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L.0.Chua

Department of Electrical Engineering and Computer Sciences
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We present a new type of strange attractors generated by an odd-symmetric 3-
dimensional vector field with a saddle-focus having two homoclinic orbits at the
origin. This type of attractors is intimately related to the double scroll. We
present the mathematical properties which proved rigorously the chaotic nature of
this strange atwractor to be different from that of a Lorenz-type attractor or a
quasi-attractor.

In particular, we proved that for certain non-empty intervals of parameters,
our 2-dimensional map has a strange attractor with no stable orbits. Unlike other
known attractors, this strange attractor contains not only a Cantor set structure of
hyperbolic points typical of horseshoe maps, but also there exists unstable points
(i.e, stable in reverse time) belonging to the attractor as well. This implies that
the points from the stable manifolds of the hyperbolic points must necessarily
attract the unstable points.

1. Geometric Model
Consider the class of 3-dimensional piecewise-linear system (PL-system)

satisfying the following conditions.

1) Inside the cylinder (see Fig.1)
G = { | x| <n, y2+zzsr2 }

The PL-system is defined by the following linear system in the normal form



X =, y = -0y - o2, z= @y - oz (1.1)
To avoid repetition , and to exploit the odd-symmetry of our geometric model, where
many items occur in pairs, we will use a "parenthesis" to denote the corresponding
symmetrical statement, symbol, concept, components of the cylinder surface, etc.
Hence, the boundary 8G of the cylinder G will be denoted by
8G = U Dy d, i=12

where

D, = {y2+22=r2: O<x<h (0>x=-h) }
denotes the upper (lower) cylinder bounding surface, except the common boundary at
x=0,

d;m = { y2+2292: x=h (x=-h) }

denotes the top and bottom disks, and

D =D uD,u {y+=r" x=0 }
denotes the cylinder boundary surface.

2) Outside of the cylinder G, the PL-system generates an odd-symmetric linear

Poincare map S such that § | d,(2)=Sl P d;a)->D. The two points (+4,0,0) lying on the
h

l-dimensional  unstable = manifold I‘l (l"2) of (1.1) have the images
Pl (2)=Sl a)(ih,0,0)cD. These two points are shown in Fig.1 for the case when the
x-coordinate is zero. Hence, the global unstable manifold I’l aT 2) of the PL-system
returns to 8G, i.e. l"1 (2)=I‘l e D.

Some typical trajectories of the PL-system which are homeomorphic to
corresponding trajectories from Chua’s circuit [Matsumoto, 1984, Chua etal., 1986,

Komuro et.al.,1991] are shown in Fig.1.

Let us define T [Shil’nikov, 1965] which maps the PL-system trajectories



inside G, originating from the cylinder surfaces D 12 into the top and bottom disks

dm), namely T| D Dl o> d;m. Hence, the global Poincare map is given by
f=ST, where f| D= f1 o sl oTiar Pioy® D-

Using the polar coordinates
Yy =p cos ¢, z=psin ¢ (1.2)

and solving the Shil'nikov’s boundary problem (wrivial in our case) we obtain the
following formulas for the mapping T: (¢(0).x(0)) > (¥(t),z(t)):
y(T)=p(t)cos (1), z(T)=p(t)sin ¢(1),
p(D=a, |20V, 6(1)=0(0)+, -w In|x©), (1.3)
v=0/Y, co=0)o/7, al=rh'v, ¢l=m In A.
where 1=y'In & lx(O) | is the elapse time of motion from the cylinder surface D to
the top (bottom) disk d;(z) along the trajectories of (1.1).

Consider the following simplest linear mapping S : (y, z) € d;‘z) >( x) e D

which realizes the global picture of the PL-system shown in Fig.1:
SU = SOi+S"U. i=1,2,
. , 14
u S o (1-Hm+y S (Dasin® (-1)*'a cos 0 (14
Wi " D™ "I acoso a sin 0
Here, (u;, u,) denotes the coordinates (y, z) of the initial point on the top or

3



bottom disc, Soi denotes the coordinate vector of the return points Pi, i=1,2, where,
the x and ¢ coordinates of the return point are translated by two constant
parameters W and W for the sake of generality, 6 denotes the torsion angle of the
twisting of the disks dl @ as it maps into D, o denotes the contraction (expansion)
coefficient of the linear maps S, and the signs of the det S". are chosen to match
the orientation of the coordinates {y,z} and {¢,x}. Substituting (y(t),z(t)) from
(1.3) for (ul ,uz) in (1.4), we obtain the following explicit formulas for the

discontinuous map f of the PL-system:

o= - g + (g + a|x|vcos(¢ +¢ - lnlxl))sgn x, x#0, xe D
_ v (1.5)
x=usgnx-a|x| sin(¢+(p-a)ln|x|), x#0, xeD,
where sgn(-) denotes the signum function, and where
A A
P2 y+p-0-m2, a=oa,
(1.6)

02 060)-v, x4x0), 94¢m-v. x 2w

Observe that f() is discontinuous at x=0 because any point located at an
infinitesimal distance above x=0 must map into a neighborhood of P » Whereas, any
point located below x=0 must map into a neighborhood of Pz' Observe also that f{:) in
(1.5) is undefined at x=0. However, in view of the above discontinuous behavior, we

can define f{x) at x=0 as follow:

lim (9,%) & ©O,u), lim (6,%) & (-n,-). (1.7)
x50 4 07t



Note that whereas v and @ are "local" parameters of (l.1), W, a, and @ are "global"
parameters: W controls the return points Pl(O, ) and Pz(-n,-u), a is usually called

the separatrix value and ¢ is the phase shift.

2. The images of the map f.

For simplicity and without loss of generality, let us assume that all
parameters in (1.5) are nonnegative. It follows from (1.5) that for any x=const,
0eS', where S' denotes a topological circle, the image (5,;) is also a circle, and
for any d¢=const, lxISh, the image (¢7,;) is a spiral. Therefore, denoting the circles
by C,']m={x=n(-n), ¢e5'}, 120, and, the lines by lém={¢=§, 0<x<n (Mx<0)}, at D we
have:

Lemma 1. 1) The images f _C'®

wln e circles defined, respectively by

O™+’ = a™n® and  (+m)Pe(r) = o' 2.1)

2) The images f 11(2) are “shrinking" spirals connecting the circle fC! to the
E 1

12) m
point P P where it rotates in a clockwise direction as |x| decreases (1’2C111 to the

point P2 where it rotates in a counter-clockwise directions as |x]| decreases,
respectively) (see Fig.2).

Consider the one-to-one 1-D map g: R' » R’

X=u+ax, (22)
where v<1, a>0, u>0.

Note, that g(-) is a contraction for O<x<xl=(va)"“'w, and an expansion for XX .
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Observe that g has a unique stable fixed point at x=x,, x>x,>0 in view of the

inequality g'| _ =1 - E) < 1. Let us denote D -{ |x|<nsh, pes! }

Lemma 2. Assume that the parameters in (1.5) satisfy the condition

v<l, @™V oh 0<sp<h-an’ 2.3)
Then

1) DD (f,,D, 8 d 2D

2) There exist domams cii=flis defined by
d = { e+(-1) ) 2+(0-(1-Dm)® < ax’ } i=1,2,
such that fD D(d ud) for n>x_and fD c (d ud) for n<x.
Proof. Denotmg n as the maximum value of x for the image fD we immediately obtain
the map ‘n—g(n) defined by (2.2). Then the first assertion follows from A < g(h)

because of (2.3), and the second assertion is related to the fixed point xs=g(xs).

Corollary. 1) The mapping f has an attractor
A =1lim fD c (dud) 2.4)

2) The domain dlud2 is the minimum attracting domain.
Hence in the following we consider D=Dy, (h=x) such that d=fDy, i=1,2.

Note that (1.5) implies the images of any set X are given by

fX =f(XnD), i=1,2

2.5)
X = f,XnD ) U £, (X"D,)

Consequently the limit in (2.4) is to be interpreted in the sense of (2.5).



Let u<ax:', then dinC('):tQ Consider next the images
d Afd, i j=12 (2.6)

Due to (2.5) dij = f‘f;D = fi(Din le). By virtue of Lemma 1 a'ij has a snake-
like spiral shape, henceforth called S-snakes (Shil’nikov’s snakes) (see Fig.3).

The following assertion is a direct consequence of lemmas 1 and 2.
Lemma 3. 1) The S-snakes dl 1’dnsz1 (dzz,dmcdz) rotate in a clockwise (counter-
clockwise) direction as |x| decreases.
2) For pu>0 the S-snakes dii start at the points Mﬁ-—j‘;Mi, i=1,2, such that M 1(O,xﬁ)
(Mz(-n,-xs)) and Mu(Mzz) lie at the boundary of dl (dz) and end at the points Pi,
i=1,2, as |x| decreases to zero. For p=0 all four S-snakes start at the corresponding

boundaries of dl and dz.

3) Rdzz#1 " Rd21=d12 where R denotes the inverse mapping R: (§,x) >(¢+7,-x).

3. Preimages and B-operator.

Since f is a discontinuous map, the inverse map must be defined.
Definition 1. The inverse map f l is the map satisfying the following condition: for
any set XicDi and }-(i=lei then f;l)_(i=Xi, i=1,2,independently of whether X lr\D2=® and
)?zr'\Dl=®, or not.

It follows from (2.5) that if XD, # &, i=1,2, and X = fiX) = fX U fX, then

X = (XND) U (XND) = X G.1)

Hence, f ‘ is defined at the image X of f. Let us consider the preimages



-1
f, dijk’

dm‘= dijnDk, i, j, k=12, (3.2)
Lemma 4.

1) The number of domains aVijk is finite for p>0 and countable for p=0.

-1
2V fd,

=du d,.
3) f;ldijl and f;ldij2 are narrow strips which intersect disk di and alternating in
each region dir'\ Dk, ij,k=1,2.

The first assertion is true by virtue of the infinite (finite) numbers of

points in the set fili N C:) at u=0 (u>0); the other two assertions are obvious due to

§

) 11
the inverse map f .

We denote the domains dijk= dijkl

where [ corresponds to the number of the domain intersections dijk N {$=0,9=-} as

S | - _
and d;jkl— f;dmd, ijk=1,2, I=1,2,...,

|x| decreases along the lines 1‘1)(2) and 111‘:’. Denote also the intersections

Vo=dnd 3.3)
where L is the index vector with the coordinate values i,i,k,i’,j’,k’=1,2,
II'=12,.. In view of the intersections in (3.3), new index in L appears which we
will denote by m=0,1,2, where "0" corresponds to one-component tangent intersections,
whereas "1" and "2" comrespond to left and right transversal intersections (see
Fig.4).
Definition 2. Let X be a subset of D which is homeomorphic to a union of disks in R

We define a topological B-operator as the map

BX = (XX) U f (fXAX) 3.4)

Some properties of the B-operator are as follows.
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1) BX < X. Indeed since fX N X < fX and X N X c X it follows thatfl(fX NX)ycX
and BX c X.
2) If X < X then B=f and A=ll,_i)g BPD in view of (2.4).
3) If Q_is the limiting set of f|_ such that 2 = f'Q=Q then BQ = Q.

By virtue of these properties the B-operator allows us to determine any
limiting set component as stable, unstable or hyperbolic. Moreover it is easy to

verify that l,;] VL= B(dludz).

4. Limiting set.

Observe that the limiting set Q=ll,_i)°rg B"(tl V), ie. the attractor A, is rather
complicated because of the inevitable existence of the tangent components VL (m=0)
for which hyperbolicity does not hold [Gavrilov & Shil’nikov, 1972, 1973, Newhouse,
1979]. Let us divide the union E VL into two parts

uv, = vov
such that v (V°) is the union of all transversal (tangent) intersections (3.3) for
" m=1,2 (m=0 respectively).
Theorem 1. The limiting set of f IV" Qh = ,l,l,&? BV is a hyperbolic set conjugate to
the topological Markov chain with an infinite (finite) number of symbols for u=0 (u>0
respectively).

Omitting the proof of this theorem and noting that Qh encloses the "twin"
Smale’s horseshoes (an infinite number for p=0), coupled to each other via their
preimages, we identify our new geometric object as an attribute of the double scroll
attractor; namely the double horseshoe.

By virtue of lemmas 1 and 2 for small u and large / there exist two domains

d

21, and 4

. . _ -1
1221, such that the two intersections VLI—(d21 . I,ndm 12) and
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Vbz=(dmlzn d;: y) I (33) are wmansversal (see Fig.5). We will henceforth call

this combined geometric structure the double horseshoe. Here

Q =lim B°(V V ) is conj ; L
(fl VL,UVIQ). Ry ( L v 14) is conjugate to the topological Markov chain with four
symbols and characterized by the graph matrix

G =

—_——O O

0
0
1
1

OO =t
QOO =

Moreover, one can verify the existence of fourfold,...,.2"-fold horseshoes with any
mutual coupling among them.

In order to study the general case of €, and the special case Qf | V°)’ note
that for pu=0 each "one-side" map j: Di->Di, when restricted to the small half-
neighborhoods UicDi of the homoclinic points Pi, i=1,2, is the subject of various
theorems from [Ovsyannikov & Shil’nikov, 1986, 1991]. Their assertions applied to the
mai) f are as follows.

Corollary. 1) For 1/2 < v <1 the set of parameters which implies the existence of
structurally unstable periodic orbits, and a countable set of stable periodic orbits

of each map £ , i=1,2 is dense.
i
2) For v < 1/2 the map fl lu> i=1,2 has no stable points.
i

Though this corollary isolates only a small subset of A in a small non-
attracting  vicinity of Ui, we obtain nevertheless an impressive information
concerning the complexity of the trajectory behavior.

In the general case we need to study the feedback mapping Dl->D2->Dl and not for
U. only, but for the whole attracting regions dl and d. But the most fundamental
question in this study is: can attractor A be strange? The main result of this letter'

which we present in the next section, is that indeed A can be proved rigorously to be
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a strange attractor.

S. Strange attractors.
First instead of the map f let us consider the map Fk: R®R* defined for each
k=0,1,2,... as follows:

X = M sgnx- alxlvsin(¢ +¢ -0 In |x|),

¢.1)
$ =-n/2-7k + (n2+7k +alx|V cos(¢+¢-o In |x|) sgn Xx,
k=01 ,2,...

Observe that F 0=f. For k21, 1“k is a generalization of f, which need not be related to
the PL-system. Obviously all previous results are still applicable for the case A2l
with the only difference being that the distance between the centers of d and d2 is
equal to -m(2k+1).
Theorem 2. Assume

v<12 (5.2)

then the map 1‘7k for any £=0,1,2,... has a strange attractor if

v(x -p)’
X

>1 (5.3)

where x is the fixed point of (2.2), i.e. x =U+ ax‘s’.
Proof. 1) F"t is an attracting map because
F(d\ud) c (@dud), k=0,1.2,..., d,,c { |x|<x }

2) Consider the Jacobian matrix for FI:

11



DF =1~ _
x¢ X
and its determinant
det DF, = va*|x|*"" (5.4)
For the region { |x|$xs} oo (d1Ud2)’ i.e., for any 0<g<1, |x|=qxs
v(x,-p)*
det(DFk) = —ﬁ > 1 under conditions (5.2) and (5.3). Hence the attractor

x.q
Ac{ l x,st} has no stable orbits thereby proving that it is strange.

Corollary. For p > a(2a)”(l'v) we have dlc{x>0}, and dzc{x<0}. Hence A=AluA2,
Aicdi, i=1,2 such that A . and A2 are two separate non-interacting spiral-type strange
attractors.

Remark. It follows from (5.2) and (5.3) that ax\>%/2 and f=F, due to d ~d*Q at p=0
is no longer a one-to-one map. This constraint is the consequence of the condition
(5.3) and the assumption that the map S is linear. Hence in order to avoid this
constraint while preserving (5.3) we need to consider the nonlinear case of S.

Consider now again the map f in the case

/w)+n? > 2(x -p) (5.5)

where it still corresponds to the PL-system, because dlnd2=® in view of (5.5).
Theorem 3. For small values of 81>0 and parameters of f from the "resonance zones"
defined by

A = lo-0 In x-=2)2n+1)| < 8, nez (5.6)
the attractor A has stable periodic orbits and is therefore not strange under the

condition
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X-p < 1, vl é.7
for any u20 in the case of "even" n, and for some small M20 in the case of "odd" n
Proof. One can immediately verify that for A=0 and for "even" n's
fl Q)M 12 M (M (O,x) Mz(-n,-xs)) and the multipliers for those points
§,=x -u<l, s2=v(l-u/xs)<l in view of (5.7). Therefore Ml @ is a stable fixed point
for any p. Moreover for Al=p=0 and for "even" n’s, the map f has two stable periodic
orbits Nl=f2N2 and N2=le : (Nl(-u,xs), N2(0,-xs)); and for "odd" n's f has a stable
4-periodic orbit M1->N2->M2->Nl->M - Hence small changes in A and p can not destabilize

the stable points. This proves the theorem’s assertion.

Theorem 4. Assume that for small 82>0 the condition

= lg-0In xs-nnl < 82, nez (5.8)
holds. If
v(xs-p)zlx’ > q':-zv’ v<1/2, 5.9
where
=1l + A+ L exp( -—— arctan u)) (5.10)
X5 Vwiie?

then the attractor A is strange.

Proof. In the case of A =0 (unlike A —0) the image of the boundary points M hes
at { |x|—u) Hence, the second image d c{ |x|$x }, where X <x is the maximum va]ue of
|x| for dij. ij=1,2. Hence a sufficient condition for the attractor A to be strange

is
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2
Vv -
decDf| _ = VOB [iﬂ:

2V-1
] > 1, v<1/2 (5.11)
xs xs

In order to obtain a rough approximation of x_let us put n=0 in A2=0 and pick
the maximum of the image fllfu, which is the middle line of dl ,» and has the
following parametric equations:

¢(x)=-axvcos (¢ -  In x), J-c(x)=|.1+axvsin @-wlnx), xe@0x], (5.12)

Substituting in (5.12) the largest solution X, of the equation ;x'=0, which is equal
to Sgp (J-c(x)), and adding it to some value Ax>0 to compensate the width of the
S-snake du’ we obtain the value x =q x, where q_ is defined by (5.10), qm<l.
Substituting x in (5.11) we obtain the condition (5.9) for the attractor A to be
strange.

Consider 82>O in (5.8) such that M”e {|x|<xm} and so condition (5.11) is
still true for x =q_s. Hence the attractor A is strange under the conditions of the
theorem.

Figure 6 shows only one trajectory of the map f inside of the region dlud2 for

some values of the parameters corresponding to the strange attractor.

Conclusions.

We have presented a new type of strange attractor which gives rise to a new
point of view on the original geometry of the double scroll family generated by
Chua’s circuit.

Our current attractor is much more complicated than the Lorenz-type attractor

[Afraimovich etal. 1983]. Although the above model represents the simplest

14



idealization of the double scroll attractor we hope that the main features of this
attractor will be preserved in the general nonlinear case. For example, the case
_ )
SY = SO+SlY+2Y SzY"'"’

represents an important basic problem for future investigation.
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Figure captions

Fig.1. Global geometric model of the PL-system showing two odd-symmetric homoclinic
orbits through the origin and their tubular neighborhood for flows under the linear
map (1.4). The return points P, and P, are drawn for the case p = 0. For the general
case U > 0, the center Pl (Pz) of the right (left) circle is translated upward
(downward) by an amount equal to .

Fig.2. By cutting the cylinder surface D vertically at ¢=n/2 and identifying the two
vertical boundaries, we obtain the equivalent planar representation of the unwrapped

cylinder. Each arrow denotes the mapping from the indicated line segment to either a

1 2
circle or a spiral. In particular, each horizontal line Cn ( Cn ) located at x = M on

the upper half (lower half) rectangle D . ( D2 ) maps into a circle; each vertical
line segment lé ( lé ) on the upper half (lower half) rectangle Dl( D2 ) maps into a
spiral.
Fig.3. The image of the upper or lower half portion of the disks dl and d2 gives rise
to 4 Shil’nikov snakes: d” =f1(D1 N dl), d2| =f2(D2 N dl), d12 =f1(D1 N dz)'
d22 =fD, N dz)‘
Fig.4. Each shaded region denotes the intersection between the image and the preimage
of one Shil’nikov snake.
Fig.5. Schematic diagram showing the double horseshoes resulting from the map defined
by the geometric model.
Fig.6. (a) A typical strange attractor of the spiral (Rossler) type generated by the
geometric model for the indicated parameters values.

(b) A typical strange attractor of the double scroll type generated by the

geometric model for the indicated parameters values.
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