system does not possess a

well defined relative degree, but is left invertible. The dynamic extension method is

used when the system does not possess a well defined relative degree, but is right

invertible. We then conclude this chapter with a brief comparison of the presented

methods of system inversion.

4.1 Non-Singular MIMO Systems

Consider square MIMO systems specified by the following equations.



Unperturbed System Equations

* = f(x)-r^gi{x)ui{t)
i=l

yi = hi(x) i = l,...,m
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(4.1)

(4.2)

where x € 3ftn /(•) : 9ftn -* 9ftn is a smooth vector field, #(•) : 3ftn -• 9ftn, t =

1,..., m are smooth vector fields, &,-(•): 3ftn —• 3ft, t = 1,..., m are smooth functions,

U{(t): 3ft+ —• 9ft, i = 1,2,..., m

Perturbed System Equations

* = f{x)-rAf(x)-rY^[gi(x)-rAgi{x)]ui
t=i

smooth,

(4.3)

y, = h{(x) i = 1,..., m (4.4)

where A/(-) : 3ftn -> 3ftn is smooth, A#(-) : 3ftn -• 9ft71 i = 1,. ..,m are

Comment 4-1-1 As in the case of SISO systems, we assume that the outputs are not

corrupted by measurement noise and that full state information is available.

Let x0 be an equilibrium point of the undriven unperturbed system (4.1)

- (4.2), that is f(xo) = 0, such that the output is zero at xo, i.e /i,(x0) = 0. We

will now assume that the system (4.1) - (4. has strict vector dative degn - =

[71,...,7m]T € Z+ at xo [19] (that is, in an « en subset U combining the poim x0,
LgiLkjhj{x) = 0 i = 1,..., m j = 1,..., m k= 0,...,7,- —2 and the determinant of
the decoupling matrix is nonzero, that is,

T P1"1hx(x)

det

LLg,Lylhm(x)

r-yi-l hi(x)

r r-rm-1
L9mLS hm(x)

7*0

Statement Of The Problem

The MIMO Matching problem is formally stated as follows:

Given:

(4.5)
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• An unperturbed system of the form (4.1) - (4.2) with vector relative degree

[7i,.-.,7m]T€Z-.

• The general classes of perturbations of interest specifed by (4.3) - (4.4).

T

• Determine controls I ua ... um\ such that the outputs y,- = k{(x) —• 0i =
1,... ,m as t —• oo, with the states x € 9ftn remaining bounded.

Determine:

• Conditions that must be matched by the perturbations A/ : 9ftn —* 9ftn and

Agi : 9ftn -+ 3ftn i = 1,... ,m of (4.3) - (4.4) such that the control objective of

asymptotic output regulation is achieved by the control law developed based on

the unperturbed system equations (4.1) - (4.2), when applied to the perturbed

system and the states x € 9ftn remain bounded.

We will use the following notation to describe nonlinear coordinate transfor

mations of MIMO systems. As the MIMO system was assumed to have a well defined

vector relative degree 7 = I ^ ... ^m 1there exists a standard transformation $
of the following form [19]

e

$ :x€ U €$(U) (4.6)

where

f : 3ftn-• ST" = (4.7)

77: ftn-> 3ftn^ = (4.8)

7 = ]C7: (4.9)
t=i
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and each fj :9ftn —• 9ft = XJ"1 &,-($) i =1,...,mj = 1,2,..., 7* is asmooth functions
of x and each 77,-: 9ftn —• 9ft i = 1,2,..., n —7 is a smooth function of x such that 77 is

independent of {' i = 1,2,... ,m, linear independence being defined over the ring of

smooth functions. Note that $ is a local transformation of coordinates, and is valid

for an open region U containing the operating point xo.

Using the transformation $ specified by (4.6) a local normal form for the

unperturbed system equations (4.1) - (4.2) is written as

where

fi = 4

& = tftt1,...,r,ij)+E«ft1.-.r,,i»)«i

i = 1,..., m

v = q(? r,"»)+f)»«,.--.r,,«j)«i

(4.10)

(4.11)

(4.12)

(4.13)

(4.14)

«K,,...,r,«j):«,-»«"^ = i/'?o*-1«,'?)

ftK1,...,r,,'»):R"-»«""'' = LSlV0$-\t,r,) j = l,...,m

Comment: The assumption of a well defined relative degree for the unper

turbed system (4.1) - (4.2) guarantees the invertibility everywhere in $(U), of the

matrix A : 9ftn -> 9ftmXm defined as

•«iKV-..{w,i?) ,..., i4«,,...,r,i?)
A = (4.15)

.or«,....,f",i7) ,-.., a^,...,r,r7)_

Comment: Note that the input enters the 77 dynamics in (4-97). Indeed, we did not

assume the involutivity of the vector fields gj j = l,...,m in the system equations

(4-1)- Assuming involutivity of the input vector fields gj j = 1,..., m and invoking the
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Frobenius theorem would give us the choice of a set of 77 coordinates with derivatives

that annihilate the gj j = 1,..., m vector fields.

Using the same diffeomorphism $ (4.6), the equations of the perturbed sys

tem transform to

where

« = £

Lt/Vle; = *K\...,r,ii)+AV(e\...,r,iri
m

+E(fli«1.-.r,i?)+Aajtt,>...,r,i?)K-
i=i

t = 1, ... ,771

v = «tt,,-,r,i»)+A«Ki,...,r,i»)

+Ebi(e1,...,r^)+Apiui,...,r^)K-

(4.16

(4.17

(4.18

(4.19

(4.20

(4.21

(4.22

Atf(C1f...,r,i?):»"-»

aJU1,-..,r,1?) :«*-♦*

AaJ.(f\...,r.*):**-»

9ttl,...,r,i?):a"-»*,"i:"-i7i

Pi«1,-,r,i|):«"-«,,"SLl7i
APi«1,...,r,iiy:«"-»«,l'5:"-i7i

LJkiO*-l{t,i)

LAfLJ-'hioQ-^n)

L^Lj-'hioQ-^ri)

LAgjLJ-'hioQ-^ri)

LfV o$-*({, 77)

LA/lfO*"1^)

LgjV0®'1^") i = l,...,m

= I^o *(£,?) i = l,..., 771

The zero dynamics of the unperturbed MIMO system is a dynamical system

in 9ftn""7 given by

«j = 9(0, V) + E »(«.VMO, v) (4-23)
j=i



where the control 1^(0,77) is specified to be

-51(0,77)+ 7^(0,77)

u(0,r?) = A-1[

-6m(0,77) + i;m(0,77)

The controls u,(0,77) t = l,2,...,m are stabilizing controls for each subsystem.

Observe the similarity between (4.23) and (3.78)

[27] make the observation that the stability of this zero-dynamics is to be

maintained in the presence of perturbations. This indeed is a point of departure from

the considering SISO systems with unperturbed 77 dynamics.

We now present the first extension of matching to the MIMO case - the

instance when the input vector fields gj(x) : 9ftn —* 9ftn j = 1,2,..., m are involutive.

Theorem 4.1 The Generalized matching conditionsfor MIMO nonsingular systems

with perturbed zero dynamics are:

Given (Gl) A perturbed MIMO system of the form (4-3) - (4-4)-

(G2) The unperturbed MIMO system (4.1) - (4-2) has a vector relative degree

7 = [7i,...,7m]T.

(G3) A control objective of asymptotic output regulation, that is y, = h{(x) —•

0 i = l,...,m

If (II) The zero dynamics of the unperturbed system (4-23) is exponentially stable.

(12)
TO

A/(x) € H ker[dhi(x), dLfhi{x) -••dLj~2hi(x)}
i=l

(IS)
m

A^j(x) € p| ker[dhi(x),dLfhi(x)---dLy~lhi(x)] j = l,...,m
i=l

(14) A/({S...,£ro,i?), EfciApl-(f1,...,(m.i7)«.-(£1,...,£m,»?) satisfy conic con
tinuity in [f1,... ,£m]T, uniformly in 77 with constants I\A/-conic, I^Ag-conic,
everywhere in an open set VtAConic Q $(U)

39

(4.24)



40

(15) LAJLJ-lhi < Kk < Kai in n^Bound C*{U)

(16) /K,1...,fw,^ E£i^U1.---.{mi'?)t«.-((1i---.£m.i?) ««**& conic con<i-

nutty tn [f11...,fn]r> uniformly in n, with constants Kj-ctmia Kg-amic

everywhere in an open set {Iconic Q $(U)

(17) ||A/(0,77) + Eiii A^(0,77)7it(0,77)|| < tfAgplMI everywhere in an open set

^A[f(0,n)+g{0,r,)u(0,v)] Q ${U)

(18) The diffeomorphism $ (4.6) has a bounded Jacobian.

(19) The control u is chosen to be

' -^(fV^r^+fiUi

= A"1

u. -bm(Z\...,F,T})-rvm

where, A is specified by (4-15) and &*({*,... ,fm, 77) i = 1,..., m are speci

fied in (4-12), and

Vi = -«iH.1^,+,...,+^Q-^sgn(S') (4.26)

& = 4 +<-iC.+.---.+o& (4-27)
and is a Hurwitz polynomial (4.28)

ign^S1) = ||tV|S'|>0 (4.29)
Then (Tl) There exist a set Q, C $(£/) and a constant K* such that for all initial

conditions belonging to ft, and KAqp < K* the trajectories of the perturbed

system remain in $(U) and the output y,- = /i,(x) tends to zero asymptot

ically.

Proof:* t>

The proof of the theorem, follows along the lines of the proof of theorem

(3.2)

Step 1:

We will first assume that system trajectories remain in the set DSi ^ABound ^

$(U) where the bounds on the perturbations are satisfied. Under this assumption we

(4.25)
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will show that asymptotic regulation is indeed achieved. To complete the proof, we

will show that for appropriately chosen initial conditions belonging to an invariant

set ft C njlj ^ABound £ $(£0 asymptotic regulation is achieved. Indeed, we will then

attempt to find the largest invariant set ft.

Consider the normal form of the perturbed system given by the equations

(4.16) - (4.22). Using the assumption (12) and (13) , the normal form equations (4.16)

- (4.22) reduce to

£ = & (4.30)

i = ! (4.31)
m

4 = ^(ei,...,r,r7)+A6f(fi,...,r,r?)4-E^1---r,^K- (4.32)
i=l

i = l,...,m (4.33)

V = atfV.^r^ + Aatf1 Zm,v) (4-34)

+Ebi(e\-.-1r^)+ApJ(el,...,r^)K- (4.35)

Note the absence of an input perturbation in the £* dynamics in (4.32).

Using the definition of S% statedin theorem, wesplit the coordinates [f1,..., fm,77]^ as

[(f1, S1),..., (fm, 5m), 77]T where f = [£},...,£^_i]T. Now rewrite the system equa
tions (4.30) - (4.32) in the [[(f1, S1),..., (fm, 5m), 77]T coordinates using the control u
specified in the theorem in chapter 2.

£« = A^ + VST (4.36)

# = -Kiasgn(Si)-rAbi((^1S1),...,(r,SmU) (4.37)

i = l,...,m (4.38)

* = q((?,S1)i...,(C,S^n) + Aq((?,S1),...,(C,Sm),Tl) (4.39)

+p((?,51),...,(^5-),77)u((?,S1),...,(r,5m),77) (4.40)

+Ap((?,51),...,(^5m),77)7a((|1,51),...,(r,5"l),77) (4.41)



where

A% =

6* =

,...,

1

*

2 >—a; —a

0

0

» '"'I Si-1 J[7i-l]xK-l]

J [«K-llxW

Consider the Lyapunov function

i=l L
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(4.42)

(4.43)

(4.44)

Differentiating V along the flow of (4.37) we obtain,

m

V = £ 5'[-^*<7n(S') +A6'((|\ S1),..., (f, Sm),,))] (4.45)
i=l

Assume that the system trajectories remain in the set DSi Q-ABound ^ ®(U)-

Using the bounds on 6,'((f1,S1),..., (fm,5m),77)), we obtain

v^^IAV-/^^')] (4.46)

Negative definiteness of V" implies that each Sl = 0 is attractive for all trajectories that

remain in f|i!Li ^ABound ^ ^(^)- Indeed, if D^Li ^ABotmd is invariant, the trajectories

reach the manifold fl™-! Sl = 0 in ^n^e ftme. The choice of control renders the

manifold fl£i 5* = 0 invariant, and the dynamics on the manifold is suchthat ||^* || i =

1,... ,m tends to zero exponentially. (This is evident from setting S* = 0 in the {*

dynamics and noting that A* is a Hurwitz matrix. )

However, we need to ensure that the trajectories never leave the set defined

as fl£Li ^ABoundi thus validating the boundedness of the perturbations. Indeed, we

will now attempt to find the largest invariant set ft C f|£Li ^ABound that would also
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maintain stability of the internal dynamics. To this end we consider a Lyapunov

function that includes both the f and the 77 dynamics.

Step 2:

Note that as A1 is a Hurwitz matrix there exists a positive definite symmetric

matrix P* solving the matrix Lyapunov equation [25]

[A'"]rF + PiAi = -/ (4.47)

Using a converse Lyapunov theorem [16], we assert that the exponential

stability of the zero dynamics (4.23) guarantees the existenceof a Lyapunov function

V„ such that,

tfilMI2 < V,<*ilMls (4-48)

T^MO.*) +P(0,>?)«(0,>?)] <-AilMI* (4.49)
ll^ll <K<\W\ (4-50)

Now consider the composite Lyapunov function given by

m m f Ctl2 rC*14

v=z°mTpm+M1^- +[-^-}+°»v. (4.5i)
i=l i=l L *

where Pi is the solution of (4.47) and V„ satisfies (4.48) - (4.50).

Differentiating V (4.51) along the flow of (4.36) - (4.41) we obtain

[QjH/1^ -roo\ r c -|-|'n DtjAtcl ^ ktct}
i=l

+YMt[Si[-Kj»gn{S') +A6'((f, S1),..., (C,Sm), >?)]]]

in

V = XKIH'? +6i5i]Ti"'f + [CfP'lA'C +VS'}}]
I

TO

LtffFl d

i=l

m

+EK[t5fl-/0^n(5') +A6'((f, 51), ••-,(C, Sm), *)]]]
i=l

as^b((|,,5,),...,(f',5-),i,)+A,((f,S1),...,(f-,5-),ij)]
+a3^[p(«",,5,),...,(r,5'"),,)u((f,51),...,(r,5"l),7/)]
+a3^[Ap((f1,51),...,(r,5m),r?)U((f,S,),...,(r,5m),v)]
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Assumingthat [(\..., fm,n]T € ("lSi ^ABo«nd» weobtain

m .1

v < -DlK'HV.-p

- d<4[#.< - ^im^ii - ni.pl KA\&\?+i^in

+a3-^[9(0,77) +p(0,77)«(0,77)]

+^[?((e1,51),...,(r^m),r/)-?(0,77)]

-p(0,77)^(0,77)]

+a3^[A9((e1,51),...,(r,5m),77)-A9(0,77)]
-ra3^[Ap((^>S%...,(r,S^vH^,S1),...,(r,SmU)
-Ap(0,77HO,77)]

+0:3-^-^(0,77) +Ap(0,77)u(0,7?)]

where

SWPT < AjHS'llllfll (4.52)

K'6 = <Wr(nil*>il (4.53)

\\V\\ = 1_ (4.54)

Kius'uwa < ^+[Kins'? (4.55)
and ffmas{Pt) is the maximum singular value of Pl.

Now define ftv to be the largest non-empty subset of $(£/) such that

ftv C p| [ftABound fl ^ACornc f] &Conic f] ^A[f(0,r,)+g{0,n)u(Oyr,)]] (4.56)
i=l

Choose c* € 3£+ such that

c* = 5izp(c : V < c € ftv) (4.57)
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Define Sl = K(P,S1),...,(f'\S»),i»): V < <-].
For all initial conditions in ft, we may rewrite V as

V < -DllflPW-j]] (4.58)

-XK[*v - avhiis'ii - -rr#^Viii '̂ii2+ini3] (4-59)
-"3#3|M|2 (4.60)

TO

+«»K.II*llltJiC, + *p+ ** + #*p] Diifli + ii^m (4-61)
i=l

+a37C47i:gp||77||2 (4.62)

where,

||«((P,S1),.... (f*", S»), i,) - 9(0, ir)|| <K, f)[||f || +||5'||] (4.63)
i=l

IW(|1,S,),...,(f",5-),ijM(r.5,),-.(f",5"),v)-p(0,ij)«(0lif)|| <
TO

^DUfll + ll '̂ID
i=l

l|A?((r,S1),...,(r,5",),v)-A9(0,,)||<A'A,f:[||f|| +||S,H] (4.64)
i=l

||Ap((fI,Sl),...,(r,5m)^)u((?,S1),...,(r)5*"))I?)-AP(0,7)U(0,),)|| <
TO

i=l

||A9(0,,) +Ap(0,vM0,,)|| < K*,P\\v\\ (4-65)

Indeed, noting that a bound on the Jacobian of the transformation $ gives

§J < •#»»> an(^ usmg assumptions (74) —(77), we observe that

Kq < KnKf-conic (4.66)

Kp < KnKg-conic (4.67)

I<Aq < I<vI<Af-conic (4.68)

I<Ap < Kv^Ag-conic (4.69)

KqP < KnI\AqP (4.70)
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Now define

K7 = a3K4[Kq + KP + KAq + Kap] (4.71)

and using the fact that

*V|MI Elllf II +l|5'l|] <^K+A? E||f||2 +A? E IIS'H2 (4.72)
t=l * t=l i=l

we rewrite equation (4.58) - (4.163) as

V < -iWM-j-K?]] (4.73)
i=l

ri^ti2 _i_ isi
*i||2 , ||ci||3l[A-]2 + K?

-EKI^ - -Mlimi - Trg '"/.imi2 + IIS'll3] (4.74)

-|M|*[a,[/r, - AT,,] +j] (4.75)

Note that the constants a*- t = l,...,mj= 1,..., 3 have not been chosen

yet, and we now choose them in such a manner as to ensure the negative definiteness

of the Lyapunov function, provided K$ > Kqp.

We choose them to be

a\ > j +«? (4.76)
<4 > [/$* + *? (4-77)

TO / „ „rtX

*° > ii^^i (4-78)
K8-Kb > 1 (4.79)

Such a choice of constants ensure that V is negative definite for all initial

conditions in ft, and for all perturbations such that Kqp < K3 < 7f*.(Note that the

coefficient of HS'll2 is always less than unity, and for all HS'll > 1, ||S*||2 < ||5'||3,

and for all values of \\S{\\ < 1, ||-S"|| > U^H2.)

We have shown that there exists a set ft and a constant K* such that for all

initial conditions in ft, and for all 7\gp < K*, the output of the system is asymptoti

cally regulated to the origin.<] 6
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4.2 Singular MIMO Systems

In this section we will propose matching conditions to ensure asymptotic

regulation of the output for systems whichdo not possess a relative degree. However,

assuming either left or right invertibility of such systems provide a means of output

regulation using the notion of an extended relative degree. The zero-dynamics algo

rithm provides a solution under the assumption of left invertibility and the dynamic

extension algorithm suggests a decoupling methodology assuming right invertibility.

It is useful to prescribe matching conditions to be met by perturbations in either of

these two schemes.

Consider square MIMO systems specified by the following equations, as be

fore.

Unperturbed System Equations

TO

* = /(*) +!>•(*)«.• (4-8°)
i=l

Vi = h\(x) i=l,...,m (4.81)

where x € 3fcn f{x) : £n -♦ ftn isa smooth vector field g{(x) : 3fcn -> ftn i = 1,2,..., m

are smooth vector fields, h\(x) : 3fcn -» Jft i = l,2,...,m are smooth functions,

U{ € 5ft i = 1,2,...,m

Perturbed System Equations

TO

x = f(x) + Af(x)-rJ2i9i(x) + &9i(x)]ui (4.S2)
i=l

y{ = h\(x) i = l,...,m (4.83)

where A/(x) : &n -• £n is a smooth vector field, Ag{(x) : &n -> £n i -

1,2,..., m are smooth vector fields.

Comment 4.2.1 A minor change in -notation from the previous sections is that the

lower indices on the function kt havt ueen converted to upper indices h\. The lower
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index 1 indicates that the output has not been been redefined yet. This will be needed

later for output redefinition.

Matching Conditions Assuming Left Invertibility

We present matching conditions for a MIMO system which does not possess a well

defined relative degree, but which is left invertible. The statement of the MIMO

singular matching problem is as follows.

Statement Of The Problem

Given:

• An unperturbed system of the form (4.80) - (4.81) which does not possess a

vector relative degree.

• The unperturbed system (4.80) - (4.81) is left invertible.

• The operating point xo is a regular point of the zero dynamics algorithm in the

sense of [19]

t A control objective - asymptotic output regulation, that is, y,- = h[(x) —> 0 i =

1,... ,m as t —• oo.

• The zero-dynamics algorithm is utilized to generate a control law to attain the

control objective.

Determine:

• Conditions that must be matched by the perturbations Af(x) : &n —• $ftn and

Agi(x) : $tn -• ftn *= 1,... ,m of (4.82) - (4.83) such that the control objec

tive of asymptotic output regulation is achieved by the control law developed

based on the unperturbed system equations (4.80) - (4.81), when applied to the
perturbed system keeping the states x € 9£n bounded.

Assuming that the system is left invertible, and that x0 is a regular point

[9], [6], [8] of the zero dynamics algorithm of [19], for the system (4.80) - (4.81),
there exists a transformation $ exhibiting the system in a local normal form. The

transformation 0 is specified by,



where

f':9fcn->ftr' =

77: 5ftn-> 3ftn-r =

$ : x

6

Vn-i

t

= En
t=i

?

(fi,..., rm)T € Z™ is a vector of extended relative degrees
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(4.84)

(4.85)

(4.86)

(4.87)

(4.88)

and each fj : 5ftn —• &i = 1,2,..., m j = 1,..., rt- is a smooth function of x and each
77; : 9ftn —• 5ft z = 1,2,..., n —r is a smooth function of x such that 77 's and f 's possess

linearly independent differentials, linear independence being defined over the ring of

smooth functions. Note that $ is a local transformation of coordinates, and is valid

for an open region U containing the operating point xo-

Using the transformation $ specified by (4.84) a local normal form for the

unperturbed system equations (4.80) - (4.81), smiliar to the one in [19], is written as:

% = d

& = ^V-Mr^+E^tf c,i)uk(e r,v)
jt=i

*=i

(4.S9)

(4.90)

(4.91)

(4.92)

(4.93)
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(4.94)

t = 2,...,m (4.96)
TO

«/ = «(€,,...,r,«»)+Eji»tt1,...,r,,v)«*tt,..-.r,'») (4-97)
*=i

*$+,:»--»» = L/fcJ - JXK1 r.^ttV.•,«-,*)] (4-98)
Jk=l

2 < t < m 1 < j < r< - 1 (4.99)

i**j :«•-»* = E^tt1»..-r,v)«jK1,...,r,i?) (4.100)
*=1

2 < i < m 1 < j < r< - 1 1 < p < m (4.101)

6)k : 9ftn -♦ ft t = 2,..., m j = 1,..., r{ - 1 k = 1,..., i - 1 (4.102)

a£:£n-+ft = j^L?-1*} Jfc =l,...,m (4.103)
4:9fcn-+9£ = Z,5fc/4,. 2<i<m (4.104)

&1:ftn->& = IJ^J (4.105)

6':£"-•& = 7,/A'. 2<i<m (4.106)

3 :»"->» = Xj-^jisl,...^! (4.107)

$+1 :&n -> * = ^-+1 2<i <m 1<j <n - 1 (4.108)

The zero dynamics of the unperturbed MIMO system is a dynamical system

in 5ftn~r given by

V= 9(0, V) + £ Pi(0» V)«i(0» *) (4-109)
i=i

where Uj(0,77) is the stabilizing control input that renders the output identically zero.

Comment 4-2.2 The first output has a relative degree 7*1 in the usual sense of being

the number of times it is differentiated before input terms appear. On the other hand,

the numbers r,- i = 2,..., m are termed extended relative degrees, as they indicate

appearence of input terms after successive redefinition and differentiation.
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Comment 4.2.3 The redefined outputs are specified by (4.99). Note that each redefined

output is differentiated only once.

Comment 4-2.4 The functions &qv(x)' &n —* 9ft are chosen based on the linear depen
dence of rows of the decoupling matrix at each intermediate stage of the algorithm.

This is evident from equation (4.101).

Comment 4-2.5 It is to be noted that the zero-dynamics algorithm provides enough

structural information to be able to prescribe a control law to ensure asymptotic out

put regulation. The actual control law uses steps of the zero-dynamics algorithm, and

provability of achievement of control objective imposes some restrictions on the per

missible classes of6jk(x): 9ftn —*• 9ft considered above. Such restrictions limit the scope

of the application of the zero-dynamics algorithm.

Comment 4-2.6 Our assumptions on the functions 6jk are less restrictive that the

conditions imposed in [12]. In [12], the functions 6jk are required to be constants.

Define (m -1) x rt- matrices Dik : 9ftn -♦ 9ftixm i = 2,..., m k = 1,..., r,; - 1

and (m - 1) x rt- vectors cfo : 9ftn -* 9ft1i = 2,..., m k = 1,..., rt- - 1 as follows:

Dik =

dik[Af] =

o}tfV..,r,*) 1-.., tittv.-.r,*)

fli"1^....^^) 1..., ajri(ci,...lr,i?)
Lgi h\

LMLJ-lh\
LAfh2r2

laiK:1
LAjhk

L9mK

(4.110)

(4.111)

Comment 4-2.7 Note that the matrix Dik defined in equation (4.110) is such that its

last row is always linearly dependent on the other rows. This follows from the con

struction of the redefined outputs outlined earlier, specifically from equation (4.101).
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Also define the decoupling matrix A\ as

A,= (4.112)

•rKV—r,*) i—, <ckv..,?",*)

We now present two classes of matching conditions for asymptotic output

regulation for left invertible MIMO systems. The first set of conditions is more

restrictive, but ensures the asymptotic regulation of the output. The second set of

conditions is less restrictive, but only ensures regulation of the output to an arbitrary

e ball about the origin.

Theorem 4.2 Strict Generalized Matching conditions for asymptotic regulation for

left invertible MIMO systems decoupled using the zero dynamics algorithm.

Given (Gl) A perturbed MIMO system of the form (4.82) - (4.83).

(G2) The unperturbed MIMO system (4-80) - (4-81) has an extended vector rel

ative degree [ri,..., rm]T.

(G3) A control objective of asymptotic output regulation, that is |fJ| —»• 0 i =

1,2,... ,m

If (II) The zero dynamics of the unperturbed system, (4-109) is exponentially sta
ble.

(12)

(IS)

Af(x) €ker[dh\(x),dLsh\(x)--dLJ-lh\{x))[\[^\ ker[dh\„...,,dh^]]
(4.113)

t=2

A9j(x) 6 ker[dh\(x),dL,h\(x) •••dLT/-1h\(x)} f][f) ker{dh[,,..., ,<tt;j]
i=2

(4.114)

where j = 1,... ,m
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(14) A/KV..,r,i?),E£iAtt(^_

tinuity in [f1,... ,fm]T, uniformly in n with constants K^j-conic, K&g-amic,
everywhere in an open set Q&conic Q $(U)

(15) L^LJ-% <KU< K,< in tliBoani C*({/)

nutty in [f1,.-.??"1]7; uniformly in n, with constants Kj-conic, Kg-amic

everywhere in an open set ileonic Q $(U)

(17) ||A/(0,?/) + ££1 A#(0,n)ut(0,n)|| < IfAgplMI everywhere in an open set

ftA[/(0,T7)+s(0,Tj)u(OtT?)l C $(£/)

(18) The Junctions 8\,k(t},...,£m,ri) < KSik i = l,...,m p= 1,... ,r,f- 1 A; =
1,... t —1 everywhere in an open set Sis Q ${U)

(19) The diffeomorphism $ f^.&lj /ias a bounded Jacobian.

(110) The control u is chosen to be

Ui

= ira (4.115)

u, -^(^....r.^+wr

w/iere, Ai is specified by (4.112) and 6,'(f1,...,fm,7/) i = l,...,m are

specified in (4-99) - (4-108), and

Vi = -air._1£t,...,+a\£-K5isgn(Si)

s{ = e,+<-ie4-i.--.+*i6
and ts a Hurwitz polynomial

sgniS*) = |f|V|5f|>0

(4.116)

(4.117)

(4.118)

(4.119)

Then (Tl) There exist a set Q C $(£/) and a constant K* such that for all initial

conditions belonging to ft, and K&qp < K* the output yi = hi(x) tends to

zero asymptotically.

Proof: * t>
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Assuming matching conditions (12) and (13) allows us to write down a local

normal form for the perturbed system (4.82) - (4.83) as

il = il

*=i

« = ^+2«{i«1.-.r,,i»)[*'K,,...,r,7)

Jt=i

m

& = tf«l,...,r,?)+E«itt,,...,r,»)«»tt1,...,r,i»)
ik=l

2 = 2,... ,171

m

+EMf\..Mr,«)+Ap^i,...,r,«)W(f1,...,r^)
it=i

where the definitions follow from (4.99) - (4.108) with

AfttV.-.r,*) :«"->*"-- = Lajt,

APi(^,...,r,«):»n^3ftn-r = IA5jn i = l,2,...,m

Using thedefinition ofS* stated in theorem, we split the coordinates [f*,..., {m, n)T as

[(£l,Sl),...,((m,Sm),rj\T where f = [€!,...,e*B.1]T. Rewrite the system equations
in the [[(f1,51),. --,(£m,Sm),rj\T coordinates using the control u specified in the
theorem.

? = AT +S'S' +c'' (4.120)
S'* = -Kssgni?) (4.121)

i= l,...,m (4.122)

77 = 9(({1,51)1...1(em,5m),i?) +A9(({,,5,),...,(r,5w)1i7) (4.123)



where

A1 =

6* =

c =

c* =
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+M(?,51)...(r,5m),n)u((f1,51)...(r,5"l),n) (4.124)

+AP((^,51)...(r,5-),nK(?,51)...(r,5-),n) (4.125)

0 1 ,..., 0 0

0 0 1 ,..., 0

a2 ,..., ,..., VuMxM-«i -

0

0
i = 1,... ,m

Jh-i]x[i]

Jlri-l]x[l]

i = 2,

i = l,...,m (4.126)

(4.127)

(4.128)

m (4.129)

. Ej=l fy,-l)jUJ J[r._l]xll]
As before, we will prove the theorem in two stages. We will first assumethat

the system trajectories remain in the open set Q$ C $(U) where each of the functions

^K1,-Mr,'/)<^i =2)...,mp=l,...,r,-U =l,...,i-l. We will then
show that under such an assumption asymptotic output regulation is achieved. We

will then consider a composite Lyapunov function and find the largest set of initial

conditions such that the system trajectories do not leave the set ft$.

Step 1.

Consider the Lyapunov function

y=E (4.130)
i=i



Differentiating V along the flow of (4.121) we obtain,

m

V = ZS'l-KjagniS'))
«=1

»=i
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(4.131)

(4.132)

Negative definiteness of V implies that each S* = 0 is attractive for all trajec

tories that remain in &(U). Indeed, the trajectories reach the manifold f|£Li S1 = 0 in

finite time. The choice of control renders the manifold flj^i 5* = 0 invariant. Asymp

totic regulation to the origin remains to be shown. Performing Filippov averaging

[13], we find the average dynamics of the system on the surface flSi S* = 0 to be

given by

where

c1

C =

h-i]x[i]

;ii

? = *? + <?

i = 1,... ,m

7K«-i) Vi

ft* A* Vi-l

*>j = —aJ,-!^. ---,+«i^2
J [r,-l]x[l]

(4.133)

(4.134)

(4.135)

i = 2,...,m (4.136)

(4.137)

Note that the difference between x>j and Vj is that the term —KsJsgn(Sj)
is absent in Vj. This is due to the fact that when Sj = 0, the average value of

sgn(Sj) = 0.

If the trajectories of the systemremain in the open set fi$ C $(U) where each

ofthe functions ^(f1,... ,fm,7/) </^, i = 2,. ..,mp = 1,... ,r,-l k=l,...,i-l
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then there exist two numbers /f$. and a** such that

||?||<^2ai|?||i =2,...,m (4.138)
i=i

One choice of the constants is

68up = sup sup 6L i = l,...,m (4.139)
fc=l,...,r<-l, j=l,...,t-l tt1,...^"»tn)€n«

#* = *«*(i-l)* = l,...,m (4.140)

<*** = [Ekn*^*..-^ (4.141)
*=i

Note that as 4' (4.126) is a Hurwitz matrix there exist positive definite

symmetric matrices P* solving the matrix Lyapunov equation [25]

[Ai}TPi + P{A{ = -7 (4.142)

Now consider the Lyapunov function given by

m

V= E°W[?] (4-143)
1=1

Differentiating V (6.282) along the flow of (4.133) we obtain

V=ct[[A1?]TP1?+[?]TP1Al£L]+£ai[[Aie+^^^ (4.144)
*=2

Using (4.142) and (4.138), we get,

V<-a1||?||2 +-£V||^ (4.145)
t=2 »=2 j=l

where omax(Pl) is the maximum singular value of Pl.

We rewrite (4.145) as

V = -[f']V-£y]2 (4.146)
fc=2

m m

-EI«'-«L.W*- E l«*]W (4-147)
«'=2 fc=i+l
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where we have made use of the following fact:

2<*VLx(i"')ll?MEW] < [•L.(i")[a^||fII* +El«Wlla (4-148)
i=i Jb=i

Note that we have not chosen the a* i = 1,..., m yet. We now choose them

so as to make the V negative definite. Choose

«* > IKl2 (4-149)
fc=2

of > 'l^nKl + E [a*]2] i = 2,..., m (4.150)
*=i+l

Note that choice of a* t = 1,... ,m is recursive. We first choose am, then

am_1, etc. upto a1. This implies that on the surface PGa £' = 0 >tne output

yi = h\ —• 0 as t —• oo, i = 1,..., m.

To ensure that trajectories of the system do not leave the set H$, we now find

a nonempty open subset of initial conditions, Q, C $ls C $({/), such that for all initial

conditions in the open set ft, the system trajectories do not leave Qs thus maintaining

the validity of the boundedness of 6lpk. To this end we consider a composite Lyapunov

function that includes the n dynamics also:

Using a converse Lyapunov theorem [16], the exponential stability of the

zero dynamics (4.109) guarantees the existence of a Lyapunov function Vn such that,

*i||# < V, < Jr,||ij||s (4.151)

^k(0,V)+p(0,VH0,V)) < -KM? (4-152)
BVllfjll £ K<\\V\\ (4.153)

Now consider the composite Lyapunov function given by

v=EteKT-Plf]]+E41^ +^1+"3V„ (4.154)
»=l »=l L *

where P{ is the solution of (4.142) and V„ satisfies (4.151) - (4.153).
Differentiating V (4.154) along the flow of (4.120) - (4.125) we obtain



v = ffaiiiA'e+v&FF^
»'=1

m

+ E45r,'[-^^n(51')]
t=l

m

+E45f[-i«:.^ffn(5')]

dV„

a3^[9((r,51),...,(r,5m),,)+A9((|1,S,),...1(r,5m),7/)]
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+«3^b(d1.5,),-..,(r,5"),,)u((r,5i),...,(r,5"'),v)]
+a3^[Ap((|1,S1),...)(r,5™),,)u((f,S1),...)(r,5ro),T,)]

Assuming that K1,...,£ra,>/]7' € flUifiks.,.,.,*. using (4139) - 4.141), and
(4.147) we obtain

* fc=2

m 1
-EK-7-^(nAi.

*=2 *
m t—1

-1E [«il*nilfll*-K»—(/")*« E*»)llf II
*=t+l j-l

-IKMIIs'll - JS^Il '̂ll2 +lisil3]
+03-0^(9(0,!?)+J>(0,!?)tt(0,1j)]

+°3^[?((|,,5,),...,(r,5m)^)-9(0,,)]
+o»^W(?,5,),...,(f.5-),i?)u((f,51),...,(f-,S-),i,)
-p(0,ij)u(0,ij)]

+a3|^[Ag((?,S1),...,(r,5m)^)-Ag(0,7?)]
+a3^[Ap((f,51),...,(r,5"l),,)U((?,51)1...,(r,5*")^)
-Ap(0,17)11(0,1?)]
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dV
+a3—[Aq(0,Ti) + Ap(0,r/)u(0,»7)]

where we have made use of the following fact:

2ai<rLI(Pi)llfNEK''!!?'] <kLxCV'Hl?\? +eV]2II?H2 (4-155)
J=l *=1

and that,

SW*f < Ajll^Hllfll

\m\ = i_

All|Si||||fH < ^ +[A']J[5f
Now define fty to be the largest non-empty subset of $(U) such that

m

ftv = H I^ABound fl ^AConic f) ^Conic f] ^A[/(0,t,)+5(0,t,)u(0,»,)]] (4.156)
t'=l

Choose c* € 3ft+ such that

c* = sup(c : V < c € ftv) (4.157)

Define ft = [((f1,^),...,^,^-),!/): V < c*].

For all initial conditions in ft, we may rewrite V as

% k=2
m 1

-EK-T-^ax^'JA-l. (4.159)
i=2 *

-[E ffllFll'-[toi'm^PWeEKDm
k=i+i i=i

m r/^*i2- EKlAVllP-'H - -£*L115'H2 +HS'll3] (4.160)
-«s*slMI* (4.161)

m

+a3A'<|M|[A', + K,+ A% + Kt,]Elllf II + ll '̂IO (4-162)
»'=1

+a3A'4A'„||i|||2 (4.163)

m

fcl2
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where,

m

IM(f,S1),...,«m,S"),V) - ?(0,i|)|| <K,EHIfII + 115*10 (4-164)
i=l

\\p((?,s1),...,(c,smU)u«?,s1),...,(c,sm),-n)-p(o,vMo,T,)\\ <_
A-,E[||f|| + ||S'||]

*=1

||A9((f,5,),...,(r,5*"),,)-A9(0,I7)||<A'A,E[llf'll + l|5i|] (4.165)
iasl

||Ap((|1,5I),...,(r,5m),v)u((l,,S1),...,(r,5m),i7)-Ap(0,7?)u(0,I7)|| <
m

A-^Eoifii + ii^ii]
»=i

||A#,i,) + Ap(0,^)u(0,,)|| < K*„\\v\\ (4.166)

Indeed, noting that a bound on the Jacobian of the transformation $ gives

drj < Kn> and using assumptions (74) —(17)>we observe that

Kq < KiKj-anic (4.167)

Kp < KnKg-conic (4.168)

K&q < K^K^S-conic (4.169)

I<Ap < KrtKAg-conic (4.170)

Kqp < KvKAqp (4.171)

Now define

K7 = a3IQ[Kq + KP + KAq + KAp] (4.172)

and using the fact that

m ml1""2 m m
*VIMI EUiril +Pil] <^f- +A'?E llfll* +A'?E ll^il2 (4-173)

t=l * t'=l 1=1



we rewrite equation V as

1

Jfe=2
v < -[fPW-j—Aj-E^2

- EHi?ii[(«i -1 - -*? - •i-e*)** - [E WPDHfii - A-8]
t=2 * *=,+l

-E[4[Ar.<][||5i|| - lgff+fVll2 +||5'in
W^3-^p] +j]
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where

#8 = 2amflX(Pi)^ E Kt>*> = 2, •••,m (4.174)

Note that the constants a* i = l,...,mj = 1,...,3 have not been chosen

yet, and we now choose them in such a manner as to ensure the negative definiteness

of the Lyapunov function, provided K3 > Kqp.

We choose them to be

«\ > £X]2 +I+A:72 (4-175)
*=2 4

a[ > ofm(P')Kl+ EkH >^i =2,...,m (4.176)
*=t+l C

a\ > [Kff + K? (4.177)

Q* > aw mv 1 (4'178)4[A3 - Kqp\

Such a choice of constants ensure that V is negative definite for all initial

conditions in ft.

We have shown that there exists a set ft and a constant A'* such that for all

initial conditions in ft, and for all Kqp < K*, the output of the system is asymptoti

cally regulated to the origin. < 4k

Theorem 4.3 Relaxed Generalized Matching conditions for asymptotic regulation for

left invertible MIMO systems decoupled using the zero dynamics algorithm.

Given (Gl) A perturbed MIMO system of the form (4.82) - (4.83).
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(G2) The unperturbed MIMO system (4-80) - (4-81) has an extended vector rel

ative degree [r*i,..., rm]T.

(G3) A control objective of asymptotic output regulation, that is \£\ | —• 0 i =

l,2,...,m

If (II) The zero dynamics of the unperturbed system, (4-109) is exponentially sta
ble.

(12)

(13)

Af(x) € ker[dh\(x)idLfh\(x)---dLy-2h\(x)]f][f] ker[dh[„... „dKt_2}}

(4.179)
i'=2

and

dik[Af] € row-span-of[Dik]

LASLTrlh\

dik[Af) =

Dik =

L*hl2

lajK:1
LAJhk

LgA

<(f\-.., £"%*?)

L9mh[
i = 1,2,..., m &= 1,2,..., rt- - 1

L>AsKi ^ -^f i = 2,3,..., m

A9j(x) €*er[cttj(x),dl/Afc) •••dLr}~lh\(x)) f][f] ker[dh\,,...,, dh^))
(4.1S0)

where j = 1,... , m
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(14) A/CC1,...,?",*), L?^^9iU\'^^m^)ui(e,.--^m,rj) satisfy conic con

tinuity in [f1,... ,{m]r, uniformly in nwith constants K^f-amio K&.g-conic,
everywhere in an open set ftACome Q $(U)

(15) LvLJ^hi < Kk < Kai in ftABottn, C$(£/)

(16) /(Cl,...,PB,i?), E£i^(e1,...,r,'?K(f1,...,r,'7) «rfwA conic conti
nuity in K1,...,fB]T> uniformly in n, with constants Kj-conicf Kg-conic

everywhere in an open set tlamic Q$(U)

(17) ||A/(0,r/) + £!=i A#(0,r/)tit(0,7/)|| < i^AgP||»?|| everywhere in an open set

ftA[/(0,T,)+p(0,T,)u(0^)] Q $(U)

(18) The functions bpk((i,...,£m,n)<KSi i = l,...,m p = l,...,r\ - 1 k =

1,... i —1 everywhere in an open set ft$ C $(U)

(19) The diffeomorphism $ (4-84) has a bounded Jacobian.

(110) The control u is chosen to be

U\

= AV1 (4.181)

uf -6^,...,^^) + ^

where, A\ is specified by (4-H2) and b1^,...^"1^) i = l,...,m are

specified in (4-99) - (4-108), and

Vi = -airi_1£i,...,-ra\ti-KSisgn(Si)

ana* is a Hurwitz polynomial

sgntf) = j!jV|S'-|>0

(4.182)

(4.183)

(4.184)

(4.185)

Then (Tl) There exist a set ft C $(£/) and a constant K* such that for all initial

conditions belonging to ft, and KAqp < K* the output yi = h{(x) tends to

zero asymptotically.

Proof: 4 t>
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Choosing the control law prescribed by the theorem, subject to the pre

scribed matching conditions, the equations (??) - (??) may be rewritten as

a = ci

£ = «1 +Atf({,,...,fM)

£ - s+E^i+^tt'.-.r.iiM+iA/*'

& = «i+A&'(£i,...,r,>/)
i = 2,... ,771

m

+EiPfcK1,...,r,v)+Ap*«1,...,r,i?)]tifc
*=i

Comment 4-2-8 Assumption 1(2) guarantees that the term

E^Atftf1, ...,r,*)] +LA/A* = 0 (4.186)

The equations (??) - (??) may be rewritten as

il = tl

£ = »1 + A61(f1,...,r,v)

£ = S +EV;
+

2 = 2, . . . , 771

v = 9K,,...,r,,<?)+A««i,...,r.«j)

+Etp*«1.-—r,i»)+Aj.t({,,...,r.«»)]«*
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Furthermore, from the definition ofeach vt- i = 1,2,...,m it is clearthat the problem

has been reduced to the hypothesis of the theorem on strict matching. Invoking the

results of the theorem on strict matching, the conclusions of the theorem on relaxed

matching are proved. <14

Matching Conditions Assuming Right Invertibility

We now present matching conditions for a MIMO system which does not

possess a well defined relative degree, but which is right invertible [10].

Statement Of The Problem

Given:

• An unperturbed system of the form (4.1) - (4.2) which does not possess a well

defined vector relative degree.

• The unperturbed system (4.1) - (4.2) is right invertible.

• A control objective - Asymptotic output regulation yi; = h\(x) —> 0 i = 1,..., m

as t —• oo.

• The dynamic extension algorithm [5], [4], is utilized to generate a control law

to attain the control objective.

Determine:

• Conditions that must be matched by the perturbations Af(x) : 9ftn —• 3£n and

Agi(x) : 3£n —• 3£n i = 1,..., m of (4.3) - (4.4) such that the control objective of

asymptotic output regulation is achievedby the control law developed based on

the unperturbed system equations (4.1) - (4.2), when applied to the perturbed

system.

Assuming that x0 is a regular point [19] of (4.1) - (4.2) and that the system

is right invertible [10] there exists a transformation $ and a local normal form for the

system generated as follows:

The dynamic extension algorithm [8] systematically extends the dimension

of the state vector, at each step, and therefore we will start the algorithm with the

state x € tftn = xe. The algorithm proceeds in the following manner. [4]
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Step 1 Let r; be the relative degree of the ith output of (4.1) - (4.2), i.e the

largest integer such that

LgjLlfhi(xe) = OV / < n - 1VI < j < m (4.187)

and for all xe near xg. Define the decoupling matrix Ak(xe) to hae as its ijth. entry,

«ii(«) = LaiLT}-lhi(xe) (4.188)

and denote its normal rank by Sk- If sjt = m, stop.

Step 2 If Sk < m assume that the first Sk columns of Ak(xe) are linearly

independent at each point of an open, dense set of Xe (this can always be achieved

by a permutation of the components of the output.) Apply the regular static state
feedback law

u = ak(xe) + pk(xe)v (4.189)

with ctkifik analytic functions of xe such that the decoupling matrix with the control

law (6.134) is of the form

Aki(xe) =
7tfkxsfc 0

M(xe) 0 _

This may be achieved by choosing a*, f}k to be the solutions of the equations

dLr/-1h(xe)(f(xe)-rg(xe)a)k(xe)) = 0VI < i < sk (4.191)

dLr/-1h(xe)(g(xe)j3k(xe))j = fyVl<i<5jfc \<j<m (4.192)

where (g(xe)0k(xe))j denotes the jth column of the matrix g(xe)/3k(xe).
Step 3 There exist qk columns of the matrix A\(xe) (without loss of gen

erality, the first qk) with two or more non zero elements. Put an integrator in series

with qk corresponding input channels. Define the dynamic extension as

(i=Vii=l,...,qk (4.193)

Extend the original system with new inputs Vi,...,vjfe,Ugfc+i,...,Um, and

return to step 1 to resume the procedure with k —> k + 1 are new state variables

(4.190)
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If the original system is right invertible, the procedure converges in a finite

number of steps to a system having vector relative degree [rj,..., r^]7- Let the triple

(fe>9ji tf) characterize thenew extended system thus obtained, with xe = (x,() as its
state, ue as its input, and ye as its output. Constructing a local change of coordinates

$M = (&?) with £ = col(£i) by setting

(i = col(h](x%Ls.h\(x%,...,XJrlh\(x')) (4.194)
= co/(£,...,£f) (4.195)

and using complementary coordinates n. Then the transformed system equations are

given by

ei = & (4.196)

: = : (4.197)
m

Ht = &^V-.,r^) +£4«V-->r,r/Kc (4.198)

i = l,...,m (4.199)

where

3=1

J"5tt,,...,r.V):«"-»»-' = I,., j = l,...,
m

r = J>?
t=l

The zero-dynamics is a dynamical system in 3ftn ^«=iT* described by the
following equations.

m

ri = qe(0,r)) + T,Pej(0,v)uj (4.201)

It is clear that for the unperturbed system, the output can be regulated to

zero asymptotically by choosing first a decoupling and linearizing control law, and
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then applying any standard Hnear control law that guarantees asymptotic regulation

of the output.

We now prescribe matching conditions similar to [7] for the perturbed system

(4.3)- (4.4) suchthat the control law developed usingthe dynamicextensionalgorithm

will still ensure asymptotic output regulation in the presence of perturbations.

Theorem 4.4 Generalized Matching conditions for asymptotic regulation for right

invertible systems decoupled using the dynamic extension algorithm.

Given (Gl) A perturbed MIMO system of the form (4-3) - (4-4)-

(G2) The unperturbed MIMO system (4-1) - (4-2) has an extended vector relative

degree [rj,.. .,rJJT.

(G3) A control objective of asymptotic output regulation, that is yf = h\(x) —•

0 i = 1,...,m

If (II) The zero dynamics of the unperturbed system (4-201) is exponentially sta

ble.

(12)

A/Or) € ^kerldh^x^dLj.h^x^-'-dLp2^^)] (4.202)
t=i

(IS)

A^-(*e) € fl ker[dhe{(x%dLs<h\(xe) •••dL1/.'1 hfe')] j = 1,...,m

(14) A/e(£1,...,fn,i7), YT^Ag^e^-.-^^u^,...^^) satisfy conic con

tinuity in [f1,... ,fm]T, uniformly in n with constants Raj-conic, I^Ag-conic,
everywhere in an open set 0>AConic Q $(U)

(15) Lv<Lr/r1h<i < Kbi < K.i in SlABound C $(U)

(16) ne,--.,C,ri), EfeiPf(£l,...,r,'7K«1,...,fm,i?) satisfy conic con-
tinuity in [£*,... ,fm]T, uniformly in n, with constants A'/_comc, A'5_conic

everywhere in an open set ftcomc C $(U)
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(17) ||A/(0,;?)+ YZLi A#(0,iy)u,-(0,i7)|| < #a«>IMI everywhere in an open set

^A[/(0,»7)+j(0,n)«(0^)] Q $(U)

(18) The diffeomorphism $ (4-6) has a bounded Jacobian.

(19) The controlu is chosen to be

r -p«v..,r,*)+«'i

and

u

= A"1

ul -6m(ei,...,r,»?)+^

Vi = -a^_i4, •••,+a\£ - Kaisgn(S{)

and is a Hurwitz polynomial

sgntf1) = ||̂ V|5i>0

(4.203)

(4.204)

(4.205)

(4.206)

(4.207)

Then (Tl) There exist a set ft C $(U) and a constant K* such that for all initial

conditions belonging to ft, and K&qp < K* the trajectories of the perturbed

system remain in $(U) and the output yi = h{(x) tends to zero asymptot

ically.

Proof:* t>

The proof the theorem is obvious once we realize that the matching con

ditions cast the extended system into the exact form of a perturbed non-singular

MIMO system, satisfying all the hypotheses of the theorem that guarantees output

regulation for perturbed nonsingular MIMO systems. Indeed the system equations

now look like

t = £

i = 1,..., m

.r,ij)+Ea«KI»-".f".'»K*
j=i
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* = 9e«\...,r^)+A(7e({\...,r,>?)

+i:wtt1,...,r,i?)+Aps(ei,...lr,iy)]i'j

The system equations and the hypotheses of the theorem (4.4) satisfy the

hypotheses of the earlier proven theorem (4.1). Therefore invoking the conclusions of

theorem (4.1), the proof is complete. <J4*

Example 4.2.1 Comparing inversion techniques

Consider the system represented by the following equations,

Unperturbed System Equations:

ii = xz sin Xi -f u\ (4.208)

x2 = X3 cos2 xi —Hi sin Xi (4.209)

x3 = u2 (4.210)

Vi = *i (4.211)

y2 = x2 (4.212)

where x € 3ft3, the controls Ui(t) : 3ft+ —• 3ft i = 1,2,3.

Perturbed System Equations:

ii = a:3sinxi+ ui + Ai(x) (4.213)

X2 = £3 cos2 a?i —u\sin xi + A2(x) (4.214)

x3 = u2 + A3(x) (4.215)

2/i = X! (4.216)

y2 = x2 (4.217)

10/iere 2/ie perturbations Ai(x) : 3ft3 —• 3ft i = 1,2,3 are unknown.

The control objective is to ensure that the states are regulated to the origin

commencing from arbitrary initial conditions. We will choose two control laws based

on the zero dynamics algorithm, and the dynamic extension method, and the prescribe
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matching conditions to be met by the perturbations At(x) : 3ft3 —• 9ft i = 1,2,3 such

that the control objective is still attained.

Control Using The Zero-Dynamics Algorithm

Now defining

we note that

Now note that

h\ = Xi

hi = x2

yi = L,h\

= xz sin X\ + u\

V2 = Lfhl

2/2 =

= xz cos x\ — u\ sin X\

h2 = Xz

^ii (x) = sinxi

X3 cos2 xi —6n(x)[i/i —X3 sin xi]

X3[cos2 xi + sin2 Xi] —^n(x)t/i

xz — 2/i sin xi

/^-t/isinxi

Ljh2 = u2

Consider the following change of coordinates

$ : x € 3ft3
CI

€&

(4.218)

(4.219)

(4.220)

(4.221)

(4.222)

(4.223)

(4.224)

(4.225)
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where

£ = h\ = xx (4.226)

(J = hi = x2 (4.227)

f2 = />2 = x3 (4.228)

In these new coordinates, the system equations look like

tl = s8sing+t*i (4.229)

t] = (?-6 "in fi (4.230)

tl = «2 (4.231)

Now choose the control inputs tti, io 6e

ui = -x3 sin (I + ui (4.232)

w/iere Vi(£): 3ft+ —• 3ft is to be chosen later. Such a choice of control yields,

tl = t>i (4.233)

tl = fl-firinfj (4-234)

(2 = u2 (4.235)

The same proceedure for the perturbed system equations would have yielded

a modified set of equations.

£l = x3 sin tl +u1+Ai(x)

tl = f22-fi1sinf11H-[sinei1A1(x) + A2(x)]

£l = u2 +A3(x)

Now choose the control inputs as before to be

ui = -x3sin{11+i;1 (4.236)

where V\(t) : 3ft+ —• 3ft is fo 6e chosen later. Such a choice of control yields,

tl = ui + A^x)

£ = f22-fi1sinf11 +[sinf}A1(x)-r-A2(x)]

tl = u2 + A3(x)
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The matching conditions thatperturbations must satisfy are now obvious by inspecting

equations (4.237) - (4.237).

The matching conditions that could be imposed on the perturbations are of

the following three kinds.

Strict Matching Conditions

Ax(x) = 0

A2(x) = 0

A3(x) = 0

Relaxed Matching Conditions

A^x) < Ka, e 3ft+

sinfjAi(x) + A2(x) = 0

A3(x) < l<A3e%+

Choosing the controls in (4-237) and (4-237) to be

vi = -I<isgn[tl]

u2 = -aitl ~ K2sgn[ait\ + tl\

K, > KAl

K2 > I<a2

aitl + tl ts a Hurwitz polynomial

Note that the matching conditions specified in I satisfy the strict matching assumption,

while the conditions specified in II satisfy the relaxed matching assumptions. The

stabilization objective is therefore realized for cases I and II.

Dynamic Extension Algorithm

We will now prescribe matching conditions for the system if instead of the

zero dynamics algorithm, we had used the method of dynamic extension. As before,
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we first develop a change of coordinates for the unperturbed system, and transform

the perturbed system equations into the new coordinates.

Differentiating the outputs j/i and y2 of (4-211) - (4-212), we get

h\ = xi (4.237)

hi = x2 (4.238)

yi = Lshl (4.239)

= X3 sinx\ + U\ (4.240)

h = Ljhl (4.241)

= x3cos2 xi —Hi sin xi (4.242)

Now using the methodology of dynamic-extension outlined in the previous section, we

set the following dynamic extension

ui = wi (4.243)

and thus make ui an element of the extended state vector. The extended state vector

is given by I xi x2 xz u\ I . Using this extended definition of the state vector,
it is obvious that the inputs w and u2 have not yet entered the equations (4-240) -

(4.242). So we differentiate them once again to obtain,

yi cos Xi [X3 sinxi + Ui]

y2 —2 cos xi sin Xi [X3 sin Xi + ui] —u\ cos xi [X3 sin Xi -f- u\]

1
+

Note that

smxi

—sin xi cos2 xi

det
1

$
Ui

W\

u2

sinxi

,2

€8r

(4.244)

(4.245)

= 1 (4.246)
— sin xi cos' xi

Therefore the decoupling matrix is invertible. Now consider the following change of

coordinates,

x tl

tl

tl

(4.247)



where the coordinates are given by

tl = *i

t\ = x3sinxi + ui

ti = x2

Note that

H = x3 cos xi — tii sin xi

Xi = &

x2 = &

xz = gmfl + g

Ui = £cos2£-£sintf

/n the new coordinates, the system equations are

a = a

SI = S2

tl

Indeed choosing the controls to be

+
1 sin Xi

—sin xi cos2 Xi

wl

u2

Wi

u2

1 sin xi

—sin Xi cos2 xi

-1 _

-h(tl,tltltl) + vi
-h(tl,t\,tltl) + v2

where
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(4.248)

(4.249)

(4.250)

(4.251)

(4.252)

(4.253)

(4.254)

(4.255)

(4.256)

(4.257)

(4.258)

t>i(tl,tlitiitl)

b2(tl,tlitlit2)

cos {} [sin tl + {J cos2t1 ~ tlsin t J]

-2 cos tl sin t\ Htl sin (} + tl] «n tl + tl «»2tl ~ tl sin tl]

-tii cos tl [[tl sin t\ + tl] sin {} + {2 cos2 (} - tl sin tl]

and the control inputs are

vi = -aitl ~ Kisgnfatl + tl]



v2 = -aitl - K2sgn[a2tl + tl]

aitl-r t2 & a Hurwitz polynomial

aiti + tl ** a Hurwitz polynomial

Such a choice of controls yields a system of the form

i\

ii

it

= H

= ~*itl - Kisgn[*itl + tl]

= tl

= -«iS ~ K2sgn[aitx 4-&]
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(4.259)

(4.260)

(4.261)

(4.262)

(4.263)

The system is thus stabilized.

We will now consider the effects of dynamic extension on the perturbed sys

tem equations.

In the new coordinates, the system equations are

fi = fi+A,(.)

a = d+A2(*)

il
[ill

wx

u2

-httlililil)

L^(ilililil) J

' ^ +A3(x)sintf
.^+A3(x)cos2tfJ

Indeed choosing the controls to be

i -i i-

+

1 sm Xi

—sin Xi cos2 Xi

+
smxi

— sin xi cos Xi

Wi

u2

(4.264)

(4.265)

(4.266)

(4.267)

bidUUUV) = cos£[sin£+£cosJ£-£sin£]

Mtf. H,H 8) = "2 cos {} sin $ m sin iJ + g] sin {» + {} cos2 (\ - H sin {}]

-«, cos£ [[g sinf} + il] sinfj + g cos'f} - f| sinf|]

«i = -aii\ - Ki»gn[aii] + i\]
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v2 = -aitl - K2sgn[a2tl 4- tl]

aitl +11 ** a Hurwitz polynomial

aitl + €| ** a Hurwttz polynomial

Such a choice of controls yields a system of the form

tl = £+Ai(x) (4.268)

£ = -aitl-Kisgn[aitl^tl]^^^-r^3(x)smtl (4.269)
& = 4l +A2(x) (4.270)

tl = -^22-A'2^n[^i2+f22] +̂ ^+A3(x)cos2ei1 (4.271)
Matching Conditions

Inspecting equations (4-268) - (4-271) reveals that the matching conditions

sufficient to ensure stabilization are

• Ai(x) =0 =*> ^& =0

• A2(x) =0=» ^i =0

• A3(x) < KA3 e ft+

4.3 Comparing Inversion Strategies

From a designer's perspective, it becomes necessary to decide upon a strat

egy for controlling an invertible MIMO system with no vector relative degree.

• Stabilization involving the dynamic extension method allows for uncertainties

only in the dynamic compensator that is being built. It is less tolerant of plant

uncertainties in those equations that involve an extension of the state vector.

• The relaxed generalized matching conditions of the zero-dynamics algorithm

permit disturbances that satsify an algebraic constraint that is a consequence
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of the algorithm. The price exacted for such a relaxation, is that in addi

tion to satisfying conditions for invertibility, stabilization objective requires the

functions 6jk% to satisfy additional constraints. This algorithm however has

the flavour of a MIMO extension of the usual SISO matching condition that

requires the disturbances to He in the span of the input vector field.

• The simplicity of the dynamic extension method is an attractive feature in the

design of control laws. Instead of searching for elements of the left null-space

of the decoupling matrix, as with the zero-dynamics algorithm, the method

extends the dimension of the state-space, and attempts to eliminate the singu

larity of the system by embedding it in a higher dimensional space. This is a

conceptually elegant technique.

• There are however, systems that violate the conditions of the theorems, which

can still be stabilized. This is by virtue of the fact that the conditions of the

theorems are merely sufficient conditions, and provide ample scope for improve

ment.

4.4 Closure

We presented the generalized matching conditions for SISO systems with

perturbed zerodynamics and MIMO nonsingular and MIMO singular systems. It is

to be noted that these are only sufficient conditions, and therefore are bound to be

conservative. Aside from helping to understand the classes of tolerable perturbations,

the matching conditions areuseful when a choiceis to be made between two competing

algorithms for control. It is prudent to choose a control methodology whose matching

assumptions are less restrictive, or more suited for a class of applications.



Chapter 5

Foundations Of Sliding Mode

Control Theory
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In this chapter we present a brief collection of facts and results that form

the basis of sliding mode control theory. We will present theorems concerning the

existence of solutions to differential equations with discontinuous righthand sides. We

present the proofs of existence, first for continuous righthand sides, and then relax the

continuity requirements to illustrate how the proof techniques change. We introduce

differential inclusions, and illustrate their use in proving existence for differential

equations with discontinuous righthand sides.

Finally we introduce the notion of a sliding mode and show that it is just

a special case of the presented theory. We will also demonstrate the construction of

simple sliding mode control laws for SISO and MIMO linear, and linearizable systems.

Finally we will show how the theory of input-output linearization [19] can be seen as

a way of constructing nonlinear sliding surfaces.

5.1 Mathematical Preliminaries

Qualitatively, sliding mode control theory involves dynamical systems con

trolled by control inputs that are defined almost everywhere, excepting possibly on

sets of zero measure. Such discontinuous control inputs are designed to render a
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subspace of the state-space of the dynamical system, attractive and invariant. The

subspace rendered invariant by control, is such that, trajectories evolving on this in

variant subspace achieve the required control objective. We will say more about this

later. We will now present some examples intended to stimulate interest in this topic,

and to illustrate the qualitative principles behind sliding mode control. We will say

more about these examples later.

Example 5.1.1 Linear Invariant Sliding Surfaces

Consider the simple double-integrator given by

xi = x2 (5.1)

x2 = u(t) (5.2)

where x € 3ft2, and the control u(t): 3ft+ —> 3ft. Choosing

u = —ax2 —Ksgn[axi 4- £2] (5.3)

where the function sgn[x]: 3ft2 —{0} —»• [—1,1] is undefined at the origin, renders the

1 dimensional subspace

axi4-x2 = 0 (5.4)

attractive and invariant. That is to say, trajectories commencing from arbitrary initial

conditions reach this subspace (actually in finite time), and that once they reach this

subspace, they continue to remain on this subspace. This is an example of a subspace

rendered attractive and invariant through control.

Example 5.1.2 Finite Time Control With Saturation

Consider the double integrator system again, given by the equations

xi = x2 (5.5)

x2 = u(t) (5.6)

where x £ 3ft2, and the control u(t): 3ft+ —»• 3ft. Consider the following choice 0} control

ti(f) = -*7n[x1 +̂ i] ,/|Il +2ipl|>0 (5.7)
= -sgn[xi] ,/|a-1 + 2fe»l| = 0 (5.8)
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It is easy to show that such a choice of control renders the 1 dimensional subspace

x1 +̂ l=0 (5.9)
attractive and invariant. Indeed, trajectories commencing from aribitrary initial con

ditions reach this subspace in finite time, and slide on this surface to reach the origin

in finite time.

Example 5.1.3 Winding Algorithm

Consider the double integrator system given by the equations

xi = x2 (5.10)

x2 = u(t) (5.11)

where x € 3ft2, and the control u(t) : 3ft+ —• 3ft. Consider the following choice of control

u(t) = —fci,s<7n[xi] —k2sgn[x2] (5.12)

h > k2>0 (5.13)

(5.14)

Such a choice of discontinuous control guarantees that the 1 dimensional surface

x2 = 0 (5.15)

is invariant and attractive. Indeed the surface x2 = 0 is attained in finite time, from

arbitrary initial conditions, and the states of the system slide to the origin in finite

time, along this surface.

The examples are interesting in that they admit a control input that involves

the function s<Jn[x] : 3ft —> [—1,1], which has the following attributes.

sgn[-] = J! if |[.]| >0 (5.16)
undefined if |[-]| = 0 (5.17)

The aforementioned examples are instances of using discontinuous control for the

purpose of stabilization of systems in the controllable canonical form.
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Comment 5.1.1 It is quite possible to define upper and lower semi-continuous versions

of the function sgn[x] : 3ftn —• [— 1,1]. We will use such versions later in constructing

differential inclusions that model our system. We will say more about this later.

We wish to formalize, the intutive notion that for dynamical systems involv

ing discontinuous control inputs, if the control inputs are undefined on sets of measure

zero, they are not too pathological and we might expect the dynamical system to ex

hibit the desired behaviour in a general sense. There are a number of technical issues

that have to be resolved before we could quantify this intutive notion. The major

issues that have to be dealt with are really the definition of what we might call an

acceptable solution to differential equations whose righthand sides may not be de

fined. As the righthand sides of some of the differential equations we consider may

be undefined at some points, we no longer define the trajectories of the dynamical

system using the Riemann integral, (as Riemann integration depends on the consid

ered function being defined everywhere on its domain), but resort to measure theory

and Lesbegue integration, (which is more based on properties of functions based on

the properties of the projection of its graph onto its range) To do so, we need to

invoke simple notions about measurable functions. The usual technique in the theory

of differential equations is to construct approximate solutions, and show properties of

the solution using the properties of the constructed approximations. However, when

the righthandside of a differential equation is undefined on sets of zero measure, it

becomes critical to understand what the notion of an approximate solution might very

well be on such sets of zero measure where the vector field is not defined. Finally,

given certain approximate solutions to these differential equations with discontinuous

righthand sides, we wish to formalize the notion of convergence of these functions, in

measure, to some limit function. We then pass to the limit and consider properties

of the limit functions.
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5.2 Existence Of Solutions To Differential Equa

tions

In this section we present basic results for the local existence of solutions of

differential equations with discontinuous righthand sides. We define a sliding mode,

and present conditions for the existence of a sliding mode. We then present briefly

the development of the sliding mode control law, and the various regularizations of

it.

We will now state without proof the following two important results from

analysis that we will need.

Arzela-Ascoli Theorem:

Let K be a compact subset of R? and let F be a collection of functions which

are continuous on K and have values in Rq. The following properties are equivalent.

1. The family F is uniformly bounded and equicontinuous on K.

2. Every sequence from F has a subsequence which is uniformly convergent on K.

The theorem allows us to define a sequence of approximate solutions of a

differential equation, and guarantees convergence of the approximate solutions to a

limit function of the sequence is equicontinuous and uniformly bounded.

Filippov Convergence Lemma:

Given a differential inclusion of the form x = F(x,t). If the inclusion

^"(x, t) is closed, bounded, convex, and uppersemicontinuous, the limit of any uni

formly convergent sequence of approximate solutions of the differential inclusion, is

also a solution of this inclusion, in the domain of convergence.

That the limit function satisfies the differential inclusion, is the main reason

for invoking the lemma.

As a prelude we compare and classify ordinary differential equations based

on the nature of the right hand sides. Consider a differential equation of the following

form.
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x = /(*,*) (5.18)

x(0) = x0 (5.19)

x € 3ftn t € 3ft+ (5.20)

/(x,t):3ftnx3ft+->£n (5.21)

(5.22)

The smoothness assumptions on /(x, £) determine the kind of differential

system referred to by (5.18).

The three major kinds of differential systems are

1. Cauchy Differential Systems: In the domain D of the (x,t) space,

• /(x, t) : 3ftn x 3ft+ -* 3ftn is continuous in x.

• f(x,t) : 3ftn x 3ft+ -• 3ftn is continuous in t

2. Caratheodory Differential Systems: In the domain D of the (x,t) space,

• /(x, t) : 3ftn x &+ -» &n is continuous in x.

• f(x, t) : 3ftn x 3ft+ —»- 3ftn is discontinuous in t on sets of zero measure.

3. Filippov Differential Systems: In the domain D of the (x,t) space,

• f(xi 0 : ^n x 3ft+ —• 3ftn is discontinuous in x and t on sets of zero measure.

We will henceforth refer to the assumptions made on the vector field /(x, t) : 3ftn x

3ft+ —• 3ftn by the assigned system names. For each kind of differential system, we

define the solution concept, and present further assumptions necessary to ensure the

local existence of the defined solution concept in a domain D ofthe (x, t) space.

5.2.1 Cauchy Differential Systems

In this subsection we will first state the Cauchy problem and proceed to de

fine the relevant solution concept. We will then state theequivalent integral equation
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to the Cauchy problem. Wewill then derive conditions for the existence of a solution
to the Cauchy problem.

* = /(M) (5.23)

*(0) = xQ (5.24)

x e 3ftn and t e 3ft+ (5.25)

/(x,t):3ftnx3ft+->3ftn (5.26)

(5.27)

where, in a domain D of the (x,t) space

• f(x,t)): 3ftn x 3ft+ -+ 3ftn is continuous in x.

• /(*,*)): 3ftn x 3ft+ -> 3ftn is continuous in t.

Cauchy Solution Concept: Acontinuous vector function s(t): 3ft+ -• 3ftn
is a solution ofthe Cauchy problem (5.23) iffor any (x,i) € D

ds(t),
-^U* =/(*(**),**) (5.28)

and s(0) = x0

We will now show the equivalence between solutions of the differential equa
tion (5.23) and the solutions of an integral equation, through the following proposi
tion.

Proposition 5.1 We may state the conditions for equivalence of the Integral and
Differential forms of the Cauchy problem as follows.

Given (Gl) A Cauchy differential system of the form (5.23).

If (II) Acontinuous function s(t) : 3ft+ -• 3ftn is asolution of the vector integral
equation

s(t) =x0 +JQf(s(T),T)dT (5.29)
where integration is in the sense of Riemann.
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Then (Tl) The continuous function s(t): 3ft+ —• 3ftn given by (5.29) is also a solution
of the Cauchy differential system given by (5.23).

Proof:

6 t> The proof is triviallyobvious using the Fundamental Theorem Of Cal

culus. Indeed as s(0) = x0, and ^ = f(s(t),t), it is clear that s(t) is a so
lution of the Cauchy differential system. Conversely, for all continuously differen-

tiable functions s(t) : 3ft+ -»• Dftn, the Fundamental Theorem Of Calculus shows that

s(t) =x(0) 4- Ji ^dr. If s(t) satisfies (5.23) then indeed s(t) =x0 4- Jj f(s(r), r)dr.
We obtain the integral equation (5.29). <l4fc

We will now prove the Peano-Existence Theorem for the local existence of

solutions to Cauchy differential systems.

Theorem 5.1 Local Existence OfSolutions To Cauchy Differential Systems

Given (Gl) A Cauchy differential system ofthe form (5.23).

If (II) The domain D ofcontinuity of/(x, t) is specified for
{(x,<) e 3ftn x 3ft+ : ||x - xo|| < Kx and t < Kt} where Kx € 3ft+ and
Kt e 3ft+.

(12) \\f(x,t)\\ < KfV(x,t) e D where Kf € 5?+.

Then (Tl) The Cauchy differential system (5.23) has atleast one solution s(t) : 3ft+ ->
3ftn for t < min(Ku J^-) satisfying the initial condition s(0) =x0.

Proof:

^ t> The method of proof will be used repeatedly in the solutions of the

Caratheodory and Filippov differential systems also.

The proof consists of the following steps.

Step 1. We will define a sequence of functions that form approximate solutions of the

integral equation equivalent to the Cauchy differential system.

Step 2. We will show that this sequence is uniformly bounded and equicontinuous.
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Step 3. Invoking the Arzela-Ascoli theorem, we will show that there exists a uniformly
convergent subsequence.

Step 4. We will now pass to the limit ofthis subsequence, andshow that the limitfunc

tion satisfies the integral equation, and hence the Cauchy differential system.

Step 1.

Set Tmin = rnin(Ku^). For t € [0,Tmin], we construct a sequence of
functions s*(t), i = 1,2,... in the following manner.

s{(t) = IoV0<K^ (5.30)
= Xo +C^ Ksi^T)dT V5=*i <*<Tmin (5.31)

i = 1,2,... (5.32)

The geometric interpretation of this formula is the method of constructing
Euler broken lines. Let us clarify by evaluating s*(t) for i = 1,2. For i = 1, we get

s\t) = xoV0<i<^p (5.33)
T •

=*o +jf" Xf(s\T),T)dTV^<t<Tmin (5.34)
Which is the initial condition itself over the entire interval. This indeed is the crudest

approximate solution, satisfying the initial condition. When i = 2, we get,

s2(t) = xoV0<*<^p (5.35)
2

=*°+jT^" /(52(r)'T)dT v"f1 -*-Tmin (5-36)
It follows that the functions s*(t) are defined for 0 < t < Tmin.
Step 2:

We show uniform boundedness as follows. For any integer i € Z+, we have,

\W(t)\\ < HxolKll/^/^^r^rll (5.37)
JO

< IWI +yo \\f(s'(r),T)\\dr (5.38)

< Iko|| + / K/dr (5.39)
< \\xo\\ + TminKf (5.40)

rf—Zaun. rp
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Hence the sequence of functions s*(t) i = 1,2,... is uniformly bounded.

We show equicontinuity as follows. For any i € Z+, for all ti € 3ft+ and

t2 € 3ft+ such that ^ < ti < t2 < Tmin we have

*%) = xo +J1' ' f(s((T),T)dT (5.41)

s%) = xo-r f2"^ f(s{(T),T)dT (5.42)
JO

\U%) - s%)\\ < fT^ ll/(*'(r),r)||«*r (5.43)
Jti — xrain

< Ks\t2-tx\ (5.44)

Therefore, given any e € 3ft+, it is possible to choose a 6 < ^- so that for
all i2,*i such that ||*2 - ti|| < 6, we can ensure, by (5.44) that \\s{(t2) - s'ftOH < e.
Equicontinuity is therefore shown for the family of functions s*(t) i = 1,2,...

Step 3:

Having shown the uniform boundedness, and equicontinuity of the sequence

of functions s'(t) i = 1,2,... on the closed interval [0,Tmtn], we invoke the Arzela-
Ascoli Theorem to guarantee the existence of a subsequence sik(t) k = 1,2,... that
is uniformly convergent in the interval [0,Tmt„].

We therefore claim that the sequence sik(t) k = 1,2,... converges to a

continuous function s(t) as i* —> oo.

Step 4:

Having passed to the limit,we now verify that the limit function s(t) satisfies
the integral equation (5.29)

We rewrite equation (5.31) in the form

sik(t) = x0VO<*<^ (5.45)
rg rmin rp

>'*(*) = x04-/",fc f(sHr),T)dr V^ <i<Tmtn (5.46)
Jo lk

= *o +£ f(sik(r),T)dr- J^ f(sik(T),T)dT (5.47)
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Now as ik -• oo, £/(*•'* (T),T)dr -• Jj /(5(r), r)dr because /(x,*) is uni
formly continuous. Furthermore the last term of (5.47) tends to zero because,

\\JQ ** /(*fc(r),T)<*r|| < JQik Kfdr (5.48)
< JST/^2. (5.49)
—• 0 as ik —^ oo (5.50)

We have thus shown the local existense of a solution to the Cauchy differ
ential system satisfying the specified initial condition. <1 A

5.2.2 Caratheodory Differential Systems

We will now develop the theory in a manner quite analogous to the develop

ment for Cauchy differential systems. We will formulate the problem, and prescribe

the solution concept. We will then state theequivalent integral equation, and proceed
to derive conditions for existence of solutions.

We will now state and prove the existense theorem for Caratheodory Differ
ential Systems of the following form.

x = f(x,t) (5.51)

x(t = 0) = x0 (5.52)

x e 3ftn t € 3ft+ (5.53)

/(x,*):3ftnx3ft+-£n (5.54)

(5.55)

where In the domain D of the (x, t) space,

• /(x, t): 3ftn x 3ft+ -> 3ftn is continuous in x € D.

• f(x, t) : 3ftn x 3ft+ —> 3ftn is discontinuous in t 6 D on sets of zero measure.

• f(x, t) : 3ftn x 3ft+ ->• 3ftn is measurable in t € D for each x 6 D
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• !l/(*,*)|| < Kf(t) V (x,i) € D where Kf(t) : 3ft+ -> 3ft is summable.

The aforementioned conditions on the function /(x, i) are also called Caratheodory
conditions.

We now formally define the solution of a Caratheodory differential system.

Caratheodory Solution Concept: An absolutely continuous vector func
tion s(t) : 3ft+ —• 3ftn is defined to be a Caratheodory solution of the Caratheodory
differential system (5.51) if for almost allteD,

^\t=t* =f(s(t*)1t*) (5.56)

Indeed, we require theCaratheodory solution to satisfy equations (5.51) only
in the domain of continuity the function /(x,i). Furthermore, the. solution concept
requires that the Caratheodory solution s(t) : 3ft+ -»- 3ftn be an absolutely continuous

function, instead of merely being continuous. Absolute continuity isneeded to ensure

the equivalence between the differential and integral formulations. Also absolute
continuity eliminates pathologies as ones proposed by Vitali [1], [21].

We now bring out the equivalence between Caratheodory solutions of the

differential system and equivalent integral equation formulations.

Proposition 5.2 We may state the conditions for equivalence of the Integral and
Differential forms of the Caratheodory problem asfollows.

Given (Gl) A Caratheodory differential system ofthe form (5.51).

If (II) An absolutely continuous function s(t) : 3ft+ -+ 3ft" is a solution of the
vector integral equation

s(t) =x0-rj f{s(r), r)dr (5.57)
where integration is in the sense of Lesbegue.

Then (Tl) The absolutely continuous function s(t) : 3ft+ -> 3ftn given by (5.57) is also
a Caratheodory solution of the Caratheodory differential system given by
(5.51).
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Proof:

4 t> The proof is a virtual repetition of the proof provided earlier in this

chapter for Cauchy differential systems, and will not be repeated here. <1 4*

We now present the conditions for existense (local) ofCaratheodory solutions
for differential systems of the form (5.51).

Theorem 5.2 Local Existence Of Solutions To Caratheodory Differential Systems

Given (Gl) A Caratheodory differential system ofthe form (5.51).

If (II) The domain D where /(x, t) is specified for almost all t
(x,t) 6 3ftn x £+ : ||x- x0|| < Kx and t < Kt

(12) /(x,t) : 3ftn x 3ft+ -> 3ftn is measurable in t € 3ft+ for all x € 3ftn

(13) \\f(x,t)\\ < Kf(t) V(x,t) <= D where Ks(t) : 3ft+ -+ 3ft is summable.

(14) There exists 0 < Ktmin < Kt such that

/ Kf(r)dT<Kx (5.58)
jo

Then (Tl) The differential system (5.51) has atleast one Caratheodory solution s(t) :
3ft+ -4 3ftn fort < min(Kt,Ktmin) satisfying the initial condition s(0) = xo.

Proof:

The proof consists of the following steps.

Step 1. We will define a sequence of functions that form approximate solutions of the

integral equationequivalent to the Caratheodory differential system. Note that

the solutions are Caratheodory solutions.

Step 2. We will show that this sequence of proposed Caratheodory solutions is both
uniformly bounded and equicontinuous.

Step 3. Invoking the Arzela-Ascoli theorem, we will show that there exists a uniformly
convergent subsequence ofCaratheodory solutions whose limit is the Caratheodory
solution to the Caratheodory differential system.
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Step 4. We will now pass to the limit of this subsequence, and show that the limit

function satisfies the integral equation, and hencethe Caratheodory differential

system.

First we note two properties that follow from the assumption (72) and (IS)
made on the vector function /(x, t). We will use these properties later in the proof.

The properties follow from elementary results in real analysis.

Property 1.

Given that f(x,t): 3ftn x 3ft+ -» 3ftn satisfies assumptions (II), (12) and (73),

and that the function s(t) : 3ft+ -• 3ftn is measurable for all 0 < t < Ku then the

composite function f(s(t),t): 3ftn x 3ft+ -* 3ftn is summable. (Proof is by invoking the
implicitness result in measure theory.)

Property 2.

The function JQKf(r)dT : 3ft+ -* 3ft is continuous on the closed interval

[0, Kt] and is therefore uniformly continuous. (Proof is by invoking the result that
continuous functions on compact metric spaces are uniformly continuous.)

Step 1.

Set Tmin = min(Kt, Ktmin)- For t G [0,Tmtn], we construct a sequence of

functions sx(t), i —1,2,... in the following manner.

*'(*) = soV0<*<^ (5.59)

= Xo +C^ /(5,(r)'T)dT V~P "*"Tmin (5-6o)
i = 1,2,... (5.61)

Using assumption (12), we note that the Lesbegue integral in (5.60) has
meaning.

It follows that the functions s*(t) i = 1,2,... are defined for 0 < t < Tmtn.

Step 2:

We show uniform boundedness as follows. For any integer i € Z+, we have,

IIAOII < l|xo|| + ||/ f(s'(T),r)dT\\ (5.62)

< INI+ 11/ I<l{r)dT\\ (5.63)
JO
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< ||*o|| + ff« (5.64)

Here we have made use of assumption (13) on the summability of the func

tion /0Tm<n ||;*7(t)||<2t with the assumption J0Tm'n ||A>(r)||dT <KKj €3ft+
Hence the sequence of functions s*(t) i = 1,2,... is uniformly bounded.

We show equicontinuity as follows. For any i e Z+, for all *i 6 3ft+ and
t2 € 3ft+ such that Zf> < ta < t2 < Tmin we have

**(*i) = *o+ P~^ f(AT),T)dr (5.65)

*%) = x0 +J^"3^f(si(T),T)dT (5.66)
lk*(*2-)-«'(*i)ll < IIjT^ Kf(T)*r\\. (5.67)

Therefore, given any c 6 3ft+, it must be possible to choose a 6 so that for all

t2,*i such that ||*2 - *i|| < 6, we can ensure, by (5.67) that ||5,'(<2) - a''(*i)|| < e. By
invoking Property 2, we see from (5.67) that this is indeed the case. Equicontinuity
is therefore shown for the family offunctions s*(t) i = 1,2,...

Step 3:

Having shown the uniform boundedness, and equicontinuity ofthe sequence
of functions s{(t) i = 1,2,... on the closed interval [0,Tmtn], we invoke the Arzela-
Ascoli Theorem to guarantee the existence of a subsequence sik(t) k = 1,2,... that
is uniformly convergent in the interval [0,Tmtn].

We therefore claim that the sequence sik(t) k = 1,2,... converges to an
absolutely continuous function s(t) as ik -* oo. Here we use anelementary result from

analysis that the limit ofa convergent sequence ofabsolutely continuous functions is
also absolutely continuous.

Step 4:

Having passed to thelimit, we now verify that the limit function s(t) satisfies
the integral equation (5.57)

We rewrite equation (5.60) in the form

sik(t) = xoV0<*<^ (5.68)
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f "mill

s'"(t) = x0+/ '* /(>(T),T)<fr V^<i<Tm,„ (5.69)
JO 2jfe

= xo+ f f(sik(T),r)dT- (~^ f(sHT),T)dT (5.70)
JO JO

Now as i* —• oo,'/0'/(5,fc(r),r)rfr —• $1 f(s(r),T)dr because /(x,i) is con

tinuous in x. Furthermore the last term of (5.70) tends to zero because,

II / * /(>(r),r)dr|| < / '* K,{r)dr (5.71)
JO Jo

-• 0 as ik -+ oo (5.72)

We have thus shown the local existense of a Caratheodory solution to the

differential system satisfying the specified initial condition. <l4*

5.2.3 Filippov Differential Systems

In this section we will develop solution concepts and conditions for exis

tence of solutions to differential equations with discontinuous right hand sides. Such

equations represent physical systems governed by switching behaviours.

Our method of analysis would be the following kind. Instead of describing

solutions for differential equations with discontinuous right hand sides, we will con

sider differential inclusion which include the said discontinuity as a special case. We

will then describe generalized solution concepts for these differential inclusions, and

will present conditions for existense of generalized solutions to differential inclusions.

We consider Filippov Differential Systems of the following form.

X = f(x,t) (5.73)

x(t = 0) = xo (5.74)

x € 5Rn t € ft+ (5.75)

/(x,t):»nxK+->9Jn (5.76)

(5.77)

where In the domain D of the (x, t) space,
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/(x, t): 3ftn x 3ft+ —• 3ftn is discontinuous in x 6 D on sets of zero measure,

/(x, t): 3ftn x 3ft+ —• 3ftn is discontinuous in t € D on sets of zero measure.

• /(x, t): 3ftn x 3ft+ -> 3ft" is measurable in t e D for each x eD

• ll/0M)ll < Kf(t) V (x,*) € D where Kf(t) : 3ft+ -» &is summable.

The aforementioned conditions on the function /(x, *)3ftn x ft+ -• 3ftn are
also called Filippov conditions.

We will now consider a differential inclusion that adequately describes the

discontinuous system. Though the function /(x, t): 3ftn x 3ft+ -> 3ftn ofequation (5.73)
is undefined on sets of zero measure, we choose instead to represent the function

/(x, t) : 3ftn x 3ft+ -+ 3ftn by a set valued map on such sets of zero measure. That

is to say, if for instance the function is undefined at a point (x*,**) € 3ftn x 3ft+, we
formally define the function to be set valued at the point (x*,t*). Indeed, depending
on the set-value attributed to the function at the point (x*,i*), we may show the
existense of certain generalized solutions to the system (5.73). To construct the
inclusion intelligently, we need some knowledge about the behaviour of the function

f(x,t) : 3ftn x 3ft+ -> 3ftn, in a neighbourhood of the point of discontinuity. To
justify the use of the inclusion, we must show that given any arbitrary e € 3ft+,
there exists a small enough 8 € 3ft+ neighbourhood of the point of discontinuity,
such that, the trajectories of the differential equation in this 8 neighbourhood are e

close to the solutions of the differential inclusion. Furthermore, as the size of the set

containing the point of discontinuity shrinks to zero, that is 8 -+ 0, the solutions of

the differential equation tend to the solution of the differential inclusion. That is to

say, that the trajectories of the differential equation weakly converge to the solution
of the differential inclusion. We will say more about this later.

Indeed, given adiscontinuous differential system ofthe form (5.73), henceon-
ward we will replace it (whenever possible) with a differential inclusion of the fol
lowing form.

* € F(x,t) (5.78)
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x(i = 0) = x0 (5.79)

x G3ftn t G3ft+ (5.80)

F{x, t): 3ftn x 3ft+ -» 5 € 3ftn (5.81)

(5.82)

where S is a set in 3ftn and in the domain D of the (x, t) space,

• the set valued map F(x,t): 3ftn x 3ft+ -• S G3ftn is upper semi-continuous.

• The ifan#e[,F(x, <)] G3ftn is compact and convex.

Comment 5.2.1 The definition ofthe inclusion F(x,t) is such that it is single-valued
in the domain of continuity ofthe function /(x, t)} indeed it is equal to /(x, t) in the
domains ofcontinuity, but is set valued in the domains of discontinuity of f(x,t).

Comment 5.2.2 It is important to note the properties of the set S G3ftn which will be
used for the existence of solutions.

We now formally define the solution of a Filippov differential system.

Filippov Solution Concept: An absolutely continuous vector function
s(t) : 3ft+ —• 3ftn is defined to be a Filippov solution ofthe Filippov differential system
(5.78) if for almost all t GD,

£l~6W),0 ' (MS)
where

P(s(t*),t*) = f(s(t*),t*) in the domains of continuity (5.84)

F(s(t*),t*) = fl fl convex-hull(B(x,8)-N,t) (5.85)
8>0 fiN=0

and 0^=0 denotes the intersection over all sets N of Lebesgue measure zero where
the functionf(x, t) is either undefined or discontinuous.

Comment 5.2.3 In the domains of continuity of f(x,t) : 3ftJ -> 3ftn, the inclusion
^"(x, t) is the same as the function and therefore the set operation G in equation
(6.165) must be replaced with the strict equality =
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The utility of the Filippov solution concept is that it is indeed the limit of

solutions to (5.73) averaged over neighbourhoods of diminishing size. The key point
to be understood is that the Filippov trajectories of the discontinuous system remain
close to the true trajectories.

As was evidenced earlier in the proofs of the Cauchy and Caratheodory
systems, the method of constructing solutions to differential equations begins by
constructing sequences of approximating solutions, and then ensuring that the ap
proximations converge in some sense. Indeed, it now becomes important to formalize

the notion ofwhat an acceptable definition of an approximate Filippov solution might
be. We now introduce some additional notation to help facilitate the definition.

We first denote the closed ^-neighborhood of a set, by M6.
The ^-neighborhood of a function is a set valued map, associating to each

point in the projection ofthe graph to the range, a closed set of size 8containing the
point. Formally stated, given a function f(x) : 3ftm -• 3ftn, the 8 - neighborhood of
the function is the set-valued map denoted by [f(x)]s :xin3ftm -• B(f(x),8) G3ftn

Example 5.2.1 Neighborhoods of Functions

Let p(x) : 3ftn -* 3ft be a real-valued function, then [p(x)]s : 3ftn -> [p(x) -
^> P(x) + 8] is a real, set-valued function, that maps every point 3ftn to an interval in
3ft of length 28.

Qualitatively, we wish to describe an approximate solution of a differential

inclusion in the following manner. Given an instant of time t* G3ft+, and a candidate
approximate solution s(t) : 3ft+ -*• 3ftn, defined almost everywhere, we consider two
closed sets.

ss(t*) G 3ftn (5.86)

(t*)S G &+ (5.87)

Note that [s(t*)]s

We formalize the notion ofan approximate solution in the following manner.
An absolutely continuous vector function s(t) : 3ft+ -> 3ftn, 8 G3ft+ is defined to be an
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approximate Filippov solution of the Filippov differential system (5.78) if for almost
all teD,

ds^|,=«. 6 F6(B(s(t*),6),B(t*,6)) (5.88)

where

jr6(B(s(t*),8)iB(tie,8)) = [/(*(**),**)]' in the domains of continuity (5.89)
^(£(s(<*), 8), B(t\8)) = [convex-hull f(B(s(t*), 8) - N, B(t\ 8))]s (5.90)

where the intersection over all sets N ofLebesgue measure zero where the functionf(x, t)
is either undefined or discontinuous.

We now state the theorem that guarantees the local existence of Filippov
solutions.

Theorem 5.3 Local Existence OfFilippov Solutions To Filippov Differential Systems

Given (Gl) A Filippov differential system of the form (5.78).

If (II) The domain D where /(x, t) is specified for almost all t
(x,i) G 3ftn x 3ft+ : ||x - x0|| < Kx andt < Kt

(12) f(x,t) : 3ftn x 3ft+ -♦ 3ftn is measurable in t G3ft+ for all x G3ftn

(13) \\f(x,t)\\ < Kf(t) V (x,i) G D where Kf(t) : 3ft+ -» & is summable.
Furthermore there exists Kf G3ft+ such that Kf > \K/(t)\ VteD

(14) The differential inclusion in (5.78), F(x,t): 3ftn x 3ft+ -• S G3ftn, where S
is a set in 3ftn and in the domain D of the (x,i) space satisfies the following
two assumptions.

* the set valued map F(x,t) : 3ftn x 3ft+ -> S G 3ftn is upper semi-
continuous.

* the set S G 3ftn is compact and convex.

Then (Tl) The differential system (5.78) has atleast one Filippov solution s(t) : 3ft+ ->
3ftn for t < min(Ku j^-) satisfying the initial condition s(0) = x0.
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Proof:

The proof consists of the following steps.

Step 1. We will define a sequence offunctions that form approximate Filippov solutions

to the Filippov differential system. We will use the method of Euler broken lines

to generate such approximate solutions.

Step 2. We will show that this sequence of approximate Filippov solutions is both uni

formly bounded and equicontinuous.

Step 3. Invoking the Arzela-Ascoli theorem, we will show that thereexists a uniformly

convergent subsequence of approximate Filippov solutions whose limit is a Fil

ippov solution to the Filipov differential system.

Step 4. We will now pass to the limit of this subsequence, and show that the limit

function is a solution of the inclusion and hence of the the Filippov differential

system.

Step 1:

Set Tmin = rnin(Kt, §*•). For t G [0,Tmtn], we construct a sequence of
functions s*(t), i = 1,2,... in the following manner. We consider a partitioning of the
interval [0,Tmtn] given by,

AH = ^22i« =l,2,... (5.91)
t) = jAH j = 0,2,...,i (5.92)

Note here that the size of the ith partition is given by AH and represents the the

finesness of the discretization of the interval. The step, or instant of time j, given a

step size or discretization AH is referred to by t). We now construct an Euler broken
line in the following manner.

s{(0) = x0 (5.93)

*••(*) = *•"(*}) +[*-3M (5-94)

i = l,2,... j = 0,2,...,i (5.96)
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To understand the constructed approximations, let us explicitly write out

the expressions for i = 1 and i = 2

The first(i = 1) function in the sequence sx(t) is constructed with 1 partition

of the interval [0,Tm,n], the length of the partition being A1* = Tmtn. Indeed the

interval over which the function sx(t) would be defined is [tl,t\] where

*o = 0 (5.97)

t\ = Tmin (5.98)

The first function in the sequence, s1^), is explicitly written as

5X(0) = x0 (5.99)

s\t) = ^(Oj + Ii-OK 0<t<Tmin (5.100)

vi G ^(3l(0),0) (5.101)

Comment 5.2.4 The the main difference between differential equations and inclusions

is that in equation (5.101) we would have strict equality = in the case of differential
equations.

The second (i = 2) function in the sequence, s2(t), is constructed with 2

partitions of the the interval [0,Tmtn], the length of each partitioned interval being

A2i =^f^. Indeed the two intervals over which the function s2(t) would be defined
are [i2,, tl] and [<?, t%] where

*o = ° (5.102)
T

~2
tl = Tmin (5.104)

tl = 2E» (5.103)

The second function in the sequence, s2(£), is explicitlywritten as

* (0) = x0 (5.105)

s2(t) =«2(0) +[<-0M0<*<^ (5.106)
= JPf) +[* "^fVl ^f <t<Tmin (5.107)

v2 G ^(32(0),0) , (5.108)

«?'e ^2(^),^) (5.109)
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Though we are yet to show that any of these functions so constructed are

approximate solutions of the differential inclusion, the flavour of solutionconstruction

using Euler broken lines is fairly obvious. However we will show later in the proof

that the functions s%(t) are indeed approximate solutions, (approximate in the sense

of our earlier definition of approximate Filippov solutions)
Step 2:

Now we note some properties of the functions s*(t) : 3ft+ -* 3ftn defined in
equations (5.93) - (5.96).

We show first that the graph of the functions s*(t) : 3ft+ -»• 3ftn is contained
in D(x, t). Indeed,

11^(0-^"(OJIb = 0 for *=0 (5.110)

lk'M-«'"(o)||a = lk(«5) +[*-*}H-^(o)||2- (5.111)
= II^)-«'(0)||2 +||[*-*}H||2 (5.112)
< K,\\i)-Q\\2 + Kf\\t-i)\\2 (5.113)

< Kf\\t-0\\2 (5.114)

< Kf\\t\\2 (5.115)

*>0 i = 1,2,... j = 0,2,...,i (5.116)

It is therefore obvious that s{(t): 3ft+ -> 3ftn GD(x,t).

We will now show uniform boundedness of the functions s*(t): 3ft+ -* 3ftn as
follows. For any i G Z+, and for all i, we have

\W(t)\\2 = \\x0\\2 for t =0 (5.117)

H*'"Wll2 = lk(<}) +[t-t}]«}||2 (5.118)

< H^ll2 +l|[^-4Hll2 (5.119)
< \\x0\\2 + KfTmin (5.120)

t>0 i = l,2,... 0 = l,2,...,i (5.121)

Consequently the functions s*(t) : 3ft+ -> 3ftn are uniformly bounded.

We will show equicontinuity as follows. For any i GZ+, given an e G3ft+, we

will show that there exists a positive constant 8 G3ft+ such that for any two instants of
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time*i < t2 G3ft+, satisfying the condition \t2-ti\<8 -• ||-s*(*2) —3*(*x)112 < c. We

first note that the two instants of time ti,t2 satisfy the following property. By virtue

of the construction of intervals of time A* outlined earlier there exists ji < i G Z+
such that

ii^< <i <bi +!]=*• (5.122)
0'i+m)^< h <y,+TO +i)Z=*l (S.123)

where m € Z+ may take integer values satisfying 0 < m < i —ji. Indeed, m = 0

corresponds to the two instants of time t^t2 lying in the same interval, and the case

when m = 1 corresponds to the instants *i, J2 lying in adjacent intervals of time. We

will say more about these two cases later. Now write

*2-*l = [*2"*i,+m] + [til+m-<il+m-i] + ... + [til+1-*l] (5.124)

At2) - S%) = [s^-S^+my +^+m)-^^)}*--. (5.125)

+—+[*tyji+i)-*,'(*i)]. (5.126)
\\*%) - S%)\\2 < \\S%) - S^+m)^+ WAtj^m) - -••fa+m-lJIla +(5.127)

+-'- + H^(*ii+i)-*''(*i)ll2 (5.128)

< ^/[[<2-<i1+m] + ^/[[ii1+m-*i1+m-l] + -" (5.129)

+ ... + ^/fe+i-*i] (5.130)

ll«'(*2)-«'(*i)||2 < Kflh-ti] (5.131)

Therefore, given any eG3ft+, we can choose a 8= ^- such that the following is true

[<2-*i] < 6 (5.132)

< ^- (5.133)
\W(t2)-s%)\\2 < KS[t2-tx] (5.134)

< KSjjT (5.135)

||^'(/2)-^i)||2 < e (5.136)

Equicontinuity is therefore shown by equations (5.132) and (5.136).
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To clarify the proof, we will illustrate the cases when tx,t2 lie in the same

interval and the case when the instants ti,t2 lie in adjacent intervals.

Indeed, when we have m = 0 and the two instants of time lie in the same

interval, we have.

Ji^< ti <[7x +l]^ (5.137)
z 2

(ji +0)^< t2 <(j1 +0+l)^ (5.138)
z z

Ah) = ^iJ +fc-t^ (5.139)

*%) = '•"(£)+ [*2-*iHl (5.140)
\\At2) - Ah)\\2 < Hfe-tiK (5.141)

< Kf[t2 - ti] (5.142)

Equicontinuity is trivially obvious. Similarly, for the case when m = 1, we have

i,2=t< tt <0'l +l)^ii (5.143)
z z

(ii +l)^< t2 <ft +1+1)5=21 (5.144)
0<m<i-J! (5.145)

[*2-*i] = [*2-*i1+i] + fe1+m-ti] (5.146)

Ah)-3%) = **(t0 - ^(t^+i) +^(4+1) - **(*2) (5.147)
\\s%) - Ah)\\2 < \\Ah)-At)l+i)\\2 + \\Ati+i)~Ati)\\2 (5.148)

< Kt[t2-t)l+1]-rKt[t)1+1-ti] (5.149)

< Kt[t2-ti] (5.150)

Equicontinuity is hence shown. •

We will now show that functions s*(t): 3ft+ -+ 3ftn are indeed A* approximate
solutions of the differential inclusion (5.78). Indeed, it would suffice to show that

ds{
-^|,=<* Gr*(B(A**), A1), B(t\ A')) (5.151)
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From the definition of the functions s*(t): 3ft+ -» 3ftn in (5.95) it is clear that

|̂«=t* G?(**$),$) |**-*}|<A<
we only strengthen the inclusion by averaging over a neighborhood

6 ^(B(«'(t*),A'),B(i*,A'))

we strengthen the inclusion further by

G ^i(B(si(t*)iA%B(t*,Ai))
i = 1,2,... ;=0,2,...,i

Hence the s*(t) : 3ft+ -• 3ftn in (5.95) are indeed A* approximate solutions of the
differential inclusion (5.78).

Step 3:

Having shown the uniform boundedness, and equicontinuity of the sequence

of functions s'(t) i = 1,2,... on the closed interval [0,Tmt„], we invoke the Arzela-
Ascoli Theorem to guarantee the existence of a subsequence sik(t) k = 1,2,... that
is uniformly convergent in the interval [0, Tmtn].

We therefore claim that the sequence sik(t) k = 1,2,... converges to an

absolutely continuous function s(t) as z* -* oo. Here we usean elementary result from

analysis that the limit of a convergent sequence of absolutely continuous functions is
also absolutely continuous.

Step 4:

As the inclusion satisfies theassumption (J4) ofthe theorem, we now invoke
the Filippov lemma to conclude that the limit function s*(t) -*• s(t) as A* -• 0 also
satisfies the differential inclusion. This concludes the proof of the theorem. <J 4*

5,3 Design Of Sliding Mode Controls

In this section, we specialize thepreceding theory toa special class ofsystems
of the following form.

x = /+(x) for [x : s(x) > 0] (5.152)
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= /_(x) for [x : s(x) < 0] (5.153)

where x G3ft", and f(x) : 3ft" -> 3ft" and s(x): 3ft" -> 3ft. Note that S = {x : s(x) = 0}
is a manifold of dimension n —1. This manifold S is called the sliding manifold or

s/idin^ surface. The dynamics of the system on this manifold S is called the sliding
dynamics or sliding modes of the system. The design of the manifold S is such that it

is globally attractive, and trajectories commencing from arbitrary initial conditions

reach S infinite time. Furthermore, thedynamics on S achieves thecontrol objective.

Local existence of solutions is verified by modelling the system represented

by equations (5.152) - (5.153) by the appropriate differential inclusions and verify
ing whether the inclusion satisfies the hypotheses of the theorem concerning local
existence of Filippov solutions.

Uniqueness, in the sense of the Filippov solution is shown if either ^|^/+(x) <
0or ^/-M > 0. This is shown in [30], [15], [14]. The physical interpretation of
these conditions is simply that the trajectories of the system are always directed
towards 5, thus rendering it attractive.

Example 5.3.1

x = —ksgn[x] (5.154)

sgn[x] = 1 ifx > 0 (5.155)

sgn[x] = -1 ifx < 0 (5.156)

Modelling the system (5.154) by a simple differential inclusion, we rewrite (5.154) as

x GF(x) (5.157)

where

F(x) = sgn[x] ifx ^ 0 (5.158)

F(x) G [-l,l]z/x = 0 (5.159)

The inclusion in (5.157) is closed, bounded, convex and uppersemicontinuous and
therefore by the theorem on existence of Filippov solutions, Filippov solutions exist
for this system.
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The sliding modes of a system, defined to be the Filippov solutions to the

system on the manifold 5, are calculated by performing Filippov averaging, which

is a convex combination of dynamics on either side of the manifold S. Indeed, by

dynamics on either side of the manifold 5, we merely refer to /+(x) and /_(x). The

simple extension of the notion of sliding manifolds to non-autonomous systems is

shown in [30].

While the theory ofexistense ofsolutions has been developed for general non

linear systems with discontinuous controls, the methodology to design sliding mode

controls to achieve stabilization or tracking is well understood only for a restricted

class of systems. In the following sections, we will present the theory for Linear Time

Invariant Systems - SISO and MIMO.

Comment 5.3.1 The design of sliding surfaces for linearizable nonlinear systems, fol

lows exactly the design of sliding controls for linear time invariant systems. The only

difference is that the controls are designed using the transformed variables.

5.3.1 Sliding Mode Design For LTI Systems

Consider linear time invariant systems represented by the following equa
tions

x = Ax + Bu (5.160)

where x G 3ft", A G 3ft"x", B G3ftroXn and the controls u G3ftm. We will now prescribe

the sliding mode controller design procedure in a sequence of steps.

Step 1.

Check to see if the system is completely controllable. If the system is not

completely controllable, a sliding mode controller cannot be designed.

Step 2.

If the system is completely controllable, find a linear transformation of the

state that recasts the system in the controllable canonical form. That is find a trans

formation

x = Tx Te 3ft"x" (5.161)



such that the state equations are of the form

Xi

x,

Step 3.

We define S(x) : 3ft"

0 I--

0 0

&i b2

3ft as

0 1

••• bn

+ u

S(x) = aiXi -f a2x2 -\ han-ixn-i + xn
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(5.162)

(5.163)

where the coefficients a* %= 1,2,... ,n - 1 of (5.163) are such that the polynomial

S(x) is a Hurwitz polynomial. Furthermore, note that S = 0 is an n - 1 dimensional

manifold, called the sliding surface.

Indeed now choose the control input u of (??) to be

u(t) = -6!X! - b2x2 bnxn - vt(t) (5.164)

v(t) = -axx2 —a2xz an-i^n - ksgn[S(x)] (5.165)

Choice of control u enables us to rewrite system (??) in the form

Xi = x2 (5.166)

X2 = X3 (5.167)

Xn-1 = —GiXi — 02^2 ~ * Ctn-lXn-l + •S'(x) (5.168)

S(x) = —ksgn[s(x)] (5.169)

Indeedutilizingthe theorems developed in the preceding section it is easy to show that

Filippov solutions exist, and that S(x) = 0 is reached in finite time from arbitrary

initial conditions. Furthermore on the n -1 dimensional manifold 5 = 0, the reduced

order dynamics is exponentially stable. Consequently global exponential stability of
the system is shown.

The choice of discontinuous input induces chatter in the system. To reduce

the chatter, we utilize various regularizations and smoothings of the discontinuous
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sgn function. The common smoothing technique is the use of the saturation function,

which is presented in [30].

We now present a choice of continuous control input, that enables us to reach

the sliding surface 5 = 0 in finite time. Indeed, consider the control given by

u(t) = —bixi —b2x2 bnxn —vi(t) (5.170)

v(t) = —aix2 —a2x3 o,n-\xn —k\S(x)\m sgn[S(x)] (5.171)

m > 1 (5.172)

Such a choice of control u enables us to recast the system equations in the

form

xi = x2 (5.173)

x2 = x3 (5.174)

xn_i = -aixi - a2x2 an_ixn_i + S(x) (5.175)

5(x) = -k\S(x)\^sgn[s(x)] (5.176)

Indeed utilizing the theorems developed in the preceding section it is easy to show

that Filippov solutions exist, and that the n —1 dimensional manifold 5(x) = 0 is

reached in finite time. Furthermore on the n—1 dimensional manifold given by 5 = 0,

we see that the reduced order dynamics is exponentially stable. Consequently global

exponential stability of the system is shown. This control law u is interesting in that

it is continuous, but not differentiable.

Comment 5.3.2 The disturbance rejection properties of the discontinuous control law

are significantly better than that of the continuous control law. This indeed is the

design tradeoff involved in designing continuous control laws.

Comment 5.3.3 The extension of the sliding mode control techniqes to controllable

MIMO systems that are decouplable is trivial. Once the system equations are trans

formed into decoupled systems, each of which is in the controllable canonical form, we

apply the design method outlined earlier to design sliding surfaces for the decoupled

system. Note however that sliding occurs not at the individual surfaces, but at the

intersection of all these surfaces.
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In the following section, we will present a class of non-conventional discon

tinuous control laws for a class of mechanical systems.

5.3.2 Novel Discontinuous Control Laws for Mechanical Sys

tems

Many mechanical systems are described by differential equations which are

essentially of the second order. We will now describe a set of control laws for such

systems, the control objective being regulation to the origin. While the extension

of these control laws to systems of higher dimensions is non-trivial, these laws by
themselves are quite important from an applications point of view. They provide the
engineer with an additional set of nonlinear tools to control mechanical systems. In

this section, we will concern ourselves with planar dynamical systems of the form.

xi = x2 (5.177)

x2 = u (5.178)

The various control laws that ensure finite time stabilization for the system
(6.316) - (6.317) are as follows.

\ -sgn[x2] if \xi +afeai| =0
^winding = —kisgn[xi] —k2sgn[x2] h > k2 > 0 (5.180)

^nested = —k2sgn[x2 —kisgn[x\^ (5.181)

^switching = —k2sgn[x2 + ki\xi\™$gn[xi]] k2 is large (5.182)

We will now show that for all the aforementioned control laws the states of

the system are regulated to the origin in finite time.

We will examine each control law briefly, show the relevant properties and
present a phase portrait of the system subjected to the control law for a variety of
initial conditions.

Optimal Control Viewpoint
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Consider the minimumtime optimal control problem with the functional to

be minimized, given by

J=Jfdt (5.183)
Using standard method of optimal control, we write down the Hamiltonian function

.ff(x,u,A,£) as

H(x, u,A, t) = 1+ Aix2 + \2u(t) (5.184)

Indeed mere inspection of equation reveals that the control u(t) that minimizes the
Hamiltonian is given by

u(t) = -sgn[X2]umax (5.185)

where umax is the maximum permissible value of control. Without loss of generality,
we will assume that umax = 1.

where Ai and A2 are the co-state variables. The co-state equations are given
by

Ai = 0 (5.186)

A2 = -Ai (5.187)

Integrating the co-state equations yields

X2(t) = -A^O)* - A2(0) (5.188)

Therefore the optimal control is given as

« = a0n[-Ai(O)t-A2(O)] (5.189)

The control can assume only two values +1 or —1. When u = +1, we integrate the
state equations to obtain

x2(t) = *+ x2(0) (5.190)
t2

*i(') = 2" +a2(0)* +X!(0) (5.191)
Eliminating t we obtain (5.192)
x\ ,^ x?(0)*i = f+ *i(0)--^ (5.193)
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Similarly, when u = —1, integrating the state equations we obtain

x2(t) = -t + x2(0) (5.194)
t2

xi(t) = —- + x2(0)t + Xi(0) (5.195)

Eliminating t we obtain (5.196)
Xo , * x?(0)xi = -f+X!(0)-^ (5.197)

These curves describe a family of parabolas, whose switching curve may be written
as

5(x,*) =x1 +̂ jpi (5.198)
In terms of the switching curve, the control u^timai may be written as

_ -,.n.t +abl] if |Sl +afal| >o
^optimal = < , . (5.199)1 • r ' if|Xl +:Edpl|=()

{-sgn[xi

-sgn[x2] ..,-», 2

The phase portrait of trajectories subject to the optimal control uoptimai is
given below. Note the trajectories converging to the switching curve, which is non

linear, (while the switching curve in conventional sliding mode systems is linear)The
chosen control gains are

*i = 1 (5.200)

k2 = 2 (5.201)

Winding Algorithm

The winding algorithm was introduced by [22] and makes use of continuous

switching between the surfaces xi = 0 and x2 = 0 to reach the origin. The interesting
feature of this control technique is that the control has two switches. One switch is

used to change the direction, and the other is used to change the magnitude. By

repeatedly switching between the surfaces xi = 0 and x2 = 0, we wind closer to the
origin.

Let us first prove the stability and finite time stabilization of the algorithm.
To show stability, we use the extended Lyapunov theorem, proofs for which may be
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Figure 5,1: Finite Time Stabilization With Optimal Control

found in [1]. The theorem is primarily used to conclude weak-stability of differen
tial inclusions by investigating generalized gradients of non-differentiable Lyapunov
functions. A brief statement of the theorem would be as follows.

Given a differential inclusion x € F(x, t) and a nondifferentiable Lyapunov
function V(x). Iffor every element v in the generalized gradient ofV, there exists
atleast one element f € F(x,t), such that LFV < 0, then the zero-solution is weakly
asymptotically stable. Indeed, weak asymptotic stability is the best we could hope
for when dealing with set-valued differential inclusions.

Now consider the system (6.316) - (6.317) subject to the controls u^nding-
The system equations are

Xi = x2

x2 = —kisgn[xi] - k2sgn[x2]

Consider a candidate Lyapunov function

V=kl +
x2

2kx

(5.202)

(5.203)

(5.204)
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The derivative for xi, x2 ^ 0 is given by

V=-^ (5.205)
< 0 (5.206)

Therefore x2 —> 0, and the reduced dynamics is such that Xi —*• 0. However, when

xi = 0, it is clear that wehave to investigate the properties of the generalized gradient

ofV. However, it is obvious that when xx = 0, for every element v of the generalized
gradient ofV, (which inthis case happens to beany real number in(-1,1)) there exists

an element of the inclusion F(x, t) (indeed, choose / = v) such that the generalized
gradient ofV along the flow oftheinclusion F(x, t) isnegative definite. The conditions

of the generalized Lyapunov theorem are satisfied, and hence the result.

Finite time is shown by considering the state equations of the planar dy

namical system in the various quadrants. Indeed, if the portrait of the system were

to be drawn with Xi along the x axis and x2 along the y axis, we would note the
following.

Xi = ± 2 in the first and third quadrants (5.207)
«?1 T K2

X2 = ^1—^~TT m *^e second an<i fourth quadrants (5.208)
Ki — K2

Every instance the trajectory moves from the first quadrant through the fourth quad

rant to hit the y axis, we see a contraction occurring in the magnitude of x2 in the
following manner.

*&».) =irt/^ (5-209)
From the third quadrant through the second to strike the y axis again, we see the
following contraction.

^fa) =!j^*2('i) (5.210)
The state trajectory therefore winds to the origin.

The phase portrait of the planar dynamical system subject to the winding
algorithm is illustrated in below. Note the very interesting way in which the state
trajectories wind to the origin.
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Figure 5.2: Finite Time Stabilization With The Winding Algorithm

The values of chosen control gains are

kx = 2

k2 = 1
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(5.211)

(5.212)

Nested Switching Control

Nested switching controls work well for planar dynamical systems. The ba

sic approach is to permit chatter about the dual sliding surfaces x\ —0 and x2 = 0. It

is to be noted that chatter for multiple sliding surfaces is the equivalent of limit-cycle

like behaviour. Consequently, by utilizing multiple sliding surfaces, and nondiffer-

entiable controls, we are willing to tolerate limit-cycle like behavious at the origin.

Indeed, the problems associated with eliminating chatter in one-dimensional systems

naturally extend to the higher order systems also. The use of saturation functions to

perform nested switching is an extension of the idea of using saturation functions in

one-dimensional systems, to many dimensions. The basic control technique is well un

derstood in considering the following non-differentiable Lyapunov function. Consider

the system (6.316)-(6.317) subject to the nested switching control law given by

X\ = x2 (5.213)
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x2 = -k2sgn[x2-rkisgn[xi] (5.214)

Now consider the following nondifferentiable Lyapunov function

V= [*2 +y*ll]2 (5.215)
V = [x2 + kxsgn[xi]][x2 +0]if |xj| > 0 (5.216)

= -k2\x2-\-kxsgn[xi]\ (5.217)

< 0 (5.218)

Therefore x2 -• -kisgnfa]. Indeed, it is easy to see that this happens in finite time.
As in finite time x2 = -kisgn[xi], now consider the Lyapunov function

x2
Vi = y (5.219)
VI = x*x2 (5.220)

= Xi[-kisgn[xi]] infinite time (5.221)

< *i|*i| (5.222)

< 0 (5.223)

It is clear that xx -• 0 in finite time. However, when Xi = 0, x2 6 [-fci,fci], and
is not equal to 0. This is where chatter commences, and the system limit cycles
between the surfaces xi = 0 and x2 = kisgn[xi\. Such limit cycling behaviour is
present as the gain kx is not slowly reduced as xx -• 0. Indeed if the multiplicand of
sgn[xi] was to decrease in magnitude and finally equal 0when xi = 0, we can expect
x2 to also be equal to 0 without chatter. This indeed is the principle behind using
saturation functions as opposed to sgn functions in nested control. We will now show

an extension of this method, without using saturation functions.

The phase plot shown below clearly shows the behaviour of the system sub
ject to nested control. The values ofchosen gains are

h = 0.5 (5.224)

h = 5 (5.225)

Switching Control
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Figure 5.3: Finite Time Stabilization Using Nested Control

We now try to eliminate the problem of limit cycling between switching
surfaces that was mentioned earlier. We do this using the switching control law
mentioned earlier which is of the form.

^switching = -k2sgn[x2 + ki\xi\™ sgn[xi\] (5.226)

Denote S = x2+ki\xi\™Sgn[xi]. Note that S is not differentiable at xi = 0. However,
almost everywhere, the derivative of S may be written as

. S^-hsgnW +h-^-j-
xi

(5.227)

By choosing a large value of k2l we hope to swamp the term Arx—^L-n. Indeed, only
in cases when this is possible, it is possible to conclude that

x2 = —&!|xi|»»s<7n[xi] (5.228)

And the conclusions of the previous section follow, without the limit cycle behaviour.

The phase portrait shown below illustrates the properties of the control law.
The values of chosen gains are

*i = 0.5 (5.229)
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Figure 5.4: Finite Time Stabilization With Switching Control

k2 = 5 (5.230)

m = 2 (5.231)

For the same values of control gains, it is possible to choose a higher order
fractional index, and the resulting phase portrait is shown below.
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Chapter 6

New Applications Of Sliding

Mode Theory
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6.1 Introduction

In this chapter we will present new and varied applications of sliding mode
control theory. By applications, we refer to the solution of certain theoretical problems
using the technique of sliding modes, as opposed to the control of a physical system
using sliding mode control theory. We will use sliding mode theory in the solution
of certain classes of problems in the areas of nonlinear identification, synchronous
control, lyapunov control, and in the construction ofobservers. We will conclude this
chapter with a conjecture that opens an interesting avenue for research in control
using sliding modes.

The organization of this chapter is as follows. Section 1 presents the new
theory of sliding mode, identifiers. We attempt to identify bounded but unknown
parameters using a sliding mode identifier. Section 2 presents results in synchronous
sliding modes. Section 3 presents the lyapunov control of certain benchmark prob
lems, and section 4 presents the extension of sliding mode theory to solving some
problems in sliding mode observers. Finally we present an interesting conjecture, and
its verification using simulation in section 5. Each section is self contained, and has
simple examples and simulation plots to elucidate the theory. Each section concludes
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with a critical appraisal of the presented methodology, possible advantages to the
technique and the implementation difficulties associated with it. We also present the
scope for future extensions of the technique.

6.2 Sliding Mode Identifiers

In previous chapters we identified matching conditions to be satisfied by
•perturbations to ensure attainment of the control objective. In this chapter we will

present methods to identify unknown parameters in a nonlinear system. We view

the process of controlling a system by identifying unknown parameters as a way of
aysmptotically enforcing the matching conditions.

In this chapter we present a novel identifier that guarantees exponentially
convergent identification for aclass ofnonlinear systems affine in theunknown param
eters.The identifier uses variable structure control methodology to ensure exponential

reduction ofthe parameter identification error. We show existence ofgeneralized Fil-
ippov solutions for the identifier equations and show parameter convergence using
standard Fillipov averaging techniques and the method of equivalent control.

Throughout this section, we assume that unknown parameters of the con

sidered nonlinear systems are bounded, and the bounds are known. Given full state
information of a nonlinear plant, the identifier then uses this state information, and
the bounds on unknown parameters to ensure exponential convergence of the identi

fied parameters. We also note here that by exponential convergence of the identified
parameter, we refer to the average value of the parameter as prescribed by the gen
eralized Filippov solution to the discontinuous differential system.

We present theoretical results for general nonlinear systems and present
simulation results for a simple scalar example to illustrate the theory.
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6.2.1 Scalar Nonlinear Systems

To develop the intution embedded in the construction of the identifier, it is

useful to consider a simple scalar case. Consider the following scalar system.

x = ef{x)+g(x)u (6.1)

where x € 3fc, 9 € 3fc and is unknown, |0| < k9, u € &and f(x),g(x) &-+&.

Comment 6.2.1 The unknown parameter enters the system equation affinely.

This simple system (6.1) could represent the velocity dynamics of a mass-

spring-damper system with an unknown nonlinear damping coefficient. We will say
more about this example later.

The statement of the problem is as follows. Given the values of the state
variable x € $t, construct anonlinear identifier that adaptively identifies the parameter
0 € 3ft so that the estimation error goes to zero exponentially.

To achieve this objective, we construct an identifier of the following form

x = 5/(ar)+flf(a;)« +ui (6.2)

9 = wi (6.3)

vi = 2ke\f(x)\sgn[x] (6.4)

ii>i = hsgn[x]sgn[f(x)] (6.5)

x = x-x (6.6)

*i > 0 (6.7)

Comment 6.2.2 The value oftheta used in equation (6.2) is given as [9 mod kg]

In this section and throughout this chapter, we will define the function
sgn[(-)] : 3? -> [-1,1] as follows

**»[(•)] =j£jp7l(-)l>0 (6.8)
W»[(0] € [-l,l]i/|(.)| = 0 (6.9)
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Comment 6.2.3 Such a definition ofthe function sgn[(-)]: 3ft —> [—1,1] merely asserts
that the function is single valued when the argument is nonzero, but is set-valued when
the argument is equal to zero.

Subtracting the plant equation (6.321) and theidentifier equation (6.2), and
using the identifier control inputs specified in (6.4) - (6.5) the error equations are
written as

x = 9f(x)-2ke\f(x)\sgn[x] (6.10)

9 = -kxsgn[x)sgn[f{x)) (6.11)

x = x-x (6.12)

9 = 9-9 (6.13)

We will concern ourselves with the state estimation error, and parameter

estimation error dynamics henceforth. We will show existence ofgeneralized Filippov

solutions, and parameter convergence to true values using this state"estimation er

ror, and parameter estimation error dynamics, We now state the main result of this

section.

Theorem 6.1 Existence of trajectories for identifier and state estimation error dy
namics, stability of state estimation error dynamics, and exponential convergence of
identified parameters to their true values in the sense of Filippov.

Given (Gl) A nonlinear system ofthe form (6.321)

(G2) A nonlinear identifier of the form (6.2) resulting in state estimation and
parameter identification error dynamics of the form (6.10) - (6.11)

If (II) \9\ < ke

(12) \f(x)\ ^ 0 along the system trajectories.

(13) In any compact region D, f(x) is bounded. That is there exists kf =
sup[f(x)] Vi€/?.

Then (Tl) Filippov solutions exist for the system (6.10) - (6.11)
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(T2) The surface x = 0 is attractive.

(T3) The sliding dynamics on the surfaces x = 0 are such that the parame-
A

ter estimate 9 converges to the true value 9 exponentially in the sense of

Filippov.

Proof: A > We will prove the theorem in three steps. First we show ex

istence of solutions, then we show the existence of attractive sliding surfaces, and

finally we show parameter convergence to true values.

Step 1: Existence Of Filippov-Solutions

In a compact domain D of the (x, x, 9) space, the righthandside of equations

(6.10) - (6.11) can be modelled by a differential inclusions of the following form

'x e fx(x,x,9) (6.14)

9 € fefaxj) (6.15)

where the inclusions Fx(x,x,9) and Fo{x,x,9) are defined to be-

F*(x,x,S) = 9f(x)-2k9\f{x)\sgn[x] ifx^O (6.16)

G [-Zk9kf^kekf] ifx = 0 (6.17)

^(x,x,<9) = -hsgnlxlsgnlfix)] if x ± 0 (6.18)

e [-k^kt] ifx = 0 (6.19)

where kf is supremum of the function f(x) : 3ft -• 3ft over all values of a; G D. The

inclusions ^(ar, x, 9) and ^(a;, 5,9) are

• closed, convex, bounded and upper-semicontinuous.

Therefore, invoking the theorem on existense of Filippov-solutions we show

that solutions exist for the system represented by equations (6.10) and (6.11).
Step 2: Attractivity Of Sliding Surface

We will now show that the surface x = 0 is attractive. Consider a candidate

Lyapunov function V(x): 3ft —• 3ft+ given by

ar

y = j (6.20)
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Differentiating (6.20) along the flow of (6.10), we get

V = x9f(x)-2ke\f(x)\\x\ (6.21)

< -\x\[2h\f(x)\-9f(x)] (6.22)

< 0 (6.23)

We have used the fact that 2A*|/(a:)| > 0/(x), and that f(x) ^ 0 along the system

trajectories to conclude that V is negative definite and therefore the surface x = 0 is

globally attractive.

Furthermore, as the term 2k9\f(x)\ > 9f{x), the surface x = 0 is attained

in finite time and sliding occurs on the surface x = 0.

Step 3: Parameter Convergence

We will prove convergence ofthe identified parameter to its true value using
two methods ofproof. Thefirst method will be the method ofFilippov averaging and
the second method will be using the Equivalent control method.

Proof By Filippov Averaging

The sliding mode on the surface x = 0 may be estimated to be a convex

combination of the the dynamics on either side of the surface. This indeed is the

principle behind the Filippov averaging technique. The averaged dynamics of the

estimation error on the surface 5 = 0 takes the following form.

Average = l[9f{x) - 2k9\f{X)\] +[l - l][9f(x) +2^|/(x)|] (6.24)
Average = 7Mi^ti[/(*)]] + [1 - 7Pi^n[/(a:)]] (6.25)

where 0 < 7 < 1. But as xaverage = 0 in finite time, set the left hand side ofequation
(6.24) to 0 and solve for 7.

Average = l[9f(x) - 2k9\f{x)\] + [1 - <y][9f(x) +2k6\f(x)\] (6.26)
0 = 7[^7W-2fe|/(a:)|] + [l-7][^7(a;)+2 |̂/(a;)|] (6.27)

9sgn[f(x)] 1



126

Comment 6.2.4 It is obvious from (6.28) that 0 < 7 < 1.

To find the sliding dynamics of 9average along the surface x = 0, substitute

the value of7 obtained in equation (6.28) in equation (6.25) to obtain,

Average = 7["W*[/(x)]] +[l - 7Pl^[/(*)]] (6.29)
= -27[fcl55fn[/(x)]] + hsgnlfix)] (6.30)

= -2klSgn[f(x)][^^+I] +klSgn[f(x)] (6.31)
9average = -gF* (6.32)

Comment 6.2.5 Here we have made use ofthe fact that sgn\f(x)]sgn[f(x)] = 1. This
is true only as long as f(x) ^ 0. Hence we needed the assumption that f(x) ^ 0 along
the trajectories of the system.

It is clear from equation (6.32) that theaveraged dynamics ofthe estimation
A

error 9 is such that the parameter estimation error is exponentially diminishing in
the sense of Lyapunov.

Proof By Equivalent Control

The equivalent control method finds the average symbolic value of the func

tion sgn[x] : 3ft —• [—1,1] necessary to ensure the invariance of the sliding surface.
This value of sgn[x] : 3ft -+ [-1,1] is used to find the reduced order dynamics on the
invariant sliding surface.

Using this method, we set the lefthandside of equation (6.10) to 0, and find
the value of sgn[x] : 3ft -+ [-1,1] necessary to ensure that x = 0 is invariant. That is

x = 9f{x)-2k9\f(x)\sgn[x] (6.33)

0 = 9f(x)-2k9\f{x)\sgn[x] (6.34)

s9n[x] = —§8gnlf(x)] (6.35)
SB
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Substituting the value of s<7n[£] : 3ft —* [—1,1] from equation (6.35) into

(6.11), we get,

9 = —k\sgn[x\sgn[f(x)\ (6.36)

kl-9 (6.37)
2k9

Indeed the average dynamics of the estimation error is exponentially con

vergent to 0 in the sense of Lyapunov.

This concludes the proof of the theorem. <14fc

Comment 6.2.6 It is interesting to note that we require that the term \f{x)\ ^ 0 along
the solution trajectories. It is clear that such a requirement is not unreasonable as

there is no necessity for identification in the regions ofthe state space when \f(x)\ = 0
/

The simplicity of the identifier is obvious from the equations (6.2) - (6.7).

It is very simple to implement, but at the same time gives exponential parameter

convergence.

Example 6.2.1 Identifying Friction Coefficient

Consider a simple mechanical system represented by the following dynamical
equations.

X! = x2 (6.38)

x2 = fisgn[x2]+f (6.39)

where x G3ft2, y. G3ft, is unknown but bounded with a known bound \fi\ < fcM G3ft+,
/ G 3ft is the mechanical force which is the control input to the system. The goal of

identification is to find the nonlinear damping coefficient \l of the system.

We construct a sliding mode identifier for this system of the following form.

x2 = fisgn[x2] + / + t>i (6.40)

p. = wx (6.41)

vi = 2ktisgn[x2] (6.42)
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Wi = kisgn[x2]sgn[x2]

x2 = x2 — x2

h > 0
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(6.43)

(6.44)

(6.45)

The convergence of the estimated parameter \i to the true value \i is easily

shown invoking Theorem 5.1.

Simulation of the system show the interesting features of the identifier. First

we note that the state estimation error goes to zero in finite time, as predicted. Then

the identified parameter converges to its true value, and the parameter identification

error gradually goes to zero. But as Filippov solutions are only solutions averaged

over neighbourhoods of diminishing size, the average value of the parameter error is

zero, though the actual value chatters about its true value.

6.2.2 Vector Nonlinear Systems - Special Structure

It is now possible to extend the identifier equations to more general systems.

As a first extension, consider the system of n G 3ft+ equations containing unknown

but bounded, affine parameters 9{ i = 1,2,...,n The special structure endowed to



129

these systems is each state equation contains utmost one unknown parameter. That

is, consider systems of the following form

m

xi = 91f1(x) + Y!l9ij(x)ui (6.46)

TO

x2 = 92f2(x) -r^2g2j(x)ui (6.47)
i=i

: : : (6.48)
m

xn = 9nfn(x) + J29nj(x)ui (6.49)
i=i

where, x G3ftn, and 0; G3ft are unknown, but constant, and bounded. That-is to say,

\9i\ < k9i and the bounds, k9i are known. The functions fi(x),gki : 3ftn -»• 3ft k =
1,2,..., m. are smooth

Construct n identifiers, of the following structure. The ith identifier identi

fying the parameter 0{ has the following form.

m

Xi = ft7i(*).+.E^i(*)Mj] + Vt- (6.50)
3=1

9{ = Wi (6.51)

vt = 2k9i\fi(x)\sgn[xi] (6.52)

W{ = kisgn[xi]sgn[fi(x)] (6.53)

5t- = a:t-xt- (6.54)

fc > 0 (6.55)

i = l,2,...,n (6.56)

Given such an identifier structure, the state and parameter estimation error

dynamics may be written in the following form,

Xi = 9ifi(x)-2k0i\fi(x)\sgn[xi] (6.57)

$i = -kisgn[xi]sgn[fi(x)] (6.58)

z' = l,2,...,n (6.59)
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We now show existense of solutions for the identifier, stability of state es

timation error dynamics, and the convergence of the identified parameter to its true
value.

Theorem 6.2 Existence of trajectories for identifier and state estimation error dy
namics, stability ofstate estimation error dynamics, and exponential convergence of
identified parameters to their true values in the sense ofFilippov.

Given(Gl) A nonlinear system ofthe form (6.46) - (6.49).

(G2) A nonlinear identifier of the form (6.50) - (6.56) resulting in state esti
mation and parameter identification error dynamics of the form (6.57) -

• (6.58)

If (II) |0,|<A*,.V2 = l,2r...,ra .

(12) \fi(x)\ ^ 0 along the system trajectories.

(13) In any compact region D G 3ft", each fi(x) :3ft" -+ 3ft i = 1,2,... ,n is
bounded from above and from below.

Then (Tl) Filippov solutions exist for the system (6.57) - (6.58).

(T2) The surfaces xt- = 0 i = 1,2,... n are attractive.

(T3) The sliding dynamics on the surfaces Xi = 0 i = 1,2,...n are such that
the parameter estimate 9i -• 0t- i = 1,2,... ,n exponentially in the sense of
Filippov.

Proof: 4 t> As before we will prove the theorem in three steps. First we
show existence of solutions, then we show attractivity of the sliding surfaces, and
finally we show parameter convergence to true values using two methods of proof.
Step 1: Existence of Filippov Solutions

In compact domains D{ i = l,2,...,n of the (x,zt-,0t) space, that is A G
3ftn x 3ft x [3ft mod k9i], the righthandside of equations (6.57) - (6.58) can be modelled
by a differential inclusions of the following form

Xi G Fsifaxiji) (6.60)
Si G ftfaxiJi) (6.61)
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where the inclusions FXi(x, £,-, ft) i = 1,2,..., n and ^(x, xf, ft) i = 1,2,...,n are
defined to be

*««(*,*.-, 9i) = 6>/,(x) - 2^ \fi{x)\sgn[xi] if x{^0 (6.62)

G [-M9ikf„Zk9.kSi] ifXi = 0 (6.63)

^(s, x,-, ft) = -&iS0n[xt]s0n[/t(a:)] z'/ xt- ^ 0 (6.64)
G [-fcj.fc] ifxi = 0 (6.65)

f = l,2,...,n (6.66)

where kSi is supremum ofthe function fi(x) : 3ft -» 3ft i = 1,2,..., n over all values of

x GA. The inclusions .Fr,.(x,*,-, ft) 2= 1,2,...,n and ^(a:, st-, ft) i = 1,2,...,n so
defined are

• closed, convex, bounded and upper-semicontinuous.

Therefore, invoking the theorem on existense of Filipov-solutions we show
that solutions exist for the system represented by equations (6.57) and (6.58).

Step 2: Attractivity of Sliding Surfaces

We will now show that the surfaces zt- = 0 i = l,2,...,n are attractive.
Consider a candidate Lyapunov function V(xu..., xn) :3ftn —• 3ft+ given by

n x?V=Zj (6.67)

Differentiating (6.67) along the flow of (6.57), we get

n

V = EW«W-2^|/<(*)||5,-| (6.68)
t=l

< -El«t|[2*»,|/i(*)|-««/((*)]
t=l

(6.69)

< o (6.70)

Here we have used the fact that 2k9i\fi(x)\ > 5fi{x), and that ft(x) + 0 along the
system trajectories. Thus V is shown to be negative definite thus showing the global
attractivity of the surface Xi = 0 i = 1,2,..., n.
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As theterm 2k9i \fi(x)\ > ft/,(x), it is clear that the surface x,- = 0is attained
in finite time and that sliding occurs at the surface xt- = 0.

Step 3: Parameter Convergence

As before, we will show convergence of estimated parameter values to true

values using two methods of proof. The first method will be the method of Filippov
averaging, and the second one is by the equivalent control method.

Proof By Filippov Averaging

The sliding mode on the surface xt- = 0 may be estimated to be a convex

combination of the the dynamics on either side of the surface. This indeed is the

principle behind the Filippov averaging technique. The averaged dynamics of the
estimation error on the surface xt- = 0 takes the following form.

^average = 7<ft/*(*) " 2 |̂/,(x)|] + [1 - 7t][ft/,W +2 |̂/t(x)|] (6.71)
^average = 7»h^n[/t(x)]] +[l - 7i][^n[/f(x)]] .(6.72)

*= l,2,...,n (6.73)

where 0 < 7; < 1 i = 1,2,..., n But as xiaverage = 0 in finite time, set the left hand
side of equation (6.71) to 0 and solve for 7,-.

^average = li[9ifi{x) - 2 |̂/t(x)|] +[l - 7,-]$/<(*) +2^,-|/t(x)|] (6.74)
0 = 7,[ft/<(x)-2^ (6.75)

= 9jsgn{fi(x)] 1
7* 4** +2 (6J6)

i = l,2,. ..,n (6.77)

To find the sliding dynamics of9iaverage along thesurface xt- = 0, substitute the value
of 7,- obtained in equation (6.76) into equation (6.72) to obtain,

^average = 7*["W*[/t-(x)]] + [1 " 7t][^^n[/t(x)]] (6.78)
= -2ji[kisgn[fi{x)]] + kisgn[fi(x)\ (6.79)

= -^gn^x)]^^™ +i] +kisgnlMx)} (6.80)
4k0i
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~ ki "
9iaverage = ""ojfe"^ (6.81)

»= l,2,...,n (6.82)

It is clear from equation (6.81), from the averaged dynamics of the estimation error

that the parameter estimation error ft i = l,2,...,n is exponentially diminishing
in the sense of Lyapunov. This in particular ensures that the average value of the
estimated parameter ft -• 0; i = 1,2,..., nexponentially.

Proof By Equivalent Control

As before, we will find the value of the n functions s#n[xt] : 3ft —• [-1,1] i =
1,2,...,n necessary to ensure the invariance of the sliding surfaces xt- = 0 i =

1,2,..., n. The values are obtained by setting the lefthandsides. of equation (6.57) to
0. That is,

Xi = 9ifi(x)-2k9i\fi(x)\sgn[xi] (6.83)

0 = 9ifi(x)-2k9i\fi(x)\sgn[xi] (6.84)

s9n[xi] = 2p9isgn[fi(x)} (6.85)
«= l,2,...,n (6.86)

Using equation (6.85) in equation (6.58), we rewrite the parameter estima
tion error dynamics as

ft = -kisgn[xi]sgn[fi(x)] (6.87)

h =-^ft (6.88)
»= l,2,...,n (6.89)

The exponential convergence of the parameteridentification error is obvious.

This concludes the proof of the theorem. <14k

6.2.3 General Nonlinear Systems

As a final extension, we consider the general case when there are n G3ft+
state equations with m < n G 3ft+ affine, unknown but bounded parameters whose
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bounds are known.. We now make a crucial assumption related to observability of
the system, which states that there are as many dynamical equations containing the
unknown parameters, as there are unknown parameters. That is to say, the system
equations are of the following form.

xi

Xm

Xfk+1

Xi

x,

9i

Vi =

k —"'Slip

Wi

Wr

+

fll(x) ' ' • flm{x) 01

fml(x) '" fmm(x)

f(m+l)(x) + Ei=l 9m+lj(x)uj

fn(x)+T,rj=i9nj(x)Uj

where x G3ftn 9{ G3ft i =1,..., m are unknown but bounded,|0t| < k9i i =1,..., m,
^dfi(x),gij{x): ftn->£ i = l,2,...,n j = l,2,...,r.

Now consider the following identifier structure.

fn(x) ••" fim{x)

fml(x) ••• fmm(x)

Vl

Vr

9i

^5up«s^n[xt] i = 1,..., m
m m

t'=l J=l

+

+

h 0 fll(x) "• flm(x)

T,rj=i9ij{x)uj

_£j=l 9mj(x)Uj

. 32rj=l9mj(x)Uj _

i -1

0 .-• L fml(x) ••• fmm(x)

(6.90)

(6.91)

(6.92)

(6.93)

(6.94)

(6.95)

(6.96)

(6.97)



kSUpSgn[xi]

k8upsgn[xm]
A

«Cj ^^ X{ — jji

h > 0 t = l,...,m
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(6.98)

(6.99)

The resulting state-estimation and parameter identification error dynamics
has the following forms

Xi

Xm

h

L

fll{x) ••' flm(x)

fml{x) ••• /mm(x)

h ••• 0

9\ ksupsgn[xi]

9m k3Upsgn[xm]

fim(x)

0 •-. lm

kaupsgn[xi]

fn(x) ••

fml(x) ••• fmm(x)

If (II) |0,.|<fyVi = l,...,ro

(6.100)

(6.101)

(6.102)

fcs«p<s<7n[xm]

We now show existense of solutions for the identifier, stability of state es

timation error dynamics, and the convergence of the identified parameter to its true

value.

Theorem 6.3 Existence of trajectories for identifier and state estimation error dy
namics, stability ofstate estimation error dynamics, and exponential convergence of
identified parameters to their true values in the sense of Filippov.

Given (Gl) A nonlinear system of the form (6.90) - (6.91).

(G2) A nonlinear identifier of the form (6.93) - (6.99) resulting in state esti
mation and parameter identification error dynamics of the form (6.100) -
(6.102)
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(12) The matrix
fn(x) •• ♦ /im(x)

/ml(x) "• /mm(x)

has rank m along the trajectories of

the system.

(13) In any compact region D G£n, each fij(x) : 3ftn -»• 3ft i = 1,2,...,m j =
1,2,..., m is bounded from above .and from below.

Then (Tl) Filippov solutions exist for the system (6.100) - (6.102).

(T2) The surfaces xt- = 0 i = 1,2,... n are attractive.

(T3) The sliding dynamics on the surfaces xt- = 0 i = 1,2,.. .n are such that
the parameter estimate ft converges to the true value 9{ exponentially in
the sense of Filippov.

Proof: 6 t> As before we will prove the theorem in three steps. First we
show existence of solutions, then we show the existence of attractive sliding surfaces,
and finally we show parameter convergence to true values.

Step 1: Existence of Solutions

In compact domains A *= 1,2,..., nof the (x, xf, ft) space, the righthand
side ofequations (6.100) - (6.102) can be modelled by a differential inclusions of the
following form

Xi

G

^(XjXi,^,.. •X) '

Xm . J"xm[X1 Xmi 0i,. ••i6m) _

' k' fiifaxuOi,.. •X) '
• G 1

9m . Fem(x,xm,9u. .,*»).

where the inclusions ^,.(x,xuft,...,9m) i = 1,2,...,m and ^(x,i\-,ft,.
1,2,..., m are defined as follows

^(x^ft,...^) = YXhfiJ(x) - ksupsgn[xi]} if xx,jL 0

(6.103)

(6.104)

,0m)i =



G [ ^K3Upy ZfC3Up^ lj Xi — U

i /,• i ; •

0 ••• Oj [fml(x) •
if xi # 0

e l-kikf™,hkimjif $i = o

^(x,xt-,ft) = -

The inclusions are

flm{x)

Jmm\X)
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i -1

sgn[xi]

sgn[xm]

• closed, convex, bounded and upper-semicontinuous.

Therefore, invoking the theorem on existense of Filipov-solutions we show

that solutions exist for the system represented by equations (6.100) and (6.102).
Step 2: Attractivity of Sliding Surfaces

We will now show that the surfaces xt- = 0 are attractive. Consider a candi

date Lyapunov function

V=£f (6.105)
t=l *

Differentiating (6.105) along the flow of (6.100), we get

V = [xi ... xn][
fll(x) •" flm(x) 01 kaupsgn[xi]

fml{x) '•• /mm(x) 9r iZaVtpSgTi\Xi

^ -[N ••• l*n|][

< -[N ••• \i«\}{

< 0

"sup fn{x) ••• fim(x)

vaup fml(x) .♦. fmm(x)

kaup —E^=l flj9jSgn[xi]

kaup —EJLi fmj9jsgn[xm]

fts#n[xi]

9msgn[xm]

Here we have used the fact that ksup > E^i/iift^n[xt] i = l,2,...,m, and that
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fn(x) ••• /im(x)
det

9 laverage

'maverage

^ 0 along the system trajectories. Thus V is shown to

fmi(x) .«. /mm(x)
be negative definite.

As the term k^ > T^xfijh »= l,2,...,m, it is clear that the surface
X{; = 0 i = 1,2,...,m is attained in finite time and that sliding occurs on the surfaces
Xi =0z = l,2,...,m.

Step 3: Parameter Convergence

The sliding mode on the surfaces xt- = Oi = l,2,...,m may be estimated
to be a convex combination of the the dynamics on either side of the surface. This
indeed in the principle behind the Filippov averaging technique. We will show the
stability first using Filippov averaging and then by the equvalent control method.

Proof By Filippov Averaging

Here again we perform Filippov averaging using convex combinations of
dynamics on either sides of the sliding surface. The averaging is alittle more involved,
and sharply contrasts to the simplicity of the equivalent control method of proof. Let

qn(x) ••• qXm(x) fn(x) ". fim(x)

fml(x) ... fmm(x)

1-1

9mlfa) ' ' ' qmm(x)

where ^(x): 3ftn -> &i = 1,2,... ,m.

The averaged dynamics of the estimation error on the surface xx- = 0i =
1,2,..., m takes the following form.

m . „ TO

Xlaverage = 71E M ~ k^p] +[1 - 7l][£ M +*«p] (6.107)
i=i i=i

1 ! ! (6.108)
m m

Xmaverage = 7mE Mj ~ ksup] +[l - 7m]£ fmj03, + k3up] (6.109)
i=i j=i

h 0 <lu(x) ••• qim(x)

qmi(x) ••• qmm(x)

(6.106)

-1-1

kSup[l - 27i]

ksuP[l - 27m]
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Setting the lefthandside of (6.107) - (6.109) to 0, we solve for 7,- i =

1,2,..., m and use it to find the average dynamics of the parameter estimation error.
That is,

7i

2kaup

u\average

vmaverage

fll{x) ". flm(x)

fml(x) ••• fmm(x)

0

c«up

01 1

• + •

9m 1

qn(x) ••• qlm(x)

qmi(x) ••• qmm(x)

ft

L

0

fn(x)

fml(x)

flm(x)

Jmm\X)

Now using equation (6.106), we rewrite the above equation as

1average

9,'maverage

Exponential convergence of the average valueof the identifier to 0 is evident.

We will now show the same result from an equivalent control view point.

Proof By Equivalent Control

As before we estimate the values taken by the functions sgn[xi\ : 3ft -*
[—1,1] i = 1,2,..., m. Indeed, we see from equation (6.100) that

K$Up

k.uPUm

Xi "/llto •• ' flm(x) 'Si ' kSv,pSgn[xi]

Xm . fml(x) •• Jmm\X) .'». _Kupsgn[xm]

O" ' fn(x) •• flm(x) ' k ' Kupsgn[xi]

0 ./ml(x) .- Jmm\X) m9m _k3upsgn[xm]

(6.110)

(6.111)

(6.112)

(6.113)



sgn[xi] /nW flm(x)

sgn[xm]
'sup

fml(x) ••• fmm(x)

Using (6.114) in the parameter error equation (6.102), we find

' k' 'h ..- 0 " ' fu(x) • ' flm(x)
-1

sgn[xi]

L .0 ••• /m _fml(x) ' Jmm\X) _S07l[xm]

' -jM,'
Kaup

=
•

Jm_0
>*attp
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(6.114)

(6.115)

(6.116)

It is obvious that the parameter estimation error is exponentially diminish
ing. This concludes the proof of the theorem. <4>

6.2.4 Illustrative Example

Consider a system represented by the following dynamical equations.

x\ = 0i cos xi —02 sin xi + u\

x2 = 0i sin xi + 02 cos Xi + ui

(6.117)

(6.118)

where x € 3ft2, 0,- € 3ft » = 1,2, is unknown but bounded with a known bound

10i < hi € 3ft+ i = 1,2, Ui 6 3ft i = 1,2 are control inputs to the system. The goal of
identification is to estimate 0i and 02 of the system.

We construct a sliding mode identifier for this system of the following form.

Xi = 0i cos xi —02 sin Xi + u\ -f- v\

X2 = 0i sin Xi -|- 02 cosxx + tt2 + v<i

0i = wi

02 = W2

v\ = 2&aup[|(cosx1)| + |sinxi|]sflfn[xi]

(6.119)

(6.120)

(6.121)

(6.122)

(6.123)
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Figure 6.2: Convergence Of Parameter To True Values

v2 = 2&sup[|(cosxi)| + |sinxi|]$3r7i[x2]

kaup = hi ~r k92

W! _ /i 0

w2 J |_ 0 l2
X\ = Xi — Xi

X2 = X2 — X2

h > 0

l2 > 0

cos xi — sin xi

sin xi cos xi

-l

sgn[xi]

msgn[x2] m
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(6.124)

(6.125)

(6.126)

(6.127)

(6.128)

(6.129)

(6.130)

The convergence of the estimated parameters 0lt 0*2 to their true values is
easily shown invoking Theorem 5.1.

Simulation of the system show the interesting features of the identifier. First

we note that the state estimation errors goes to zero in finite time, as predicted.
Then the identified parameters converges to their true value, and the parameter
identification error gradually goes to zero. But as Filippov solutions are only solutions
averaged over neighbourhoods ofdiminishing size, the average value ofthe parameter
error is zero, though the actual values chatter about their true values.
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6.2.5 Application And Commercial Importance

Identification of the operating parameters of amachine help us design better

and more robust control laws. Each operation of a machine is an opportunity to

identify the parameters of the machine, either for purposes of control, or even as

a system check to ensure that all the parameters are within operating ranges. For

the typical operation of an automobile, it could very well be possible to adaptively
identify the mass of the vehicle, and the tyre friction coefficient. Such identification

performed in real time allows the designer the opportunity to choose control laws

that depend in real time on the identification process. The class of identifiers which

formed the subject of this section are exciting in that they are nonlinear identifiers

that are capable of providing such exponential parameter convergence.

6.2.6 Criticism And Future Prospects

The following are the implementational difficulties associated with the iden

tifier.

• There isnoa-priori guarantee that the multiplicand ofthe unknown parameters

will be non-zero along the system trajectories. This is amajor assumption, and
its elimination virtually impossible.

• Parameter convergence is guaranteed only in the sense of Filippov. That is the

average value of the parameter converges to its true value, but there is no bound

on the chatter in the value of the parameter. However, it is possible to design
sliding mode identifiers such that the chatter in parameter values is minimized.

• Extending the theory to systems where the number of parameters exceeds the
number of dynamical equations is non-trivial.

• The use of the sliding mode technique provides a certain degree of robustness
to the identifier, though more careful analysis is necessary to identify those
perturbations which do not adversely affect robust identification.
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• While the parameter identifier specifies exponentially accurate values of the

parameter, incorporating the parameter identifier into a closed loop feedback
scheme, is considerably more involved.

6.3 Synchronous Sliding Modes

6.3.1 Introduction

In this section, we present an interesting property of amodified vector sliding
mode control law, and its possible application. The property of this modified vector

sliding mode control law is such that it achieves simultaneous regulation for agroup
ofn scalar systems with n inputs. The control law has the interesting property that
it can be prescribed without explicit reference to the initial conditions of the system.
The law is interesting in that it introduces coupling between decoupled systems to
achieve the synchronization objective.

We present a simple example to verify the synchronization result. We then

apply this control law to the problem of tracking trajectories by a system of robots
or multifingered hands.

6.3.2 Synchronous Sliding

Consider a group of n scalar decoupled systems of the form

Xi Ui

x, ut

*i(0) £io

*n(0) XnO

(6.131)

(6.132)

where the states xt- € ft, the controls tit- € ft t = l,2,...,n the initial conditions
xt0 € ft i = 1,2,..., n. With minor abuse of notation, we create a new state vector

r iT
x e ftn, where x = Xi ••• xn\ .
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The control objective is to regulate the states from non-zeroinitial conditions

to the origin, in finite time. That is, that there exist instants of time t* < co G

ft+ i = 1,2,..., n such that the following is true.

*<(*) = 0 Vt > t? t = 1,2,...,n (6.133)

We choose n sliding mode control laws of the following form to ensure achievement
of the control objective.

«•• = -*•• A if|*,|^0 z= l,2,...,n (6.134)
\Xi\

where h G ft+

Comment 6.3.1 We note here that the controls Ui i = 1,2,... are decoupled, in that U{
is a function only o/xt-. Also note that the time taken by each state xt: i = 1,2,... ,n

to reach the origin is a function ofits initial value xt(0) i = 1,2,..., n and the control
gains h i = 1,2,..., n.

Comment 6.3.2 Also note in equation (6.134) we did not specify the control law at
\xi\ = 0 %= 1,2, ...,rc. Indeed, Ui = -kisgn[xi] |x,| ^ 0. We do not specify the
control at |x,| = 0. As the control is not specified only on sets of zero measure, it
does not affect the existence ofFilippov solutions shown by modelling the system by a
differential inclusion.

We now present some interesting properties ofa modified sliding mode con

trol law that deliberately introduces coupling between the decoupled systems. We

present proof of existence of solutions, proof of stability, and proof of synchronous

finite time convergence for the modified sliding mode control law. In order to do so,
we formalize the notion of synchronous finite time convergence.

Definition 6.3.1 A set of n € Z+ variables Xi(t) : ft+ -• ft i = 1,2,... ,n are
said to reach the origin synchronously commencing from nonzero initial conditions
ii(0)^0i = l,2,...,nff there exists an instant oftime t* < oo € ft+ such that the
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following is true.

Xi(t) ± OVt<t* (6.135)

Xi{t) = 0V*><* . (6.136)

t = l,2,...,n (6.137)

That is to say, that the states with nonzero initial conditions (an assump
tion we make without loss of generality) are regulated to 0 at the same instant of

time t*. There are many practical applications where such synchronous regulation is
important. A typical, application is amultifingered robot hand that grips an object.
It is important to ensure that the fingers touch the object synchronously and thus
cause force closure without imparting motion to the object. We will say more about
this later.

It is possible to ensure synchronous motion using a simple sliding mode
feedback where the control gains are chosen with explicit dependence on initial con
ditions. Indeed, given the initial conditions exactly, we choose a decoupled control
law that uses the values of initial conditions to derive control gains that guarantee
synchronous reaching of the origin. For the sake of completeness we state the control
law as follows.

Theorem 6.4 Synchronous regulation with explicit dependence on initial conditions.

Given (Gl) A nonlinear system ofthe form (6.131) - (6.132).

(G2) A control law ofthe form (6.134)

If (II) h i = 1,2,..., n are chosen such that

l*.'(0)| MO) I .^ =L^* =l,2,...,n j=l,2,...,n (6.138)

Then (Tl) Filippov solutions exist for the system (6.131) - (6.132) subject to the con
trol law (6.134).

(T2) The surfaces x; = 0 i = l,2,...n are reached synchronously at a time
,*_ £lM
1 ~ *i '



146

Proof: 4 t> The proof is quite straightforward and utilizes standard facts
from sliding mode control theory.

The existence of Filippov solutions is shown using the fact that the mod
elling differential inclusions ^(x) : ft -> [-1,1] are closed, bounded, convex and
uppersemicontinuous. Note that ^(x): ft -• [-1,1] are defined as follows

^(x) = -ki-^r if |xt| ±0 (6.139)
\Xi\

e [-l,l]if|xt|=0 (6.140)

Stability is shown using the candidate Lyapunov function V(x) : ftn —• ft+
given by V(x) = £?=1 f whose derivative along the flow of (6.131) - (6.132) is given
by V = —£?=i \xi\. Indeed V isnegative definite proving global exponential stability
of the origin.

Finally, the time taken to reach the origin is given by t* = ^^ i =
1,2,...,n. Now using the assumption that &&& = ^^ i = 1,2,...,n j =
1,2,..., n, we see that t* = t\... = ij = t*.

This completes the proof of the theorem. <14fc

Comment 6.3.3 The control law is inelegant to implement as it explicitly depends on
the initial conditions. It would be desirable to develop a state feedback control law
that would achieve the same objective, but one whose control gains do not explicitly
depend on initial conditions.

We now propose a state feedback control law that would ensure synchronous
regulation.

Theorem 6.5 Synchronous regulation with state feedback.

Given (Gl) A nonlinear system ofthe form (6.131) - (6.132).

If (II) The controls u{ i = 1,2,...,n in equations (6.131) - (6.132) are chosen
to be

Ui = ~k*]ixT2 ifWxW2>0 *=l,2,...,n (6.141)
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(6.143)

11*11* = E*fl* (6.142)

where k* € ft+

Then (Tl) Filippov solutions exist for the system (6.131) - (6.132) subject to the con
trol law (6.141).

(T2) The surfaces xt- = 0 i = 1,2, —tz are reached synchronously at a time
t* = l,affl2 where ||x(0)||2 is the 2-normofthe vector of initial conditions,
given by ||*(0)||a = Eii*?(0)]*

Proof: ♦ t> We prove the theorem in three steps. First we show existence

ofgeneralized FiHppov solutions to the system (6.131) - (6.132) subject to the control
law (6.141). We then show attractivity of the origin when subject to the control law

using a simple Lyapunov argument. Finally we show the achievement ofsynchronous
regulation, by explicitly computing thetimes taken to reach theorigin. We first make
the following comments.

Comment 6.3.4 ItZ5 interesting to compare the control laws given by equations (6.134)
and (6.141). While the control specified by (6.134) decouples the system entirely, the
control specified by (6.I4I) introduces a coupling between the through the 2-norm of
the state vector \\x\\2. Furthermore, note that the control gains k* remain the same
for all Ui i = 1,2,..., n.

Comment 6.3.5 The discontinuous control law (6.141) is not defined at the origin,
the same way the function sgn[(-)\ : ft -> [-1,1] is not defined when (•) = 0. But
also note that the control law specified by (6.U1) is bounded by k*. Indeed, as Trir <

\\x\\2 —

1 i = l,2,...,n, m < k* i = l,2,...,n.

Step 1: Existence Of Filippov Solutions

To show the existence of generalized Filippov solutions we model the sys
tem (6.131) - (6.132) subject to the control law (6.141) by the following differential



inclusion.

Xi **k(*)"
• €

•

.in. . *•»(*)
where the inclusions ^(x): ft -• [-&*, A?*] are specified as
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(6.144)

*•<(*) = -**7nr» IWb>o (6.H5)
||x||2

€ [-**,**] if ||x||2 = 0 (6.146)

i = l,2,...,n (6.147)

The inclusions ^i(x) i = 1,2,..., n are

• closed, bounded, convex and uppersemicontinuous.

Invoking the theorem on the existence of generahzed Filippov solutions, we conclude
that Filippov solutions exist for the system (6.131) - (6.132) subject to the control
law (6.141).

Step 2: Attractivity Of The Origin

Consider a candidate Lyapunov function V(x) : ftn —> ft+ given by

V =

T

(6.148)

Differentiating Valong the flow of (6.131) - (6.132) subject to the control law (6.141),
we find

origin.

V- [Xi ... xn

1Mb
= -**||*||a if ||x||2^0

< 0

,11*115

_f.*_£l_

K 1Mb J

(6.149)

(6.150)

(6.151)

(6.152)

Negative definiteness of V confirms the global exponential stability of the
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Step 3: Synchronous Reaching

From system (6.131) - (6.132) subject tothe control law (6.141) the following
is true for any i,j

* — * II II (6.153)

x- - it* Xj
1 - ll'll.

(6.154)

OXj Xi

dxj Xj (6.155)

Vi,j<n i^j\\x\\2^0 (6.156)

Solving (6.155), we obtain explicit expressions for constraints on state trajectories as

x(0)

Xi® =x7(o)XiWViji -n* ^;' ^2 *° (6-157)
Using (6.157) in (6.153), we recast (6.153) in the form

= -rMF (6-159)
=-*M+zZ,rrt (6-160)
= ~k*r: Xi **<a\—r C6-1^)

Ft T 2^fc=i, fc# ^(O)^* J

= -**-- 3?57T (6.162)
X*V- ~r Z-fcsi, *# x?(o)J2

" W(0) +eu.***1(0)]* (6-163)

The righthandside of (6.164) is a real constant, and therefore the solution of (6.164)
is given by

x(0)

Xi^ =~k*lk(0)fc' +XiW i=1'2r~>n (6-165)
From (6.165), we obtain the time t* taken by x{(t) i = 1,2,... ,n to reach the ori
gin, starting from arbitrary nonzero initial conditions by setting the righthandside of
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(6.165) to 0.

0 = ~k*\m\f/+x<{0) (fU66)
r = J»i =1,2,...,n (6.167)

Synchronous convergence of state trajectories commencing from nonzero initial con
ditions is thus shown. This concludes the proof of the theorem. <14fe

6.3.3 Design Of Tracking Control Laws

The control laws that we have developed, are discontinuous. As a prelude
to presenting tracking control laws that involve discontinuities, let us analyze a sim

ple linear pole-placement control law from another perspective. Consider a system
represented as a chain of integrators of the form,

xi = x2 (6.168)

i : i (6.169)

xn-i = xn (6.170)

xn = u (6.171)

where the state vector x € ftn and the control input u € ft. Given a desired smooth

trajectory xld(t) : ft+ -* ft to be tracked by the state xx we present atracking control
law that uses succesive derivative ofdesired trajectories. We define recursively, a set
of desired trajectories for the states as

**(*) = X%ft - h-i[xi(t) - xi4(t)] i=2,3,...,n (6.172)
While we are given a desired trajectory to be tracked by the state xx(i), we define de
sired trajectories for the remaining states the tracking ofwhich automatically ensures
the original tracking objective for xi(t). Indeed, the intution behind such a definition

of desired trajectories becomes clear when we look at x2d(t).

x2d(t) =̂ 1 - k^it) - xld(t)] (C.173)
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From (6.173) it is clear that when the surface x2 = x2d the resulting dynamics for

xi(t) is given as

xi(t) = x2(t) (6.174)

= x2d(t) (6.175)

=^-*i[«i(t)-*u(0] (6.176)
The dynamics of the system is such as to ensure that xx(t) —• xu(t) exponentially.

However, if the surface x2 - x2d = 0 can only be reached exponentially, then the dy
namics ofxi is perturbed by an exponentially decaying signal, and therefore invoking
the result on the exponentially stable systems perturbed by exponentially decaying
perturbations, we conclude exponential convergence of xi(t) to xhd(t). We now show
the relationship between control laws developed using the recursively defined desired
trajectories and the standard pole-placement control law.

Theorem 6.6 Connection between pole-placement and recursive trajectory defini
tion.

Given (Gl) A nonlinear system ofthe form (6.168) - (6.171).

(G2) Given a set ofdesired trajectories ofthe form (6.172)

If (II) The controls u in equation (6.171) are chosen to be

dx d(t)

U= dt " *n[*nW" Xn*W (6*177)
where xi4(t) : ftn x ft+ -+ ft i = 2,3,...,n is specified by (6.172) and
&neft+.

Then (Tl) The control law specified by (6.177) is a stable pole-placement control with
the n eigenvalues each being equal to —h i = 1,2,..., n

Proof: 4 t> The proof is obvious by writing the dynamics for xx and x2.
Indeed,

*i = x2 (6.17S)
dx2d(t)*2 = —^ - k2[x2{t) - x2d(t)) (6.179)



Using the definition of x2d(t) provided by (6.172), we rewrite (6.179) as

Xi = x2

, _ &&• - fcifoffl - Mt)}]
X2 =

dt

-k2[x2(t) - [^1 - A;i[xi(<) - xld(t)]]]
Which may be rewritten as

That is to say

Xi

x2

Xi

x2

= x2

<Pxld(t) n dxld(t) .df2 +[«i +h] ^ -r [k!k2]xld(t)
-[h + kilx^-lhk^x^t)

0

. ^ +ft +H^ +[hk2]xld(t).
o 1

. -[hh] -[h + k2]

The placement of poles through recursive trajectory definition is trivially obvious by
inspection of equation (6.187). This concludes the proof of the theorem. < +

Comment 6.3.6 It is to be noted that this tracking control law is valid for any specifica
tion of desired trajectories that are smooth, the tracking ofwhich guarantees achieve
ment ofthe control objective. That is, we are free to specify any smooth set oftrajec
tories xid(t) i = 2,3,..., n, the only constraint being x,(i) = xid(t) i = 2,3,..., n =>
Xi-i(t) —j- Xi-itd(t). Indeed, the linear pole-placement control law is just aspecial case
of control laws that achieve this tracking objective.

Comment 6.3.7 We now ask if it is possible to relax the smoothness assumption on
the desired trajectories xid(t). Indeed, the first relaxation would be to consider desired

trajectories that are differentiate almost everywhere, except possibly on sets of zero
measure. The Nested and Switching control laws presented in the previous chapter

Xi

x2

152

(6.180)

(6.181)

(6.182)

(6.183)

(6.184)

(6.185)

(6.186)

(6.187)
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are examples ofsuch discontinuous control laws, the discontinuities existing on sets
of zero measure. The proofs of such control laws are much harder in general, though
the regularization ofsuch control laws that involve saturation functions have been used
in the recent literature. We have been inspired by the attempts of [31] in developing
control laws that use Filippov averaging instead of regularization. That is to say, that
we are prepared to tolerate chatter and limit cycling by using discontinuous control
laws. The drawback however is that we can show finite time synchronous stabilization
only.on the average, whereas aregularized control law, by eliminating the discontinuity
would permit smooth stabilization, though exponentially, without the chatter.

Comment 6.3.8 Our interest in relaxing the smoothness assumption on the desired
trajectories is merely enable us to utilize the discontinuous, synchronous control law
for a practical mechanical system.

We will first present the control law for agroup ofn € Z+ and then mechan
ical systems, apply it to awell known example of atwo fingered robotic hand. Many
mechanical systems are represented by Newtons force and torque balance equations
that assume the form

*i = x2 (6.188)

x2 = ti' (6.189)

where x* € ft2 is the state of the ith mechanical system where i < n € Z+, and
u*(x, t): ft2 x ft+ -• ft is the input force. Typically, x\ represents the generalized po
sition coordinate of the mechanical system, and x2 represents the generalized velocity
coordinate. These equations, though simple in form, serve to illustrate the applica
tion of the theory, and also represent a large class ofuseful physical systems. Given
desired trajectories x[d(t) : ft+ -> ft to be tracked by the states x[(t), we attempt to
find control laws ux that ensure synchronous tracking for the states x[(t).

We now state the theorem that ensures synchronous tracking for the systems
of the form (6.188)-(6.189).

Theorem 6.7 Synchronous tracking for a class of mechanical systems.
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Given (Gl) n mechanical systems, each of the form (6.188) - (6.189).

(G2) Given a set of desired trajectories of the form x[d(t) : ft+ -• ft i =
1,2, ...,n

If (II) The controls u*'(x, t) i = 1,2,..., n in equation (6.189) are chosen to be

"' = ^-*fcr4r%T5r (6-190)
X 2d

whereki,k2 G ft+.

dt E3Ute-4J1*
i _ dxu p a?i - a?jd— 1(* l* xl XU /cmi\

" ^ **r™ r_i J,„l (6'191)

Then(TiJ Filippov solutions exist for system (6.188) - (6.189) subject to control
(6.190).

(T2) States x[(t) track their respective trajectories x\d(t) synchronously.

Proof: ^ > The proof is simple once we realize the validity of the system
equations (6.188) - (6.189) subject to the control law (6.190) for arbitrarily small
neighborhoods of the origin. Indeed, the control law is undefined only on a set of
zero measure. As this set of zero measure is indeed the set we desire to make invari

ant, and the control law directs system trajectories to this set, and hence maintain
invariance, the conclusions ofthe theorem naturally follow. The theorem can also be
proved invoking the results of the nested, and switching control laws mentioned in
the previous chapter. <Hfc

6.3.4 Application To Robotics

In this subsection we apply the proposed tracking control law to two robotic
manipulators, in order to have the joint angles track desired trajectories at the same
instant of time. Each manipulator is assumed to be a two link planar arm. The
practical visualization of such a system would a two fingered robotic hand when they
are contacting the same object.
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First we present a very brief description of a typical robotic manipulator.

The equations of motion of an n degree of freedom rigid robotic manipulator in the
joint space may be written down as

M(q(t))q(t) + C(q(t\ q(t))t(t) + Bq{t) +g(q{t)) = T(t) (6.192)

where the vectors q(t) : ft+ -> ftn are the joint angles, q(t) : ft+ -+ ftn are joint an
gular velocities, and q(t) : ft+ -> ftn are joint angular accelerations. M(q(t)) : ft+ -•
ftnxn denotes the symmetric inertia matrix, which is positive definite for all q€ ftn;
the vector C(q(t),q(t))q(t) denotes Coriolis and centripetal torques, while the vector
g(q(t)) denotes gravitational effects and the matrix B€ ftnxn is aconstant positive
definite (diagonal) matrix representing damping in the system. T(t) represents the
vector of generalized forces applied to the manipulator joints.

Different tasks are accomplished by the robotic manipulators by designing
different control forces T(t). A widely used, and perhaps simplest control scheme is
the computed torque technique. This technique is based on the exact knowledge of the
manipulator dynamics/and results in a controller that achieves tracking of desired
trajectories. One possible computed torque control is

T(t) =C(q(t), q(t))i{i) +Bq(t) +g(q(t)) +M{q(t))u(t) (6.193)

where M(q(t))u(t) € ftn is an input applied at the manipulator joints. The computed
torque T is realized by measuring q(t), and qfor all* >0and constructing the Coriolis,
damping, gravitational terms and the inertia matrix. The torque T applied to the
system (6.192) results in

?M = u(t) (6.194)

Now consider the two fingered robotic arm. The joint angles are denoted by
0i 10i> 0i> 0i• The equations of motion are of course similar to (6.192). The dynamics
of these manipulators therefore are of a form similar to (6.194), given by,

0i = 02 (6.195)

02 = m* (6.196)

i = 1,2,..., 4 (6.197)
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Given desired trajectories q[d(t) i = 1,2,... ,4 to be tracked by the respec
tive state variables q[ (t) i = 1,2,..., 4, We now define the following set of vectors.

4W = #)"#)i =l,2,...,4 i =1,2 (6.198)

eiW = [eJW •'• e?W]T (6.199)
r T

«*(*) = [ej(<) ... e*(t)] (6.200)

where

«L« =^-^[^ytflMOII^O (6.201)
=^lif||ei(t)||2 =0 (6.202)

Now note that $}<*(*)> *s not strictly differentiable at the origin, but has a derivative

that exists almost everywhere. Indeed define the generalized derivative as

&W = ^-l^SiflMOII^O (6.203)
dt ||ei(<)||3

=^lif||ei(f)||2 =0 (6.204)
where

N[{t) = £ej(«j[e}(*)3«-*J(04(*)li =1.2,3,4 j#« (6.205)
4(<) = «&)- &(*)• =1.2,...,4 (6.206)

We now choose u' i = 1,2,..., 4 in the following manner.

At) =&W -S3*^^ if IMOIb *0 (6.207)
= ^^if||e2(<)||2 =0 (6.208)

Claim 6.1 Synchronous tracking for a system of robotic hands.

Given(Gl) n mechanical systems, each ofthe form (6.197).

(G2) Given a set of desired trajectories of the form x[d(t) : ft+ -• ft i =
1,2, ...,rc
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Figure 6.3: Synchronous Convergence Of Trajectories To Desired Values

If (II) The controls u^x.t) i = l,2,...,n in equation (6.197) are specified by
(6.207). wherekuk2e$+.

Then (Tl) Filippov solutions exist for system (6.197) - subject to control (6.207).

(T2) States x\(t) track their respective trajectories x[d(t) synchronously.

Proof: 6 > Theproof ofthe claim isby invoking the theorem proved earlier
for the more general case ofa group of mechanical systems.

Indeed, it is easily seen that the application of control (6.207) would cause
the states xl2(t) i = 1,2,..., 4 to reach their desired values in finite time, and the de

sired trajectories are so chosen that the reduced dynamics ensures finite time tracking
iovx[d{t). <d*

Results of simulation are shown for the following conditions. The chosen

desired trajectories were as follows. q\d(t) = sin*, qld(t) = 5, q%d(t) = -2, q*d(t) =
5. The initial conditions were as follows q\(0) = 1, q2(0) = 7, q*(0) = -1, q*(0) =
2, ^(0) = 0, <z22(0)=0, <?23(0) = 0, <?24(0) = 0

Simulation results are in excellent agreement with the predicted behaviour.
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Indeed, notethat the trajectory errors vanish identically at the same instant

of time. This indeed was the motivation for considering the synchronous tracking
control law.

6.3.5 Criticism And Future Prospects

• Though proof of robustness of synchronous control is hard, the simulation re
sults indicate a high degree of tolerance of perturbations.

• The control law though bounded, tends to be ill-conditioned when implemented
on a computer. As a consequence some regularization has to be done.

• The control law works very well with a fractional control approach presented
later in this chapter. The rate of convergence is fast, as would be expected.

• The extensions ofsuch an approach tochains ofintegrators ofarbitrary length is
natural and can be accomplished, though it is very difficult to avoid chattering
about the intersection of the sliding surfaces.

6.4 Variable Structure Lyapunov Control Of Cer

tain Benchmark Problems

6.4.1 Introduction

In this section, we will present techniques to control a class of benchmark

problems. This class of control techniques are called Lyapunov control methods as

they result in a choice of control law that ensures the negative definiteness of a
chosen candidate Lyapunov function. In choosing the control law, we choose variable

structure control laws to ensurenegativedefiniteness of the derivative of the candidate

Lyapunov function.

The class ofbenchmark problems we will consider are essentially linear sys
tems in the controllable canonical form, which are perturbed by additive non-lipschitz,
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mismatched perturbations with a triangular structure. We will impose further struc

ture on them by specifying that the uncertainties enter as affine and unknown but

bounded parameters with known bounds multiplying known non-lipschitz functions.
Furthermore, we will assume that the class of non-lipschitz functions is such that, if
the parameters were known exactly, then the system is Hnearized by the methodology
of input-output linearization.

We will consider systems of the following form

*i = *2 + 0i/i(*i) (6.209)

x2 = x3-{-92f2{xux2) (6.210)

: : i • (6.211)

xn = u+ 0nfn(xux2x...,xn) (6.212)

where x € ftn, fi(xu...,zt) : ft* -> ft i = 1,2,...,n are smooth, and u e ft. The
following comments are in order.

Comment 6.4-1 The system comprises of an underlying controllable canonical form (a
chain ofintegrators ) perturbed by avector ofnon-lipschitz, mismatched perturbations.
If each 9{ 1 = 1,2,...,n were known, we can linearize the system through a change
of coordinates choosing the output to be x\.

While the methodology we describe will be true in general for n e Z+
dimensional systems, we restrict our attention to 3 dimensinal systems for the sake
of clarity, i.e.,

xi = x2 + 91f1(x1) (6.213)

x2 = x3 + 92f2(xux2) (6.214)

x3 = u + 93f3{xux2,x3) (6.215)

where x Gft3, 9{ e ft i = 1,2,3 are unknown but bounded, that is |0,-| < k9i i = 1,2,3
and the control u G ft.

Our method of stabilization is a constructive proceedure:
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1. Find a nonlinear transformation of the state that helps to swamp out the un

known perturbations through a Lyapunov argument. Such a transformation

may be difficult to prescribe ahead of time, so we incorporate enough freedom
in our prescription of the transformation to help us achieve the stabilization,
objective.

2. Consider a candidate Lyapunov function that is essentially quadratic, but has
some other positive definite terms to assist in the proof.

Step 1:

Consider following change of state variables $ :x € ft3 -* y € ft3, given by,

2/i = xx (6.216)

2/2 = a?2 + ^i(:ri) (6.217)
2/3 = x3 + h2(xux2) (6.218)

where hi(xi) : ft -> ft is smooth, and h2(xux2) : ft2 -> ft is smooth. We reserve the
freedom to specify the functions hx(xi) : ft -+ ft, and h2(xux2) : ft2 -♦ ft later, but
only make the assumption that they are smooth.

Proposition 6.1 The coordinate transformation given by (6.216) - (6.218) is a dif-
feomorphism.

Proof: 6 l> Utilizing the fact that $ : x € $P -> y £ ft? is invertible
everywhere, we explicitly compute $_1 : y £ ft3 -• x Gft3 to yield,

xi = 2/1 (6.219)

x2 = y2-hi(yi) (6.220)

x3 = y3-h3(yuy2) (6.221)

where h3(yuy2) = /^o^"1 2/1
. Therefore the transformation $ : x Gft3 —> y Gft3

2/2

is invertible everywhere, and is therefore a globally valid diffeomorphism. 06
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Differentiating (6.216) and using equations (6.219) - (6.221), we obtain

Vi = yi - M2/1) + #1/1(2/1) (6.222)

It is clear from (6.222) that a candidate quadratic Lyapunov function would

result in 2/i[~M2/i) + #1/1(2/1)] that has to be made negative definite. This fact gives
us enough information to make some further assumptions on fi(yi) and to beable to
specify the function h\(yi).

Assumption (Al):

We now assume that /i(jft) is such that there exists a function pi{yi) such
that the following is true

ViPiiVi) is positive definite (6.223)

2/i/i(s/i) < 2/iPi(2/i) (6.224)

The assumption merely indicates that 2/1/1(2/1) is swamped by a passive
function. We now define the function ^1(2/1) in the following manner.

Choice (HI):

^1(2/1) = 2/1 + ^1 Pi (2/1) (6.225)

Utilizing (6.225) in (), we rewrite (6.4.1) as

2/i = -2/1 + 2/2 - lhiPi(yi) - #1/1(2/1)] (6.226)

Set [hlPl{yi) - #1/1(2/1)] = F1(9uy1) and note that 2/1^1(^1,2/1) > 0.
Define the set ft to be the set of all functions #(*) : ft -• ft+ such that the

following is true.

9(2/1) is positive definite (6.227)

^-F1(9lly1) >0 (6.22S)
^9(2/1)K-gp > ° (6-229)

Assumption (A2):
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There exists qi(yi) Gft such that the following is true

[/i(2/i)]2<2/i^p (6.230)

We will use a simple example to clarify the nature ofthe assumptions made.

Example 6.4.1 Illustrate Assumptions Made

For instance, let the function /i(yx) = y\. That is, the differential equation
is of the form,

Now choose

Note the following

2/i = y\ (6.231)

Pi(Vi) = <*i2/i +a2y\ ai,a2 > 1 " (6.232)

yiPiW = ai2/? +<*22/i4 (6.233)

> 0 (6.234)

2/i[/i(2/i)] = y\ (6.235)

< <*i2/2 + <*22/4 (6.236)

< y\P\(yi) (6.237)

Thus Assumption (Al) is satisfied.

Note that [/i(2/i)]2 = y$. Choose

9i(yi) =»3 j «3 >1 (6.238)

The following are then true.

yi7ht = a32/4 (6.239)dyi

> 2/i (6.240)

> [/i(2/i)]2 (6.241)

(6.242)

Thus Assumption (A2) is also satisfied.
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Continuing the example, let9if{yx) = #i2/2. Choosep^) = hl[oL1y1-ra2y\]
where k9l > \9i\, and cti,a2 > 1. The following are true

^1 (#1,2/1) = hi[aiyi + ct2yf]-9iy2 (6.243)
y49i(2/i) = «3j <*3 >1 (6.244)

^•^i(#i,2/i) = <x3y*[h1[a1y1 +a2y*]-91y2] (6.245)
> 0 (6.246)

Thus it is possible to swamp the unknown nonlinearity.

Now returning to the problem athand, we differentiate y2 of equation (6.217)
to get

2/2 = 2/3 -^3(2/1,2/2) + #2/2(2/1,2/2) (6.247)

+-^4-2/1 +2/2 - *fcPi(yi) - #1/1(2/1)] (6.248)
Xi

where f(yu y2) = f2o^~x
z2

Assumption (A3):

There exist smooth functions q2(y2) Gft : ft -> ft and p2{y2) : ft -• ft, such
that,

[/2(2/i,2/2)]2 <2/i^y^ +2/2P2(2/2) (6.249)
^>0 ^ (6-250)

2/2^2(2/2) > 0 (6.251)

The reason for these assumptions become clearer during the course of the
proof. We now choose the function h3(yuy2) as

Choice (H3):

i / \ ^1(2/1)M2/i,2/2) = —^—[-2/1+2/2-^1(2/1 )] + <*22/2 (6.252)

+a3P2{y2) +Ql[^ll]^ +o.tel+*|M+w{6.253)

We now make the following assumption on f'(y\,y2).
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where the constants a,- i = 1,2,..., 4 < 1 and will be specified later. Such a choice

of the function h3(yuy2) results in equation (6.248) being recast in the form

2/2 = -Qf22/2-Qf3P2(2/2) + 2/3 (6.254)

+*/,(»,»)+«.^-*[^%> (6-255)
04 «* "^T"2'1 (6-256)

We now differentiate (6.218) to get

yz = u+ #3/3(2/1,2/2,2/3) (6.257)
#63(2/1,2/2,2/3)

#2/i
#63(2/1,2/2,2/3)

+• 'y^h+2/2 - ^1(2/1) +^1/1(2/1)] . (6.258)
[-^22/2 - 0:3^2(^2) + 2/3] (6'.259)

#2/i

^^ftfite,,»)+*^+ax^fe] (6.260)
+^M|^[QW+̂1)1+si] * (626l)

We now choose the control input u to be

„ _ #M2/1,2/2,2/3) r . „.„„«*tt = ^ hyi +2/2 (6.262)

-**Pi(2/i)] -**l^(y,lte)ll/i(yi)|^fo] (6.263)
#63(2/1,2/2,2/3) r / x , 1 /..^.xqT [-<x2y2 - 0:3^2(2/2) +2/3] (6.264)

#63(2/1,2/2,2/3)^ .,, , #61(2/1) , „ r#6i(2/i)l2 , ,^ [#2/2(2/1,2/2) +#1-^— +ait-^—1 2/2] (6'265)
#63(2/1,2/2,2/3) , #92(2/1) #gi(2/i) . , ,A 0_

#2/1 [4^r+"#^r+yi] (6-266)
t i#63(2/i,2/2,2/3),,#6i(2/i)r/ .. r , ,*«,.„*

#2/2" 11 ^ /i(yi)l*g"foJ (6.267)
, I#63(2/1, 2/2, 2/3),, f// v. r ,#2/2" ^H/2(2/i,2/2)|^n[2/3] (6.268)

-2/3 - 2/2 - ^31/3(2/1,2/2,2/355^(2/3] (6.269)

Comment 6.4.2 The control law (6.269) is implementable as it does not involve the
unknown parameters #i,02, #3.
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Using the control law specified by (6.269) in the equation (6.261), we rewrite
(6.261) as

h = -2/3- 2/2 + #3/3(2/1,2/2,2/3) -kh 1/3(2/1,2/2,2/3^71(2/3] (6.270)
, fl #63(2/1,2/2,2/3) f/ x , |#63(2/l,2/2,2/3),, r/ v, r , /e>n^\+#1 ^ /i(2/i) ~*»J -^ ^11/1(2/1)1^71(2/3] (6.271)
n #63(2/1,2/2,2/3),/, x , ,#63(2/1,2/2,2/3),,,. , v. r 1/co>70x#2/i ^2(^1,2/2) - fe^l g- 11/2(2/1,2/2)|5^n[2/3](6.272)
g #63(2/1,2/2,2/3) #61(2/1) ,#63(^1,2/2,2/3),,#61(2/1), r , ,__
1 #^ #^—**'—#^—h-^h^m (6-273)

To summarize, let us collect the transformed state equations as

£1 = -2/1+^-[^1(2/1)-#1/1(2/1)] (6.274)

2/2 = -Q22/2 - 03^2(2/2) + 2/3 (6.275)

' +«<»,,»)+»,^-,»,l^fV». (6.276)

2/3 = -2/3 -2/2+ #3/3(2/1,2/2,2/3) -*fe 1/3(2/1,2/2,2/3)^71(2/3] (6.278)
]f} #63(^1,2/2,2/3) - , v , ,#63(2/1,2/2,2/3),,,, .. r , ,.___,

#2/i " #2? ll/H2/i)l5^nl2/3] (6.279)
a #63(2/l,2/2,y3) flt x , ,#63(2/1,2/2,2/3),, r , ., r U/,ft0nx#2 Jfo /2(2/i,2/2) - h2\ K-j-- i||/2(yi,2/2)|5^n[y3](6.280)
e #63(2/1,2/2,2/3) #61(2/1) ,#63(2/1,2/2,^3)1,#61(2/1), . ,
1 #^ ^—**' #^ ll-flh-l'^M (6*281)

We will now show global exponential stability of the system represented by
(6.274) - (6.281).

Theorem 6.8 Proof of global exponential stability of system with mismatched non-
lipschitz perturbations.

Given (Gl) A system of equations represented by (6.274) ~ (6.281)

If (II) The unknown parameters 9U92,93 are bounded by constants hlikg2,h3.

Then (Tl) \\x\\2 -> 0 as t -> 00
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Proof: £ t> Consider a candidate Lyapunov function ^(2/1,2/2,2/3) : ft3 -»•
ft+ of the form,

Vr=f +f +f +<x4q2(yi) +Osftdn) (6.282)
where a4,a5 Gft, but will be chosen later. Note that V is postive definite. Differen
tiating (6.282) along the flow of (6.274)-(6.281), we obtain,

V = -2/i2-2/1(^1(2/1)- #1/1(2/1)]

-«22/22 - a32/2P2(2/2) +#2/^(2/1,2/2) +#1^^ - ai[^l]22/2
#2/1 #2/i

-2/1 - l2/3||/3(2/i,2/2,ft)|fc, -#35^n[/^(2/i,2/2,2/3)]5^n[2/3]]

[^-^nb>^y^)^)/i(yi)]]

Now we use the fact that

**fi(yi,V») < ^j +[/&/i,y2)]2 (6.283)

^ Afcj +JwKjfeJ +yi^p (6.284)

< Mu^^lMiv , „ 3gi(yi) ,R ....
- 41 %, j*+*-5^- (6-286)

Choosing the constants a, z= 1,2,..., 5 to be

k2
ai > -J- (6.287)



We rewrite V as

a2 >
h2
4

<*3 > 1

a4 > 1

<*5 > 1
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(6.288)

(6.289)

(6.290)

(6.291)

V = -2/i2-2/i[fc<U>i(2/i)- #i/i(2/i)]

-[«* - f 12/1 - [*> -l]2/2P2(2/2) -[ai - f][^^]22/22
-2/1 - l2/3||/3(2/i,2/2,y3)|[^3 - 93sgn[fz{yuy2,y3)]sgn[y3]]

. .,#63(2/1,2/2,2/3),,./ x,,f . r #63(2/1,2/2,2/3) r/ xn"12/311 ^ ll/l(2/l)|Ri - #lS07l[2/3 ^ -/i(lfi)]]
1.. 11 #63(2/1,2/2, 2/3),, rf, v.

~ —#2/2—llM '̂Wl
rt /j ««,r« ^3(2/1,2/2,2/3) , , xn[A;*, -02sgn[y3 72(2/1,2/2)]]

oy2

,,,#63(2/1,2/2,2/3),,#61(2/1), ,,

-[«. - l]^H/i -«^fc»(»)"#1/1(2/1)]

Note that by the assumptions on the functions px(yi),p2(2/2), 91(2/1), 92(2/2), the fol
lowing are true.

2/1(^1(2/1)- #1/1(2/1)] > 0 (6.292)

2/2M2/2) > 0 (6.293)

^ >0 (6.294)
#9l(2/l)•^hi > 0 (6.295)

^%s.Pi(s>i)-0./i(yi)] >0 (6.296)
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It is therefore obvious that V is indeed negative definite. This confirms the global
exponential stability of the origin. <I 4fc

Example 6.4.2 Variable Structure Lyapunov Control Technique.

Consider a simple example to clarify the methodology outlined earlier. In
deed, consider the following two state example given by

xi = x2^-91x\ (6.297)

x2 = u (6.298)

where x Gft2 and |#i| < k9l Now consider a coordinate change given by

2/i = xi (6.299)

2/2 = 32+Ai(j/i) (6.300)

Note that the function fi(yi) satisfies assumptions (AI) and (A2) prescribed in the
previous section. Indeed, choosing pi(yi) = ky\ k>\, we see that

2/i/i(2/i) < 2/iPi(2/i) (6.301)

Thus assumption (Al) is satisfied. Furthermore, choosing

9i(2/i) = k[y\]k>\ (6.302)

/i(2/i) = y\ (6.303)

< k[yf\k>l (6.304)

<**gi2 (6.305)
Thus assumption (A2) is also satisfied. Now in accordance with the theory outlined
in the earlier section choose 61(2/1) to be

61(2/1) = k9lyf (6.306)

Indeed, in the new coordinate system, the system equations are given by

. 2/1 = 2/2 - yi[k9l - 0i] (6.307)

2/2 = u+ Zhly\[y2-y\[hx-9l)} (6.308)
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Now choose the control u to be

« = -2/2 - 2/i - 3^2/22/2 - 6k*\yl\sgn[y2] (6.309)

u?/iere A;* = maa:(^1,^l). Suc/i a c/ioice of control yields system equations of the
form

2/i = 2/2 - y\[k9l - #i] (6.310)

2/2 = -2/2-2/i-|yi5|[6^59n[y2] + 3^1^i5^n(2/15] (6.311)

Choosing a candidate Lyapunov function of the form

V= J +J (6.312)

and differentiating V along the flow of (6.310) - (6.311) we find

V = -2/i%:-#i] (6.313)

"2/22 " l2/i5||2/2[6** + 3^#i597z[2/152/2] (6.314)

< 0 (6.315)

Negative definiteness ofV guarantees global exponential stability.
Simulation results indicate that the states are regulated to the origin. Note

however the large control effort required.

6.4.2 Criticism And Future Prospects

The methodology presented in this section is a systematic means of sta
bilizing this class of benchmark problems. The technique however suffers from the
following shortcomings.

• The class of systems that can be handled are limited, to those that can be
exactly linearized should the unknown parameters be known.

• The feedback strategy, being the result of a Lyapunov analysis is extraordinarily
conservative, and asks for unrealistic control efforts.
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Figure 6.4: Stabilization Of Mismatched Systems

The strategy assumes full state feedback which is a serious setback in an indus
trial scenario.

More work needs to be done in identifying the class of perturbations that
be handled by a Lyapunov design.

can

The problem begins to be increasingly difficult if instead of the stabilization
objective, the goal were to be tracking.

6.5 Sliding Mode Observers For Mechanical Sys
tems

6.5.1 Introduction

In this section, we present a correction to an existing result in sliding mode
observer theory, [24] and remark on using the result and its modifications as helpful
design rules towards designing observers for mechanical systems. The sliding mode
observer problem for systems with more that 2states is yet unsolved, and the available
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results require a number of assumptions to be made on the system. Even in the

important class of planar dynamical.systems, the theory is incomplete, in that the
observers are very sensitive to measurement noise.

We first present the basic theory of sliding mode observers for mechanical

systems, and prove the existence of generalized Filippov solutions and stability. We
then show the convergence of the observer state errors to zero. We then present the
problem with existing theory, and present bounds on variables that would prevent
observer failure. Finally we remark on the utilization of the computed bounds as a
design rule to help design such sliding mode observers.

The problem of designing observers using sliding mode theory was first in
troduced and studied by [24]. Here the observation problem is treated as a special
case of a state regulation problem. SHding surfaces are designed based on the error
dynamics, and reaching a sHding surface is equivalent to the error in the estimate of

the measured state decaying to zero. In sHding mode control, the surface S = 0 is

reached in finite time, and on that surface the states decay exponentially. Similarly,
insliding mode observer theory, the error in the estimate ofthe measured state decays
in finite time. AU other state errors decay exponentially.

Consider a simplemechanical system of the form

xi = x2 (6.316)

x2 = u (6.317)

where x € 3ft2 and u € 3ft. Now consider an observer of the following form.

xx = x2+ hsgnlxi] (6.318)

x2 = k2sgn[x2) (6.319)

x = x-x (6.320)

Such an observer structure equation leads to error dynamics of the form

xi = x2 - hsgniii) (6.321)

x2 = -k2sgn[xx) (6.322)
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Theorem 6.9 Convergence of the state estimation errors:

Given

(Gl) Error dynamics ofthe form (6.321)- (6.322)

If

(II) \x2\ < h

Then

(Tl) Generalized Filippov Solutions exist for the system (6.321)- (6.322)

(T2) The one-dimensional manifold x\ = 0 is attractive

(T3) The averaged dynamics of x2 about the surface xx = 0 decays exponentially.

Proof: 4* t> Existence of Filippov solutions is due to the fact that the gov
erning differential inclusions are closed, bounded, convex and uppersemicontinuous.

We will prove the theorem using simple Lyapunov analysis. Consider the
candidate Lyapunov function,

~2

V= Y (6.323)
Differentiating V along the flow of the system(6.321), we get,

V = £i[x2 + &iS07i[£i]] (6.324)

< -|NPi-*2S0n[zi]] (6.325)

Thus as long x2 < ku V < 0, indeed the surface x = 0 is attractive.

Comment 6.5.1 The Theorem asserts the existence ofa tubular neighbourhood around
the x2 = 0 axis where, the trajectories converge to the manifold given by xx = 0. It
is to be noted that x2 must not be greater than kx until the trajectories converge to
x\ —0. Some additional conditions are necessary to prevent such an occurence.
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The dynamics of the system when constrained to evolve on the surface

x\ = 0, can be derived using the Fillipov solution concept. Thus, taking a convex
combination of the dynamics on either side of the sliding surface, we get,

xi = 7[*2 +*i] +(l-7)[*2-fci] (6.326)

x2 = 7*2 + (1 - 7)(-*2] (6.327)

From the above equations, we eHminate 7, and from the invariance of the sliding
surface, we get,

xi = 0 (6.328)

x2 = -~x2 (6.329)

Exponential decay of x2 is clear from the above equation. The proof of the theorem
is complete. <d4

Comment 6.5.2 It is interesting to note the roles played by the constants kx and k2.
Increasing kx, increases the region of ofattractivity of the surface xx = 0. But the
same time, it decreases the rate of decay of the state x2. Thus there is an obvious
design tradeoff to be considered here.

Comment 6.5.3 The hypothesis of this theorem is weak. Current literature makes an
important omission in this regard. The hypothesis asserts that the surface xx = 0 is
attractive, only as long as x2 < kx. Now it is not clear, that the condition x2 < kx
will not be violated before xx = QIf this condition is violated, then the surface xx =0
is no longer attractive. It is therefore necessary to clearly understand the conditions
under which such a pathology may not occur. By choosing gains kx and k2 carefully,
we may prevent the occurrence ofsuch circumstances. Furthermore, assumptions on
maximum bounds on the initial conditions become necessary to the analysis.

We now state the following theorem that ensures the stability of the per
turbed error dynamics.

xx = x2-kxsgn[xx] (6.330)

x2 = -k2sgn[xx] + w(t) (6.331)

KOI < Umax (6.332)



Theorem 6.10 Sufficient Conditions For Attractivity ofSliding Surface:

Given

(Gl) Error dynamics ofthe form (6.330)- (6.331)

If

(W
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2~kl €l[ [h-wmax] ] (6'333)
where,

l*i(0)| < d (6.334)

l*2(0)| . < e2 (6.335)

KOI ^ Wmax (6.336)

Then

(77J 7%e surface xx = 0 is locally attractive.

Proof: ♦ > We wiU prove the theorem in the following manner. Firstly, we
will find the minimum time *min it takes for x2 to get outside the tubular neighbour
hood defined by \\x2(t)\\ < kx. Then we wiU find the maximum time it takes for xx
to become zero, given the time evolution of the x2. Then we will derive the condition

that tmin > tmax. This ensures local attractivity of the manifold xx = 0.

As the first step, let us find the time it takes for ||£2(*)|| = kx.
Integrating the x2, equation, it is clear that

x2{t) = [-k2sign[xx] + w)t + x2(0) (6.337)

Therefore, the minimum time for ||£2(*)|| = &i is given by

Un=ife+wLw (6-338)
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Substituting for x2(t) in the equation (6.330) and solving for the maximum
time xx = 0, we get,

t-.^Cf1*"--?] (6.339)[k2-wmax] v /

For the surface xx = 0 to be attractive, it is sufficient that tmin > tmax.
Comparing (6.338) and (6.339), it is clear that

*— „ > eh^ +W-]i] (6.340)||fe + ^mox|| [k2-Wmas] J V '

€2 " fel"e?[ fe-«w] I (6-34l>
The theorem is therefore proved. <J 4t

Comment 6.5.4 Eor the case of no uncertainity, meaning w(t) = 0, we get

e2<kx- yJ2exk2 (6.342)

This equations makes sense. The intution is that an increase initial conditions on x2

lead to a higher value ofkx. Futhermore, if the initial value, or a bound on the initial

value ofx2 is known, kx can be selected based on the a knowledge ofxx(0).

Comment 6.5.5 The extension of the results of the theorem to higher dimensions is
nontrivial.

6.5.2 Increasing Regions of Attractivity

It is clear from the results of the previous section that the domain of attrac

tion for the sliding surface xx = 0 is the chosen sliding gain kx. Now with an increase

in the perturbation of the initial condition of £2, it becomes necessary to increase kx.

Such an increase helps to give sufficient time for xx to decay to zero, while at the

same time enforcing a bound on the norm of x2(t). The price to be paid, as seen
by comments in previous sections is a sharp decrease in the decay of x2(t). In this
section, we present a simple way to alleviate this problem. We now consider a slight
modification of the observer structure with the introduction of the linear term,
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xx = x2 + hxxx + kxsgn(xx) (6.343)

x2 = k2sgn(x2) (6.344)

Such an observer structure equation leads to error dynamics of the form

xx = x2 - hxxi - kxsgn[xx] (6.345)

x2 = -k2sgn[x2] (6.346)

We now state the result concerning the domain of attraction and stability
of the modified observer.

Theorem 6.11 Domain ofAttraction and Stability ofthe Modified Observer:

Given

(Gl) Error dynamics ofthe form (6.345)- (6.346)

If

(ii) IfeWII <*i + M*i(o)||

Then

(Tl) The one dimensional manifold xx = 0 is attractive.

(T2) x2 decays to 0 exponentially.

The proof of the proposition follows verbatim the proof of the previous
theorem, and therefore will not be repeated.

Comment 6.5.6 Note that for large values ofxx, the system behaves as alinear system,
meaning a Luenberger observer. Then as the xx decreases in magnitude, the observer
operates as a nonlinear observer owing to the presence of the switching term. This
is interesting as there is a clear demarcation of linear and nonlinear regimes, and we
deliberately introduce a nonlinear regime in order to ensure the reduction of the error
of the observed variable to zero in finite time. Operation in the nonlinear regime has
the additional effect ofensuring the stability of the averaged dynamics.
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Comment 6.5.7 Also note that the introduction the linear term hxxx has no effect on
the Fillipov averaged dynamics of the observer, as this term vanishes when xx=0.

Comment 6.5.8 The bounds derived on initial conditions derived using the theorem
are unaffected. Only that now a significantly larger value ofperturbation in initial
conditions can be tolerated. The introduction of the hx term permits a reduction in
the value of kx and k2.

6.5.3 Smoothing And Reduction of Chattering

The use of the signum function in the observer equations leads to a lot of
chattering in the estimates of the observer. There is a simple technique to overcome
this. We replace the signum function with the saturation function, with a specified
boundary layer. Analogous to sliding mode control, the observer dynamics also has
a boundary layer, and FilHpov averaging is performed about the boundary layer.
Furthermore, the use of the boundary layer indicates that in the presence of very
small errors, the filter again operates in the linear regime, and functions essentially
as a steady state Kalman estimator. The sliding gains can be chosen such that for
very small innovations the filter uses steady state Kalman gains.

With a very large estimation error, the hx term predominates, and the filter
starts out as alinear observer. Then, as the estimation error decreases, the filter starts
to perform as nonlinear observer with the signum term predominating. This ensures
the confinement of the observed variable to within the boundary layer. Furthermore,
the averaged dynamics of the the system about the boundary layer is exponentially
stable, leading to a decay of estimation errors in the other state variables.

The sliding mode observer tries to capture the essential features of the Lu
enberger observer, the sliding mode observer, and the steady state Kalman filter. For
all this, and more, the increase in computational complexity is minimal. Comparison
of the Kalman filter equations and the equations of the sliding mode observer re
veal the salient feature of the sliding mode observer - operational and computational
simplicity with no loss of robustness.
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6.5.4 Criticism And Future Prospects

The sHding mode observers presented, while being appHcable to most me
chanical systems, suffer from serious technical problems when applied to systems of
higher dimensions. The major problems with sHding mode observers are the following.

• Sensitivity to measurement noise.

• The chattering nature of the observer" prevents achievement of the desired lev

els of accuracy. The average value of the observer is zero, but to be useful,
the instantaneous values of the observer estimate must be used. However this

instantaneous value is corrupted with the noise that results from chattering,
and consequently the purpose is not served.

6.6 Fractional Control - Conjecture, Open Prob

lem

6.6.1 Introduction

In this section, we wiU present an interesting variable structure control law
for avector dynamical system, that is abounded control law, but whose convergence
rate is faster than a comparable linear control law, and whose robustness properties
are much better than comparable linear control laws. We will clarify what we mean by
comparable linear control laws inthe following subsections. We use theterm fractional
control law to indicate that this is a particular form of variable structure control law
where the powers of indices are positive fractions.

We will present qualitative arguments for the conjecture, and will provide
simulation results that are in agreement with the conjecture. However the proof of
this conjecture has been quite elusive, and we have been unable to present anything
more tangible than this conjecture. We leave the proof of this control method as an
open problem to the reader.
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6.6.2 Finite Time With Continuous Control - Scalar Sys
tems

Consider a scalar dynamical system of the form

* = u (6.347)

where x 6 ft and the control weft. Given the control objective of regulating the
state ofthe system (6.347) to the origin commencing from arbitrary initial conditions
in finite time, we choose u in the following manner.

u = -k\x\rSgn[x] (6.348)

where k € ft+ and r > 1.

Comment 6.6.1 The choice of u is novel since the control is obviously continuous,
but not differentiable at the origin. Also note that the control law involves raising the
power of \x\ to afraction, and hence the term fractional control

We now make the following claim regarding existence oftrajectories, stability
and convergence for the system (6.347)

Claim 6.2 Existence of solutions, stability and convergence for fractional control of
scalar systems.

Given

(Gl) System dynamics of the form (6.347)

If

(II) The control u is specified as in (6.348)

Then

(Tl) Cauchy solutions exist for (6.347) subject to (6.348).

(T2) x = 0 is stable.
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(T3) Indeed x-> 0in finite time t*, given by t* =ffiffi

Proof: 4t l> Existence of Cauchy solutions is easily seen by the fact that

the righthandside of the differential system is continuous.

Considering the candidate Lyapunov function V(x) : ft —• ft+ given by

x2
V=J (6.349)

Indeed V = —fc|a:|1+r < 0. Attractivityof the origin is therefore confirmed.

To show finite time convergence we solve the equation

x = -k\x\'sgn[x] (6.350)

Htto obtain that t* =|afflij The proof of the claim is complete. <l4fc
Wenow make a comparison between three kinds ofcontrol laws that regulate

the state of the system (6.347) to the origin.

Ulinear = ~kx (6.351)
k

Ualiding = —r~\x if \x\ >° (6.352)\x\

k
•"fractional = ~ LX if \x\ > 0 (6.353)

II

Comparison of control efforts reveals something interesting. For all |a;| > 1, the linear

controUer has the maximum gain, closely Mowed by the fractional controller, and

the sHding mode controller has the smallest gain. However the situation is reversed
when \x\ < 1. .

Similarly, the times taken toreach the origin from initial conditions x(0) ^ 0
are

= oo (6.354)
l*(0)ltaliding = L~J11 (6-355)
l^o)!1-*

*fractional — "TTj jT- (6.356)
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We now formulate an alternative control law that combines the best of both

the linear and the fractional control law to give

u* = -kx if \x\ > 1 (6.357)

= -j^p if 0<|s| <1 (6.358)
P > 1 (6.359)

Note that we do not bother to define the control law at the origin.

There is yet another viewpoint as to why this control law does better than a

linear control law when \x\ < 1. The Hnear control law has an eigenvalue -fc, and but
u* has an eigenvalue -=x (we use the term eigenvalue very loosely here, since strictly
speaking even the term eigenvalues does not make sense in a nonHnear context) that
is increasing to oo as \x\ -> 0. Though both control laws are bounded, qualitatively,
the fractional control law converges much faster to the origin as seen in the following
scalar example.

Example 6.6.1 Fractional Control - Scalar Case

Consider the simple scalar example given by the equations

x = u (6.360)

Choose

UUnear = "kx (6.361)

u* = -kx if \x\ > 1 (6.362)
k

= -—x if 0<\x\<l (6.363)

k = 2 (6.364)

P = 2 (6.365)

It is clear from the simulation plots that the modified fractional control law outper
forms the linear control law.
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Figure 6.5: Comparison of Linear and Fractional Control Laws

Now consider a linear system in the controllable canonical form, given by
the following equations.

xx = x2

xn = u

(6.366)

(6.367)

(6.368)

where x € ftn, u € ft.

Now choose the control u to be of the following form

u = -kxxx - k2x2 knxn if ||s||2 > 1 (6.369)

= -TTTTSi - —!zr*2 » sa if 0<||x||2 <1 (6.370)
I* lkll2r ||*||ar

where

x

Mb = E*.?
i=l

r > n

(6.371)

(6.372)

sn +knsn~ H hkx is a stable Hurwitz polynomial (6.373)

We now formulate the following conjecture.
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Conjecture 6.1 Existence ofsolutions, stability and convergence for fractional con
trol of controllable linear systems.

Given

(Gl) System dynamics ofthe form (6.366) - (6.368)

If

(II) The control u is specified as in.(6.369) - (6.373)

Then

(Tl) Filippov solutions exist for systems (6.366) - (6.368) subject to control (6.369)
- (6.373)

(T2) x = 0 is globally stable

(T3) Indeed x —• 0 faster than a comparable linear control law ofthe form u/tneor =
—kxxx - k2x2 knxn

Qualitative Proof:

First we note that within the unit ball (||x||2 < 1), the control effort is
bounded by

n

M<I>,- (6.374)
<=i

Sothe control does not blow up at any instantoftime. We have used the notion that in

the nonHnear setting, within the unit ball, we have each eigenvalue A,- i = 1,2,..., n
of this system being replaced by -^ where r > n. Consequently, from the way the

IWIa
At- i = 1,2,..., n combine to form the h of the control law, the form of the control
law is intutively obvious.

We find by simulation that the robustness, and rate of convergence of the
proposed nonlinear law are much superior to a linear control law. The proof of this
conjecture, however, has eluded us.
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Figure 6.6: Fractional Control for Systems in Canonical Form

Example 6.6.2 Fractional Controlfor Linear System in Controllable Canonical Form.
We present simulation results for a system of the form

where

control.

xx = x2

x2 = x3

x3 = u

u = -kxxx - k2x2 - k3x3 if \\x\\2 > 1
kx k2 k3

= r^i -jx2 - -—;x3 if 0 < ||x||2 < 1

kx = 6

k2 = 11

k3 = 6

IMI24 Iklli INI

(6.375)

(6.376)

(6.377)

(6.378)

(6.379)

(6.380)

(6.381)

(6.382)

The results show the faster convergence of the state subject to fractional
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6.6.3 Criticism And Future Prospects

The modified fractional control law is interesting in that it seems to provide
some desired features of both linear and nonlinear control laws. The major problems
with this control law however are implementational difficulties.

• Computating the fractional powers of ||x||2 requires significant real time com
puting power.

• Accuracy of fractional control starts diminishing rapidly with lower fractional
exponents.

• While the robustness of fractional control is quite high, it is not significantly
better than a well designed #«, controUer designed to minimize the effect of the
disturbance on the regulation error. In simulation runs, the performance of a
comparable H^ controller was just as good.

• While we were unable to come up with an acceptable proof of the control law,
this control law seems to be a good alternative to a standard pole-placement
control law.
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Conclusions And Future Work
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7.1 Conclusions of This Thesis

We conclude this thesis with a brief summary of the contributions of this
thesis. We presented the following extensions to nonlinear control theory.

• Generalized matching conditions for perturbed SISO systems with perturbed
zero dynamics.

.• Generalized matching conditions for perturbed nonsingular MIMO systems.

• Generalized matching conditions for perturbed singular MIMO systems which
are left invertible.

• Generahzed matching conditions for perturbed singular MIMO systems which
are right invertible.

• Existence theorems for differential equations and inclusions with discontinuous
righthand sides.

• Novel discontinuous control laws for finite time stabilization of nonlinear sys
tems.

• Novel sliding mode identifiers for affine nonlinear systems.
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• Synchronous sliding mode control theory.

• Variable structure lyapunov control of controUable systems perturbed by mis
matched, non-lipschitz perturbations.

• Extensions to planar sHding mode observer theory.

• Conjecture regarding the use offractional control for controllable linear systems.

7.2 Scope For Future Work

There is a lot of scope for future work in the areas mentioned above. We

will outHne some interesting problems that are worth looking into.

• Matching conditions relaxing the requirement of exponential stability of the
zero dynamics.

• Combining sliding mode identification with control.

• Utilizing chattering control as a form of persistent excitation.

• Developing the generalization of the winding algorithm.

• Develop generahzed state space sHding using n —1 switches to regulate to the
origin.

• Extending Lyapunov control techniques to handle systems that cannot be input-

output Hnearized.

• Extending sHding mode observer theory to handle non-planar systems.

• Extensions ofthe work on synchronous sliding and fractional control using other
forms of nonlinearities.

• Formulating the Lyapunov and invariant set theorems for non-differentiable

Lyapunov functions and differential inclusions.
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• Adaptive control techniques for differential inclusions.

• Combining sHding mode identification with adaptive control.

• Applying synchronous control to physical examples.

We conclude this dissertation with a deep sense of fulfillment of having
explored to some depth, some aspects of nonHnear control theory.
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