
Copyright © 1992, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.



STOCHASTIC RESONANCE IN THE

NONAUTONOMOUS CHUA'S CIRCUIT

by

V. S. Anishchenko, M. A. Safonova, and L. O. Chua

Memorandum No. UCB/ERL M92/51

15 May 1992



STOCHASTIC RESONANCE IN THE

NONAUTONOMOUS CHUA'S CIRCUIT

by

V. S. Anishchenko, M. A. Safonova, and L. O. Chua

Memorandum No. UCB/ERL M92/51

15 May 1992

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720



STOCHASTIC RESONANCE IN THE

NONAUTONOMOUS CHUA'S CIRCUIT

by

V. S. Anishchenko, M. A. Safonova, and L. O. Chua

Memorandum No. UCB/ERL M92/51

15 May 1992

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720



STOCHASTIC RESONANCE IN THE NONAUTONOMOUS

CHUA'S CIRCUIT

V.S.Anishchenko, M.A.Safonova

Physics department
Saratov State University

Saratov, Russia

L.O.Chua

Electronics Research Laboratory
University of California, Berkeley

Abstract

The dynamics of the nonautonomous Chua's circuit driven by a sinusoidal signal

and additive noise is investigated numerically via the "two-state" dynamics method.

The possibility to realize the phenomenon of stochastic resonance (SR) is

established. The SR is characterized by an increase in the signal-to-noise ratio

(SNR) due to the coherent interaction between the characteristic frequencies of the

chaotic bistable Chua's circuit and the modulation frequency of the input. The SNR

can be controlled by both external noise and system parameter variations in this

circuit. The statistical characteristics of the "chaos-chaos" type intermittency and

their correlation with the optimal conditions for SR are investigated.
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1. Introduction

The phenomenon of stochastic resonance (SR) is observed in bistable nonlinear

systems driven simultaneously by external noise and a sinusoidal force. In this case,

the signal-to-noise ratio (SNR) increases until it reaches a maximum at some noise

intensity D. This optimum noise intensity D depends on the bistable system and the
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frequency of the external sinusoidal force ".

The mechanism of the SR-phenomenon is as follows. In the absence of a periodic

modulation signal the noise alone results in a random transition between the two

states of the bistable system. This random process can be characterized by the

probability density p(t) of the residence times of the system at one of the states

and, therefore, by some mean switching frequency Co. This mean switching frequency

depends on the noise intensity D and the height of the potential barrier separating

the two system states1"13.

In the presence of an external modulation imposed by the sinusoidal signal

signal eosin coq/, the potential barrier changes periodically with time. The

modulation signal amplitude eQ is assumed to be sufficiently small so that the input

signal alone does not induce transitions in the absence of noise. A coherence

phenomenon between the modulation frequency co and the mean switching frequency co

emerges when the system is simultaneously driven by a periodic signal and a noise

source. As a result, a part of the noise energy is transformed into the energy of the

periodic modulation signal so that the SNR increases. This phenomenon is

qualitatively similar to the classical resonance phenomenon. However, unlike in

classical circuit theory where one "tunes" the input frequency co to achieve

resonance in an RLC circuit, here coQ is fixed at some arbitrary convenient value and



one "tunes" the noise intensity D to achieve stochastic resonance. Since the

switching frequency © is the statistical mean value of the random process of

transitions in the bistable system, it is natural, to call the above phenomenon a

stochastic resonance.

The SR-phenomenon can be realized not only in bistable systems, but it can

also take place in multistable systems, as well as in systems forced by an arbitrary

(non-sinusoidal) periodic signal. However, in such cases, it is necessary to use a

noise perturbation to induce a random switching process into the system in order to

realize the SR phenomena.

In this paper we will generalize the above classical to SR phenomenon to a

broader class of dynamical systems. For this purpose, let us consider the class of

quasi-hyperbolic systems . Many regular (fixed points, limit cycles,toms) and

chaotic attractors can coexist simultaneously in the state space of such systems.

These attractors can interact with each other15"19. The classical example of such

interaction is an intermittency of the "cycle-chaos" type14. In this paper, we

consider a more general case of attractor interactions, henceforth called a "chaos-

20 23
chaos" type intermittency

Two chaotic attractors separated in state space by a separatrix hypersurface

can merge into one chaotic attractor. The phenomenon of this "chaos-chaos" type

intermittency is observed in a small range of some control parameter [i greater than

some critical parameter value |i* where the merging of the attractors takes place.

Since the statistical properties of this kind of intermittency is identical to that

observed from classical bistable systems, it can be considered as a generalized form

of bistable behavior in chaotic dynamical systems. If the control parameter value

[i<|i*, the transition can be induced by the noise source. In this case, the

statistical characteristics of the intermittency phenomenon will depend on the noise



intensity D. If |J>M*, the transition process is caused only by the properties of the

dynamical system.

In general, quasi-hyperbolic systems which exhibit the above intermittency

phenomenon must have two co-existing chaotic attractors. The mean frequency of the

random process of transitions in such systems can be controlled by both system

parameters (in the absence of noise) and external noise (when the parameters are

fixed).

The phenomenon of SR can be observed in systems which exhibit a "chaos-chaos"

type intermittency phenomenon when driven by a periodic modulation signal. This was

first demonstrated in Ref.24 for the one-dimensional cubic map and for the classical

Lorenz system with parameter values chosen in the quasi-attractor region (r»l). In

this paper we investigate the possibility for realizing the SR-phenomenon and examine

its properties in Chua's circuit25.

2. Driven Chua's circuit

We shall investigate the phenomenon of the stochastic resonance in the

following system:

£ =a(y - h(x))
at

dv
i =x~y+z (1)

^7= -Py +eQsin a> f+£(*).
dr

where



h(x) =miX+±(m0- m)(U+l| -U-l|),
(2)

<£(/)> = 0, <£(/)£(f+x)> = £>8(x)

when <•> and 8(-) denote the averaging operator and the delta function, respectively.

The noise source £,(f) and the sinusoidal input with amplitude e and frequency

coQ are inserted in the third equation because they correspond to the more practical

way of inserting voltage sources in the laboratory to the physical circuit, thereby

simplifying our future comparison with the numerical simulation results to be

reported in this paper.

We fix the parameter values m= -1/7, m= 2/7 (as in Ref25) so that only the

values of a and p will be changed. The 2-parameter bifurcation diagram for system (1)

(with D=Q and £ =0) is shown in Fig.l25. A limit cycle T (and the its symmetrical

image T ) are spawned abruptly on the curve 1. Then they undergo a sequence of

period-doubling bifurcations. This process led to the birth of a pair of symmetrical

Rossler-type attractors. They exist, separated from each other, in the region bounded

by curves 1 and 2 of the bifurcation diagram in Fig.l. The bifurcation curve 2

corresponds to the birth of a double scroll attractor (DSA). The DSA, which results

from the merging of two symmetrical Rossler-type attractors, exists in the shaded

region in Fig.l bounded between curves 2 and 3.

The system (1) can be interpreted as a bistable nonlinear oscillator with two

symmetrical chaotic attractors in the region bounded between curves 1 and 2. Since

the basins of these attractors are separated by a two-dimensional invariant manifold

(separatrix surface) they can not intersect each other. Any interaction between these

two attractors can be induced only by external perturbations.

When the two attractors of the autonomous system merge on the curve 2 the



separatrix surface is destroyed, thereby giving rize to the phenomenon of a dynamical

"chaos-chaos" type intermittency. This phenomenon corresponds to the emergence of the

DSA due to the interaction of the two attractors of the autonomous system. Consider

next the region bounded by curves 2 and 3 but in the vicinity of curve 2. In this

case, the phase trajectory resides in each attractor for a long time and makes

relatively few transitions between them. The switching frequency co is very small

here (co «1). If we move further to the right from curve 2, hovewer, the switching

frequency increases.

Hence, the system 1 is a quasi-hyperbolic system which exhibits a bistable

regime of chaotic oscillations. The interaction between these chaotic attractors

which led to a "chaos-chaos" type intermittency phenomenon can be induced by either

adding a noise source, or by varying the parameter a or p. Therefore, the system (1)

is a very convenient vehicle for exploring the SR phenomenon in chaotic systems.

3. Methods of analysis

To investigate the SR-phenomenon it is necessary to compute some important

time series characteristics. We will pause therefore to enumerate these

characteristics and comment on the methods we used to calculate them in this paper.

3.1. Calculation of the residence time probability density p(x)

for the individual attractor: method of "two-states"

dynamics.

There are two methods for analyzing the behavior of bistable systems: the

complete dynamics method and the "two-state" dynamics method. In first case one of



the variable of the system, for example, Jt(f), is considered as the output signal,

without any further processing. In the second case, an additional filtering operation

is made on the signal x(f), where it is replaced by a "telegraph" signal w(f), which

at any time t is equal to +1 or -1 if the trajectory resides in one or the other

attractor, respectively. In this case, we lose the information on the dynamical

behavior of the system inside each of the attractors. Instead we can obtain a more

precise characterization of the transition process.

As we already know, two independent symmetrical strange attractors co-exist in

the region bounded by curves 1 and 2 of the bifurcation diagram in Fig.l. Transitions

between them can take place by either applying a noise perturbation, or by varying

the parameter a or p into the region bounded by bifurcation curves 2 and 3. To

calculate the output corresponding to the "two-state" dynamics, it is only necessary

to determine on which of the attractors is the trajectory evolving at any given

moment of time during the entire numerical integration process. Projection of both

attractors onto the x-y plane and the y-z plane are shown in Fig.2. It is generally

difficalt to derive the equation of the surface separating these attractors in the

state space. In this paper, we will use the following algorithm to identify the

moment of transition approximately: during each step of our numerical integration

computation we check the condition:

(U(r.)| - l)(Ur | -1)<0, (3)

where f=/Af, Ar is the step size of integration, i = 0,1,...J, IAt=t , t is
i max max

the final time of integration. Observe that condition (3) implies an intersection

between the trajectory and one of planes jc=±1 at t. <t<t.. The times f.,

k=l>2>...JKt corresponding to these intersections are stored. If the inequality



*. . *

\ =**WU >°- (4)
holds, then the trajectory did not leave the attractor at t (it has crossed the

same plane twice one after the other). If r <0 for some k. than the trajectory has
kj 1

crossed two different planes successively and, therefore, a transition takes place

within the interval (t*/t ). This algorithm is related to the geometry of the
kj kj+1

equilibrium points locations and their eigenspaces in the phase space of the system

(l)25. In this case, the moment of transition is calculated as the average of the

times corresponding to two successive intersections of different planes:

c - <v •s)/2, /=i'2--£" (5)

and the residence time t of the trajectory inside one of the attractors is

determined by the difference between two successive transition time:

'i =Ci *'" ^"•i <6>

Correspondingly, the output w(t) changes its value from +1 to -1, or vice-versa, at

the moment t{ . Fig.3 illustrates the typical behavior of the waveform x(t) and its

associated "pulse-width modulated" square wave w(t) for the case where the

transitions are induced by noise (Fig.3,a,b), and by varying the parameter a

(Fig.3,c,d).

Without loss of generality, the residence times probability density p(t) needs

to be calculated at only one of the attractors. Hence, we determine only the time

intervals t corresponding to the transition from w(f**)=+l to w(t** )=-l. Then an

estimate of the probability density is calculated over this sample as a histogram of
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normalized values of t relative to some partition At :

*'J = LJL> O)m m

where t = m&t , m=l,2,...,M, M=r /Sr , 7 denotes some fixed maximal value of
m max max

the residence time, and L denotes the number of fe(f ,r ). We have chosen
m 1 m-1 m

7 s300, t €(2*105,4*105), AM).l, 2r=0.5.
max max

The mean residence time for the trajectory to remain in the vicinity of each

attractor can be determined from the probability density p(t)\ namely,

oo

A rTs =<t>= \tp(t)dt (8)
0

Hence, we can define the mean switching frequency by

co = 2k/T (9)
s s

In numerical calculations the integral in (8) is of course replaced by an approximate

discrete sum:

L

r =<t> =&[tpit). (io)
1=1

3.2. Calculation of the power spectrum: determination of the SNR



Let us define the signal-to-noise ratio (SNR) by the relationship:

SNR =10 In Sn(CDo)+5m<0)q) _ (1])

where 5(co) is the power spectrum density of x(t) or w(r), S (co) is the power

spectrum density of the noise background at the frequency co, and [S (co )+S (co)] is

superimposed power spectrum density of the modulation signal and the noise background

at the same frequency. Hence, the value of SNR can be calculated from the computed

data from of the power spectrum 5(co) in the presence of the modulation signal. All

SNR calculations in this paper are based on (11).

Let AD, Aa, and An denote the relationship between the signal-to-noise ratio

(SNR) and the noise intensity D, the parameter a, or the parameter p, respectively

where DelD^J, ctetoc^og, and PeflJ^iy. The presence of an extremum point

(maximum) in AD, Aa, or Ap for some D*e [Z)^], a'efy.cg, or p*€[PjfP2] is our main
evidence of the presence of stochastic resonance phenomenon. In other words, a "bell-

shape" curve for AD, Aa, or Ag indicates the existence of SR.

The power spectrum is computed by the standard fast Fourier transform (FFT)

algorithm. The FFT is first calculated many times for different samples of the output

signal x(t) or w(t) with a modest sample length t-t s410. The above computed FFT

data is averaged to obtain the final power spectrum. In our simulation the number of

data used in the averaging ranges from 100 to 1000. To increase the precision of our

power spectrum we use the window:

5*(co.) =0.54S(co.) +0.23(5(co.J + 5(co.+l)). (12)
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Fig.4 represents the results obtained by using the algorithm for computing the

power spectrum of x(t) at ot=8.9, (3=14.286, eo=0.1, /0=0.6, D=0. The of number data

used in our averaging is 300. Two spectra are shown. The first one was calculated for

the raw signal x{t) (the complete dynamics method) and has, in addition to the sharp

peak at the frequency coq, a smooth local maxima in the frequency neigborhood related

to the characteristic time of the Rossler type attractor (Fig.4,a). The second power

spectrum was calculated from the processed "telegraph" signal w(f) (the "two-state"

dynamics method) (Fig.4b). In this case, the peak at same frequency co remains, but

the information concerning the internal behavior (e.g., the local maxima in x(t)) on

each of the attractors is lost.

4."Chaos-chaos" type intermittency: statistical analysis

of the switching process.

Consider the point a=8.6, P=14.286 near the bifurcation curve 2 in the region

of existence of two symmetrical Rossler type attractors (see the diagram in Fig.l).

Let us induce the intermittency phenomenon with the help of the noise source in (1).

Then, integrating the system for a long time and using the "two-state" dynamics, we

shall calculate the probability density of the residence time of the trajectory in

one of the attractors in the absence of the an external sinusoidal modulation (eo=0)-

Figure 5 shows the typical results of our computations of the probability density

p(x) (here x is the normalized time, i.e. x-tfT' t T=2n/coJ, the power spectra Sw(co)

corresponding to the telegraph signal w(t), and the one-dimensional probability

density p(x) (the latter is calculated by the complete dynamics method). Let us move

on the a-p parameter plane to the region of existence of the DSA (a=8.9, p=14.286) in

11



the vicinity of the bifurcation curve 2 and perform the same computation without

noise (D=Q). The results are shown in Fig.6. A comparison between Fig.5 and Fig.6

shows that there are two mechanisms for inducing the the "chaos-chaos" type

intermittency in system (1): a strictly dynamical mechanism (Fig.6) and a noise-

induced mechanism (Fig.5). Observe that the statistical characteristics of the two

intermittent waveforms are qualitatively similar in both cases.

Let us examine an interesting peculiarity in the above probability density

distributions p(x): in both Figs.5 and 6, the successive relatively sharp maxima of

the function p(x) occurs at discrete multiples of a basic time interval Ax«0.22. This

means that on the average, transitions from one attractor to the other can occur only

at discrete moments of time «Ax (/i=l,2,3,...). In the case of the noise-induced

intermittency, the envelope of p(x) decreases approximately in accordance to an

exponential law as function of x (Fig.5). In the case of the dynamical intermittency,

two peaks corresponing to n=5 and /i=9 stand out above the background an other wise

exponentially decreasing envelope which passes approximately through the series of

extremum points (maxima) of p(x) (Fig.6). This means that the probabilities of

transitions at n=5 and n=9 are significantly higher than the probabilities at the

other values of n. The above phenomenon of the discretization of the probability

density function p(x) in system (1) is extremely interesting and warrants a more

detailed analysis.

The discretization of the probability density function p(x) with a time step

size equal to Ax means that the system (1) has the same characteristic time constant

in its dynamics. It is natural to conjecture that this basic time constant is

connected with the fundamental period of the dominant but unstable limit cycle which

is contained in the closure of the Rossler type attractor, spawned via a sequence of

period-doubling bifurcations. Our computation confirms this. Figure 7 shows the phase

12



portrait and the power spectrum of the Rossler type attractor in the system (1) at

oc=8.6, p=14.286. The basic frequency co=2jt/T«2.8 (T «2.31, x=7,/T«0.21)
R R R R R 0

corresponding to the highest peak is identified in the power spectrum. The same

characteristic time constant Ax«x is found to apply also in the DSA-regime in the

vicinity of the bifurcation curve 2, as shown in Fig.8.

The regular discrete structure of p(x) in Fig.5 and Fig.6 can now be

explained. The phase trajectory of the system (1) makes a transition after making

certain integer number of rotations around one of the equilibrium points P~. The

duration of each rotation corresponds approximately to x . Therefore, transitions can

only occur approximately at the discrete times x=nx , w=l,2,3.... The results of our
S K

calculation in Fig.5 and Fig.6 confirm this transition mechanism.

Let us investigate next the structure of the probability density function p(x)

in the presence of an external sinusoidal perturbation to the system (1) (e *0). Our

statistical analysis was conducted for 3 cases: the noise-induced intermittency case,

the strictly dynamical case (in the DSA-regime), and the combined case of DSA-regime

in the presence of noise. The results are found to be qualitatively equivalent for

all three cases.

Figure 9 shows the typical probability density p(x) and the associated power

spectrum 5(co) in the presence of a small sinusoidal excitation having an amplitude

e =0.1 and frequency co =0.6 in the absence of noise £>=0.

The symmetrical distribution p(x) about x=0 implies equal probabilities for

the phase trajectory to reside in the vicinity of each equilibrium point (P or P~).

The power spectrum has a noise background similar to that associated with the

intermittency phenomenon and a sharp peak located at the modulation frequency

co IW2.
o

The second characteristic time constant of the system is due to the modulation
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frequency. Since the system's potential barrier is changed periodically in this case,

the structure of the residence time probability density function p(x) must change in

such a way as to manifest the presence of two characteristic system time constants T

and T in this case!

Figure 10 shows the results of our calculation of p(x) for three different

values of the modulation frequency: co =0.4, 0.6 and 0.8. The structure of p(x) has

undergone an obvious modification. Namely, the maxima of p(x) are concentrated near

the discrete times mil (m=l,3,5,...). At co =0.4, observe that the set of maxima of

p(x) decreases exponentially as a function of w=l,3,5„... For co =0.6 and 0.8, the

exponential decay is observed at w>3. The finer structure of p(x) can be seen in the

neighborhood of each maxima located near x=w/2, /w=l,3,5,.... Thus, the probability

density function p(x) contains the information concerning the presence of two

characteristic system time constants T and T.
R o

When the system (1) is operating in a chaos-chaos type intermittency regime,

it exhibits a third characteristic time constant; namely: the mean switching time T.

This time constant determines the mean switching frequency co (see Eq.(9)), depending

on the noise intensity D, and on the system parameters a and p. The results of our

computation of these dependencies in the presence of an external modulation signal

are shown in Fig.l1. Observe that the mean switching frequency co increases nearly

linearly with respect to an increase of the noise intensity, and an increase in the

distance from the curve 2 within the DSA-region in the a-p plane. The results of

Fig. 11 demonstrates in a convincing way the possibility to control the switching

frequency by varying the noise intensity D or the values of the parameters a and P in

the systems (1). Hence, we can control the third characteristic time constant

T=2n/(j& in system (1).

The structure of the probability distribution functions p(x) in Fig. 10 can be

14



explained by the coherent interaction between the external modulation frequency co

and the mean switching frequency co. In the case of the classical SR phenomenon, the

typical structures of p(x) is similar to those of Fig.10. Such a structure is

typically associated with an increase of the SNR10"12. Thus, the data of Fig. 10 and

Fig.11 predict the possibility to realize the SR-phenomenon in Chua's circuit.

5. Numerical simulation of stochastic resonance phenomenon

Let us choose the point a=8.6, (3=14.286 in the Rossler attractor region of the

a-p parameter plane in Fig.l as an initial point of the system (1) and investigate

the possibility of the realization of the SR-phenomenon. Let us move the parameter a

value to the right into the DSA-region. The values of the amplitude and the frequency

of the sinusoidal modulation input are fixed at e =0.10 and co =0.6, respectively. The

dependencies of the signal-to-noise ratio on a for different values of the noise

intensity D are shown in Fig.12. These plots demonstrate the SR-phenomenon. The

maximum value of the SNR reaches the value = 21 at a=8.8 in the absence of noise. The

noise perturbation (with constant intensity D*&) does not have a significant

influence on the SR phenomenon except for a small decrease of the SR value. For

example, the maximum value of the of SNR decreases to 19.5 when D=10", and to 16.4

when D=10"2. The mean switching frequencies co are values related to the maxima of

the SNR, and are very close to each other in all three cases in Fig.12, we have 0.258

(D=0), 0.245 (D=103) and 0.243 (D=102).

The residence time probability density functions p(x) shown earlier in

Fig.10(b) also behaves in the same way for values of a corresponding to the maxima of

SNR (see Fig.10). In other words, the behavior of the function p(x) is not changed

qualitatively in the presence of noise, as verified by the results shown in Fig.13.

15



An absolutely analogous behavior is observed when the parameter P is changed

(with a=8.6). The plot of the dependency of SNR(P) is shown in Fig. 14 for D=0. The

addition of noise results in a change in the SNR(P), which is qualitatively

equivalent to Fig. 12. Observe that the critical value P=13.886 in Fig. 14, which

corresponds to the maximum value of the SNR («21.4), is related to the mean switching

frequency co =0.248!

Let us investigate next the SR phenomenon as a function of the noise intensity

D. For this purpose we shall choose the parameter value a=8.6<a so that the two

symmetric Rossler attractors have not yet merged. Inducing transitions by adding a

noise source of intensity D, we obtain the dependence of SNR(D), which is shown in

Fig.15. The effect of SR is deducted in this case. The SNR is equal 11.5 at £>=0.01,

which is obviously less than those in Fig. 12(c). The values of the mean switching

frequency co are also different from the previous results: C0€ (0.11,0.13) at Z)s0.Ol.

We can give a physical explanation for the above observations. The potential

barrier of the bistable system changes with the modulation frequency co in the

presence of an external sinusoidal excitation. State transitions take place at a mean

switching frequency which is related to the mean residence time in one of the

attractors. Since the intermittent trajectory must traverse around 2 attractors, it

follows that the condition of the resonance is given by co =2co. The other words, the

double mean residence time 27 is equal to the period T of the external force. This

situation corresponds to the condition of coherence between the switching process

and the modulation. The resonance condition 2co =co is optimal, but not unique.

As seen from Fig. 10 and Fig. 13, the residence time x corresponding to SR are

centered near the values x=m/2, m=l,3,5,7,.... This means that the switching process

is characterized by a discrete sequence of mean switching frequencies com. The

condition cog=2coQ (/w=l) gives the frequency corresponding to the dominant peak.

16



Resonances at subharmonic frequencies co^=2co /3 (m=3), co5=2co75 (m=5) etc. can take

place as well.

The above reasoning explains the results presented in Figs. 12, 14 and 15

completely. Indeed, the maximum SNR occurs at values of co e (0.24,0.25) under

variation of the parameters a and P, both in the presence of noise, and without noise

(£>=0). These values of co are close to the case w=5 because co5=2co/5 is equal to 0.24

for co =0.6. If the noise intensity increases, than the mean switching frequency

decreases significantly. The maximum SNR in Fig. 15 is related to the value co=0.13.

It is not difficult to verify that the weak resonance w=ll which corresponds to

co=2co/l 1=0.111 also takes place.

By changing the amplitude, frequency of modulation, or system parameters, we

can derive the conditions for realizing the basic resonance co=2coo. Figures 16 and 17

show the results obtained at co =0.35 and e =0.15. Variation of the modulation

parameters e and co will result in a reshaping of the structure of the distribution

function p(x). The maximum values of p(x) has shifted to the vicinity of x=l/2.

Simultaneously, the transitions probability related to the condition of the basic

resonance co=2co has increased strongly. The SR-phenomenon takes place both in the
s 0

absence of noise (Fig. 16), and in the presence of noise having an intencity D within

the range lO^^KlO"1 (Fig. 17, £>=5*10"3). The plot of the SNR versus the noise

intensity D is shown in Fig. 18. This plot demonstrates the SR-phenomenon at fixed

values of system parameters.

The above results verified our earlier conclusion in Section 4 concerning the

possibility for attaining stochastic resonance in Chua's circuit. Observe that the

results shown in Figs. 12-18 actually reflect the coherent interaction process between

only two characteristic system time constants (respectively, natural frequencies);

namely: T and T (respectively coQ and ©). Recall, however, that the system (1) has
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a third characteristic time constant T which reflect the complicated system dynamics

inside each of the interacting attractors. Additional conditions can be derived to

relate the SR-phenomenon to the characteristic system time constant T .

Let us examine next the results shown in Fig.19 when I>=0. Observe that there

are two values (a=4.1 and a=4.26) of the parameter a where the SNR is close to 41.5!

What mechanism is responsible for such an unusually strong increase in the SNR? For

these values of a the double scroll attractor is observed without external modulation

(eo=0). Interestingly enough, the double scroll attractor is suppressed and replaced

by a complicated limit cycle when driven by a sinusoidal signal with e =0.07 and

coQ=0.25 in the nonautonomous system (1). The period of this stable limit cycle is

exactly equal to the period of the modulation signal; namely, T s25! In this case,

the double mean switching frequency is a deterministic variable whose value is

exactly equal to the modulation frequency 2co =co=0.25. This limit cycle, and its
s 0

power spectrum, are shown in Fig.l9,(b) and (c), respectively.

Thus, at £>=0, the classical resonance phenomenon is observed when the

frequency of the periodic force is equal to the frequency of the limit cycle. The

amplitude of the modulation signal is greatly amplified here in view of the phase-

locking phenomenon.

Figure 20 shows the influence of noise under this classical resonance regime.

Observe that as the noise intensity increases, the regularity of the switching

process is destroyed and the classical resonance regime changes into a stochastic

resonance regime.

The increase in the SNR during stochastic resonance can be interpreted as a

process of redistribution of energy through an optimal choice of control parameters

of the system (1). This swapping of energy is clearly seen in the calculated power

spectrum shown in Fig.21. Observe that in the absence of a modulation signal, the

18



power spectrum (dashed curve) is located above the curve 5(co) (calculated in the the

presence of the modulation) at all frequencies except near the resonance frequency

coQ. The total energy in each case is equal to the area under the curve and is found

to be constant. Therefore, the energy of the modulation signal increases during

stochastic resonance at the expense of the "deterministic" noise energy which must

decrease outside a small neighborhood of the frequency axis in order that the total

energy be preserved.

Observe that the results of this work were calculated using the "two-state"

dynamics method. Application of the complete dynamics method leads to the same

qualitative results.

6. Conclusion

The results of our numerical investigation give convincing evidence of the

realization of the stochastic resonance phenomenon in the driven Chua's circuit. Our

numerical data confirms the conclusions of Ref.24 concerning the SR phenomenon in

quasi-hyperbolic systems with chaotic dynamics. Unlike bistable systems with fixed

point attractors, the interaction between chaotic attractors having a "chaos-chaos"

type intermittency includes more possibilities. In particular, an increase in the SNR

can take place by tuning the system parameters without external noise. In this case,

the intrinsic chaotic dynamics plays the role of "deterministic" noise.

From a statistical perspective, chaotic bistable systems have two

characteristic time constants (or two characteristic frequencies). One of them is

related to the random process of transitions and is determined by the probability

density function of the residence time of the trajectory in each interacting

attractor. The second characteristic time constantis related to the intrinsic chaotic
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dynamics of the interacting attractors. The external harmonic excitation result in

the appearance of a third characteristic time constant in the system; namely, a

deterministic modulation period T'

In chaotic systems, the SR-phenomenon can take place via a coherent

interaction between the statistical process of transitions and the deterministic

periodic modulation. At the resonant frequency, the structure of the residence time

probability density is characterized by the presence of a series of peaks (maxima)

near the discrete values xm=w/2 (m=l,3,5,...). Hence, at the moment of stochastic

resonance the system exhibits the most probable switching frequencies com=2co/m,

m=l,3,5,.... Optimal conditions of SR are reached when the mean switching frequency

is equal to twice the modulation frequency (m=l). Note that the properties of the SR-

phenomenon caused by the interaction between frequencies com and co are similar
s 0

qualitatively to those predicted in the classical theory of SR1"7.

The birth of a stable limit cycle following the application of an external

modulation is a typical phenomenon in quasi-hyperbolic systems14,16,21. In this case,

the classical resonance phenomenon takes place, when the amplitude of the periodic

modulation increases very strongly at some rational ratio of frequencies. The

addition of an external noise in this case reduces the amplitude of the modulation

signal and, therefore, suppresses the effect of the classical resonance. A further

increase in the noise intensity leads to a continuous transition from the classical

resonance phenomenon to a stochastic one (SR).

The results of this work combined with the data from Ref.24, testify

convincingly that the stochastic resonance effects are quite general. The properties

established in this paper are a consequence of some fundamental laws of nonlinear

oscillations. The necessary condition for stochastic resonance to occur is an

interaction of attractors. This process can be induced by an external noise. In this
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case, the same classical SR-phenomenon takes place. Moreover, the switching process

can be induced strictly by the dynamical properties of the system (the dynamical

intermittency). In this case, we have the possibility to realize the SR-phenomenon in

the dynamical system without any external noise excitation. One natural

generalization is to investigate the SR-phenomenon by tuning the system parameter in

the presence of a fixed intensity noise.

In closing, we remark that the results of this work represent only the

beginning of a more comprehensive investigation of the SR-phenomenon in chaotic

systems. We hope that further investigations will allow us to obtain new scientific

results having some practical applications.

Acknowledgement

The authors would like to thank Prof. Frank Moss and Dr. Lutz Shimansky-Geier

for attracting our attention to the fascinating phenomenon of stochastic resonance.

References

1. R.Benzi, A.Sutera, A.Vulpiani. "The mechanism of stochastic resonance", J.PhysA

14 (1981), L453-L457.

2. S.Fauve, F.Heslot."Stochastic resonance in a bistable system", PhysLettA 97

(1983), 5-8.

3. B.McNamara, K.Wiesenfeld, R.Roy. "Observation of stochastic resonance in a ring

laser", Phys. Rev. Lett.W (1988),2625-2629.

4. B.McNamara, K.Wiesenfeld. "Theory of stochastic resonance", PhysMevA 39 (1989),

4854-4869.

21



5. P.Jung, P.Hanggi. "Stochastic nonlinear dynamics modulated by external periodic

forces", Europhys. Lett. 8 (1989), 505-511.

6. CPresila, F.Marchesoni, L.Gammaitoni, "Periodically time-modulated bistable

systems: nonstationary statistical properties", PhysJlevA 40 (1989), 2105-2113.

7. P.Jung, P.Hanggi, "Resonantly driven Brownian motions: basic conceptions and exact

results", PhysAevA 41 (1990), 2977-2988. 8. L.Gammaitoni, F.Marchesoni,

E.Menichella-Saetta, S.Santucci. "Stochastic resonance in bistable systems",

PhysJlevLett., 62 (1989) 349-352.

9. L.Gammaitoni, E.Menichella-Saetta, S.Santucci., F.Marchesoni, CFresilla.

"Periodically modulated bistable systems: stochastic resonance", PhysJlevA 40

(1989), 2114-2119.

10. T.Zhou, F.Moss, P.Jung. "Escape-time distributions of a periodically modulated

bistable system with noise", PhysJlevA 42 (1990), 3161-3169.

11. F.Moss. "Stochastic resonance", Rate processes in dissipative systems: 50 Years

after Kramers, edited by P.Hanggi and J.Troe, Ber. Bunsenges. Phys. Chem, 1991.

12. F.Moss. Stochastic Resonance: From the Ice Ages to the Monkey's Ear, Dept. of

Physics of University of Missouri at Saint Louis, St. Louis, MO 63121, USA, January

1992.

13. H.A.Kramers. "Brownian motion in a field of force and the diffusion model of

chemical reactions", Physica, 7 (1940), 284-

304.

14. V.S.Afraimovich and L.P.Shilnikov, "Strange attractors and quasi-attractors" in

Dynamics and Turbulence, Pitman, NY, 1983, p.1-51.

15. W.Horsthemke, R.Lefever. Noise-induced transitions. Theory and applications in

physics, chemistry and biology, Springer-Verlag, Berlin, 1984.

16. V.S.Anishchenko. Complicated oscillations in simple systems, Nauka, Moscow, 1990.

22



17. V.S.Anishchenko, A.B.Neiman. "Structure and properties of chaos in presence of

noise". Nonlinear Dynamics of Structures, ed. R.Z.Sagdeev et al., World Scientific,

Singapore, 1991, pp.21-48.

18. V.S.Anishchenko, M.A.Safonova. "Bifurcations of attractors in presence of

fluctuations", Journal of technical physics, SI (1987) 1931-1943.

19. V.S.Anishchenko, A.B.Neiman. "Noise induced transition in Lorenz model", Letters

to journal of technical physics, 17 (1990) 43-47.

20. F.T.Arecci, R.Badii, A.Politi. "Low-frequency phenomena in dynamical systems with

many attractors", Phys.Rev.A 29 (1984), 1006-1009.

21. V.S.Anishchenko. Dynamical chaos in physical systems. Experimental investigation

of self-oscillating circuits, Teubner-Texte, Leipzig, 1989.

22. V.S.Anishchenko. "Interaction of attractors. Intermittency of the chaos-chaos

type", Letters to journal of technical physics, 10 (1984) 629-633.

23. V.S.Anishchenko, A.B.Neiman. "Increasing of correlations time under chaos-chaos

intermittency", Letters to journal of technical physics, 13 (1987), 1063-1066.

24. V.S.Anishchenko, A.B.Neiman, M.A.Safonova. "Stochastic resonance in chaotic

systems", the report in the conference Stochastic resonance, San Diego,

March, 29 - April, 4, 1992 (submitted to Journal of Statistical Physics).

25. L.O.Chua, M.Komuro, T.Matsumoto. "The double scroll family", IEEE Trans, in

circuits and systems, 33 (1986) 1073-1118.

23



Figure captions

Fig.l. The 2-parameter bifurcation diagram of the system (1) (drawn with m =-1/7,

m=2P, eQ=0, D=0)25 in the a-p plane.
Fig.2. Two-dimensional projections of the phase portraits of two symmetrical Rossler

attractors of the autonomous system (1) at oc=8.6, (3=14.286

Fig.3. Transformation of the output signal x(t) of the system (1) by the "two-state"

dynamics method: (a,b) a=8.6, (3=14.286, eo=0.0, D=0.05; (c,d) a=8.9, P=14.286,

eo=0.0, D=0.0.

Fig.4. The power spectrum of the chaotic process x(t) of the system (1) for a=8.9,

P=14.286, e0=0.1, 0)Q=0.6, D=0.0: (a) calculated by the complete dynamics method, (b)

calculated by the "two-state" dynamics method.

Fig.5. The residence time probability density function p(x), (a); the power spectrum

S(co), (b); and the probability density function p(x), (c), for a=8.6, (3=14.286,

eQ=0.0, Z)=0.03. Here x=r/TQ, 7^=2^/0.6.

Fig.6. The residence time probability density function p(x), (a); the power spectrum

S(co), (b); and the probability density function p(x), (c), for a=8.9, (3=14.286,

eo=0.0, D=0.0. Here x=tlTQ, T=2nf0.6.

Fig.7. The phase portrait, (a), and the power spectrum, (b), of the Rossler attractor

in the system (1) for a=8.6, (3=14.286, D=0.0, e =0.0.

Fig.8. The phase portrait, (a); and the power spectrum, (b); of the DSA in the system

(1) for a=8.81, p=14.286, D=0.0, £Q=0.0.

Fig.9. The probability density function p(x), (a); and the power spectrum S(co), (b);

in the presence of a modulation signal eo=0.1, co =0.6 at a=8.6, P=14.286, £>=0.0.

Fig.10. The residence time probability density function p(x) for different values of

the modulation frequency: (a) coo=0.4, (b) coo=0.6, (c) coQ=0.8. Here x=t/T, T=2rc/co,
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D=0.

Fig. 11. Plots of the mean switching frequency co: (a) co versus the noise intensity D

at a=8.6, p=14.286; (b) co versus a at D=0.0, p=14.286; (c) co versus P at D=0.0,
s s

oc=8.6 in the presence of modulation e =0.1, co =0.6.
r oo

Fig. 12. The signal-to-noise ratio versus the parameter a for different values of the

noise intensity D at £0=0.1, co =0.6, P=14.286.

Fig. 13. The residence time probability density function p(x) in the presence of both

noise and modulation signal with amplitude eo=0.1 and the frequency co =0.6: (a)

a=8.75, P=14.286, (b) a=8.775, P=14.286.

Fig.14. The signal-to-noise ratio versus the parameter p at a=8.6, co =0.6, e =0.1,

D=0.0.

Fig.15. The plot of SNR(£>) corresponding to a=8.6, P=14.286, coo=0.6, eQ=0.1.

Fig.16. The plots of SNR(a) (a), p(x) (b) and 5(co) (c) in the absence of noise

(£=0.0) at coo=0.35, eQ=0.15, p=14.286.

Fig.17. The plots of SNR(cc) (a), p(x) (b) and 5(co) (c) in the presence of noise

(Z>=5*103) at cod=0.35, eQ=0.15, P=14.286.
Fig. 18. The plot of SNR(£>) corresponding to a=8.6, p=14.286 in the presence of a

modulation signal with frequency co =0.35 and amplitude e =0.15.

Fig.19. The plot of SNR(a) (a), the phase portrait of the phase-locked limit cycle

(b) and the power spectrum (c) of this stable limit cycle at p=5.0, D=0.0 in the

presence of a modulation signal with co =0.25, e =0.07. The limit cycle and its power

spectrum are drawn for a=4.1.

Fig.20. Dependencies of the SNR(a) on a for different values of the noise intensity D

at p=5.0, co0=0.25, eo=0.07.

Fig.21. Power spectra of the chaotic process w(f) at the precise parameter for SR

(a=8.875, P=14.286, Z)=0.005) in the absence of a modulation signal (the dashed curve)
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and with the modulation signal eo=0.15, coo=0.35.
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