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CAD Tools for Nonlinear Control

by

Raja R. Kadiyala

Abstract

In this manuscript I present a toolbox for nonlinear control system design. This

toolbox (AP- LIN ) contains modules to approximate systems by polynomials systems

of arbitrary order and then render them input-output linear or input-state linear with

error terms of arbitrarily high order. The approximation of the full nonlinear system to a

polynomial nonlinear system allows us to compute the control law numerically as opposed

to symbolically. Hence the computations can be made extremely fast. Furthermore, since

the AP- LIN package is a stand alone package written in (7, we have the ability to repeat

the computations in real-time along the trajectory of the controlled system.

The task of approximating a system and updating the control law accordingly is

very similar to adaptive control and we present a technique of indirect adaptive control

based on certainty equivalence for input output linearization of nonlinear systems. This

adaptive control scheme does not suffer from the overparameterization drawbacks of the

direct adaptive control techniques on the same plant.

We give an example of the indirect control scheme by designing a controller for a

model of the induction motor with the assumption that the magnetic subsystem is linear.

We find that the adaptive nonlinear control law asymptotically renders the induction motor

system input-output linear and also achieves input-output decoupling. In addition, we find

that for the specific case of the induction motor weare able to prove parameter convergence

and asymptotic tracking of anopen set of reference trajectories using the indirect adaptive

controller. This differs from the general indirect controller structure, where we cannot

guarantee parameter convergence.

We also present a visualization tool which allows one to view the stability regions

of nonlinear ordinary differential equations in three dimensions. We find that these com

putations may be carried out in parallel and present an algorithm for multiple networked

workstations. We also discuss various viewing alternatives for the visualization of these

dynamics.



An outline of the manuscript is as follows. We start with a review of the nonlinear

control techniques implemented in the package and continue with a development of the

indirect adaptive control scheme followed by the induction motor example. The AP- LIN

package is then presented along with Sys-View , a tool for the visualization of stability

domains for dynamical systems.
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Chapter 1

Introduction

1.1 Introduction

There has been a great wealth of theoretical machinery built up for controlling and

analyzing nonlinear systems culminating in a rather complete characterization of lineariza

tion by state feedback and coordinate transformation [Isidori, 1989] and the approximation

of nonlinear systems to linear systems with polynomial remainder terms of arbitrary high

order [Krener, 1984, Krener et a/., 1987]. Feedback linearization, however, has been some

what slow to catch on in real world applications mostly due to the fact that there does

not exist a good Computer Aided Design (CAD) environment which handles feedback lin

earization of nonlinear systems. In turn, the nonlinear CAD toolbox development has been

hampered in the past since the calculations necessary to formulate the feedback law are

symbolic. Although there does exist software packages that handle symbolic computations

(such as Mathematica and Maple), these packages arenot robust and will cannot complete

the necessary calculations in realtime with current or even next generation processor power.

Furthermore small variationsin the dynamical equations may yield vastly different compute

times, thus one would not be able to guarantee the completion of the computations within

a given sampling period.

We introduce a computer aided control system design (CACSD) package for non

linear systems. The AP- LIN package allows one to approximate a system to an arbitrary

order polynomial system and then perform the calculations to render the approximate sys

tem input output linear or linear up to arbitrary order terms.

The idea of using a system model created by a spline fit as the basis for control
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system design is currently used in a (non-symbolic) package specific to flight control de

veloped at the NASA Ames Research Center. This package carries through the necessary

calculations, which then renders an aircraft system input-output linear (see [Meyer, 1990]).

The controller created may then be readily implemented on the current generation of flight

control computers.

Thus if we restrict ourselves to systems of the form

m

* = f(x) + ^2gi(x)ui
isrl

Vi = hi(x),

where /(a;), gi(x), and hi(x) are vector valued polynomials and i 6 R",a 6 Rm,y 6 R1,
we are able to compute the linearizing feedback numerically as opposed to symbolically.

Furthermore, we are able to handle the tabular data found in most flight control problems

and also non-smooth problems in a systematic fashion. Restricting ourselves to polynomial

systems is not overly constraining as many systems look either quadratic or cubic locally

and we are free to use as many approximations as necessary over a region.

We choose a toolbox architecture for the AP- LIN package. The notion of using

individual programs for each task was partly inspired by the mind-set introduced in [Wette

and Laub, 1986]. This differs from the approach taken in [Krener et a/., 1991], which carries

through the higher order linear approximationcontroldesign in a MATLAB based package.

Furthermore since these computations are carried through numerically and written in C as

stand alone routines which do not rely on a higher level program for memory allocation and

parsing, they are extremely fast.

With the speed of these computations one may envision a realtime setting where

we constantly update the polynomial approximation and recompute a new control law based

on how the system is currently behaving. This algorithm has many of the same flavors as

adaptive control as we have a parametrization of the model we choose to represent the

system and we constantly update the parameters which in turn triggers changes in the

control law.

Indeed, there has been much recent research in the use of adaptive control tech

niques for improving the input output linearization by state feedback of nonlinear systems

with parametric uncertainty. Techniques of direct adaptive control (with no explicit identi

fication) were proposed and developed in [Taylor et a/., 1989, Kanellakopoulos et af., 1989,



Georgiou and Normand-Cyrot, 1989, Sastry and Isidori, 1987], (see also [Sastry and Bod-
son, 1989]). Nonlinear indirect adaptive control was initiated in [Bastin and Campion, 1989,

Campion and Bastin, 1989, Pomet and Praly, 1988]. It is motivated by the fact that, with

exact knowledge of the plant parameters, a nonlinear state feedback law and a suitable

set of coordinates can be chosen to produce linear input-output behavior. In the case of

parameter uncertainty, intuition suggests that parameter estimates which are converging

to their true values can be used to asymptotically linearize the system. This heuristic is

known as the certainty equivalence principle. Indirect adaptive control differs from direct

adaptive control in that it relies on an observation error to update the plant parameters

rather than relying on an output error. Hence, indirect adaptive control can be broken

down into two parts. First, a parameter identifier is attached to the plant and adjusts the

parameter estimates on line. These estimated parameters are then used in the linearizing

control law, which bears resemblance to the realtime computation above.

Once we construct a nonlinear control law one would like to see the region which

the controller design is valid or stable. Phase portraits have been used to study the stability

characteristics of planar two dimensional dynamical systems with a good deal of success,

but we are truly limited by this visualization scheme since we have the restriction of two

dimensions. We extend the concept of phase portraits to three dimensions with Sys-View .

Sys-View does not create three dimensional phase portraits per se. Rather, it

allows one to view the stability characteristics of a three dimensional subset of the dynamics.

By this we mean that one is able to see where a system is stable and hence the region of

attraction and validity of a control law. Sys-View also allows one to view the characteristics

of how a system is unstable. In short, Sys-View allows the user to interactively view the

stability characteristics of a three dimensional system or a three dimensional submanifold

of the system.

As one might imagine the task of computing the stability characteristics of a three

dimensional system is a rather large computational undertaking. Fortunately we note that

a majority of the calculations do not depend on each other, hence the algorithm is ideal

for parallel computing. We will show a novel approach for this problem using multiple

networked workstations to offload the computation.

We start with a review of nonlinear techniques in chapter 2. More precisely, we

review input output linearization for both single-input single-output and multiple-input

multiple-output systems. We then follow with a review of approximate reduction of nonlin-
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ear systems to linear systems with arbitrary order perturbation terms (so called Poincare

linearization).

In chapter 3 we present indirect adaptive control of nonlinear systems. This is an

extension of the work in [Teel et a/., 1991] to MIMO systems and ties in with the realtime

control of nonlinear systems presented later. We give an example of indirect adaptive control

scheme for the nonlinear induction motormodel presented in [Marino et a/., 1990] in chapter

4.

We then introduce the AP- LIN package in chapter 5 and give some examples to

show the power of AP- LIN. We also discuss the realtime control algorithm above in more

detail. In chapter 6, we present the Sys~View tool for the visualization of nonlinear stability

characteristics.
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Chapter 2

Review of Nonlinear Techniques

2.1 Introduction

To provide a framework to build upon, we review the two nonlinear control tech

niques of input-output linearization and the approximate reduction of nonlinear to linear

systems of arbitrary order. We go into more detail of the latter theory since it is relatively

new and may not be as well known as exact linearization. One may find a much more

extensive review of the input-output linearization in [isidori, 1989].

2.2 Exact Linearization (SISO)

We begin by reviewing, following the notation set in [Isidori, 1989], the basictheory

of linearization by state feedback for the single-input single-output case. As we shall see

the multiple-input multiple-output theory is similar, but more involved. Consider the SISO

system

x — f(x) + g(x)u
(2.1)

y = h(x)

with x € Rn,tt,y € R and /, g are smooth vector fields and h is a smooth function.

Differentiating y with respect to time, one obtains

y = ft*
= i/(*) +is(*)« (2.2)
= Lfh(x) + Lgh(x)u
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Here L/h, Lgh stand for the Lie derivatives of h with respect to /, g respectively (L/h(x) =

|^/(x)). If Lgh(x) is bounded away from zero Vx € Rn then the control law

u=-l-r(-Lfh +v) (2.3)
Lgh

yields the linear system

y=v. (2.4)

If Lgh(x) = 0, one continues to differentiate obtaining

yW = Lijh(x) + LgLif-1h(x)u i =1,2,.... (2.5)

If there is a fixed integer 7 such that Vx € Rn LgL^h = 0 for i = 0,..., 7 - 2 and
LgL^h^x) ^ 0then the control law

-l^W)^Kx)+v) (2-6)
yields

yM = v. (2.7)

The integer 7 is called the strict relative degree of system (2.1).

Definition 2.1 strict relative degree The system (2.1) is said to have strict relative

degree 7 at x° if

LgVfh = 0, V* € J?r(x°)

/or i = 0,..., 7 - 2 and

LgL}-1h(x)^0

Fora system with a strict relative degree 7, it is easy to verify that at each x° € Rn

there exists a neighborhood U° of x° such that the mapping

$ : U° —> Rn

defined as

$i(s) = 6 = Mx)

$2(3) = £2 = Lth(x)V' ' V' (2.8)
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with

d$i(x)g(x) = 0 for i = 7 + 1,..., n

is a diffeomorphism onto its image.

If we set 77 = ($7+i,...,$n)T it follows that the system may be written in the

normal form ([isidori, 1989]) as

f1 = 6

£y-i = (1 (2.9)

y = &•

In equation (2.9), 6(f, 77) represents the quantity Llfh(x) and a(f, 77) represents LgLylh(x).
We assume that x = 0 is an equilibrium point of the system (i.e. /(0) = 0) and we assume

that h(0) = 0. Then the dynamics

77 = 9(0,77) (2.10)

are referred to as the zero-dynamics (see [Isidori, 1989] section 4.3fordetails). The nonlinear

system (2.1) is said to be minimum phase if the equilibrium point 77 = 0 of the zero-dynamics

is asymptotically stable.

2.2.1 Asymptotic Output Tracking

We now apply the normal form and the minimum phase property to the tracking

problem. We desire to have y(t) track a given ^mM- With u defined by (2.6), we choose

v= y$ +ai^ir1*" y(7-1)) +•••+ <*i(VM - y) (2.11)

with ax,..., o^ chosen so that

s^+ a^^ + .-.+ cty (2.12)

is a Hurwitz polynomial. Note that y/'-1) = &. If we define et- = t/,_1) - y^f then we
have

e — Ae

V = t(t,v) (2-13)

b = ei + yW
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where A is the companion matrix associated with (2.12), and hence is a Hurwitz matrix.

It is easy to see that this control results in asymptotic tracking and bounded states

f provided yM, £m> •••>Vm are bounded.

A sufficient condition for 77 to remain bounded is exponential stability of the zero-

dynamics and Lipschitz continuity of <?(£, 77) in f, 77. Thus, under these conditions, (2.6) and

(2.11) yield bounded tracking, (see [Sastry and Isidori, 1987]).

2.3 Exact Linearization (MIMO)

Consider the squaremultiple-input multiple-output (MIMO) system defined below

where

x = f(x) + G(x)u

y = S(x)

G(x) = \gi(x)\g2(x)\

hi(x)

h2(x)

H{x) = h3(x)

hm(x)

with x € Rn,it,y € Rm. Furthermore f(x) and <j,(je) are smooth vector fields and hj(x) are

smooth functions. For each output yi we may compute the kth derivative as

(2.14)

9m(x)]

(2.15)

In the SISO case we differentiated the output y until the input appeared, similarly continue

differentiating each output until some Uj appears (i.e. LgiLfk~xhi ^ 0for some j,k). Let 7;
be the smallest integer such that some Uj appears in yC* and define the mxm decoupling

matrix A(x) as

A(x) = (2.16)

. LgiLj^-lh, L*.L/*"-lhm .



and the vector

B(x) =

L Lf^hm J

With these definitions made we may express jfcfri) as

,(Tfl)yv

Lf^h,

= B(x) + A{x)

(tm)
ym

15

(2.17)

Til

(2.18)

U,

We now extend the concept of relative degree for SISO systems to MIMO systems.

Definition 2.2 vector relative degree The system (2.14) is said to have vector relative

degree 7i> 72, •••,7m at x° if

LgiLskhj = 0; 1 < i < m,0 < fc < 7j - 2, Va? € Br(x°)

for j —1,..., m and the matrix A(x) is uniformly nonsingular in x.

(2.19)

Now supposing the system (2.14) has well defined vector relative degree, we may

apply the following state feedback

u = -A~J(x)B(x) + A~1(x)v (2.20)

to obtain the closed loop system

My\ Vl

(2.21)

(-Vm)
. ym

It should be noted that not only do we achieve input-output behaviour, but output decou

pling is also attained.

2.3.1 Normal form for MIMO system

Given the system (2.14) with vector relative degree 71,.. .,7m and 7 = J2£i 7t <

n we may extend the notion of the SISO normal form to MIMO systems by choosing



coordinates as

-i
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(2.22)

*T =M*). ST =X/M*). ••• ^^r^mW.
Complete the change of coordinates by choosing 71 —7 functions 7/1,7/2,..., 7/n_^ which are

independent from the f coordinates and each other. One difference from the SISO case is

that in the MIMO case we are not able, in general, to choose the 7/ coordinates such that

drjigj = 0 as in the SISO case. Thus the input may appear in the expression for the 7/

dynamics.

With the above change of coordinates defined we obtain the following normal form

il= e2

e? = &

with

&= «C.*)+I£iflajtt.l)«j

ff= €

*? = «(f,i?)+p(f,i?)«

2/1= &

ym= ff1

(2.23)

and a{j is the (t, j) entry of the decoupling matrix A(x) and 6t- is the ith entry ofthe vector
defined in (2.16) and (2.17), respectively.

Excluding the 7) dynamics one can view the MEMO normal form as m copies of

the SISO normal form. Hence constructing tracking control laws will be virtually the same
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as in the SISO case except that we must compute the feedback laws similar to (2.11) for

each output.

2.3.2 Fall State Linearization of MIMO systems

We now state conditions under which there exists m output functions h\,..., hm

such that the dimension of the 7/ coordinates is zero.

Let us first define the following distributions

G0(x) = sp{gi{x)i...1gm{x)}

<3i(a0 = sp{gi{x),...ygm{x),adfgi(x)y...,adfg2(x)}
(2.24)

Gi(x) = sp {adjkgj(x): 0<k< i; 1<j <mj

where i = 1,..., n —1.

Theorem 2.1 MIMO Full State Consider the system

x = f(x) + G(x)u

where the rank ofG(x°) is m andx 6 Rn,« € Rm. There existsm functions Ai(x),..., Xm(x)

such that with the outputs defined as

y = [Xi(x)i...iXm]T

the overall system has vector relative degree ri,.. .,rTO with

m

I>t =7i
t=l

if and only if

• For each 0 < i < n —2 Gi is involutive.

• For each 0 < i < n — 1 G,- has constant dimension.

• The dimension of 6?n_i is n.

Proof: see [Isidori, 1989, pp. 250-256]

We shall see that the solution to the MIMO full state linearization problem is very

similar to the problem of when may one transform a nonlinear system to a linear system

up to arbitrary order remainder terms which we shall discuss in more detail in section 2.4.
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2.4 Approximate Transformation of Nonlinear Systems to

Linear Systems

Consider the MIMO system defined below

x = f(x) + G(x)u

y = H{x)

where

G(x) = \gi(x)\92(x)

hi(x)

H(x) =

h2(x)

h3(x)

ht(x)

(2.25)

9m(x)]

withx € Rn,u € Rm,y € Rl. Furthermore f(x) andgi(x) aresmooth vector fields and hi(x)
are smoothfunctions. Note that (2.25) is no longer necessarily a square system (i.e. we do

not require m = /).

Following the technique in [Krener et a/., 1987], we seek a coordinate change in

the state space and output space along with state feedback such that the resulting linear

plant will agree with (2.25) up to anerror term of0(xp+11xpu) (i.e. terms of0(xp+1) and

0{x?u)).

This is similar to a problem investigated by Poincare [Arnold, 1983, ch. 5]:

When can we transform

x = Ax + fW(x) + f®(x) + --- (2.26)

to the linear equation

s = As (2.27)

through a change of coordinates of the form

x = 3+ ^(s) + ^(s) + .-- (2.28)

where /W and #M arevector valued homogeneous polynomials ofdegree r (i.e. pr\x) and
4>W(x) would only contain 0(xT) terms)?
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2.4.1 Poincare Linearization

Poincare cameup with necessary conditions for the above transformation to result

in a linear system. Before we prove Poincare 's theorem we first, however, need a few

definitions.

Definition 2.3 resonant The n-tuple A= (Ai,..., An) of eigenvalues is said to be reso

nant if among the eigenvalues there exists an integral relation of the form

Xs = mT\ (2.29)

where m = (mi,...,mn)T,mfc € Z+ U{0},£?=1mt- > 2. Such a relation is called a
resonance. The number \m\ = Y£=i m» *5 the order of the resonance.

Example 2.1

At = 2A,

is a resonance of order 2.

A,- = —Aj

is a resonance of order 3 since we have

A,- = 2At + Xj

Let $M be an n-dimensional vector valued homogeneous polynomial of degree r > 2.

Lemma 2.1 The differential equation s = As is transformed into

x = Ax +v(x) + f[r+1](x) + f[r+2](x) +•••

by the change of variables x= s+ <fir\s), where v(x) =^-Ax —A<f>^(x).

Proof: By straight calculation we have

x = s+ -d7*
= As+ -£—As

OS

- ('♦¥) As



noting that x = s up to order (r —1) hence s = x —<f>W(x) up through order r we get

*=(l+^jA(x-<tlTXx) +0(xr+1j)
= (l+d^\A{x-<^\x)^0{x^))
= Ax +

D

dx

= Ax + v(x) + f[r+1](x) + f[r+2](x) +

•Ax - A<t>[r](x) + 0(xr+1)

20

Definition 2.4 homological equation The homological equation associated with the lin

ear operator A is the equation

adA<(>[r] = v (2.30)

where <f>^ is the unknown and v is the known vector field and ada is the Lie bracket of the

linear field Ax and <f>^ and is defined by

adA4>[r] =̂ ~Ax ~MV\x)
adA maps homogeneous vector valued polynomials of degree r to homogeneous vector valued

polynomials of degree r.

In the following, assume A has distinct eigenvalues A= (Ai,..., An)T with eigen

vectors et- and let xm = ximi .. .xnmn.

Lemma 2.2 The eigenvectors of the linear operator adA are the vector-valued monomials

xmea and the eigenvalues of adA are given by

mTX - X3 (2.31)

Proof: w.l.o.g. we can assume A to be diagonal

dxme
adAXmea = —r—-Ax - Axmes

ox

= (Y/Ximi\xmea-Xaxmea
= \mTX - AJ xmea

(2.32)
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D

Remark: adA is invertible if all eigenvalues of adA are differentfrom zero (i.e. the eigenvalues

are nonresonant). For the case when A does not have distinct eigenvalues adA will still have

the same eigenvalues as before and if the eigenvalues are nonresonant then adA is invertible.

If there are no resonances of order k then we can solve the homological equation of degree

k.

We now state Poincare 's theorem.

Theorem 2.2 Poincare 's Theorem

If The eigenvalues of A are nonresonant

then the equation

x = Ax + /[2j(ar) + /[3l(aO+...

may be transformed into the linear equation

s — As

by a change of coordinates of the form

X = 5+^(5) +^(5)+...

where ^M is an n-dimensional vector valued homogeneous polynomial ofdegree r > 2

Proof: Let

x = Ax + vr(x)+ ••• (2.33)

Since the eigenvalues of A are nonresonant we may solve

adAhr = vr (2.34)

for hr. Make the substitution x = s + hr(x) to get

s = As+ wr+1 + 0(sT+2). (2.35)

We may repeat the process to remove terms of degree r +1, r+2,.... The limit substitution

yields

i = As (2.36)
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•

Remark: We did not show series convergence, but we may move the perturbation arbitrarily

far by a convergent substitution.

From a control standpoint the above solution is appetizing, but not totally fulfilling

since we have the extra freedom to choose u. So let us consider the MIMO control system

defined in (2.25). Suppose that this system has the Taylor series expansion

x = Ax + Bu + fW{x) + GM(x)u + 0(x3,x2u)

y = Cx + H[2](x) + 0(x3) (2.37)

where fi2\x) is a n x 1 vector of degree 2 homogeneous polynomials, G^(x) is a n x m
matrix of degree 1 homogeneous polynomials, and H^2\x) is a n x 1 vector of degree 2
homogeneous polynomials. Apply quadratic changes in the state space and output space

z = x-42\x) (2.38)

w = y-i{2\y) (2.39)

to obtain

z = Az + Bu + f®(z) + G[1]{z)u

- [Az +Bu, <f>W(zj\ +0(x3, x2u)
w = Cz+ H&\z) + C42\z)

- i®(w)+ 0(x3) (2.40)

where \Az +£tt,^2l(z)l is the previously defined Lie bracket of Az + Bu and $2\z)
([f(z),g(z)\ =|jf(z) - §£0(2)). Note that z agrees with xup through order 1terms,
hence they may be interchanged as the argument of a homogeneous polynomial of degree 1

or greater and included in the 0(x3, x2u) term. A similar scenario holds for u and v defined

below. Now, apply state feedback of the form

u = aW(x) + (I + pM(x))v (2.41)

to obtain

z = Az+ Bv+ R^2\z,u) + 0(x3,x2u)

w = Cz + R2W(z,w) + 0(x3) (2.42)



where

The equation

23

Ri[2](z,u) = jM(z) + GF*{z)u
- [Az +Bu,<t>[2](z)\
+ B(aW(z) +j3M(z)u)

R2W{z,w) = HW(z) + C<f>W(z)-7W(w) (2.43)

Ri[2](z,u) = 0 (2.44)

is referred to as the controller homological equation of degree 2. If equation (2.44) can be

solved for 4^(z), cfi*](z), and ^\z) then we would have

i = Az\Bv + 0(z3,z2u) (2.45)

Further, suppose this system can be expanded as

z = Az+ Bv+ f®(z)

+ G[2\z)v + 0{zA,z3u) (2.46)

We may repeat the above computations with

z = x-<f>[3](x) (2.47)

v = oS3\x) + {I + pW(x))r (2.48)

to get a system which is linear up to 0(z4, sPu).

Continuing the induction, we have at step p

x = Ax + Bu + fW(x)

+ (?lp-1](x)7i-|-0(xp+1,a:p«) (2.49)

with change of coordinates and state feedback

z = x-<f>W(x) (2.50)

w = y-7W(y) (2.51)

i* = aW(*) +(/ +^1l(«))« (2.52)



yielding

where

The equation

z = A* + 5i; + i2iW(2,7j) + 0(xp+\zptt)

w = Cz+ R2W(z,w) + 0(xp)
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- [j42 +fltt,0M(*)]
+ B{o^\z) +^-l\z)u)

R2W(z,w) = *M(z) + C^(z)-7W(«0 (2.53)

«iW(*,«) = 0 (2.54)

is the controller homological equation of degree p.

In contrast to section 2.2, this method attempts to linearize the state space equa

tions and linearize the output function separately, rather than the input-output map.

2.4.2 Solution of Controller Homological Equation

Counting the number of coefficients for each of the homogeneous polynomials

<f>W(z), «W(z), and fo>-i\z) we have

(m + 71) + m
V p ) \ P-i

unknowns, where

71 + p-l

P

is the number of coefficients in a pth orderhomogeneous polynomial of dimension n. Count

ing the number of equations in 2.54, we have

n+ p—1 \ / n + p —2
7i I ) + nm (

P \ P-l



n m P no. equations no. unknowns

2 1 2 10 11

3 1 2 27 27

4 3 2 88 106

8 1 2 352 332

9 3 2 648 621

Table 2.1: Problem size for various systems
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linear equations, where

• Underdetermined

• Overdetermined

71 71!

mJ (n-m)\mV
p is the linearization order, n, m are the dimensions of the state space and input space.

Typical problem sizes are given in table 2.1.

Typically this system of equations is either underdetermined or overdetermined.

Solutions may be computed using the singular value decomposition to obtain the minimum

coefficient size or minimize the Eudidean norm of the coefficients for the remainder term

JfcM, i.e.

771271

/3H

mm ML

2.4.3 Controller Implementation

In addition to linearization, one must also stabilize the plant. A subtle point that

needs to be addressed is whether the placement of the eigenvalues of A using the standard

state feedback control law

Fx-\-v

is done on the original system or the transformed system.
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If we apply state feedback to the original system and G^-1! ^ 0, we gain another

0(xp) term, but we know its value (G^'^Fx) and may include it in /W. Whereas if we

apply it to the transformed system and R^z, u) ^ 0, we may introduce another 0(xp)
term to our system from which we just removed the 0{xp) terms (or at least most of them)

and we have no way to remove this new term. Thus, it is dear that one should apply state

feedback before the transformation.

With this choice made, the iterations to compute the controller become:

1. Choose state feedback to place the poles of A:

u = Fx + v (2.55)

2. Calculate (^(x), a^(x), and pb-^x) for the system

x = Ax + Bv + /w(x)

+ G^11(a0t> + O(xp+1,*pt0 (2.56)

where /M(«) = ft\x) + G^-^Fx

3. Define the coordinate change and feedback

z = x-<f>W(x)

v = c^\z) + (I-rP^-l\z))r (2.57)

and set

w = y-7Wfo) (2-58)

If the state is not available, we may estimate z by

k = Az+ Bu + L(w - Cz) (2.59)

2.4.4 Existence of Solutions to the Controller Homological Equation

In the previous section we showed how to calculate the change of coordinates

and state feedback to remove arbitrary order terms, but the solvability of the set of linear

equation could not be guaranteed. Following the framework in [Krener, 1984], we shall see

that solvability conditions are very similar to those for the full state linearization of MIMO

systems. We begin with some definitions.
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Definition 2.5 order p basis A Distribution V is said to have an order p local basis at

x° if there exists vector fields q\,..., q<i which are linearly independent at x° and for each

r € V there exists functions ct such that

r = yEcM +°((x-x°Y+1) (2'6°)
t=i

Let {ft,..., qd) be an order p local basis at z°, where d is the order p dimension of V at

x°.

Definition 2.6 order p involutive A Distribution V is said to be order p involutive at

x° if there existsfunctions Ck%3 such that

{9i,9j] = £ C*iJK + °«« ~ *°)'+1) (2'61)
fc=i

where gi,gj € V.

Definition 2.7 order p integrable A Distribution V is said to be order p integrable at

x° if there exists n- d independent functions hd+i ,...,hn such that

< dhh qj >= 0{(x - x°)p+l) (2.62)

We now state a variation of Frobenius* theorem.

Theorem 2.3 Frobenius with remainder Let V be a distribution with order p basis

{?i> •••>Qd} atx°. V is order p integrable atx° if and only ifV is order p involutive atx°.

Proof: see [Krener, 1984]

As in section 2.3, we define the following distributions

G0(x) = sp{g1(x)i...,gm(x)}

Gi(x) = sp{pi(ar),.. .,0m(a:),ad/flfi(a:),...,adfg2(x)}
(2.63)

Gi(x) = spiadjkgj(x): 0< Ar < t; 1< j < m\

where i = 1,..., n —1.

Theorem 2.4 Krener The system

x = Ax + Bu + f^^ + G^-^u-rO^x^^x^u) (2.64)
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may be transformed into

z = Az + Bv + 0(zp+l, xpu) (2.65)

with

z - x - <fip\x)
u = aW(i)+(/ +/3[p-1](i))t;

if and only if

• For each 0 < i < n —2 G{ is order p involutive.

• For each 0<i<n —lG{ has constant order p dimension.

• The order p dimension of Gn-i is n.

Proof: The proof is essentially the same as for the MIMO full state linearization except we

only require order p involutivity and use the modified version of the Frobenius theorem.

We see that the existence for the solution to the controller homological equation

is a relaxed version of the full state linearization problem for MIMO systems. Hence we

may solve the controller homological equation for a larger class of systems. Furthermore

for those systems which we do not meet the above conditions we may achieve approximate

solutions by finding the closest solution in a least squares sense.

(2.66)
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Chapter 3

Indirect Adaptive Control of

Nonlinear Systems

3.1 Introduction

We present a technique of indirect adaptive control based on certainty equiva

lence for the control scheme of input output linearization of nonlinear systems presented

in chapter 2. This adaptive control law is proven convergent and does not suffer from the

overparameterization drawbacks of the direct adaptive control techniques on the same plant.

In section 3.2, we review two identifier structures for nonlinear systems, (related

observers have been presented in [Bastin and Campion, 1989, Kreisselmeier, 1977, Kudva

and Narendra, 1973, Luders and Narendra, 1973]). Section 3.3 gives an outline of the

indirect adaptive controller along with a proof of convergence.

3.2 Identifier Structures

Consider the system
m

£=/(M*) +£<7.(M*H (3.1)

with x € Rn,« € Rm,0* € Rp and /, # are assumed to be smooth vector fields on Rn.

Further let /(x, 0*) and gi(x, 0*) have the form

/(«,«•) = E?=o «;/,(*) (32)
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Note that the indices for / and <?,- start at zero. This allows us a simple way to indude

portions which do not depend on 0. Thus, it is assumed that 0q = 1 and fo(x),gi°(x) do

not depend on 0. We are left with 0*, i = 1,.. .,p, as unknown parameters, which appear

linearly, and the smooth vector fields fi(x), g^(x) are known. If we formulate the regressor

m m

wT{x, u) = [h(x) +J^,-1 (*)«,-,..., fP(x) +I>p(sK] (3.3)
t=i t=i

so that wT(x, u) € RnXp contains all of the nonlinearities of the system, then (3.1) can be

written as
m

x= wT(x, u)0* + f0(x) +529i0(x)ui (3.4)
t=i

3.2.1 Observer-based Identifier

To estimate the unknown parameters, we will use the identifier system

x = A(x-x) + wT(x,u)0+fo{x) + T,Zllgio(x)ui
(3-5)

0 = —w(x,u)P(x —x)

Here A € RnXn is a Hurwitz matrix and P € Rnxn > 0 is a solution to the Lyapunov

equation

ATP+ PA = -Q, Q>0 (3.6)

This identifier is reminiscent ofoneproposed in [Kudva andNarendra, 1973], [Kreisselmeier,

1977]. The choice A = —ai corresponds to a special case of the identifier. If we define

d = x —a:, the observer state error, and <j> = 0 —0*, the parameter error, and assume 0* to

be constant but unknown then we have the error system

<§! = Aex + wT(x,u)<l>

§ = -w(x,u)Pei

One should note the resemblance of the error equation above to that of the error equation

of a full order state observer.

Theorem 3.1 Stability of Observer-based Identifier

Consider the observer-based identifier of equation (3.7),

then 1. <f>€ £<»,

2. ei € ioo H L2,
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Figure 3.1: Block Diagram of an Indirect Adaptive Controller

3. If w{x,u) is bounded,

then Ci € Loo and lim^o© ei(t) = 0.

Remarks:

1. The proof is a standard Lyapunov argument on the function

V(eu<f>) = eTPe1 + <t>T<t>
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(3.8)

2. The condition on the boundedness of w is a stability condition. In particular, if the

system is bounded-input bounded-state (bibs) stable with bounded input, then w is

bounded, (see [Sastry and Bodson, 1989])

3. Theorem 3.1 makes no statement about parameter convergence. As is standard in the

literature one can condude from (3.7) that e\ and <f> both converge exponentially to

zero if w is suffidently rich, i.e., 3ai,a2>6 > 0 such that

ct\I > I ww dt > a2I (3.9)

This condition is impossible to verify explidtly ahead of time since to is a function of

x. If we assume that the regressor is bounded it is dearly not necessary to have the

upper bound in (3.9). Henceforth, when we use this result we will assume that the

regressor is bounded.



3.3 Indirect Adaptive Tracking

In the case of parameter uncertainty, we have the system

x = /(*, P) + IXi #(*.*•>«•

yi = hi(x,0*)

with 0* € Rp the vector of unknown parameters. We will make the following assumptions:
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(3.10)

Assumption 3.1 Linear Parameter Dependence

The vectorfields f{x,0*), g{(x,0*) and the output function hi{x,0*) in the system

(3.10) depend linearly on the unknown parameters as

/(«,•*) = 53-o^/i(«)
n(*,n = £5=o«;s.J'(*)

where fi(x),gj(x) are known smooth vector fields on Rn and h{(x) are known smooth scalar

functions. Note that the indices start at zero (thus the portion which does not depend on

parameters is included in the overall f, gi and hi for notational simplicity) and 0O = 1.

Assumption 3.2 Relative Degree

The vector relative degree of the true system (3.10) is 71,72, ••-,7m> andfor all 0

in a ball around 0* and all x in a neighborhood of x° the matrix

A(x,9) = (3.11)

is nonsingular.

In the discussion that follows we will be using the implicit summation notation

(ie. there is a summation over repeated indices) to keep the expressions manageable. For
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example, we will write /(x,0*) as 0jfj(x). Now if we pick the following diffeomorphism

*(*,*•) =

J?(x,0*) =

Lf(Xl6*)hi(x,0*)

-71-1£7(;;.)MM*)

*W(*,0*)

where 7 = E£i7t and $^+i(x,0*),.. .,$n(x,0*) are chosen so that $(x,0*) has a nonsin-

gular Jacobian matrix at x°. Furthermore let us define the vector B(x,0*) as

L LfW^hm J

^•i0(z)

0lm-i O^Lj^-Lj^Hx)
*W(*,P)

$w(s,0*)

*„(M*)

(3.12)

(3.13)



Then we have, in the normal form,

where

8= &

€4 = *»«.«», «*) + £™=i «w«, v.«>;

e'm _ cm
1 — S2

yi= (I

ym= er

fttt.i?,**) = £/(*,*•)*<(*, **) 7+!<*<rc

*W» «?»**) = L9JW)Vi

and a,-j is the (t,j) entry of the decoupling matrix A(x,0*) and 6t- is the t*fc entry of the

vector B(x,0*) defined in (3.11) and (3.13), respectively.

We assume that x = 0 is an equilibrium point of the system (3.10) (ie. /(0,0*) = 0)

and we assume /i,-(O,0*) = 0. Then the dynamics

•n = qe*(01n) (3.16)

are referred to as the zero-dynamics. The nonlinear system (3.10) is said to be minimum

phase if the zero-dynamics are asymptotically stable. We will now impose the following

assumption:

Assumption 3.3 Exponentially Stable Zero Dynamics

The equilibrium point n = 0 of the zero-dynamics of the true system (3.10) is

exponentially stable.
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(3.14)

(3.15)
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Now let us consider our choice for the control law. The certainty equivalence

principle suggests that we pick the appropriate linearizing control law but with the unknown

parameters replaced by their estimates. We choose

u=-A-l(xj)B(xj) + A-1(x,6)v (3.17)

To achieve tracking we pick V{ in the form of (2.11). However, we do not have exact

expressions for the derivatives of y,- which involve unknown parameters. Instead we will use

estimates of the derivatives of y,- obtained from the parameter estimates:

* =ifi?+Wifi~x) - *<1,-1)) +•••+W*« - *) <3-18)

where

ftw = i& •••i»H, •••lsh *••* (*) (3-19)
Now let us return to the normal form. Observe that Q. can be written as

ft = %-^S^ •••J/il^(«)+V-"^V*^ ^
- [ijv—ijoLf^ --•̂ /ia *••* (*) +*»,.- ••**Jb^^x/^-a "*-X/^ fcib (*)**]
+ ft* '-'kLlhi •••i/,>J0W +^','^V1 '"LShh^(x)uk]

(3.20)

If we define the (large dimensional) vector of all multilinear parameter product errors,

X, =(«j7j-**)-(V*io) (3-21)

then

+ZiT(x,u)xi

Note that if*? —0* = <f>—•Oast—• oo then \i -* 0 as t -* oo.

Substituting the certainty equivalence control law, we have

eV = * + *T(*,»)x.- (3-23)

Therefore, in the dosed loop we have

e* = Ate1 + ZiT(x,u)xi

V = l(t,fl,P) + P((,ri,P)" (3«24)

(3.22)
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where A{ is a Hurwitz matrix, e* is a 7; x 1 vector, and i = 1,..., m.

We will now state the following bounded tracking result under parameter uncer

tainty:

Theorem 3.2 Convergence of Indirect Adaptive Controller When Identifier

Input Is Sufficiently Rich

Consider the plant of equation (3.10) and the control objective of tracking the

trajectory yiM and for each i = 1,..., m

If (AI) Assumption 3.1 holds (Linear Parameter Dependence),

(A2) Assumption 3.2 holds (Relative Degree),

(A3) Assumption 3.3 holds (Exponentially Stable Zero Dynamics),

(A4) |xt| - 0 as t - 00,

(A5) ZiT(x, u) is "cone bounded" in x and uniform in u,

ie. \ziT(x,u)\<h\x\ Vu€R,

(A6) A{ is a Hurwitz matrix,

(A7) g(f%7?) is globally Lipschitz in £*,?/,

(A8) »«M»yt|tf,...,yl2"1) are bounded
then the control law given by (3.17) and (3.18) results in bounded tracking for the system

(3.10). (ie., x € Rn is bounded and yi(t) -• yiM(t).)

Remarks:

1. The drawback with this result is that it needs the convergence of the identifier for its

proof of asymptotic tracking. In turn, this requires the presence of sufficient richness

which is not explidt in terms of conditions on the input. This is in contrast to the

direct adaptive controller ([Sastryand Isidori, 1987]) where parameter convergence is

not needed for stability and asymptotic tracking.

2. We reiterate that we are assuming the boundedness of the regressor, 10, as stated in

section 3.2. Thus we explicitly disallow the possibility of finite escape time.

Proof: For each = 1,.. .,m we may define 6j to be a bound on ytAf and its derivatives.

Then from (A8)

\e\<W\ + bd (3.25)
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From (A6) 3P > 0 such that

ATP+ PA = -I (3.26)

Because a; is a local diffeomorphism of (f, rj)

1*1 < 4.(1*1+ M) (3-27)

From (A5) and P defined in (3.26)

\2PziT(x,u)\<tz\x\ (3.28)

From (A3) 3v2(n) and positive constants o\,o2,oz,o\ satisfying

o\\n\2 < v2(rj) < (T2\n\2

^9(0,77) < -o3\n\2 (3.29)
1^1 < °4\VI

From (A7)

l?(f','7)-<K0,»/)l<<XI (3-30)

From these bounds

(3.31)

With these preliminaries, we will show that e and n are bounded. Consider a Lyapunov

function for the system (3.24)

V(e\ n) = eiTPe{ +pv2(rj) p>0. (3.32)

Taking the derivative of V(-, •) along the trajectories of (3.24) yields

V = eiT(ATP + PA)ei +2eiTPziT(x,u)xi + pftq(e,v)
,|2_i_ „.B

< -^-ttiMxi\f +(tMtMxi\?
-(^ - (44lx,| +^t,)\r,\? +(44lwl +/«M,)2M2 „ „,

-(I - lx.|44)|ef - W
< -(§ - lx.l44)|e,T - [>*>- (441*1 + wttfM2

+(44*j|x.|)2+fii£^i

< -|ef + lzlx\e%W\ + bd + \n\)\Xi\ +P{-*3W2 +*4*,M(|e«| + **))
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03

4(44 + vdq)

Then, for p < po and \xi\ < min(p, -^j-)-, we have
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Mo = A(0 . 3_ , xa (3.34)

4 Z 0"3

We can assume that |xi| < ^1*1(^,4^-) for all t > T from (A4). Also, the only previous
restriction on p was p > 0. Thus, for all <> T,V" < 0 when \rj\ or |e*| is large which implies

that \n\ and |e*|, and hence |^| and \x\ are bounded. If ?(£,??) is locally Lipschitz in (£,77)

only on a set U and not all of Rn then the preceding analysis would hold so long as |x(0)|

is chosen small enough to guarantee that (£,77) lies in U. Consequently,

e^AiJ + zpfauiXi (3.36)

is an exponentially stable linear system driven by an input that approaches zero asymptot

ically. Thus, we condude that the tracking error converges asymptotically to zero. •

3.4 Conclusion

We have presented convergence results for an nonlinear adaptive identifier and an

output tracking result using indirect adaptive control. This approach was based on certainty

equivalence for input output linearization of nonlinear systems. The form of the identifier

did not need to be spedfied for the convergence result and overparameterization was not

necessary. However, the result was based on an assumption of identifier convergence. An

example of the indirect adaptive control scheme is given in the next chapter.



Chapter 4

Indirect Adaptive Control of

Induction Motors
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4.1 Introduction

The use of nonadaptive feedback linearization for the control of an induction motor

has been quite popular and hasbeenusedsuccessfully in [Krzeminski, 1987, Lucaand Ulivi,

1987] and others. Furthermore, direct adaptive nonlinear controllers have been developed in

both [Georgiou and Normand-Cyrot, 1989] and [Marino et a/., 1990]. However, in general,

the direct adaptive control scheme requires overparametrization, i.e. extra parameters must

be added in the controller (see [Sastry and Isidori, 1987]). The indirect adaptive control

scheme does not suffer from this drawback.

In this chapter we use the techniques constructed in chapter 3 as applied to a

fifth order symmetric induction motor modd with linear magnetic circuits. This modd was

used in [Marino et a/., 1990]. We proceed with a description of the fifth order induction

motor modd in section 4.2 and carry through the calculations necessary for the identifi

cation scheme and the indirect adaptive controller. We end with simulations comparing a

nonadaptive feedback linearization and an indirect adaptive controller.

4.2 Induction Machine Model

The modd for a 2-phase symmetric induction machine with linear magnetics is

derived in [Marino et a/., 1990]. To set notation we have i2{r,,}, *{«o,56,ro,r6}> ^{aa,ab,ra,rb}
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representing the resistance, current and flux linkage with respect to the stator (s), rotor (r)

and the stationary stator reference frame (a,b). The inputs are taken as the voltages to the
rn

stator, namdy v3a, va\, and x = [a>,^ra,^r&,iaa,ia&] .

We have, in the familiar x = f(x) + g\(x)v8a + g2(x)v8i, form

/(*) =

and

M
oL\

M

^ tyraisb ~ fabisa) - ^f
^ {Miaa - i)ra) - npuj)rb
nvui)ra + ^ (Mi8b - iprb)

Ik**-****)-("*$*'% \

9\ =

92 -

000 £0

0 0 0 0 i

(4.1)

(4.2)

M2where a = L8 —*jj- and np is the number ofpole pairs. Now choose the outputs for tracking

as

y\

2/2 tfa + tfb

4.2.1 Input-Output Linearization of the Induction Motor

(4.3)

With the dynamics and outputs defined as above, we find that the system has

vector rdative degree of [2 2], hence the n dynamics are one dimensional. Thus the change

of coordinates may be defined as

$(x) =

/6\
6

V v J

yi : r U)

y\ ^{^raiab-^Tbisa)-1^
2/2 = tfa + tfb
2/2 *fr [M{$rai8a + Abisb) - tfa ~ tfbl

"*" Gfe) 1 { arctan (fc)

\

7
(4.4)

where n completes the change of coordinates. Since det (g%jfH = 4j^flr {tl>2a + ij)2b) we
must have the quantity ($?a + if>2b) nonzero, which is true provided the motor is rotating.

For $(s) to be a diffeomorphism we must also have the angle arctan (J™-) 6 (^, §)•
With this change of coordinates defined, we now proceed with the calculations to

render the induction motor input-output linear and decoupled. If one differentiates y\ and



y2 once each we obtain

where

we get

2/1

2/2

A(x) =

vaa

vsb

= A'

L2Mx)
L2jh2(x)

+ A(x) Vsa

V8b

L9lLjhi L92Ljhi

LgiLfh2 L92Lfh2

1

nvMil>rb
J

npMV>ra
J

2MRri})ra 2MRTij)Th

which is nonsingular provided (ip2a + if>2b) is nonzero.

Choosing the state feedback of

J -X2//m(x)
+

«i

1 . -L2fh2{x)
1^

. "2

2/i Vl

2/2 «2
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(4.5)

(4.6)

(4.7)

(4.8)

which is input-output linear and decoupled. We may then apply a linear feedback of the

form of (2.11, 3.18) to asymptotically track desired trajectories.

At this stage we point out a few important properties that hold for the induction

motor model

• The parameters Tl and i2r enter linearly.

• The decoupling matrix A(x) only depends on Rr and not Tl. The only way A(x) can

become singular through variations in Rr is if Rr = 0, hence the vector rdative degree

is well defined with respect to parameter variations.

• 77 remains bounded since it is a bounded function.

• The functions fi(x) multiplying the parameters are linear and hence Lipschitz.
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4.2.2 Partitioning the Model for Adaptation

We wish to adapt to the load torque and the rotor resistance, Tl and Rr. As can

be seenfrom (4.1) (4.2), both of these parametersenter linearly in f(x) only, hence weneed

only partition f(x) as:

^(^rJsb-^rbiaa)

fo(x) =

-nvuil)Th

npUlf>Ta

^np^rb - &-isa
-7tn^ra ~ ^iab

Mx) = [-^0000]:

h{x) =

M
- oL\

7 (lprb - Mi3b) _

with [0!m 02*]T = [TL Rrf we have

* = fo(x)^h(x)01*-rf2(x)02t

+ 9\{x)vaa + g2(x)v8h

and the regressor for the system is simply

wT(x) = [f1(x) f2(x)].

(4.9)

(4.10)

(4.11)

4.2.3 Conditioning of the Regressor

Since we need persistency of exdtation to guarantee that the parameter error is

driven to zero, let us examine the regressor more dosdy. By straight forward calculation

we have for wwT(x)

l

J*

V (tyra-Miaa)2 +(ll>rb-Miab)2) j
(4.12)
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Clearly this matrix is positive semi-definite and has rank of at least one (in fact

with the parameters and trajectories used in the simulations this matrix was full rank

throughout). For the case of persistency of excitation we need only concern ourselves with

the conditioning of fwwT(x)dr over some window of time.
We will assume that this integral is a matrix of full rank. This assumption is not

constraining in any sense since wwT(x) is singular only if Vv& = Miab and ipra —Misa,
which will not happen over an extended period of time provided the motor is rotating.

Hence requiring these two equations to not hold identically over some period of time is not

in the least bit restrictive and is met in all but a singular case.

4.2.4 Adaptive Input-Output Linearization of the Induction Motor

With the nonadaptive linearization framework set in section 4.2.1, we now proceed

with the adaptive law. We first must identify the unknown parameters Tl and Rr. Using

the equations from section 3.2 we have

x = A(x —x)+ wT(x, u)0

+ fo{x) + gi{x)v8a + g2{x)vab (4.13)

0 = —w(x, u)P(x —x)

where 0 = [fL Rr]T-
Note that since we know /o(«)»</i(«)»P2(a;) exactly, there is no need to indude it

in the regressor. As can be seen in (3.17), the same control law as in section 4.2.1 is used

except Tl and Rr are used in place of the true values. Thus the control law for the indirect

method is very easy to implement since we use the same law as the nonadaptive case except

parameter estimates are used for the unknowns. The identifier is the only additional piece

that need be added.

Furthermore, since we have persistency ofexdtation and since the properties listed

in section 4.2.1 hold for the induction motor we can guarantee asymptotic tracking of desired

trajectories and the parameter error bdng driven to zero from the results in section 3.3.

4.3 Simulation Results

A 3-Hp induction motor was simulated using the indirect adaptive scheme with

the motor parameters given in table 4.1. These values may be found in [Krause, 1986, p.
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190].

In the following we are allowing the parameters to be time varying. While it is

assumed that the true parameters are constant but unknown for the proof to carry through,

we simulate the more realistic scenario of the parameters varying with time.

The rotor resistance, Rr, can vary ±50% from its nominal value. In light of this

we allowed the actual resistance to ramp from 50% of its nominal value to 150%. This

simulates the rotor coils heating up, causing the resistance to increase. The initial estimate

for Rr was set to the nominal value.

The load torque will be a function of the rotor speed. We modd this in a similar

fashion to [Nath and Berg, 1981] where Tl is rdated to u> quadratically. More specifically

we haveTl = 0.0012(0.05 + 0.3w2). The initial estimate of TL was 8 N •m.

All of the simulations were carried out using MATRIXx version 2.4 with the

variable step Kutta-Merson integration algorithm.

As can be seen in figures 4.1 and 4.2, the indirect adaptive control scheme worked

extremdy well. The trajectories for the indirect controller were virtually indistinguishable



Parameter Value Units

Wnom 180 rad/sec

J-max 12 N • m

J 0.089 kg -m2
np 2

Ra 0.435 ft

Rr 0.816 ft

La 0.002 H

Lr 0.002 H

M 0.069 H
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Table 4.1: Parameters for a 3-Hp Induction Motor

from the desired trajectories of w and ij>2a + i}>2b. Furthermore, from figure 4.3 one sees

that the estimates for Tl and RT reach their true values from initial offsets of 4 and 0.3,

respectivdy, and then track the true parameters throughout.

Observing the error for the nonadaptive controller in the bottom halfof figure 4.1,

one sees that the shape ofthiswaveform issimilar to thedesired trajectory for ^a+V'Hr This

is due to the fact that for the nonadaptive controller we do not achieve output decoupling

since there is parameter mismatch. As a result, the outputs interact. This is the main

advantage of using the adaptive scheme sinceone may always argue that a simple PED loop

will regulate the offset in the tracking error. This would result in the steady state error

being driven to zero (for constant trajectories), but the outputs will never be decoupled if

there is any parameter mismatch.

4.4 Conclusion

A nonlinear indirect adaptive controller was designed for a fifth order induction

motor model. The simulation results were quite good and achieved both asymptotic tracking

and output decoupling and the parameter estimates for Tl and Rr converged to thdr true

values. It should be noted that we assumed the rotor flux linkages, ^>ro and Vr6» were

measured. This typically would involve flux coils to be installed in the rotor. One may also

use the observers devdoped in [Verghese and Sanders, 1988] to estimate these quantities.
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Chapter 5

The AP_LIN Toolbox

5.1 Introduction

We present the AP- LIN toolbox for the approximation and control of nonlinear

systems. The toolbox indudes a system approximator which takes a nonlinear system

and gives back a polynomial system of arbitrary order. From this approximation we may

generate a feedback linearizing controller or a controller which renders the system linear up

to arbitrary order terms as in chapter 2.

The toolbox itself is discussed in section 5.2 and to show some of the features

of the package we give a few examples in section 5.6 and a possible scenario for realtime

control is given in section 5.7.

5.2 The AP. LIN Toolbox

The AP. LIN toolbox is a stand-alone set of programs all implemented in standard

Cto run on any UNIX platform. The notion of using individual programs for each task was

partly inspired by the toolbox mind-set introduced in [Wette and Laub, 1986]. This differs

from the approach taken in [Krener et a/., 1991], which carries through the higher order

linear approximation control design in a MATLAB based package.

The heart of the toolbox is the polynomial system approximator which is discussed

in section 5.3. As seen in figure 5.1 the toolbox can accept various input forms from CACSD

packages and symbolic packages along with user defined subroutines. Other input forms

will be added as time and resources permit. From these system descriptions the system
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Figure 5.1: The AP. LIN Toolbox Flow

approximator will then give back a polynomial system.

This polynomial system may be viewed (via l&TjjX) or we may simulate the ap

proximate system to check the validity of the spline fit. We may also create (based on the

approximate system) the two controllers mentioned previously and generate C subroutines

which may induded in a simulation or executed on a real-time controller.

Currently there is a SunWindows interface to the various routines. In the future

we plan to use X as the standard window system for the user-interface, but one can always

use the simple UNIX command line sequences from a dumb terminal to perform the desired

operations.

5.3 Polynomial System Approximator

The polynomial system approximator creates a multivariate spline fit of arbitrary

order of

x = f(x) + G(x)u

y = h(x)



n a no. parameters

2 2 2

2 4 8

3 3 18

4 3 60

8 2 660

Table 5.1: Number of parameters to be identified for various systems

to the system
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x = f(x) + G(x)u

y = h(x)

where /(a;), h(x) are vector valued polynomials in x and G(x) is a matrix of polynomials

in x.

As stated previously, the approximation code accepts numerous input forms such

as MATRIXx-, Mathematical and user generated subroutines in C or FORTRAN. The

spline fit can be about an input trajectory or a prescribed state trajectory and the compu

tations can be made parallel for increased speed.

5.3.1 Computation of Coefficients for Spline Approximation

For each /,-, hi, Gij

t=i \ *

parameters must be identified, where a is the order of the approximation, and n is the

dimension of the state space, (m+2) singular value decompositions must then be computed

to get the closest approximation in a least square sense. One advantage of assuming that

the input enters affinely is that /,- and Gij may be identified separatdy, thus reducing the

size the identification problem in (at least) half.

One can easily see from table 5.1 that the number of parameters to be identified

becomes quite large, but this is only if wetake a black-box approach. Typically wewillknow

the structure of our system and how the nonlinear terms come in and which state variables

the nonlinear functions depend on. So, a more reasonablescenariois to have a system which



51

is mostly linear except for a few nonlinear terms which are a function of a small subset of

the state variables. In this case we would get a much more reasonable problem size.

5.4 Computation of Approximate Reduction Control Law

AP- LIN computes the change of coordinates and feedback for the scheme de

scribed in section 2.4 by matching the coefficients of the unknown (i.e. <fir\ alr\/ft"1))
polynomials to the terms present in the dynamics of the system. The singular value de

composition is the used to solve the linear least squares problem and obtain the polynomial

coeffidents. AP- LIN can carry through the problem for arbitrary order, but as stated

before the number of equations and unknowns becomes very large as the order increases.

Once the control law has been computed we may create I^TjjXto view the controller

and create C code that implements the control scheme.

5.5 Computation of Exact Linearization Control Law

The computation of the exact linearization control law can be carried through nu

merically (as opposed to symbolically) once the system has been approximated by a polyno

mial system. AP- LIN basically caries through the calculations in section 2.2 for both SISO

and MIMO systems. These computations are quite fast since we are only traversing data

structures (integer operations) and the only floating point operations are multiplication and

addition to update the derivatives of the outputs. Furthermore since all the operations are

implemented in C we are able to store the structure and dynamics of the system compactly.

One problem with rdying on a matrix and vector storagebased program (such as MATLAB

or MATRIXx) as the core to base a nonlinear CACSD package on is the wasted space.

Typically one represents a multivariate polynomial as a large matrix with each dement in

the matrix representing a possible coeffident for the total polynomial. Depending on the

computations we also may have duplicate entries (i.e. we may have allocated storage for

both x\x2 and x2x\). While this structure lends itself to easy manipulation it is an extreme

case of overallocation of resources (memory) since many of the entries in the matrix will be

empty. Computations based on this type of storage will also be slowed since we may not

assume that any entry is zero, thus each entry must be treated the same.

In doing these computations a set of data structures and core routines that handle
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Figure 5.2: Backlash system from SystemBuild

basic operations on polynomials were devdoped such as multivariate polynomial addition,

multiplication, and differentiation. The existence of these functions will speed development

in the future as almost all algorithms will use these core routines.

5.6 Examples

In this section we give a couple of examples to show some the capabilities of

the AP- LIN toolbox. In the following it should be noted that all system and controller

equations we generated by AP- LINin. BTjgXform.

5.6.1 Backlash Example

In figure 5.2 we have a SystemBuild block generated within MATRIXx- This

super —block represents a simple modd of backlash in a gear train. We have two states

and a nonlinearity (dead-zone) sandwiched between them. Note that this system is not

controllable when x\ lies in the dead-zone region.

If we approximate this system with a third order polynomial system about a

sinusoidal trajectory and ask for the system equations in I^Tj?Xform we get

System Spline Modd

x = f(x) + g(x)u

and

y = h(x)

where x € R2, y € R1, and u GR1. With

0

3.1 •103*!3
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Figure 5.3: Third order approximation to the backlash system

9(x) =

h(x) = [x2 ]
These set of equations are expected since the dead-zone can be reasonably ap

proximated by a cubic function. The results of two simulations comparing the approximate

system to the actual system about two trajectories is given in figure 5.3. The approximation

comes extremdy dose in both cases and can be used as a modd to base our control design

on in this region. In fact it was so hard to differentiate the approximate and the actual

system that we had to add the error plots.

Unfortunately finding a control law is not trivial since an exact linearization control

law will have a singularity at xi = 0 and the Jacobian linearization of the approximate

system is not controllable, hence the higher order linearization will not yidd anything

fruitful. We may apply the exact linearization control law with a prdoad function to avoid

the singularity (i.e. if ||ari|| < S then use xi = esgn(xi) in the control law). This controller

is essentially high gain and therefore not very robust and we only present it to continue

through the example. Results of a simulation to track an offset sinusoid through the dead-

zone region is given in figure 5.4. The actual position (the dashed Une) comes reasonably



Figure 5.4: Modified exact linearization controller

close, less than the dead-zone region, to tracking the desired position (the solid line).

5.6.2 Simple Two Dimensional System

Consider the system

x\ = sin(:c2)

x*2 = u

y = xi
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(5.1)

Let us run the system through the system approximator with a trajectory about

the origin. We retrieve the third order polynomial system

X?
X\ = x2 —

x2 = u

y = xi (5.2)

Note that this system is the same as the system one would get by simply repladng sin(a;2)

with the first two terms in the Taylor series expansion for sin(-).

If we proceed through the exact Hnearization calculations on our actual system we

get

y = sin(x2)



y = cos(x2)u
v

u =

C0S(X2)

It should be noted that this control law has a singularity at x2 = ±n|. Now if we proceed

through the exact linearization algorithm on our polynomial system we get

3
x2*

y = x2-

y = u 1-
x2l

u =

(*-*)
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(5.3)

(5.4)

This control law has a singularity at x2 = ±\/2. The higher order Hnearization methodology

will give us

43Kz) =

where

This coordinate change yidds

z =

. 6 .

oP\z) = 0
fi2\z) = 0

: a®(x)+(l +pW(x))v

-* _i_ s_ __ _lz2 + TV - -4t +12 72
___

1296

^ T 2 4 ^ 24 512 J V .

(5.5)

(5.6)

(5.7)

(5.8)

which hasonly 0(z, v)4 terms andhigher. If wethen close the loop with a Hnear control law

on both nonlinear controllers based on the approximation and simulate the step response

we get very similar results as seen in figure 5.5.

This last example shows two different nonlinear control approaches to a problem

with about the same results. One can envision a case where perhaps the exact Hnearization
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Figure 5.6: Ball and Beam

control law had an unavoidable singularity and the higher order Hnear approximation control

scheme was stable in this neighborhood. The moral is that the design engineer must have

options to turn to since there is not currently one omni-powerful methodology for nonHnear

systems.

5.6.3 Ball and Beam Example

Figure 5.6 represents the so called ball and beam system which is comprised of a

ball riding on a track. The control input is the torque of a motor at the center of the track

which rotates the beam causing the baU to move accordingly. The equations for the system

may be written (after a redefinition of the input) as:



xi x2 0

x2
__

x\x\ -psinx3
+

0

X3 X4 0

. *4 . 0 1

y = xi

T._ (t f a iWwhere x = {x\,x2,xz,X4)T := (r,f,0,0)J

This system may be approximated by AP- LIN as:

System Spline Model

x = f(x) + g{x)u

and

y = M1)

where x € R4,3/ € R, and « G R. With

/(«) =

X2

-9.8x3 + 1.6x33+ xxxA2

x4

0

9(x) =

h(x) = [*j]
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u

(5.9)

The x\X4* term causes the system to have rdative degree 3, hence we would

have unobservable dynamics if we used an exact Hnearization control law on this modd.

Unfortunatdy these dynamics are not minimum phase, thus we may not achieve asymptotic

tracking. If we, however, ignore this term in the computation of the linearizing control law,



58

then we would have a rdative degree 4 system, and hence no zero dynamics. This further

approximation is valid if x4 remains small.

It is quite easy to make this additional approximation (just set the term to zero)

and have AP- LIN churn through the calculations to create the Hnearizing control law. The

calculation took less than 20 msec on a SparcStation 1. The control law as created by AP-

LIN is given bdow.

Input-Output Linearizing ControUer

x € R4, y € R, and u € R,

And the system has relative degree of 4

u= -A~1(x)B(x)+ A^^v

Where

A(x) = [_9.8 +4.9x32 ]

B(x) — [9.8x3x42 ]

And the diffeomorphism:

yi X\

yi x2

y\ -9.8x3 + 1.6X33

*<8> -9.8x4 + 4.9x32x4

Defines the Hnearizing change of coordinates.

If we now ask AP- LIN to generate a C subroutine for the controUer so we may

simulate the system, then we get the results shown in figure 5.7 for the ball position (xi)

tracking a sinusoid, (the soHd line and the dashed line, respectivdy).

The AP- LIN toolbox gives us a platform to rapidly include nonHnear control

schemes since we restrict oursdves in the end to polynomial systems. The data structures

and manipulation routines have all been written to handle the multivariate polynomials.

Hence we may easily implement other nonHnear algorithms such as the nonHnear regulator
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Figure 5.7: Tracking Results for the Ball and Beam

([Byrnes and Isidori, 1990]), or the approximate control methods discussed in [Hauser et

a/., 1988], or even some adaptive schemes such as [Sastry and Isidori, 1987] and [Teel et a/.,

1991]. Thus we can give the control designer the options and flexibiHty necessary.

5.7 Real-time Control

In table 5.2 we have summarized the time it takes for the computation of the ap

proximation and to compute the higher order Hnearization control law on various computer

systems for different problem sizes. It should be noted that these are all UNIX worksta

tions running in a multi-user environment. In a real time setting the times would be even

smaller. The code was compiled using the standard C compiler provided by the computer

manufacturer and with the default levd of optimization. The machine labded SS2-i860 is

a Sun SparcStation 2 with an Intd i860 array processor connected to it. For this set up the

singular value decomposition was ported to the array processor and was soldy executed on

it. For the smaller problems the overhead involved in setting up the shared memory and

passing the data dominated the timing figures, but as the problem became larger the speed

of the i860 dominated.

The computation of the input output Hnearizing controUer took 10 msec on all



System with 2 states, one input and output
Approximation

Time (msec)
Order Par. DEC 5000 SUN 4/370 SS2 SS2-i860

3 10 35 60 40 60

4 15 98 220 no 110

5 21 230 510 240 230

13 105 46981 47270 32160 21860

Controller Computation
Time (msec)

Order DEC 5000 SUN 4/370 SS2 SS2-i860

3 32 70 50 70

4 74 160 90 90

5 133 260 150 140

Table 5.2: Computation time for various processors
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platforms. The speed of execution is due to the nature of the computation (mainly multiply

and additions). So if on were to use the exact Hnearization control law then the main

computational load will be in the system approximation which can be made much more

manageable if we use our knowledge of the system and do not take a black box approach.

It is quite dear that for small problems we could currently do the approximation

and create a control law in real-time. With more optimization and faster (perhaps parallel)

processing power one will be able to handle even larger problems.

So one may envision a scenario as depicted in figure 5.8 where we have a controUer

running at some fixed rate and at a slower time scale we have the system approximator

gathering the inputs, states, and outputs to create an approximation of the system in its

current operating region. This approximation is then feed to a another processor which will

compute a new control law and update.the controUer.

Another possibility would be to compute several approximations at various oper

ating points and then apply a nonlinear gain scheduling algorithm to switch between the

corresponding controUers.

The code generated by AP- LINis minimal in size and has the benefit of having all

floating point operations restricted to multipUcations and additions. This feature is realized

from the fact that we are restricting our systems to polynomial systems. Furthermore the
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nature of these calculations lend themsdves ideally to digital signal processors (DSP) chips

which currently have as much as 100 Mflops (millions of floating point operations) and in

the future wiU span in the giga-flop speed.

One interesting thing to note is that the above scheme is very similar to adaptive

control in that we have:

• A parametrization of the plant (polynomial).

• An identifier to estimate these parameters.

• A certainty equivalence control law based on the updated parameters.

One would expect that certain richness conditions on the plant must also be meet. It would

also be easy to add another identifier running on the outer loop which would be able to

handle parametric uncertainty in the plant which we are approximating. Hence many of

the same problems/solutions which come up in techniques such as the indirect scheme from

3 may be applied here.
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5.8 Conclusion

We have presented a toolbox for nonHnear control system design. The AP- LIN

toolbox can currently approximate a system to a polynomial system and then carry through

the computations to input-output Hnearize a class of systems or compute another control

law which renders a system Hnear up to arbitrary order error terms. New modules can

be easUy incorporated and wiU aUow the control designer the flexibiHty to choose amongst

them as more design schemes are added.

We have also shown that for smaU size problems it is currently feasible to imple

ment a system approximator and routines to compute control laws in a real-time setting.

As processor speeds continue to cHmb we wiU be able to handle larger and larger size

problems.



63

Chapter 6

Sys_View

6.1 Introduction

We discuss a visuaHzation tool which allows one to view the stability character

istics of nonHnear ordinary differential equations in three dimensions. We find that these

computations may be carried out in parallel and present an algorithm for multiple net

worked workstations. We also discuss various viewing alternatives for the visuaHzation of

these dynamics.

We start with some simple definitions and an overview of the types of systems we

can handle in section 6.2 and discuss the parallel algorithm in section 6.3, and lastly in

section 6.4 we look at the visuaHzation methods developed to survey all the information

inherent in these plots.

6.2 Extension into Three Dimensions

Sys-View was motivated by a discrete time version which looked at extended two

dimensional Mandelbrot sets into three dimensions. We first discuss the discrete time case.

6.2.1 Discrete Time

The defining equation for a Mandelbrot set is given by:

xk+1=f(xk) + R (6.1)
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Figure 6.1: Unenhanced Manddbrot Set

where x,R € C, /(•) :C —*• C. This gives rise to the famiHar vanilla manddbrot set shown

in figure 6.1, where one plots all the points which converge (a discrete version of the region

of attraction).

These sets may be enhanced by color to givea more artistic flair and display more

information about the system dynamics. A typical mappingis to assign each point a color

according to how many iterations it takes to escape some ndghborhood of the start point

(the so called escape time ).

Equation (6.1) is very similar to a general dass of nonHnear discrete time systems

which is affine in the control input. These systems may be described by:

Xk+i = f(xk) + g{xk)uk (6.2)

where x € Rn,ti€ R.

It is quite easy to see that the Manddbrot sets are a subdass of the abovesystem

definition. Hence we have a simple natural extension into three dimensions. Interestingly

enough, it was found that systems such as

zi(&+l) = e8"1^*))**^*)

x2(k-rl) = e^*2**))**2**) (6.3)
x3(k + 1) = c8™**8^**8^)

and other similar equations did indeed create Manddbrot like subsets filling three space.
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6.2.2 Continuous Time

The continuous time situation is similar to discrete time, except that we have the

defining equation to be
m

* = /(*) + _>(*)«.• (6.4)
t=i

We may broaden this class to indude systems which are not affine in the control input u

such as:

x = f(x,u) (6.5)

where we now have u € Rm.

The evaluation of (6.5) is not as straight forward as (6.2), and requires numerical

integration to achieve a solution for x. Simple iteration would achieve a solution for xk in

the discrete time case.

The inherent complexity in integrating differential equations causes the compu

tation time to naturally rise and also leads to problems under certain conditions. One in

particular is the integration of stiff systems.

Definition 6.1 Stiff System

A differential equation is said to be stiff if for some i,j \\x\\\ >> ||xj||.

A typical method of integrating stiff systems is to use the slow variable (xj) as a

parameter in the equation for the fast dynamics (it). Then one updates the fast dynamics

at one rate and updates the slow dynamics at a slower rate.

The Lsoda ordinary differential integration package devdoped at the Lawrence

Livermore Labs (see [Hindmarsh, 1983, Petzold, 1983]) is used. This package has automatic

detection of stiff systems and switches integration algorithms accordingly.

6.2.3 Description of Dynamics

The user may describe the dynamics of his system by a simple C program which

defines the state equations. A template is given bdow.

usr(init, x, xd, t, neq)

int

init;
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double

xQ, xdO, t;

int

neq; 10

{

register

}

i;

if(init)

{
/ put initialization code here /

} 20

/ compute xd here /

return;

The routine has five arguments. The first (init) is a flag variable that is true if

it is the first caU to the routine and allows the subroutine to initialize any variables. The

second argument is the state vector x, which contains the current state of the system, xd

is equivalent to x in (6.5) and t is the current time. Finally neq is the number of equations

(currently this is fixed at three).

In summary the user is suppUed with the current state, simulation time, and

number of state equations and then must generate x.

6.3 Computational aspects

The computation of the dynamics in three space can become quite large very

quickly since we essentially grid up a cube of specified size (see figure 6.2) and compute the

characteristics of each subcube based on the characteristics for a random point within the
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Figure 6.2: Gridding of the State Space

subcube (the necessity for the randomness wiU be explained later). Since the calculation

of the dynamics in each subcube depends only on the subcube itself, we can carry on the

computations in parallel.

With this in mind, a graphics server/computational cUent scheme was set up to

offload the calculations. This also aUeviated the need to write a fuU blown parser to gather

the information necessary to define the system equations since some prewritten utiUties

could be used which would dynamically Hnk in a subroutine.

These utiUties exist for Sun workstations hence the logical choice of using the

Sun as the computational server was made. The inherent graphics power of the SiUcon

Graphics series of workstation made it the obvious choice as the graphical server. The SGI

workstation talks to the various Sun computational clients using the standard BSD1 sockets

Hbrary using the TCP2 protocol over ethernet to disseminate information.

The steps to compute the stability characteristics may be Hsted as foUows:

1. The server initiates communication to each cUent (max of 64).

2. The server downloads (to each cHent) a source file which describes the dynamics of

the system.

3. Each dient compiles and dynamically Hnks in the routine and is ready to compute.

4. The server grids up the state space and divides it into equalportions for each client.

5. The clients integrate all initial conditions and assign to each a number representing

whether a point is stable or unstable. If the point is unstable it is also assigned

Berkeley Software Distribution, i.e. Unix with the Berkeley enhancements
2Internet Transmission Control Protocol
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a number which represents how fast the trajectory is moving away from the initial

condition.

6. CHents report back with results.

Note: if we are only changing the grid size/shape parameters and not the subroutine de

scribing the system, then only steps 4 and 5 need be repeated.

One may argue that a better way to compute the region of attraction would be to

start a cluster of points about an equiHbrium point and integrate backwards in time. Then

the boundary of the trajectories wiU eventually form the region of attraction. Since one

must continually add points to fiU in three space whUe the trajectories are dispersing, one

may run into singularities in the dedsion tree on whether to branch or not. The computation

time for this method is not necessarily faster and wiU vary widely depending on the system.

The problem of determining if a point is stable or not is not particularly weU

defined. For example, imagine a trajectory which initially leaves the region around the

initial condition and then slowly comes back in. Currently Sys-View integrates the system

for a user specified time and then checks to seeif the trajectory at the end time is closerto the

center point; the center point is a user defined point which defines the point to compute the

stability characteristics about - the center point is assumed to be an equiHbrium point. Thus

the above problem may be aUeviated if the end time was made large, but computational

speed suffers as the end time is increased.

It would be easy to have Sys-View aUow the user define the criterion for stabiHty

by having a C routine dynamically linked in to return whether a point is stable or not.

Furthermore, the user could be aUowed to increase the end time dynamicaUy to aUeviate

the above problem in a more inteUigent way.

6.3.1 Server-Client Communication

A simple language had to be defined for communication between the server and

each dient. These include commands to download code, recdve a set of points and send

back the results. Error and warning commands also had to be incorporated along with

another set of commands to handle the computation of surfaces.

Extra effort was made to insure the connections be as robust as possible. Commu

nication takes place asynchronously with a maximum latency response to a message of 1.5

seconds and is carried through at a maximum rate of 1 Mbit/sec. If a dient for some reason
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fails, the server is notified and redistributes the computation whUe closing the connection

to the defunct dient. In addition, if a dient does not receive a command for some period

of time (currently 30 minutes), the dient reports to the server and terminates itself. This

prevents rogue processes from running indefinitely. Furthermore, a dient does not use any

resources while it is waiting for a new set of computations.

Dynamic load scheduling is also used. This basically distributes the computational

load equally amongst the cHents. Prior to a computation each dient is asked to return the

time it took to compute a benchmark problem. This benchmark is induded in each dient as

a subroutine and does not have to be sent nor is it Hnked in dynamicaUy. This computation

typically takes a couple of seconds and based on the returned result the server then prorates

the number of points to be integrated. Hence if a machine is dther inherently slow or is

currently heavUy loaded then its work wiU be accordingly scaled back.

Thus, with this setup we gained the ability to do parallel computation and had

a simple way to spedfy the system equations (i.e. the equations could be described in a

simple C or FORTRAN subroutine). In the current version there can be up to sixty four

computational cHents that would receive the subroutine, dynamicaUy link it in and wait for

commands to act on and report back to the server. A pictorial description of the setup is

given in figure 6.3

A benchmark problem which required the integration of over 14,000 initial condi

tions on a system which was stiff and induded trigonometric functions in its dynamics was

completed in less than a minute on ten Sparc Station l's as computational cHents.

Since computations are essentially done in parallel we get an N times speed up,

with hardly any overhead, and we again get the advantage of using dynamic linking to pull

in the system description in the form of a C or FORTRAN subroutine.

6.4 Viewing the Results

One of the original ideas to view the data was to traverse along some axis and

look at 2-D sHces of the system (much like CAT scans). Multiple sHces could be stored and

in conjunction with transparency one could look past the initial sHce to get more global

information (i.e. we could store data sHces of the x —y plane for increasing z then if each

plane is somewhat transparent we may see past the initial plane to the next few planes). This

type of visuaHzation may still be implemented but we fed that it would not be particularly



Graphics

Server

Sun SparcStations

Client 1

Client 2

O

O

o

Client N

70

Figure 6.3: Graphics Server/Computational CUent Set Up

easy to visually parse these images into a meaningful picture, that the global information

lost would make this option not as attractive.

The route taken was to create a portrait cloud of points that was not fuUy dense

(thus aUowing us to see through things toview the behavior ofthesystem at various points).
This was accompHshed by defining a random point constrained to be in a subcube of the

gridded cube from figure 6.2. This aUows usto see quite abit of detail in the global aspect of

the dynamics while stiU aUowing us to view the local nature. Depth cueing is also available

to give some depth perception in the visuaHzation.

The randomness of the state space points was necessary to see the distant points.

It should also be noted that it is much easier to view the data in an orthonormal projection

then in a perspective projection.

A control panel was created as the main user interface (see figure 6.4). It aUows

the user to chose from the plethora of combinations given to view the data, and a complete

description is given in the man pages for sys-view. A couple of features worth mentioning

are the abiHty to record a sequence of button dicks in the control pand and then play them

back for a sort of movie to traverse the escape portrait and secondly the abiHty to define

your own color map for the escape portrait. Alongwith the control panel a plotting window

to view the data is opened (see figure 6.5 for a black and white version).

The region of attraction for a system is the locus of initial conditions whose tra

jectories steer towards the origin and is valuable piece of information to compute for a

system. The region of attraction may be simply plotted by using a predefined color map



O Sja-Vlew CatmlPmnel

Rule Dtl

r--<w " 1
[n.ooooao |

X c.n • r

I'p.DOOOOO |
V c.n »r

n.Boociin |
2 can • r

[_ 000000

X tl '•

lb OOO00D

V il »

i oooooo

Option*

Togglat

l~V>wth Cualnj

_|p.raa»ct luc

Q)~ .t

£»~~ll»ll Box

n»<«fc'll»W Sur
CflHpirt.t Ie

net loot

L>
| pannload Source

_ltoe.lcul.ta

|_DI« c,

[ FStart R.conllng ]

;»«T•wco__j

ftart Playing j

|8tOf l*l«Hln9 ]
Batata Tranalata

[•> 250000 [

Danaltu

h OOOOOO

End TIM

U. I
Loaln Nana

U„. 11 I

•eala

__

Cal.r nan

ku^^au^ut

Lua_i»lan.c

SI

] _|do ItUnnyg.t

][>H__

[>

Figure 6.4: Sys-view Control Panel

Figure 6.5: Sys-view Plotting Window
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Slice

Slice i

Figure 6.6: Slice view for Surface Reconstruction

which defines the 0th entry to be white and all others to be black. Hence the points that

do not leave the region are white while all points that do leave are black, thus giving us the

region of attraction. One can play similar games for viewing all unstable points.

6.4.1 Creating Approximating Volume for the Region of Attraction

While the above solution for viewing the region attraction is quick, it is not the

most visually pleasing. We would like to construct a a polyhedron which closely resembles

the cloud of points.

Interestingly enough this problem is very similar to one investigated in the post

processing of CAT, MRI, and SPECT scans in the medical information field. The problem

facing them is to reconstruct surfaces based on density slices made through the body.

A CAT scan creates a two dimensional slice through the body with each slice

containing a grid of numbers representing how dense that particular point was. Thus if we

wanted to reconstruct a face or the bone structure of an individual we simply focus on the

points which have the desired density.

This is virtually the same problem we face with the construction of a polyhedron

which represents the region of attraction. We have two dimensional slices which contain

data representing stability of a point and we wish to focus in on only the stable points.

The approach taken by [Lorenson and Cline, 1987], which is the algorithm we

choose, was the so called marching cubes algorithm. In short one basically looks at two
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Slice i+1

Slice i

Figure 6.7: Marching Cube

slices of data at a time (see figure 6.6). We then restrict ourselves to look at eight vertices

which form the so called marching cube as in figure 6.7. The three vertices define a face

which constructs the local surface for the particular cube. We continue on repeating the

process for each cube to construct the whole surface.

It turns out that if one factors in rotational symmetry and symmetry due to vertex

complements (i.e. same configuration as case i except where there were points there are

not and vice versa) there are only 14 unique configuration of the points within a cube.

Thus we examine each cube in the data set and match it with one of the 14 basis cubes

modulo rotational and complementary symmetry. Then retrieve the face structure for the

basis cube and include it in the surface data structure with the rotation and complement

operations applied.

It should be noted that these computations are carried out in a parallel fashion

similar to the computation of the stability characteristics. The only drawback with this

algorithm for our task at hand is that it may create an overabundance of triangles depending

on the density of the point clouds. Alternatively, we do achieve an accurate approximation

of the region of attraction.
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6.5 Example

Consider the non-holonomic system

x = cos(0)vi

y = sin(0)t>i (6-6)
0 = v2

which represents a unicycle with velocity v\ and angular velocity v2. If we define the

following coordinate change and state feedback (see [Teel et al., 1992])

/ 0 \
-x cos(0) - ysin(0)

\ -xsm(0) + ycos(0) J
-u2 + X$U\

(6.7)

we get

X\ = U\

-5*2 = u2

X3 = X2U\

We ask Sys-View to compute the region of attraction with the control being

tti = —x\ - X32 sin(t)

u2 = -x2 + X3 cos(t).

These set of equations may be included into a C subroutine with Uttle effort as follows

#include <math.h>

^define xl

#define x2

^define x3

#define xdl

#define xd2

#define xd3

x[0]

x[l]

x[2]

xd[0]

xd[l]

xd[2]

usr(init, x, xd, t, neq)

int init, neq;

double x, xd, t;

(6.8)

(6.9)

10
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{
register i;

double ul, u2;

}

ul = —xl —x3x3sin(t);

u2 = -x2 +x3cos(t);

xdl = ul;

xd2 = u2; 20

xd3 =x2ul;

On ten Sun SparcStations Sys-View took less than one minute to compute the

stability characteristics for a cube spanning —50 to 50 in each dimension. With a density

of 0.3 one obtains 27000 points to integrate to gather the stability characteristics. Once

the calculations are made, one may compute the surface which approximates the region of

attraction. This computation and the transfer of data from the computational dient to

the server was completed in less than 30 seconds and generated 5457 vertices, and 10910

triangular faces.

The results are shown in figure 6.8. The axis is defined by X3 out of the page, x2

pointing upwards, and x\ pointing to the right. The view depicted in figure 6.8 is with a

slight negative angleoffset about the xi and x2 axes. As one can see the regionof attraction

for this system is quite irregular, nonsymmetric and is definitely not what one would expect

before hand.

One sees the ease at which Sys-View allows the the user to view the dynamics of a

system. The only thing that needed to be provided is a simple C program which describes

the dynamics.

6.6 Conclusions

A tool for viewing the dynamics of three dimensional continuous time systems

has been developed in an interactive environment. With the addition of computational

clients on remote machines the calculations necessary can be carried through relatively

quickly. Possible additions for the future would be to include the CAT scan like slices



76

Figure 6.8: Region of Attraction
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mentioned above as another possible viewing scheme. Sys-View combined with the AP-

LIN package presented in Chapter 5 provides a powerful set of utilities for controlling and

viewing nonlinear dynamics.
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NAME

clean_param - clean up relatively small terms in polynomial strings in an AP-LIN

configuration file

SYNOPSIS

clean-param [-c cutofftolerance ] [-ffile ]

DESCRIPTION

clean_param takes the output from the AP-LIN programs create_model(l), poincare(l),

spUne_hyper(l), spUne_usr(l) and creates a new configuration file as described below.

OPTIONS

—c " cutoff tolerance;" Use cutoff tolerance as the tolerance to determine which

variables are relatively small (compared to other elements in a single polynomial string)

and should not be set to zero. The default is 1.0e-06.

—f " file;" Use the file named file as the file which contains the system configuration

data created by create_model(l), poincare(l), spline_usr(l), splineJiyper(l)

SEE ALSO

createjnodel(l), poincare(l), spline_hyper(l), spline_usr(l)

AUTHOR

Raja R. Kadiyala, Department of Electrical Engineering and Computer Science,

U.C. Berkeley, email: raja@robotics.berkeley.edu

BUGS

None known yet ...
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NAME

config21atex - create latex from an AP-LIN configuration file

SYNOPSIS

config2latex [-c cutofftolerance ] [-i input file ] [-o output file ]

DESCRIPTION

config2latex takes the output from the AP-LIN programs create_model(l), linearize(l),

poincare(l), spline_hyper(l), sphne_usr(l) and then creates a latex file of the configuration

file.

OPTIONS

—c " cutoff tolerance;" Use cutoff tolerance as the tolerance to determine which

variables are relatively small (compared to other elements in a single polynomial string)

and should not be printed. The default is 1.0e-06.

-i " input file;" Use the file named input file as the file which contains the sys

tem configuration data created by create_model(l), linearize(l), poincare(l), spline_usr(l),

spline-hyper(l) The default is standard input.

-o " output file;" Use output file as the file to save to; the default is standard

output.

SEE ALSO

create_model(l), linearize(l), poincare(l), splineJiyper(l), spline_usr(l)

AUTHOR

Raja R. Kadiyala, Department of Electrical Engineering and Computer Science,

U.C. Berkeley, email: raja@robotics.berkeley.edu

BUGS

None known yet ...
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NAME

create_model - multivariate spline fitting front end script

SYNOPSIS

create_model fortran file [-a] [-d ] [-i input file ] [-n number of points ] [-o output

file ] [-p power ] [-t ] [-v ]

DESCRIPTION

create_model takes a nonlinear model described by a MATRIXx HyperBuild file and

creates a polynomial approximation of arbitrary order to the following system

x» = f(x) + G(x)u

y = h(x)

where f(x) and h(x) are vectors of polynomials and G(x) is a matrix of polynomials. The

approximation for f(x) will contain all terms of order p and below except for order 0 terms,

while the approximation for G(x) will contain all order (p-1) and lower terms. This behavior

may be changed by using the 'all terms' option (see below). The spline fit is about some

prescribed trajectory defined by the data in the variables t and u in the MATRIXx fsave'd

file input file. The system is first simulated with the input specified in the input file and

then knot points axe uniformly picked as the points to use for the least square fit. If the

input-output spline option is picked then the system is approximated by

y = h(u)

and we must have the variables t and u in the input file. The output is then saved in the

file output file which is system.config by default. This file may then be run through filters

config21atex(l) to create latex of the approximate system or create.usr(l) to create a usr

code file which may be simulated to check the validity of the approximation. Controllers

may be created by using poincare(l) or linearize(l). create_model is actually a front end

script to the actual splineroutine, splineJbyper. The typical user will almost always spline

fit models using create_model.
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OPTIONS

fortran file; Use the file named fortran file as the source code file which contains

the HyperBuild file to be spline fit. This argument is required.

-a Turns on all terms mode which will calculate all possible terms for f(x) and

G(x).

-d Turns on debug mode which will print out more verbose information on what

create_model is doing. This argument is optional.

-i " input file;" Use the file named input file as the file which contains the MA

TRIXx stored data of the trajectory to spline fit about. This file is created by the fsave

command within MATRIXx and will contain the variables t and u. This argument is op

tional.

—n " num pts;" Use num pts as the number of knot points to be used in the spline

fit. This argument is optional.

-o " output file;" Use output file as the file to save to; the default is system.config.

This argument is optional.

-p " power;" Use power as the order of the polynomial fit. This argument is

optional.

—t Time the spline operation. This argument is optional.

—v Do an input-output spline fit as described above. This argument is optional.

FILES

/tmp/tmp* temporary files created

SEE ALSO

clean-param(l), config21atex(l), create_usr(l), linearize(l), poincare(l), spline-

-hyper(l), spline_usr(l)

AUTHOR

Raja R. Kadiyala, Department of Electrical Engineering and Computer Science,

U.C. Berkeley, email: raja@robotics.berkeley.edu
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BUGS

The error checking for improper data is poor (trust is put in the user to use the

software properly ...)
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NAME

create-usr - create a C usr code block from an AP-LIN configuration file

SYNOPSIS

create-usr [-i input file ] [-o output file ]

DESCRIPTION

create-usr takes an AP-LIN configuration file and creates a C subroutine, in standard

MATRIXx usr code block format. The created code is a subroutine representation of the

AP-LIN configuration file. This subroutine may then be simulated to test the validity of

the approximation.

OPTIONS

—i " input file;" Use the file named inputfile as the file which contains the AP.LIN

configuration file The default is standard input.

—o " output file;" Use output file as the file to save to; the default is standard

output.

SEE ALSO

create_model(l), linearize(l), poincare(l), spline-hyper(l), spline_usr(l)

AUTHOR

Raja R. Kadiyala, Department of Electrical Engineering and Computer Science,

U.C. Berkeley, email: raja@robotics.berkeley.edu

BUGS

None known yet ...
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NAME

linearize - input output Hnearize a system described by an AP-LIN configuration

file

SYNOPSIS

Hnearize [-c cutoff tolerance ] [-i input file ] [-o output file ] [-t ]

DESCRIPTION

Hnearize takes the output from create-model(l), spline_usr(l), spline_hyper(l) and creates

a controller that yields the original system input output linear

OPTIONS

—c " cutoff tolerance;" Use cutoff tolerance as the tolerance to determine which

variables are relatively small (compared to other elements in a single polynomial string)

and should not be set to zero. The default is 1.0e-06.

-i " input file;" Use the file named input file as the file which contains the system

configuration data created by create_model(l), spline_usr(l), spline_hyper(l) The default is

standard input.

-o " output file;" Use output file as the file to save to; the default is standard

output.

SEE ALSO

create_model(l), poincare(l), spline-hyper(l), spline_usr(l)

AUTHOR

Raja R. Kadiyala, Department of Electrical Engineering and Computer Science,

U.C. Berkeley, email: raja@robotics.berkeley.edu

BUGS

None known yet ...
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NAME

poincare - reduce a system described by an AP-LIN configuration file to hnear

system up to arbitrary order

SYNOPSIS

poincare [-i input file ] [-1 linearization level ] [-o output file ] [-t ]

DESCRIPTION

poincare takes the output from create_model(l), spline_usr(l), spline_hyper(l) and cre

ates a controller that yields the original system linear up to an arbitrary order (see Krener

et al., 1987 26thIEEE Conference on Decisionand Control pages 519-523)for a description

of the theory.

OPTIONS

-i " input file;" Use the file named input file as the file which contains the system

configuration data created by create_model(l), spline_usr(l), spline_hyper(l) The default

is standard input.

—1 " linearization level;" Use linearization level as the order of linearity for the

system (i.e. if we had poincare -1 3 then our resulting system with the control generated

would be hnear up through order 3 terms. The default is 2.

-o " output file;" Use output file as the file to save to; the default is the file

control.config

SEE ALSO

create_model(l), linearize(l), spline-hyper(l), spline_usr(l)

AUTHOR

Raja R. Kadiyala, Department of Electrical Engineering and Computer Science,

U.C. Berkeley, email: raja@robotics.berkeley.edu
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BUGS

None known yet... .
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NAME

splineJryper - multivariate spline fitting routine

SYNOPSIS

spline-hyper [-a ] [-d ] [-ffortran file ] [-i input file ] [-n number of points ] [-o

output file ] [-p power ] [-s number of states ] [-t ] [-v ] [-z number of tmps ]

DESCRIPTION

spline_hyper takes a nonlinear model described by a MATRIXx HyperBuild file and creates

a polynomial approximation of arbitrary order to the following system

x' = f(x) + G(x)u

y = h(x)

where f(x) and h(x) are vectors of polynomials and G(x) is a matrix of polynomials. The

approximation for f(x) will contain all terms of order p and below except for order 0 terms,

while the approximationfor G(x) will containall order (p-1) and lower terms. This behavior

may be changed by using the 'all terms' option (see below). The spline fit is about some

prescribed trajectory defined by the data in the variables t and u in the MATRIXx fsave'd

file input file. The system is first simulated with the input specified in the input file and

then knot points are uniformly picked as the points to use for the least square fit. If the

input-output spline option is picked then the system is approximated by

y = h(u)

and we must have the variables t and u in the input file. The output is then saved in the

file output file which is system.config by default. This file may then be run through filters

config21atex(l) to create latex of the approximate system or create_usr(l) to create a usr

codefile which may be simulatedto check the validity ofthe approximation. Controllers may

be created by using poincare(l) or linearize(l). It should be noted that the typical user will

never use spUne-hyper, but would use instead the front end shell script create_model

which calls spline-hyper with the correct options. This command is only on the SUN
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version and is not available on the DEC version. DEC users should use create-model

instead.

OPTIONS

—a Turns on all terms mode which will calculate all possible terms for f(x) and

G(x).

—d Turns on debug mode which will print out more verbose information on what

spline_hyper is doing. This argument is optional.

—f " fortran file;" Use the file named fortran file as the source code file which

contains the HyperBuild file to be spline fit. This argument is required.

-i " input file;" Use the file named input file as the file which contains the MA

TRIXx stored data of the trajectory to spline fit about. This file is created by the fsave

command within MATRIXx and will contain the variables t and u. This argument is op

tional.

-n " num pts;" Use num pts as the number of knot points to be used in the spline

fit. This argument is optional.

—o " output file;" Use output file as the file to save to; the default is system.config.

This argument is optional.

-p " power;" Use poweras the order of the polynomial fit; the default is 2. This

argument is optional.

-s " num_states;" Use numstates to set the number of states in the model. This

argument is required.

—t Time the spline operation. This argument is optional.

—v Do an input-output spline fit as described above. This argument is optional.

-z " num_tmps;" Use num-tmps as the number of temporary variables used by the

system. This argument is required.

FILES

/tmp/tmp* temporary files created
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SEE ALSO

clean-param(l), config21atex(l), create_model(l), create_usr(l), hnearize(l), poin-

care(l), spline_usr(l)

AUTHOR

Raja R. Kadiyala, Department of Electrical Engineering and Computer Science,

U.C. Berkeley, email: raja@robotics.berkeley.edu

BUGS

The error checking for improper data is poor (trust is put in the user to use the

software properly ...)
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NAME

spline.usr - multivariate spline fitting routine

SYNOPSIS

spline.usr [-a ] [-c code file ] [-d ] [-i input file ] [-k ] [-n number of points ] [-o

output file ] [-p power ] [-r routine name ] [-s number of states ] [-t ] [-u number of inputs ]

[-y number of outputs ]

DESCRIPTION

spline.usr takes a nonlinear model described by a MATRIXx usr code file and creates a

polynomial approximation of arbitrary order to the following system

x' = f(x) + G(x)u

y = h(x)

where f(x) and h(x) are vectors of polynomials and G(x) is a matrix of polynomials. The

approximation for f(x) will contain all terms of order p and below except for order 0 terms,

while the approximation for G(x) will contain all order (p-1) and lower terms. This behavior

may be changed by using the 'all terms' option (see below). The spline fit is about some

prescribed trajectory defined by the data in the variables t and u in the MATRIXx fsave'd

file input file. The system is first simulated with the input specified in the input file and

then knot points are uniformly picked as the points to use for the least square fit. If the

input-output spline option is picked then the system is approximated by

y = h(u)

and we must have the variables t and u in the input file. The output is then saved in the

file output file which is system.config by default. If we are in data mode (-d) then the

variables y and u must be in the input file and we simply spline fit the input output data

without need for a code file.

The outfile system.config may then be run through filters config21atex(l) to create latex of

the approximate system or create_usr(l) to create a usr code file which may be simulated to
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check the validity of the approximation. Controllers may be created by using poincare(l)

or linearize(l).

OPTIONS

—a Turns on all terms mode which will calculate all possible terms for f(x) and

G(x).

-c " code file;" Use the file named code file as the source code file which contains

the usr subroutine to be sphne fit. This argument is required.

-d Turns on data mode creates an input output sphne based on the data in the

variables y and u in the input file. This argument is optional.

-i " input file;" Use the file named input file as the file which contains the MA

TRIXx stored data of the trajectory to sphne fit about. This file is created by the fsave

command within MATRIXx and will contain the variables t and u. This argument is op

tional.

-k Turns on state space fitting (i.e. specify which knot point to use in the least

squares approximation. This argument is optional.

-n " num pts;" Use num pts as the number of knot points to be used in the sphne

fit. This argument is optional.

-o " output file;" Use output file as the file to save to; the default is system.config.

This argument is optional.

-p " power;" Use power as the order of the polynomial fit; the default is 2. This

argument is optional.

—s " numjstates;" Use numstates to set the number of states in the model. This

argument is required.

-t Time the sphne operation. This argument is optional.

-u " numJnputs;" Use numJnputs as the number of inputs for the system. This

argument is required.

-y " num-joutputs;" Use num.outputs as the number of outputs for the system.

This argument is required.
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FILES

/tmp/tmp* temporary files created. $MATRIXX/src/usr01.c for template file for

usr code subroutine.

SEE ALSO

clean_param(l), config21atex(l), create_model(l), create_usr(l), linearize(l), poin-

care(l), sphne-hyper(l)

AUTHOR

Raja R. Kadiyala, Department of Electrical Engineering and Computer Science,

U.C. Berkeley, email: raja@robotics.berkeley.edu

BUGS

The error checking for improper data is poor (trust is put in the user to use the

software properly ...)
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NAME

sys_view - Interactively view a three dimensional nonlinear dynamic system

SYNOPSIS

sys.view [-b box mode ] [-c color mapping ] [-d cloud density ] [-h hush mode ] [-i

-j -k position of bounding box ] [-1 login name to use on client machine] [-m remote machine

] [-o output file ] [-p use perspective projection ] [-q turn on depth cueing ] [-r routine ] [-s

source-file ] [-t end time ] [-x -y -z dimensions of bounding box ]

DESCRIPTION

sys.view creates a three dimensional stability portrait of a dynamical system described

by the subroutine in source-file, which may be either C or FORTRAN and is called by

the name in routine, sys.view creates connections up to the machines specified through

repetitive uses of the -m option (i.e. sys_view -m machl -m mach2 ...) and then downloads

the file to the clients. The clients then dynamically link in this routine and compute equal

portions of the trajectories. The results are then reported back to the server machine and

a plot is created which the user may interactively view. Up to 64 machines may be used as

clients.

OPTIONS

-b go into box mode which will draw cubes instead of pixels at the grid point.

This is useful if a low density is used.

-c " color mapping;" Use the file contained in color mapping to define the colors

to use in the escape portrait. This should be an ASCII file with each line containing four

integers ranging from 0 to 255 specifying the index and the standard red, green, and blue

(rgb) color values, (i.e. 0 12 87 39 would specify entry 0 to have a red value of 12, a green

value of 87, and a blue value of 39). Typically entry 0 will be black and entry 255 will be

white.

—d " density;" Usefloatingpoint value density as the parameter defining how dense

of a pixel cloud to use when generating the escapeportrait; valid range is 0 to 1, the default

is 0.25 (anything larger than 0.6 will take more than a few minutes to run).
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-h go into hush mode which limits the number of messages sent to the window

which sys.view was initiated in.

-i -j -k " center of bounding box;" Use these three numbers to define the origin

of the bounding box. This is useful for studying behavior away from the origin; the default

is zero.

—1" login name;" If the account name on the remote machine is different than on

the local machine then this option must be set accordingly. The remote machine should

allow entry of the local account through an entry in .rhosts.

—m " machine;" Specifies which machines to run the calculations of the trajectories

on. For a low density it is not necessary to specify too many machines. In fact this may

hurt you since the overhead involved in the communication may slow things down. For large

densities it will be well worth the effort to spread the computing across as many machines

as possible. A maximum of 64 machines may be specified in the following fashion: sys.view

-m mach -m mach2 ...

-o " output file;" Use output file as the file to save to; the default is sys.view.out.

—p " perspective projection;" This allows the user to specify a perspective projec

tion be used as opposed to the default orthonormal projection.

—q " turn on depth cueing;" This will allow the user to gain some depth perception

as points further away are darker than closer points. This will, however, slow down the

redrawing of the plot in interactive mode.

—r " routine;" Use routine to tell sys.view the name of the routine to call to

execute the system equations.

-s " source_file;" Use source-file as the file to dynamically link in to get the system

equations.

-t " end time;" Use the floating point value end time as the length to numeri

cally integrate the system before determining the stability characteristics; the default is 2.0

seconds.

-x -y -z " bounding box dimensions;" Use these three numbers to define the

boundary of the plot. If not specified sys.view tries to set them automatically.
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USER INTERFACE

The user interface may be divided into two sections. The first being the control

panel and the second being the interactive or plot window. The control panel is partitioned

into seven groups. The characteristics of the bounding box may be defined in the Axis

Def group, while various attributes may be toggled on and off in the Toggles group. These

attributes include depth cueing, perspective projection, box/cube mode, draw it, turn on

and off the bounding box, and create a surface approximation for the region of attraction.

This last toggle will create another graphics window with the surface displayed. The third

subgroup is the Actions group which allows the user to start calculations, download a new

source file, disconnect, reconnect to the clients and to quit. Note that this is the only way

to quit sys.view. The Computation group allows the user to specify the density and end

time and also allows the addition of a new machine to the dient list which is also displayed.

It is suggested that a disconnect occur before the addition of a new client followed by a

connect. The next subgroup is the Scripting group which allows the user to record a series

of button dicks thus creating a movie to be played back. Typically one records the actions

from the Viewgroup which allows the user to rotate, translate, and scale the portrait in a

predse manner. The Face Views section is a simple pair of up-down buttons which allows

the user to view all six of the viewing cube's faces in an easy manner. The final group is the

Files group which allows the user to spedfy the load/save files and the source and routine

names.

The plot window allows for interactive viewing of the portrait much like the View

group above, but in a less precise but faster manner. The left mouse button controls scaling,

while the middle mouse button controls rotations and the right mouse button controls

translations. All operations are made with the given mouse button down and moving the

mouse on the pad in the appropriate direction. Z axis rotation and translation may be

obtained by holding the shift key down and performing the normal rotation or translation.

Pressing the c key will recenter the portrait.

Example C Program

The following is an example C program which will show the format necessary to

be Unked in and run by the remote computational server. The routine takes five arguments

with the first being init which is true for the initialization call (ie. if init = 1 then the routine
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should do any initiahzation it needs to do). The second argument is the state variable x

which is oflength neq (currently neq is three). The third argument is xd which is the return

information for the system (ie. the user sets xd to the proper dynamics for the differential

equation). The variable t represents the current simulation time.

#include <math.h>

usr(init, x, xd, t, neq)

int init, neq;

double *x, *xd;

{

if (init)

{
Initialize code here

}
Compute dynamics here

}

AUTHOR

Raja R. Kadiyala, Department of Electrical Engineering and Computer Science,

U.C. Berkeley, email: raja@robotics.berkeley.edu

BUGS

There is no error checking on the validity of the subroutine spedfied in source-file.


