
Copyright © 1992, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute to

lists, requires prior specific permission.

PROGRAMMABLE ARITHMETIC DEVICES FOR

HIGH SPEED DIGITAL SIGNAL PROCESSING

by

Devereaux C. Chen

Memorandum No. UCB/ERL M92/49

14 May 1992

PROGRAMMABLE ARITHMETIC DEVICES FOR

HIGH SPEED DIGITAL SIGNAL PROCESSING

Copyright © 1992

by

Devereaux C. Chen

Memorandum No. UCB/ERL M92/49

14 May 1992

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

Programmable Arithmetic Devices for High Speed Digital
Signal Processing

Devereaux C. Chen

Abstract

The high throughput (computation) requirements of real-time digital signal processing
(dsp) systems usually dictate hardware intensive solutions. Often attendant to hardware approaches
are problems of high development costs, slow turnaround, susceptibility to errors, and difficulty
in testing and debugging, all of which tend to inhibit the rapid implementation of such systems.
Research is underway into the synthesis ofapplication specific hardware to aid the system designer by
automatically generating hardware that is "correct by construction". The creation of configurable,
pre-fabricated hardware that has been designed for high speed computations forms part of this
research and is the main topic of this thesis.

This work contains a survey of some typical real-time dsp algorithms drawn from video
and speech processing and summarizes the particular computation challenges posed by this class of
algorithms. Currently available hardware choices and their trade-offs and limitations are discussed.
Amultiprocessor architecture consisting of programmable arithmetic devices is presented as a novel
platform for supporting high speed digital signal processing. The VLSI realization of the architecture
and an accompanying software development environment are presented as a proof of concept. The
main conclusion of this work is that software-configurable hardware approaches to high speed digital
signal processing problems form viable alternatives to existing approaches, for systems designers
interested in rapidly prototyping or implementing their ideas.

__ s/n(a2-
Rabaey

lis Committee Chairman

Dedicated to my loving family,
and that wonderful someone who was

"on her way to Dibbidi-dop, early in the morning."

Acknowledgements

No man is an Illajid intire of it selfe;

— J. Donne

I wish to thank my advisor Jan Rabaey for his support and guidance of this

work. His high standards have left an indelible mark upon this thesis. I would also like to

thank Bob Brodersen and Charles Stone for serving on my dissertation committee. Thanks

also to Bob Brayton and John Wawrzynek for participating on my qualifying examination
committee,

Among the many members of the U.C. Berkeley eecs faculty who have been

especially encouraging and supportive are David Hodges, Ping Ko, Edward Lee, Richard

Muller, A. Richard Newton, and Aram Thomasian. William Oldham deserves special thanks
for encouraging me to apply to the Department.

Tso-Ping Ma of Yale University, Winston Strachan of St. George's College, and

Sister Margaret Mary of Holy Childhood Prep, represent the many wonderful teachers from

my previous schools who have taught me so much.

Several former colleagues who encouraged and inspired me to continue with grad
uate studies are Paul Merchant, John Moll, and Chuck Tyler.

Hugo de Man and Francky Catthoor of IMEC gave helpful advice at the beginning
of the paddi project.

Participants on the paddi project included Cecilia Yu, who helped with the xilinx

investigation, David Schultz who assisted with the exu layout, Simon Li who assisted with

the scan-test board, and Eric Ng who wrote the paddi assembler and simulator. Their

assistance is gratefully acknowledged. Thanks also to Andy Burstein and Cormac Conroy

for assistance with spice, Angela Cheng, Joan Pendelton and Bart Sano for providing the

pad cells, Chuck Cox for advice on xilinx, Paul Landmann for providing the carry-select

adder cells, Alex Lee for providing the sram cells, and the staff members of the mosis

organization, especially Sam Reynolds, for chip fabrication support.

The bj group members included many fellow students who provided generous
time, support, and camaraderie when it was needed. Special thanks to Alfred Yeung for

being a great office-mate. Staffmembers including Tom Boot, Carole Prank, Sue Mellers,

Brian Richards, Phil Schrupp, Kirk Thege, and Kevin Zimmerman provided the essential

infrastructure which was critical to the success of the project.

Among the many friends who have enrichened my life at Berkeley, Pranav Ashar,

Behzad Behtash, Chedsada Chinrungrueng, Randy Cieslak, German Ferrer, Paul Freiberg,

Bruce Holmer, D.K. Jeong, Ming Lin, Rajeev Murgai, Irena Stanczyk-Ng, Allen Nehorayaff,

Todd Strauss, Greg Thomas, and Greg Uviegara deserve special mention. They, among

many others, have made the going a whole lot easier and fun than it might have been

otherwise.

I am at loss for words to express my gratitude to my parents, Marsden and Viola,

my wife, Sharon, and my cousin Pamela for their wonderful love and encouragement through

the years. This thesis would not have been possible without them. My daughter Kristin

helped make it all a much happier and brighter experience.

To all the people that I should have mentioned but haven't, due to lack of space,

many thanks. Please forgive the omission.

I wouldlike to thank the Hewlett-Packard Company for providing financial support

during my first year as a graduate student.

This project was sponsored by the Defense Advanced Research Projects Agency

(monitored by U.S. Department of Justice, Federal Bureau of Investigation, under contract

no. J-FBI-90-073) and Sharp Microelectronics Technology, Inc. Their support is grate

fully acknowledged. The views and conclusions in this document are those of the authors

and should not be interpreted as representing the official policies, either express ed or im

plied, of the Defense Advanced Research Projects Agency, the U.S. Government, or Sharp

Microelectronics Technology, Inc.

Contents

Acknowledgements i

Table of Contents iii

List of Figures vii

List of Tables x

1 Introduction 1
1.1 A Perspective 1
1.2 Goals and Organization 2

2 High Speed Digital Signal Processing 4
2.1 Introduction 4
2.2 Video 5
2.3 Image Processing 6
2.4 Speech Recognition 7
2.5 Computation Requirements of High Speed DSP 10
2.6 Conclusions 12

3 Architectural Classification 13
3.1 Introduction 13
3.2 Architectural Taxonomies 14

3.2.1 Flynn 14
3.2.2 Extensions to Flynn's Taxonomy 14
3.2.3 Telecommunications ASICs 21
3.2.4 Image and Video Processing Architectures 22
3.2.5 Digital Signal Processors 22

3.3 Architectures for High Speed DSP 24
3.4 Conclusions 26

4 Rapid Prototyping Platforms 27
4.1 Introduction 27
4.2 Implementation Platforms 28

in

CONTENTS iv

4.2.1 Programmable DSPs 28
4.2.2 Generic Components 30
4.2.3 ASICs 30

4.3 High Level Synthesis 31
4.3.1 Microsystems: Chip Level 31
4.3.2 Systems: Board Level 31

4.4 Software-configurable Hardware 32
4.4.1 Purdue CHiP •. 33

4.4.2 Texas Instrument RIC 34
4.4.3 CMU White Dwarf 36
4.4.4 MIT RAP 39
4.4.5 Video Signal Processors (VSP's) 40

Philips VSP 41
ITT DataWave 42

4.4.6 NTT VSP 45
4.4.7 Software Reconfigurable Transceiver 45
4.4.8 Field Programmable Gate Arrays 46
4.4.9 PADDI: Programmable Arithmetic Devices for High Speed DSP . . 49

4.5 Conclusions 50

5 PADDI: Architectural Design 52
5.1 Introduction 52
5.2 Design Goals 53
5.3 Dynamic/Static and Hardware/Software Interfaces 53

5.3.1 Design Methodology 55
5.3.2 Functional Design 57

Operator Statistics 59
Interconnect Statistics 60
Control Statistics 60
IO Statistics 66
Computation Rate Statistics 66

5.4 Techniques for High Performance 67
5.5 Processor Architecture 70

5.5.1 Execution Units 70
Design Considerations 70
Execution Unit Architecture 71

5.5.2 Interconnection Network 74
Design Considerations 74
Interconnect Network Architecture 75

5.5.3 Control 76
Design Considerations 76
Control Architecture 77

5.5.4 IO . 82
5.5.5 Memory 82
5.5.6 Configuration 82

CONTENTS v

Design Considerations 82
5.6 Processor Summary 83

5.6.1 Benchmarks 83

5.7 Instruction Set Summary 86
5.8 Programmer's View 86
5.9 Summary and Conclusions 86

6 PADDI: Hardware Design 88
6.1 Introduction 88
6.2 Execution Unit 89

6.3 Interconnection Network 91
6.4 Control 98

6.4.1 Nanostore 98
6.4.2 Branch Logic 100

6.5 Configuration Unit 104
6.5.1 Modes of operation 104

Scan Chain 106
6.5.2 Finite State Machines 106

6.6 Testability 109
6.6.1 Test Modes 109

6.6.2 Test Support System 110
6.7 Clocking 112

6.7.1 Layout and Simulation . 112
6.7.2 Test Results 115

6.8 Discussion 117

6.9 Conclusions 121

7 PADDI: Software Environment 122

7.1 Introduction 122

7.2 Low-level Programming Tools 122
7.2.1 The pas assembler 123
7.2.2 The psim simulator 123

7.3 High Level Synthesis for Programmable Arithmetic Devices 123
7.3.1 Architectural Constraints 124

7.3.2 Hardware Assignment Using Clustering 125
Hierarchical Two Phase Clustering 126
Initial Phase 126

Improvement Phase 127
Detailed EXU Clustering 127
Detailed Quadrant Clustering 128

7.3.3 CADDI Compiler 129
7.4 Conclusions 130

8 Conclusions and Future Work 131

CONTENTS vi

A Xilinx Case Study 136
A.l Introduction 136

A.2 Limitations of FPGAs 136

B Mapping an Example to PADDI 141

C Programmer's Guide 144
C.l Introduction 144

C.l.l Dynamic Instructions 144
Registers 145
Functions 145

Output Bus Enables 145
A and B Register Sources 146
Interrupt Enables 146

C.l.2 Configuration Specifiers 147
C.1.3 Putting it all Together 147

D Configuration With External Memory 150

E Pin List 152
E.l Pad Types 152
E.2 PGA Pinout 153

F Assembler Manual Page 156
F.l Introduction 156

G Annotated grammar 158
G.l Annotated Assembler Grammar 158

H Simulator 162

Bibliography 164

List of Figures

2.1 Pipelined Data Path for Luminance Conversion 6
2.2 Image Convolution 8
2.3 Signal Flow Graph of 3x3 Linear Convolver 8
2.4 Grammar Processor Architecture 11

3.1 Flynn's Taxonomy , 15
3.2 Flynn's Taxonomy (contd.) 16
3.3 Skillicorn's Taxonomy 18
3.4 Basic von Neumann Abstract Machine 19
3.5 Type I Array Processor 19
3.6 . Type II Array Processor 20
3.7 Tightly Coupled Multiprocessor Model • . . 20
3.8 Loosely Coupled Multiprocessor Model 21
3.9 Architectural Classification Based on Control/Arithmetic Ratio 23
3.10 Performance and Flexibility for Different Approaches 24

4.1 Commercial DSP Multiply-Accumulate Time 29
4.2 SIERA 32
4.3 Three CHiP Switch Lattice Structures 34
4.4 Embedding of Graph K4,4 into Switch Lattice 35
4.5 Texas Instrument's RIC Block Diagram 36
4.6 CMU's White Dwarf Processor Overview 37
4.7 White Dwarf Data Path 37
4.8 White Dwarf Control Flow 38
4.9 White Dwarf Downloading Flow 39
4.10 RAP Data Path 40
4.11 RAP Block Diagram 41
4.12 Philips VSP 42
4.13 Philips VSP: ALE Block Diagram 43
4.14 DataWave: Processor Architecture 43
4.15 DataWave: Cell Architecture 44
4.16 NTT VSP Architecture 45
4.17 XC3000 Logic Cell Array Family 47

vu

LIST OF FIGURES viii

4.18 XC3000 CLB Architecture 47

4.19 XC3000 Combinational Logic Options 48
4.20 XC3000 Interconnect Structure 48

4.21 PADDI Abstract Architecture 51

5.1 DSI Placement Examples 54
5.2 Architectural Design Methodology 56
5.3 General Characteristics of Benchmark Set 58
5.4 Number of Ops vs. Op Type 59
5.5 Total Number of Ops vs. Op Type 61
5.6 Number of Arcs vs. Arc Type 62
5.7 Total Number of Arcs vs. Arc Type 63
5.8 Control Structure by Benchmark 64
5.9 Grammar Processor Control 65
5.10 IO Statistics 65
5.11 Computation Rate Statistics 67
5.12 Computation Rate / IO 68
5.13 Computation Rate / IO 68
5.14 Naive Mapping of Uni-processor Task Set 69
5.15 EXU Architecture 72
5.16 Primitive PADDI Operations (a) 72
5.17 Primitive PADDI Operations (b) 73
5.18 Crossbar Switch 75
5.19 Nanostore as a Local Decoder 78
5.20 Four Stage Pipeline 78
5.21 Local Delayed Branches 79
5.22 Global Delayed Branches 80
5.23 Load/Execution Alignment 81
5.24 PADDI with 32 EXUs 84
5.25 PADDI with 16 EXUs 84
5.26 Prototype Architecture 85
5.27 Prototype Architecture With Multipliers 85
5.28 System Using PADDI Chips 86

6.1 EXU Architecture 89
6.2 Logarithmic Shifter 90
6.3 Register-File Cell , 91
6.4 EXU Detail 92
6.5 EXU Critical Path 93
6.6 Crossbar Network 94
6.7 Type 1 Bit-slice 94
6.8 Type 2 Bit-slice 95
6.9 Layout of Type 2 Bit-slice 95
6.10 Regenerative PMOS Design 96
6.11 Regenerative PMOS Design (Spice) 97

LIST OF FIGURES ix

6.12 Interconnect Critical Path 97
6.13 Interconnect Critical Path Simulation 98
6.14 SRAM Detail 99
6.15 SRAM Control Circuitry 100
6.16 SRAM Timing Diagram 101
6.17 SRAM Read Cycle 102
6.18 Branch Logic 103
6.19 Clocking of State Latches 105
6.20 Section of Configuration Scan Chain 107
6.21 FSM1 108
6.22 PHIM and PHIM Clock Generation / 108
6.23 FSM2 109
6.24 Test Support System HI
6.25 TCB Architecture HI
6.26 Clock Distribution 112
6.27 Chip Photo 113
6.28 Four Quadrant Critical Path 114
6.29 25 MHz Counter 118
6.30 Simple Low Pass Biquadratic Filter 118
6.31 Biquad Processor Schedule 119
6.32 Biquad Impulse Response 119

7.1 Software Environment 130

8.1 Processing Power vs. Maximum Signal Frequency 133

A.l Simple Low Pass Biquadratic Filter 137
A.2 Transformed Biquad 138
A.3 Convolver on XC3090 with Routing Congestion . . . 139
A.4 Insufficient Routing Resources for the Convolver 139

B.l Retimed Linear Convolver 142
B.2 Linear Convolver Mapping (1/2) 143
B.3 Linear Convolver Mapping (2/2) 143

C.l Instruction Format 145

D.l Configuration Timing Diagram 151
D.2 Interfacing to External Memory 151

E.l PADDI PGA Pin Assignments 153

H.l Typical Psim Session 163

List of Tables

2.1 Computations and I/O Summary 10

4.1 Application Sample Period 29
4.2 Instructions per Sample 29

6.1 Chip Characteristics 120
6.2 Chip Comparison of Technologies and Areas 120

8.1 Some Typical Dedicated-Function DSPs 132

A.l Comparison of XILINX and PADDI 140

B.l Benchmarks 142

C.l Summary of Arithmetic Instructions 146
C.2 Summary of Configuration Specifiers 147

E.l Pad Types 152
E.2 PADDI Pin List 154
E.3 PADDI Pin List (contd.) 155

Chapter 1

Introduction

A great discovery solves a great problem but there is a grain of discovery in the solution of
any problem. Your problem may bemodest; but ifit challenges your curiosity and brings into
play your inventive faculties, and if you solve it by your own means, you may experience the
tension and enjoy the triumph of discovery. Such experiences at a susceptible age may create
a taste for mental work and leave their imprint on mind and character for a lifetime.

— G. Polya, How To Solve It

Weapons are the took of fear; a decent man will avoid them except in thedirest necessity and,
if compelled, will use them only with the utmost restraint.

— Lao Tzu Tao Te Ching

1.1 A Perspective

At this point in time, throughout the cad community, and particularly here at

U.C. Berkeley, many resources are being directed to establishing an Integrated System

Design Environment for the rapid design of all levels of electronic systems [29, 12]. The

result will be the creation of efficient, high performance systems which will compete with

present manual design approaches by incorporating the very best of algorithms and by

using advanced implementation technologies. Top priority is being placed on performance

optimization, and reducing the time and cost of implementation.

A particular thrust of this overall cad effort targets high performance real-time

systems. Examples of such systems can be found in the field of digital signal processing

(dsp) which has become a dominant force in signal processing and communications [31].
Typical application domains include digital audio [75, 8], speech recognition and synthe

sis [10], mobile communications [44], personal communications systems [14, 47], robotics

CHAPTER 1. INTRODUCTION 2

and electro-mechanical control, digital image and video processing [43], machine vision [11],

digital television [30], high definition television [56], sonar [84], ultrasonic imaging, advanced

video services [27], smart weapons, and advanced fire control for target discrimination and

tracking [71, 76].

In signal processing applications, the computation involves a set of operations

which operate on an infinite data stream (the signal). In many applications, such as facsim

ile, modems, televisions, compact disk players, video cassette recorders, and video cameras,

to name a few, large amounts of data (MB/sec for speech, GB/sec for video) must be

processed in real-time or at the same rate that the data is required. The high speed com

putational requirements of real-time digital signal processing (dsp) systems usually dictate

hardware intensive solutions. Often attendant to hardware approaches are problems of high

development costs, slow turnaround, susceptibility to errors, and difficulty in testing and

debugging. System designers are frequently faced with two main choices, that of using bulky

boards of ttl components or generating theirowncostly application specific integrated cir

cuits (asics). These factors tend to inhibit the rapid and economical implementation of
real-time systems.

1.2 Goals and Organization

The goal of this work is to enhance the system design environment by defining a

library of ofF-the-shelf macro-components which can be applied to real-time signal process

ing applications. These macro-components should be programmable, support high speed

computation, and possess a high level of integration, With such components, the system en

gineer will be able to synthesize application specific hardware within a veryshort time when

compared to current approaches. This approach can be economical since there are none of

the non-recurring engineering (nre) costs associated with ASIC design and fabrication.

In order to define the contents of the library and the desired programmability and

functionality, algorithms and architectures from real-time speech recognition, image, and
video processing were examined.

It was observed that most of the systems which perform these algorithms are im

plemented as a set of concurrently operating, bit-sliced, pipelined processors. However the

controller structure,data path composition, memoryorganization, and connection and com

munication patterns of these processors were found to depend heavily upon the particular

CHAPTER 1. INTRODUCTION 3

application. The challenge is to define a restricted set of programmable components that
covers these apparently dissimilar architectures. Four classes of devices are necessary: con
trollers, memory (including delay lines), data path blocks, and interprocessor communica

tion units. Fairly efficient solutions are available for control structures (using programmable
logic devices or plds) and memory structures (using commercially available memory). How
ever, no high-level re-programmable data path or interprocessor communication structures

are yet available. The creation of such configurable, pre-fabricated hardware, designed for
high speed computations, is the main topic of this thesis.

The rest of the thesis is organized as follows: Chapter 2 examines typical exam

ples of some real-time applications, and summarizes their computation requirements and

common architectural features. Chapter 3 discusses ways of differentiating between the

many architectural styles found in DSP and focuses on one particularly suited to high speed

DSP, and which is based on control/arithmetic ratio. A review of currently available im

plementation approaches for these computation intensive applications, together with their

trade-offs and limitations, is presented in Chapter 4. The need for rapid prototyping of

systems in general and high speed dsp data paths in particular, and the benefits of using

software-configurable hardware for rapid prototyping is also discussed. The main goal of

this research was to develop a programmable architecture for the rapid prototyping of high

speed dsp data paths. Such an architectureis presented in Chapter 5. It consists of clusters

of multiple programmable arithmetic devices orexecution units (exus) connected by a flex

ible communication network for data and status flags, with wide inter-exu and inter-cluster

communication bandwidth. In order to demonstrate concept feasibility, a prototype chip,

dubbed PADDI for Programmable Arithmetic Devices for Digital Signal Processing, was

designed and fabricated [25]. Its VLSI implementation is described in Chapter 6. The sup

porting software environment necessary to program these devices is discussed in Chapter 7

along with compilation approaches, and Chapter 8 concludes the dissertation.

Chapter 2

High Speed Digital Signal

Processing

Fallacy: There is such a thing as a typical program.
Pitfall: Designing an architecture on the basis of small benchmarks or large benchmarks from
a restricted application domain when the machine is intended to be general purpose.

— J. Hennessy and D. Patterson, Computer Architecture A Quantitative Approach

2.1 Introduction

In this chapter we will examine several representative real-time DSP applications,

in order to ascertain their computation requirements. While there exist many different ar

chitectural approaches for implementing real-time DSP algorithms, the hard-wired pipelined

data path approach is particularly efficient because each algorithm can be hard-wired into

it's own unique data path. In short, the data path is "tailor-made" to fit the algorithm.
This approach has been widely and successfully applied.

As each application is discussed, we will present several example architectures

which illustrates the pipelined data path approach. The basic architectural features such

as level of pipelining, functional requirements, control, and i/o bandwidth of each example
will be examined.

CHAPTER 2. HIGH SPEED DIGITAL SIGNAL PROCESSING 5

2.2 Video

High definition television, or hdtv, is rapidly on its way to becoming a commer

cial reality [53]. Let us consider a typical HDTV bit transfer rate. Given a typical frame
of 900x1200 pixels, a display rate of 30 frames/sec, with each pixel composed of 16bits (8
luminance, 8 down-sampled chrominance) or 24 bits RGB the resulting transfer bit rate is

900 x 1200x 30 x 24 or approximately 800 Mbit/sec or 100 MB/sec. Typical signal process

ing requirements are yuv and RGB conversions, digital filtering, video compression, motion

compensation, and sampling conversion [85]. If one makes the reasonable assumption that

any of these algorithms can require several tens of operations, then the resulting computa

tional requirements are in the billions of (byte) operations per second (gops). For higher

resolution screens and/or more complicated algorithms, this can increase by one or two

orders of magnitude.

As anexample, consider the conversion of RGB to YUV [88]. Video sources generate

three color signals, red (R), green (G), and blue (B). The three color signals are oversampled

to 27 MHz and converted to eight bits. These signals are often converted to luminance (Y),

and two chrominance (U,V) signals for further processing. This conversion is done by a

video matrix according to the following three equations:

y _ 77 *R+150 *G+29 *B

U =

256

-44* R--87*G+131 *B

256

131* R-•110*(?--21 *B
V =

256

In [88], various hard-wired data paths were constructed in an attempt to meet the

high throughput requirements. Pipelining was found necessary to meet the the clocking rate

specification. Fig. 2.1 shows a possible data path to perform the luminance conversion. It is

composed of a set of pipelined carry save full-adders (csfas), which performs the luminance

conversion. The final stage is a pipelined vector merging adder (vma). In the luminance

calculation, ten additions and ten shifts are performed at a rate of 27 MHz., which amounts

to a total computational requirement of 540 mops. If one also takes into account the oper

ations required for the two chrominance calculations, the total computational requirement

CHAPTER 2. HIGH SPEED DIGITAL SIGNAL PROCESSING

C C

R
S

F

S

F

A A LattJ

^
15^1

c U c C C

s s
—i

s S

F F F F

A

A
A A A tAJ

Figure 2.1: Pipelined Data Path for Luminance Conversion

is 1,674 mops. Salient architectural features include the use of many fast operational units,

and the heavy reliance on pipelining to meet the computational requirements. Additionally,

minimal control logic is required because of the highly pipelined nature of the design. The

data input streams are 8b wide and the output streams are 16 wide. Therefore 213 MB/sec

of i/o bandwidth are required for the RGB and YUV signals, excluding and synchronization
signals.

Flexible memory address generators are also required in video processing. A flex

ible memory control chip for formatting data into blocks suitable for video coding appli

cations is described in [106]. In this case, fast programmable counters are used to effect

the address generation while data path pipelines are used to format the data according to
specification.

2.3 Image Processing

The computational needs of image processing will vary depending on the level of

the processing being done, and the spatial and temporal resolution required. The com

putational requirements of low level image processing are quite high, especially if done in

real-time. The motivations of performing the processing in real-time are discussed in [104].

CHAPTER 2. HIGH SPEED DIGITAL SIGNAL PROCESSING 7

A real-time image processing chip set is described in [104, 103]. The functions performed

by these chips are 3x3 convolution, 7x7 logical convolution, 3x3 non-linear filtering based
on sorting, image contour extraction, feature extraction, and line delays. Chips of these

types are in commercial production [72].

As an example, consider the 3x3 linear convolver. A mask of fixed coefficients

is dragged across an image (Fig. 2.2). At each point, the output y(ij) is the sum of

the products of the coefficients and their corresponding pixel intensities. A signal flow

graph, (sfg), of the computation is shown in Fig. 2.3. In a real-time implementation of

this algorithm (where a new result might be required every clock cycle), high throughput

is best achieved by using multiple data path pipelines (composed of shifters and adders

in this example since the coefficients are fixed), interconnected in a way to reflect the

algorithmic data flow. The sfg can be hard-wired into the architecture by mapping it

directly to hardware. In the convolution, eight additions and nine shifts are performed

at a rate of 10 MHz., which amounts to a total computational requirement of 170 mops.

As in the RGB to yuv converter example, salient architectural features include the use on

many fast operational units, and the heavy reliance on pipelining to meet the computational

requirements,. The control logic requirements are minimal because of the highly pipelined

nature of the design. The data i/o streams are 8b wide and require 20 MB/sec of i/o

bandwidth excluding any synchronization signals. (The actual architecture used in [104]

was a pipelined data path composed of multiply accumulate units with a somewhat different

topology than the sfg).

2.4 Speech Recognition

The computational requirements of speech recognition will vary depending on the

type of recognition being performed (isolated word vs. connected speech), whether it is

speaker dependent or independent, the size of the vocabulary being supported, and the type

of algorithm being used. The computational needs are exacerbated when the recognition

is performed in real-time. A real-time isolated-word speech recognition system with a

vocabulary of 1000 words was presented in [58]. It requires the computation of 1.25 M

equations/sec or roughly 60 mips, where each equation is a dynamic programming recursion

equation.

The 3000 word, real-ime, hidden Markov model-based, continuous-speech recogni-

CHAPTER 2. HIGH SPEED DIGITAL SIGNAL PROCESSING

IMAGE

X XXX XXX

x xjx x x~|xlx

x xjx X x iX X

X X ; X X x i X X

X X X X X X X

X X X X X X X

X X X X X X X

•

MASK

all •12 •13

•21 •22 •23

•31 •32 •33

y(ij)= 2 2 a(m,n)x(i-m+2,j-n+2)
m=l 1=1

Figure 2.2: Image Convolution

© ADO [J D8LAY ©»-

_E

FEATURES:

algorithm is rabd.wibxo

high performance via

pipelining, parallel units

no sesouscb sharing

simple ofebatobi

sfborc communication

SMHJS CONTROL

1 P 1 'D 1

RESULT

m

Figure 2.3: Signal Flow Graph of 3x3 Linear Convolver

CHAPTER 2. HIGH SPEED DIGITAL SIGNAL PROCESSING 9

tion system described in [97] is another example. The word processing sub-system performs
aViterbi search over 50,000 states and computes 225 Mops/sec with 85 MB/sec ofmemory
accesses [116]. Speech recognition accuracy is further enhanced when syntactic constraints
are imposed on the concatenation of individual words in the vocabulary. This task is per
formed in the grammar processing sub-system which searches for the most probable word
sequence given transition probabilities in speech model supported. The grammar process

ing sub-system performs evaluations of the starting word probabilities associated with the

across-word transitions and computes 200 Mops/sec with i/o bandwidth of 265 MB/sec.
Recently, this system has been upgraded to handle 60,000 words in real-time with 30 ac

cesses per state which require in excess of 600 MB/sec of i/o bandwidth [115]. In this
system, 520 Mops/sec are required.

Let us discuss thegrammar processing sub-system in some more detail ([22]). The
statistical grammar model allows any word to follow any other word. Associated with the

ith. word produced bytheword processing sub-system is a probability PGO{, the probability
that the word i ends at a particular point in time. The grammar sub-system calculates a

probability PGIj, the probability that word j starts in the next frame. This jth successor

word probability is then sent back to the word processing sub-system. The probability

PGlf(t +1) under the statistical grammar model is found by using:

PGlf(t+1) = max [PGOi(t) x cy] (2.1)

where c,j is the transition probability from word i to word j. The evaluation of the ith word

(equation (2.1)) is terminated when the probability falls below a programmable threshold

and processing, and the i + 1thevaluation is begun. Assuming average of 17 successors per

word ([22]), the two cycle branch delay of the Grammar Processor leads to a 12 per cent
performance branch penalty. The dynamically adjusted threshold will terminate successor

updates before complete processing of all the successors of a word. It is not unreasonable

to.assume cases where fewer than 8 successors are updated per word. In these cases, the

performance branch penalty becomes 25 percent or more. If the branch delay penalty were

four cycles instead of two, these cases would suffer a performance branch penalty of 50 per
cent ormore. Clearly in this andotherapplications which contain repetitive data-dependent

loop iterations, low overhead conditional branching between the loop iterations is desirable

for efficient hardware utilization. Fig. 2.4 shows adetailed block diagram of the architecture

of the Grammar Processor which is one of two processors in the Grammar Processing sub-

CHAPTER 2. HIGH SPEED DIGITAL SIGNAL PROCESSING

YUV

CONV.

3x3

CONV.

WORD

PROC.

GRAMMAR

PROC.

MOPS 1674 170 225/520 200

IO (MB/sec) 213 20 85/600 265

10

Table 2.1: Computations and I/O Summary

system ([22]). The main architectural features are: 1) the algorithm is hard-wired into the

data paths 2) high performance is achieved through extensive pipelining and parallelism 3)

operators are very simple (add and compare/select) 4) irregular communication patterns,

among operators. 5) high i/o bandwidth is necessary 6) low overhead branching between

loop iterations.

The main architectural features of the Grammar Processor are very similar to

the previously discussed video and image processing examples. It is also useful to note

that in those,examples the communication patterns between the various operational units

was regular whereas here they are rather irregular. There, the word length requirements

were fixed, 8b and 10b respectively, whereas here they vary between 12b and 19b. The

previous exampleswere fully pipelined, whereas here the address generation unit is hardware

multiplexed. There the i/o bandwidth requirements are not as high as here. Here, fast,

data-dependent branching is required for terminating the calculation for a given word when

the probability falls below its threshold.

2.5 Computation Requirements of High Speed DSP

Table 2.1 summarizes the computational and i/o requirements of some of the

examples presented in the previous section. From these numbers we can see that real

time DSP applications place a tremendous demand on both computation and bandwidth

requirements.

Such high speed computation is required in video and real-time image processing

because of the high throughput requirements. In speech, high speed computation is also

required, because, although the sampling rate is lower than for video, the algorithms are
typically more complex.

The goal of this work is to define a set of high level, programmable macro-

CHAPTER 2. HIGH SPEED DIGITAL SIGNAL PROCESSING

IS

\Z7OPERATOR

SUCCESSOR

UPDATE

UNIT

I REGISTER x s MUX

FEATURES:

ALGORITHM HARD-WIRED

HIGH PERFORMANCE VIA

PIPELINING, PARALLEL UNITS

LOW RESOURCE SHARING

SIMPLE OPERATORS

IRREGULAR COMMUNICATION

WIDE I/O BW

VARIOUS WORD LENGTHS

SIMPLE CONTROL

S.^3fcB
EXT

MEM
*•—< I/O START

FIPOEMPTY

Figure 2.4: Grammar Processor Architecture

11

12

(STATE)

CHAPTER 2. HIGH SPEED DIGITAL SIGNAL PROCESSING 12

components to support the rapid prototyping of real-time dsp data paths. Case studies

of real-time algorithms and pipelined data path architectures such as discussed above, en

able us to identify the following key architectural features which must be supported by these

macro-components:

a) a set of concurrently operating execution units (exvs) with fast arithmetic, to

satisfy the high computational (hundreds ofuo?s) requirements.

b) very flexible communication between the exvs to support the mapping of a

wide range of algorithms and to ensure conflict free data routing for efficient hardware
utilization.

c) support for moderate (1-10) hardware multiplexing on the EXUs, for fast com
putation of tight inner loops.

d) support for low overhead branching between loop iterations.

e) wide instruction bandwidth.

f) wide i/o bandwidth (hundreds of MB/sec).

2.6 Conclusions

In this chapter it has been shown that high speed DSP applications, particularly

real-time ones, require massive amounts of computation and wide i/o bandwidth. Practi

cal implementations of these high speed systems usually require the creation of application

specific hardware. Although many different architectural styles exist, pipelined hard-wired

data paths, tuned to reflect the data-flow of the algorithm, result in particularly efficient

system implementations. The goal of this work is to define asetofhigh level, programmable

macro-components to support the rapid prototyping of such data paths. The key compu

tational requirements and architectural features that should be supported by these macro-

components were identified by surveying a variety of existing data paths.

Chapter 3

Architectural Classification

"A good classification scheme should reveal why a particular architecture is likely to provide
a performance improvementn

— David Skillicorn, A Taxonomy for Computer Architectures

3.1 Introduction

There are many reasons for classifying architectures. One is historical i.e. un

derstanding past accomplishments. Another is the identification of missing gaps i.e. the

revelation of configurations that might not otherwise have occurred to a system designer.

Another is that it allows useful performance models to be built and used. A good classifica

tion scheme should reveal why a particular architecture is likely to provide a performance

improvement [111].

In this chapter we will investigate ways of differentiating between the many ar

chitectural styles found in DSP. In order to establish a framework we will first consider

taxonomies for general purpose computer architectures. We will also consider more spe

cialized ones for ic applications such as telecommunications and image processing. We will

then focus on a classification developed specifically for DSP architectures. It is based on the

concept of control/arithmetic ratio which is related to the amount of operation sharing on

an arithmetic unit. This taxonomy is particularly suitable because of the strong empha

sis on high speed computations in real-time dsp. Using this taxonomy we will investigate

what are the most viable architectural approaches for satisfying the key computation re

quirements of high speed dsp. The answer has already been hinted at in Chapter 2 where

it was shown that hard-wired pipelined data path architectures were well matched to the

13

CHAPTER 3. ARCHITECTURAL CLASSIFICATION 14

computational requirements of real-time dsp. We will compare the various architectural

styles for functionality, performance, and hardware implementability.

3.2 Architectural Taxonomies

The conceptsof instruction streamparallelism, data stream parallelism, nodegran

ularity, and control/arithmetic ratio are relevant when making architectural comparisons.

They are discussed below in several different taxonomies.

3.2.1 Flynn

The classical taxonomy for computer systems was presented by Flynn in [37, 38].

The classification (Fig. 3.1 and Fig. 3.2) is based on the parallelism within the instruc

tion stream and parallelism within the data stream. Flynn observed that the methods for

achieving parallel operation depended on replicating the instruction stream and the data

stream. This gives rise to four classes of computers: single-instruction single-data (sisd),

single-instruction multiple-data (simd), multiple-instruction single-data (misd), multiple-

instruction multiple-data (mimd). A sisd computer is essentially a serial computer. A simd

computer is essentially a vector processor. A misd computer is generally unrealistic for

parallel computation while a MIMD computer is the most general. The two most interesting

types for achieving high performance through parallelism of operation are simd and MIMD

[117].

3.2.2 Extensions to Flynn's Taxonomy

Since Flynn's original work there have been many suggestions on how to modify
and/or extend it. The work by Skillicorn [111] is one such example. The classification
method is shown if Fig. 3.3. At the highest level, the model of computation is consid

ered, for example, von Neumann, dataflow, and graph reduction models. At the next level,

the abstract machine captures the essence of a particular architecture form without dis

tinguishing between different technologies and implementations. In this classification, the

basic functional units are instruction processors (for instruction interpretation i.e. if they
exist in the model), data processors, memory hierarchy, and a switch that provides connec

tivity between other functional units. The basic von Neumann abstract machine is shown

CHAPTER 3. ARCHITECTURAL CLASSIFICATION

Control

Unit

I-stream

Arithmetic

Processor

Data-stream

Model of an SISD computer

I-stream

Arithmetic

Processor

Data-stream

Arithmetic

Processor

Data-stream

Control

Unit

•

O

Arithmetic

Processor

Data-stream

Model of an SIMD computer

Figure 3.1: Flynn's Taxonomy

15

CHAPTER 3. ARCHITECTURAL CLASSIFICATION

Control

Unit

I-streaml
Yj

Arithmetic

Processor

I-stream2

p

Control

Unit

Arithmetic

Processor

Data-stream

I-streamN

O

•

•

•

Control

Unit

Arithmetic

Processor
y

Modelofan MISD computer

Control

Unit

I-streaml
k

Arithmetic

Processor

Data-streaml

I-stream2

P

Control

Unit

Arithmetic

Processor

Data-stream2

I-streamN

P

•

•

•

•

Control

Unit

Arithmetic

Processor

Data-streamN
P

Modelof an MIMD computer

Figure 3.2: Flynn's Taxonomy (contd.)

16

CHAPTER 3. ARCHITECTURAL CLASSIFICATION 17

in Fig. 3.4 as an example. The next level is the machine implementation which could be,
for example, the architecture as seen by the assembly language programmer, as well as the
technology used.

A series of states can be associated with the internal structure of each processing
unit in the abstract machine. Skillicorn accounts for the three major ways to increase per
formance. The first is to re-arrange the internal states to increase parallelism by removing
any unnecessary sequentiality in the state transition sequence. The second is to pipeline the

state transitions, with the recognition that pipelining will complicate certain instructions.

The third is to replicate functional units. The author presents several models which contain

functional unit replication: two types of array processors, and tightly and loosely coupled
multiprocessors.

The basic paradigm of the array processors is similar to the simd model of Flynn,

but further distinctions are drawn depending onthe interconnectivity of the units. A type I

arrayprocessor model is shownin Fig. 3.5. Here the data processor-data memory connection

is n-to-n and the data processor-data processor connection is n-by-n. (In an n-to-n switch

connection, the ith unit of one set of functional units connects to the ith unit of another.

This type of switch is a 1-to-l connection replicated n times. In an n-by-n switch connection,

each device of one set of functional units can communicate with any device of a second set

and vice versa. In a 1-to-n switch connection, one functional unit connects to all n devices of

another set of functional units.) A type II array processor model is shown in Fig. 3.6. Here

the data processor-data memory connection is n-by-n and there is no connection between

the data processors.

The basic paradigm of the multiprocessors is similar to the MIMD model of Flynn,

but again, further distinctions are drawn depending on the interconnectivity of the units.

A tightly coupled multiprocessor model is shown in Fig. 3.7. Both data and instruction

processors are replicated, but the data processors share a common data memory. Com

munication and synchronization between processes is achieved by used of shared variables.

There is an n-by-n switch between data processors and data memories. Loosely coupled

systems also have functional unit replication. The connection between data processors and

data memories is n-to-n, and there is an n-by-n connection between the data processors. A

loosely coupled multiprocessor abstract machine is shown in Fig. 3.8.

Another classification is contained in the paper by Seitz [110] which presents a

useful taxonomy for concurrent VLSI architectures that adhere to a basic structural model

CHAPTER 3. ARCHITECTURAL CLASSIFICATION

Model of computation

Abstract machine model

No. of instruction processors
No. of data processors
connection structure

Performance model

simple or pipelined
state diagram

Implementation model

implementation technology
speed

Figure 3.3: Skillicorn's Taxonomy

18

CHAPTER 3. ARCHITECTURAL CLASSIFICATION

Instructions

Stale

Operands Instructions

Figure 3.4: Basic von Neumann Abstract Machine

NxN

Figure 3.5: Type I Array Processor

Addresses

Instruction

Memory

Hierarchy

Instruction

Memory

Hierarchy

19

CHAPTER 3. ARCHITECTURAL CLASSIFICATION

NxN

Figure 3.6: Type II Array Processor

NxN

Figure 3.7: Tightly Coupled Multiprocessor Model

Instruction

Memory

Hierarchy

Instruction

Memory

Hierarchy

20

CHAPTER 3. ARCHITECTURAL CLASSIFICATION

NxN

Data

Memory

Hierarchy

Instruction

Memory

Hierarchy

21

Figure 3.8: Loosely Coupled Multiprocessor Model

based on the repetition of regularly connected elements. Based on the complexity (or

granularity) of the nodes (or computing elements) i.e. the node granularity, the author

identifies five major classes i.e. rams, logic enhanced memories, computational arrays,

microcomputer arrays, and conventional computers, in increasing order of node complexity.

The classes defined span a broad range of computational elements.

3.2.3 Telecommunications ASICs

In the paper by Keutzer [59]. the scope of the taxonomy is restricted to ic appli

cations and architectures, specifically: microprocessors, digital signal processors, floating

point units, co-processors such as for graphics and memory management, protocol engines

for communications applications, sequencers, and glue logic.

The author analyzed over one hundred ASIC designs for telecommunications ap

plications, implemented in standard cells. He found that these ASICs tended to be control

dominated, with little need for arithmetic, typically requiring low component density (under

10,000 logic transistors), and operating below 10 MHz.

CHAPTER 3. ARCHITECTURAL CLASSIFICATION 22

3.2.4 Image and Video Processing Architectures

The idea of node granularity is used in the classification of over forty image pro

cessing LSis made in Japan in the 1980's [41]. The author classifies the devices into five

categories: the fully parallel processor (fpp), the partially parallel processor (ppp), the dig

ital signal processor (dsp) specialized for image processing, the functional processor (fp),

and the neural network processor (nnp). In this taxonomy, fpps correspond to arrays of

very fine-grained, lb ALUs, operating in simd fashion to form so-called Cellular Array Pro

cessors. The author lists four FPP-like devices. Eleven PPP-like devices are listed, ppps

are chips which contain several pipelined processing elements. A processing element might

contain an 8b ALU and an 8x8 multiplier for example. Image processing dsps essentially

contain one large-grained processor containingj for.example, a 16b ALU, 16bxl6b multiplier,

and one 16b accumulator. The processors are designed to handle specific operations such

as spatial convolution, FIR filtering, and Discrete Cosine Transforms (dct). Eight DSP-like

devices are listed, fps are essentially asics that perform specific task such as address con

trol, feature extraction, character recognition. Thirteen of these devices are listed. Four

NNPs are listed for tasks such as character, text, voice, and image recognition.

Similar classes of image processing ics as above are produced elsewhere e.g. [72],
to name just one.

Another interesting classification for real time video architectures is contained

in [126], where the author attempts a functional classification based on processing proper
ties, memory properties, communication properties, and control properties. Examples of
different video architectures are presented: a) systolic arrays b) wavefront arrays c) self-
timed language-driven architectures [125]. Specific chips are discussed: a) the NEC vspm
system [121] b) the Matsushita ISMP chip [73] c) the Philips vsp chip [127] The rough
trade-ofFs of asynchronous vs synchronous schemes are mentioned.

3.2.5 Digital Signal Processors

Ageneral classification for dsp architectures, based onthecontrol/arithmetic ratio,
was suggested by Brodersen and Rabaey [15]. It is based on the amount of operation
sharing on an arithmetic unit (hardware multiplexing), a concept developed further in [20].
We will adopt this taxonomy since the concepts of control/arithmetic ratio and hardware
multiplexing are closely related to the issue of high speed dsp computation which is our

CHAPTER 3. ARCHITECTURAL CLASSIFICATION

CONTROLFLOW

DRIVEN

A

DSP ARCHITECTURES

MiGro-Proccuor

GcnenlPoipoae Signal Processor

DedicatedSignalProcessor

Dedicated Malti-Proccifors

Data Path Oustera

Bit-Serial

Systolic V
DATAFLOW

DRIVEN

Figure 3.9: Architectural Classification Based on Control/Arithmetic Ratio

23

main interest. This classification does not explicitly consider node granularity. However, it

is included implicitly since it is closely related to the control/arithmetic ratio, as is apparent

in Fig. 3.9.

The authors in [15] explained their classification as follows:

Architectures can be classified in many different ways. One way of classification
is based on the amount of operation sharing on an arithmetic unit, as shown in
Fig. 3.9. One extreme end of the scale represents the traditional micro-processor
architecture, where all arithmetic operations are time-multiplexed on one single
general purpose ALU. This architecture is classified as control driven, since
the functionality of the programmed device is completely determined by the con
tents of the control section. On the other end of the spectrum, one can find
architectures such as systolic arrays (bit-parallel or bit-serial), where each op
eration is represented by a separate hardware unit. The architectures are called
hard-wired or data-flow and the control section is minimal, if at all existing.
Naturally, a complete suite of in-between architectures can be defined. In fact,
one of the major challenges in architectural design is to strike the right bal
ance between control and data path sections for a given application and a given
throughput range.

Henceforth, we will assume that the reader is reasonably familiar with the different

classes outlined in Fig. 3.9 i.e. bit-serial, systolic, data path clusters, dedicated multi

processors, dedicated signal processors, general purpose signal processors, micro-processors.

CHAPTER 3. ARCHITECTURAL CLASSIFICATION

FULLY

HARDWIRED
INTERMEDIATE

ASSEMBLY

CODE

Data Path Clusters

Bit-Serial

Systolic

Dedicated DSP

Dedicated

Multi-Processors

Micro-Processor

General Purpose

Signal Processor

< PERFORMANCE

FLEXIBILITY

Figure 3.10: Performance and Flexibility for Different Approaches

Reference should be made to [15] for any necessary clarification.

>

24

3.3 Architectures for High Speed DSP

What architectural approaches satisfy the specific computation requirements of

high speed dsp, that were outlined in Section 2.5 of Chapter 2?

For a given algorithm, hard-wired approaches usually dominate in performance

since they can bedesigned to fit thespecific problem athand (with thecaveat thatasuperior
algorithm in software can beat an inferior algorithm in hardware). Furthermore, hard-wired
approaches are more efficient since they tend not have any of the extraneousness (such as
unused hardware units) thatageneral purpose programmable processor might have. Control

driven architectures are easily prototyped since can be solved by software e.g. programming
a general purpose DSP. Software systems are more easily created and simulated than hard

wired approaches which require the creation of application specific hardware. The problem
ofrapid prototyping for high speed dsp applications poses the interesting challenge offinding
architectural approaches which exhibit the flexibility of control driven ones and the high
performance of hard-wired ones.

(Fig. 3.10) shows therough trade-offs inperformance and flexibility for the different

CHAPTER 3. ARCHITECTURAL CLASSIFICATION 25

architectural classes ofbased on the control/arithmetic taxonomy. Digital signal processing
chips are now capable of tens of millions of multiply-accumulates per second. However,
they are still not fast enough to meet the computations intensive tasks of real-time dsp.

Section 4.2.1 will discuss these processors further. Bit-serial architectures do not lend

themselves easily to hardware multiplexing and conditional operations which limits their
application range. For high performance circuits, they are less area efficient and are slower

than bit-parallel ones for the reasons outlined in [54]. Systolic architectures ([62, 63])
are generally restricted to algorithms which can be formulated in a regular fashion (such
as filters). Examples of bit-serial, systolic, and semi-systolic programmable filters can be
found in [86, 55, 50].

Vector-pipelined architectures such as described in [123] (not classified in [15])
can achieve high throughput rates. However, due to the high branching penalty overhead

associated with very deep pipelines, the use of conditional operations is very restricted.

There have been recent investigations to alleviate this overhead [33], but this is still in the
research phase.

Moderate performance has been reported for architectures which have dedicated

multi-processors. The control based nature of these architectures restricts the throughput

range. In general, the performance of architectures with a restricted number of large gran

ularity processing elements (as constrained by chip area say) can be improved by increasing

the level of pipelining of the processors e.g [127]. However conditional operations will have

severe overhead penalties due to the deep pipelines.

On the topic of heterogeneous data path clusters, the authors in [15] stated:

The control oriented processor approach tends to break down for applications
with higher throughput ranges (such as required in speech recognition, video,
and image processing), since the ratio between data rate and instruction rate
tends to approach unity in these cases. A multi-data path approach with limited
hardware sharing (and hence small control unit) and extensive use of pipelining
and concurrency is required.

Detailed examples of data path clusters or hard-wired data paths were presented

in Chapter 2. The distinguishing features of the hard-wired data path approach are the

high computational speeds and hardware efficiency achievable through the use of heavy

pipelining and concurrency and the "hard-wiring" of the algorithms into the data paths. In

cases where conditional operations are required, these can often be hard-wired into the data

CHAPTER 3. ARCHITECTURAL CLASSIFICATION 26

path with little or no overhead. The operational units will be specified by the computation

nodes of the algorithm, and will have very little unnecessary overhead. As a consequence

of better hardware efficiency, hardware replication becomes feasible. Hardware replication

can increase concurrency and performance, and can be used together with or instead of

pipelining as appropriate.

3.4 Conclusions

Several architectural taxonomies were discussed. Focus was placed on a scheme

which uses the control/arithmetic ratio to distinguish between different dsp architectures.

Using this scheme, architectural styles were compared for functionality, performance, and

hardware implementability. It was shown that among the approaches to achieving high

performance, hard-wired pipelined data paths have distinct advantages over control ori

ented processor approaches, since the ratio between data rate and instruction rate tends to

approach unity in these cases.

Chapter 4

Rapid Prototyping Platforms

"A wide variety of chips move to higher levels of integration, making previous distinctions
ambiguous and heralding a. new generation of DSP technology",

— W Andrews, Computer Design Magazine [7]

4.1 Introduction

In real-time dsp applications the emphasis is on performance. Because of their

distinctive advantages in achieving high performance, hard-wired pipelined data paths are

used in many designs (Chapters 2 and 3). Currently, these data paths are implemented as

ASIC s. The costs in money and time to design, fabricate, test, and debug these integrated

circuits are usually non-trivial.

In order to capture market share for any product, a quick time to market can be

critical, more so due to increasingly shorter and shorter product life cycles. Engineers need

to be able to rapidly implement, test, and modify their designs. In short, a capability for

rapid prototyping is needed.

The goal of this work is to define software-configurable integrated circuits which

can be used to synthesize hard-wired pipelined data paths. Since the configuration of

the hardware is done in software, it is quickly and easily changed which makes it ideal

for rapid prototyping, and, because the hardware can be configured to specifically match

the application, high performance is also achievable. Using these circuits, the DSP system

design engineer will be able to prototype his design in a matter of days instead of the months

associated with the costly asic design, fabrication, and test cycle.

To establish a context, we will first discuss the implementation platforms such as

27

CHAPTER 4. RAPID PROTOTYPING PLATFORMS 28

TTL and bit-sliced parts, asics, and digital signal processors, upon which dsp systems are

built. We will then discuss approaches for rapid prototyping of these systems: a) High-

level synthesis tools are being built to aid the automatic generation and interconnection of

parts both at the chip and the board level of design, b) Software-configurable hardware has

proven to be an exciting approach to rapid prototyping. We will examine several recent

and interesting architectures of this genre both at the system level, and at the chip level.

Examples are considered both within and without the DSP arena for the valuable lessons

they have to teach about configurable hardware approaches. We will then present a novel

hardware platform for high speed dsp prototyping which is based on the idea of software

reconfigurable data paths.

4.2 Implementation Platforms

4.2.1 Programmable DSPs

It has been roughly ten years since the introduction of the first digital signal

processing chips or dsps. Since then, they have established themselves as being first choice

for general purpose digital signal processing. These processors are surveyed in [1, 2, 65,
66, 18].

If there is a definitive feature of these dsps, it is the multiply-accumulate time

(mac). Since their introduction, the mac time has been steadily decreasing from several
hundreds ofnanoseconds to the 50 - 100 nanoseconds that they now exhibit. Fig 4.1 shows

the trend. The data was drawnfrom the data sheets of several popular manufacturers such

as Motorola, AT& T, Texas Instruments, Fujitsu, Hitachi, and Analog Devices.

One possible way of deciding whether or not a dsp is appropriate for the task at

hand [67] is described in the following steps:

Step 1: Determine the application sample period. For example Table 4.1 shows

the sample period for three applications.

Step 2: Divide by the multiply-accumulate time of the machine. For example,

assuming a 100 nsec. mac time, we can calculate the instructions available per sample as
shown in Table. 4.2.

Step 3: Compare the instructions available per sample against the estimated com
plexity of the algorithm.

CHAPTER 4. RAPID PROTOTYPING PLATFORMS

MAC TIME (nsec.)

400

300

200

100

78

KEY: • fixed point

X floating point

z
J I I I I ' J—I I I I

80 82 84 86

YEAR OF INTRODUCTION

88 90

Figure 4.1: Commercial DSP Multiply-Accumulate Time

Application
Class.

Sample
Rate

Sample
Period.

Voiceband 8 kHz 125 /isec
Audio 44kHz 22.7 fisec
Video 5Mhz 200 nsec

Table 4.1: Application Sample Period

Application
Class.

Instructions

per Sample

Voiceband 1,250

Audio 227

Video 2

Table 4.2: Instructions per Sample

29

CHAPTER 4. RAPID PROTOTYPING PLATFORMS 30

This is of course an over-simplification. One must also consider factors such as the

types of instruction that needs to be executed, and i/o bandwidth constraints. They key

observation to be made here however, is that once the sampling rate gets high, as in video

or real-time applications, or the algorithm becomes very complex (relative to the number

of instructions available per sample), then the DSPs are not able to sustain the required

computation unless an unrealistic and impractical number of them are used. In some cases,

even that option is not available, due to i/o bandwidth and other limitations.

4.2.2 Generic Components

In rapid prototyping the use of generic integrated circuits (ics) would be preferred

over much costlier and riskier ASIC fabrication which can take weeks or months. Pre

fabricated generic ics include TTL chips, TTL bit-slices [78], and ECL and CMOS byte-slices [3].

The major disadvantages of using these approaches are high power, low speed, and large

board area, drawbacks which are related to the low level of integration of the parts.

Recently, components such as programmable logic devices (plds) and field pro

grammable gate arrays (ppgas) have made dramatic improvements in integration levels.

Using plds and fpgas the designer can integrate glue logic, counters, simple finite state

machines, micro-controllers and other functions that would require many TTL chips, and

integrate them into one or a few chips. However, despite their rapid advancements in speed

and integration levels, there are fundamental reasons why these components are not well

suited for high speed data paths. These components are software-configurable. Some can

be configured once only while others can be reconfigured for each application. Section 4.4
discusses these approaches further.

4.2.3 ASICs

By increasing the level ofintegration to that ofan asic one canovercome many of

the deficits ofgeneric components. Performance can be increased, and power consumption
and board area decreased. Gate-arrays and sea of gates are the most popular implemen
tation mediums for asics because they combine customizability with fast turn-around.

Standard cells are attractive for designs which require greater levels ofcustomization. Full

custom designs are viable for high volume parts. The major drawbacks of using an asic
approach are high nre costs, high manufacturing costs, long turn-around time (weeks or

CHAPTER 4. RAPID PROTOTYPING PLATFORMS 31

months), and difficulty to test and debug and correct errors. This approach is very intol
erant offailure. If an error needs to be corrected, one can be faced with another long and
costly fabrication cycle.

4.3 High Level Synthesis

4.3.1 Microsystems: Chip Level

One way of improving the turn-around time of ASICs is to reduce their design
time by improving the layout and simulation tools. Logic synthesis is the translation of a

register-transfer level (rtl) description of a circuit into combinational logic and registers

that implement this register transfer. An example of a successful logic synthesis system is
reported in [13].

By creatingdesigns that are "correct by construction", the designer can reduce the

number of iterations through the design, fabrication, and test cycle. High level synthesis is

one approach to this problem and its advantages are discussed in [74]. Traditionally, high

level synthesis is followed by automatic layout generation of an ic which implements the

rtl description. However, one is still left with the time for fabrication and testing, and the

still rather high nre costs associated with ASIC design and sophisticated CAD tools.

Early synthesis systems which target the generation of dedicated multi-processors

have been reported in the Lager-I [101], and the Cathedral-II [100, 88]. More recent

synthesis systems target the generation of dedicated data paths in order to achieve the

much higher throughput demanded by real-time applications. Examples of such systems

are Lager IV [64] (actually more of a silicon compiler than a high level synthesis system),

Cathedral-III [88, 87], hyper [28, 99], and phideo [70].

4.3.2 Systems: Board Level

SIERA (Fig. 4.2) is an integrated CAD environment for the behavioral and physical

design of dedicated systems [118, 113]. It extends the concepts of a VLSI silicon compiler

to board level module generation. Board level components are produced using a mix of

module generators and a module library. An interface generation module targets the auto

matic integration of these components into a higher level module, or the entire board, by

synthesizing the appropriate interface modules.

CHAPTER 4. RAPID PROTOTYPING PLATFORMS

System Structure Description

behaviordescription ehaviordescription

ASIC

Generators

PLD.PLA

Generators

Parameterized

Library Modules

Layout Generation

(place & route)

Interface

Generation

32

Board Layout

Figure 4.2: SIERA

High level synthesis holds great promise and continues to be a very active areaof

research.

4.4 Software-configurable Hardware

With relief, with humiliation, with terror, he understood that he also was an illusion, that
someone else was dreaming him.

— Jorge Luis Borges, The Circular Ruins

In the previous section we have seen that none of the hardware platforms such as

commercial dsps and generic components, were capable of providing the system engineer
with high performance parts that could be quickly, easily, cheaply, and efficiently proto
typed. The typical price for performance and efficiency is ASIC design and fabrication.
Improved logic synthesis and high level synthesis capability can reduce the design time but
do not eliminate the need for fabrication.

Given the above limitations, the idea of software-configurable hardware for rapid
prototyping is a natural and logical one. To re-iterate the basic argument: since the config
uration of the hardware is done in software, it is quickly and easily changed which makes

it ideal for rapid prototyping, and, because the hardware can be configured to specifically
match the application, high performance is achievable.

CHAPTER 4. RAPID PROTOTYPING PLATFORMS 33

In this section we will describe several examples of reconfigurable architectures,
processors, and integrated circuits, some proposed and some existing. Each case study
contains some important lessons and clues to reveal in their approaches to architectural
and hardware configurability.

4.4.1 Purdue CHiP

Early proposals for configurable architectures can be found in [120]. The basic
idea is the creation of algorithmically specialized processors via polymorphic architectures,

the important characteristics being a) Construction is based on a few easily tessalated

elements b) Locality isexploited; i.e., datamovement isoften limited to adjacent processing
elements, c) Pipelining is used to achieve high processor utilization. Examples ofthe target
applications included designs for LU decomposition, solving linear equations, solving linear

recurrences, tree processors, sorting, expression evaluation, and dynamic programming.
As stated by the authors:

The configurable, highly parallel, or CHiP computer is a multiprocessor architec
ture that provides a programmable interconnection structure integrated with the
processing elements. Its objective is to provide the flexibility needed to compose
general solutions while retaining the benefits of uniformity and locality that the
algorithmically specialized processors exploit."

The CHiP computer is a family of architectures each constructed from three com

ponents: a collection of homogeneous microprocessors or pes, a switch lattice, and a con

troller. The switch lattice is the most important component and the main source of differ

ences among family members. It is a regular structure formed from programmable switches

connected by data paths. The pes, are connected at regular intervals to the switch lattice.

Fig. 4.3 shows three examples of switch lattices. Each switch in the lattice contains local

memory capable of storing several configuration settings. The controller is responsible for

loading the switch memory via a separate interconnection network. Switch memory loading

is done prior to processing and in parallel with PE program loading.

Switches can vary by several parameters: m: the number of wires entering a switch

on one data path, or the data path width d: the degree or number of incident data paths c:

the number of configuration settings that can be stored in a switch. The PE degree is the

number of incident data paths.

Lattices can vary depending upon the PE degree, the switch parameters, and the

corridor width, w, the number of switches that separate two adjacent pes. Fig. 4.4 shows

CHAPTER 4. RAPID PROTOTYPING PLATFORMS 34

(c)

Figure 4.3: Three CHiP Switch Lattice Structures

the embedding of the complete bi-partite graph K4,4 in the lattice of Fig. 4.3c where the

center column of pes is unused i.e. the switch crossover value is 2. The ideas of exploiting

locality, pipelining and polymorphism for increasing performance are noteworthy.

Hardware configurability leads to enhanced fault tolerance. If an error is detected

in a processor, data path or switch, once can route around the offending element.

Overall, this paper contains several interesting ideas on configurable hardware at

the processor level. It is not clear how many of these ideas have been implemented into
hardware.

4.4.2 Texas Instrument RIC

The Texas Instrument's ric [16], is another early proposal for reconfigurable
hardware, at the integrated circuit level. Essentially, "A Restructurable Integrated Circuit
for Implementing Digital Systems" is proposed. The overt goal of the design was to create
a semicustom ic that serves much the same purpose as gate arrays and master-slices.

The design calls for an ic that contains four 16b micro-programmable slices (mpss).
The slices can operate in three modes: a) lockstep: all mpss receive the same micro-

CHAPTER 4. RAPID PROTOTYPING PLATFORMS 35

<»)

(b)

Figure 4.4: Embedding of Graph K4,4 into Switch Lattice

instruction b) independent: each MPS has its own micro-instruction stream, c) pipelined:

each MPS forms a stage of a pipeline and the micro-instruction streams are different for

each MPS. Status ports contain signals for ALU status, a carry chain, a shift/rotate linkage,

and a synchronization signal to provide implementations with word widths greater than

64b. Although no detailed information was reported, the high level specification for the

MPS design called for six major blocks: a) the data path b) the pla for interpreting data

path instructions c) the ROM address sequencer d) the scheduler, and e) the programmable

interconnect. A centralized ROM contains system microprograms and/or microprograms for

interpreting machine languages. If the ROM is replaced with a ram, mpss become user

programmable.

An application example was the programming of a Ric to implement a VAX-11/780

instruction set processor. The proposed architecture contains many interesting ideas such

as linkable ALU slices with different modes of operation, writable microstore, and pro

grammable interconnect for hardware configurability. However, it is not clear whether a

real machine was ever built. The target applications of this architecture are geared more

towards general purpose computing.

CHAPTER 4. RAPID PROTOTYPING PLATFORMS

ROM

ROM MANAGER

EXTERNAL

INTERRUPT

INTERFACE
MPS1

INTERRUPT

MANAGER M

P

S

2

M

P

s

3

M

P

s

4

MICROCONTROL

SEQUENCER

REGISTER

ALU, DECODER

MEMORY

INTERFACE

EXTERNAL

MEMORY

INTERFACE

RAM

Figure 4.5: Texas Instrument's RIC Block Diagram

4.4.3 CMU White Dwarf

36

The cmu White Dwarf [129] was designed specifically to solve finite element algo
rithms and other algorithms employing similar sparse matrix techniques. It employs a wide
instruction word architecture in which the application algorithm is directly implemented in
microcode. An overview of the processor is given in Fig. 4.6. The CPU board contains all

thedatapath logic, the microcode memory, and the timing control unit. The system board
contains the interface to the VME-bus and the required logic to download microcode and

the data memories, and perform diagnostics. The Dwarfbus connects these boards to the
memory subsystem.

The data path organization is shown in Fig. 4.7. It comprises separate integer and
floating point units with dedicated connections to six memories which implement the six
data structures used in the fem algorithm.

The White dwarf employs a wide instruction word paradigm. All of the control
fields for the ALUs register files, data path routing, memory control and microsequencing
are contained explicitly in each microinstruction word (Fig. 4.8).

The microinstruction sequencer and how the microstore is configured is described

CHAPTER 4. RAPID PROTOTYPING PLATFORMS

VMEBus

Dwarf Bus

Figure 4.6: CMU's White Dwarf Processor Overview

Floating

Point

Unit

Memory

Address

Registers

Integer

Unit

' ! E J (! [—'

' 3 '

sc

Memory

RP

Memory

XY

Memory

Row

Memory

Col

Memory

Link

Memory

' ' ' L
t i ; ; •

Figure 4.7: White Dwarf Data Path

37

CHAPTER 4. RAPID PROTOTYPING PLATFORMS

Sequencer

instruction

and

branch

address

Sequencer

Microstore

Microinstruction Register

Integer

Unit

Condition

Codes

Floating

Point

Unit

Condition

Codes
reg

Figure 4.8: White Dwarf Control Flow

CC

Register

38

as follows:

The microinstruction sequencer is implemented with Am29818 shadow registers.
These registers contain both a standard pipeline register and a second register
called the shadow register. The shadow register can be loaded from the output
port and can drive the input port. The shadow register is a shift register. Data
can be serially loaded into the shadow register and then transferred to the pipeline
register or the input port. The registers which form the microinstruction register
are connected into a single serial scan path which is controlled by the system
board (Fig. 4.9). The scan path formed by the pipeline registers is used for
downloading microcode to the control memory. Microinstructions are shifted into
the pipeline register then written into the control memory through the same scan
data path normally used to read the control memory. This scan path can also be
used to read back contents of the control memory or to assist in diagnostics.

At the time this paper was published, the system was still in the process of being
built. The architecture is is tuned for a specific application domain, in this case, finite

element analysis. The use ofa wide microinstruction word, and a writable control memory,
configured via a serial scan chain are noteworthy.

CHAPTER 4. RAPID PROTOTYPING PLATFORMS

4.4.4 MIT RAP

Downloader

Microstore Address

Microstore

Microinstructionregister

Figure 4.9: White Dwarf Downloading Flow

39

The MIT reconfigurable Arithmetic Processor (rap) is an arithmetic processing

node for a message-passing, MIMD concurrent computer [36]. It incorporates on one chip

several serial 64b floating point arithmetic units connected by a switching network, rap

calculates completearithmetic formulas by sequencing the switch through different patterns.

To paraphrase the authors: the basic RAP data path is shown in Fig. 4.10 It

consists of four bit-serial arithmetic units, a switch, input registers, and output registers.

Intermediate results are fed back into the switch which is reconfigured to allow the next

stage of the computation to take place. When the computation is complete, the results are

sent to the output registers. At a higher level, the RAP has a message passing interface. A

RAP is sent messages that define equations as a sequence of switch configurations, which are

stored in local memory. Subsequent messages use these stored configurations to evaluate

the equation. Mechanisms are included to allow pipelining of several raps.

Fig. 4.11 shows the overall rap block diagram consisting of the control blocks the

memories, and the data paths. The stated key feature of the rap is that it reduces the data

transfer bandwidth that the network must sustain to do arithmetic calculations effectively.

At the time of publication, a rap test chip had been fabricated and tested in 3 micron

scalable CMOS technology. The rap is an example of a reconfigurable processor targeted to

CHAPTER 4. RAPID PROTOTYPING PLATFORMS 40

Figure 4.10: RAP Data Path

fast floating point operation (20 MFlops), withing a message passing MIMD environment.

The idea of sequencing the switch through different configurations to achieve the various

levels of computation is particularly noteworthy.

4.4.5 Video Signal Processors (VSP's)

As might have become obvious in Section 3.2.4, the number of architectures for

image processing and real-time video applications are numerous. Many of these circuits are

user-configurable, and their number keeps increasing every year. For example: a general
purpose VSP is reported in [127], a four processor building block for SIMD image processing
arrays is reported in [35], a data-driven video signal array processor is reported in [107,
108, 109], a 300 mops video signal processor is reported in [79], and a data-flow processor
for real-time low level image processing is reported in [96].

Over forty image processing LSis made in Japan in the 1980's are surveyed in [41]
There are too many of these processors to describe all of them, so we will restrict

our discussion to a few representative specimens.

CHAPTER 4. RAPID PROTOTYPING PLATFORMS

Qocna

Inpa

Onral

Rccfcun

batu

JT To

Nownk

Cbaml

Rcctsm

Figure 4.11: RAP Block Diagram

Philips VSP

tops

Qots*

41

The Philips VSP chip targets real-time video signal processing [127]. Each chip

contains three Arithmetic Logic Elements ales, and two Memory Elements MEs, connected

by a full crossbar switch (Fig. 4.12). Connections to the crossbar switch are made through

so-called silos, which is a 32 word, two port ram which are used to provide algorithmic

sample delays. The ales are deeply pipelined (five stages). The MEs contain 512 words

each. Each PE is controlled by its own control memory P, which accommodates up to 16

instructions. In this architecture, the program is cyclically repeated, without any breaks,

by avoiding conditional branches.

The ALE blocks are shown in Fig. 4.13. Arithmetic and logic operations are possi

ble. It has two data inputs for ALU operations. A third input is used for partial multiplica

tions and to enable data dependent operations by supplying a parameter for the instructions

stored in P. In this way data-dependent instructions are realized without using conditional

branches.

The techniques such as employing a fully crossbar switch and the philosophy of

polycyclically executing a repetitive kernel make this architecture very interesting. The

target application domain is closely related to to that of this work. However, we observe

that the granularity and level of pipelining of the processors (ales), the fixed word widths

CHAPTER 4. RAPID PROTOTYPING PLATFORMS

CROSSBAR

SWITCH

f lilt 11 lilt 1111

LI u
ME ME

. m
outputs .

42

Figure 4.12: Philips VSP

of 12 b, and the choice to allocate large resources to on board memory support, limit its

applicability for rapid prototyping of high speed data paths. A fixed word width narrows

its applicability to certain video applications. Its deep ALE pipelines are not well suited to

efficient calculation of recursive loops and conditional branch type instructions.

ITT DataWave

The ITT DataWave is a so called "Wavefront Array Processor for Video Applica

tions" [107,108,109]. The processor topology is an array of16 individually programmable
mesh-connected cells (Fig. 4.14). The processor executes statically scheduled data flow
programs, propagating data through the array in a wavefront-like manner.

In this data-driven approach, cells automatically wait when neighbors are not
ready to send or receive data. Built-in hardware supports an asynchronous self-timed

4-phase handshake protocol. A major benefit of adopting an asynchronous paradigm is
immunity to clock skew, which is critical at very high clocking frequencies. Eight deep fifo
buffers smooth out the data transmissions between cells.

The cells have 12b word widths and communicate with nearest neighbors through
input and output FIFOs. The core cell with its execution units and program ram is sur
rounded by three 12b ring buses (Fig. 4.15). This bus enables a result from the core cell to

CHAPTER 4. RAPID PROTOTYPING PLATFORMS

FromP

Figure 4.13: PhiUps VSP: ALE Block Diagram

12 * v Nonh >.12

Bos Switch

12 12

Wen East

• f

12 12

Bm Switch

12 ^ * jioud1
.12

Figure 4.14: DataWave: Processor Architecture

43

CHAPTER 4. RAPID PROTOTYPING PLATFORMS

Wot

our FIFO
T ♦ *

Register

Pile

MAC

12*124-29

North

I
IN FIFO Sotuh

T

IN FIFO

Pfognxn

RAM

64x48

ALU/

Shift

eh
OUT FIFO

44

East

Figure 4.15: DataWave: Cell Architecture

be broadcast to all communication ports simultaneously. A four-port 16 word register file

serves as local.data store. The ALU can perform arithmetic, a lb shift/rotate, the 16 possi

ble logic operations of two operands (and, or, xor, nand etc.), and provides several flags for

conditional operations. The MAC can multiply two 12b fixed-point operands and add the

result to a 29b accumulator. Program configuration is done via a serial bus. A fast internal

clock of 125MHz is achieved by pipelining the EXUs to five (deep) levels. As a consequence,
branch execution is delayed by 3 cycles. Also, due to the high clock frequency, the data

transmission rate for inter-processor communication is typically set lower by a factor of 2

or 3 than for inter-cell communication.

This architecture is intrinsically interesting because of its use of data-driven and

asynchronous communication techniques. The two-dimensional processor array topology
can be limiting in some applications. For those applications which map well to a two-

dimensional array of processors with homogeneous interconnectivity and for which 12 bits

are adequate, or which can tolerate the 3 cycle branch penalty, this architecture is could be
very attractive.

CHAPTER 4. RAPID PROTOTYPING PLATFORMS 45

Figure 4.16: NTT VSP Architecture

4.4.6 NTT VSP

The NTT VSP [79, 80] contains four pipelined data processing units (dpus) and

three parallel i/o ports (Fig. 4.16). Communication among the dpus and four sets of

cache memories occurs via eight 16b buses. The DPUs are pipelined to five levels. The

DPUs are controlled by local program units (16w x 32b) which are in turn sequenced by a

central program sequencer containing 512w x 32b of instructions. These units are initially

configured via a boot-rom which employs appropriate "set-up" commands. This vsp has

the advantage of having a very high data memory bandwidth and is attractive for specific

video processing such as video codecs.

4.4.7 Software Reconfigurable Transceiver

A programmable DSP engine for high-rate modems is was presented in [6]. The

architecture contains a fir processor for signal processing applications and a binary proces

sor for data manipulation. The fir processor contains three fir engines in a multiprocessor

simd architecture with a 32b instruction set dedicated for dsp tasks. The binary processor

contains a general purpose unit for cascading, error computation, error scaling, slicing, A/D

CHAPTER 4. RAPID PROTOTYPING PLATFORMS 46

and D/A interface, TDM interface, AGC etc.

The device is fully programmable as a transmitter, echo canceller, equalizer, deci

sion feedback equalizer. It supports programmable filter structures, programmable adapta

tion modes, programmable adaptation rates, programmable filter rates, has software recon

figurable interconnections, zero-glue interface to most processors and programmable support

functions.

While the data rates (5 Mb/sec) are not as high as the applications that we

consider, this processor is an good example of the effective use of software-configurable

techniques to its application domain to provide flexibility and high performance.

4.4.8 Field Programmable Gate Arrays

Programmable or restructurable devices known as programmable logic devices

(PLD's) (such as [5]) are able to implement random logic and simple fsms rather well.

Prior to these devices, any glue logic or simple controllers would typically require several

or many TTL parts depending on the complexity. With these devices, the chip count can
be dramatically reduced.

In recent years, the class of chips known as fpgas has seen rapid growth [40].
Examples are numerous and new ones are continually being reported. Among the many
popular ones are: Xilinx [52, 51, 130], Actel [4], Algotronix (Cal) [45], Plessey [46], att
[48], and Plus Logic [94]. These devices are of similar architecture and granularity in that
they all consist of some form of configurable logic block clb connected by some form of
programmable interconnect.

It would be impractical and unnecessary to discuss all members of this class. We

will choose the popular xilinx XC3000 fpga as a representative. Fig. 4.17 shows the basic
logic cell array layout. Alogic cell array consists ofaset of clbs which are user-configurable.
Other user-configurable structures are the programmable interconnect and the i/o blocks,
or iobs.

The basic clb architecture is outlined in Fig. 4.18. It contains two sections, one
combinational logic, the other, registers. The combinational logic section is implemented
as a thirty-two entry lb sram. With this structure, several choices of combinational logic
functions are possible as shown in Fig. 4.19. The basic interconnection structure is shown
in Fig. 4.20.

CHAPTER 4. RAPID PROTOTYPING PLATFORMS

PART CLB's I/O

3090 320 144

3064 224 120

3042 144 96

3000 100 80

2000 64 64

programmable interconnect

perimeter of IOBs

array of CLBs

Figure 4.17: XC3000 Logic Cell Array Family

COMBINATIONAL

LOGIC

R

Din

STORAGE ELEMENTS

-zh_rhljF— J D Q—i—
H>CE I

— XA —

B —

C —

D —

E —

R

D Q

~t>CE tO-
CLOCK

\y
CB

Figure 4.18: XC3000 CLB Architecture

47

CHAPTER 4. RAPID PROTOTYPING PLATFORMS

CH

tH

my fimcdoa
of up to 4
vtritMcf

tsy faacdog
of up to 4

vuublet

my function

of5 viritbles

Figure 4.19: XC3000 Combinational Logic Options

!
CLB CLB

1

Switch

Minx

II
i i

ii
i !

CLB CLB

O DtnctCaoieci to4Nuictt neighborCLB'f
O GeDBilPupoMbferconscciiSwftkiLShoriuBa]
O I.mgl.tnM-4V«Tti.T»l,3W»i»»..|

Figure 4.20: XC3000 Interconnect Structure

48

CHAPTER 4. RAPID PROTOTYPING PLATFORMS 49

These devices are changing the way many system designs are being implemented
and prototyped. Because they are software-configurable, and have robust simulation tools,
designs which might take weeks to fabricate in an asic can now be done in a matter of

hours. As the level of integration increases, the number of usable gates will continue to

grow into the tens of thousands. Since many actual designs typically contain gates of this

order ofmagnitude, fpgas .have and will continue to becompetitive with conventional gate-
arrays for low to medium complexity designs. Active research is also currently being done

in the field of logic synthesis for fpgas [81, 82, 39] and in incorporating them as hardware

platforms into high level synthesis systems [132].

Due to their bit-level granularity, fpgas will not support as flexible routing of

wide data-buses and will not have as fast adders (for the same technology) as a word-level

granular architecture with flexible bus interconnections and adders optimized for speed.

FPGAs also do not typically support hardware multiplexing of their clbs which can lead to

highly inefficient designs in some cases. For these reasons, fpgas will have limitations in

the prototyping of high speed data paths. These limitations will be further elaborated on

in Appendix A.

4.4.9 PADDI: Programmable Arithmetic Devices for High Speed DSP

In Chapter 2, we discussed the computational requirements for real-time DSP ap

plications, in Chapter 3, we discussed taxonomies which would help us differentiate between

the many architectural styles found in digital signal processing. There we focussed on the

arithmetic/control ratio as an appropriate metric and discussed the merits of hard-wired

data path approaches for high speed digital signal processing. In the previous sections of

this chapter, we have argued the need for rapid system prototyping, and the advantages

of software-configurable hardware approaches. We have discussed specific case studies of

systems and ics which use configurable hardware approaches. While these approaches serve

their particular application domains very well, none of them are well suited to rapid pro

totyping of real time digital signal processing applications, specifically those which require

hard-wired data path solutions because of their high speed computations, and low arith

metic/control ratio.

Clearly what emerges is the need for some type of programmable engine which

lends itself to the rapid prototyping of high speed data paths. From Section 2.5 we re-

CHAPTER 4. RAPID PROTOTYPING PLATFORMS 50

iterate the basic architectural features which must be supported by such an engine:

a) a set of concurrently operating execution units (exvs) with fast arithmetic, to

satisfy the high computation (hundreds ofuovs) requirements.

b) very flexible communication between the EXUs to support the mapping of a

wide range of algorithms and to ensure conflict free data routing for efficient hardware

utilization.

c) support for moderate (1-10) hardware multiplexing on the EXUs, for fast com
putation of tight inner loops.

d) support for low overhead branching between loop iterations.

e) wide instruction bandwidth.

f) wide i/o bandwidth (hundreds ofMB/sec).

The basic concepts for such an engine, PADDI, or Programmable Arithmetic De

vices for High Speed Digital Signal processing, were first reported in [25]. The abstract

architecture, shown in Fig. 4.21, is similar, but not identical to those of the software-

configurable architectures presented in the previous sections. The set of exus are repre

sented as data processors. The nx n switch provides flexible communication. Performance

is achieved through increased parallelism rather than increasing the level of pipelining of
the EXUs, which better satisfies c) and d). In order to satisfy both e) and f) simultaneously,
a two level instruction decoding scheme is employed. The local IPs which directly control

the dps are serially configured at configuration time. At run-time, they receive instructions

from an external IP via a 1-n switch. What sets this architecture apart from the others
mentioned previously is the granularity the EXUs, the instruction set, and the allocation of

resources to specifically support high speed data paths. The architecture will be presented
in detail in Chapter 5.

4.5 Conclusions

In this chapter we discussed the need for rapid prototyping in general, and for
dsp applications in particular. We also discussed various methods which can be em

ployed to achieve a rapid prototyping capability. A promising approach is that of software-
configurable hardware. We have discussed several architectures which employ this approach.
While many such architectures exist for a variety of applications, none are well suited for

rapid prototyping of the high speed data paths found in real time dsp. We also presented

CHAPTER 4. RAPID PROTOTYPING PLATFORMS

NxN

Instruction

Memory

Hierarchy

Figure 4.21: PADDI Abstract Architecture

an abstract view of the paddi architecture which was created to fill this gap.

51

Chapter 5

PADDI: Architectural Design

Fallacy: One can design a flawless architecture

— J. Hennessy and D. Patterson, Computer Architecture A Quantitative Approach

5.1 Introduction

The goal of this chapter is to describe the development and design of an archi

tecture which targets the rapid prototyping of high speed data paths for real-time digital

signal processing applications.

In Chapter 2 we discussed the computationand i/o requirements of real-time dsp

applications. Many high speed dsp systems employ a hard-wired pipelined data path ap

proach to attain the requisite high computation rateThe merits of the hard-wired pipelined

data path approach were discussed in Chapter 3. Chapter 4 focussed on rapid prototyping

platforms for high speed dsp systems. There we identified software-configurable hardware

to be a very promising approach to attaining the dual goals of flexibility for rapid proto

typing and high computation rate. We discussed several examples of software-configurable

hardware architectures and identified the need for one that addresses real-time dsp. In this

chapter wedescribe the development and design of such an architecture, namely, the paddi

architecture. The acronym paddi stands for "Programmable Arithmetic Devices for High
Speed Digital Signal Processing".

We shall begin with a discussion of how paddi was developed. As we present

the architecture, we will explain the reasons for some of the key design choices and we

will discuss the various techniques used to achieve high performance. The programmer's

52

CHAPTERS. PADDI: ARCHITECTURAL DESIGN 53

view will be presented along with a simple benchmark to illustrate how the prototype chip

functions.

5.2 Design Goals

Flexibility and high computation rate were the primary design goals for the archi

tecture. Flexibility indicates the goal for the architecture be able to support a wide range

of real-time dsp applications. High computation rate arises due to the real-time nature of

the applications. Another major goal was efficient hardware utilization i.e. not only should

the architecture able to support many different algorithms, but it should do so with as little

unused resources as possible. Achieving this is strongly related to the ability of the compiler

to recognize and ultimately to utilize the underlying hardware resources.

These goals determine the final choice of logical functions, communication topol

ogy, and control structure of the architecture.

The decision to adopt a software-configurable hardware approach to achieve flexi

bilityandhigh speed computation rate, was made early in the design process, based uponthe

analysis contained in the previous chapters, The next step was choice of the dynamic/static

interface, which is described in the following section.

5.3 Dynamic/Static and Hardware/Software Interfaces

In this section we adopt the interface model described by Melvin [77]. A computer

can be thought of as a multi-level system with high level algorithms at the top and circuits

at the bottom. In between are levels, or interfaces, which define sets of data structures and

the operations allowed upon them. Examples of interfaces are high level languages, machine
languages and microcode.

The author distinguishes between the dynamic/static interface (dsi) and the hard
ware/softwareinterface (hsi).

The choice of placement of the DSI is a very basic decision and will directly affect

the performance of any machine. We digress briefly to clarify what is meant by dsi.

The dsi is that boundary between translation and interpretation. During transla

tion, the specification of the algorithm is changed from one format to another and is a one

time affair. During interpretation, the algorithm specification is executed, using input data

CHAPTER 5. PADDI: ARCHITECTURAL DESIGN

High

Conventional Performance

Conventional Machine Processor High

Machine with Compilation with Level

with Compiled to Compiled Language

ti:Du t «im»i -

Interpreter Code Microcode Code Machine

XUgfl U6VG1

Language

Litennediate

^

i

code

Instruction Set

Architecture

t I J!

i k ~^ l

Microcode

(single cycle 7 > i 5

level)

Individual

gates
UttaMdvfalSUO)

Figure 5.1: DSI Placement Examples

54

that is not part of the specification, and results are generated. Interpretation occurs every

time the algorithm specification is executed.

According to the author, the HSI is that boundary between hardware and software.

The distinguishing element between is oneof aiterability. The microcode of most machines,

although stored in read/write memory, can be viewed as hardware because it cannot be

changed without halting the processor. In some sense, this conflicts with our usage of the

term software-configurable hardware where it is implied that user-defined configuration in

formation (including microcode), though static during execution time, is actually software.

Melvin observes that Patt and Ahlstrom argue that microcode should be considered hard

ware if it provided by the manufacturer and software if it written by the user [93]. The

apparent conflict is discussed by him and is resolved as follows: the idea of builder/user

interface is used to describe software-configurability and is considered a separate concept
from that of hsi.

The author discusses several examples of dsi placement as shown in Fig. 5.1.

CHAPTER 5. PADDI: ARCHITECTURAL DESIGN 55

The first example represents a conventional interpreter. The high level language

program gets translated into an intermediate level code. It then gets interpreted by a

program running on a conventional microprogrammed machine. There are three levels of

interpretation involved: the intermediate level code by the machine level code, the machine

level code by the microcode, and the microcode by the gates. The second example rep

resents a conventional microcoded machine running compiled code. Here the intermediate

code step is eliminated. The third example represents reduced instruction set machines

which puts the dsi (and hsi) at the lowest level possible. The fourth example represents

a higher performance version of the second example. Here, the microcode interpreter has

been eliminated and the machine language level is executed directly. If the instruction set

architecture is designed specifically with a hard-wired implementation in mind, the distinc

tion between the third and the fourth examples blurs. The final example represents a high
level language architecture. The author quotes examples of actual machines for each case.

At the beginning ofour architectural design, the choice was made to place the DSI

ofour processor as in example three discussed above. As was observed in Chapter 2, real
time dsp algorithms are typically implemented on pipelined data paths, which are either

fully pipelined (the hardware multiplexing ratio is one), or execute tight inner loops (the
hardware multiplexing ratio can range from one to ten). The choice of adopting a Rise
philosophy dove-tailed with this for the following reasons. Firstly, a reduced instruction

set evolves naturally from the digital signal processing domain. The instructions that are

required are naturally restricted to arithmetic and comparison types due to inherent nature

of the computations. Secondly, since these instructions execute repeatedly in pipelines
and/or in loops, the performance gain of a simplified, but faster design, will be magnified
many-fold as they are continually repeated over time.

Having committed to this choice of DSI, the next step was to evaluate the fre

quency of individual functions and optimize the performance of those that were used most

frequently. Essentially, the problem was one of chosing the HSI.

5.3.1 Design Methodology

Adesign methodology ofsuccessive refinement was used to develop the architecture

(Fig. 5.2). The successive refinement consisted of two phases, one ofanalysis, and one of
synthesis.

CHAPTER 5. PADDI: ARCHITECTURAL DESIGN

Examine benchmarks

Define architecture,

primitive operators,

interconnect, control

10

Evaluate primitives,

interconnect, control & 10.

Reject complicated ones

Evaluate new benchmark

or recast old one

Compare performance

to existing architectures

analysis

synthesis

analysis

Figure 5.2: Architectural Design Methodology

56

CHAPTER 5. PADDI: ARCHITECTURAL DESIGN 57

In the analysis phase, a benchmark was evaluated for its particular architectural

requirements, namely its primitive operators, its interconnect, its control, and its i/o re

quirements. Basedon the results of the analysis, we could, in the synthesis phase, construct

or modify an architecture to support this benchmark. If a certain feature was not used

very often, or would complicate the architecture, it was rejected. Additionally, the final

architecture was compared to existing designs such as discussed in Chapter 4. The final

justification of the design lay in its ability to out-perform prior ones. Our objective was to

create as simple an architecture that would meet the design goals. By keeping things sim

ple, we wanted to maximize our chances for achieving functionality, high speed and efficient
compilation.

5.3.2 Functional Design

Listed below are some of the main algorithms that were used as benchmarks.

Biquadratic filters were a simple and convenient benchmark with which to get started.

The architecture can support non-recursive filters but recursive biquadratic filters are more

interesting because their feedback structure puts more of a burden on the architecture.

Filtering

• a) biquad

- hardware multiplexed

- direct-mapped

- pipelined [112, 92]

Video and Low Level Image Processing

b) Video Matrix Converter [88]

c) 3x3 Linear Convolver [104]

d) 3x3 Nonlinear Sorting Filter [104]

e) Memory Controller For Video Coding [106]
Speech Recognition

• f) Dynamic Time Warp [58]

• g) Word Processor [116, 115]

• h) Grammar Processor [22]

The basic features that must be supported by the architecture were listed in Sec

tion 4.4.9. These were:

CHAPTER 5. PADDI: ARCHITECTURAL DESIGN

DATAPATH ARITHMETIC OPERATORS CONTROL DATA

I/O

pipelined, 8-18b unsigned + - shift
local branch

8-1121/P

parallel 8-24b2'sc 1/2.. 1/128 global branch 8 - 51 O/P

heterogenous saturation compare

communication min, max

ace, mult

Figure 5.3: General Characteristics of Benchmark Set

58

a) a set of concurrently operating execution units (exvs) with fast arithmetic, to
satisfy the high computational (hundreds of mops) requirements.

b) very flexible communication between the EXUs to support the mapping of a
wide range of algorithms and to ensure conflict free data routing for efficient hardware
utilization.

c) support for moderate (1-10) hardware multiplexing on the exvs, for fast com
putation of tight inner loops.

d) support for low overhead branching between loop iterations.

e) wide instruction bandwidth.

f) wide i/o bandwidth (hundreds ofMB/sec).

Figure 5.3 is a summary of the general characteristics of the benchmark set and

show specific features that need to be supported. The common theme to the data paths

examined was the requirement for many operators to be executing in pipelined and parallel

fashion, with a widely varying or heterogeneous communication between them. Typically

the arithmetic was unsigned or two's complement, ranged in required accuracy from 8b to

24b, and was saturating. Operations were mainly limited to addition, subtraction, shifting,

comparison, accumulation max and min, and multiplication. Two forms of low overhead

branching were required. Local branches where the result of one operator was used to

CHAPTER 5. PADDI: ARCHITECTURAL DESIGN

NUMBER of OPERATIONS

30

20

10

abcdefgh

add/sub shift comp 2:1 max

OPERATION

4:1 mux

59

abs malt

Figure 5.4: Number of Ops vs. Op Type

control the output of another, and global ones where the result of an operator influenced

the global instruction sequence. The i/o pin count for the various implementations that

were examined exhibited a wide range as shown, which gives some insight into the i/o

resource requirements. The combination of Table 2.1 which summarizes the computations

and i/o bandwidth requirements and Figure 5.3 which lists specific characteristics were

used to guide the design of the architecture. The detailed results of this study are described
below.

Operator Statistics

A count of the different operations present in each algorithm (a - g) listed above

was compiled. The result, for each algorithm, is shown in Figure 5.4. The assumptions

made for the fixed coefficient biquadratic filter (case a) was that on average, four shifts

were required after canonic-signed digit conversion. Max and min functions functions were

decomposed into compare and multiplexing operations. The abs and mult (variable by vari

able) operations were only present in the dynamic time warp example. As to be expected,

the add/sub operation is dominant for all algorithms.

Further perspective can be gained by summing a particular operation e.g. all

additions, across all the algorithms. The result is presented in Figure 5.5. The percentage

CHAPTER 5. PADDI: ARCHITECTURAL DESIGN 60

occurrence of all occurrences is also listed. Clearly, by adopting the ten percent rule,

architectural support for add/sub, shifts, comparisons, two to one multiplexing is desirable.

Interconnect Statistics

A count was made of the connectivity of the different operations in each algorithm

i.e. (a - g), listed above. The result for each algorithm is shown in Figure 5.6. Here l:m

denotes an arc in the signal flow graph which connects a single source to m destinations,

and n:l denotes an arc which connects n sources with one destination. As to be expected,

the 1:1 arcs are dominant for all algorithms sue to the spatial locality of the computations.

Further perspective can be gained by summing arcs across all the algorithms. The

result is presented in Figure 5.7. The percentage occurrence of all occurrences is also listed.

We observe that 1:1 connections dominate by occurring 78.9% of the time, 1:2 connections

15.0 %, 1:3 connections. 2.4 %, 1:4 connections 1.7 %, 1:5 connections 0.7 %, 1:5 connections

0.2 %, 2:1 connections 0.5 %, and 4:1 connections 0.2 %.

Becauseof the close correspondence between the operators-and hardware execution

units in fully pipelined applications, We can reasonably associate operator connectivity with

execution unit connectivity. We can deduce from the high percentage of 1:1 and 1:2 arcs

that there is tremendous spatial locality in the usage of variables. This spatial locality

arises as a direct consequence of pipelining where operational units tend to communicate

with neighbors. In these considerations, the statistics will change depending upon the level

of hardware multiplexing which is allowed. Clearly when several operations are executed

upon the same hardware unit, the distribution of the various types of arcs will change. For

example, the need for data merging into a single destination (over several cycles) will be
clearly be greater.

Control Statistics

Thetypes ofcontrol structures required for each algorithm islisted in Figure 5.8. In
many of the algorithms, the applications are fully pipelined and so the the control structure

is degenerate i.e. none is required. Others typically require the repetitive execution of a
small loop.

An example of such a loop is outlined in Figure 5.9. It is the control loop for the

grammar processorof the grammar processing subsystemofexampleh. The state transition

CHAPTER 5. PADDI: ARCHITECTURAL DESIGN

90

80

70

60

50

40

30

20

10

Total Number of Operations

37.6%

. _..{>C..Q4R.. .._ „..
ZD.OT©

% --15.8% 16:39

0.9% 1.8% 1.8%

< X M H M X X •

add/ sh comp 2:1 4:1 abs mult

sub mux mux

OPERATION

Figure 5.5: Total Number of Ops vs. Op Type

61

CHAPTER 5. PADDI: ARCHITECTURAL DESIGN

60

SO

40

30

20

10

NUMBER

r-|

r-

"

™

-i

abed

<

efgh f
*

• ffL_nr}Jl _ ^
X H M X— •

1:1 1:2 1:3 1:4 1:5 1:6

FANOUT

Figure 5.6: Number of Arcs vs. Arc Type

62

diagram for the grammar processor consists of eight states. The first two perform processor

initialization. In the third state, the processor idles until a word is available at the input

FIFO. Upon receipt of this word, it performs several state transitions to fill the processor

pipeline until the last state is reached. At this point, the pipeline is full and the processor

executes within state until all successors of the word are updated, or the current probability

falls below a dynamically adjusted threshold, whichever comes first. The processor then

returns to the third state to await the next word. The above example illustrates the the

ability of the processor to perform conditional branches, and to perform several different

instructions in a tight loop.

From these examples we discern that the processor we design should be capable

of efficiently performing global branches, as well as the degenerate case of full pipelining

of the EXus. What might not have been clear is the need for efficient performance of

local branches. In many of the benchmarks, the result of one operation directly affects

the outcome of another. Examples of this are evident in the data path of the Grammar

Processor which waspresented in Fig. 2.4. In this way, high performance is achieved because

the conditional operation is directly hard-wired into the data path. Our processor should

also be capable of handling these cases efficiently.

CHAPTER 5. PADDI: ARCHITECTURAL DESIGN

TOTAL NUMBER

350

78.9%

300 -

250 -

200

150

100

50

(2:1 0.5%, 4:1 0.2%)

15.0%

2.4%
1.7%

0.7% 0.2%

< M M X M M •
1:1 1:2 1:3 1:4 1:5 1:6

FANOUT

Figure 5.7: Total Number of Arcs vs. Arc Type

63

CHAPTER 5. PADDI: ARCHITECTURAL DESIGN

BENCHMARK CONTROL

a) biquad

(pipelined)

fully pipelined

a) biquad (hardware

multiplexed)

control loop

b) video matrix

convener

fully pipelined

c) 3x3 Linear

Convolver

fully pipelined

d) 3x3 Non-linear

Sorting Filter

fully pipelined

e) Memory Controller fully pipelined

f)DTW control loop

g)WordProc control loop

h) Grammar Proc control loop

Figure 5.8: Control Structure by Benchmark

64

CHAPTER 5. PADDI: ARCHITECTURAL DESIGN

FILL

PIPELINE

READ OFFSET

READ RMIN, SET WCIR

PROB < THRESH

or ENDLIST

READ SUCC ADDRESS tBd TRANSITION PROB

UPDATE SUCC ADDRESS COUNTER

READ OLD PROB FROM PRIOR UPDATE

WRITE NEW PROB FOR CURRENT UPDATE

Figure 5.9: Grammar Processor Control

BENCHMARK CLOCK

(MHz)

INPUT OUTPUT

PINS BW

MBIsec

PINS BW

MBIsec

a) biquad

(pipelined)
4 16 8 16 8

a) biquad (hardware

multiplexed)
24 16 48 16 48

b) video matrix

converter
27 24 51 48 162

c) 3x3 Linear

Convolver
10 24 30 8 10

d) 3x3 Non-linear

Sorting Filter
10 24 30 8 10

e) Memory Controller 8 12 12 36 36

f)DTW 5 32 20 16 10

g) Word Proc

(Viterbi only)

5 54 34 42 26

h) Grammar Proc

(excl. Epsilon Proc)

5 68 43 64 40

Figure 5.10: 10 Statistics

65

CHAPTERS. PADDI: ARCHITECTURAL DESIGN 66

IO Statistics

The i/o statistics are shown in Figure 5.10.

In this figure wesee the inclusion of two versions of the biquadratic filter. The first

assumes that the filter runs at 4 MHz. The second assumes that transformations are made

(using techniques described in [112, 92]) to pipeline the filter to achieve a sampling rateof
24 MHz. Both assume that the filters are 16 bits. For the linear convolver and the non-linear

sortingfilter (examples c and d), we assume that the line delays exist external to the system.

This assumption is made to reflect the fact that our targeted architecture does not support

the implementation of video line delays. This allows a more accurate accounting of the

i/o requirements of these benchmarks. Actual pin numbers were available for the Viterbi

Processor section of the Word Processing Sub-system of benchmark g, and the Grammar

Processor of the Grammar Processing Sub-system of benchmark h which is why we have

tabulated these cases.

The main conclusion that can be drawn from these numbers is that real-time

algorithms place a heavy burdenon the pin and i/o bandwidth requirements of the systems

that implement them.

Computation Rate Statistics

The computation rate statistics for the different benchmarks are presented in Fig

ure 5.11. The computationrate is calculated as the product of the total numberofoperations

(excluding data moves) and the clock rate.

Here al and a2 refer to the two versions of the biquadratic filter. The Viterbi

Processor of the Word Processing Sub-system is labeled as gl, and the total requirements

of the whole word processing sub-system is labeled as g2. As mentioned in Chapter 2, this

system has been upgraded to handle 60,000 words in real-time with 30 accesses per state

which require in excess of 600 MB/sec of i/o bandwidth [115]. This upgraded system is

labeled as g3. The grammar processor section of the Grammar Processing Sub-system is

labeled as hi, and the total requirements of the grammar processing sub-system is labeled
ash2.

In order to estimate the balance of the required computation rate and the i/o

bandwidth of these systems, we can tabulate the ratio of these two metrics, as shown in

Figure 5.12. These results are plotted in Figure 5.13. The arithmetic mean of the ratio is 6.4

CHAPTER 5. PADDI: ARCHITECTURAL DESIGN 67

Computation Rate (MOPs)

3000

2000

1000

« H M M M M H M H M M M •
al a2 b c d c f gl g2 g3 hi h2

BENCHMARK

Figure 5.11: Computation Rate Statistics

Mops/MB/sec. A betterestimate (to reduce the effect ofoutliers) is probably the geometric

mean which is 3.56 Mops/MB/sec. Clearly, if our final architecture digresses greatly from

these values, it should serve as a warning flag of possible imbalance of resources.

5.4 Techniques for High Performance

A popular measure of the performance of conventional uni-processors is the time

required to accomplish a specific task (or program, or algorithm, or benchmark). It is often

expressed as the product of three factors:

Time per Task = C * T * I

C = Cycles per instruction

T = Time per Cycle (clock speed)

I = Instructions per Task

Fig. 5.14 shows the task set for a uni-processor and a corresponding task set for

the prototype chip. If, for argument's sake, we assume this naive mapping, then several

points are clear. For each individual EXU, the above performance metric still applies. The

mapping is of course naive, since, by applying such techniques as pipelining and parallelizing

operations across EXUs, operator chaining within EXUs, pipelining within EXUs, one can

CHAPTER 5. PADDI: ARCHITECTURAL DESIGN

30

20

10

BENCHMARK
CLOCK

(MHt)

COMP

(MOP*)

IOBW

(MM)

COMP/IO

(MOPl/MB/i)

t)Uqpal
4 228 16 14.25

24 2640 96 27.5

bjndCOIStidJI

GOBVCSCT
27 1674 21J 75

c)3*3Lfacv

Cmvolvcr
10 170 40 405

<03i3Noo-tiaetf

SodtaaFOtcr
10 280 40 7.0

o) Meotny OoomDcr 104 48 22

QDTW 176 30 5.9

Si) Word Proc

(VltaMcoly)
130 60 22

(2) Ward Proc

(uul)
22S 85 2A

|3)Ward Proc

(amded)
320 600 09

al|USBUBff PlOB

(rrrl PprgoaPtoc)
75 83 09

al/OMIIIIlfTPrUC

(told)
200 265 0.75

Figure 5.12: Computation Rate / IO

ComputationRate(Mops)/ IO BW (MB/scc)

ArithMema6/t

GeomMeana3S6

1 1

< >< >< H M >< M M M X M X •
al a2 b c d e fglg2g3hlh2

BENCHMARK

Figure 5.13: Computation Rate / IO

68

CHAPTER 5. PADDI: ARCHITECTURAL DESIGN

ins I

2

3

n

instructions

UNI-PROCESSOR

TASK SET

n/8

wide

instructions

EXUs

J!-

ins 1 2 8

9 10 16

n-7 n-6 n

PADDI

TASK SET

69

Figure 5.14: Naive Mapping of Uni-processor Task Set

dramatically reduce the number of wide instructions and, in the limit, approach I =1 for

a fully pipelined application. We will now discuss the various techniques which we have

applied to improving the performance. This work relies in part on the techniques used in

the popular Rise [57] approaches.

If we can reduce any of the individual components which contribute to the overall

time per task without increasing any of the other components in the process, we will have

improved the performance. Techniques which can be brought to bear on reducing C are

instruction pipelining, adopting a load/store architecture, using delayed branching and

filling the unused slots with useful instructions.

In order to reduce T one must attempt to optimize and equalize the various

critical paths of the machine. This is one of the strongest arguments for adopting a simple

rather than complicated architecture.

The primary techniques which help reduce I are resident in the compiler, will be

discussed in more depth in Chapter 7. For highest performance, the goal is to spread the

Task over as many EXU's as possible and, in the limit, approach 1 = 1. By minimizing

architectural constraints, eliminating special case situations and adopting an orthogonal

instruction set, the task of the compiler can be greatly facilitated. We therefore tried

to maintain a regular architecture with as few restrictions as possible and to expose the

CHAPTER 5. PADDI: ARCHITECTURAL DESIGN 70

underlying hardware to the compiler.

5.5 Processor Architecture

Having established our design goals, decided on a software-configurable hardware

approach, and settled on a DSI, the next step was to design the architecture based on the

analysis of the benchmark set presented above, and employing the various high performance
techniques presented.

At this point the problem was partitioned into its component pieces or modules,

namely functional blocks, interconnect, control, i/o, memory, and software con

figuration

We will now describe some of the basic design questions that arose for each of

the separate components. Design choices in a given component almost always influence the

design of the other components, and so it was not always possible to de-couple the-designs.

A major influence on the choice of design was the ability to have reasonably accurate

knowledge of the impact of a particular design choice upon the underlying silicon area and

the timing. Finally, the questions of Will the compiler be able to make use of this? and

Will this make it difficult to compile for? and How will this impact hardware utilization?

were constantly kept in mind.

5.5.1 Execution Units

We begin by re-iterating the relevant key architectural feature required for the

operational units that was identified in Section 2.5. The requirement was one of a set of

concurrently operating execution units with fast arithmetic, to satisfy the high computation
(hundreds ofMOPs) requirements.

Design Considerations

Some of the major questions which needed to be answered for the functional block

design were Which operators should we support? Should the blocks resemble gate arrays
or processors? What is appropriate granularity? and Should the blocks be homogeneous or
heterogeneous in nature?

The question of which operators should be supported was answered by examining

CHAPTERS. PADDI: ARCHITECTURAL DESIGN 71

the general characteristics of the benchmark set as discussed previously. A decision was

made to adopt a processor or EXU based approach with moderate granularity. With this

approach, the desired functionality could be incorporated into the data path, optimized for

area and speed, and not consume any global routing resources that would be required in

a more granular approach. Additionally the overhead of configuring and controlling larger

blocks decreases linearly as the block size grows. The problem is that, as the block size

grows, the impact of an unused block becomes higher. This puts additional pressure on the

compiler to ensure that the hardware can be utilized as fully as possible. We considered

an initial block size of 8b with the possibility of linking the blocks together for 16b, 24b

and 64b accuracy. We finally decided upon a 16b architecture with linking capability for

32b operation in order to reduce the control overhead. A decision was made to adopt a

homogeneous architecture the regularity of which would be a plus for compilation efficiency.

Execution Unit Architecture

Fig. 5.15 shows the internal architecture of an EXU. It supports addition, subtrac

tion, saturation, comparison, maximum-minimum, and arithmetic right shift. Furthermore,

the EXUs can be user configured to be both 16b or 32b wide. Arithmetic is performed in

two's complement or unsigned format with automatic saturation.

Two register files each containing six registers are used for the temporary buffering

of data. The files are dual-ported for simultaneous read and writeoperations. They can also

be configured as delay lines to support pipelining and retiming of operations. In each file,

one of the six registers is configured as a scan-register. It can be initialized to contain an

arbitrary value (for the implementation of constant variables), read and written as a regular

register, or used for scan-testing. A fast carry-select adder and logarithmic shifter are used

to implement the arithmetic functions. A pipeline register is available at the output of each

EXU for optional use. By using the register, the user can increase the maximum sampling

rate by overlapping EXU operations with data transmission over the network. This can be

useful in applications where the additional latency has no negative effect. However, if the

operation is in a feedback loop, the additional pipeline register would normally not be used.

A status flag (a > b) is available to other EXUs and the external world.

The basic paddi operations are shown in Fig. 5.16 and Fig. 5.17 respectively.

There are no fundamental reasons, save area, that limit the EXU to the one used

CHAPTER 5. PADDI: ARCHITECTURAL DESIGN

r1 C v1 I,

-RBO-
-HtS- "HtS-

I
\sunn ^^t-

"V—^

P-L-,
1

ptpcuoo

g WORDS

NANOSTORE

Figure 5.15: EXU Architecture

n r

T
ADD/SUB

SATURATION

ACCUM

MAX(A,B)

MIN(A3)

SHIFT/(ADD/SUB)

COMPARE

Figure 5.16: Primitive PADDI Operations (a)

72

CHAPTER 5. PADDI: ARCHITECTURAL DESIGN

2

ŷ OPTIONAL

PIPELINE REGISTER

PROGRAMMABLE

DELAY LINE

i 16 f 16

LINKABLE DATA-PATHS

k

1. U.

2 PORT

REG FILES

73

= s: /

A ^
j

XT

PASSA/B

Figure 5.17: Primitive PADDI Operations (b)

in paddi or the number of nano-store instructions to eight. For a different application set,

one might indeed wish to modify the EXU design and increase the number of nano-store

instructions.

A decision was made to not implement a dedicated hardware multiplier due to

area cost. Many commercially available chips already exist which are essentially multiply-

accumulate engines. These engines are tuned for algorithms which require lots of multipli

cations. However, as our benchmark set indicates, for many applications, the presence of

a multiplier becomes a costly burden because it would be an under-utilized resource. The

architecture of the exus can be easily modified to support modified Booth coded, multi

cycle multiplication using shift and adds. Such a modification may be included in future

versions.

We also note that four to onemultiplexing andabsolute values can be implemented

using the operators chosen, and, if implemented across several hardware units, can be done

with no performance penalty. These were the two other, less frequently used, operations
that were present in the benchmark set.

CHAPTER 5. PADDI: ARCHITECTURAL DESIGN 74

5.5.2 Interconnection Network

We recall that the key architectural requirement for the interconnection network

from Section 2.5was very flexible communication between theexus to support themapping

of a wide range of algorithms and to ensure conflict free data routing for efficient hardware

utilization.

Design Considerations

The major question which needed to be answered for the interconnect design was

What is the most economical network that will support the types of algorithms which we

target? This was one of the more critical and important design issues that was faced.

Although there is a tremendous amount of research which has gone into multi

stage routing networks, they were not considered as viable alternatives because several

clock cycles would ne needed to route data through such networks. A main criterion for

the interconnect network is that it be fast, with no latency. The main design choices left

to us was whether to adopt hierarchical approaches as fat-trees [69, 68] and discretionary

interconnection matrices as in [128], or to adopt a full-crossbar. Full-crossbars are more

expensive to implement than hierarchical ones, as the number of functional blocks grow.

Ultimately, we adopted a combination of the hierarchical and cross-bar approaches. As

mentioned previously each benchmark was analyzed for its communication and routing

requirements. For those benchmarks, the hardware mapping of the SFGs exhibit spatial and

temporal locality in the usage ofvariables. Spatial locality arises because of pipelining since

operational units tend to communicate with neighbors. This spatial locality is quite evident

from the results of the benchmark set analysis ofoperatorinterconnectivity presented earlier.

Temporal locality occurs because of moderate hardware multiplexing and tight loops where

variables tend to be used and consumed over the span of a few instructions. Wealso observed

the need for data broadcast, and data merging. This model of execution is supported

extremely well by communicating clusters of exus, each containing local register files and

connected by a high bandwidth, conflict-free network (full cross-bar). We were able to

successfully hand compile our benchmarks to the paddi architecture (excluding the Dynamic

Time Warp example). A example is given in Appendix B. We feel that this approach puts

less of a burden on the compiler than a hierarchical one because of the full cross-bar at

the lower level. One could have chosen a less expensive interconnect topology than a

CHAPTER 5. PADDI: ARCHITECTURAL DESIGN

EXU

A

EXU

B

EXU

C

EXU

D

^> ji4yi 4i* U\r"
'I 1 1

Typel

\ Type 2

INPUT BUS

14— , OUTPUT BUS

Type 2

f * Typel

LOCAL BUS

Hr it i f1N T
E

EXU

F

EXU

G

EXU

H

EXU

75

Figure 5.18: Crossbar Switch

full crossbar for the lower level of the interconnect hierarchy. However, the power of the

crossbar is evidenced in the ability to support data broadcast from and data merging into

a single EXU. The crossbarensures conflict free data routing within a cluster of EXUs which

ensures efficient hardware utilization. Since the cross-bar is only used at the lowest level

of the hierarchy, the cost is still much less than that of a complete cross-bar connecting all
processors.

Clusters of EXUs are connected to other clusters via a high bandwidth connection.

The task of the compiler is to map sfgs by partitioning and selecting and assigning cutsets

to a cluster of exus. By having a full cross-bar at the lowest level of the hierarchy, we

ensure that there are no routing constraints on scheduling and assignment at that level.

However, partitions must be chosen so as not to violate the i/o constraints of the clusters.

In cases where the i/o constraints cannot be satisfied, hardware replication over clusters

can be used to overcome this barrier, at the cost of additional hardware.

Interconnect Network Architecture

Fig. 5.18 shows the internal structure of the crossbar for a cluster of processors.

(It is implemented as a two tiered structure for layout reasons). The routing from and exu

output to any input is conflict free. Global broadcasting from a single source is supported,

CHAPTER 5. PADDI: ARCHITECTURAL DESIGN 76

and the dynamic nature of the interconnect ensures that multiple sources can be merged

at a single destination. There are no constraints on the data routing from the from input

ports over the input buses. Even numbered exus can route data to two of the four output

buses and odd numbered ones can broadcast to the other pair. The buses shown are 16b

wide.

The interconnection network routes both data as well as status flags. The data

routing is under program controland can be changed in eachprogramcycle. The routingof

the status flags is static and set at compile time. By making the flag routing static we were

able to reduce the required number of nano-store bits and so remain within a reasonable

silicon budget.

Four input channels and four output channels, all sixteen-bits wide, are connected

to the crossbar network to provide a data i/o bandwidth of 400 MByte/sec. By providing

high communication bandwidth for inter-cluster (inter-chip for the prototype architecture),

scalability of the design is ensured.

5.5.3 Control

There are three main requirements for the control module: a) support for mod

erate (1-10) hardware multiplexing on the EXUs, for fast computation of tight inner loops,

b) support for low overhead branching between loop iterations, and c) wide instruction
bandwidth.

Design Considerations

One way of supporting the above requirements would be to simply broadcast the

instruction for each EXU in a mimd fashion, which requires a wide instruction bandwidth.

However, due to limited hardware resources, a wide instruction bandwidth conflicts with a

wide data i/o bandwidth. The solution was to provide a control store for each EXU that

could be serially-configured at set-up time, and which would receive a global instruction in

the form of an address into that store at run-time. In this way, a wideinstruction bandwidth

could be achieved without consuming a large number of pins. The resulting architecture

is simd in the sense that a global instruction is broadcast to each EXU and MIMD in the

sense that each instruction is uniquely decoded for each EXU. This provides one aspect of

software-configurability i.e. the ability to change the contents of the control store with each

CHAPTERS. PADDI: ARCHITECTURAL DESIGN 77

new application and is similar to the approach taken in [127].

A control store with a finite set of instruction words, supports the execution of

loops and hardware multiplexing. For speed considerations we aimed for single cycle exe

cution of each instruction which led us to choose a horizontally encoded instruction word

format.

A major question was what form the support for conditional branching should

take. It was decided to provide dedicated hardware support for operations such as max,

min, and saturation instead of implementing them as a compare-branch instruction pair.

This enables single cycle execution and avoids and branching overhead penalty. Tosupport

loops and operations where the result ofone EXU could directly affect the result of another,

we decided on a form of local branch support which allowed an EXU to interrupt the control

flow of another with single cycle overhead. This is morefully discussed below in the section

on Delayed Branches. A complete next-address field is not supported in the control store,

which saves 3 additional bitsper nano-store. Rather a scheme utilizing two statically defined

interrupt vectors was chosen, and is described below. Global branching is handled by the
external sequencer.

Control Architecture

In the final design, each EXU has an SRAM-based nanostore which is configured

serially at set-up time. At run-time, an external sequencer broadcasts a 3b global address to

each nanostore which is locally decoded into a 53b instruction word (Fig. 5.19). Effectively,

a 3b address is able to specify 8 x 53 or 424b very long instruction word.

Cycles per Instruction (C):

Techniques which allow C to be reduced include:

Instruction Pipeline: Each EXU operates using a four stage pipeline as shown

in Fig. 5.20 (a). Here I-fetch refers to the fetching of a global instruction from the external

controller, and Output Result refers to the availability of result at the output pads for say

an external memory write. The instruction pipeline can potentially reduce the number of

cycles per instruction by the depth of the pipeline as shown in (b), depending on how well
the pipeline can be kept filled.

Load/Store Architecture: All operations are performed on operands held in

CHAPTER 5. PADDI: ARCHITECTURAL DESIGN

GLOBAL

CONTROLLER

y/ 3b GLOBAL INSTRUCTION
* • —•

1 1

NANO

1

NANO

2
• •

NANO

8

y '53 /'S3b LOCAL /*
INSTRUCTION

. • • Y

^N^

424b VUW

Figure 5.19: Nanostore as a Local Decoder

clock: cycles

Cycle I 2 J 4

INS

FETCH

(F)

INS

DECODE

0»

EXU

OP

(E)

OUTPUT

RESULT

(O)

INSl

(a)

; 2 J 4 5 6 7

i ir .,-

F D E O

2 F D E 0

3 F D E O

4 F D E O

(b)

Figure 5.20: Four Stage Pipeline

78

CHAPTER 5. PADDI: ARCHITECTURAL DESIGN 79

EXUl F D E O

EXU 2

Figure 5.21: Local Delayed Branches

EXU registers. External memory is accessed by load and store instructions only, which are

handled by the external controller (Fig. 5.28).

Due to the pipelined nature of the architecture, branches and loads must be ac

counted for. The delay slots which they introduce are exposed to the assembly language
programmer and to the compiler for optimization.

Delayed Branches: The architecture supports two types of branches local and

global. In the former type, any exu on the same chip can alter the control flow ofany other

EXU on the same chip after 1 delay slot, as shown in Fig. 5.21. The EXU being interrupted

sets one or both of its interrupt enable flags in the previous instruction. Upon receipt of an

interrupt, it vectors to one of two pre-compiled instructions (denoted as IVs, for interrupt

vectors) in the next cycle. The hardware implementation of this feature will be described

in the next chapter (the test example of a modulo three counter described in Section 6.7.2

of the next chapter, also uses this feature and the branch logic hardware which implements

this is described in Section 6.4.2 of the next chapter). If the EXU being interrupted resides

on a different chip, an additional branch delay slot is required. During global branches, an

EXU flags the external controller which can then alter the global control flow as shown in

Fig. 5.22. In this case, two branch delay slots are also required.

Load/Execution Alignment: Because of the four stage pipeline, there is a two

CHAPTER 5. PADDI: ARCHITECTURAL DESIGN 80

F D E 0

F D E o

F D E O

F D E 0

F D E 0r

Figure 5.22: Global Delayed Branches

slot delay between an instruction issue and its corresponding EXU OP. The external memory

load for that instruction must be issued (by the external controller) so that the operands

will be aligned with its EXU operation. If single cycle SRAM is used, the system designer

must insert an additional delay stage between the sram and the chip as shown in Fig. 5.23.

as:

Time per Cycle (T):

The time required to perform a single machine cycle is determined by such factors

Instruction access time: Global instructions are generated by a fast commer

cially available external programmable logic sequencer e.g. [17, 119] and broadcast to each

EXU. For the prototype chip these are three bits long.

Instruction decode time: At configuration time, the local controller for each

EXU is serially configured each with its own unique set of instructions. Each controller is

an sram containing eight words of fifty-three bits each. Due to the small size of the srams,

global instructions can be decoded in a very short time.

Instruction operation time: All instructions execute in a single cycle.

Architectural simplicity: The organization of the machine is streamlined to

wards high speed DSP applications. By focusing on the operations important to our needs,

CHAPTER 5. PADDI: ARCHITECTURAL DESIGN

INS INS EXU OUTPUT

FETCH DECODE OP RESULT

(F) (D) (E) (0)

ALIGNED 1
LOAD DELAY OPERAND

81

Figure 5.23: Load/Execution Alignment

we were able to optimize a small number ofcritical EXU features which support those oper

ations e.g. fast addition, max-min, accumulation, branching, and flexible communications.

Discussion:

A basic choice was to use a von Neumann-like, statically scheduled architecture

vs. a data-flow one. An objection to the former approach is that pipeline initialization

requires special controller states (nano-words) which serve no other really useful function.

Also data merges into a given processor requires several controller states. In a data-driven

approach, an encoding into the data stream might indicate the validity of the data. Hence

processing would occur only on the existence of valid data. This would circumvent the

need for extraneous prologue code necessary for pipeline fills in the statically scheduled
case. Some mechanism would be required to deal with data merge conflicts when several
sources attempt to broadcast to a single receiver. Another choice was to use a synchronous

approach vs. an asynchronous one. An asynchronous approach would not suffer from clock

skew problems, but would incur overhead to support the necessary handshaking protocols.
Which of these various approaches might yield better results still remains to be answered

and is the subject of active research (e.g. [131]).

CHAPTERS. PADDI: ARCHITECTURAL DESIGN 82

5.5.4 IO

The key requirement for i/o is that there should be wide i/o bandwidth (hundreds

ofMB/sec). Wide i/o bandwidth mainly refers to the communication of the processors with

the external world. Recalling that we have chosen a hierarchical interconnection approach,

we note that a wide i/o bandwidth is also desirable for on-chip inter-cluster communication.

This will facilitate the task of the compiler in mapping and scheduling operations which

need to communicate across clusters.

5.5.5 Memory

Since the applications that weintend to support are data path intensive, a decision

was made not to explicitly support memory. There is someimplicit memorysupport. Every

EXU has a register file connected to both its input ports. These register files allow for a

temporary data buffering, which can alleviate the contention problem on the interconnect

buses. If larger amountsof memory such as video delay lines and frame buffers are required,

these will be implemented as external (commercially available) components in the final
system.

5.5.6 Configuration

Design Considerations

The configuration module must do whatever is necessary to configure the archi

tecture before run-time. The major issues were whether or not to have on-chip support for

automatic configuration, how to interface with slow external boot memory. It was finally

decided to include an on-chip configuration module which could interface seamlessly to an

external boot eprom without the need for additional glue logic. The hardware design of

these modules will be described in the next chapter.

At another level, weneeded to decide which configuration information wasrequired

to be in the control store and thereforeunder run-time control, and which could be statically

defined. The former is more costly in silicon area because it increases the size of the control

store,whereas the latter canbestored more cheaply in the serial configuration scan registers.

Appendix C lists the final choices that were made.

CHAPTER 5. PADDI: ARCHITECTURAL DESIGN 83

5.6 Processor Summary

The final overall architecture is outlined in Fig. 5.24. It contains thirty-two exus,

organized into four clusters (or quadrants) ofeight exus each. Quadrants are organized in

a ring network. The exus in each cluster are fully connected by a dynamically configurable

crossbar. We envision a family of processors using this architecture. The main difference

between the different processors shown is the number of exus per processor. Two members

of the family are shown in Fig. 5.25 and Fig. 5.26. Additionally, the number of words in the

instruction store and the basic functions of the EXUs can be varied to provide new members

of the family. For example, Fig. 5.27 shows a modified architecture with two multipliers
shared over six EXUs. Another design might share one multiplier over seven EXUs, depending
on the demands of the applications. The level ofpipelining in the multipliers could be varied
to accommodate the level of sharing.

At this point, a word about resource balancing is appropriate. Assuming a 25

MHz operating frequency, the Peak Computation Rate to i/o ratio for a thirty-two EXU

processor is 800 Mops to 400 MB/sec or 2.0 Mops/MB/sec. This ratio is similar to the

geometric mean of3.56 Mops/MB/sec of the benchmark set. An MCM based approach' with

double the processors and similar i/o resources will make the ratios tend to converge even
further, if desired.

As a proof of concept the architecture shown in Fig. 5.26 was implemented as a

single VLSI component. Its hardware implementation will be described in Chapter 6.

Fig. 5.28 shows how the chips might be applied in a simple system. At power up,

the paddi chips (labeled pads) are configured by self-booting from the boot ROM. After

receiving a startsignal from the externalcontroller, the chips are able to perform both data

computation and memory addressing tasks. The external controller determines the global

instruction sequence and issues the appropriate loads and stores to external memory. (The

figure shows a pad being used as an address generation unit (agu)). Flags generated from
the pads (and theexternal world) can be monitored to effect global branching.

5.6.1 Benchmarks

Appendix B contains a list of benchmarks that were hand compiled to the paddi

architecture and exemplify how the mapping is done.

CHAPTER 5. PADDI: ARCHITECTURAL DESIGN

r tt t ~^r "^r "y "^ ^

Si
I/O

SWITCH w SWITCH

I £ £ £ £

a
T T T"T IT T I

SWITCH

ET3
w SWITCH

I/O

ETUI LJLtt

Figure 5.24: PADDI with 32 EXUs

4

4

4

r t T"i
SWITCH

JL _JL _JL _Jt

I

I

i

1 3T It
SWITCH

I
I

I

I

ITZ3

Figure 5.25: PADDI with 16 EXUs

I/O

:i:

£

I/O

84

CHAPTER 5. PADDI: ARCHITECTURAL DESIGN

I/O

TH EXU
L

"ZST

_sk

EXU

C •»

T •» EXU

5Z

SWITCH

SZ

EXU

EXU

C *

T * EXU

L *

r t

•zp

EXU

I
C *

T •» EXU

L •»

Figure 5.26: Prototype Architecture

EXU

ZT

SZ

SWITCH

EXU

MX

sz

I
MX

Figure 5.27: Prototype Architecture With Multipliers

85

I/O

I/O

CHAPTER 5. PADDI: ARCHITECTURAL DESIGN

DATA

IN
A/D

BOOT

ROM

CONTROL

PAD3

AGU

' PAD1

MEM

PAD2 * D/A

MEM

DATA

OUT

86

Figure 5.28: System Using PADDI Chips

5.7 Instruction Set Summary

A detailed description of the paddi instruction set is given in Appendix C.

5.8 Programmer's View

Appendix C provides an overview of the architecture as seen by the assembly

language programmer. The formats of the run-time instructions as well as the configuration

specifiers are presented there. A sample assembly program that contains instances of the

basic instructions, together with explanatory comments, is also presented.

Section 7.2.1 of Chapter 7 and Appendix G describe the annotated grammar that

was developed for the assembly language.

A description of the software environment and a discussion of the compiler issues

will be presented in Chapter 7.

5.9 Summary and Conclusions

We have presented the architecture of a software-configurable multi-processor

which was developed to support the rapid prototyping of high speed data paths. The

CHAPTER 5. PADDI: ARCHITECTURAL DESIGN 87

design was driven by the results of analyzing a characteristic benchmark set. Various tech

niques from the domains of software-configurable and Rise architectures were employed to

achieve high performance. The general design philosophy was one of "keep it simple" for

speed and implementability, with as few constraints on the compiler as possible, in order

to enhance hardware utilization.

Chapter 6

PADDI: Hardware Design

Een graficus heeft in zijn wezen iets van een troubador.
(A graphic artist has something of the troubador within him.)

— M Escher, Escher on Escher

6.1 Introduction

As a proof of concept, a prototype of the the architecture described in Chapter

5 was implemented as a multiprocessor ic [26] using VLSI technology. This chapter will

discuss the logic and VLSI implementation of the major units which comprise the chip.

In orderto maximize the probability of fabricating a functional chip, a conservative

approach to circuit design was taken wherever possible. Thus, a static design style was

chosen over a dynamic one. In some cases this meant trading off increased area, and some

speed, for improved noise margin and decreased susceptibility to clock skew. This also

meant the choice of a conventional and modest two-phase clocking scheme using external

clock generators over more elaborate methods involving multi-phase clocks with on-chip

analog phase-locked-loop generators. Additionally, special attention was paid to the routing

and metal layer width of critical signals (such as clocks) and power lines.

The functional and speed test results will be presented for the prototype circuit

which contains 8 execution units connected via a dynamically controlled crossbar switch. In

summary: it canoperateat 25MHz (200 mips) with a data i/o bandwidthof 400 MByte/sec

and a typical power consumption of 0.45 W. It contains 140,106 transistors on a 8.9 x 9.5

mm2 die, in 1.2 Lim CMOS technology.

88

CHAPTER 6. PADDI: HARDWARE DESIGN

-«BG-

HLE

1 I, 1

-raa-

I
\«nm^-

r^^7

yt

fT

89

* WORDS

NANOSTORE

Figure 6.1: EXU Architecture

6.2 Execution Unit

A detailed block diagram of an EXU is shownin Fig. 6.1. This section will describe

the implementation of its major parts.

The adders wereimplemented using the carry-select-adder cells from the lageriv

cell library [64], the fastest available at the time. The adder consists of several stages that
work in parallel to produce carry results for two cases: that of a zero carry input into the

stage and that of a one carry input into the stage. The true carry then ripples (stage-wise

not bit-wise) through the stages selecting the proper pre-computed carries, which are then

used to compute the sum at each bit. The successive stage lengths were chosen for optimal

speed. Starting from the least significant bit, these were three, five and eight respectively.

The shifters are capable of arithmetic right shifting from zero to seven bits, and

are implemented as a logarithmic shifter (Fig 6.2) using complementary pass transistor

gates. As mentioned previously, the exus can be user-configured to operate in 16b and

32b modes. Shifter interface logic ensures correct operation for both 16b and 32b modes of

operation, independent of whether the arithmetic is two's complement or unsigned.

Multiplexors are also implemented using complementary pass transistor logic.

The dual ported register-files and pipeline register at the output of each exu are

implemented using a static register cell for regular storage, and c2mos inverters for delay

CHAPTER 6. PADDI: HARDWARE DESIGN 90

WIS

sawn

SHIFT4

OUT1S ovro

IN A INB

J L

*—idfi2 4/JQE-f-HGya Jpfy)
SHIFT

• SHIFT

OUT

Figure 6.2: Logarithmic Shifter

line mode. A detail of the register-file cell is shown in Fig 6.3. Register six of each register

file has the same basic structure as the other registers register. However it is linked to the

serial configuration scan chain by extra hardware and input and output ports. This feature

allows it to be set to an arbitrary value at Configuration time which is useful for setting

constants and initial values. This feature also enables it to be used during the Scan-Test

mode.

The exus contain hardware support for the max and MIN operations, and satu

ration logic for both unsigned and two's complement arithmetic. A status flag (a > 6) is

also provided. Correct operation is provided for both 16b and 32b modes. A detail of the

logic which implements this is shown in Fig 6.4. In this figure, the carry out bits from the

adder are used to generate two overflow bits, v2sc for two's complement mode and vun-

signed for unsigned mode. The choice of arithmetic mode is specified by the SUN bit which

is statically determined and set by the user. The saturation logic block uses these bits to

provide the correct saturated output (high or low) whenever an overflow or underflow is

detected, independent of the arithmetic mode. Other fields of interest are agebbar2sc and

agebbaru. The former is a flag which indicates that operand A is greater than B, assuming

CHAPTER 6. PADDI: HARDWARE DESIGN

from previous

DATA-IN BUS

W2p\/a/2p

12/2 p
RBAD-PHD —XX)—

UK

C2M0S

DELAY-LINE

2/2o to next

PHILEN PHOEN

91

DATA-OUT BUS

Figure 6.3: Register-File Cell

two's complement representation, and is active low. The latter is the corresponding flag for

unsigned representation. These flags are communicated to the interconnection network to

be used by other exus and the external world. They are also used in the logic which provides

hard-wired max and min functions (shown as MUXM, MUXI, and MUXH respectively.

The component blocks of the EXU were Spiced separately. From these simulation

results, the critical path was estimated, and is shown in Figure 6.5. The values shown are

in nano-seconds.

6.3 Interconnection Network

One of the main challenges in the design of the crossbar network is to ensure

pitch-matching between the crossbar switches and the EXUs for efficient layout. Therefore,

a layered crossbar structure was developed, as shown in Fig. 6.6. A detail of the data

routing bit-slice which connects EXUs A and E to each other, to other EXUs in the cluster,

and the i/o busses, is exhibited. The layered switch implementation is organized as follows:

The Type I switch connects the input of an EXU to either one of its neighbors (B,C,D for

EXU A) or to the i/o busses or the other half of the cluster via a Type II switch. The

squares and the circles represent inputs andoutputs to the switches respectively. Datalines

CHAPTER 6. PADDI: HARDWARE DESIGN 92

Figure 6.4: EXU Detail

flow horizontally and control lines vertically. The major advantage of this approach is that

it yields substantial area savings by allowing all horizontal busses to fit within the pitch

provided by the exus.

nmos pass transistors form the coreof the Type 1 and Type 2 switches of Fig. 6.6.

This layout style allows horizontal channels to be shared, ensuring pitch-matching between

the crossbar switches and the EXUs. The bit-slice design for both types of switches are

shown in Figure 6.7 and Figure 6.8 respectively. The layout of a Type 2 bit-slice is shown

in Figure 6.9. The essential feature is that the number of horizontal channels never exceeds

nine and so the pitch of the exus is never exceeded. These channels are routed in metal

2 with minimum pitch. The control signals are routed in metal 1 wires that run vertically

and which connect to the polysilicon gates of the pass transistors. Another advantage

of this scheme is that nmos pass transistors consume less area than full complementary
transmission gates.

The logical high voltage level which the nmos transistors pass is degraded by a

threshold voltage drop (increased by the body effect), which compromises noise immunity.

In order to alleviate this, regenerative PMOS transistors are combined with the output buffer

CHAPTER 6. PADDI: HARDWARE DESIGN

12 ns

^IY

\: MUX

^7

\ mux / \r ns

•KBG-

•fttS-

£

v-——* 7+ • 4.5 ns\ SHIFTER X|lqf

n ns

7 t" ns

Figure 6.5: EXU Critical Path

93

NANOSTORE

CHAPTER 6. PADDI: HARDWARE DESIGN 94

CROSSBAR SWITCH SCHEMATIC

O nttvr O ouirur

wnimui mr/anrai
moohum MCTAIRTCB

Figure 6.6: Crossbar Network

h- h-

h h h h h

Figure 6.7: Type 1 Bit-slice

CHAPTER 6. PADDI: HARDWARE DESIGN 95

HI Hi HI HI HI HI HI HI

Figure 6.8: Type 2 Bit-slice

Figure 6.9: Layout of Type 2 Bit-slice

CHAPTER 6. PADDI: HARDWARE DESIGN 96

TYPB2SWITCH 4-
-> TYPB1SWITCH

•1 •1 r>

£*>t
H»'

ir-HX>*r
•1

i>>*t

Figure 6.10: Regenerative PMOS Design

stages of each switch to restore the output high voltage level to rail. The output buffer stages

are necessary to maintain sharp edges and speed. Types 1 and 2 switches were cascaded

directly as shown in Fig. 6.10 (the capacitance values shown are in femto-farads). The

design was coupled in order to avoid using extra buffer stages. This circuit was Spiced

for different W/L values of the regenerative pmos's and a few of the results are shown in

Fig. 6.11. Too weak aW/L causes an inordinately long restoration time. Too strong aW/L

inhibits the driving stage (Type 2), from ever pulling down the following stage (Type 1). A

W/L of 4/3 was chosen for the chip. The critical path through the network was simulated.

Imagine that there are two communicating quadrants. This path begins at the output of

an EXU in one quadrant (say EXU G in Fig. 6.6 which is input to the network. The path

continues through to the out bus into the IN bus of another quadrant, through Type 2 and

Type 1 switches, and is finally input to an EXU (say EXU D) of that quadrant. Such a path

is shown in Fig.6.12. The spice output (inverted) is shown in Fig.6.13. An average delay

of approximately 15 nsec. from input to output was measured.

CHAPTER 6. PADDI: HARDWARE DESIGN 97

TIME (NS)

Figure 6.11: Regenerative PMOS Design (Spice)

r T I r t t i
$=$

i, „JL K * „JL „JL _JL i

2ns

r T T T T T T"t
6ns $=$

i, „JL „JL „li- LJt f X 3

Figure 6.12: Interconnect Critical Path

CHAPTER 6. PADDI: HARDWARE DESIGN

VOLTS

j

input

4 -

3 •

2 •
14.65

< *i

14.9 !

1 •
output

\ l i 1 / 1

20 40 60

TIME (nsec)

80 100

98

Figure 6.13: Interconnect Critical Path Simulation

6.4 Control

This section describes the implementation of the nanostores which control the

EXUs. It also describes their associated branch logic which determine the flow of local

control streams.

6.4.1 Nanostore

The nanostores are implemented using an sram containing standard six transistor

sram cells. A bit-slice of the nanostore is detailed in Fig 6.14. A serial master-slave

scan-register, which is part of the global serial configuration scan chain, is connected to the

read/write ports of the sram. During Configuration mode, it is used to write the contents of

the srams word by word. At run-time, it is transparent as the SRAM issues each instruction
word.

Each SRAM contains eight instruction words, each 51b wide. No column decoding

or column amplifiers are required for these small srams. They also have fast word accesses
due to their small size.

The associated control signal generation circuitry for the srams is shown in Fig.
6.15. Buffers are sized to ensure minimal delay, sharp edges and proper timing of critical

CHAPTER 6. PADDI: HARDWARE DESIGN

SCAN-IN

SERIAL

MASTER-SLAVE

SCAN-REGISTER

INSTRUCTION-BIT

. 12U1

Utto

Figure 6.14: SRAM Detail

SCAN-OUT

BIT

! EQUALIZATION

99

CHAPTER 6. PADDI: HARDWARE DESIGN

.-jC,
m •

in _ 4M

,?-t>-[>>-i>H>o-^>—r

^H>H>0-[>-u>-

^Oo-Oo-Cxj-IX)—4~V>o

IQUAIXUTXM

CH)

100

.EKAIU

Figure 6.15: SRAM Control Circuitry

signals.

The timing diagram of the sram is shown in Fig. 6.16. The sram operates using

the same two phase clocks PHll and PHI2 that are used throughout the rest of the chip.

Using this methodology, addresses are latched on the falling edge of PHI2 and read data

is latched on the falling edge of PHll. The read (/r) and write (/w) signals are active

low. Special attention was paid to ensure that word lines (wl) did not glitch due to charge
sharing effects in the row decode circuitry. The bit-line and inverted bit-lines are denoted

by (b) and (/b). The pre-amp enable is denoted by pe and the write enable is denoted by
we. The data-out line is denoted by do and the datain line by di. A spice simulation of

the critical path during reading is shown in Fig. 6.17. The reading and writing times of
the sram is not an issue because the size of the sram is quite small. A read access time of

approximately 21 nsec. is observed.

6.4.2 Branch Logic

The branch logic is shown in Fig. 6.18. It controls which nano addresses are sent

to the nanostores during the various phases of operation. During configuration, the nano
address is set by the Configuration Unit, independent of the interrupt flags and interrupt
enables (which are indeterminate during configuration). At run time, the nano address may

CHAPTER 6. PADDI: HARDWARE DESIGN

I

Ml |
i

1
1
i
j 1-

1
1

1 1
1
I

1
i
i

1

!

1
1

i
I

P<

i

!

i

1 1

1
1
1
1

i

!

i

{

1
1 ! i

i 1
1

1 i I
1 i !

HHQ 1

1

! . 1 | |
i i !
1 ! i

~^ Y j j mnlaiwi I j wfniAr
i i

* X y$m
i

! 1 1
i ! j i

j

i

1 |
i 1

[
i 1 ! !

i • i

A I !

\

! i
j j

i i
i I
! !

. i !
i |

i
i

1 1 !
1 i i

i i i
i i 1

|
i ; ;

/» !

Wl

1 i i

/ 1 i I"
i

1 i
! !
i i

j i i

1 ! '

<•

•tan <

i

1/

! j

1
VM.

1 !

\

1 '- ^
i

tcooc ML \

|
1

WLI

/

i i !

"• 1

i

\
i
i
! \

! !
i i

I
IS

! / ! \ | 1 1 1

*• ! 1
|

/

i

i

1 1 1

_ _ jV V

i

i

i

^\

/
1 !

i
i

i i j

^ i i i ! 'S
1 |
i i

j i ! i

"S>^ X ; iaptttdau k x8>cy
!

i 1 i
! ! i

i j |

\

!

i 1

-W£<;X/i l\ diavtU /
! •

j

Figure 6.16: SRAM Timing Diagram

101

CHAPTER 6. PADDI: HARDWARE DESIGN

VOLTS

140

TIME (nsec)

Figure 6.17: SRAM Read Cycle

102

CHAPTER 6. PADDI: HARDWARE DESIGN 103

INPUT ADDRESS

SNOP <H^1tI>0^>>
SYNC

Figure 6.18: Branch Logic

come from one of three sources. In the normal flow of operation, the usual source is is the

address generated by the external microsequencer. However, depending on the values of the

interrupt flags and interrupt enables it may also come from one of two (serially configured)

interrupt vectors (IV1, IV2). Synchronization between the configuration and run phases is

enabled by the snop and sync signals. The snop signal is asserted whenever a stop signal is

received from the external sequencer, or whenever a nop is received from the configuration

unit during configuration and verification phases.

A conventional non-overlapping two phase clocking scheme was used in the proto

type chip. A diagram showing how the various latches in the processor are clocked is shown

in Figure 6.19. This diagram shows two exus, A and B which communicate with each

other and the external world. Data-in, flag-in, global-addr and stop are input from the

external world. The input pads are contain half-latches which are clocked with PHll. The

global-addr is routed to the Branch Logic Module (BRL) the output of which is latched

on PHI2 as the address to the nano-store. The register files of exu are read at the beginning

of PHll and results are latched at the end of PHI2. In this figure, EXUA can be interrupted

from the external world and exuB depending on the status of the interrupt enables (IENl

and IEN2. exuB can be interrupted by EXUA. In general output data is latched at the

output pads on PHI2 and output flags are latched on PHll as shown for exuB. In this way,

CHAPTER 6. PADDI: HARDWARE DESIGN 104

paddi chips can be directly cascaded with an effective pipeline stage connecting the input

pins.

6.5 Configuration Unit

The Configuration Unit provides the requisite signals which allows the chip to

automatically self-boot from an external memory e.g an eprom. It enables the chip to

temporarily suspend operations, to verify the nanostore contents, and perform scan-testing

of the exus and interconnection network.

All chip configuration registers are connected as a serial shift register. This serial

shift register is also connected to the i/o circuitry of the SRAMs. The Configuration Unit

is composed of two on board fsms which generate the necessary clock and interface and

internal control signals for the external eprom, the serial shift register, and the srams.

6.5.1 Modes of operation

The Configuration Unit provides several modes of operation for the chip: a) Con
figuration, b) Stop, c) Run, d) Test.

Upon receipt of the appropriate boot signal (start), the chip enters Configuration

Mode. During Configuration Mode a complete line-scan is performed, then a location of

the nanostores are written via sections of the scan-chain which connect to the i/o circuitry
of the srams. (A description of the scan-chain is given in below). This repeats until all

nanostore locations are written. The final scan is left in place to configure the rest of the
chip.

During Stop Mode, the chip has been properly configured (or was running), but is

awaiting a go signal from the external controller before proceeding to Run mode. After the

chip has been properly configured, and has received the GO signal at its input pin it enters

Run Mode. In this mode, normal operation proceeds until the go signal is de-asserted (or
the chip is re-booted).

Test Mode will be described in Section 6.6.

CHAPTER 6. PADDI: HARDWARE DESIGN

data-in

data-out

global

flag-in adr stop

pi-6-th-A

Figure 6.19: Clocking of State Latches

105

CHAPTER 6. PADDI: HARDWARE DESIGN 106

Scan Chain

Fig. 6.20 shows a section of the scan chain connecting two EXUs. Cona, conb, and

oreg are scan registers which are used to set constants, and which can be overwritten at run

time. Statically defined configuration bits include: Linkwhich determines 16-bit or 32-bit

exu mode, sun which sets two's complement or unsigned arithmetic mode. Nvec which

contains pre-compiled interrupt vectors, and fswl and fsw2 which determine the routingof

status flags. Ftridetermines output bus selection. Nanostores are configured via the nano
register.

The exu instructions and data routing are under program control and can be

changed in each program cycle. The routing of the status flags is static and set at compile
time.

6.5.2 Finite State Machines

In this section the constituent finite state machines which make up the Configu
ration Unit will be described.

By using a simple 3b counter, FSMl (cf. Fig. 6.21) slower non-oveflapping, two-

phase clocks (phim and phis) which are slower than PHll and PHI2 (the normal operating
clocks of the chip), and which are synchronized to PHI2 (Fig. 6.22). Slower clocks allow

interfacing to eproms which operate at slower (lOx) speeds than the operating speed (25
MHz) ofour chip. Appendix D describes the various signals that interface with the external
boot-memory.

The main configuration tasksare performed by fsm2 which operateson the slower

clock frequency. After the start signal has been asserted and FSMl stabilized, startdel (a
delayed version ofstart) is asserted and fsm2 enters Configuration mode. A line counter

(lctr) keeps track of the scan into the serial configuration scan-chain. A frame counter
(fctr) keeps track of which nanostore word is currently being written (or read).

Multiplexors ensure that correct values are set for scan and addr respectively
during each mode of operation, scan is combined with clocks phim and phis for clocking
the serial configuration scan-chain. ADDR is broadcast to the Branch Logic Units of all
EXUs. It is de-multiplexed from frame cnt and EXT addr. frame cnt provides the
appropriate address for writing during Configuration Mode, ext addr is sourced from the

external world, usually from the external microsequencer.

CHAPTER 6. PADDI: HARDWARE DESIGN 107

Figure 6.20: Section of Configuration Scan Chain

CHAPTER 6. PADDI: HARDWARE DESIGN

PHI1

PHI2

PHM

PHS

PH2-

START -

COUT

FSMl

7R *

—

LD

EN
♦ y

•- 3b CTR

Figure 6.21: FSMl

* w

Y Y

PHI

PH2

PHM

PHS

Figure 6.22: PHIM and PHIM Clock Generation

108

CHAPTER 6. PADDI: HARDWARE DESIGN

PHM

STARTDEL

VERIFY

COOT

6.6 Testability

LD EN

LCTR

FSM2
TEST

LD EN

FCTR

i—PHS

NOP SCANC

•+R

•+W
SCANT

ADRSEL

FRAME CNT

EXTADDR

ADDR

TO

BRANCH

LOGIC

Figure 6.23: FSM2

109

SCAN

Besides operating the chip in normal Run Mode and observing the values at the

i/o pins, additional, controllability and observability is possible at most nodes by utilizing
the scan-chain used for chip configuration. Although the resulting scan-testing procedure
is not quite transparent as for jtag, the on-chip support hardware required is smaller.

This approach is complicated by the fact that the registers of the chip are clocked

by phi1 and PHI2 during normal operation, while the scan chain is clocked by slower phim
and phis clocks.

The next two sections will describe the scan-test strategy and the external test
support system.

6.6.1 Test Modes

The chip has three special independent Test modes, a) Test EXUs (Teste Mode),
b) Test Interconnections (Testi Mode) and c) Verify nanostore contents (Verify Mode).

The pins test and teste are asserted for Teste Mode. Scan vectors are then

scanned into register six of both register files of all exus (Fig. 6.1). The control word for
the EXUs is also scanned into the scan registers at theoutput of the nanostores (Fig 6.14)

CHAPTER 6. PADDI: HARDWARE DESIGN 110

of Section 6.4.1. For one (long) clock cycle, the exus operate normally, after which the

results are latched in the output pipeline register (Fig. 6.1) and scanned out.

The pins test and testi are asserted for Testi Mode. Scan vectors are then

scanned into the output pipeline registers of all EXUs (Fig. 6.1). The control word which

specifies the routing of data through the crossbar switch is also scanned into the scan

registers at the output of the nanostores (Fig 6.14). For one (long) clock cycle, the data

in the pipeline registers are propagated through the switch, latched into register six of the

target exus, and scanned out.

At any time after Configuration, the chip can receive a verify signal which will

force it into the Verify Mode. In this mode, a word of the nanostores is read, and scanned

out. This repeats for all nanostore words, thus enabling verification of the nanostore con

tents.

6.6.2 Test Support System

A pre-existing Test Support System [61], (Fig. 6.24), was retro-fitted to accom

modate the specific requirements of the chip. The system allows the user to download

scan-test vectors from a SUN workstation to a Test Control Board (tcb) which is connected

to the Device Under Test (dut). The architecture of the Test Control Board is shown

in Fig. 6.25. It is comprised of the vme interface which connects it to the backplanes (Jl

and J2), the vme interface logic (a VME2000) which implements the protocols that meet the

VMEbus specification IEEE 1014 timing requirements, control, status, and data registers, the

Test Controller, test data memory (scanin and scanout memories), the address counter

which generates the addresses for the test data memory, and the analog, scan-path, and

TAP interfaces, which connect the TCB to the duts.

The main change to the architecture was made in the Test Controller. This which

was implemented using EPLD's and so the changes were essentially software ones. The

design of the new test control board was completed but it was never fully implemented,

because the chips were tested (in Run Mode) and found to be completely functional, before

its hardware implementation was completed.

CHAPTER 6. PADDI: HARDWARE DESIGN

SUN (UNIX)

Ethernet

VME

CARD

CAGE

ImpUjitaaTtsCBtg

TCB

CPU

BOARD

*

Test Bus

jt&worktnf end
CentmuminMiem

VME Bus
* •

DUT

Figure 6.24: Test Support System

VME

Interface

Logic

Local Bus

Test

ControDer

VME Interface

Local Test Bus

Test Interface

TcstDate

Memory

Address

Counter

Figure 6.25: TCB Architecture

111

CHAPTER 6. PADDI: HARDWARE DESIGN

H»

mnr V*mn

PHU ~^0-^»

4»

Figure 6.26: Clock Distribution

6.7 Clocking

tfMP

"—0^~ PHD
UMH

112

A conventional non-overlapping two-phase clocking scheme was used in the proto

type chip. Clock distribution was facilitated by the identical nature of of the EXUs and the

symmetry of the layout. Fig. 6.26 shows how the clocks were routed from the input pads.

Drivers were sized to maintain sharp edges.

6.7.1 Layout and Simulation

Layout: Hand-crafted cells were laid out using the MAGIC cad tool [90]. The

carry-select adder cells were obtained from the Lager cell library [64]. A micro-photograph

of the chip is shown in Fig. 6.27.

Simulation: Circuit and behavioral simulation were performed using spice [83]

and irsim [105] respectively, and the pas assembler was used to generate simulation test

vectors and chip configuration files. The configuration FSMs were described in a high level

behavioral language and their corresponding plas were automatically generated using the

Berkeley OCT tools [64].

SPICE simulations were performed to simulate the critical path of the chip. The

respective load capacitances wereestimated from the worst case ic process parameters and

CHAPTER 6. PADDI: HARDWARE DESIGN

nnDrnnnnnnn

H-"*- •*Mias)Ctiaaj<aM*CgiaM aiij^v^;-it n ~Kia**M«g=

' '-^-'i--J'-LLLLi_LLjLiUULiLjL;uUL'ULiL'IJUDUUUUUULJLJULjUdUUUUL}UL3DDu

Figure 6.27: Chip Photo

113

CHAPTER 6. PADDI: HARDWARE DESIGN

2 at

V ft t 24 ns

5=$

:L_ t ft ft
1

6ns

<

1

II*

ft

ft

ft

ft

ft

ft

ft

ft

ft
6ns

—ft

¥*! ft :?
:l2 rS t

t

ft ft

Figure 6.28: Four Quadrant Critical Path

114

incorporated into the spice decks. The critical path simulation results for the EXU was

shown in in Fig. 6.5 and the critical path simulations for the interconnect network were

shown in Fig. 6.12. These results are combined to show the critical path simulation results

for a four quadrant chip (Fig. 6.28). The units shown are in nanoseconds. The critical

path begins from the issue of a read address to register file B. A delay of 24 nanoseconds is

incurred during EXU transit from the register file, through the shifter and inversion logic,

through the carry path of the carry select adder, through the saturation logic to the output

of the exu. An additional 15 nanoseconds is lost during transit through the crossbar

networks, after which 2 nanoseconds are required to latch the data into the input of the

target EXU. The total simulated critical delay is 41 nanoseconds.

We note that the prototype chip which contains a single quadrant runs at a maxi

mum clock frequency of 25 MHz with a critical path delay of 40 nanoseconds. This indicates

that there is excellent agreement with the SPICE simulations. The only major difference be

tween a single quadrant and one with four quadrants is the additional inter-quadrant transit

time which, with proper buffering, can be limited to 1 or 2 nanoseconds.

As was indicated in Section 5.5.1, a pipeline register is available at the output

of each exu for optional use. By using the register, the user can increase the maximum

sampling rate by overlapping EXU operations with data transmission over the network. This

CHAPTER 6. PADDI: HARDWARE DESIGN 115

can be useful in applications where the additional latency has no negative effect. However,

if the operation is in a feedback loop, the additional pipeline register would normally not
be used.

6.7.2 Test Results

Test Methodology: Chip configuration files were transferred from sun worksta

tions to a dataio programmer to burn the configuration eproms. Functional chip testing
was performed using a Tektronix DAS9100 logic analyzer. Appendix E contains a listing of
the pin assignments for the paddi chip.

Results: A variety of test programs were executed on paddi chips to test for

speed and functionality. Chip configuration files were transferred from sun workstations

to a DATAio programmer to burn the configuration EPROMs. Functional chip testing was

performed using a Tektronix DAS9100 logic analyzer. Some of our tests results are described
below.

The listing below shows the assembly code for a mod 3 counter which cycles
between 0,1,2 at 25 MHz.

/* Modulo 3 Counter:

Default values are set globally for all EXUs and can be

over-written locally for each EXU. */

defaults {

a6=0, b6=l,

normals, normal_b,

signed,

unlink,

ienl=0,ien2=0

}

/* User-defined aliases canbe defined for any EXU */
map {

(block-depth-counter= Xa),

(block-depth-compare=Xb)

}

/* Instructions 0 through 7 are defined below for each EXU.

If an instruction is not defined for an EXU, it defaults

to a NOP. */

block-depth-counter

CHAPTER 6. PADDI: HARDWARE DESIGN 116

/* vector to instruction 1 when blockjdepth-compare
asserts its flag */

flagl=blockjdepthjcompare, ivecl=l

{
/* instruction 0: increment a6 by 1 and store the result

in a6 and bl, enable interrupt ienl, send result to

output bus ol */

0: a6=thisjexu, bl=this.exu, (a6+b6), ienl, ol;

/* instruction 1: subtract bl from a6 and store the result

in a6 and bl (this resets a6 and bl to zero), send

result to output bus 1 */

1: a6=this.exu, bl=this.exu, (a6-bl), ol;

}

blockjdepth-compare

a6=0,b6=0, /* overwrite global default values */

flagoutl=l /* route flag off-chipvia bus 1 (for
monitoring) */

{

/* instruction 0: latch output of

blockjdepth-counter into register b6, subtract b6 from

a6. If b6 is greater than or equal to a6, assert flag.

Send result of a6-b6 to output bus o2 (for monitoring) */

0: b6=block-depth-counter, (a6-b6), o2;

}

The oscilloscope trace for the counter is shown in Fig. 6.29

The SFG of a low pass biquadratic filter is shown in Fig. 6.30. (It is the same one

referred to in Appendix A). The multiplying coefficients were converted to a canonic signed

digit format to minimize the number of non-zero bits and transformed into shifts and adds

(Fig. A.2). A processor schedule for this transformed SFG was hand-generated. It uses three

exus and three instructions andis shown in Fig. 6.31. The listing below shows the assembly

code for the biquad. Shown in Fig. 6.32 is the acquired impulse response (from a Tektronix

DAS9100), (a) a plot of the impulse response and (b) a plot of the corresponding frequency

response. The arithmetic mode is 16-bit two's complement and the impulse is input at bit

13. The measured results agree perfectly with simulations. Due to limitations of the signal

analyzer in acquiring data, the maximum clock rate of this biquad was constrained to 10

MHz.

/* Biquadratic Filter */

DEFAULTS {

CHAPTER 6. PADDI: HARDWARE DESIGN 117

A6 = 0, B6 = 0, SIGNED, UNLINK,

NORMAL-A, NORMAL.B,

BFSW = 11111111b,

IEN1 = 0, IEN2 = 0

}

MAP{

(EXU-A = XA),

(EXU-B = XB),

(EXU.C = Xc)

}

EXU-A {

1: (A6+(B6>4));

2: (B6);

3: A6 = I2L, B6 = EXU-A, (A6);

}

EXU_B{

1: A4=EXU-A, (A6+(B6>2));

2: B6=EXU-A, (A4+B6);

3: A6 = EXU.C, B6 = EXU.C, (B6);

}

EXU.C {

1: A2=EXU-B, B2=EXU.C, (A6-(B6>2));

2: A3=EXU-B, B3=EXU.C, (A2-B2);

3: A6=EXU-B, B6=EXU-C, (A3+B3),Ol;

}

Table 6.1 summarizes the chip characteristics.

6.8 Discussion

Given a more aggressive ic process, e.g. 0.8 /im, anda reasonably sized chip, a four

quadrant paddi chip each quadrant consisting of eight EXUs, is certainly implementable. In

order to illustrate this point we have tabulated several vsps [79, 107, 127] together with

the paddi chip in Table 6.2. The actual chip areas are listed. They are also normalized to

account for the difference in design rules. Two layers of metal were used in the fabrication

of all these processors. The ntt and Data-Wave chips are relatively six and four time

larger than paddi. Clearly we can realistically expect four to six times the area occupied

CHAPTER 6. PADDI: HARDWARE DESIGN

40.0

wwv\^^
PHI2

PHM

TH 5u n 5 5 fib* * t^^8**B|iip*'i<' .i<U^~^«n '̂ \i,***>**J l++++mJ- -£?+**> :
3U 5U ': 5 5 30m \ LSB+2

Figure 6.29: 25 MHz Counter

X[n]

—I •—

b 1=0.625

—H

z-1

i

b2=l

Z"1

+

(a)

Y[n]

\ -

(>— •

Z'1

\ \ al=-1.25
>

\

z-1

\ a2=0.75

Figure 6.30: Simple Low Pass Biquadratic Filter

118

CHAPTER 6. PADDI: HARDWARE DESIGN 119

AMPLITUDE

-0.5 -

INS

EXU A EXUB EXUC

•3 b3

Figure 6.31: Biquad Processor Schedule

GAIN (DB)

10.0 / \

0.0

-10.0

-20.0

-30.0

-40.0

I

75

TIME (300 nsec)

0.0 0.8

FREQUENCY (MHz)

1.6

Figure 6.32: Biquad Impulse Response

CHAPTER 6. PADDI: HARDWARE DESIGN

EXUs 8 units

16-32 bits

Register Files 2 files,

Six 16 bit registers

Nanostores 53 bits

8 words

I/O Ports 128

Clock Frequency 25 MHz.

Compute Power 200 Mips

I/O Bandwidth 400 MBytes/sec

No. of Transistors 140,106

Die Size 8.8x9.5 sq.mm

Table 6.1: Chip Characteristics

NTT VSP Data Wave Philips VSP PADDI

Design Rule 0.8/im 0.8 /im 1.6 /mi 1.2 (im
Technology Bi-CMOS CMOS CMOS CMOS

Word Lengths 16-24b 12b 12b 16-32b

No. transistors 910k 1.2M 206k 140k

Area (mm2) 15.2 x 15.2 12.5 x 12.5 9.9 x 12,3 8.9x9;5

Normalized area 6.15 4 0.81 1

Table 6.2: Chip Comparison of Technologies and Areas

120

by the prototype paddi chip. This will translate directly to four to six time the current

peak computation rate, to the first order. We also expect the performance of the chip to

improve with a scaled technology, especially if a BI-CMOS process is used.

One obvious way to increase the compute power of the paddi architecture is to

increase the number of EXUs on a single chip. Another is to employ an MCM based approach

usings sets of prototype chips. Both methodologies arebeing considered as future extensions

to the project, at the time of writing.

The crossbar switch in the paddi chip occupies exactly eighteen percent of chip

area. The design wasthe most efficient oneavailable to the author at the time. In the Philips

vsp the crossbar occupies less than five percent of the total chip area. At first glance, barring

any timing considerations, the VLSI design of the Philips crossbar switch seems superior to

that of paddi. This gives us reason to hope that, if the appropriate technology were to

CHAPTER 6. PADDI: HARDWARE DESIGN 121

become available, the size of the paddi crossbar could be shrunk dramatically.

6.9 Conclusions

The hardware implementation of a reconfigurable multiprocessor ic for rapid pro

totyping of real time data paths has been described. The chip is targeted towards high

performance digital signal processing applications* A 16 EXU (400 mips) processor is cur

rently under design, together with a multi-chip module approach which could support up

to 32 EXUs (800 mips) in a single package.

Chapter 7

PADDI: Software Environment

A slash symbol was usedsimply because the -r symbol wasnot a character on the 026keypunch.
Similarly, the asterisk was used forexplicit multiplication because the x and • were not available
on the keypunch.

— M. Klerer on FORTRAN, Design of Very High-Level Computer Languages

7.1 Introduction

The major obstacle for the adoption of new programmable hardware platforms is

usually the lack of efficient and fast cad support tools. Therefore, from the inception of the

paddi project, special attention has been paid to developing cad tools which will enable a

mapping from high level language onto paddi.

In this section we will describe the grammar, assembler and simulator which have

been developed to enable user assembly language programming of paddi. Methods which

use high level synthesis techniques, to compile an abstract behavioral description of an

algorithm into these programmable arithmetic devices will be discussed. We will examine

the specific features of the architecture which will affect the quality of the compilation. The

cad environment and software tools being developed for automatic compilation from a high

level language [91] will be discussed.

7.2 Low-level Programming Tools

The low-level programming tools, the pas assembler and psim simulator, provide

the foundation for the higher-level synthesis tools.

122

CHAPTER 7. PADDI: SOFTWARE ENVIRONMENT 123

7.2.1 The pas assembler

Pas represents the lowest software level interface between the programmer and

the paddi architecture, providing a method for describing algorithms. The pas assembly

language was designed and implemented with the interconnection network of the paddi

architecture in mind: programs written in it can easily exploit intercommunication between

execution units. The intercommunication follows a "receiver controlled" model in which the

receiving unit controls the routing of the actual communication while the broadcasting unit

only concerns itselfwith the data or flag to be communicated (except when broadcasting to

the external world; in this case the broadcaster must specify which output bus to employ).

In addition to being able to express all available PADDI operations in a convenient c-like

syntax, the assembler also allows for the explicit specification of instructions within the

nanostores at the individual bit level. A detailed manual page for the assembler is listed in

Appendix F.

An annotated grammar for the assembly language is contained in Appendix G.

7.2.2 The psim simulator

Psim serves as a tool for simulatingand debugging multiple chip paddi algorithms

in software. It consists of a simulation engine coupled with an x-based graphical user

interface (gui). (see Fig. H.l) in Appendix H. The simulation engine can operate both

as a "black box," allowing it to interface with external software tools, or as a stand-alone

simulation environment when coupled with the x-based GUI. The stand-alone simulation

environment supports many of the common debugging features, including single-stepped

execution and the ability to modify registers and instructions "on the fly." A detailed

manual page for the simulator is also listed in Appendix H.

7.3 High Level Synthesis for Programmable Arithmetic De

vices

The success of an architecture depends heavily upon its ease of usage or ease of

programming. We are therefore interested in methods to compile an abstract behavioral

description of an algorithm into programmable arithmetic devices.

High level synthesis techniques can be brought to bear on the compilation problem.

CHAPTER 7. PADDI: SOFTWARE ENVIRONMENT 124

In high level synthesis, basic interdependent tasks which must be done include translation of

the high level language into an internal representation (typically some variation of a graph

with control flow and data flow constructs), transformations (at all levels of the process)

[124, 102, 89] scheduling, allocation, assignment, as described in [74] Various approaches
differ in manner and the order in which these basic tasks are attacked.

In one approach, scheduling, allocation and assignment are performed separately

and in separate phases. The advantage of this approach is that it makes the problem some

what more tractable, because the different tasks are decoupled and solved independently.

The disadvantage of the approach is that it could yield sub-optimal results since decisions

chosenin one phase can have significant negative impact on the results obtained in another.

In another approach, for example the approach taken in hyper [98, 99], a global

optimization routine simultaneously takes into consideration all these tasks. Here the prob

lem is harder than the previous one.. A decision was made to adopt this type of approach

mainly because of the availability of the installed hyper software base, and the potential

for superior results.

We will begin by describing some of the architectural constraints of the paddi

architecture which will affect the compiler. We will then describe the two approaches to

compilation. In the first we will examine in detail a proposal for allocation and assignment

problem using a hierarchical clustering scheme. We will also discuss the latter approach

though somewhat briefly. The details of this approach will appear in [23].

7.3.1 Architectural Constraints

The goal is to identify computationally efficient means of compiling a high level

behavioral specification of an algorithm into paddi, subject to its particular hardware con
straints.

A strong point of the architecture is the power of the cross-bar switch. It alleviates

much of the burden on the compiler since there are no conflicts when data routing is being
performed inside a cluster of EXUs.

At this point we recall that the paddi chip will have clusters (or quadrants) of

eight EXUs. The term "quadrant" is adopted because the prototype architecture of EXUs

is one quarter of the original design, connected by a configurable crossbar switch. These

quadrants can communicate with each other but in a restricted fashion. The maximum i/o

CHAPTER 7. PADDI: SOFTWARE ENVIRONMENT 125

bandwidth ofthe chip is limited by thefixed number ofi/o pins. Each EXU has two register
files at its inputs, and is controlled by its own local memory (nanostore) to perform a set
of basic operations. Each nanostore is in turn sequenced by the off-chip controller.

The ultimate goal of the synthesis process is to map the high-level description

onto paddi. This is achieved by generating the controlling sequence of nano-instructions

for each EXU. We will now discuss specific features of the architecture which will affect this

compilation process.

The system throughput requirements and the maximum clock frequency will de

termine the maximum level of hardware resource sharing as follows. The repetitive kernel
in an (or in a part of an) algorithm is the smallest coherent part of the algorithm which
is repeated again and again in time, and which covers all arithmetic operations [42]. If
the rate at which the kernel has to be evaluated is /* and the operating clock frequency is
fclocki then the hardware sharing ratio (hsr) is:

HSR = ^jjj*

This sets an upper bound on the maximum number ofoperators which can be mapped to a
single EXU. The maximum hardware sharing ratio is constrained by two parameters. The
first is. the maximum number of registers in the exu's. In the prototype architecture this is

six. The register storage required for operands in the set ofoperations that get mapped to
a particular EXU must not exceed this limit. The second is the number of instruction words

contained in the nanostore (eight in the prototype architecture). The maximum number of

unique operations that any given EXU can perform is set by this number. We note that, at
the cost of additional hardware, the number of registers and nanostoresize can be varied for

other members ofthe chip-set depending upon the performance range targeted. In general,
it is desirable to pack as many operations intoas few EXUs as possible to maximize hardware
utilization.

7.3.2 Hardware Assignment Using Clustering

We will now examine the first approach to the compilation process i.e. where

the tasks of allocation and assignment are de-coupled from scheduling. In this approach,
allocation and assignment will precede scheduling. Since much prior work has been done

on scheduling, we will address the allocation and assignment problem only. For example,

CHAPTER 7. PADDI: SOFTWARE ENVIRONMENT 126

we are considering the use of the hyper system scheduler as a candidate scheduler, hyper

is a high level synthesis system for real time applications.

Hierarchical Two Phase Clustering

We proposea hierarchical clustering approach to attack the allocation and assign

ment problem. In the following discussion, we restrict the problem size to one that will fit

on a single chip. One performs initial estimations to see whether or not the problem can fit

on a single ship. The multi-chip problem is subject to future research.

Clustering begins with EXU clustering followed by quadrant clustering. The ob

jective of EXU clustering is to pack as many operators into each exu as possible without

violating the hardware constraints. Quadrant clustering is clustering of the EXU clusters

with the goal of packing as many exu clusters as possible in each quadrant. Each type

of clustering uses the same algorithm and contains two phases, an initial solution phase

and an improvement phase. For each type of clustering, only the hardware and scheduling

constraints are different. Prior to clustering, weenvision a pre-optimization stage where sep

arate operations such as shift followed by an add, and add-compare-select can be collapsed

into a single operation to take advantage of the native instructions of the architecture.

We will now describe the initial and improvement phases which are generic to both

types of clustering.

Initial Phase

In the initial phase of clustering an attempt can be made to achieve a good first

guess. In many instances, the user will be able to easily identify obvious partitions where

there is a lot of local communication and from these partitions choose appropriate seed

nodes. Otherwise heuristics could be developed, to help guide the choice of the seed nodes.

When a node is attached to a seed node or another assigned node it is said to be assigned.

At each step of the initial phase, an existing cluster will join with the closest unassigned

node. Closeness measures will be defined using heuristics and moves will be subject to

hardware and scheduling constraints. Seed nodes will not be coalesced since there is no

backtracking in this phase. This phase provides an initial solution which, although it is not

guaranteed to have a successful schedule, does have a high probability of being scheduled

by keeping the constraints hard.

CHAPTER 7. PADDI: SOFTWARE ENVIRONMENT 127

Improvement Phase

In the improvement phase, simulated annealing [60] is applied to improve the
initial solution. One or more of the hard bounds are relaxed and even bad moves are

probabilistically accepted. Since the granulatity of the problem is coarse, i.e. we work with

EXUs and quadrants, not gates ortransistors, the size ofthe problem will not be very large,
and so simulated annealing should not be too expensive to use. The closeness measures

and hardware bounds are wired into the cost function. Moves are tried e.g. pairwise swaps,
triplet permutation etc. If the cost function is expensive to evaluate, complicated moves
will not be tried. Here a cost function based upon the closeness criteria and architectural

constraints is constructed. After completion of the annealing schedule, the final solution is

compared with that of the initial feasible solution and the winner is selected.

Detailed EXU Clustering

Closeness measures can be constructed which would attempt to encourage the
clustering ofoperators which share the same control flow. If two operators are in the same

path, theirclustering isencouraged, ifnot they would bediscouraged. Othermeasures would

encourage the clustering ofoperators which sharedata, in order to keep the communications

local. On the other hand we would like to exploit low level parallelism and force operators
that have to be executed in the same cycle into different EXUs. Similar closeness measures

for a different clustering scheme have been done in the aparty architectural partitioner
used in a behavioral synthesis system under development at Carnegie Mellon University
[122] Some rough scheduling might be necessary here in order to identify such operators.

We will now discuss constraints particular to the PADDI architecture.

1) Maximum number of available registers per EXU: these will be incorporated
into the closeness and cost functions. An efficient mechanism for estimating the number of

registers need per cluster will be required. Such a mechanism already exists for the hyper
system.

2) Maximum resource sharing: is determined by throughput constraints, sets upper
bound on the maximum number ofoperators which can be mapped onto any EXU. This is
a hard bound.

3) Communication constraints : we note that the switch network connecting the
EXUs within a quadrant is under program control, while the switches connecting to quad-

CHAPTER 7. PADDI: SOFTWARE ENVIRONMENT 128

rants and to off-chip.modules are statically configured. If one makes the simplifying (sub-

optimal) assumption that the switches connecting the EXUs are statically configured, then

the maximum allowed fan-in per EXU is 2 and the fan-out is 1, again hard bounds. Such

an assumption will make the job of the register estimator and ultimately the scheduler

easier but will probably lead to sub-optimal solutions. Clearly the approach of not mak

ing this assumption will exploit the true power of the conflict-free routing network. If the

assumption is not made, then the bound on the fan-in to any EXU will be the twice the

maximum resource sharing allowed. The fan-out will be exactly the same. This is because

the exu switching network and the EXUs share the same nanostore. In this case, a more

sophisticated register estimator and scheduling algorithm will be required.

During the initial phase of exu clustering, an initial "good" solution is constructed.

Here a goodsolution means one which has a highprobability ofsuccessful scheduling. In this

phase, the register bound is kept hard. Assuming the specification of suitable seed nodes,

clusters are built up by attaching closest unassigned nodes. If a candidate causes either

the register, operator, fan-in or fan-out bounds to be exceeded, it is said to be infeasible.

Addition of nodes into a particular cluster terminates when all candidates are infeasible. At

this point, the cluster is said to be saturated and an EXU is allocated to it. At this point, a

new seed can be created by assigning an operator connected to any of those in the saturated

cluster. EXU clustering continues until no unassigned operator exists. At this point, an exu

can be allocated for each cluster. A record is kept of this initial feasible solution for later

use.

The improvement phase of exu clustering attempts to improve upon the initial

feasible solution by application of simulated annealing, as described earlier.

Detailed Quadrant Clustering

. At this point, quadrant clusteringof the EXU clusters can proceed. The problem of

quadrant clustering is to map the assigned EXUs to quadrants such that the interconnection

constraints are satisfied. These clusters are fixed internally and will not be modified. Once

the specific hardware constraints are updated for this level, the same clustering algorithm is

employed. At the quadrant level, the fan-in and fan-out bounds and maximum number of

EXUs are set by the architecture. The register estimator will continue to play an important

role at this level of clustering.

CHAPTER 7. PADDI: SOFTWARE ENVIRONMENT 129

When clustering is finished, the assignment task is complete and the scheduler

takes over. If the scheduler is successful the compilation task is essentially done. If not,

then either the time constraint or the clustering of operators within EXUs will need to be

relaxed.

The clustering approach described above is one approach which can be considered

for hardware assignment.

7.3.3 CADDI Compiler

We will now discuss the second approach to compilation, the one used in the

CADDI compiler. This compiler is being developed as a part of the unified rapid prototyping

framework environment, which also includes the hyper and mcdas [49] systems. The

three systems share a common database structure, but each targets a different architecture:

CADDI targets programmable arithmetic devices, hyper, semicustom architectures, and.

MCDAS, multiple programmable processor architectures. Besides the common data structure

and several tools, CADDI shares with MCDAS and hyper the same fully modular software

organization. This makes it easy to add new tools or to modify existing tools.

An overview of the envisioned system is shown in Fig. 7.1. An automated com

pilation path from a high level dataflow language silage [91] to the PADDI chip, which

includes partitioning, scheduling, and code generation is forseen. caddi will be similar

to the approach [95] taken in hyper and will contain all steps required for compilation
namely allocation, assignment, and scheduling modules, followed by translation into assem

bly language and ultimately into a configuration file. In hyper the synthesis procedure

is implemented as a search process. From an initial solution, new solutions are proposed

by executing anumber of basic moves, such as adding or removing resources, changing
the time allocation for different subgraphs in the algorithm, or applying graph transforma

tions, hyper uses a single global quality measure, called resource allocation, to drive the

search process. Theallocation andassignment approach differs from the approach presented

above in that a modification ofthe rejectionless antivoter assignment algorithm of [95] is
envisioned.

Therapid prototyping framework will allow the designer toexperiment andanalyze

the speed vs. cost trade-off for various implementations as well as theeffects ofquantization
and transformations on system performance. Initial results and the on-going investigation

CHAPTER 7. PADDI: SOFTWARE ENVIRONMENT

BatMtoa

iimm'tmiiim u7

ntnmiMttiimiiiM.

*m_»-60%

<x*>>»«

u

hpxft rkmrtk hfin

fi*cfirfmWOu:fa.

Oa*Sam((i.l„li)r.WbiQi}

•=>

iinnmWilixg—xdriTiiiHh!

rim 1 2 1 4 S 6 7

OVA

bxuj

sxuc

MX X I X

X XXX

X X

0 0 00
DDDD

Figure 7.1: Software Environment

of the compiler effort will be reported in [23].

7.4 Conclusions

130

We have described the low-level programming tools for the paddi architecture. We

have also discussed the architectural features which directly affect the quality of software

compilation from a high level language. A proposal was made for optimizing hardware

allocation and assignment. The on-going compiler effort which forms part of an integrated

rapid prototyping environment for high performance systems was described.

Chapter 8

Conclusions and Future Work

Dear Sister Irma,
- The bare truth is as follows: Ifyou do notlearn a few more rudiments of theprofession, you
will only be a very, very interesting artist the rest of your life instead of a great one.

— J.D. Salinger, De Daumier-Smith's Blue Period

The focus of the dissertation has been to develop a new software-configurable

hardware approach for the rapid prototyping of high speed digital signal processing appli

cations. A benchmark set of real-time digital signal processing algorithms were analyzed

to determine the basic architectural features that require support. A multiprocessor ar

chitecture of programmable arithmetic devices was designed and implemented. A fully

functional VLSI part serves to demonstrate that architectures of this class are both feasible

and implementable.

The initial version contains 8 processors connected via a dynamically controlled

crossbar switch, and has a die size of 8.9 x 9.5 mm2, in a 1.2 ftm CMOS technology. With

a maximum clock rate of 25 MHz, it can support a computation rate of 200 mips and can

sustain a data i/o bandwidth of 400 MByte/sec with a typical power consumption of 0.45

W. An assembler and simulator have been developed to facilitate programming and testing
of the chip. A software compilation path from the high level data flow language silage [91]
to paddi is currently under development, and handles partitioning, scheduling, and code

generation. A 16 exu (400 mips) processor is currently under design, together with a multi-

chip module approach which could support up to 32 EXUs (800 mips) in a single package.
Further investigations are being performed by other researchers into similar architectures

which employ a data driven paradigm.

The main conclusion of this work is as follows:

131

CHAPTER 8. CONCLUSIONS AND FUTURE WORK

Vendor PN Function

ADI ADV7141 Continuous edge graphics
AMD Am7911 1200/150 bps modem

C-Cube- CL-550 DCT image compression IC
Dallas DS2160 DES encryption chip

DSP group DSPG6000 Answering machine processor
Exar XR-2401 2400 bps MNP5 modem processor
Intel . 89C026 2400 bps modem
ITT Digit2000 TV chip set
NEC /ZPD77501 Speech synthesizer
NPC SM5804 CD audio filter

Oki MSM6994 V.32 modem chip
Pioneer PD0029 Filter chip (fixed)
Plessey PDSP16401 Edge detector chip

Rockwell RD96NFX 9600 bps fax modem (hybrid)
Sanyo LC7860 CD player filter/servo IC

Siemens PEB2091 ISDN U transceiver

Sierra SC11046 2400 bps modem
Sony CXD1144AP CD player filter

ST/Inmos IMSA121 DCT image compression IC
Yamaha YM-3805 CD player filter/servo IC

Zoran ZR36020 DCT image compression IC

Table 8.1: Some Typical Dedicated-Function DSPs

132

Software-configurable hardware approaches to high speed digital signal

processing problems form viable alternatives to existing approaches for systems

designers interested in rapidly prototyping or implementing their ideas.

At present, morecomputation is donein signal processing applications than in any

other use of integrated circuit technology. Digital signal processing has made, and will con

tinue to maketremendous inroadsinto the domain ofanalog signal processing. As we stated

at the beginning of the thesis, DSP chips can be found in medical instruments, cars, satel

lites, rockets, video cameras, compact disks, televisions, modems, audioequipment, musical

instruments, facsimile and modems, cellular phones, disk drives, conventional workstations,

robots, and assembly lines. In other words, they are currently found in many places, and

are quickly becoming ubiquitous. To illustrate the pervasive nature of these chips we list

some typical dedicated-function ones in Table 8.1 (from [18]).

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 133

Processing Power

Parallel structures (systolic arrays, etc.)

BitslicesormultipleDSPchips

Single-chipDSP

TITMS32010

1kHz 10 kHz 100 kHz 1MHz 10 MHz 100 MHz

Maximum Signal Frequency

Figure 8.1: Processing Power vs. Maximum Signal Frequency

In the future, digital signal processors will be applied extensively to application

areas such as machine vision, speech synthesis and recognition, personal communication de

vices, multimedia, video conferencing, handwriting recognition, adaptive noise cancellation

in automobiles and aircraft, adaptive vehicular suspension systems, to name a few. The key

to this revolution will be the massive computation power which will become available with

multiprocessing architectures.

Figure 8.1 (from [18]) shows processing power as a function of maximum signal
frequency. The author's view is that below 1 MHz., one chip can suffice, but above that,

multiple chips or even systolic arrays are needed. Here the term systolic array was used to

refer to parallel and multiprocessor architectures in general. This view essentially re-iterates

the view presented in Chapter 2 where we also saw that maximum signal frequency is not

the only criterion for high computation. The complexity of the algorithm plays a major
role.

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 134

We expect to see many novel multiprocessor architectures for digital signal pro

cessing. Accompanying innovations will be required in the software arena to fully exploit

the power of these architectures. Investigations into this domain, such as here and in

[127, 35, 34, 107, 6], have begun, and will continue to expand. For example star Semicon

ductor has recently introduced a complete development system, the Sproclab. It uses the

sproc1400 processor which contains four general signal processors with on-board shared

memory and serial and parallel i/o [114, 19]. The objective of this system is to provide

better performance than single chip DSPs, together with a rapid prototyping environment.

With a complete software and hardware development system, the user can automatically

compile his application down to board level within a matter of minutes from a block diagram

description.

The areaof rapid prototyping and emulation of systems is, in itself, a fast growing

area. For example, work is in progress by other researchers to provide programmability at

MCM level [32]. A field programmable mcm architecture utilizing an a array of modified

fpgas is proposed. Interconnections are provided by a fixed routing network on the mcm,

and by programmable interconnection frames on each FPGA. Quickturn Systems reports an

emulation machine based on XILINX fpgas. In [9], a programmable active memory (pam)

card which consists of a large array of xilinx fpgas is connected to the system bus of a

host computer, in this case, a DEC work-station. In the cases where the algorithms could

be hard-wired into the PAMs, several orders of magnitude speed-ups were observed. Similar

efforts at this level are reported in [21]

We anticipate that the impact of these and similarly new technologies on logic

design and system design methodology will be as follows:

a. Software-configurable components such as FPGAs, micro-controllers, PLDs, and

multiprocessor architectures such as wavefront arrays and programmable arithmetic devices

will gradually replace ssi components such as ttl. Future board level designs will consist

of relatively few components, those stated above, and perhaps some custom or semi-custom

VLSI parts.

b. The methodology of design will be driven by these generic devices. Synthesis

based approaches with robust simulation tools and real-time operating systems will guar

antee almost one hundred percent functionality for initial prototypes. The result will be

the creation of efficient, high performance systems which will compete with present manual

designs.

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 135

The work reported in this thesis forms part of a new,exciting, and growing field of

research into software-configurable hardware systems which exhibit high performance and

which can be rapidly prototyped.

Appendix A

Xilinx Case Study

A.l Introduction

The results presented in this appendix were first presented in [24].

As mentioned in Section 4.4.8, the number of choices for fpgas are numerous. As

part of this research, we made a detailed study of the applicability of fpgas to high speed

data path prototyping. This Appendix will outline the results of that study.

A.2 Limitations of FPGAs

Due to their bit-level granularity, FPGAs will not support as flexible routing of

wide data-buses and will not have as fast adders (for the same technology) as a word-level

granular architecture with flexible bus interconnections and adders optimized for speed.

fpgas also do not typically support hardware multiplexing of their clbs. In software-

configurable fpgas, the functions of the clbs can be re-defined, but this is not typically

done in high speed applications except at system re-boot, since reconfiguration time is

of the order of milliseconds. In order to illustrate these points, we have mapped several

benchmarks to the popular XILINX XC3090 family.

As a simple example, consider the low pass filter biquad section of Fig. A.l and

Fig. A.2. We have mapped this benchmark to both XILINX and paddi, assuming ripple

adders (for efficient layout) and hard-wired shifts. The results are shown in Table A.l, case

A. The fpga speed numbers are optimistic because no account is taken for routing delays.

Assuming ripple adders (for optimal layout) and hard-wired shifts, the critical path from

register Si through three adders and back to Si will take at least (1 16-bit ripple delay

136

APPENDIX A. XILINX CASE STUDY

X[n]

—<•— 1

z-1 /
i

51=0.625 / /
/

Z"1 /
b2=l /

(a)

\ ^

Y[n]

/

al=-1.25

1 r

A z1

\\ J >\

a2=0.75

\ Z'1

\

Figure A.l: Simple Low Pass Biquadratic Filter

137

+ 3 clb delays + interconnect delays). Assuming a realistic 20 nsec of interconnect delay
in the ripple path and between macro blocks, the critical path will be at least 153 nsec

using numbers from the XILINX design manual. If we consider a biquad with an average of

4 non-zero bits per coefficient (after canonic signed digit transformation) then the critical

path will be (1 16-bit ripple delay + 7 clb delays + interconnect delays) or roughly 190
nsec. The final number will be even greater due to interchip delays.

Similar results are shown for case B where the coefficients are assumed to have 4

non-zero bits (after canonic-signed-digit transformations). If we apply transformations to

pipeline case B (using techniques described in [112, 92]), the critical path will continue to

be dominated by the 16-bit ripple delays of the adders, paddi delivers equal or superior
minimum sampling intervals for similar hardware costs.

Toillustrate the limited routing cability of FPGAs, consider the previously discussed

3x3 linear convolver of Fig. 2.3 in Section 2.3 of Chapter 2. (For comparison purposes,

a mapping of this same benchmark to the paddi architecture is given in Appendix B.)
Fig. A.3 shows its floorplan on a XC3000 part (excluding the two line delays). Highlighted
are certain hot-spots of congestion where six (non-local) vertical channels are needed. This

is detailed in Fig. A.4. However there are only five vertical (and horizontal) general purpose
lines available in the XC3000 series. A solution to this problem is to partition the convolver

APPENDIX A. XILINX CASE STUDY 138

X[n]

(b)

Figure A.2: Transformed Biquad

across 3 chips* one per vertical section (Table A.l). paddi again delivers a superiorminimum

sampling interval for similar hardware costs.

When we started our investigations only the XC3000 family was available. The

recently introduced of the xilinx XC4000 series which uses 0.8 and 0.5 fim cmos technol

ogy and which has hooks for faster adders, and a different interconnect architecture will

affect the above comparison. The XC4000 series alleviates some of the the abovementioned

limitations by incorporating special architectural hooks for faster addition (20nsec per 16

bits in 8 clbs). Per column there are now 8 single length lines, 2 double length lines, and

6 long lines but the switching matrices are less powerful than in the XC3000. Without fur

ther detailed study one cannot make definite conclusions about the new family's ability to

support high speed dsp algorithms. We also note that the XC3000 family was implemented

in 1.2 ^m CMOS as is our prototype chip whereas the XC4000 is implemented in 0.8 f.tm

CMOS. The XC4005 (14 x 14 clbs) is being sampled with the XC4010 (20 x 20) planned

before going to 0.5 ^m technology. The difference in implementation technology will, com

plicate the task of comparison, vsps [127] and commercial DSPs are other programmable

alternatives. In future comparisons, one must take into account the technology and archi

tectural differences and also the on chip hardware multiplexing support of paddi which is

not present in conventional fpgas. However, because of the features described above i.e.

APPENDIX A. XILINX CASE STUDY

16-bttlinedelayed inputs (use3 verticallonglinn)

>16 >16 >16
ROWS

Rl

R2

R3

R4

R5

R6

R7

R8

R9 Ct!]

RIO

rii ED

R12

R13

R14

R1S

R16

ED

\~r*\

Ep
Eg

S.

f
i?

registeredoutput

saf

l±2!

Figure A.3: Convolver on XC3090 with Routing Congestion

R4

R5

R6

bitl

regis
ter

adder

regis
ter

bit2

regis
ter

adder

regis
ter

*

Figure A.4: Insufficient Routing Resources for the Convolver

139

APPENDIX A. XILINX CASE STUDY

CASE XILINX PADDI

MIN

SAMPL

INT

(nsec.)

No. of

CLB's

MIN

SAMPL

INT

(nsec.)

No. of

EXU's

16-bit biquad
(case A)

153 176 75 4

16-bit biquad
(case B)

190 400 200 9

16-bit biquad
(case B,

pipelined)

144 1504 40 55

3x3 Linear

Convolver

144

(3 chips)
40 11

Table A.l: Comparison of XILINX and PADDI

140

faster arithmetic for the same technology, more flexible interconnect, support for hardware

multiplexing, more efficient implementation of register files, PADDI is better suited for data

path intensive applications.

As a further comparison, a Motorola DSP56000 can operate at 10.25 mips and has

a data i/o bandwidth of 60 MByte/sec. vsps [127] can operate three 12-bit execution units

at 27 MHz (81 mips) with a data i/o bandwidth of 405 MByte/sec, but typically operate

at 13.5 MHz (40 mips) due to the latency of the long pipelines. The chip presented here

can operate eight 16-bit execution units at 25 MHz (200 mips) with a data i/o bandwidth

of 400 MByte/sec. Because of the larger degree of concurrency due to the smaller level

of granularity of the EXUs, smaller branch penalty, PADDI is better suited for data path
prototyping.

Appendix B

Mapping an Example to PADDI

Table B.l shows several benchmarks which were manually mapped onto the paddi
architecture.

Below, we show how one of these examples maps to the architecture. It is the 3 x

3 linear convolver of Fig. 2.3 of Section 2.3. The coefficients, are powers-of-two and so the

multiplications can be implemented as shifts and adds. This convolver is used in low level

image processing [103] to implement various filtering operations.

After retiming [68], the signal flow diagram of Fig. B.l results. Fig. B.2 and

Fig. B.3 show how this can be mapped to two chips (excluding the line delays). (Note

also that the pads of each chip are pipelined). In this example the SFG is mapped directly

to hardware and there is no hardware multiplexing of operations on the exus. The EXUs

receive a single static global instruction, and the instructions pins can be hard-wired to a

constant value.

141

APPENDIX B. MAPPING AN EXAMPLE TO PADDI

BENCHMARK POSSIBLE

SAMPLING RATE

EXUs ,

REQUIRED

3x3 Linear

Convolver

(Image processing)

25 MHz 11

3x3 Nonlinear

Sorting Filter
(Image processing)

25 MHz 16

RGB Video Matrix

Converter

25 MHz 31

Flexible Memory
Control Chip

For Video Coding

25 MHz 28

Biquad
Direct Form II

(time-multiplexed)

5 MHz 9

Biquad
Direct Form II

(pipelined)

25 MHz 55

Table B.l: Benchmarks

output

Figure B.l: Retimed Linear Convolver

142

APPENDIX B. MAPPING AN EXAMPLE TO PADDI

-21*2
xz

•13^7 \-j

-2L+2
XZ

•L+l
XZ

-L+l
XZ

•23

BXU

A

7

E

BXU

-2L+2
XZ

•12^

-L+l
XZ^

•22

BXU

B

7 7

F

BXU

-2L+2
XZ ^

all Y

-L+l

•21

BXU

C

7

G

BXU

BXU

D

H

BXU

Figure B.2: Linear Convolver Mapping (1/2)

AA
±

♦) ^Vr

DD

AA

BXU

A

DD BB

•23

FF

BXU

B

BB ci?

«21
EXU

C

CC ^

•21

GG

EXU

D

;* BB
AA

CC ^

X
•* RESULT

B

BXU

F

BXU

G

BXU

FF

cz a
GG

H

EXU

RESULT

Figure B.3: Linear Convolver Mapping (2/2)

143

Appendix C

Programmer's Guide

C.l Introduction

This Appendix provides an overview of the assembly language supported by the

high level compiler.

The operations of the machine determined by two types of information: initial

configuration settings, and run time instructions. After configuration, each EXU accepts

run-time instructions which specify its operation, and the routing of the data. In model of

execution that was adopted, each EXU always issues it's output to the crossbar switch, as

a consequence, there is no specification of any particular destination be it internal register,

other EXU or i/o port. This "receiver controlled" model was described in Section 7.2.1.

C.l.l Dynamic Instructions

We will begin by describing the format of the dynamic or run-time instructions.

Each exu's operation in a given cycle is specified by a fifty-three bit instruction

word. The instruction format is shown in Fig. C.l. Two fields specify read and write

addresses for the A and B register files. The function field specifies the EXU function. The

switch fields are used to specify the sources of data for each of the register files. Sources

can be the outputs of any EXU or any of four input busses. The flags field sets the interrupt

enable flags for interrupt vectors IVONE and IVTWO respectively.

Each instruction executes in one cycle. We will now describe the separate fields

which are contained in an instruction.

144

APPENDIX C. PROGRAMMER'S GUIDE

REGISTER

A REGISTER

SPECIFIERS

FILES
B REGISTER

SPECIFIERS

FUNCTION
FUNCTION

SPECIFIERS

OUTPUT BUS

ENABLES

SWITCH
A REGISTER

SOURCE

B REGISTER

SOURCE

FUGS
INTERRUPT

ENABLES

145

6 (bits)

6

11

2

13

13

2

Figure C.l: Instruction Format

Registers

Each EXU has two dual-ported register files (See Section 5.5.1) designated A and

B. Each register file contains six registers Al .. A6 and Bl .. B6. The registers A6 and

B6 are special i.e. they can be initialized to contain an arbitrary value.

Each EXU instruction contains specifiers for both read source register and write

destination register for each register file. Source and destination register specifiers can be

identical. The source register will be read at the beginning of the cycle, and the destination

register will be written at the end of the cycle.

Functions

A summary of the various EXU functions is shown in Table C.l. Accumulation in

a given exu is achieved by specifying register for reading and writing i.e. the accumulator

and the source unit for the write register to be "this-EXU"

Output Bus Enables

There are four 16b output buses OIL, OlH, 02L, 02H that communicate with

the external world. The routing of data to these buses is controlled by the output bus

APPENDIX C. PROGRAMMER'S GUIDE

Description Op-code Operand

Load = src

Addition + srcl, src2

Subtraction - srcl, src2

Maximum max srcl, src2

Minimum min srcl, src2
Arithmetic

Right Shift
> amount

Insert output
pipeline register

oreg

No operation nop

146

Table C.l: Summary of Arithmetic Instructions

enaMe fields. EXUs A, C, E, F can write to buses OIL and 02L while EXUs B, D, G, H

can write to buses OlH and 02H. In 32bmode, e.g. where EXUs A and B might be linked

and routed to output bus 1, the output from A would form the lower half of the output

word, and the output from B would form the upper half.

The assembler automatically checks for and flags any bus conflicts which might
occur due to an error in the code.

A and B Register Sources

The A and B register sources fields control the switch settings of the crossbar net

work to determine the routing ofdata. These fields are implicitly specified by the assembly

code by the the sources (exus and/or input buses) for each register, and automatically
generated by the assembler.

There are four 16b input buses, I1L, I1H, I2L, and I2H respectively. There are

no restrictions on which input bus might be routed to any EXU.

Interrupt Enables

An EXU canbe interrupted from the normal control flow ifeitherofits twointerrupt

enable flags are set as described in Section 5.5.3.

APPENDIX C. PROGRAMMER'S GUIDE

Description Op-code Operand

Specifying constants = value

Normal register
file mode (A)

normal-a

Normal register
file mode (B)

normal-b

Delay register
file mode (A)

delay-a

Delay register
file mode (B)

delay_b

Link exus link

Unlink exus unlink

Unsigned arithmetic unsigned
Two's complement

arithmetic

signed

147

Table C.2: Summary of Configuration Specifiers

C.l.2 Configuration Specifiers

We will now describe the various fields which control the initial configuration and of

the machine. Apart from the constant register which may be overwritten, the configuration

remains static until the next re-boot. Table C.2 lists the various configuration specifiers.

C.1.3 Putting it all Together

The following program does not perform any meaningful operation. The listing is

presented to illustrate the syntax of the assembly language and a will be useful reference

to the assembly language programmer. It contains examples of all the main assembly

instructions with appropriate comments. (The reader may refer to Section 6.7.2 for some

real program listings).
/* global defaults section

* these can be overridden at the specific EXU defaults

* section

*/

defaults {

A6=0, B6=0, /* initial values for constant regs */

bfsw=llllllllb, /* buffer switch value (note the binary

constant) */

normal-a, /* normal mode for reg file A */

APPENDIX C. PROGRAMMER'S GUIDE 148

normalJb, /* normal mode for reg file B */

ienl=0, ien2=0, /* turn off interrupts */

unlink, /* don't link EXUs */

oreg=OxABCD, /* pipeline reg value (note the hex

constant) */

signed /* signed mode */

}

/* symbol name to EXU letter maps */
map {

(exu-a=Xa), (exu-b=Xb), (exu-c=Xc), (exujd=Xd),
(exu-e=Xe), (exu-f=Xf), (extug=Xg), (exuii=Xh)

>
/* for delay line mode, all incoming values*must* go to

* reg num 5

•/
#define DELAY-REG-A A5

#define DELAY-REG.B B5

exu-a

link, /* link mode */

delay-a /* delay line mode for register A */

/* if you don't specify an instruction number,

* the instruction number defaults to the next

* available instruction 'slot' (in this case

* instruction zero)

•/

{

DELAY-REG-A=ill, oreg (Al+Bl), ol;

/* read in from external world input

bus 1L, latch the output, and

output it on external world output

bus 1 (either 1H or 1L, whatever is

valid) */

exu-b

link, /* link mode */

delay-a /* delay line mode for register A */

{

DELAY-REG-A=ilh, oreg (Al+Bl), ol;

}

APPENDIX C. PROGRAMMER'S GUIDE 149

exujc unsigned,a6=1234 /* decimal value 1234(base 10) */

{
1: nop;

0: a5=exu-a, b5=exu_b, (max(a5, (b5>l))), o2;

7: a5=ill, b5=i2l, (min(a5,b5>7)), o2;

}

exu-d a6=l, b6=l, flagl=ill, ivecl=0 { /* usage of flags*/

0: a5= ill, (a5), ol, o2;

1: a5= ill, (a5+b6), ienl, ol, o2;

}

Appendix D

Configuration With External

Memory

The paddi chip caninterface directly to external memorywith minimal glue logic.

Commercial eproms (such as the xilinx XC1736 and XC1764) which have internally.re-

settable counters, are available. The paddi chip can interface directly to these with no glue
logic whatsoever.

Internally generated phim and PHIS non-overlapping, two-phase clocksare provided

for external synchronization. After an initializing START signal (e.g. power on reset) is

received by the paddi chip, the low during configuration (ldc) signal will toggle, the chip

enable (ce) will go low, and scan signal will go high (Fig. D.l). The scan signal will

remain high for the duration of a complete line scan. It will then go low to allow writing

of the on board srams and then return high. This will repeat until all 8 nanostore entries

are fully configured. After configuration is completed, the scan signal will be set low and
ldc and ce will be set high.

The actual circuits used during chip paddi testing are shown in Fig. D.2 and are

presented as a convenience for future users.

150

APPENDIX D. CONFIGURATION WITH EXTERNAL MEMORY

PHM

PHS

JLJUUOfUlJULMJULRMMJ^

JUUUlMlJliyiJlMJLnXfU^

START

LDC

CE

SCAN mmjn

Figure D.l: Configuration Timing Diagram

r>

PHM

CE

/LOAD

A

B

C COUNTER

D 169'

/HOT /ENP

SCANC

EPROM

4 tttdreu

SCAND4

PADDI

Figure D.2: Interfacing to External Memory

r

r

151

Appendix E

Pin List

E.l Pad Types

The pin grid array (pga) pin assignments are shown in Fig. E.l. The package

is a 208 pin pga manufactured by the Kyocera Corporation. The type field refers to the

type of pad that is used for a particular pin. There are two basic types, non-registered and

registered. Tables E.2 and E.3 show the paddi pin list. The correspondence between pad

types and pin types is given in Table E.l.

Pad Name Description Pin Type

padBin non-registered input pad Bin

padininv non-registered inverting input pad ininv

padbo non-registered output pad bo

padin registered input pad in

pado tri-stated registered o/p pad out

Table E.l: Pad Types

152

APPENDIX E. PIN LIST

E.2 PGA Pinout

208 PGA

17 ®®®®®®®®®®®®®®®®®
16 ®®®®®®®®®®®®®®®®®
IS ®®®®®®®®®®®®®®®®®
14

13

®®®®®®®®®®®®®®®®®
_ _ „_ 2J i» iu i» us iw im ui u* in i»
® ® ® ®im ,«© © © ©

12 © © © ©*

© © © ©•

M IM in© © © ©

171© © © ©11
•IM m

10 ^3 ^9 ^9 ^9" air 177® © © ©

9 © © © ©n BOTTOMVBW in© © © ©

8 © © © ©» i in© © © ©

7 © © ©. ©a i
at

m© © © ©

6 ^ff ^p © ©0 „ »**»« 1 IN© © © ©

5

4

® ® ® ©» ® »® ® ® ®
© © ®© e©©©©©©©©©©®®

3 ®®®®®®e®®®®®®®®®®
2 ®®®®®®®®®®®®®®®®®
1 ©©©©©©©©©©©©©©©©©

A B C D E FGHJ KLMNPRST

BOTTOM VIEW

13 Low inductance/resistance pins are those
closest to the die edge.

E Pins 11,63,115,167 are connected to substrate.

• Diemounted ontopside.

Figure E.l: PADDI PGA Pin Assignments

153

APPENDIX E. PIN LIST

Pin Type Name Pin Type Name Pin Type Name

1 gnd GND 70 out OlL[10] 139 in FI2L

2 in I2L[11] 71 out 01L[9] 140 in I1H[15]
3 in I2L[10] 72 ininv testi 141 vdd Vdd

4 in I2L[9] 73 vdd Vdd 142 in I1H[14]
5 in I2L[8] 74 ininv phi 143 in I1H[13]
6 vdd Vdd 75 gnd GND 144 in I1H[12]
7 in I2L[7] 76 ininv teste 145 in I1H[11]
8 in I2L[6] 77 ininv scant 146 gnd GND

9 in I2L[5] 78 gnd GND 147 in I1H[10]
10 in I2L[4] 79 out 01L[8] 148 in I1H[9]
11 substrate GND 80 out 01L[7] 149 in I1H[8]
12 in I2L[3] 81 out 01L[6] 150 in I1H[7]
13 in I2L[2] 82 out 01L[5] 151 in I1H[6]
14 in I2L[1] 83 vdd Vdd 152 vdd Vdd

15 in I2L[0] 84 out 01L[4] 153 in I1H[5]
16 vdd Vdd 85 out 01L[3] 154 in I1H[4]
17 Bin phm 86 out 01L[2] 155 in I1H[3]
18 bo scanc 87 out 01L[1] 156 in I1H[2]
19 bo read 88 out OlL[0] 157 gnd GND
20 in verify 89 gnd GND 158 in I1H[1]
21 gnd GND 90 out 02H[15] 159 in I1H[0]
22 bo phmo 91 out 02H[14] 160 in I1L[15]
23 bo ce 92 out 02H[13] 161 in I1L[14]
24 bo ldc ' 93 out 02H[12] 162 vdd Vdd

25 out nop 94 vdd Vdd 163 in I1L[13]
25 vdd Vdd 95 out 02H[11] 164 in I1L[12]
27 bo nsO 96 out O2H[10] 165 in I1L[11]
28 bo nsl 97 out 02H[9] 166 in I1L[10]
29 Bin lctr2 98 out 02H[8] 167 substrate GND

30 Bin lctrl 99 out 02H[7] 168 in I1L[9]
31 gnd GND 100 gnd GND 169 in I1L[8]
32 Bin IctrO 101 out 02H[6] 170 in I1L[7]
33 Bin gl2 102 out 02H[5] 171 in I1L[6]
34 Bin gu 103 out 02H[4] 172 gnd GND
35 Bin gio 104 Bin sci 173 in I1L[5]

Table E.2: PADDI Pin List

154

APPENDIXE.PINLIST

PinTypeNamePinTypeNamePinTypeName

36bophso105vddVdd174inI1L[4]
37vddVdd106out02H[3]175inI1L[3]
38instart1107out02H[2]176inI1L[2]
39bowr108out02H[1]177vddVdd

40Binphs109outO2H[0]178gndGND
41Binstop110gndGND179ininvph2
42gndGND111out02L[15]180vddVdd

43out01H[15]112out02L[14]181inI1L[1]
44out01H[14]113out02L[13]182gndGND
45out01H[13]114out02L[12]183inI1L[0]
46out01H[12]115substrateGND184inI2H[15]
47vddVdd116out02L[11]185inI2H[14]
48out01H[11]117outO2L[10]186inI2H[13]
49outOlH[10]118out02L[9]187vddVdd

50out01H[9]119out02L[8]188inI2H[12]
51out01H[8]120vddVdd189inI2H[11]
52boSCO121out02L[7]190inI2H[10]
53gndGND122out02L[6]191inI2H[9]
54out01H[7]123out02L[5]192inI2H[8]
55out01H[6]124out02L[4]193gndGND
56out01H[5]125gndGND194inI2H[7]
57out01H[4]126out02L[3]195inI2H[6]
58vddVdd127out02L[2]196inI2H[5]
59out01H[3]128out02L[1]197inI2H[4]
60out01H[2]129outO2L[0]198vddVdd

61out01H[1]130vdd.Vdd199inI2H[3]
62outOlH[0]131outF01H200inI2H[2]
63substrateGND132outFOIL201inI2H[1]
64out01L[15]133outF02H202inI2H[0]
65out01L[14]134outF02L203inI2L[15]
66out01L[13]135gndGND204gndGND

67out01L[12]136inFI1H205inI2L[14]
68gndGND137inFI1L206inI2L[13]
69out01L[11]138inFI2H207inI2L[12]

208vddVdd

TableE.3:PADDIPinList(contd.)

155

Appendix F

Assembler Manual Page

P.l Introduction

PAS(l) USER COMMANDS PAS(l)
NAME

pas - PADDI assembler

SYNOPSIS

pas [-ENPWsv] [-T type] [-e errors] [-i instruction]
[-o objfile] filename

DESCRIPTION

Pas translates the PADDI assembly language source file,

filename, into an object file, either the base of filename

followed by an aproposextension (the object file type name)
or the specified objfile.

OPTIONS

Pas supports the following command-line options:

-E Do not display any error messages.

-N Do not display any informational messages(or
"notes").

-P Do not apply the standard UNIX C language preprocessor,

cpp, to the input file. If this option is specified,

then the standard C language comments will

cause problems for the parser.

-W Do not display any warning messages.

-s Do not perform any semantic checking.

-v Show the current version information. -T type The

argument type specifies the object file type. See the

below section OBJECT FILE TYPES for more details. This

option was originally "-0" and later M-M."

-e errors

The argument errors specifies the maximum number of

156

APPENDIX F. ASSEMBLER MANUAL PAGE 157

errors allowed before pas terminates (the default is

ten).

-i instruction

The argument instruction specifies a specific instruc

tion number to assemble for the scandas and scantest

object file types (the default is "-1" or all

instructions).

-o objfile

The argument objfile specifies the output object file.

OBJECT FILE TYPES

Pas supports several different object file types:

eprom

This object file type is a straight ASCII file of bytes

in hexadecimal form, suitable for loading into an EPROM

programmer.

irsim

This object file type provides eight object files (one

for each instruction within the nanostore) which (after

manual massaging) is suitable for loading into the

irsim switch-level simulator.

obj This object file type is a "portable" object file

suitable for loading the PADDI simulator psim. This is

the default object file type.

scandas

This object file type provides either eight object

files (one for eachinstruction within the nanostore)
or a single object file (the instruction specified by

the "-i" option) and is suitable for use with das.

scantest

This object file type provides either eight object

files (one for each instruction within the nanostore)
or a single object file (the instruction specified by

the "-i" option) and is suitable for use with the

scantest program.) if mixed-case keywords are a problem.

AUTHOR

Eric Ng

University of California, Berkeley

Internet: erc@zabriskie.berkeley.edu

UUCP: ...!ucbvax!zabriskie!erc

Sun Release.4.1 Last change: February 1992

Appendix G

Annotated grammar

G.l Annotated Assembler Grammar

The grammar presented below is the actual yacc parser-generator grammar used

by the paddi assembler (with a few modifications for increased clarity). There are sev

eral undefined terminal symbols which are clarified within the annotations below: boolean-

state, flag-output-bus-id, integer-constant, input-bus-id, interrupt-id, output-bus-id, register-

number, and string-label. Text expressed in the typewriter font are terminal symbols given

literally.

For convenience, pas applies cpp (the standard unix C language preprocessor)

to input files (unless instructed not to do so). Hence standard C language comments are

supported (7* ... */'), as are the usual preprocessor directives ('#def ine' and '#include').

•program.'.

execution-unit-defaults execution-unit-mappings execution-unit-program-list

A paddi assembler program consists of three parts: the execution unit default settings,

the execution unit mapping table, and the program list.

execution-unit-defaults'.

nothing

defaults { execution-unit-config-list }

All settings except for flag and flagout can be assigned default values here.

execution-unit-mappings:

map { execution-unit-mapping-list }

execution-unit-mapping-list:

execution-unit-id-mapping

execution-unit-id-mapping , execution-unit-mapping-list

158

APPENDIX G. ANNOTATED GRAMMAR 159

execution-unit- id- mapping:

(string-label = execution-unit-letter)

String-label is a literal string consisting of one letter followed by zero or more letters,

digits, or underscore characters. Execution-unit-letter consists of the letter 'X' followed by a letter
between 'A' and 'H' (each letter represents an actual execution unit A, B, ... H).

execution-unit-program-list:

execution-unit-program

execution-unit-program execution-unit-program-list

execution-unit-program:

execution-unit-declaration execution-unit-definition

execution-unit-declaration:

execution-unit-id

execution-definition:

execution-unit-config-list { instruction-list }

execution-antt-config- list:

nothing

config-code-list

config-code-list:

config-code

config-code , config-code-list

config-code: •

A6 » integer-constant

B6 = integer-constant

bfsw = integer-constant

delay.a

delay.b

flag interrupt-id = source

flagout flag-output-bus-id " boolean-state

interrupt-state = boolean-state

ivec interrupt-id = instruction-number

link

nortnal.a

normal.b

oreg ° integer-constant

signed

tfsw = integer-constant

unlink

unsigned

Integer-constantis asixteen-bit integer, which can beexpressed asa signed decimal (with
the regular expression of '-*[0-9]+'), an unsigned binary ('[Oll+b'), or an unsigned hexadecimal
('0x[0-9A-F]+'). Interrupt-id and flag-output-bus-id are either '1' or '2' and specify an interrupt
and an output bus to the external world, respectively. Boolean-state is either c0' (for false) or *1'
(for true). Instruction-number is an integer constant between '0' and '7* and addresses a specific
instruction within the nanostore.

APPENDDCG. ANNOTATED GRAMMAR 160

instruction-list:

instruction-prefix instruction

instruction-prefix instruction instruction-list

instruction-prefix:

nothing

instruction-number :

If no instruction-prefix is given, the current instruction is placed at the first empty

location within the nanostore, starting at zero.

instruction:

' bit-string » ;

code-list ',

nop ;

Bit-string is fifty-three bits long and allows for the explicit specification of an instruc

tion within the nanostore. A nop is results in an instruction consisting entirely of zeroes; a nop

with destination-register, interrupt-state, and output-bus-idcodes can be expressed by omitting the
expression code.

code-list:

code

code , code-list

code:

(expression)

oreg (expression)

destination-register = source

interrupt-state

0 output-bus-id

Interrupt-state and output-bus-idcodes reverse their respective default states (i.e., spec

ifying an interrupt-state code for a previously enabled interrupt will disable it for that particular
instruction).

source:

execution-unit-id

1 input-bus-id

Input-bus-id specifies a particular input bus from the external world (with a regular
expression of *[12] [HL] ')•

expression:

source-register

source-register operator source-register

function (source-register , source-register)

operator:

+

function:

max

min

APPENDIX G. ANNOTATED GRAMMAR 161

execution-unit-id:

string-label

destination-register:

A register-number

B register-number

Register-numberis an integer between '1' and '6' and addresses a specific register within
the given register file.

source-register.

A register-number

B register-number

B register-number » integer-constant

(B register-number » integer-constant)

interrupt-state:

ien interrupt-id

Appendix H

Simulator
PSIM(l) USER COMMANDS PSIM(l)

' NAME

psim - PADDI simulator

SYNOPSIS

psim [-EHINPRW] [-e errors] filename

DESCRIPTION

Psim simulates a multiple chip environment, allowing for the

interactive debugging of PADDI programs.

OPTIONS

Psim supports the following command-line options:

-E Do not display any error messages.

-H Do not load the on-line help system upon start-up.

-I Set the built-in variable ignoreinterrupts initially to false

-N Do not display any informational messages(or "notes").

-P Do not apply the standard UNIX C language preprocessor,

cpp, to the environment file. If this option is speci

fied, then the standard C language comments will cause

problems for the parser.

-R Do not use the GNU readline library (i.e., disables

command-line editing).

-W Do not display any warning messages.

-e errors. The argument errors specifies the maximum number of

errors allowed before psim terminates (the default is ten)

SEE ALSO

The PADDI Low-level Programming Environment User's Guide and Reference

BUGS

When asked to show all aliases or variables (using the

"alias" or "set" commands respectively), what psim shows

is not sorted; this is because aliases and variables are

implemented as hash tables.
AUTHOR

Eric Ng
University of California at Berkeley
Internet: ercOsabriskie.berkeley.edu
UUCP: ...!ucbvax!zabriskie!erc

Sun Release.4.1 Last change: none

162

APPENDIX H. SIMULATOR

plitvice:biquad 55% pas biquad. 3
0 errors, 0 warnings, and 0 messages total
7k bytes allocated
plitvice:biquad 56% p3im biquad. e
psim 0.9 (compiled Apr 18 1992)
Reading environment configuration file...
Constructing simulation environment. ..
Loading object file 'biquad.obj' for chip 'chip_one'
Loading on-line help system.
(psim) breakpoint chip_one + 3
breakpoint set at 'chip_one', exu A, instruction 3
breakpoint set at 'chip_one', exu B, instruction 3
breakpoint set at 'chip_one', exu C, instruction 3
breakpoint set at 'chip~one\ exu D, instruction 3
breakpoint set at 'chip_one\ exu E, instruction 3
breakpoint 3et at 'chip_one', exu F, instruction 3
breakpoint set at 'chip_one', exu G, instruction 3
(p3im) run . "
breakpoint at 'chip_one', exu A, instruction 3
(psim) dumpexu chip_one a pc
chip 'chip_one', exu A (file 'biquad.obj')

A1=0 A2=0 A3=0 A4=0 A5=0 A6=-2 Bl-0 B2=-2 B3=2 B4=0 BS=0 B6=0
oreg-0 delA-0 delB-0 signed-1 link-0 ftriout-00 intvecl-0 intvec2»0
fswl=0000000000b fsv2=0000000000000000b intsrcl=null intsrc2=null
result-2 flag-1 lastpc-2 pc-3 intl-0 int2-0

3: dregA=6 sregA=3 dregB=6 sregB=3 rs=0 add=l raax=0 h3el=0 hin=0 gsel=0
latch-0 asel-0 bsel-0 ienl-0 ien2-0 triout-10
svl=0000001100b sv2=0000000000001100b 3rcA=XB 3rcB=XB

(psim) dumpexu chip_one b none
chip 'chip one', exu B (file 'biquad.obj')

Al-0 A2-0 A3-0 A4-0 A5-0 A6-0 Bl-0 B2-0 B3-0 B4-0 BS-0 B6-0
oreg=0 delA=0 delB=0 siqned=l link=0 ftriout=00 intvecl=0 intvec2=0
fswl=0000000000b fsw2-0u00000000000000b intsrcl-null intsrc2-null
result=0 flag=l lastpc=2 pc=3 intl=0 int2=0

(psim) step
(psim) dumpexu chip_one a pc
chip 'chip_one', exu A (file 'biquad.obj')

A1=0 A2=0 A3=0 A4=0 A5=0 A6=0 Bl=0 B2=-2 B3=2 B4=0 B5=0 B6=0
oreg-0 delA-0 delB-0 signed-1 link-0 ftriout-00 intvecl-0 intvec2-0
fswl=0000000000b fsw2=0000000000000000b intsrcl=null intsrc2=null
result-2 flag-0 lastpc-3 pc-1 intl-0 int2-0

1: dregA=2 sregA=6 dregB=2 sregB=6 rs=2 add=0 max=0 hsel=0 hin=0 gsel=0
latch-0 asel-0 bsel-1 ienl-0 ien2»0 triout-00
swl=0000000100b sv2=0000000000000100b srcA=XB srcB=this_exu

(psim) I

Figure H.l: Typical Psim Session

163

Bibliography

[1] "IEEE Micro: Special Issue on Digital Signal Processors", Dec. 1986.

[2] "IEEE Micro: Special Issue on Digital Signal Processors", Dec. 1988.

[3] Advanced Micro Devices Inc.. Array Processing and Digital Signal Processing Hand
book, 1986.

[4] M. Ahrens, A. EL Gammal, D. Gailbraith, J. Greene, S. Kaptanoglu, K.R. Dharmara-

jan, L. Hutchings, S. Ku, P. McGibney, K. Shaw, N. Stiawalt, T. Whitney, T. Wong,

W. Wong, and B. Wu. "An FPGA Family Optimized for High Densities and Reduced

Routing Delay". In Proc. CICC'90: 1990 Custom Integrated Circuits Conference,

pages 31.5.1-4, May 1990.

[5] Altera Corp. User-Configurable Logic - Data Handbook, July 1988.

[6] D. Amrany, S. Gadot, and M. Dimyan. "A Programmable DSP Engine for High-

Rate Modems". In Proceedings International Solid State Circuit Conference, pages

222-223, Feb. 1992.

[7] W. Andrews. "Distinctions Blur Between DSP Solutions". Computer Design, pages
86-99, May. 1989.

[8] P.J. Berkhout and L.D.J. Eggermont. Digital Audio Systems. IEEE ASSP Magazine,
pages 45-67, Oct. 1985.

[9] P. Bertin, D. Roncin, and J. Vuillemin. "Programmable Active Memories", presented
at the 1992 ACMInternational Workshop on Field- Programmable Gate Arrays, pages
57-59, Feb. 1992.

164

BIBLIOGRAPHY 165

[10] R. Bisiani. "System Implementation Strategies". In Speech And Natural Language
Workshop, June 1990.

[11] W. E. Blanz, D. Petkovic, and J. L. C. Sanz. "Algorithms and Architectures for

Machine Vision (chapter)". In C. H. Chen, editor, Handbook of Signal Processing.
Marcell Decker, 1988.

[12] R.K. Brayton. "SRC Center Of ExceUence In CAD/IC". 1990 Research Planning
Report, pages 1-45, 1990.

[13] R.K. Brayton, R. Rudell, A. Sangiovanni-Vincentelli, and A.Wang. "MIS: A Multiple
Level Logic Optimization System". IEEE Transactions on Computer Aided Design,
CAD-6(6):1062-1081, Nov. 1987.

[14] R.W. Brodersen, A. Chandrakasan, and S. Sheng. "Technologies for Personal Com
munications". VLSI Symposium, 1991.

[15] R.W. Brodersen and J. Rabaey. "Evolution ofMicrosystem Design". In ESSCIRC'89:
Proceedings ofthe 15th European Solid State Circuits Conference, pages 208-217, Sept.
1989.

[16] R. Budzinski, J. Linn, and S. Thatte. "A Restructurable Integrated Circuit for Im
plementing Programmable Digital Systems". Computer, pages 11-21, Mar. 1982.

[17] D. Bursky. "Programmable Sequencer Hits 125-MHz Clock Speed". Electronic De
sign, pages 43-46, September 1989.

[18] D. Bursky. "DSP Expands Role As Cost Drops And Speed Increases". Electronic
Design, pages 53-81, Oct 1991.

[19] D. Bursky. "Parallel Processing DSP Chip Delivers Top Speed". Electronic Design,
pages 43-50, Oct 1991.

[20] F. Catthoor. "Microcoded Processor Architectures and Synthesis Methodologies for
Real-Time Signal Processing". In E.F. Depreterre and A-J. van der Veens, editors,

Algorithms and Parallel VLSI Architectures, pages 403-429. Elsvier Science, 1991.
Vol. A.

BIBLIOGRAPHY 166

[21] P.K. Chan, M. Schlag, and M. Martin. "BORG: A Reconfigurable Prototyping Board

Using FPGAs". presented at the 1992 ACM International Workshop on Field- Pro

grammable Gate Arrays, pages 47-51, Feb. 1992.

[22] D. C. Chen, R. Yu, R. W. Brodersen, and J. Rabaey. "A VLSI Grammar Process

ing Subsystem for a Real Time Large Vocabulary Continuous-Speech Recognition

System". In Proc. CICC'90: 1990 Custom Integrated Circuits Conference, pages

13.3.1-5, May 1990.

[23] D.C. Chen, L.M. Guerra, E.H. Ng, , M. Potkonjak, D.P. Schultz, and J.M. Rabaey.

"An Integrated System for Rapid Prototyping of High Algorithmic Specific Data

Paths", to be presented at the International Conference on Application-Specific Array

Processors, Aug. 1992.

[24] D.C. Chen, L.M. Guerra, E.H. Ng, D.P. Schultz, C.N. Yu, and J.M. Rabaey. "A Field

Programmable Architecture for High Speed Digital Signal Processing Applications".

presented at the 1992 ACM International Workshop on Field- Programmable Gate

Arrays, pages 117-122, Feb. 1992.

[25] D.C. Chen and J.M. Rabaey. "PADDI: Programmable Arithmetic Devices For Digital

Signal Processing". In VLSI Signal Processing IV, pages 240-249. IEEE Press, Nov.

1990.

[26] D.C. Chen and J.M. Rabaey. "A Reconfigurable Multiprocessor IC for Rapid Pro

totyping of Real Time Data Paths". In Proceedings International Solid State Circuit

Conference, pages 74-75, Feb. 1992.

[27] W.L. Chen, P.Haskell, D. Messerschmitt, and L.Yun. "Structured Video: Concept

and Display Architecture", sub. to IEEE Transactions on Circuits and Systems for

Video Technology, Aug. 1991.

[28] C. Chu, M. Potkonjak, M. Thaler, and J. Rabaey. "HYPER: An Interactive Synthesis

Environment for High Performance Real Time Applications". In IEEE International

Conference on Computer Design, October 1989.

[29] J.B. Costello. 1991 Keynote Address. In Proceedings 28th ACM/IEEE Design Au
tomaton Conference, June 1991.

BIBLIOGRAPHY 167

[30] ed. C.P. Sandbank. In DIGITAL TELEVISION. John Wiley and Sons, 1990.

[31] ed. K. Feher. In Advanced Digital Communications: Systems and Signal Processing
Techniques. Prentice-Hall, 1987.

[32] A. ElGamal, I. Dobbelare, D. How, and B. Kleveland. "Field Programmable MCM
Systems", presented at the 1992 ACM International Workshop on Field- Pro

grammable Gate Arrays, pages 52-56, Feb. 1992.

[33] R. Ernst. "Long Pipelines in Single-Chip Digital Signal Processors-Concepts and Case

Study". IEEE Transactions on Circuits And Systems, pages 100-108, Jan. 1991.

[34] R.D. Fellman. Design Issues and an Architecture for the Monolithic Implementation
of a Parallel Digital Signal Processor. IEEE Transactions on Acoustics, Speech, And
Signal Processing, pages 839-852, May. 1990.

[35] A.L. Fisher, P.T. Highnam, and T.E. Rockoff. "A Four Processor Building Block for
SIMD Processor Arrays". IEEE Journal of Solid State Circuits, pages 369-375, April
1990.

[36] S. Fiske and W. J. Dally. "The Reconfigurable Arithmetic Processor". 15th Annual

International Symposium on Computer Architecture, pages 30-36, May. 1988.

[37] M.J. Flynn. "Very High Speed Computing Systems". In Proceedings, of the IEEE,
volume 54, pages 1901-1909,1966.

[38] M.J. Flynn. "Some Computer Organizations and Their Effectiveness". IEEE Trans
actions on Computers, C-21, Sep. 1972.

[39] R.J. Francis, J. Rose, and Z. Vranesic. "Technology Mapping for Lookup Table-Based

FPGAs fro Performance". In IEEE International Conference on Computer-Aided
Design, pages 568-561, Nov. 1991.

[40] R. Freeman. "User-programmable Gate Arrays". IEEE Spectrum, pages 32-35, De
cember 1988.

[41] T. Fukushima. "A Survey of Image Processing LSIs in Japan". In IEEE International
Conference on Pattern Recognition, volume 2, pages 394-401,1990.

BIBLIOGRAPHY 168

[42] W. Geurts and F. Catthoor. "DSP Applications suited for Lowly Multiplexed Archi

tectures". In ASICS Open Workshop on synthesis techniques for (lowly) multiplexed
datapaths, Aug. 1990.

[43] H. Gharavi, P. Pirsch, and H. Yasuda. Special Issue on VLSI Implementation For

Digital Image And Video Processing Applications. IEEE Transactions on Circuits

And Systems, pages 1259-1365, Oct. 1989.

[44] D. Goodman. "Trends in Cellular and Cordless Communications". IEEE Communi

cations Magazine, pages 31-40, June. 1991.

[45] J.P. Gray and T.A. Kean. "Configurable Hardware: A New Paradigm for Computa
tion". In Advanced Research In VLSI, pages 279-295. Proceedings of the Decennial

Caltech Conference on VLSI, Mar. 1989.

[46] N. Hastie and Richard Cliff. "The Implementation of Hardware Subroutines on Field

Programmable Gate Arrays". In Proc. CICCf90: 1990 Custom Integrated Circuits

Conference, pages 31.4.1-4, May 1990.

[47] G. Heilmeir. "Personal Communications: Quo Vadis". In Proceedings International
Solid State Circuit Conference, pages 24-26-123, Feb. 1992.

[48] D. Hill and D. Cassiday. "Preliminary Description of Tabula Rosa: an electrically
configurable hardware design". In ICCD, pages 391-395, Sep. 1990.

[49] P.D Hoang and J.M. Rabaey. "McDAS: A Compiler for Multiprocessor DSP Imple
mentation". In Proc. ICASSP92: 1992 International Conference on Acoustics Speech

and Signal Processing, pages V581-V584, Mar. 1992.

[50] R. Hofer, W. Kamp, R. Kiinemund, and H. Soldner. "Programmable 2D Linear
Filter For Video Applications". In ESSCIRC'89: Proceedings of the 15th European
Solid State Circuits Conference, pages 276-279, Sept. 1989.

[51] H.C. Hsieh, W. Carter, J. Ja, E. Cheung, S. Schreifels, C. Erikson, P. Freidin, L. Tin-
key, and R. Kanazawa. "Third-Generation Architecture Boosts Speed And Density

of Field-Programmable Gate Arrays". In Proc. CICC'90: 1990 Custom Integrated
Circuits Conference, pages 31.2.1-31.2.7, May 1990.

BIBLIOGRAPHY 169

[52] H.C. Hsieh, K. Dong, J. Ja, R. Kanazawa, L. Ngo, L. Tinkey, and W. Carter R. Free

man. "A Second Generation User-Programmable Gate Array". In Proc. CICC'89:

1989 Custom Integrated Circuits Conference, May 1989.

[53] IEEE Communications Society. "HDTV: Special Issue", Aug. 1991.

[54] R. Jain, P. A. Ruetz, and R. W. Brodersen. "Architectural Strategies For Digital
Signal Processing Circuits". In VLSI Signal Processing II, pages 361-372, Nov. 1986.

[55] C. Joanblanq and P. Senn. "A 54 MHz CMOS Programmable Video Signal Processor
for HDTV Applications". In ESSCIRCf89: Proceedings of the 15th European Solid
State Circuits Conference, pages 7-10, Sept. 1989.

[56] R. K. Jurgen. "The Challenges ofDigital HDTV". In IEEE Spectrum, page 28, April
1991.

[57] G. Kane. "Mips RISC Architecture". Prentice-Hall, 1989.

[58] R. Kavaler. "The Design And Evaluation Of A Speech Workstation". Technical

Report Memo. No. UCB/ERL M86/39, U.C. Berkeley, 1986.

[59] K. Keutzer. "Three Competing Design Methodologies For. ASIC's: Architectural
Synthesis, Logic Synthesis and Module Generation". In Proceedings 26th ACM/IEEE
Design Automation Conference, pages 308-313, Feb. 1989.

[60] S. Kirkpatrick, C. Gelatt, and M. Vecchi. "Optimization by Simulated Annealing".
Science, pages 671-680, 1983.

[61] K. Kornegay. "A Test Controller Board For TSS". Technical Report Memo. No.
UCB/ERL M91/4, U.C. Berkeley, Jan. 1991.

[62] H.T. Kung. "Why Systolic Architectures?". IEEE Computer, 15:1:37-46, 1982.

[63] S.Y. Kung. "VLSI Array Processors". Prentice Hall, 1988.

[64] Electronic Research Laboratory. LagerlV Distribution 1.0 Silicon Assembly System
Manual. University of California at Berkeley, June 1988. Distribution 1.0.

[65] E. A. Lee. Programmable DSP Architectures, Part I. IEEE ASSP Magazine, Oct.
1988.

BIBLIOGRAPHY 170

[66] E. A. Lee. Programmable DSP Architectures, Part II. IEEE ASSP Magazine, Jan.

1989.

[67] E.A. Lee. "Introduction to Programmable DSPs". UCSB short Course on Signal

Processing and Speech, July 1988.

[68] C. Leiserson. "VLSI Theory and Parallel Supercomputing". In Advanced Research

In VLSI, pages 308-313. Proceedings of the Decennial Caltech Conference on VLSI,

Mar. 1989.

[69] C. E. Leiserson and J. B. Saxe. "Optimizing Synchronous Systems". Twenty-Second

Annual Symposium on Foundations of Computer Science, Oct. 1981.

[70] P. E. R. Lippens, J. van Meerbergen, A. van der Werf, W.F.J. Verhaegh, B.T. Mc-

Sweeney, J.O. Huisken, and O.P. McArdle. "PHIDEO: A Silicon Compiler for High

Speed Algorithms". European Design Automation Conference, pages 436-41, Feb.

1991.

[71] M. J. Little, M. L. Campbell, S. P. Laub, M. W. Yung, and J. Grinberg. "3-D Com

puter For Advanced Fire Control". First Annual Fire Control Symposium (SDIO),

Oct. 1990.

[72] LSI Logic Corp. Application Note: DSP and Image Processing Family, 1987.

[73] M. Maruyama, H. Nakahira, T. Araki, S. Sakiyama, Y. Kitao, K. Aono, and H. Ya-

mada. "A 200 MIPS Image Signal Multiprocessor on a Single Chip". In Proceedings

International Solid State Circuit Conference, pages 122-123, Feb. 1990.

[74] M.C. McFarland, A.C. Parker, and R. Camposano. "Tutorial on High-Level Synthe

sis". In Proceedings 25th ACM/IEEE Design Automaton Conference, Feb. 1988.

[75] G.W.McNally. "Digital Audio in Broadcasting". IEEE ASSP Magazine, pages 26-44,
Oct. 1985.

[76] G. Melcher, G. Thomas, and D. Kaplan. "TheNavy's New Standard Signal Processor,

the AN/UYS-2". Journal of VLSI Signal Processing, pages 103-109, Oct 1990.

BIBLIOGRAPHY 171

[77] S. Melvin. "Performance Enhancement Through Dynamic Scheduling and Large Ex
ecution Atomic Units In Single Instruction Stream Processors". U.C. Berkeley, 1990.

UCB CS Divsion.

[78] J. Mick and J. Brick. In "Bit-slice Microprocessor Design". McGraw-Hill, 1980.

[79] T. Minami, H. Yamaguchi, Y. Tashiro, R. Kasai, J. Takahasi, S. Hamaguchi, K. Endo,

and T. Tajiri. "A 300 MOPS Video Signal Processor with a Parallel Architecture". In

Proceedings International Solid State Circuit Conference, pages 252-253, Feb. 1991.

[80] T. Minami, H. Yamaguchi, Y. Tashiro, R. Kasai, J. Takahasi, S. Hamaguchi, K. Endo,

and T. Tajiri. "A 300 MOPS Video Signal Processor with a Parallel Architecture".

In Journal of Solid-State Circuits, pages 1868-1875, Dec. 1991.

[81] R. Murgai, Y. Nishizaki, N. Shenoy, R. Brayton, and A. Sangiovanni-Vincentelli.

"Logic Synthesis for Programmable GateArrays". 27th ACM/IEEE Design Automa

tion Conference, pages 620-625, June 1990.

[82] R. Murgai, N. Shenoy, R. Brayton, and A. Sangiovanni-Vincentelli. "Improved Logic
Synthesis for Table Look Up Architectures". In IEEE International Conference on

Computer-Aided Design, pages 564-567, Nov. 1991.

[83] L. W. Nagel and et al. "Simulation Program With Integrated Circuit Emphasis
(SPICE)". 16th Midwest Symp. Circuit Theory, Feb. 1985.

[84] R.O. Nielsen. In Sonar Signal Processing. Artech House Inc., 1991.

[85] Y. Ninomiya. "HDTV Broadcasting Systems". IEEE Communications Magazine,
pages 15-22, Aug. 1991.

[86] T.G. Noll and S. Meier. "A 40 MHz Programmable Semi-Systolic Transversal Filter".

In Proceedings International Solid State Circuit Conference, pages 180-181, Feb. 1987.

[87] S. Note, W. Geurts, F. Catthoor, and H. DeMan. "Cathedral III: Architecture-Driven

High-level Synthesis for High Throughput DSP Applications". 28th ACM/IEEE De

sign Automation Conference, pages 597-602, June 1991.

BIBLIOGRAPHY 172

[88] S. Note, J. Van Meerbergen, F. Catthoor, and H. De Man. "Hardwired Data Path

Synthesis For High Speed DSP Systems With The Cathedral III Compilation Envi

ronment". In Logic and Architecture Synthesis for Silicon Compilers, pages 243-254.

Elsevier Science Publishers B.V. (North-Holland), Feb. 1989.

[89] S. Note, J.V. Meerbergen, F. Catthoor, and H. De Man. "Automated Synthesis of a

High Speed CORDIC Algorithm With The CATHEDRAL-III Compilation System".

ISCAS, pages 581-584,1988.

[90] J. Ousterhout and et al. "The Magic VLSI Layout System". IEEE Design & Test of

Computers,- pages 19-30, Feb 1985.

[91] P. Hilfinger. "A High Level Language and Silicon Compiler for Digital Signal Process

ing". In Proc. IEEE Custom Integrated Circuits Conference, pages 240-243. IEEE,

May 1985.

[92] K.K. Parhi and D.G. Messerschmitt. "Pipeline Interleaving and Parallelism in Recur

sive Digital Filters, I and II". IEEE Transactions on Speech and Signal Processing,

pages 1099-1134, July 1989.

[93] Y.N. Patt and J.K. Ahlstrom. "Microcode and the Protection of Intellectual Effort".

Proceedings of the 18th Annual Workshop on Microprogramming, Dec. 1985.

[94] Plus Logic. FPGA2040, 1989.

[95] M. Potkonjak and J. Rabaey. "A Scheduling and Resource Allocation Algorithm for

Hierarchical Signal Flow Graphs". In Proceedings 26th ACM/IEEE Design Automa

tion Conference, pages 7-12, June 1989.

[96] G. Quenot and B. Zavidovique. "A Data-Flow Processor for Real-Time Low-Level

Image Processing.". In Proc. CICC'91: 1990 Custom Integrated Circuits Conference,

page 12.4, May 1991.

[97] J. Rabaey, R. Brodersen, A. Stolzle, S. Narayanaswamy, D. Chen, R. Yu, P. Schrupp,

H. Murveit, and A. Santos. "A Large Vocabulary Real Time Continuous Speech

Recognition System". In VLSISignal Processing III, pages 61-74. IEEE Press, 1988.

[98] J. Rabaey and M. Potkonjak. "Resource Driven Synthesis in the HYPER System".
ISCAS, 1990.

BIBLIOGRAPHY 173

[99] J.M. Rabaey, C. Chu, P. Hoang, and M. Potkonjak. "Fast Prototyping of Datapath-

Intensive Architectures". IEEE Design & Test of Computers, pages 40-51, June 1991.

[100] J.M. Rabaey, H. De Man, J. Vannhoof, G. Goosens, and F. Catthoor.

"CATHEDRAL-II: A Synthesis System for Multiprocessor DSP Systems". Addison

Wesley, Dec. 1989.

[101] J.M. Rabaey, S. Pope, and R. Brodersen. "An Integrated Automatic Layout System

for Multiprocessor DSP Systems". IEEE Transactions on Computer Aided Design,
CAD-4:285-296, July. 1985.

[102] M. Roberts. "Optimizing Compilers". BYTE Magazine, pages 165-170, 1987.

[103] P. Ruetz and R. Brodersen. "A Realtime Image Processing Chip Set". In Proceedings
International Solid State Circuit Conference, pages 148-149, Feb. 1986.

[104] P. A. Ruetz. "Architectures And Design Techniques For Real-Time Image Processing
ICs". Technical Report Memo. No. UCB/ERL M86/37, U.C. Berkeley, 1986.

[105] A. Salz and M. Horowitz. "IRSIM: An Incremental MOS Switch-Level Simulator".

In Proceedings 26th ACM/IEEEDesign Automaton Conference, pages 173-178, June

1989.

[106] R. Schmidt. "A Memory Control Chip for Formatting Data into Blocks Suitable

for Video Coding Applications". IEEE Transactions on Circuits and Systems, pages

249-258, Oct. 1989.

[107] U. Schmidt. "Data Wave - a Data Driven Video Signal Array Processor". In Hot

Chips II: A Symposium on High Performance Chips, Aug. 1990.

[108] U. Schmidt and S. Mehgardt. "Wavefront Array Processor for Video Applications".
In ICCD, 1990.

[109] U. Schmidt, S. Mehgardt, K. Caesar, T. Himel, and S. Mehgardt. "Data-controlled
array processor for video signal processing". In Electronik, June 1990.

[110] C.L. Seitz. "Concurrent VLSI Architectures". IEEE Transactions on Computers,
pages 1247-1265, Dec. 1984.

BIBLIOGRAPHY 174

[111] D.B. Skillicorn. "A Taxonomy for Computer Architectures". IEEE Computer, Nov.
1988.

[112] M. A. Soderstrand and B. Sinha. "Comparison ofThree New Techniques For Pipelin

ing IIR Digital Filters". In Asilomar Conference on Circuits and Systems, pages

439-443,1985.

[113] M.B. Srivastava and R.W. Brodersen. "Rapid-Prototyping of Hardware and Software

in a Unified Framework". In ICCAD, pages 152-155, Nov. 1991.

[114] Star Semiconductor. SPROC Signal Processor Data Book, 1991.

[115] A. Stolzle. "A Real Time Large Vocabulary Speech Recognition System". PhD thesis,

University of California, May 1992.

[116] A. Stolzle, S. Narayanaswamy, K.Kornegay, R. W. Brodersen, and J. Rabaey. "A

VLSI Wordprocessing Subsystem for a Real Time Large Vocabulary Speech Recogni

tion System". In Proc. CICC'89: 1989 Custom Integrated Circuits Conference, pages

20.7.1-5, May 1989.

[117] H.S. Stone, T.C. Chen, M.J. Flynn, S.H. Fuller, W. G. Lane, H.H. Loomis Jr., W.M.

McKeeman, Kay.B. Magleby, R.E. Matick, and T.M. Whitney. Parallel Computers,

pages 321-323. Science Research Associates, 1975.

[118] J.S. Sun, M.B. Srivastava, and R.W. Brodersen. "SIERA: A CAD Environment for

Real-Time Systems". 3rd IEEE/ACM Physical Design Workshop on Module Gener

ation and Silicon Compilation, May. 1991.

[119] C. Sung, P. Sasaki, R. Leung, Y.M. Chu, K.M. Le, G.W. Conner, R.H. Lane, J.L.

DeJong, and R. Cline. "A 76-MHz BiCMOS Programmable Logic Sequencer". IEEE

Journal of Solid State Circuits, pages 1287-1294, Oct. 1989.

[120] L. Synder. "Introduction to the Configurable Highly Parallel Computer". Computer,
pages 47-57, Jan. 1982.

[121] I. Tamitani, H. Harasaki, T. Nishitani, Y. Endo, M. Yanshina, and T. Enomoto. "A

Real-Time Video Signal Processor Suitable for Motion Picture Coding Applications".

IEEE Transactions on Circuits and Systems, pages 1259-1266, Oct. 1989.

BIBLIOGRAPHY 175

[122] D.E. Thomas and E.D. Lagnese. "Architectural Partitioning for System Level De
sign". In Proceedings 26th ACM/IEEE Design Automation Conference, pages 62-67,
June 1989.

[123] M. Toyoukura, K. Okamoto, H. Kodama, A.Ohtani, T. Araki, and K. Aono. "A Video
Signal Processor with a Vector-Pipeline Architecture". In Proceedings International
Solid State Circuit Conference, pages 72-73, Feb. 1992.

[124] H. Trickey. "Flamel: A High-Level Hardware Compiler". IEEE Transactions on
Computer Aided Design, CAD-6:259-269, Mar.. 1987.

[125] C. van Berkel, C. Niessen, M. Rem, and R.W.J. Saeijs. "VLSI Programming and
Silicon Compilation". In IEEE International Conference on Computer Design, pages
150-166, 1988.

[126] A.H. van Roermund. "Architectures for Real-Time Video". In E.F. Depreterre and A-
J. van der Veens, editors, Algorithms and Parallel VLSI Architectures, pages 445-461.
Elsvier Science, 1991. Vol. A.

[127] A.H. van Roermund, P.J. Snijder, H. Dijkstra, C.G. Hemeryck, CM. Huzier, J.M.P.
Schmitz, and R.J. Sluitjter. "A General Purpose Programmable Video Signal Pro

cessor". IEEE Transactions on Consumer Electronicsy pages 249-258, August 1989.

[128] J. Wawrznyek. "A Reconfigurable Concurrent VLSI Architecture For Sound Synthe
sis". In VLSI Signal Processing II, pages 385-396, Nov. 1986.

[129] A. Wolfe, M. Breternitz Jr., C. Stephens, A.L. Ling, D. B. Kirk, R. P. Bianchini

Jr., and J. P. Shen. "The White Dwarf: A High-Performance Application-Specific

Processor". 15th Annual International Symposium on Computer Architecture, pages
212-222, May. 1988.

[130] Xilinx Corp. The Programmable Gate Array Data Book, 1989.

[131] A. Yeung and J.M. Rabaey. "A Reconfigurable Data-driven Multiprocessor IC for
Rapid Prototyping of High Performance DSP Algorithms". In VLSI Signal Processing
V. IEEE Press, Oct. 1992. submitted.

[132] R. Yu and J. Rabaey. "Techniques for Very Fast System Prototyping". Eecs/erl
research summary, U.C. Berkeley, 1990.

	ERL-92-49 (1 of 3)
	ERL-92-49 (2 of 3)
	ERL-92-49 (3 of 3)

