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ABSTRACT

We study self-synchronization of digital phase-locked loops (DPLL's) and the chaotic
synchronization of DPLL's in a communication system which consists of three or more
coupled DPLL's. Triangular wave signals, convenient for experiments, are employed. Nu
merical and experimental studies of two loops are in good agreement, giving bifurcation
diagrams that show quasiperiodic, locked, and chaotic behavior. The approach to chaos
does not show the full bifurcation sequence of sinusoidal signals. For studying synchro
nization to a chaotic signal the chaotic carrier is generated in a subsystem of two or more
self-synchronized DPLL's, where one of the loops is stable and the other is unstable, i.e.
their Liapunov exponents are negative and positive, respectively. The receiver consists ofa
stable loop. We verified numerically and experimentally that thereceiver synchronizes with
the transmitter if the stable loop in the transmitter and receiver are nearly identical and
the synchronization degrades mth noise and parameter variation. We studied the phase
space where synchronization occurs, and quantify the deviation from synchronization using
the concept of mutual information.

T Permanent address: Electrical Engineering Department, San Jose State University,
San Jose, CA 95192.



I. INTRODUCTION

Analog and digital phase locked loops are devices used in a variety of communication

applications such as modulation and demodulation, noise reduction and as synchronization

devices to lock the phase of a receiver to that of a transmitter [1]. In a single DPLL the
phase difference between transmitter and receiver is described by a circle map when the

input is a sinusoidal signalwith a constant amplitude and frequency [2,3]. Circle maps have
been studied extensively in the past. They exhibit periodic cycles, quasiperiodic behavior

and chaos[4]. For two coupled DPLL's we observed a more complicated behavior, but
also characterized by periodicity, quasiperiodicity and chaos[5]. The coupled system can
have more complicated bifurcation diagrams, and an important distinction exists between

the dimensions of the attractors when one or both loops are chaotic, the attractor having

higher dimensionality in the latter case[5].
The concept of synchronized chaos was introduced recently by Pecora and Carroll[6].

They showed how two near-identical systems linked by a chaotic signal can synchronize

with each other. A potential application of this concept is to the problem of secure com

munications, the idea being to have two remote systems, linked by the same chaotic signals

operate synchronously. This possibility was explored numerically in a system of coupled

DPLL's[5]. Using two coupled loops, one stable and one unstable, as a transmitter of
a chaotic signal, we showed that a third loop, nearly identical to the stable transmitter

loop, can synchronize with that loop in the transmitter. The numerical study considered

sinusoidal oscillators, which are more closely related to the well studied sine-circle map,

but are more difficult to realize experimentally. In an introductory experimental study of

synchronized chaos we used a simple experimental DPLL embodiment in which the oscil

lators have triangular output waveforms and the sampling is done at the zero-crossings. It
was found experimentally that synchronization could be achieved, and this was confirmed

numerically on analysis of a coupled system with similar characteristics[7].
In this paper we do more detailed numericaland experimental studies of self-synchronization]

of DPLL's and synchronization to a chaotic signal. The DPLL's considered here employ
triangular wave forms sampling at the zero crossings. Studies were also made (not re
ported) sampling at the peak. In this case, the phase diagrams of the two coupled loops in
the transmitter show different features; however for the chaotic synchronization studies we

obtain qualitatively the same results. The paper is organized as follows: In section II we
give a description of the system studied and present numerical results for the two coupled

DPLL system. In section III we investigate the synchronization to a chaotic signal using
these two coupled DPLL's as a transmitter and study the quantification of the synchroniza
tion using the concept of mutual information. In section IV we describe the experimental

system and compare the numerical and experimental results. The last section gives our

conclusions.



II. SYSTEM DESCRIPTION AND RESULTS FOR TWO COUPLED LOOPS

We first give a brief description of a single, first-order, nonuniformly sampling DPLL,

whose block diagram is shown in Fig. 1. It consists of a sample-and-hold (SH) and a

voltage controlled oscillator (VCO). During the operation, the SH takes a discrete sample
v(U) of the incoming signal at the sampling time <,- when the VCO signals it to do so. The

sampled value is used to control the sampling frequency of the VCO according to a given

function in such a way as to decrease the phase difference between the incoming signal

and the oscillator output. As a result, for a range of parameters, there is a locked state

when the oscillator frequency adjusts itself to the input frequency and locks to its phase,

hence sampling always at the same point on the input signal. For other parameter regions
multiperiodic orbits, quasiperiodicity and chaotic behavior may be observed.

It has been shown[3] that when the input signal is a sinusoid and the frequency of the
VCO is linearly related to the sampled value v(t{) as

/' = /* + b[v(U) + „•«], (1)

then the phase difference between the signal and the VCO output is described by a circle
map. In Eq. (1) f° is the center frequency of the VCO, i.e., its frequency in the absence
of applied signal, b is the loop gain, and v°ff is an offset voltage that may be added to
the input signal in order to bring it to the appropriate voltage range of operation in an
experimental device.

Here we are concerned mainly with self-synchronized DPLL's where the input to
one loop is given by a combination of the outputs of the other loops. Although explicit
mapping equations can be constructed that describe the dynamics of such systems[8], we
can numerically evolve the dynamics without finding such maps following the algorithms
given in Refs. [3] and [5]. The transmitter system consisting of two coupled DPLL's is
shown schematically in Fig. 2. In the experimental device studied the VCO outputs are
voltages with triangular waveform, and the sample of the incoming signal is taken when
the output voltage is zero with a positive slope. We use the convention that at this instant
the phase (modulo 1) of the wave is zero. Thus we represent the output signal of the
VCO's as v(t) = AA(4>{t)) with

( #(<), if0<<f>(t) < 1/4;
A(<j>(t)) = < -4<j>(t) + 2, if 1/4 < <f>(t) < 3/4; (2)

(4<f>(t)-4, if 3/4 <<£(<) <1.

where <f>(i) = ft, with / the fiequency, and 0 < t < 1/f. In this coupled loop system
each time that one of the triangular waves attains A(<j>(t)) = 0 with a positive slope the



oscillator sends a signal to its SH which then samples the VCO output of the other loop.
The loop that samples switches its frequency to a new value given by

fi=f! + biv(ti) (3)

For the two coupled DPLL's, for any time t, the system state is determined by four
variables, the frequencies and the phases of the two loops. However, the system state
changes only at the sampling instants. As a result, the dynamics lies in the union of two
three-dimensional linear subspaces, which have <j>\ = 0 (mod 1) or <j>2 =0 (mod 1). There
are eight parameters in the coupled system. Foreach loop we have the amplitudes A ,'s, the
gains 6,'s, the center frequencies /°'s and the offset voltages v°**'s. We can normalize the
parameters in the following way. The equations that determine the dynamical evolution

of the loops are

ft = ft + h [AtA{h) + »\"\ (*i = 0), (4a)

ft = ft + 62 [A, A(*,) +v°2ff] (fe = 0). (46)

Dividing Eqs. (4) by ft + btv^ we obtain

7i=7l +BiA(rfi), (5a)

7i = l +B*A(*), (56)

where

Thus there are three dimensionless fundamental parameters in the system, which are the
two normalized gains B\ and Bi and the normalized center frequency f1 of one of the
two loops, say loop 1. Since the frequencies of these discrete time systems are positively
defined, we must have from Eqs. (5) that B\ < /° and B2 < 1, since A(<£) € [—1,1].

We first analyze the locked state, i.e., when both loops synchronize to a common
frequency fs. In this case <f>i(<t>2 = 0) = -<fe(<£i = 0) = A<£. From Eq. (5) we obtain

7.=7i+*iA(-A*), (6a)

7S = 1+B2A(A<«. (66)

By noting that A(</>) is an odd function, we obtain from this system of equations:

7 _ Ti/Bi +l/i?2 ,
J°~ l/£, +l/JJ2' {,a)
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MAM=4frk- {7b)
Let us assume that f\ > 1. In this case A<j>3 6 [0,1/2]. According to Eq. (7b) there
are two possible values for the phase difference between the loops, that is, A<j> = A<f> 3 and
A<j> = 1/2 —A^s, since A(-) of these two angles are identical. We will showbelowthat only
one of these phase angles is stable. From Eq. (7b) one also sees that the synchronization
is possible only if

£i+£2>|7i-l|, (8)

since A(-) G [-1,1].
As B\ and/or B2 increase bifurcations to higher period orbits are observed, which are

followed by a chaotic regime. The parameter values where the first bifurcation occurs can
be obtained analytically via a linear stability analysis. Suppose that we have a system
of two coupled DPLL's in synchrony. In this case, the frequency of each loop is given by
Eq. (7a), and the phase difference between them is determined by Eq. (7b). At t = 0,
we perturb the frequency of VCO 1 to a new value given by Ja + 6. The evolution of
the system after such a perturbation is shown schematically in Fig. 3. It is easy to show
that at t = t2 and t = t'2 (where <j>2 = 0) the phase difference between the loops is given
respectively by

<f>i(h) = (l-rS/73)(l-Acl>s), (9)

and

<M<2) = 1-A<£S

. j_ A _(Bi+B2)A0,(1-A^)A'(A^) , B^A^l-A^A'^A^A '
'A 7. T. )

(10)
where we have neglected higher order terms in 8. The trace of the Jacobian matrix that
transforms <t>i(i2) into </>i(i2) is given by T = d<j>i(t2)/d<t>i{t2). In this way we find

1 (B1 + B2)A'(A<t>3) ff^A^l - A<ft3)A'2(A<?g

In the above equations A; denotes the derivative of A(<£) with respect to <j>. The synchro
nized state is stable if \T\ < 1, and Eq. (8) is also satisfied. When T = 0 the system has
its maximum stability and at \T\ = 1 a bifurcation to a period 2 orbit appeals. The first
term in the right-hand side of Eq. (11) is greater than or equal 1 and the third term is
positive. Thus, the second term must be negative in order to satisfy the condition that
\T\ be smaller than 1 in the synchronized state. We have assumed that A</>3 G [0,1/2].
Therefore, the second tenn is negative only if Ad>3 £ [0,1/4]. This shows that the solution



1/2 —A<f>a, which satisfies Eq. (7b) is unstable. If we start with the assumption that
fl < 1, then we will reach similar conclusions, i.e., there is only one stable solution for
the phase difference between loops, which now is situated in the interval A<j>3 G [3/4,1]. H
the center frequencies of the loops are identical, that is, fx = 1, then the above expression

for the bifurcation point simplifies to B\ -f B2 —1/2, since f a = 1 and A<j>8 = 0. The
maximum stability is attained at B\ + B2 = 1/4.

We show in Fig. 4 a typical bifurcation diagram of <j>\ versus B2 at the surface of

section <f>2 = 0 for B\ = 0.2 and fx =1. In all the numerical simulations associated with
the coupled loops we use the following initial conditions </>i = <j>2 = <t>z = 0, fx = 1.0,
and f2 = 1.1. A transient of typically 1000 iterations is neglected. The route to chaos in
this system is not via period doubling bifurcations, as in the case studied in [5]. Here the
sequence is truncated beyond the period four cycle and a complex entrance into chaos is

observed.

The complete phase diagram of the coupled loop system is situated in a tri-dimensional

space, since we have three fundamental parameters. Here we study some particular planes

of the phase diagram to find the regions where chaotic motion is present. In the first case

we take B\ = 0. This corresponds to the case in which the coupling between loops is only

in one direction. That is, the input of loop 2 is a triangular wave with constant frequency

f1. Similarly to what was done in Ref. [3], we can easily derive that the phase difference
between loops 1 and 2 at the sampling instant of loop 2 is given by

This is a one-dimensional nonlinear map which shares some properties with the sine circle

maps, but because of the discontinuity in the A(^) derivative this map has a phase diagram
that is topologically different from the diagram of the circle map. In Fig. 5 we show the
phase diagram of the map governedby Eq. (12). The black regionshave positive Liapunov
exponent A. The Liapunov exponent measures the rate of the exponential separation

between two neighboring trajectories, and it is defined as[9]

1 N

n=l

where the superscript n denotes the iteration index. If a system has at least one positive

Liapunov exponent in a given region of the parameter space, then the system is chaotic in
that region. We considered A positive in the calculations when A > 10"3 for N = 30,000.
In the region where chaotic motion can appear the map is noninvertible. The border
of invertibility of Eq. (12) is shown in Fig. 5 by a dashed line and is determined by
fi = (1 —B2)2/(4B2). Thus, below the dashed line only periodic or quasiperiodic motion



is allowed. In the nonchaotic region we observethe existence of tongues of stability similar
to the Arnold tongues. The tongues axe characterized by the winding numbers W defined

W=nm*f-+^ (14)
<-oo fa(t) - <fr2(0)

The largest tongues are labelled in Fig. 5 by the corresponding winding numbers. One

can see that this phase diagram is not topologically identical to the phase diagram of a

sine circle map. For instance, at f1 = 1 a sine-circle map would display a sequence of
period doubling bifurcations, which is not observed here. The bifurcation sequence in our

map is truncated at the 2-cycle because of the discontinuity in the derivative of A(«) at the
maximum.

We study two simplified cases of the fully coupled system. First we study the plane
B = B\ = B2, where the coupling in both directions has the same strength. The cal
culation of the Liapunov exponents following directly the dynamics of the system is not
straightforward, because the coupled loop is described by discontinuous mapping equa
tions^]. To characterize regions of chaotic motion, we used the algorithm given in Ref.
[10] for the studyof Liapunov exponent associated with time series. We plot in Fig. 6a for
the plane B vs. f1, the regions where the motion is non chaotic as the white part. The
shaded part indicates regions where the Liapunov exponent is positive. We consider the
exponent positive when its absolute value is greater than 10~2 for a time series of 1000
points. The largest "Arnold tongues" are labelled by the corresponding windingnumbers.
We do not observe any topological difference between this diagram and the one shown
in Fig. 5. We expect that quasiperiodic behavior, in analogy with the map governed by
Eq. (12), will be found in regions where B is small. The dots there are probably due to
the fact that the lenght of the time series used is short for the algorithm to distinguish
quasiperiodic from chaotic behavior at those parameter values. For large B the motion in
most of the shaded part is seen to be chaotic. Now we consider 7i = 1 and plQt in Fig.
6b (shaded) the regions in the B2 vs. B\ plane where the motion is chaotic. The winding
numbers of some periodic regions are specified in the figure.

III. CHAOTIC SYNCHRONIZATION AND MUTUAL INFORMATION

We consider in this section the synchronization to a chaotic signal produced by the
coupled DPLL's. The synchronization isobtained by transmitting a variable of the chaotic
driving system (the transmitter) to the response system (the receiver), which is nearly
identical to a subsystem of the transmitter. The schematic of the system is shown in Fig.
2. We observe numerically that loops 1and 3synchronize witheach other in certain regions
of the parameter space, even when the transmitter is chaotic. The necessary condition for



this to happen is that the Liapunov exponents associated with loops 1 and 3 be negative.
Due to the presence of more than one basin of attraction, or to other factors, loops 1 and
3 do not always synchronize, as we discuss below.

We show in Fig. 7a the regions (white) where synchronization is observed between
loops 1 and 3 for Bi = B2 = Bz = B in the plane B vs. 7i = 7s- The third loop is started
with the initial conditions <j>z = 0 and 7a = 1-2. When Fig. 7a is compared with Fig. 6a,
one sees that synchronization may be observed when the transmitter is chaotic and also

that there are regions where the transmitter has a periodic behavior and synchronization
between loops 1 and 3 is not found. Note that the transmitter in our system, consisting
of two self-synchronized coupled DPLL's, is intrinsically different from the receiver, where
the coupling is only in one direction. We observe that this lack of symmetry between
the transmitter and receiver causes the nonsynchronization between loops 1 and 3 in the

regions where periodic behavior exists in the transmitter, as well as in the receiver. This

is seen, for instance, when B is small and f1 = fz is close to 3 or 4. We checked several
sets of initial conditions and the synchronization of loops 1 and 3 was never obtained in

these periodic regions. In Fig. 7b we show the region (white) of synchronization between
loops 1 and 3 for the plane B2 vs. B\ = B3 and fx = /3 =1. We also observe chaotic
synchronization for B\ ^ 0.5 and B2 ^ 0.5. Again nonsynchronization between loops 1
and 3 in regions where the transmitter is periodic is found. This occurs, for instance, for
the period 4 region with B2 < B\. The nonsynchronization is again due to the lack of

symmetry between the first and the third loop.

It has been noted that when synchronization between the master and slave systems

occurs, then the dimensionality of the system as a whole is smaller than in the case the

synchronization is not observedfLl]. We confirm this fact in our system by calculating
the correlation dimension of the chaotic attractors associated with chaotic synchronization

and a fully chaotic system where synchronization cannot be observed. The correlation

dimension represents a lower bound to the number of independent variables necessary
to describe or model the underlying dynamics of the attractor. In general, for chaotic
attractors, if this positive defined dimension is a fractional number, then the bound is the

next integer[12]. The chaotic attractors obtained by plotting ^3 vs. fz at <j>2 = 0 are
shown in Fig. 8. The first case, Fig. 8a, corresponds to the strange attractor obtained for
B\ = Bz = 0.2, B2 = 0.6 and f\ = 7s = 1, where loops 1 and 3 synchronize. In Fig. 8b
the attractor for B\ = B2 = £3 = 0.6 and /° = ~f°z = 1 corresponds to nonsynchronization
between receiver and transmitter, due to the fact that all loops have positive Liapunov

exponents. In the second case, the attractor explores more regions of the phase space.

We calculated the correlation dimension dc for the attractors shown in Fig. 8 using the

algorithm given in Ref. 12. We find for the synchronized case (Fig. 8a) dc « 1.3. For the
attractor shown in Fig. 8b we found dc « 2.2. The data used in the calculation are the



phases of the third loop when <f>2 = 0. Thus the underlying dynamics for the communication

system for these parameter sets are described by at least two and three variables for the
cases where synchronization and nonsynchronization is observed, respectively.

In a practical situation, it would not be possible to make the parameters of loops 1

and 3 completely identical. However, we observe that even in the case that the stable loops

in the transmitter and receiver are not identical, the synchronization persists, but with

some error between the dynamical values of the master and slave system. We observed in

our simulations that the loss of correlation between the transmitter and receiver strongly

depends on the parameter that is being varied. In our communication system we found
that the degree of correlation is much more sensitive to a given percentage change in the
center frequencies, than in the gains. This is illustrated in Fig. 9, where we show the
output voltage of loop 3 versus the corresponding quantity for loop 1 for two cases: (a)
when the gains B\ and Bz are slightly different, and (b) when the center frequencies f\
and fz have the same absolute variation, that is, \B\ —B$\ = |7i —7sl- Observe that
in the second case the correlation between the two loops is smaller that in the first case,
even with the same absolute deviations in the parameters, which represents a much smaller
relative change in the center frequencies.

The degree of correlation betweentransmitter and receiver can be quantitatively char
acterized by using the concept of mutual information. It is well known that the mutual
information is a better quantity to measure dependence than the correlation function,
which only measures the linear dependence. We briefly review the basic definition of
mutual information[13]. Consider a dynamical system that is described by the discrete
variable X\ and that this system has relaxed to an attractor. One starts by dividing the
phase space of X\ into N boxes. Denote by p{i\) the probability that a measurement of
the system will find the variable X1 in the ith. box. Do the same for X2. If two systems
are measured simultaneously, then the relevant probability distributions are p(i\), p{i2),
and the joint probability distribution p{i\,i2). The mutual information is defined as

I{Xi, X2) =^ P(*i ih) log;
*1,»2

P(*l»»2)
P(h)p(i2)

(15)

where the sum extends over all elements of the joint partition for which p(ii) and p(i2) are
both nonzero. The mutual information gives the amount of information gained, in bits,
about one system from a measurement of the other. It is a dynamical invariant, i.e., it
does not depend on the system of coordinates used. When the number of cells of the phase
space partition N is increased, the resolution of measurement is also increased, as well as
the information about the state of the system. Consequently, the mutual information will
depend on AT. If Ari andAr2 are independent, thenp(i\,i2) = p(i\)p{i2) and I(Xi,X2) = 0.
Mutual information was recently used in the context ofchaotic synchronization^1]. It was



shown that the mutualinformation is large when twosubsystems are operating in a regime
of chaotic synchronization and rapidly decreases to a small value when all subsystems are
operating in a chaotic regime.

We calculated the mutual information for the three loop system shown in Fig. 2.
We analyzed two cases described below, using 20,000 points in the computation after the
transient died. We divided the interval [-1,1] (range of the voltage signal) into 50 boxes.
The data used in the calculation are the values of the voltage of the signals of loops 1 and
3 when loop 2 samples. If we use the phase as the variable studied, instead of the voltage,
the results obtained are very similar to the ones that we will show. We take B\ = 0.2,

B2 = 0.6, f1 = /3 = 1 and in the first case we vary Bz> We show in Fig. 10a J vs. B$. The
mutual information between loops 1 and 3 has a peak at Bz = B\ where the receiver and

transmitter are completely synchronized. Also, it is seen that the mutual information is

asymmetric with respect to the maximum. It decreases quite slowly, especially for Bz > B\
and at Bz close to 0 or 1, / is very small and the loops are practically uncorrelated. In

the other case, shown in Fig. 10b, we vary /3. Here we also observe a peak when /3 = f1,
and also I is asymmetric with respect to the maximum. We see, however, that the mutual

information decreases faster when compared with the case shown in Fig. 10a. This implies
that if for security reasons one needs a communication system that is very sensitive to

variations in the parameters, then the center frequency of the transmitter is an important

quantity to be used as a key.

IV. EXPERIMENTAL RESULTS

We have experimentally investigated the transmitter system consisting of two coupled
loops, and the transmitter-receiver combination. The experimental circuit for a single
DPLL, shown in Fig. 11, is composed of two main parts: (1) the sampler and associated
support circuitry and (2) the VCO and associated circuitry. Although more than one device
has been used, we shall describe the parameters of one of them, as a specific example. For
the sampler a National Semiconductor LF398 monolithic sample and hold (SH) circuit

is used. A 0.001 fiF polystyrene capacitor is used for its low dielectric loss properties

as the hold capacitor. The sample time is set by a 74LS123 retriggerable monostable
multivibrator. The pulse width of the multivibrator is set with Rext = 20 kQ, and Cext =
680 pF which gives a predicted pidse duration of about 6.7 /js[14] and a measured pulse
duration of about 6.0 fis. The maximum frequency of the input signal is about 2.0 kHz.

Therefore, our sampling duration is about 1.2% of the signal period in the worst case and
less than 1% on average. Hence, our sampling error should be much less than 1%.

For the VCO a National Semiconductor LM566C voltage controlled oscillator (VCO)
integrated circuit is used. The frequency of the VCO is given approximately by the for-
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mula[15]

f= RlClV+ ' (16)
where V+ = 5V, V5 is the control voltage input (the voltage on pin 5 minus the voltage
on pin 1 of the integrated circuit), R\ —10 kfi and C\ = 0.022 fiF. Due to the relatively

loose tolerances of R\ and C\ and the temperature dependence of these components, Eq.

(16) is useful primarily for design purposes. The output of the VCO has an amplitude of
0.9 V and a D.C. offset of -0.9 V. To use this VCO in a DPLL it is necessary to add a

DC offset voltage either to the input signal to the sampler or to the output signal of the
sampler so that the input signal to the VCO will be in the proper voltage range. The
operational amplifier circuit shown in Fig. 11 is used to adjust the offset voltage. A hard
limiter LM311 with a reference of -0.9 V was included at the triangle wave output of the
VCO to cause sampling at the zero crossing, as opposed to sampling at the peak, as in the
case of the circuit studied in Ref. 3.

In the experimental systems we studied both pairs of self-synchronized DPLL's (the
transmitter) and synchronization to a chaotic signal with three DPLL's as shown schemat
ically in Fig. 2. The measurements of self-synchronization involved varying parameters
over wide ranges to obtain bifurcation diagrams, surface of section plots of attractors, etc.
This required automated systems to perform the scans, so modifying the basic circuitry.

Two digital-to-analog (DAC) circuits placed between the SH and the VCO comprise
the heart of the automation. One DAC adjusts the gain parameter while the other adjusts
the center frequency. Hence the amplifier that would come directly after the SH circuit, is
nowreplaced with a DAC and a series of amplifiers. The voltage from the sample andhold
feeds into the DAC where it is amplified by an amount proportional to the digital input.
This DAC controls the frequency span parameter. The last amplifier in the chain receives
this amplified signal andoffsets it with a voltage controlled by the second DAC. This DAC
controls the center frequency parameter. The computer control allows the parameters to
be scanned. The voltage input to the SH falls in a fixed range which depends on the
VCO feeding the signal but not on the frequency of the input signal. Some of the external
support circuitry surrounding the PLL enables the computer to send known test signals
as input to each VCO. The computer applies a voltage at the peak of the input range and
measures the associated fiequency, then it applies the lowest possible voltage in the range
and measures that fiequency. From these two measurements the computer can determine
the current values of the span and center frequencies parameters. Once the current values
are known the computer can adjust the circuit to values that fit the desired parameters.

Automation allows efficient measurement of the variables. The measurement capabil
ity is implemented with a 1 MHz clock, a number of counters, and several data latches.
These enable the computer to detect whichloop sampled and the time between successive

11



samples. The counters are always fed with a 1 MHz signal and thus provide a clock whose
resolution is 1 fis. The same signal that triggers the sample and hold within the PLL goes
to one of two latches and triggers the storage of the current value of the counters. The
computer can then read the value stored in the latch and reset the latch reading it to take
a new measurement at its own speed. A separate latch is needed to store the sampling time
for each loop because if each loop samples at approximately the same time the computer
cannot read the two pieces of data fast enough and data would be lost. Such a situation

occurs when the two loops are in synchronization.

The experimental results of the coupled two loop system are shown in Figs. 12 and

13. In Fig. 12 the bifurcation diagram obtained experimentally in the coupled loops has

the parameters values used in the numerical results shown in Fig. 4. In the figure repre

senting the experimental results there is a gray scale where the darker regions represent

the points with more frequent visits. Comparing Fig. 12 with Fig. 4 we observe a good
agreement between the numerical results and the experiment, including the qualitative

representation of the invariant density distribution in the chaotic regime. In addition, the

experiment shows points off the attractor induced by noise, with the light gray indicating

infrequent visits to those sites (in fact, single visits). In Fig. 13 we show the experimentally
determined attractor in the plane </>i versus f1 for the parameter values used numerically
to make Fig. 8a. Again we observe a good agreement between theory and experiment,

with the thickening of the attractor the result of experimental noise.

We also experimentally studied the synchronization to a chaotic signal in our commu

nication system shown in Fig. 2. As predicted in our numerical simulations, we observe in

the experimental device a parameter region where synchronization in the chaotic regime is

obtained. We illustrate this by showing in Fig. 14a the output voltage of loop 3 versus the
corresponding quantity for loop 1. Since in the experimental system noise is unavoidable
the synchronization between the two loops is not perfect. The normalized parameters for

this chaotic synchronized case are approximately B\ = 0.720, B2 = 0.694, Bz = 0.718,

7J = 1.154 and 7s = 1-152.
By varying the parameters of loop 3 in relation to loop 1 we study experimentally the

loss of synchronization between the transmitter and receiver. This is shown in Fig. 14b,

where now /3 = 1.110.

V. CONCLUSIONS AND DISCUSSIONS

We have studied the self-synchronization of two DPLL's mutually connected, and the

synchronization to a chaotic signal in a system of coupled DPLL's. For the latter case the
transmitter consists of two self-synchronized DPLL's, 1 and 2, and the receiver consists

of a third loop, 3. The locked state for the two coupled loops was analyzed analytically
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and in the phase diagram we identified the regions of chaotic and non chaotic motion.

Tongues of periodic behavior were characterized by the corresponding winding numbers.
We studied the fractal dimension of the attractor in the output of the receiver and verified

that it has a larger dimension when the loops axe chaotic and nonsynchronized, than when

we have chaotic synchronization. The two-loop self-synchronized system was also studied

experimentally using a novel computer control system to rapidly acquire data and present

it in a manner to compare easily to the computations. The results gave good agreement
between experimental and numerical results, indicating that the numerical results can be
relied upon for first order understanding of the experimental devices. The effects of noise
in the experiment were also clearly delineated.

We also studied numerically the region of synchronization between loops 1 and 3 in
some planesof the parameterspace wherethe phasediagramwasinvestigated. We used the
concept of mutual information to quantify the degree of correlation between transmitter
and receiver. We verified that deviations in the center frequencies of the stable loops in the
transmitter and receiver have a larger effect on the loss of synchronization, than deviations
in the gains of the loops. In a parameter regime in which loop 2 is chaotic and loops 1
and 3 are stable, we experimentally studied the synchronization between loops 1 and 3,
and compared the results with the numerical results. We found that synchronization was
not significantly degraded by noise, and that detuning of the parameters degraded the
synchronization approximately the same as observed numerically.

We tested the idea of chaotic synchronization in a more complex system where the
transmitter consists of a ring of three loops, 1, 2, 3 and the receiver of two loops, 4 and
5. Thus, for the receiver we have four control parameters governing its behavior, i.e., two
center frequencies and two gains. The output of loop 3 feeds loop 2 and 4. We verified
that only in the case that loop 1 and loop 2 are completely identical to loops 4 and 5,
respectively, that perfect synchronization between loops 2 and 5 is achieved, as well as
between loops 1 and 4. If one of the loops 4 or 5 is not identical to its respective loop in
the transmitter, then the synchronization between transmitter and receiver is affected.

More complex configurations could be imagined. However we argue that no chaotic
loop should exist in the receiver. If there is a chaotic loop in the receiver, then due to the
sensitivity to the initial conditions we do not expect synchronization between the receiver
and the transmitter, even if there is parameter matching. In this case, an infinitely small
difference in the initial conditions between the transmitter and the receiver will increase
exponentially in time. On the other hand, the existence of several chaotic loops in the
transmitter may be a desirable configuration for secure communication applications, since
this could make the transmitted signal look more chaotic, having ahigher dimensionality.
Our preliminary results show that the addition of another chaotic loop in the transmitter
increases the correlation dimension of the output signal of the transmitter by roughly one.
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Our results indicate the possible usefulness of synchronization of chaotic signals for
secure communications[7]. Various signal recovery schemes are available to extract the
synchronized information from a noisy signal. In fact, one mechanism for lowering the
probability of detection is to embed the signal in noise before it is sent. In order to be
used in a communication system the signal must be modulated, and the techniques for
modulation are currently under investigation. An important part of the numerical and
experimental program is to understand the effect of noise on the accuracy of recovering a

modulated signal, which is a current direction of our research.
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Fig. 1. Schematic representation of asingle DPLL.
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Fig. 2. Communication system consisting of three coupled DPLL's, with two self-svnchronized
loops as the transmitter.
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Fig. 3. Schematic representation of the dynamical evolution of the two coupled DPLL's after
perturb the frequency of the first loop in asystem initially in the locked state.
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Fig. 4. Bifurcation diagram for <£i(<£2 = 0) as as a function of B2 for Bi = 0.2 and f\ = 1.

B

Fig. 5. Phase diagram of the map governed by Eq. (12) showing the chaotic region (dot
ted) and the periodic or quasiperiodic solutions (white). The border of invertibility
is indicated by a dashed line and the largest "Arnold tongues" are labelled by the
corresponding winding numbers. The 2/2 tongue is situated above the 1/1 tongue,
and it is not labelled in the figure.
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Fig. 6. Phase diagram for (a) B = Bi = B2 vs. Ji and (b).ft vs- ft f°r / = 1 showing
the chaotic region (dotted). Some of the largest "Arnold tongues" are specified in the
figure. The 2/2 tongue is situated above the 1/1 tongue, and it is not labelled in (cL),
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Fig. 7. Diagram showing the region of synchronization between loops 1 and 3 (white region)
for (a) B sBj = £2 = Bz vs. Ji and (b) Bx vs. £2 for /° = 1.
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Fig. 8. Chaotic attractor </>z vs. /3 at <£2 =0 for (a) Bx = B3 = 0^2, B2 = 0.6 and (b)
Bj = Bo = B3 = 0.6 with 7" = Tz = 1- The Plot of *i vs' fi for the first case is
identical to <f>3 vs. fz shown in 8a.
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Fig. 9. v,' vs. Vl for (a) B, =0.2, B2 =0.6, B, =0.21 and Ti =T3 =L^d (b) Bl " B»
0.2, B2 = 0.6, 7° = 1 and /j = 1.01.
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Fig. 10 Mutual information between loop 1and loop 3with B\ - 0.2, B2
Tz =1 for (a) I vs. B3 and (b) J vs. 7s-

= 0.6 and /j =
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Fig. 11. Experimental implementation of abasic nonuniformily sampling first order DPLL.



Fig. 12. Bifurcation diagram obtained experimentally for <f>i(<t>2 =0) vs. B2, with the param
eter values used numerically in Fig. 4.

Fig. 13. Chaotic attractor obtained experimentally for <j>\ vs. f\ at <f>2 = 0 with the same
parameter values used numerically in Fig. 8a.
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Fig. 14. (a) Chaotic synchronization obtained experimentally for the three loops systems for
the parameter values Bi = 0.720, B2 = 0.694, B3 = 0.718, 7° = 1.154 and 7s = 1.152.
(b) Loss of synchronization observed when f°3 is changed to Jl = 1.110.


