
Copyright © 1992, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

PICASSO REFERENCE MANUAL
(Version 2.0)

PICASSO WIDGET WRITER'S GUIDE
(Version 2.0)

by

Patricia Schank, Joe Konstan, Chung Liu,
Lawrence A. Rowe, Steve Seitz, Brian Smith,
and Ginger Ogle

Memorandum No. UCB/ERL M92/53

1 April 1992

\

PICASSO REFERENCE MANUAL
(Version 2.0)

by

Patricia Schank, Joe Konstan, Chung Liu,
Lawrence A. Rowe, Steve Seitz, Brian Smith, and Ginger Ogle

Memorandum No. UCB/ERL M92/53

1 April 1992

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

PICASSO REFERENCE MANUAL
(Version 2.0)

by

Patricia Schank, Joe Konstan, Chung Liu,
Lawrence A. Rowe, Steve Seitz, Brian Smith, and Ginger Ogle

Memorandum No. UCB/ERL M92/53

1 April 1992

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

PICASSO Reference Manual1

(Version 2.0 April 1,1992)

Patricia Schank, Joe Konstan, Chung Liu

Lawrence A. Rowe, Steve Seitz, Brian Smith, and Ginger Ogle

Computer Science Division - EECS

University of California

Berkeley, CA 94720

Abstract

Picasso is an object-oriented graphical user interface development system. The system includes an
application framework, an interface toolkit, aconstraint system, and apersistent object interface
to a relational database system.

The application framework includes high-level abstract objects (i.e., frames, forms, dialog boxes,
and panels) that simplify the construction of graphical applications which use multiple windows,
pulldown menus, dialog boxes, and electronic forms. The toolkit contains alibrary ofpredefined
interface widgets (e.g., buttons, menus, text fields, table fields, graphics fields, image fields, etc.)
and geometry managers with which sophisticated interface abstractions can be built. The con
straint system is used to bind variables to widgets and to implement triggered behaviors. The per
sistent objectdatabase interface provides aneasy-to-use database interface.

Picasso is written in Common Lisp and the Common Lisp Object System and runs ontheX Win
dow System.

tThis research was supported by the National Science Foundation (Grants DCR-8507256 andMIP-
8715557), 3M Corporation, andSiemens Corporation.

Table of Contents

Table of Contents

Chapter 1: INTRODUCTION 1-1
Overview 1-1

What is PICASSO? 1-1

Why Use PICASSO 1-2
About this manual 1-3

Chapter 2: WINDOWS 2-5
Overview 2-5

Windows 2-6

Window Management 2-20
X-windows 2-26

Opaque Windows 2-30

Chapter 3: RESOURCES 3-33
Overview 3-33

Colors and Colormaps 3-35
Images 3-38
Cursors 3-39
Tiles 3-41

Icons 3-43

Fonts 3-44

Displays 3-46
Screen 3-47

Graphics Contexts 3-48

Chapter 4: APPLICATION FRAMEWORK 4-49
Overview 4-49

PO Persistence and Naming 4-51
Argument Passing 4-55
Tools 4-57

Forms 4-63

Callable PO's 4-68

Frames 4-69

Dialog Boxes 4-73
Panels 4-76

PICASSO Reference Manual

Table of Contents

Chapter 5: PICASSO DATA MODEL 5-81
Overview 5-81

Variables 5-81

Constants 5-83

Referencing Variables and Constants 5-84
Databases 5-86

Chapter 6: PROPAGATION AND TRIGGERS 6-93
Overview 6-93
Bindings 6-93
Triggers 6-104
Lazy Evaluation 6-106

Chapter 7: COLLECTIONS 7-109
Overview 7-109
Collections 7-109
Anchor-GM 7-115

Packed-GM 7-117

Stacked-GM 7-119

Matrix-GM 7-120

Null-GM and Root-GM 7-121

Chapter 8: WIDGETS AND GADGETS 8-123
Overview 8-123

Gadgets 8-123
Widgets 8-125
Synthetic Gadgets 8-125
Borders 8-127
Labels 8-129

Chapter 9: TEXT 9-133
Overview 9-133
Text Gadget 9-134
Buffer 9-137
Text Buffer Gadget 9-139
Text Widget 9-145
Scrolling Text Widget 9-147
Entry Widget 9-149
Num Entry 9-150

Chapter 10: BUTTONS 10-151
Overview 10-151
Buttons 10-152
Gray Buttons 10-155

ii PICASSO Reference Manual

Table of Contents

Pop Buttons 10-158
Gray Pop Buttons 10-160
Click Buttons 10-161
Button Groups 10-162
Radio Button Groups 10-165
Check Button Groups 10-167
Implicit Buttons 10-168

Chapter 11: CONTROLS 11-171
Overview 11-171
Scroll Bars 11-171

Chapter 12: IMAGES 12-179
Overview 12-179
Image Gadget 12-179

Chapter 13: MENUS 13-183
Overview 13-183
Menu Bars 13-183
Menu Entries 13-184
Menu Panes 13-188
Menu Buttons 13-190
Menu Interaction 13-191
Implicit Menus 13-191

Chapter 14: TABLES 14-195
Overview 14-195
Browse Widgets 14-196
Matrix-Field 14-199
Table-Field 14-220
List-Box 14-225

Chapter 15: GRAPfflCS 15-229
Overview 15-229
Graphic Gadgets 15-230
Graphic Browsers 15-253

Chapter 16: APPLICATION-SPECMC WIDGETS 16-257
Overview 16-257
Meter Widget 16-258
Qua! Widget 16-260
Plot Widget 16-263

PICASSO Reference Manual hi

Table of Contents

Chapter 17: LIBRARY PICASSO OBJECTS 17-269
Overview 17-269
Library Panels and Dialogs 17-269
Facility Manager Tool 17-271
Robbie the Robot Tool 17-272
Employee/Department Browser 17-274

Chapter 18: DEFAULTS 18-277
Overview 18-277
Selecting Defaults 18-277
Requesting Defaults 18-281
Utilities 18-283

Chapter 19: References 285

Master Index Index-1

Index of Accessors Index-19

Index of Arguments Index-25

Index of Functions Index-27

Index of Macros Index-31

Index of Methods Index-35

Indexof Readers Index-39

Index of Writers Index-41

,v PICASSO ReferenceManual

INTRODUCTION

INTRODUCTION

Overview

Picasso isagraphical user interface (GUI) development system for application programmers. The
Picasso application framework provides high-level abstractions including modal dialog boxes and
non-modal frames and panels that can beused to define an application. Theseabstractions are sim
ilar to procedures and co-routines in a conventional programming language procedures and co
routines. Local variables can be defined, and theycan be called with parameters.

The toolkit contains alibrary of predefined high-level abstractions (e.g. buttons, scrollbars, menus,
forms, etc.), geometry managers, and a constraint system. The constraint system is used to bind
program variables towidgets, to implement triggered behaviors, and to implement multiple views
of data.

The system is implemented in Common Lisp using the Common LispObject System [Keene 89]
and the CLX interface [Scheifler 89] to the X Window System [Scheifler 86].

This chapter is organized as follows:

• What is Picasso?

• Why use Picasso?

• About this manual

What is Picasso?

Picasso is a graphical user interface (GUI) development system that includes an interface toolkit
and an application framework. The application framework provides high-level abstractions and
other infrastructure to support the development of GUIapplications.

The Picasso framework includes five object types: tools (or applications), forms, frames, dialog
boxes, and panels. Anapplication iscomposed of acollection of frames, dialog boxes, and panels.

PICASSO Reference Manual 1.1

INTRODUCTION

A form contains fields through which datacanbe displayed,entered, or edited by the user. Aframe
specifies the primary applicationinterface.It contains a form and amenu of operationsthe user can
execute. A dialog box is a modal interface that solicits additional arguments for an operation or
user confirmation before executing a possibly dangerous operation (e.g., deleting a file). A panel
is a nonmodal dialog box that typically presents an alternativeview of data in a frame or another
panel.

The Picassotoolkit contains alibrary of predefinedinterface abstractions (e.g., buttons, scrollbars,
menus, forms, etc.), geometry managers, and a constraint system.

Picassois an object-oriented system implemented in Common Lisp using the X Window System
[Scheifler 86]. The toolkit, framework, and user applications are implemented as Common Lisp
Object System (CLOS) objects [Keene 88]. A CLOS class is defined for each type of framework
object (e.g., application, frame, form, dialog box, and panel). Instances of these classes are called
Picasso objects (PO's). Each PO type has a different visualization and control regime. The toolkit
widgets that implement the visualization and control (e.g., title bars, buttons and menus) areauto
matically generatedwhen a PO is created. Examples of anumber oflibrary PO's, as well as several
complete Picasso applications, are given in Chapter 18.

PO's are stored in an external database and loaded into the application when needed. They are
shared by different applications because the database is shared. Commonly used PO's (e.g., a file
directory browserand an error message dialogbox) are provided to maintain interfaceconsistency
between different applications.

A direct manipulation interface builder for defining POs is currently being developed to help ap
plication programmers create andmodify applications. Forms will be defined by selectingwidgets
from a palette and placing them, with the mouse, at the desired location in a window. Field at
tributes (e.g. border, default values, etc.) will be changed interactively. Similar interfaces will be
provided to define other PO types and code. The toolkit and interface builder will be extensible so
that developers can add new interface abstractions to the system.

Why Use Picasso

Picasso provides capabilities that are similar to other application frameworks including Garnet
[Myers 89], Interviews [Linton 89], MacApp [Schmucker 86], and Smalltalk [Goldberg 83].

Picasso providesarichlibrary ofpredefinedinterface widgets andgadgets forcreating abstractions
such asbuttons,menus, scrollbars, forms, tables, images, etc., as described in Chapters 9 through
17 of this manual. These predefined widgets andgadgets simplify coding because they canbe re
used. Picasso also provides ahigh-level framework for constructing applications, whichsimplifies
application building by providing application templates that can be filled in by developers.

1-2 PICASSO Reference Manual

INTRODUCTION

About this manual

This reference manual describes the Picasso toolkit, framework, and programming model. The
programming constructs described are shown as extensions to Lisp. Most users will not see these
textual specifications because a directmanipulation interface builder is being developed to create
and modify applications. Additional information about the application framework [Rowe 90] and
creating widgets [Seitz 90] is also available.

The remainder of this reference manual is organized in 3 sections. The first section describes lower
leveldetails of the Picasso system. This section discusses the window system(Chapter 2), the Pi
casso abstractions for commonly used X resources (Chapter 3), and the event handling mechanism
as implemented in Picasso (Chapter 4).

The second section describes higher level abstractions used in the Picasso system. This section
describes thehigh-level abstractions provided by the Picasso ApplicationFramework(Chapter5),
the Picassodatamodel (Chapter 6), the datamanagement facilities (Chapter 7), and grouping Pic
asso objects into collections, usinga geometry manager to controltheir displayattributes (Chapter
8).

The third section manual describes the Picasso toolkit and the widgets and gadgets implemented
in it. In particular, the section discusses widgets and gadgets (Chapter 9), displaying and editing
text(Chapter 10), button types (Chapter 11), controlling theview ofPO's (Chapter 12),displaying
images (Chapter 13), menus (Chapter 14), displaying tables (Chapter 15), advanced graphics
(Chapter 16), miscellaneous widgets (Chapter 17) library PO's and examples of completed appli
cations (Chapter 18).

NOTATION

The following notation conventions are used in this manual:

macro-name [Macro]

{argument }*

The macro macro-name is called with each argument listed.

function-name [Function]
{argument}*
&key
{(keyworddefault) }*

PICASSO Reference Manual 1-3

INTRODUCTION

&allow-other-keys

The function function-name is called with each argument listed. Keyword arguments
may also be specified (the default value of the key is default), and &allow-other-keys in
dicates that additional keys (i.e., unlisted inherited keys) will be accepted by the function.

method-name [Method]

{ argument j (argument argument-type) }*

The method method-name is called with each argument listed. The argument-type should
not be explicitly specified in the call.

attribute-name [Reader(WriterjAccessor]

{ argument / (argument argument-type) }*

A special case of the method-name notation. Attributes may have Reader, Writer, or Ac
cessor methods. You can use attribute-name to query a Reader attribute for the value
associated with it, but you cannot change the value ofReader attributes. Writer attributes can
be setf'd; i.e., use

(setf (attribute-name <object>) <value>)

to change the attribute value. However, you can not query a Writer attribute for the value
associated with it. Accessor attributes can be both read and set.

argument-name [Argument]

{ argument / (argument argument-type) }*

The keyword argument to a function or method, usually a"make" method, that does not cor
respond to an accessor, reader, or writer method.

1-4 PICASSO Reference Manual

WINDOWS

WINDOWS

Overview

Windows areclos objects that represent an area of the screen. In Picasso, unlike some other tool
kits, there is not a one-to-one correspondence between windows in the toolkit and X windows in
the server. The various window manipulation functions provided by most windowing systems,
such as changing the size of a window, the background and the window border, are implemented
as methods in the Picasso toolkit. When appropriate, subclasses forward the request to the X serv
er.

Gadgets are a subclass of windows that, by definition, have no X server representation. They can
still be manipulated as windows, however, and the appropriate X server calls are automatically
generated. Gadgets are typicallyused as flexible, lightweight windows for output only.

Synthetic gadgets, sometimes called "synths", are even lighter weight abstractions for output pur
poses. Unlike windows and gadgets, synthetic gadgets are not a defined class. As a result, they
arenot quite as flexible as gadgets, but are considerably faster and smaller.

Windows, gadgets, and synthetic gadgets form the baseon which allPicasso widgets are created.
Widgets are input/output abstractions, and are defined as adirect subclass of opaque windows. The
class hierarchy at this point looks like this:

(OPAQUE- "N

(WIDGET)

PICASSO Reference Manual 2-5

WINDOWS

All widgets and gadgets share some common behavior. See Chapter 9 on widgets and gadgets for
more detail about the creation,manipulation,and common behaviorsof widgets and gadgets.This
chapter is organized as follows:

• Windows

• Window Management

• X-windows

• Opaque windows

Windows

The window class is the top-level class in Picasso, and therefore does not inherit any of its key
words from any other Picasso classes. The following function can be used to create window

make-window [Function]

&key
(doc " ")

(name "A Window")
(value nil)
(status rexposedj
(mf-selectable-widget t)

;; Information to support the window hierarchy
(parent nil)
(play fcurrent_display))
(screen (current_screen))
(lexical-parent nil)

;; Information about window geometry
(x-offset 0)
(y-offset 0)
(width 1)
(height 1)
(location nil)
(size nil)

(region nil)

;;Information about window resizing
(base-width 1)
(base-height 1)

2*6 PICASSO Reference Manual

(width-increment 1)
(height-increment 1)
(width-height-ratio nil)
(increment-size nil)
(base-size nil)
(resize-hint nil)
(geom-spec nil) ;

;; Drawing information about a window
(font nil)
(background "white ")
(inverted-background "b 1ack")
(dimmed-background "white ")
(foreground "black")
(dimmed-foreground " gray5 0")
(inverted-foreground "white")
(dimmed nil)
(inverted nil)

(colormap (colormap (root-window screen)))
(repaint-flag t)

;; Label information
(label nil)
(label-type .-left)
»k 0)
C/a^/-y 0)
(label-font nil)
(label-attributes nil)

;; Border information
(border-width 0)
(border-type nil)
(border-attributes nil)

ATTRIBUTES

WINDOWS

"oc [Accessor]
fse/fwwttfow)

A documentation string associated with the window.

PICASSO Reference Manual 2-7

WINDOWS

name [Accessor]

(selfwindow)

A name string associated with the window. Used primarily for debugging.

value [Accessor]
(selfwindow)

The value of the window, of type t.

status [Accessor]

(selfwindow)

The current window state,of type symbolP. One of : concealed, :exposed,
or rpending, default :exposed.

mf-selectable-widget [Accessor]

(selfwindow)

Whethernot the windowcan be "seleaed" in atable (t ornil). Of type atom, default t.

HIERARCHY ATTRIBUTES

Every attached window is associated with exactly onewindow in the server, calledthe server-
window. Each server window is associated with a particular screen, which in turn is associated
with a particular display in the server.

display [Reader]
(selfwindow)

The Picasso display of thewindow. Of type display, default (current_display).

lexical-parent [Accessor]
(selfwindow)

The lexical parent of the window. Of type window, defaultni1.

2a8 PICASSO Reference Manual

WINDOWS

parent [Accessor]

(selfwindow)

The parent of the window. Of type window, default nil.

res [Reader]

(selfwindow)

The CLX resource representing the server representation of the window (nil if not at
tached). Of type vector, default nil.

screen [Reader]

(selfwindow)

The Picasso screen of the window. Of type screen, default (current screen).

GEOMETRY ATTRIBUTES

x-offset [Accessor]

(self window)

The x-coordinate (in pixels) of the window relative to the top-left comer of the window's
parent. Of type integer, default 0.

y-offset [Accessor]

(selfwindow)

The y-coordinate (in pixels) of the window relative to the top-left comer of the window's
parent. Of type integer, default 0.

location [Accessor]

(selfwindow)

A list (x-offset y-offset) of the window's x-offset and y-offset.

width [Accessor]

(selfwindow)

The width of the window in pixels. Of type integer, default 1.

PICASSO Reference Manual 2-9

WINDOWS

height [Accessor]

(selfwindow)

The height of the window in pixels. Of type integer, default 1.

size [Accessor]

(selfwindow)

A list (width height) of the window's width and height.

region [Accessor]

(selfwindow)

A list (x-offset y-offset width height) of the window's x-offset, y-offset, width and height.

RESIZE ATTRIBUTES

geom-spec [Accessor]

(selfwindow)

Various instructions concerning the geometry of the window that the window's geometry
manager should look at (geom-spec and the geometry manager are discussed in the Col
lections chapter). Any type, default nil.

base-width [Accessor]

(selfwindow)

The smallest desirable width of the window. Of type integer,default 1.

base-height [Accessor]

(selfwindow)

The smallest desirable height of the window. Of type integer, default 1.

base-size [Accessor]

(selfwindow)

A list (base-width base-height) of the smallest desirable size of the window.

2-10 PICASSO Reference Manual

WINDOWS

width-increment [Accessor]

(selfwindow)

The best amount by which to increment the width of a window. Of type integer, default 1.

height-increment [Accessor]

(selfwindow)

The best amount by which to increment the height of a window. Of type integer, default 1.

increment-size [Accessor]

(selfwindow)

A list (width-increment height-increment) of size increments for the window.

width-height-ratio [Accessor]

(selfwindow)

The best ratio for the width/height of the window. Of Typefloat, default nil.

resize-hint [Accessor]

(selfwindow)

A list of the base-width, base-height, width-increment, height-increment, and width-height-
ratio. Default nil.

DRAWING ATTRIBUTES

inverted [Accessor]

(selfwindow)

When a window is inverted, its background and inverted-background are swapped, and its
foreground and inverted-foreground are swapped. Of type (t or nil), default nil.

dimmed [Accessor]

(selfwindow)

When a window is dimmed, its background and dimmed-background are swapped, and its
foreground and dimmed-foreground are swapped. Of type (t or nil), default nil.

PICASSO Reference Manual 2-11

WINDOWS

background [Accessor]

(selfwindow)

The background paint of the window, of type (member (string paint tile
:parent-relative nil)). In general the server automatically fills in exposed areas
of the window with the window's background when they are made visible afterbeing oc
cluded or concealed. If background is nil, the server will not modify exposed areas. If
background is :parent-relative, the exposed areas are filled in, but with the color/
pixmap of the window's parent. The paintresource is automatically created (if a string is
specified) and/or attached as necessary.

inverted-background [Accessor]

(selfwindow)

The backgroundto use when the window is inverted.Oftype (member (string paint
tile nil)). The paint resource is automatically created (if a string is specified) and/
or attached as necessary.

dimmed-background [Accessor]

(selfwindow)

The background to usewhen me wmdow is dimmed. Of type (member (string paint
tile nil)). The paintresource is automatically created (if a string is specified) and/
or attached as necessary.

foreground [Accessor]
(selfwindow)

The foreground touseingraphic operations when thewindow is inverted. Of type (member
(paint string tile nil)). The paint resource is automatically created (if a
string is specified) and/or attached as necessary.

inverted-foreground [Accessor]
(selfwindow)

The foreground tousein graphic operations when thewindow is inverted. Of type (member
(paint string tile nil)). The paint resource is automatically created (if a
string is specified) and/or attached as necessary.

2-u PICASSO Reference Manual

WINDOWS

dimmed-foreground [Accessor]
(selfwindow)

The foreground tousein graphic operations when thewindow is dimmed. Of type (member
(paint string tile nil)). The paint resource is automatically created (if a
string is specified) and/or attached as necessary.

font [Accessor]
(selfwindow)

The font of the window. Every windowhas a font whichmay be used in graphic operations.
Of type (member x (string font nil)) .The resource is automatically created (if a
string is specified) and/or attached (if font) as necessary.

repaint-flag [Accessor]

(selfwindow)

If set to t, the window will not be automatically drawn as a result of either intemal events
or a call to repaint.

colormap [Accessor]
(selfwindow)

All windows have a colormap which canbe read, of type colormap, default (colormap
(root-window screen))

LABEL ATTRIBUTES

label [Accessor]
(selfwindow)

The label to draw for the window. Any type, default nil.

label-type [Accessor]
(selfwindow)

The type of label to use for the window. The predefined label-types include nil, : left,
:bottom, and : frame. Of type keyword, default : left.

PICASSO Reference Manual 2-13

WINDOWS

label-x [Accessor]

(selfwindow)

The x-coordinate of the label relative to an origin. The origin is dependent on the label-type
of the window. Of type integer, default 0.

label-y [Accessor]

(selfwindow)

The y-coordinate of the label relative to an origin. The origin is dependent on the label-type
of the window. Of type integer, default 0.

label-position [Accessor]

(selfwindow)

The position of the window label, which is a list of (label-x label-y). Of type list, default
nil.

label-attributes [Accessor]

(selfwindow)

A list of attributes concerning the label, for example

(:foreground "red" :font "8x13" :italicized t)

Which label-attributes to specify, if any, is dependent on the label-type of the window. Of
type list, default nil.

label-font [Accessor]

(selfwindow)

The font to use in drawing the label of the window.

2-14 PICASSO Reference Manual

WINDOWS

BORDER ATTRIBUTES

border-type [Accessor]
(selfwindow)

The typeof border touse for thewindow. Thepredefined border-types include (nil :box
: frame :black- frame : inset : standout : shadow). Of type keyword, de
fault nil.

border-attributes [Accessor]
(selfwindow)

A list of attributes concerning the border (e.g. (: foreground " red"). Which border-
attributes to specify, if any, is dependent on the border-type of the window.

border-width [Accessor]
(selfwindow)

The dimensions of the border to be drawn. Some border-types allow borders to have non
uniform dimensions. Therefore, border-width may be either a list with four elements or an
integer value (e.g., a shadow-border mayhave border width (0 0 10 10)). Of type in
teger or 4 element list, default 0.

gray [Accessor]

(selfwindow)

If t, sets the border-type to : frame and label-type to : frame.

WINDOW OPERATION

dear [Method]
(selfwindow)
&key (ignore nil)
&allow-other-keys

Repaint window with background of window.

PICASSO Reference Manual 2-15

WINDOWS

clear-region [Method]

(selfwindow)
x

y
width

height

Qear the region of the window specified by width and height and beginning at the x and y
offsets of window.

destroy

(selfwindow)

Destroy window.

dim

(selfwindow)

Toggle dim of window.

invert

(selfwindow)

Toggle inversion of window.

move

(selfwindow)
x-offset
y-offset

Set the x and y offsets of the window.

reshape

(selfwindow)
x-offset
y-offset
width

height

Set the x and y offsets, and width and height of the window.

resize

(selfwindow)

2-16

[Method]

[Method]

[Method]

[Method]

[Method]

[Method]

PICASSO Reference Manual

width

height

Set the width and height of the window.

repaint

window

&key
(clear t)

Redraw contents of window.

do-repaint

(selfwindow)

Redraw contents of window.

repaint-region

window

x

y
w

h

&key
(clear t)

Redraw the specified region of the window.

DEBUGGING

Pt

root

&optional
(level 0)

Prints out the geometry information about the window and its children.

locate-window

&optional

PICASSO Reference Manual

WINDOWS

[Function]

[Method]

[Function]

[Function]

[Function]

2-17

WINDOWS

(display (current - di sp1ay;)

Waits for the user to click the mouse and returns the Picasso x-window in which the mouse

was clicked

2-*8 PICASSO Reference Manual

WINDOWS

WINDOW SUMMARY

Reader Methods Setf Methods Misc.

background background clear

base-height base-height clear-region
base-size base-size destroy
base-width base-width dim

border-attributes border-attributes invert

border-type border-font move

border-width border-width Pt
colormap colormap resize

dimmed dimmed repaint,do-repaint
dimmed-background dimmed-background repaint-region
dimmed-foreground dimmed-foreground
display
doc doc

font font

foreground foreground
geom-spec geom-spec

gray gray

height height
height-increment height-increment
increment-size increment-size

inverted inverted

inverted-background inverted-background
inverted-foreground inverted-foreground
label label

label-attributes label-attributes

label-font label-font

label-type label-type
label-x label-x

label-y label-y
lexical-parent lexical-parent
location location

mf-selectable-widget mf-selectable-widget
name name

parent parent

region region
repaint-flag repaint-flag
res

resize-hint resize-hint

screen

PICASSO Reference Manual 2-19

WINDOWS

Reader Methods Setf Methods Misc.

size size

status status

width width

width-height-ratio width-height-ratio
width-increment width-increment

value value

x-offset x-offset

y-offset y-offset

Window Management

A window can be in oneof three states: exposed, concealed, orpending. A window's current state
can be discovered by calling the status method, which returns one of : concealed, :ex
posed, or :pending. If a window is pending, it can be for one of three reasons:

(1) It is not attached.

(2) It has been shrunk to zero sizeby ageometry manager ("pending").
(3) Its parent is not visible.

These three states are orthogonal states-they can be caused by the server, the geometry manager,
or the application, respectively. The macros exposed-p, concealed-p, pending-p,
attached-p, pended-p, and invisible-p can be used to determine the status of a win
dow.

ATTACHED WINDOW

attach

2-20

window

Attach window to the server if it is not attached.

[Function]

PICASSO Reference Manual

do-attach

(selfwindow)

Attach window to the server without checking if it is already attached.

attach-when-possible

(selfwindow)

WINDOWS

[Method]

[Accessor]

Specifieswhetheror not to automatically attachthewindowwhen its status is concealedand
its parent becomes attached, (t or nil).

attached-of

window-list

[Macro]

A list of children windows that are attached. Return t if object is attached (has an X server
representation)

attached-p

object

Return t Hobject is attached (has an X server representation).

DETACHED WINDOWS

detach

window

Detach window from the server if it is attached.

do-detach

(self window)

Detachwindow from the serverwithout checking if it is attached

detached-of

window-list

A list of children windows that are not attached.

PICASSO Reference Manual

[Macro]

[Function]

[Method]

[Macro]

2-21

WINDOWS

detached-p
[Macro]

object

Return t if object is not attached (has no Xserver representation)

PENDED STATE

pend
[Function]

window

Pend window (if it is not already pended), update status, and set the window state to 2.
do-pend

[Method]
(selfwindow)

Pend window without checking if it is already pended.

pended-p
. , [Macro]

window

Returns whether the window has been pended (is the state of the window 2?).
pending-of

. , [Macro]
window-list

Returns alist of children windows that are not on the screen, but exposed.
pending-p

. , [Macro]
window

Returns t ifwind™ wants to be visible, but is not for some reason (is the window pending?).
unpend

. , [Function]
window

Unpend window if it ispended.

2-22

PICASSO Reference Manual

INVISIBLE WINDOWS

invisible-of

window-list

A list of children windows that are invisible.

invisible-p

window

Returns whether the window is invisible (exposed, but parent not).

make-invisible

window

&key
(x-unmap t)

Pend the window, update status, and set the window state to 1.

do-make-invisible

(selfwindow)
&key
(x-unmap t)

Pend the window, update status, and set the window state to 1.

make-uninvisible

window

WINDOWS

[Macro]

[Macro]

[Function]

[Method]

[Function]

if window is invisible, andthe parent ofwindow is exposed, then make window uninvisible.

do-make-uninvisible [Method]

(selfwindow)

Same as make-uninvisible, but doesn't first check if window is invisible.

PICASSO Reference Manual 2-23

WINDOWS

CONCEALED STATE

conceal

window

&key
(transparent nil)
(x-unmap t)

Concealwindow if it is not already concealed, and update status.

do-conceal

(selfwindow)
&key
(transparent nil)
&allow-other-keys

Conceal window without checking if it is already concealed.

concealed-p

window

Returns whether the window is concealed (not visible on screen).

concealed-of

window-list

Returns a list of children windows that are concealed.

EXPOSED STATE

expose

window

&key
(xmapt)

Exposewindow unless it is already exposed and viewable, and updatestatus.

[Function]

[Method]

[Macro]

[Macro]

[Function]

2-24 PICASSO Reference Manual

do-expose

(selfwindow)
&key
(ignore nil)
&allow-other-keys

Expose window without checking if it is already exposed andviewable.

exposed-of

window-list

Returns a list of exposed children windows.

exposed-p

window

Returns whether the window is exposed (visible on screen).

active-p

window

Returns whether the window is active (had a parent).

MISC METHODS

managed-p

window

Returns whether the window's geometry is being managed.

managed-of

window-list

Returns a list of managed children windows.

gadgets-of

window-list

Returns a list of children windows that are gadgets.

PICASSO Reference Manual

WINDOWS

[Method]

[Macro]

[Macro]

[Macro]

[Macro]

[Macro]

[Macro]

2-25

WINDOWS

exposed-gadgets-of [Macro]

window-list

Returns a list of children windows that are gadgets and exposed.

viewable-p [Macro]

window

Returns t if window is viewable on the screen and can be occluded (the window is attached
and the map-state of window is :viewable)

X-windows

X-windows are a subclass of the window class, and therefore inherit window keys andmethods.

The following function can be used to create X windows.

make-x-window [Function]

&key
(cursor nil)

(event-mask ' (:no-event;)

;; defaults overridden from superclasses
(name "An X-window")

;; Plus keys inherited from windows
&allow-other-keys

ATTRIBUTES

X windows inherit all of the attributes discussed under windows. In addition, the following at
tributes are defined for x-windows.

cursor [Accessor]

(selfx-window)

The cursor for the x-window. Of type cursor, default nil.

2'26 PICASSO Reference Manual

WINDOWS

event-mask [Accessor]
(selfx-window)

Any window can choose toreceive various types ofevents, and onlyevents that are "request
ed" by thewindow willbe "sent" to the window. An event is requested by inserting there
quest-name of theeventtype into theevent-mask list.The type of eventsthatthewindow
can handle include keyboard, pointer, exposure, input focus, and client events, and the de
fault value is ' (: no-event). For more information onthe types of events and howthey
are handled, see Events (Chapter 4) or the "Widget Writer's Guide" [Seitz 90].

X-WINDOW GEOMETRY

In addition to the inherited window Geometry methods, the following are defined on x-windows:

configure [Method]
(selfx-window)
&key
(x-offset 0 x-of f set-pj
(y-offset 0 y-of f set-p)
&allow-other-keys

If x-window is attached, set its x and y offset.

fix-location ^ [Method]
(selfx-window)
&key
x

y

Fix the location (x and y offsets) of the x window.

fix-region [Method]
(selfx-window)
&key
JC

y
width

height

Fix the region (x, y, width, and height) of the x window.

PICASSO Reference Manual 2-27

WINDOWS

fix-size [Method]
(selfx-window)
&key
width

height

Fix the size (width and height) of the x window.

query-region [Function]
self

Query the server for the actual coordinates of the window, and cache the results

server-x-offset [Function]
self

Query the server for the actual x coordinate of the window, and cache the results.

server-y-offset [Function]
self

Query the server for the actualy coordinate of the window, and cache the results.

METHODS

In addition to theinherited window methods, the following are defined onx-windows.

circle-down [Method]
(selfx-window)

Lower thehighest child of window that partially or completely occludes another child to the
bottom of the window stack.

circle-up [Method]
(selfx-window)

Raises the lowest child ofwindow that partially or completely occludes another child to the
top of the window stack.

2-28 PICASSO Reference Manual

WINDOWS

conceal-inferiors [Method]
(selfx-window)

Conceal children windows.

expose-inferiors [Method]

(selfx-window)

Expose children windows.

grab-mouse [Method]
(selfx-window)
&key
(cursor nil cursor-pj
(event-mask nil)

Grab control of the mouse pointer. Events specifiedin event-mask are sent to x-window rath
er than to the client to which the events would normally have been sent.

ungrab-mouse

&optional
(display ('current-display) displayp)

Release control of the mouse pointer.

lower

(selfx-window)

Lower the specified window instance to the bottom of the window stack.

(selfx-window)

Raise the specified window instance to the top of the window stack.

related-p

(selfx-window)
(parent x-window)

Determine if two window are children of the same root-window.

warp-mouse

(selfx-window)

raise

PICASSO Reference Manual

[Function]

[Method]

[Method]

[Method]

[Method]

2-29

WINDOWS

&key
(xO)

<y0)
(location nil)

If location is specified, move mouse to specifiedlocation(list of x andy offsets). Otherwise,
move mouse to specified x and y.

warp-mouse-if [Method]

(selfx-window)
&key
(xO)

(yO)
(location nil)
(in-window nil)
(in-region nil)

If the in-region isn't specified, getthe in-window region, andonly warp the mouse if in-win
dow or in-region is non-nil. If location is specified, move mouse to specifiedlocation (list
of x and y offsets). Otherwise, move mouse to specified x andy.

Opaque Windows

Opaque windows are a subclass of the x-window class, and therefore inherit window and x-win
dowkeys and methods. The following function can be usedto create opaque windows.

make-opaque-window [Function]
&key
(icon nil)
(icon-name nilj

;;defaults overridden from superclasses
(name "An Opaque Window")

(event-mask ' (: exposure))
(border-type :boxJ
(border-width 2)

;; Plus keys inherited from x-windows
&allow-other-keys

2"30 PICASSO Reference Manual

WINDOWS

ATTRIBUTES

In addition to the inherited window and x-window attributes and methods, the following are de
fined on opaque-windows.

*con [Accessor]

(selfopaque-window)

The icon associated with the window. Of type icon, defaultnil.

con-name [Accessor]

(selfopaque-window)

A name string associated with the icon for the window.

PICASSO Reference Manual 2-31

WINDOWS

2'32 PICASSO Reference Manual

RESOURCES

RESOURCES

Overview

Picasso provides clos abstractions for many of the commonly used X resources. The advantage of
this is three-fold: first, it allows for sharing of the resources; second, it makes many of these re
sources easier to create and manipulate; and finally, the resources can be "attached" to and "de
tached" from a given X server, allowing resources to be implemented as persistent objects.

Picasso provides clos classes for the following clx abstractions:

Colors and colormaps

Images

Cursors

Tiles

Icons

Fonts

Displays

Screens

Graphics Contexts

In additionto defining clos classes forthe corresponding clx structures, Picasso provides some de
gree of management for these resources. All resources have name and res attributes

RES SLOT

Since all Picassoresources correspond directly to clx resources, Picassoresources share a common
interface for accessing the clx resources. All Picasso resources can be attached to or detached from
the server. When a resource is attached, its res slot contains the clx structure which corresponds

PICASSO Reference Manual 3-33

RESOURCES

to its representation in the server. When a resource is not attached, its res slot is nil. Since re
sources are typically shared between widgets and applications, they all have intemal reference-
counters so that the resource is automatically detached from the server when it is no longer being
used.

The following operations exist for attaching and detachingresources to and from the server:

attached-p [Macro]
resource

t if the resource is attached to the window server, else nil.

attach [Function]

resource

do-attach [Method]
resource

<resource-type>-attach [Macro]

resource

increment the reference count for resource and attach the resource to the server if the refer
ence count was 0 before the operation was invoked.

detach [Function]
resource

do-detach [Method]
resource

<resource-type>-det2kch [Macro]

resource

decrement the reference count for resource. If the new reference count is not positive, de
tach the resource from the server.

3-34 PICASSO Reference Manual

RESOURCES

NAME SLOT

Sinceresources are shared, they all have names. The resources are named so that they can be con
venientlyreferred to withoutkeeping track of the actualclos object. The lexical extent of the name
for a particular resource varies depending on the typeof resource. Each resource type has its own
dictionary and its own functions to create and retrieve the resource. For creation the make-<re-
source-type> function is provided. The arguments ma.VLe-<resource-type> dependon the type of
the resource. The get-<resource-type> function is used to retrieve a named resource from the
resource dictionary. The format of get-<resource-rype> is as follows:

gtt-<resource-rype> [Function]

&optional
name

source

name is a string which usually defaults to (default-<resource-type>). source is an ob
ject which specifies the location of the dictionary in which the resource is to be found.
source defaults to a reasonable object (usually (current-display)). Note that (get-
<resource-type>) returns the "default" instance of <resource-type>.

Colors and Colormaps

In Picasso, a coloris definedby a name and a set of threenumeric values, representingintensities
of red, green, and blue. A colormap is conceptually a tablewhich maps from colors topixel values.
Each Picasso window has a corresponding colormap. Rastergraphics displays storepixelvalues
in a special screen hardware memory. As the screen hardware scans this memory, it reads each
pixelvalue, looks up the color in the corresponding colormap, and displaysthe coloron the screen.
For more on colors and colormaps, see the relevant clx documentation. The lexical context of a
color's name is the color's colormap. Hence, the color "red" could be different in different color-
maps.

In widgets that use many colors profusely and in a very transient fashion, it is usually desirable to
avoid the overhead of using Picasso colors. In this case, the programmer would be advised to use
the corresponding clx operations directly (e.g., use clx:make-color). The clx structures can
always be obtained by means of the res accessormethod for colors, colormaps, and any other Pi-
casso resource.

PICASSO Reference Manual 3-35

RESOURCES

COLOR DEFINITION

All colors aredefined in the context of aparticular colormap. The actual numberof colors thatcan
be allocated in a particular colormap is limited (the actual number depends on the hardware and
theversion of clx). Defined colors areonly available to windows which use thesame colormap in
which the color is defined.

A color is represented by a clos class, with the following accessors:

res

clx representation of the color.

name

identifier by which the color can be accessed.

colormap

Picasso colormap associated with the color.

pixel

pixelvalue of the color in the color's colormap.

[Reader]

[Reader]

[Reader]

[Reader]

red [Reader]

intensity ofthe redhue. Must bea floating-point number between 0.0 (minimum intensity)
and 1.0 (maximum-intensity).

green [Reader]

intensity of the greenhue. Must be a floating-point number between 0.0 (minimum inten
sity) and 1.0 (maximum-intensity).

Mue [Reader]

intensity oftheblue hue. Must beafloating-point number between 0.0 (minimum intensity)
and 1.0 (maximum-intensity).

The make-color funaion can be used to create a new color. If a Picasso color already exists
with the same name, the existing color will be returned and no new color will be made.

make-color

&key

3-36

[Function]

PICASSO Reference Manual

RESOURCES

(name nil)

(colormap (default-colormap;)
(red 0)
(green 0)
(blue O;
(lookup-p t)

&allow-other-keys

name, colormap, red, green, and blue are as described above. The X window-server maintains a
dictionary of common predefined color names and their associated color objects, lookup-p indi
cates whether or not name is to be looked up in the server color dictionary. If lookup-p is non-nil
and the lookup is successful, the corresponding Picasso color is returned.

COLORMAP DEFINITION

All colormaps are defined in the context of a particular screen. All windows have exactly one col
ormap at a given time. Usually, windows all share the same colormap which defaults to (de
fault-colormap) . A colormap can have a number of colors defined within it (the actual
number depends on the hardware and the version of clx). Colors defined on a colormap are avail
able only to windows that use that particular colormap. A colormap is only effective if it is installed
on a particular screen. Most current hardwares allow only one installed colormap per screen.

A colormap is represented by a clos class, with the following accessors:

res [Reader]

clx representation of the colormap.

name [Reader]

identifier by which the colormap can be accessed.

visual [Reader]

type of visual supported by colormap (member (: direct-color : gray-scale
:pseudo-color :static-color :static-gray :true-color)).

screen [Reader]

screen on which the colormap is defined. Default is (current-screen).

PICASSO Reference Manual 3-37

RESOURCES

Themake-colormap function can be used to create anew colormap.

make-colormap

&key

(name nil)
(visual nil)
(screen (current - s creen))
(window nil)
&allow-other-keys

[Function]

name, visual, and screen, are as described above, window is an altemative specification to
screen that specifies awindow that is to be onthe screen of the colormap.

Images

An image isatwo-dimensional array ofpixels that isused tospecify apicture that can bedisplayed
in windows. Images are independent of display, screen, and window. Hence, all images are de
fined at a global level.

An image is represented by a clos class, with the following accessors:

res

clx representation of the image.

name

identifier by which the image can be accessed.

bitmap-p

whether or not the image is a bitmap.

width

the width of the image in pixels.

height

the height of the image in pixels.

3-38

[Reader]

[Reader]

[Reader]

[Reader]

[Reader]

PICASSO Reference Manual

RESOURCES

height [Reader]

the depth of the image in pixels.

There are three ways of creating an image: from a file, a gif-file, or from a region of a window.

The make-image function can be used to create anew image.

make-image [Function]

&key
(name nil)

(file nil;
(gif-file nil)
(source nil)

(src-x 0)

(src-y 0)
(width nil)
(height nil)
(attach-p t)
&allow-other-keys

/zame, is as described above. If the image is to be extracted from abitmap file, thefile spec
ification shouldbe used to indicatethe nameof the source file. If the image is to be extracted
from a GIF file, the gif-file specification should be used to indicate the name of the source
file. The format of bitmap files used in Picasso is the standard Xll bitmap format. The
format of GIF image files used in Picasso is the standard GIF format. If the image is to be
extracted from a portion of a Picasso window, the source argument is used, and the src-x,
src-y, width, and height arguments are relevant, src-x, src-y, width, and height specify the
regionof the window source to make into animage. If attach-p is non-nil, the image will be
automatically attached before make-image returns. The default directory pathname is
library-pathname.

Cursors

A cursor is a visible shape that appears at the current positionof the pointerdevice (e.g., mouse).
The cursor shape moves with the pointer to provide continuous feedback to the user about the cur
rent location of the pointer. Each window can have a cursor that defines the appearance of the
pointer cursor when the pointer position lies within the window. All cursors are defined relative
to a particular display.

A cursor is represented by a clos class, with the following accessors:

PICASSO Reference Manual 3-39

RESOURCES

res [Reader]

clx representation of the cursor.

name [Reader]

identifier by which the cursor can be accessed.

d>splay [Reader]

display inwhich the cursor is defined. Default is (current-display).

There are three ways of creating acursor: from afont, from a file, or from an image window. Cur
rently, all cursors created from a file or a font are bitmaps, which means the pixel values (colors)
are 1 or 0 (black or white).

The make-cursor function can be used to create a new cursor.

make-cursor [Function]
&key
(name *default-cursor-name*)
(file "arrow, cursor")
(mask-file "arrow_mask.cursor")
(image nil)
(font "cursor")
(source-font"cursor")
(mask-font" cursor")
(index nil)
(source-index nil)
(mask-index nil)
(foreground "black")
(background "white ")
(x-hot nil)
(y-hot nil)
(display (current - di splay))
&allow-other-keys

name and display are as described above. If the cursor istobeextracted from afont, the font,
source-font, mask-font, index, source-index, and mask-index arguments are relevant. Spec
ifyingfont isequivalent to specifying source-font and specifying index is equivalent to spec
ifying source-index. The source-font and mask-font specify the fonts (or names of fonts)
from which the cursor glyph and mask are to extracted, source-index and mask-index spec
ify the indices into the source and mask fonts that determine the particular source and mask
glyph tobeused for the cursor. If mask-font isnotspecified, source-font isused for the mask
as well. If mask-index is not specified, source-index + 1 is used asthe value of the mask

3-40 PICASSOReference Manual

RESOURCES

index. The minimal specification that canbe used to successfully createa cursor from a font
glyph is just index.

If the cursor is to be extracted from a file, ihtfile specification should be used to indicate
the name of the source file. If the imageis to be extracted from animage, the source argu
ment is used and should be an image, foreground and background are the colors that are to
be used for the colors of the cursors, x-hot and y-hot are used to specify the hot-spot of the
cursor. The default directory pathname for cursors is *library-pathname*.

Tiles

A tile consists of a clx pixmap associated with a Picasso window. A tile is customarily used for
tiling the background of a window. X allows window backgrounds to be either colors or tiled im
ages. Since tiles are associated with a particular window, they cannot be shared in the sense that
other resources are shared. Hence, a tile's name has little significance (two tiles can have the same
name) and there is no get-tile function defined.

A tile is represented by a clos class, with the following accessors:

res [Reader]

clx representation of the (a clx pixmap) tile.

name [Reader]

identifier by which the tile can be accessed.

width [Reader]

width in pixels of the tile.

height [Reader]

height in pixels of the tile.

depth [Reader]

depth of the tile.

image [Reader]

image used to create the tile.

PICASSO Reference Manual 3-41

RESOURCES

foreground [Accessor]

foreground colorwith which to tile the image, foreground can only be set when the tile
is not attached.

background [Accessor]

background colorwith which to tile the image, background can only be set when the tile
is not attached.

There are four ways to create a tile; from a file, image, color, or window. If the tile is made from
animage, the tile simply creates aclx pixmap from the image, foreground andbackground.
If the tile is made from a file, window orcolor, an image is created first (see section on "Images")
and the tile is made from the resulting image.

The make-tile function can be used to create a new tile.

make-tile [Function]
&key
(name nil)
(window nil)
(file nil)
(image nil)
(color nil)

(source nil)
(x-offset 0)
(y-offset 0)
(width nil)
(height nil)
(depth nil)
(foreground "black")
(background "white ")
&allow-other-keys

name, window, width, height, depth, foreground, and background are as described above.
file should be used if the tile is to be made from a file, image if it should be made from an
image, colorif it should be made from a color, orsource if it is to be made from aregion of
awindow, x-offset, y-offset, width, and height are only relevant if source is specified. The
tile is automatically attached unless window is not specified.

3"42 PICASSO Reference Manual

RESOURCES

Icons

An icon is asort of window that pops upwhen atop-level window (a window whose parent is the
root-window) is concealed or iconified. Icons are a feature of window-managers soPicasso icons
will not work with all window-managers. Picasso icons work with the window-manager twm
which is what we all usehere at Picasso Inc. If the window-manager under which Picasso is run
ningdoes not havetheright type of icon-support, Picasso will stillrunbut whetherornot the win
dows have icons is dependent on the window-manager.

Picasso icons are implemented as a simple subclass of tile. Hence, all icon attributes are the same
as those for tile:

res

clx representation of the (a clx pixmap) icon.

name

identifier by which the icon can be accessed.

width

width in pixels of the icon.

height

height in pixels of the icon.

depth

depth of the icon.

image

image used to create the icon.

foreground

[Reader]

[Reader]

[Reader]

[Reader]

[Reader]

[Reader]

[Accessor]

foreground colorwith whichto iconthe image, foreground canonly be setwhen the icon
is not attached.

PICASSO Reference Manual 3-43

RESOURCES

background [Accessor]

background color with which to icon the image, background can only be set when the
icon is not attached.

The make-icon function can be used to create a new icon.

make-icon [Function]

&key
(name nil)
(window nil)

(file nil)
(image nil)
(color nil)
(source nil)

(x-offset 0)
(y-offset 0)
(width nil)
(height nil)
(depth nil)
(foreground "black")
(background "white")
&allow-other-keys

The arguments to make-icon are the same as those for make-tile.

Fonts

A font is collection of character glyphs. There are several differenttypes of fonts thatcanbe used
in X programs (e.g., linear/matrix encoded, fixed/variable-size, etc.). The X server maintains a set
of predefined fonts that can be used in text operations. Any of these fonts can be used in Picasso
applications, but currently the Picasso widgets work best with fixed-width fonts. Fonts aredefined
relative to a particular display.

A font is represented by a clos class, with the following accessors:

res [Reader]

clx representation of the font.

3-44 PICASSO Reference Manual

RESOURCES

name

identifier by which the font can be accessed.

display

display inwhich the colormap is defined. Default is (current-display)

width

font-width

the maximum width of a character in the font.

height

font-height

the total of font-ascent + font-descent of the font.

font-ascent

the maximum ascent of a character in the font.

font-descent

the maximum descent of a character in the font.

The make-font function can be used to create a new font.

make-font

[Reader]

[Reader]

[Reader]

[Reader]

[Reader]

[Reader]

[Reader]

[Reader]

[Function]

&key
(name * default- font-name*)
(display (current -disp1ay))
(attach-p nil)
&allow-other-keys

name and display are as described above, if attach-p is non-nil, the font will be automati
cally attached before make-font returns.

There is adefault font-path that X (and Picasso) looks for all requested fonts. The font-path can
be accessedby the following function and setf.

PICASSO Reference Manual 3-45

RESOURCES

font-path [FunctionjSetf]
&optional
(display (current-display))

Returns a list of names containing the current search path for fonts. With setf, this function
sets the search path for font lookup. There is only one search path per server, not one per
client. The interpretation of the names is server-dependent, but they are intended to specify
directories to be searchedin the orderlisted. Setting the path to nil restores the default path
defined for the server. Note that as a sided-effect ofexecuting this request, the server is guar
anteed to flush all cached information about fonts for which there are currently no explicit
resource IDs allocated.

Displays

A particular X server, together with its screens and input devices, is called adisplay. In Picasso
the display object isused as acontext or areference point tokeep track of information concerning
a particular connection to the X server. In other words, all windows, screens, cursors, colors, and
most other resources must be associated with adisplay and all graphics operations must be per
formed in the context ofaparticular display. If adisplay is not explicitly specified, the context is
implicitly (current-display) which returns adisplay object. Naturally, (current-dis
play is equivalent to (get-display). When you run Picasso, itimplicitly creates adisplay.
A display isrepresented by aclos class, with the following accessors:

res [Reader]
clx representation of the display.

name [Reader]

name of the X display server. Typically amachine-name or just "unix". If/wmeisnot
specified, the name is extracted from the user's DISPLAY shell environment variable using
the function default-display-name.

primary-screen [Reader]
default screen for this display.

The make-display function can be used to create anew display.

3-46 PICASSO Reference Manual

RESOURCES

make-display [Function]
&key
(name (default-display-name))
&allow-other-keys

Attemptto connect to the X server named name. If successful, creates a display object.

Screen

An X display suppons graphical outputto one ormore screens, each screen has its own rootwin
dow andwindowhierarchy. Each windowbelongs to exactlyone screen andcannot simultaneous
ly appear on another screen. The kinds of graphics hardware used by X screens can vary greatly
in their support for color and in their methods for accessing raster memory. X uses the concept of
avisual-type (usually referred to simply as avisual) which identifies the hardware capabilities of
a screen. See the documentation on X or clx for more information on screens and visuals.

A screen is represented by aclos class, with the following accessors:

res [Reader]

ax representation of the screen.

number [Reader]

the numberof the screen, in relation to the display.

d«splay [Reader]

the display of the screen.

ro°t [Reader]

the root-window of screen.

The make-screen function can be used to create a new screen.

make-screen [Function]
&key
(display (current - di sp1ay))

PICASSO ReferenceManual 3.47

RESOURCES

&allow-other-keys

Creates a screen and aroot-window for the specifieddisplay. The number of the screen is
determined by the X server and set intemally.

Graphics Contexts

See Widget Writer's Guide.

3-48 PICASSO Reference Manual

APPLICATION FRAMEWORK

i

APPLICATION FRAMEWORK

Overview

The Picasso Application Framework provides a setofhigh-level abstractions that make it easier to
define applications. Each ofthese abstractions is implemented as a subclass of Picasso Object
(PO). PO's are similar to subroutines and functions in conventional programming lan°naees.
They have aname, local variables, formal arguments, and a lexical parent. APO can be called and
arguments passed to it (as discussed below in "Argument Passing"), causing the PO to allocate
space for its local variables and to create Xresources to display the values ofselected variables.
The Picasso framework includes five object subclass types: tools, frames, dialog boxes, forms,
and panels.

Tools are PO's that implement entire applications, as shown below in the Facility Manager tool
which is described in Chapter 17, and are composed offrames, dialog boxes, and panels.

PICASSO Reference Manual 4-49

APPLICATION FRAMEWORK

Frames implement major tool modes and at their simplest consistof a form with a menu bar and/
or buttons. The example above of the Facility Manager is a frame. Frames are similar to subrou
tines in that they are called and they return. Only one frame can be active at a time; calling a frame
conceals the current frame and displays the new frame, and returning from the called frame re
displays the calling frame.

Dialog boxes are modal interactors composed of a form and control buttons or menu. They retum
values, and thus correspond to functions. Calling a dialog box displays it and forces the user to re
spond. A dialog box returns a value to the caller when it returns (e.g.,' 'ok' '). In the example below,
"Quit" has been selected from the "Picasso*'menu button at the top of the tool frame, resulting in
a dialog box composed of a form and two buttons:

}[♦] picasso:exit.dialog a;

JS-bf.;!^ '
fire you sure you want to quit?

CANCEL'

Forms implement an extended model of a paper form. They are a collection of widgets and gad
gets to view and edit data. The dialog box above contains the form:

I, si
• "1

;' ftre you sure you want to quaf? §]

ESXaX^sssii-Xiiini ssBEESisffiBsissiasS

Panels are non-modal interactors. Panels are similar to co-routines. Calling a panel displays it in a
separate window and the user can interact with it or any other frame or panel. The location of the
mouse cursor determines which frame or panel receives the user input. The panel below is dis
played when "Show" is selected from the frame's menu. This panel consists of two forms and a
collection of buttons:

4-50

|JS <mted»dn-»yi$mwimimi

Eow»i_ _
t-vwceti

Etenr
E»ipwBjr _
finiT*
MttvwE

mik"

! __ <—!= , ^ ,-, -,,}, • ,yt
,i(,.iV!''-.-*ny..i--xyi

I-

!—
I—

9

11 iii iii ! |.n |i i i i, i ii it • iJjSTsiiAHsXtei^r'l

'i•„:• '-ifi-iniiiVr^{gw^SaftiJVva
^AKW.i

• ••••••-'•• — ••• • ••• ••

ft

^J1.,.^.Vi!! •Lift

i'*^

PICASSO Reference Manual

APPLICATION FRAMEWORK

This chapter is organized as follows:

• PO Persistence and Naming

• Argument Passing

• Tools

• Forms

• Callable PO's

• Frames

• Dialog Boxes

• Panels

The following notation convention

def<po-type> [Macro]
;; optional clauses
/"(optional-clause spec)}*

is usedto define thehigh-level objects discussed in thischapter, where <po-type> is oneof tool,
frame, form, panel, or dialog.

PO Persistence and Naming

The design of Picasso encourages the development of reusable interface abstractions. Persistent
objects are objects that can be shared by more than one application. General-purpose panels and
dialog boxes(e.g., table browsers and prompters) have beendeveloped for reuse in multiple appli
cations. Forms can bereused indifferent panels, dialog boxes, and frames. For example, astandard
name and address block for a person can be reused in any form that displays information about a
person.

To encourage reuse, aPO can bedeclared persistent by registering it withaunique external name.
An external name is composed of three parts, each of which is a Lisp string:

package name. suffix)

Each PO has a package name. A package is a set of related PO's. Name identifies the PO and die
optional suffix specifies the type of the PO. A default package is used if the package is not speci-

PlCASSO Reference Manual 4-51

APPLICATION FRAMEWORK

fied. An object with anempty suffix is distinct from other objects with the same package and name
and a non-empty suffix. Examples of valid names are:

("vip" "main" . "frame")
("emp" . "form")

"help

("help" . "frame")

fully-qualified name

default package name

default package and no suffix

distinct from "help"

External names can be used to specify a PO stored in the database or already loaded into main
memory. Most PO's arereferenced by name in the definition of their lexical parent, and the parent
automatically loads the PO when it is called. A shorter internal name can be specified for the PO
(as a constant) to simplify the code. In addition, internal names facilitate changing to a different
PO between runs, since only the internal name binding has to be changed. A function is provided
that allows an application to load a PO at run-time.

A Picasso tool has a package searchlist that specifies packages in which to look for objects that do
not have an explicit package name. Forexample, if a tool references a frame named help, the sys
tem will look in each package in the package searchlist to find it.

MANAGING PACKAGES

A tool maintains a list of packages that are searched when looking for partially-specified PO's.
Most tools will place objects in a package with the same name as die tool (e.g., VIP tool objects
will be defined in the A>vip'' package).Commonly used objects can be placed in alibrary pack
age. The x^icasso'' package containspredefined objects that are automaticallyprovided for
all tools.

The default package search list containsthe user's name andthe *A picasso'' package. Most
tools will prepend the tool-specific package to the package search list when the tool is run. For
example, suppose that Brian was running Picasso. The initial package search list is

("brian" "picasso")

While executing atool named * xvip'' that specified the package-search-list clause as

("demo-tool")

4-52 PICASSO Reference Manual

the list would be

("vip" "demo-tool" "brian" "picasso")

APPLICATION FRAMEWORK

The search list is restored to the original list when the tool exits. See the section on Tools for more
information on the package-search-list clause.

MANAGING PACKAGES

Several functions are provided to manage packages and the package search list.

current-package [Function]

This function returns the current package. The current package is the first package on the
package search list.

exclude-package [Function]

package(s)

This function removes the named package from the package search list. It removes the
package regardless of where it appears in the list. The package argument canbe a package
name or a list of packagenames. For example, if the package search list is:

("demo" "joe" "edit-library" "picasso")

and the function

(exclude-package "edit-library")

is executed, the search list will become

("demo" "joe" "picasso")

PICASSO Reference Manual 4-53

APPLICATION FRAMEWORK

find-po-named [Function]

picasso-name

Given apicasso-name in the format (pkg name . suf fix), this function returns the
named Picasso object, if it exists, and loads it into memory if needed. Otherwise, if the
named Picasso object does not exist, this function returns nil.

include-package [Function]

package(s)

This function prepends the package to the package searchlist. If the named package already
exists in the package search list, it is removed from its old position. The argument to the
function can be a package name or a list of package names. For example, if the package
search list is:

("demo" "picasso")

and the function

(include-package "joe")

is executed, the search list will become

("joe" "demo" "picasso")

package-search-list [Function]

This function returns the package searchlist. Packages arerepresented by clos strings.

reload-picasso-object-named [Function]

name-form
&optional
(destroy-old t)

Reload picasso object named name-form.

4-54 PICASSO Reference Manual

PACKAGE SUMMARY

Package Functions
current-package

exclude-package
include-package
find-po-named
package-search-list
reload-picasso-object-named

Argument Passing

APPLICATION FRAMEWORK

Five argument passing mechanisms are provided to pass values to callable PO's. The parameter
passing mechanisms provided include: value value/update value-result value-result/update and
reference. Value, value-result, and reference are the parameter passing mechanisms found in tra
ditional programming languages.

Arguments passed by

• value are copied into a local variable. The value is discarded when the PO returns.

• value-result are copied into alocal variable when the PO iscalled and copied back tothe
actual argument when thePOreturns. The actual argument is evaluated only once when
the PO is called. The address of the actual argument is saved in the called PO and used
as the location in which to store the result.

• reference arebound to the actual argument sothat a change toeitherthe actual or formal
argument is propagated to the other.

• value/update are similar to arguments passed by value except that changes to theactual
argument are propagated to the local variable.

• value-result/update are similar tovalue/update parameters except thevalue iscopied back
to the calling environment when the PO returns.

Reference and value/update argument passing are typically used when arguments are passed to a
panel sothat changes made to an object either through the panel or through the frame are propa
gated to the other interface.

PICASSO Reference Manual 4-55

APPLICATION FRAMEWORK

Thedefault argument passing mechanism isby value. Theother argument passing mechanisms are
specified in the formal argument list after a lambda-list keyword (&value-result, &ref or
&value-update) that specifies the argument passing mechanism for the formal arguments that
follow it. For example, the argument list in the frame definition

(defframe "foo" (x

...)

y "hi")

&ref

z

&value-update

(w "picasso"))

has four formal arguments: x and y are passed by value, z is passed by reference, and w is passed
by value-update. All frame arguments are optional so a default value can be specified. In this ex
ample, only y and w have default values. The other arguments have a default value of nil.

Keywords are used in the frame call to specify the formal argument to which the actual argument
shouldbe bound. The following call on the frame *x foo'' passes arguments to x, z, andw (see
"Callable PO's" below formore information on calling Picasso objects):

(call-frame #!foo

:x '(a list)

:z (title (current-tool))

:w (current-package))

The argument y is given the default value *^hi'' sinceit is not passed explicitly.

4-5<> PICASSO Reference Manual

APPLICATION FRAMEWORK

Tools

A tool is the outermost object in an application. The window through which the tool is displayed
is managed by a window manager. The example below shows the Facility Manager tool window
at start-up time:

m Picasso: Facility Manager §RfagSBSSSBSS^^!^^iy^'iS 3

Iconifying this window causes all children to be concealed:

A tool maintains a list of packages that are searched when looking for partially-specified PO's. It
contains built-in PO's such as dialog boxes to prompt for a file name or to confirm a destructive
operation used by all Picasso applications.

PICASSO Reference Manual 4-57

APPLICATION FRAMEWORK

CREATION

A macro named deftool is provided to define a tool. The syntax of a call to this macro is:

deftool tool-name (arguments) [Macro]

;;optional clauses
'^documentation string>"

ftitle string)

'frames po-specs)

fdialogs po-specs)

(panels po-specs)

(package-search-list string-list)
'static-variables var-spec)

(dynamic-variables var-spec)

'constants var-spec)

'start-frame po-reference)
[start-frame-args var-spec)

[init-code USP-form)

[exit-code USP-form)

setup-code USP-form)
[region size-spec)
[x x-offset)

[y y-offset)

(w width)

[h height)

size area)

'location loc)

[autoraise t)

[autowarp t)

[icon icon-spec)

[icon-name string))

The tool-name is a PO name as discussed in the section on PO naming. The arguments specify
the name and an optional default value for each argument to the tool. Argument names aresymbols
and the default value can be an arbitrary LISP form. The documentation string and the other tool
definition clauses specified in the body of the deftool macro are optional, and canbe specified
in any order. Each of these clauses are described below afterthe followingexampletool definition.

4-58 PICASSO Reference Manual

APPLICATION FRAMEWORK

EXAMPLE

For example, the following is a definition of a tool that calls a dialog to prompt the user for her
name when she runs the tool, and calls a panel to bring a good-bye message when she exits the tool.
The #! format for referencing variables is describedin detail in Chapter 6: Picasso DataModel.

(deftool ("demo-tool" "demo" . "tool") ((user nil))

"This is a simple demonstration tool"
(title "Demonstration tool")

(constants ((ask-string "What do you think?")
(bye-string "It's been fun.See you later"))))

(static-variables (talk-string "")

(picture (make-graphic)))
(frames (fl ("demo" . "frame"))

(f2 ("vip" "demo" . "frame)))
(start-frame f2)

(dialogs (str-prompter ("str-prompter" . "dialog)))
(panels (msg-panel ("msg-panel" . "panel")))
(package-search-list ("demo-tool" "vip"))
(region '(300 500 100 200))

(init-code

(progn

(when (null #!user)

(setf #!user (call #!str-prompterrprompt^Name?:"))
(if (null #!user) (setf #!user "mysterious")))))

(exit-code

(call #!msg-panel :message #!talk-string))
(setup-code

(progn

(bind-var #!talk-string ^concatenate 'string
#!bye-string

t

(var #!user))))))

This tool uses two constants, two static variables, two frames (the second of which is called as ini
tial startup frame), one dialog box and one panel. It also prepends two packages to the package
searchlist, specifies the tool window region, and specifies LISP-forms that should be run before
the first frame is called (init-code), before the tool exits (exit-code), and when the tool PO
is created (setup-code).

PICASSO Reference Manual 4-59

APPLICATION FRAMEWORK

OPTIONAL CLAUSES

The title clause specifiesa string thatis displayed in the title barof the tool.The default title is
* \& Picasso Tool''.

The frames, dialogs, andpanels clauses specify the PO's that are used by the tool andbinds
them to Picasso constant names. A po-spec is a list of bindings of PO's to constant names. Each
binding is a list with the name of the constant and either a PO name or a LISP form that evaluates
to a PO. For example, the clause

(frames (fl ("demo" . "frame"))

(f2 ("vip" "demo" . "frame)))

in the preceding example binds two frames to the variables f 1 and f 2, specified by name. The
bindings established in these clauses cannot be changed at runtime.

The frames, dialogs, and panels clauses do not have to list all objects referenced in the tool,
only those lexically bound to the tool environment. For example, an error message dialog that is
used in several frames should be bound to the tool environment by listing it in the dialogs clause
so that it can be shared. Operationally, objects listed in these clauses are loaded into the Picasso
runtime environment when the tool is run. Tools that want to control when objects are loaded or
that want to vary objects dynamically can do so by assigning them to static or dynamic variables.
The f ind-po-named function can be used to fetch the desired object.

The package-search-list clause lists the packages that shouldbe prepended to the current
package search list when the tool is run. After these packages are prepended to the list, the tool
package is prepended to it.

The static-variables, dynamic-variables, and constants clauses declare Picasso
variables, asdiscussed in Chapter 6.Var-spec is alist of variable declarations thatspecify the name
and default value for each variable. The clause

(static-variables (talk-string "")
(picture (make-graphic <spec>)))

in the example definition defines two static variables talk-string and picture, whose de
fault valuesare " " and the result of evaluating the LISP (make-graphic <spec>), respective
ly. Variables can also be declared without specifying a default variable as shown for u andw in

4-60 PICASSO Reference Manual

(dynamic-variables u
(v ' (x y z))

w)

APPLICATION FRAMEWORK

The start-frame clause specifies the frame to call when the tool is run. start-frame-
args specifies the arguments to be passed to the start- frame when it is called. The frame f 2
is specified as the start- frame inthegiven example. The argument to thisclause mustbe zpo-
reference, which is either a variable to which a frame is bound or a LISP form that evaluates to a
frame. If a start frame is not specified in the deftool definition, the first frame listed in the
frames clause is called when the tool is run. The start frame and start frame arguments can also
be set or changed when a tool is run (see the run-tool function below)

The init-code and exit-code clauses specify LISP forms that should be runbefore the first
frame is called and before the tool exits, init-code can be used to initialize variables that are
global to the tool,to opensystemresources (e.g., files), and to change the start frame. In the exam
ple above, the init-code is used to initialize the user variable to the user's name, exit-
code is oftenused to clean upbefore the tool is exited. In theexample above, theexit-code is
used to call a panel which displays a good-bye message to the user. The setup-code clause
specifies

LISP forms that should berun upon entering the tool. In the example above, the setup-code is
used to initialize thetalk-string variable to apersonalized good-bye message.

A region defines the origin, width, and height of the tool window. The origin is the upper left
comer of the window inthe screen coordinate system. The screen origin is the upper left comer of
the screen. The x-axis runs across the screen, left toright, and the y-axis runs down the screen, top
to bottom. The region specification is alistwith4 elements: x-coordinate, y-coordinate, width, and
height. For example, the region clause inthe given example defines atool that is 100 pixels wide
and 200 pixels high positioned at location (300,500):

(region '(300 500 100 200))

The x-coordinate, y-coordinate, width, and height can all be specified individually using the x-
of f set, y-of f set, width, and height clauses, respectively. For example, the previous re
gion specificationis equivalent to

(x-offset 300) (y-offset 500) (width 100) (height 200)

The location and size clauses indicate 'pieces' of regions, where location corresponds to
x and y offsets, and size corresponds to width and height. For example, the previous region
specification is also equivalent to

PICASSO Reference Manual 4-61

APPLICATION FRAMEWORK

(location '(300 500)) (size '(100 200)

The tool is centered onthe screen withareasonable window sizeby default if these clauses are not
supplied.

The icon clause specifies the bitmap or pixmap that will be displayed when the tool is hidden.
The icon-spec is either the name of a file that contains the bitmap or pixmap or a LISP form that
returns an icon objectwhen executed. The icon-name specifies the string to be displayed with
the icon.

autoraise specifies whether the tool window is automatically raised by the window manager
when the mouse enters it and autowarp specifies whether the mouse cursor is automatically
moved into the tool window (i.e., warped) when the tool is de-iconified. The default setting for both
slots is true.

MANAGING TOOLS

Tools are a subclass of collection widgets, thus they inherit the methods defined on collection wid
gets. In addition, the following are also defined on tools.

current-tool [Macro]

Retum the current tool object.

ret-tool [Macro]

&optional
(return-value nilj

Exit the currently running tool.

run-tool [Macro]

tool

&key
start-frame

(start-frame-args nil)

Load the named tool, if it hasnot already been loaded, andrun it. Change the start frame of
the tool to start-frame and the start frame arguments to start-frame-args if specified when
the tool is run.

**& PICASSO Reference Manual

APPLICATION FRAMEWORK

run-tool-named [Macro]

name

&key
start-frame

(start-frame-args nil)

Given a name in the format (pkg name . suffix), this macro is similar to run-tool,
except that it finds the PO named name first, then loads and runs it.

tool-p

object

Retum t if object is a tool object, nil otherwise.

TOOL SUMMARY

Forms

Tool Macros

current-tool

deftool

ret-tool

run-tool

run-tool-named

tool-p

[Macro]

Forms areused in frames, panels, or dialog boxes. A form that can be reused in more than one PO,
called an explicit or pluggableform, is defined using the def form construa. Pluggable forms
typically have local variables and parameters and, like any PO, they may have initialization and

PICASSO Reference Manual 4-63

APPLICATION FRAMEWORK

tenriinationclauses that specify code to be executed when the PO that holds the form is called and
exited, respectively.

Sometimes forms are onlyused in a single frame, panel, or dialog box. It complicates theapplica
tionspecification ifthe developer has to create aseparately named form, sothe developer can spec
ify the children and other form clauses directly in the frame, panel or dialog box specification.
These forms are calledimplicitforms and they cannot havelocal variables orparameters. They can,
however, access variables and parameters in theirlexical parent. Implicit forms are specifiedin the
forms clause by defining the widgets and gadgets that are contained in the form. The po-spec
that specifies the forms is alist which containsavariable name anda form specification. Pluggable
forms arespecified by their external name. Forms in frames, panels, and dialog box PO's are de
claredeither explicitly or implicitly (not both) since these PO's each may contain atmost one form.

An example of a forms specification is

(form (fl "emp"))

The variable f 1 is bound to an external pluggable form named * ^mp'' . Frame, panel, and di
alog box PO's have only one form.

CREATION

The macro def form is provided to define forms. The syntax of a call to this macro is:

defform name (arguments) [Macro]

(chi 1dren component-specs)
(gm geometry-manager-spec))

(visit-order po-spec)

(selectable po-spec)

;; clauses common with tools

"documentation string>"

(static-variables var-spec)

(dynamic-variables var-spec)
(constants var-spec)

(init-code USP-form)
(exit-code USP-form)

(setup-code USP-form)

(dialogs po-spec)

4-64 PICASSO Reference Manual

APPLICATION FRAMEWORK

(panels po-spec))

The form name is a PO name as discussed in the section on PO naming, arguments specify
thename and an optional default value for each argument to the form. Argument names are
symbols and the default value can be an arbitrary LISP form. The documentation string and
the other form definition clauses specified inthe body of the def form macro are optional,
and can be specified in any order. Each of these clauses is described below after the follow
ing example form definition.

EXAMPLE FORM

The following code creates aform with alabel ("Department Information"), two entry fields (one
for adepartment name, one for amanager name), and atable field (to display the employees and
their job titles). The form has three arguments dname, mgr, and emps that are bound tothe three
components in the form.

(defform ("dept" . "form") (dname mgr emps)
(children

'((make-label

:x-offset 50

:y-offset 50

:label "Department Information"))
(dep (make-entry-field

:x-offset 5

:y-offset 75

mchars 20

:label "Dept Name:"))
(man (make-entry-field

:x-offset 5

:y-offset 100

:nchars 20

:label "Manager:"))
(emp (make-table-field

:x-offset 5

:y-offset 125

:col-elements

'((make-entry-field
:x-offset 0

:y-offset 0

:nchars 20)

(make-entry-field

PICASSO Reference Manual 4.65

APPLICATION FRAMEWORK

:x-offset 0

:y-offset 0
:nchars 30))

:col-titles '("Name" "Job Title")

:label "Employees")))
(setup-code

(progn

(bind-slot 'value #!dep #!dname)
(bind-slot 'value #!man #!mgr)
(bind-slot 'value #!emp #!emps))))

OPTIONAL CLAUSES

The static-variables, dynamic-variables, constants, init-code, exit-
code, dialogs and panels clauses arethe same as in tools. Components of forms can either
be specified explicitly (with the dialog or panel clauses) or implicitly (with the children
and gm clauses). Each children component is either a gadget or awidget, andthe gadget or wid
get can be bound to a Picasso variable so that the init-code or a menu operation can access the
component. Gadgets and widgets are described in later chapters.

Components in a form are specified using the children clause. These components can be as
signed to Picasso variables by specifying a symbol before the component definition. Forexample,
the component spec

(dep (make-entry-field

:x-offset 5

:y-offset 75

:nchars 20

:label "Dept Name:"))

in the example binds the entry field in the department form to the variable dep. The entry field
object can be accessed by the expression !#dep, as discussed in Chapter 6.

The position of a component within an enclosing form, dialog, or panel is specified as an x-offset
and y-offset from the upper-left comer of the enclosing object. These offsets specify the distance
from the upper-left comer of the component to the upper-left comer of the enclosing object.

The gm clause specifies the geometry manager which lays out the widgets in the form. The Pic
asso interface toolkit provides a variety of geometry managers including one that repacks the com
ponents to fill the available area(packed-gm) and one that resizes the components in proportion to

4-66 PICASSO Reference Manual

APPLICATION FRAMEWORK

the change in the toolwindow (rubber-gm). Rubber-gm is the default geometrymanager for forms.
Geometry managers are discussed in detail in Chapter 8 on Collections.

The visit-order clause can be usedto specify the order in which the widgets in the order are
visited in the form, the tab (AN) andshift-tab(AP) keys canthen be used to more forwards andback
wards, respectively, to the specified widgets. Thepo-spec is a listofbindings of PO'sto constant
names (e.g. ' (#! widl # !wid2 #! wid3)), the first being where the focus starts when the
form is first called.

The selectable clause specifies the widgets (specified as alist of bindings of PO names) that
can be selected with the leftbutton. Buttoning a selectable widget that is not already selected se
lects it; buttoning an already selected selectable widget causes the existing selection handler tobe
called.

MANAGING FORMS

Forms are asubclass of collection widgets, thus they inherit the methods defined oncollection wid
gets. In addition, the following are alsodefined on forms.

current-field [Accessor]
&optional form

The current selected field or nil if no field is selected. This value may be setf'd.

form-P [Macro]
object

Retum t if object is a form object, nil otherwise.

ret-form [Macro]
&optional
(return-value nil)

Exit the current form

PICASSO Reference Manual 4.57

APPLICATION FRAMEWORK

FORM SUMMARY

Callable PO's

Form macros/methods

dettorm

current-field

(setf current-field)
form-p
ret-form

Frames, dialogboxes, and panels are callable PO's. Callable PO's have forms that can be implicit
orexplicit, aswell asbuttons andmenus. They are typically calledin responseto auser action(e.g.,
a menu selection or button press). The syntax of a call is as follows:

(call <po> :arg-l value :arg-2 value ...)

The PO is specifiedby anexpressionthat evaluates to reference to the appropriate Picasso object.
The expression is usually the intemal PO name. Parameters are passed using Lisp keyword/value
pairs. For convenience,thereare alsospecific call-<po> macros foreachcallable POtype (e.g.
call-frame).

The semantics of calling a PO are:

(1) Fetch the PO from the database, if it is not already in memory.

(2) Bind the actual arguments to the formal arguments.

(3) Allocate and initialize local variables.

(4) Fetch the lexical children of the PO (e.g., forms, frames, etc.), if they arenot already
in memory.

(5) Execute the init-code for the PO.

(6) Display the object on the screen

(7) Enter an event loop.

PO's are cached in main memory to avoid the delays inherent in accessing the database. Lexical
children are fetched when the PO is called to improve the performance of subsequent calls. Dy-

4-68 PICASSO Reference Manual

APPLICATION FRAMEWORK

namic variables are allocated on each call and static variables are allocated when the PO is created.

The event loop dispatches all events (e.g., mouse, keyboard, redraw, etc.) to the appropriateevent
handlers.

The following code is executed to retum from a PO:

(ret <po> optional-return-value)

Forconvenience, there arealso specific ret-<po> macros for each callablePOtype (e.g. ret-
f rame). This code is executed in response to auser action (e.g., amenu selectionor button press)
or because a lexical parent is cleaning up its children before exiting. The semantics of returning
from a PO are:

(1) Force active lexical children to execute a retum.

(2) Execute the exit-code.

(3) Conceal the PO, erasing it from the screen.

(4) Copy any result arguments back to the actual arguments.

(5) Re-enter the event loop of the calling PO.

The remainder of this section describes how callable PO's are defined.

Frames

A frame, in its simplest version, is a form with a menu bar. A frame can specify a named form or
a set of childrenwidgets through which data will be displayed to the user. Variables defined in the
frame, called frame variables, store the data on which the frame operates. A frame treats the vari
ables in its forms, panels, and dialogs as if they were atthe samelexical level. Forms, panels, and
dialogboxes in the frame can accessthis data by referencing the frame variables; alternately, the
frame canpass data to them as arguments. This section describes the functions and macros pro
vided to create and manage frames.

CREATION

The macro def frame is provided to define frames. The syntax of a call to this macro is:

PICASSO Reference Manual 4-69

APPLICATION FRAMEWORK

defframe name (arguments) [Macro]
(form po-spec)

(form-args var-spec)

(menu menu-bar-spec)

;; clauses common with tools and/or forms

"<documentation string>"
(static-variables var-spec)
(dynamic-variables var-spec)
(constants var-spec)

(init-code USP-form)

(exit-code USP-form)

(setup-code USP-form)
(dialogs po-spec)

(panels po-spec)

(chi1dren component-specs)

(gm geometry-manager-spec))

(visit-order po-spec)

(selectable po-spec)

The frame name is a PO name as discussed in the section on PO naming, arguments specify
the name and an optional default value for each argument to the frame. Argument names are
symbols and the default value can be an arbitrary LISP form. The documentation string and
the other frame definition clauses specified in the body of the defframe macro are option
al, and can be specified in any order.

OPTIONAL CLAUSES

The static-variables, dynamic-variables, constants, init-code,
exit-code, setup-code, dialogs, panels, children, gm, visit-order and
selectable clauses are the same as those defined in the deftool and defform macros. The

frames clause is not included because a frame cannot be lexically bound to another frame.

The form clauselists the form that is used by this frame, and the form-args specifies the argu
ments passed to the form when it is called.

The menu clause specifies the menus and menu entries. The menu bar of the frame is defined by
a menu-bar-spec which is a list of menu pane specifications.Each menu pane has a name and a list
of menu entries (i.e.,menu operations) that the usercan execute. A menuentry specifies the entry
name and the code to be executed when the user selects the entry.

4-70 PICASSO Reference Manual

APPLICATIONFRAMEWORK

Forexample,amenubarspecificationforasimpletexteditormightbe

(("Edit"("Cut"<LISP-form>)

("Paste"<LISP-form>)

("Copy"<LISP-form>)
("Search"<LISP-form>))

("File"("Load"<LISP-form»
("Save"<LISP-form>)

("FileLt"<LISP-form>)))

Optionalargumentscanbegivenafterthemenuentrycodetospecify:1)theentryfont(:font);
2)whethertheentryisinactive(:dimmed);and3)valuesoftheleftandrightcomponents
(:leftand:right).SeetheMenuschapterformoreinformationonmenuspecifications.

MANAGINGFRAMES

Framesareasubclassofcollectionwidgets,thustheyinheritthemethodsdefinedoncollection
widgets.Inaddition,thefollowingmethodsandmacrosarealsodefinedonframes.

call-frame[Macro]
frame
&rest

arguments

Thisfunctioncallsthenamedframe.ThenameiseitheravariableorPOname.Retumto
thewaitingcallerwhenthecalledframecloses.

current-frame[Macro]

Returnsthecurrentframe.

frame-p[Macro]
object

Retumtifobjectisaframeobject,nilotherwise.

goto-frame[Macro]
frame

PICASSOReferenceManual4-71

APPLICATION FRAMEWORK

&optional
arguments

Closes the current frame and goes to the frameframe.

ret-frame

&optional
(return-value nil)

Closes the current frame, and if there is a waiting caller it is reaaivated.

run-frame

frame
&rest

arguments

Same as call-frame

FRAME SUMMARY

Frame Macros

call-frame

current-frame

defframe

frame-p
goto-frame
ret-frame

run-frame

[Macro]

[Macro]

4-72 PICASSO Reference Manual

APPLICATION FRAMEWORK

Dialog Boxes

A dialog box is a modal interface object that solicits additional arguments for an operation or user
confirmation before executing a possibly dangerous action. This section describes the functions
provided to create and manage dialogs.

CREATION

The macro defdialog defines dialogs. The syntax of a call to this macro is:

defdialog name (arguments) [Macro]

(buttons button-spec)

(attach-when-possible t)

;; clauses common with tools, forms, and/or frames

"documentation string>"

(static-variables var-spec)
(dynamic-variables var-spec)

(constants var-spec)

(init-code USP-form)
(ex it-code USP-form)

(setup-code USP-form)

(dialogs po-spec)

(panels po-spec)

(form po-spec)

(form-args var-spec)

(region size-spec)

(x x-offset)

(y y-offset)
(w width)

(h height)
(size area)

(location loc)

(autoraise t)

PICASSO Reference Manual 4-73

APPLICATION FRAMEWORK

(chi1dren component-specs)
(gm geometry-manager-spec))
(visit-order po-spec)
(selectable po-spec)

Thedialog name is a POname asdiscussed in thesection on POnaming, arguments specify
the name and an optional default value for each argument to the dialog. Argument names
are symbols and the defaultvalue can be an arbitrary LISP form. The documentation string
and the other dialog box definition clauses specified in the body of the defdialog macro
are optional, and can be specified in any order.

EXAMPLE DIALOG

The following example defines a dialog that confirms that you want to delete a file.

(defdialog "delete file?" (filename)

"Confirm that the user wants to delete the file."

(dynamic-variables

(msg

(format t "Are you sure you want to delete the file ~s~%"
#!filename)))

(buttons (("OK" (ret-dialog t) :default)
("CANCEL" (ret-dialog :cancelled))))

(children (make-label

:x-offset 20

:y-offset 20

:label #!msg)))

Thevariable msg contains thestring to bedisplayed. Twobuttons aredefined thatconfirm or can
celtheoperation. Notice that thecode executed foreither button returns from the dialog to thecall
er andpasses back a value (t or : cancelled) that either confirms or cancels theoperation.

4"74 PICASSO Reference Manual

APPLICATION FRAMEWORK

OPTIONAL CLAUSES

The static-variables, dynamic-variables, constants, init-code,
exit-code, setup-code, dialogs, panels, buttons, form, form-args,
region, x, y, w, h, size, location, autoraise, children, gm, visit-
order and selectable clauses are the same as those defined in the deftool and deform
and defframe macros.

The buttons clause specifies a list of buttons that will be arranged down the right edge of the
dialog. A button is defined by a list that specifies the button label, the code to execute when the
button is selected, and optional button attributes. The attach-when-possible clause speci
fies whetherto attach X resources whenever possible (i.e., when the parent is called) rather than
when necessary (i.e., when the object itself is called). By default, X resources are attached when
possible.

MANAGING DIALOGS

Dialogs are a subclass of collection widgets, thus they inherit the methods defined on collection
widgets. In addition, the following are also defined on dialogs.

call-dialog [Macro]

dialog
&rest

arguments

This function calls the specified dialog.

current-dialog [Macro]

Returns the current dialog.

dialog-p [Macro]
object

Retum t if object is a dialog object, nil otherwise.

ret-dialog [Macro]
&optional

PICASSO Reference Manual 4-75

APPLICATION FRAMEWORK

(return-value nil)

Thisfunction returns from thedialog tothecaller. Thecaller could be aframe operation, init-
orexit-code, orcode inabutton. The optional return value ispassed back tothecaller if spec
ified.

run-dialog

dialog
&rest

arguments

Same as call-dialog

DIALOG SUMMARY

Panels

Dialog Macros
call-dialog

current-dialog
defdialog
dialog-p
ret-dialog
run-dialog

[Macro]

Panels are typically used to present additional information or an alternative view of the same in
formation to the user. They are non-modal so that the user can shift his or her attention between the
current frame displayed in the tool window and the panel(s) currently visible. This section de
scribes the functions provided to define and operate onpanels.

4-76 PICASSO Reference Manual

APPLICATION FRAMEWORK

CREATION

The macro defpanel defines a panel. The syntax of a call to this macro is:

defpanel name (arguments) [Macro]
;; optional clauses

(iconify-func nil)

(deiconify-func nil)

;; clauses commonwith tools, forms, frames, and/or dialog boxes
"documentation string>"
(title string)

(static-variables var-spec)
(dynamic-variables var-spec)
(constants var-spec)
(init-code USP-form)
(exit-code USP-form)
(setup-code USP-form)

(attach-when-possible t)

(dialogs po-spec)
(panels po-spec)

(buttons button-spec)
(menus menu-bar-spec)
(form po-spec)
(form-args var-spec)
(region size-spec)
(x x-offset)

(y y-offset)
(w width)

(h height)

(size area)

(location loc)

(autoraise t)

(autowarp t)

(chi 1dren component-specs)
(gm geometry-manager-spec))
(vis it-order po-spec)

PICASSO Reference Manual 4.77

APPLICATION FRAMEWORK

(selectable po-spec)

The panel name is aPO name as discussed in the section on PO naming, arguments specify
thename and anoptional default value for each argument to the panel. Argumentnames are
symbols and the default value can be an arbitrary LISP form. The documentation string and
the other panel definition clauses specified in thebodyof the defpanel macro are option
al, and can be specified in any order.

OPTIONAL CLAUSES

A panel definition similar clauses as a dialog because panels are similar to dialogs. Panels have a
different visual appearance to the user and they are non-modal. The static-variables,
dynamic-variables, constants, init-code, exit-code, setup-code,
attach-when-possible, dialogs, panels, buttons, menus, form, form-
args, region, x, y, w, h, size, location, autoraise, autowarp,
children, gm, visit-order and selectable clauses are the same as those defined in the
deftool, deform, defframe, and defdialog macros, iconify-func and deiconi-
fy-func specify functions to be executed when the panel is iconified or de-iconified.

MANAGING PANELS

Panelsarea subclass ofcollection widgets, thus they inherit the methods defined on coUeaion wid
gets. In addition, the following arealso defined on panels.

close-panel [Macro]

panel

This function closes a panel.The panel argument specifies which panel to close.

current-panel [Macro]

Returns the currently active panel.

open-panel [Macro]

panel
&rest

4-78 PICASSO Reference Manual

APPLICATION FRAMEWORK

actual-arguments

This function opens a panel. The actual arguments are bound to the formal arguments spec
ified in the panel definition.

panel-p

object

Retum t if objectis a panel object, nil otherwise.

run-panel

panel
&rest

actual-arguments

Same as open-panel

PANEL SUMMARY

PICASSO Reference Manual

Panel Macros

close-panel

current-panel
defpanel
open-panel
panel-p
run-panel

[Macro]

[Macro]

4-79

APPLICATION FRAMEWORK

^O PICASSO Reference Manual

PICASSO DATA MODEL

PICASSO DATA MODEL

Overview

The Picasso data model provides variables, constants, and portal objects for communicating with
a database. Variables aregenerally defined in Picasso Objects as part of the framework. These can
then be associated with widgets using the propagation mechanism described in Chapter 7. Portal
objects are created by the database interface and contain database records. This chapter discusses
the use and definition of variables, constants, andportals. It also presents the database interface.

This chapter is organized as follows:

• Variables

• Constants

• Referencing Variables and Constants

• Portals

Variables

Variables arecreatedautomatically when a Picasso objea is createdor called. All PO definitions
can have clauses to define static or dynamic variables. Static-variables are created when the PO is
created. Different invocations of the PO reference the same variables. Dynamic-variables are cre
ated when the PO is called, so different invocations reference different variables.

Static-variables can also be created by the application at run-time using the add-var function.
For example,

(addvar variable-name place)

PICASSO Reference Manual 5-81

PICASSO DATA MODEL

creates a static-variable named variable-name in thePOspecified byplace. The variable is imme
diately visible to lexical children of the PO.

When declared, a variable is given a name and an optional default value.
For example, the def<po> (e.g. defframe) clause

(dynamic-variables
(x 32)

(y ' (a b c))

(z (f "hello")))

Defines three dynamic variables x, y, and z.

A Picasso variable can be referenced using the setf accessor function lookup that takes the name
of the variable as an argument, or by the reader macros described below. Recall that environments
are lexically scoped. A variable declared in a frame can be accessed by code in the frame's form
if a variable with the same name is not declared in the form. Variables can also be referenced from

outside the lexical scope in which they are defined. For example, code in a menu operation can ref
erence variables declared local to a form in the frame that contains the menu.

ACCESSING VARIABLES

The following functions are defined to access variables and lexical environments.

clear-env [Function]

Clears the current lexical environment.

lexical-environment [Macro]

This function returns the current lexical environment. The Picasso variable po always points
at the current lexical environment.

lookup [Function]

variable-name

&optional
(place (lexical-environments)

This function returns the named variable in the specified lexical environment.

5-82 PICASSO Reference Manual

PICASSO DATA MODEL

value [Accessor]

variable

The value of the variable if it is used in an 1-value context or the address of the variable if it

is used in an r-value context.

Constants

Constants behave just like variables, except the value of a constant cannot be changed. Constants
can be specified either implicitly or explicidy. Named constants can be specified explicitly with
the constants clause of a def<po>, for example

(deftool ("demo-tool" "demo" . "tool")

(title "Demonstration Tool")

(constants ((bye-string "See you later")))

creates a constant named bye-string.

Named constants can also be created implicitly in other clauses of a PO definition. For example,
alllexical childrenofa PO(i.e., PO's specified in the frames, forms, panels, or dialogs
clauses) are given names that are constants in the parent PO. Widgets specified in the children
clause of a PO can also be bound to named constants by replacingthe widget definition

(make-<Vidget-na.me> args)

with a pair

(constant-name (make-<widget-name> args))

This construct creates a name that references the widget when the PO is instantiated. The same
technique canbe usedwith buttons specified in panels and dialog boxes andwith menus specified
in frames or panels.

The following macros can be used to control the setting of constants.

PICASSO Reference Manual 5-83

PICASSO DATA MODEL

enforce-constants [Macro]

Doesnot allowthe value of constants to be changed.

relax-constants [Macro]

Allows the value of constants to be changed. This macro is usedmainly for debugging pur
poses.

Referencing Variables and Constants

Variables andconstants are referencedby using the Common Lisp "#!" and"#?" macros,The read
er macro # ?x is equivalent to

(lookup 'x)

and the reader macro #! x is equivalent to

(value (lookup 'x))

In eithercase,the variable is looked up in the current lexical environment, andthe current environ
ment depends onwhich PO is active and thelocation of themousecursor. The setup, initialization,
and termination code is always executed in the context of the defining PO.

Once the current environment is established, variable lookup proceeds in a lexical fashion. The
variable self always refers to the current lexical environment. The variables in the PO referenced
by self are searched first, followed by the PO that is the parent of self. Parent links are fol
lowed up to the tool. For ease of use, #! po always refers to the closestPO. For example, it is the
PO itself if the current lexicalenvironment (i.e., self) points to aPO. Otherwise, it is the closest
enclosing PO. The variable #! po canbe used in buttonor menu code to locate the enclosing PO
since self points to the button or menu entry.

An example of code that references Picasso variables and calls clos functions is

(setf #!x (+ #!x (f #!y)))

whichadds x to the result of applying the function f to thevariable y. The expanded code for this
example is

S*84 PICASSO Reference Manual

(setf (value (lookup 'x))

(+ (value (lookup 'x))

(f (value (lookup 'y)))))

PICASSO DATA MODEL

Sometimes it is necessary to specify where to look for a variable. For example, a frame's initial
ization code might define bindings between frame variables and widgets in the enclosing form.
The syntax "#! variable@place" evaluates place to find a starting point for the search for
variable. For example, # ?x@y is equivalent to

(lookup 'x y)

and the expression #! x@y is equivalent to

(value (lookup 'x y))

More complicated search paths can also be used to reference variables in different environments.
The reader macro can reference avariable in another scope by specifying an explicit path name of
a place that contains the variable. For example, a dialog that is defined to be global to a tool can
reference a variable defined in a frame bound to the variable foo by the expression # ! foo/x.
Names in the path are separated by a slash ('/*). This expression is equivalent to

(value (lookup 'x (value (lookup 'foo))))

Similarly, the expression #! f oo@x/y/z is equivalent to

(value (lookup rz
(value (lookup 'y

(value (lookup 'foo x))))))

and the expression

#!start-frame@(current-tool)/x

references x in the start- frame in the current tool.

Any number of "/"-separated names may occur. The " @" clause can only be used on the first vari
able, since the other names are locatedbased on the value of the preceding expression. Notice that

PICASSO Reference Manual 5-85

PICASSO DATA MODEL

the location specifier in the " @" clause can be any Lisp expression, including a call, in this case,
to the function (current -tool).

Databases

Picasso tools can operate on any valid clos data type, and a reasonable external representation is
used when these values are stored in a database. Two additional data types, portals and persistent
CLOS objects, areprovided in Picasso for communicating with a database. The currentrelease of
Picasso works with POSTGRES [Wensel 89] or commercial INGRES. The portal abstraction is
defined only for POSTGRES and the persistent CLOS abstraction is supported either for POST
GRES or INGRES. An embedded SQL interface is also available to access INGRES databases
[Chamess 89].

A portal is an array of CLOS objects that buffers a subset of tuples in the return set of a database
query. The elements in the array can be accessed using the standard array accessor functions (e.g.,
aref) and CLOS slot accessing functions (e.g., slot-value). Additional functions are provid
ed to create a portal and to fetch tuples from the return set into the buffer.

The portal buffer is indexed by the integers 0 to n-1 where n is the number ofelements in the buffer.
The portal varies in size with each fetch command.

CREATING PORTALS

The following function can be used to createa portal.

make-portal [Function]

&key

(database (current-database))

(name "")

(target nil targetp)

(where nil)

&allow-other-keys

The database argument specifies the database. The nameargument specifies the name of the
portal. The target argument specifies the target list for the query and the where argument
specifies the where-clause for the query.

5-86 PICASSO Reference Manual

PICASSO DATA MODEL

MANAGING PORTALS

close-portal [Method]

(selfportal)

Close the portal and deallocate space associated with it.

cl-to-db-type [Function]

cltype

This function controls the mappingof intemal clos types to external database types.

current-database [Function]

Retum the name of the current database, or nil if no current database.

current-tuple [Method]

(selfportal)

A portal has a current tuple. This method returns the CLOS object for the current tuple.

db-to-cl-type [Function]
dbtype

This function controls the mapping of external database types to intemalclos types.

fetch-tuples [Method]
(selfportal)
&key
(direction : forward)
(count ;allj

&allow-other-keys

This function fetches tuples fromthe database into the portal array. The direction may be ei
ther : forward or :backward. : forward is the default. The count is apositive integer
that specifies the maximum number of tuples to fetch. If the keyword :all is passed to
count, all tuples are fetched.

next-tuple [Method]

(selfportal)

Make the next tuple in the portal the current tuple and returnit.

PICASSO Reference Manual 5-87

PICASSO DATA MODEL

previous-tuple [Method]

(selfportal)

Make the previous tuple in the portal the current tuple and returnit.

rewind-portal [Method]

(selfportal)

Rewind the portal to the first tuple and returnit.

setf-current-database [Function]

name

Set the current database to name. An error is signaled if it is already defined.

(setf portal-tuple-index) [Method]

(value integer)
(selfportal)

This setf method changes the index of the current tuple.

PERSISTENT CLASSES

Persistent CLOS objects can be defined that behave similar to local CLOS classes exceptthatthey
are stored in the database. Persistent objects are created by defining a persistent class, creating an
instance of that class, and storing theinstance in thedatabase. Boththe class definition and the per
sistent object are stored in the database. Persistent classes are mappedinto the CLOS class hierar
chy as shown:

DBOBJECT OBJECT

persistent classes local classes

The following defdbclass macros definedto create persistent classes. Defdbclass takes the
same arguments as the CLOS defclass macro.

5-88 PICASSO Reference Manual

PICASSO DATA MODEL

defdbclass [Macro]

name

(superclasses)
(slot-definitions)
(class-options)

This macro defines the class and issues commands to the database to create the class defini

tion and the relation that will hold the instances of the class, superclasses specifies a list of
superclasses for this class. The superclasses must all be persistent classes. Slot-definitions
defines the object slots and class-options specifies options of the class (e.g., : documen
tation or : default-initargs).

EXAMPLE

The following definition creates a persistent box class:

(defdbclass box (dbobject)

((origin :type point :accessor origin)
(width :type integer :accessor width)

(height :type integer :accessor height)))

This code defines a class named box which is a subclass of the dbob ject class. Three objea
slots are defined for this object (origin, width, and height). No options have been speci
fied for this class.

PERSISTENT OBJECTS

Instances of persistent classes are created by calling the CLOS make-instance method and
passing it a persistent class. The persistent objea is stored in the database by callingthe method
store-dbob ject. Slots are accessed by calling slot-value or using the accessor funaions
specified in the class definition. A persistent objectis loaded fromthe database by calling the meth
od f etch-dbob ject. This method creates the CLOS classobject for the persistent class if it is
not defined and retrieves the specified object from the database into an object cache in the tool.

PICASSO Reference Manual 5-89

PICASSO DATA MODEL

Persistent objects are assigned a unique identifier, called an object identifier (OBJID) when it is
created. Objects canbe fetched from the database by OBJID orby giving apredicate thatuniquely
specifies the desired object. Slots in persistent objects cancontain anyvalidPicasso type including
a pointerto a local or persistent objea. Pointers to local objeas are convertedto USP-forms that
will recreate the local object whenthe persistent object is reloaded. Pointers to persistent objects
are represented by OBJID's in the database. They are represented by physical pointers when both
objects are in the object cache.

MANIPULATING PERSISTENT OBJECTS

The following funaions are provided to manipulate persistent objeas.

fetch-dbobject [Method]

(selfdbobject)
&optional
no-error-p

This function fetches a dbobject given an OBJID. The argument canbe a singleOBJID or a
list of OBJID's.

fetch-dbobject [Method]

(self dbclass)
slot-name

slot-value

&optional
no-error-p

This function fetches a dbobjea by slot value.

make-dbobject-from-database [Method]

(self dbclass)
query

&optional
no-error-p

This funaion takes an arbitrary query and fetches the specified objeas into the cache.

make-instance [Function]
class

5-90 PICASSO Reference Manual

PICASSO DATA MODEL

&rest

init-plist

Make an instance of a persistent object. This function calls the CLOS function make-in
stance to create the local instance and assigns an OBJID.

ppi [Method]

(selfobjid)
&key
(stream * standard-output*)
(level nil)

Pretty-print the specified object on the specified output stream.

slot-type [Method]

(class dbclass)
slot-name

This function returns the type of the specified slot.

slot-value [Function]

(self dbobject)
slot

This accessor function canbe usedto fetch or store avalue into a slotof a persistent object.

store-dbobject [Method]

(self dbobject)

This generic function stores the object in the database. The argumentself can be an instance
of a dbobject(i.e., a physical pointer to a persistent objea) or the OBJID of apersistent ob
ject in the cache.

PICASSO Reference Manual 5-91

PICASSO DATA MODEL

5"92 PICASSO Reference Manual

PROPAGATION AND TRIGGERS

PROPAGATION AND TRIGGERS

Overview

Picasso provides facilities to automatically enforce constraints among data values, execute code
when data values change, and cache the results of constraint computations. These data manage
ment facilities allow the programmerto statedeclaratively the relationships between datavalues in
a Picasso application. Code can be attached declaratively to data changes, and the programmer
can choose between immediate update and update-when-referenced for any data slot.

The types of data constraint and trigger facilities provided by Picasso are:

• Bindings

• Triggers

• Lazy Evaluation

Bindings

Dataconstraints andpropagation are managedin Picassowith abinding mechanism. Any Picasso
variable orany objea slotcan be given alist of functions that determine its value. For example, a
widget displaying a last name could have its value slot bound to a variable which holds the last
nameof the current employeein adatabase. Similarly, adisplay-only gadget coulddisplay thecur
rent pension value of an employee by computing a funaion from the employee's salary and years
of service.

Bindings are declarations of one-way constraints on data values. When one of the constraining
valueschanges, the constrained valueis changed to reflectthe new valueof the function. Multiple
constraints may be asserted, in which case two-way constraints canbe declared as a pair of bind
ings.

PICASSO Reference Manual 6-93

PROPAGATION AND TRIGGERS

Bindings may be declared among three types of data value:

• Picasso variables

• Object slots

• Virtual slots

Virtual slots are combinations of methods and setf methodsthatemulatereal slots. A computed
value can be implemented as a virtual slot by having its accessormethod refer to the underlying
data slots and by defining a setf method that updates the underlying data. For most purposes,
virtual slots and real object slots can be treated identically.

DECLARING BINDINGS

Bindings can be most easily createdusing the following macros:

blet [Macro]

picasso-variable / (slot object)
:var ({(var prop-value) }*)
.-with ({(var const-value)}*)
form

The blet macro is used to establish bindings to a slot of an objea or a picasso variable.
More precisely, the form

(blet pvar
var ((vari prop-value1)

(var2 prop-value2)

(varn prop-valuen))
:with ((wvarl const-valuel)

(wvar2 const-value2)

(wvarm const-valuem))

(form))

establishes a binding to pvar from the s-expressionform. Form is evaluated in a lexical environ
ment where vari is the value returned by the expressionprop-valuei,andwvarj is the value returned
by the expression const-valuej, similar to the Lisp let special form. If, afterthe evaluation of this
form, any of the valuesprop-valuei are setvia the setf macro, pvar will be re-evaluated; that is,

6'9* PICASSO Reference Manual

PROPAGATION AND TRIGGERS

the valuesprop-valuei are the sources of the propagation. The purpose of the variables const-val-
uej is purely convenience, similarto the traditional Lisp let.

EXAMPLE

Suppose that we have a table sel-list that has a slot named selection, and a button called
add-button. To declare that the add-button should be dimmed whenever the selection

slot of the table sel-list is nil, orwhen the picassovariableno-add is non-nil, the follow
ing binding would be used:

(blet (dimmed #!add-button)

:var ((selected (selection #!sel-list))

(not-ok-to-add #!no-add))

(or not-ok-to-add (null selected)))

A special case of bindings is a propagation from a picasso-variable (or slot object) to a picasso-
variable (or slot objea). This is commonly used, for example, to synchronize two widgets or to
bind the valueof awidget to a picasso variable. The latter example would allowthe widget to dis
play the value of the variable. These bindings are most conveniently established with the bind
macro:

bind [Macro]

destination-variable / (destination-slot destination-object)
source-variable / (source-slot source-object)

This macro establishes the binding from the source to the destination. More precisely, the
following forms are equivalent:

(bind #!a #!b)

= (blet #!a :var ((b #!b)) b)

(bind (s #!a) #!b)

= (blet (s #!a) :var ((b #!b)) b)
(bind #!a (s #!b)

= (blet #!a :var ((b (s #!b))) b)

(bind (s #!a) (s #!b)

= (blet (s #!a) :var ((b (s #!b))) b)

PICASSO Reference Manual 6-95

PROPAGATION AND TRIGGERS

Bindings are declared using the following functions. These functions are more general purpose
than blet and bind, in that they allow certain obscure type of bindings to be performed that
blet andbind can't, but are more cryptic in theirnotation.

bind-slot [Function]
slot-name

object
function
&optional

(receipt nil)

bind-var [Macro]
picasso-variable
function
&optional
(receipt nil)

These funaions bind the specified slot, virtual slot, orvariable to the specified function. When
receiptis specified, and is non-nil, the binding function returns ahandle thatcanbe used later to
remove the binding efficiently. The function specified should be an evaluable Lisp s-expression
which willexecute outside of the defining environment (no lisp variables should beused inthis s-
expression, unless they are explicitly bound in the s-expression through let, prog, or a similar
construa). Within the function, calls to the macro var are used to mark the data values which
should trigger apropagation whenthey are changed. There are three forms for this macro:

(var slot-name object-reference)

(var variable-reference)

(var variable-reference :ref location)

The slot name does not need tobequoted. The objea reference should not bequoted and should
evaluate to an object inthe defining context. The variable reference should not bequoted and will
be resolved in the lexical environment of the objea (or variable) being constrained. The location
should notbe quoted and should evaluate to a Picasso objea in the defining context. When the
location is specified, the variable reference is resolved in the lexical context of the location. Ex
amplesof each type of binding are presented in the next section.

The rest of the function must be completely resolved before calling the binding function. To in
clude references toobjects or variables not placed invar macros, the funaion should beexpressed
as abackquoted expression in Common Lisp. The backquote macro permits individual clauses to
be pre-evaluated byprefixing them with acomma. Examples of the use of backquote and comma
are presented in the next section.

6*96 PICASSO Reference Manual

PROPAGATION AND TRIGGERS

EXAMPLES OF BINDINGS

This section presents a set of samplebindings. Assume the following definitions:

(defframe "frame-l" ()

"This is the only frame"

(static-variables name age salary years-of-service form-creator)
(dynamic-variables employee)
(form (emp-form "employee")))

(defform "employee" ()

"This is the only form"

(static-variables (creator "Picasso"))

(children

(name-field

(make-text-gadget :label "Name:"))
(salary-field

(make-text-gadget :label "Salary:"))
(pens-field

(make-text-gadget :label "Pension:"))
(author-field

(make-text-widget :label "Form Author:"))))

Also assume thatthe frame variable #! employee has as its value anobjectwith fields forname,
age, salary, and years of service. For simplicity, we will assume that the employee object is read
only, and that the only changes that will occur are the replacement of the entire object with anew
objea (and a therefore a change to # !employee as awhole. We will first setup bindings be
tweenthe frame static variables and the fields of the employee object. Since this codewill be ex
ecuted as part of the frame's setup code, it is written in the lexical context of the frame.

(blet #!name

:var ((emp #!employee))
(name emp))

(blet #!age
:var ((emp #!employee))
(age employee))

(blet #!salary

:var ((emp #!employee))
(salary employee))

(blet #!years-of-service

PICASSO Reference Manual 6-97

PROPAGATION AND TRIGGERS

:var ((emp #!employee))

(years-of-service employee))

These bindings assume thatthe appropriate accessors for the employee structure are defined. No
tice that the var clauseis used for the dynamicvariable #! employee. This indicatesthat when
ever #! employee is set to a different value (different object), eachof the staticvariables will be
updated. If instead of having several employee objects therewere only one andthat objecthad its
slots set wheneverthe data was changed, the following bindings would be more appropriate.

(blet #!name

:var ((empname (name #lemployee)))
empname)

(blet #!age

:var ((empage (age #!employee)))
empage)

(blet #!salary

:var ((empsal (salary #!employee)))
empsal)

(blet #!years-of-service

:var ((empyears (years-of-service #lemployee)))
empyears)

These bindings wouldbe triggered when the slots inside the object changed but would not be trig
gered by a change to #! employee which would leave the object untouched. For cases where
bothchanges are possible (not common in Picasso since theportal abstraction creates newobjects)
acombination of triggers and bindings mustbeused(this case is shown in theexamples of triggers
later this chapter). Assume for this example that the interface supports browsing without editing
and thus the objea slots are not bound to the variables.

Next, the form widgets should be bound to the appropriate variable values in the frame. This code
willbeexecuted as part of thesetup code for the form and thus iswritten inthelexical scope of the
form.

(blet (value #!name-field)

:var ((newname #!name))

newname)

(blet (value #!salary-field)
:var ((sal #!salary))
(print-to-string sal))

(blet (value #!pens-field)
:var ((salary tlsalary)

(years #!years-of-service))
:with ((age #!age))

6-98 PICASSO Reference Manual

PROPAGATION AND TRIGGERS

(print-to-string
(* sal (/ years age))))

The first binding binds thevalue slot of thetext gadget #! name- field to the string value inthe
frame variable # !name. Since the frame is the lexical parent of the form, no further qualification
isnecessary. Since the textgadget cannot beedited, nobinding in the other direction is necessary
either. The second binding binds the text gadget which displays the salary toastring representation
of the #! salary variable. This could bedone byusing agadget which displays anumber direct
ly, but this example shows that Lisp functions canbe included in the function.

Thethird binding is more complicated. The pension value at this particular company is calculated
bymultiplying the employee's final salary bythe percentage of hislife that hewas employed at the
company. Moreover, thisrecalculation is onlymade whenthe salary changes oronthe anniversary
of employment (when the years of service in the company is updated). Pensions are not adjusted
on the employee's birthday (except when this coincides with otherchanges) since this would en
courage employees to retire just before their birthday. The provided function computes the em
ployee's pension butdoes notresult in an update of thepension when#! age changes, onlywhen
#! salary or#! years-of-service change. The evaluation of #! age will occur each time
thepropagation occurs. Since the function is executed in the context of the pension field, which
lexically resides at the level of the form, #! age is resolved into the age variable in the frame. If
there were concern about the possibility of a new age variable being introduced at the form level
(by add-var) then thevariable reference could be resolved completely atbind time by recalling
that variables are indeed objects with a "value" slot.

(blet (value #!pens-field)
:var ((salary #!salary)

(years #!years-of-service))
:with ((age (value ',#?age)))
(print-to-string

(* sal (/ years age))))

This second version uses the comma macro inside thebackquote macro to evaluate #?age before
passing the function to bind-slot. In this case, , #?age gives us a pointer to the age variable
objea. The quote before this prevents it from being re-evaluated later (since it is now the objea
pointer, not a Lisp expression which evaluates to an objea pointer). This can be passed to the
value accessor which extraasthevariable value from thevariable objea. This type of reference
is only available withPicasso variables, since Lisp variables are notrepresented as objects. This
quote-comma pattern is commonly used when resolving expressions at bind-time inside back-
quotes.

All that remains to bind are the variables and object slots corresponding to the form's author. In
the form, these bind commands will setup a two-way binding between the entry widget and the
creator variable.

PICASSO ReferenceManual 6-99

PROPAGATION AND TRIGGERS

(blet (value #!author-field)
:var ((creator #!creator))

creator)

(blet #!creator

:var ((author (value #!author-field)))
author)

In the frame, a non-local reference to the creator variable must be made. This can be done in either
of two ways.

(blet #!form-creator

:var ((creator #!emp-form/creator))
creator)

(blet #!form-creator

:var ((creator #!creator :ref #!emp-form))
creator)

The first form takes advantage of the path notation for Picasso variables. The second form uses
the :ref version of thevar macro. The second form is preferred because it is generally easier to
read.

To illustrate the use ofbind-slot and bind-var, here are some of the above examples, using
these functions instead ofblet.

(bind-slot 'value #!pens-field
x (print-to-string

(* (var #!salary)
(/ (var #!years-of-service)
(value ',#?age)))))

(bind-var #!form-creator

'((var #!creator :ref #!emp-form)))

The aboveexamples show all combinations of binding slots andvariables. Recall thatvirtual slots
are identical to real slots for these purposes (i.e., it does notmatter whether "value" is really a
slot or is anaccessor and setf method for the gadgets andwidgets used).

6"100 PICASSO Reference Manual

PROPAGATION AND TRIGGERS

MULTIPLE CONSTRAINTS

More than one binding may be declared for a data item. When more than one binding is active, a
change in data which triggers an update will use the most recently declared binding which is ap
propriate for the datum that changed. For instance, assume the following bindings are asserted in
order.

(blet #!x

:var ((a #!a)

(b #!b))

(+ a b))

(blet #ix

:var ((b #!b)

(c #!c))

(* b c))

(blet #!x

:var ((a #!a)

(b #!b)

(d #!d))

(* a b d))

(blet #!x

:var ((b #!b))

b)

After the first binding is declared, any change to #! a or #! b will cause the variable #! x to be set
to theirsum. After the second binding is declared, changes to #! b or#! c will set #! x to the prod-
ua of # !b and # ! c but changes to # ! a will still set #! x to the sum of #! a and #! b. After the
third bindingis declared, any change to #! a, #! b, or #! d uses the third funaion. Only changes
to #! c would use the second function. The first binding is no longer aaive, and is automatically
removed by Picasso. This firstconstraint is referred to as supercededsince each of the data values
which propagate changes to # !x are now taken care of by more recent bindings.

The fourth binding supersedes all of the earlier ones. This illustrates the superset-or-subset rule
used to determine when a binding is automatically nullified (removed). This rule states that when
the setof dependees in anewly declared binding are asuperset of, or a subset of the dependees of
a previous binding then the previous binding is nullified. The rationale behind this is clear in the
case above. If the user says that # ! x should be bound to #! b then it is clear that #! x should not
be also bound to a sum or product involving #! b since that would either impose unreasonable re
strictions on the other dependees or result in a set of assertedconstraints which do not make sense
declaratively.

This use of the superset-or-subset rule also avoids most cycles of constraints which are not mutu
ally satisfiable. This issue is dealt with in more detail in the Technical Notes section below.

PICASSO Reference Manual 6-101

PROPAGATION AND TRIGGERS

REMOVING CONSTRAINTS

In addition to nullifying bindings automatically, Picasso allows the user to remove bindings ex
plicitly. If the user has ahandle for the binding, generated with the receipt option inbind-slot
and bind-var, thenhe mayremove thebinding withthe function

unbind-fast [Function]
receipt

This funaion takes the handle and removes the binding. If no handle is available, then al
ternative forms are available to remove the binding.

unbind-slot [Function]
slot-name

object
expression
&key
(unbind-supersets t)
(unbind-subsets t)

Unbind-slot should be called with the same slot-name and object used for the call to
bind-slot. The expression can be the same as the function given to bind-slot or any
expression which has the same set ofvar clauses. It ispreferable toavoid expressions eval
uated using the comma macro since they take execution time without contributing tothe de-
pendee list, unbind-slot removes any bindings with exactly the same dependees. In
addition, ifunbind-supersets is true (the default) then any bindings with asuperset ofthe de
pendees are removed. If unbind-subsets istrue (the default) then any bindings with asubset
of the dependees areremoved.

unbind-var [Function]
var-name

reference
expression
&key
(unbind-supersets t)
(unbind-subsets t)

Unbind-var is called with a variable name and a reference to the location to resolve the
name from. The rest of the arguments arethe same as for unbind-slot.

6"102 PICASSO Reference Manual

PROPAGATION AND TRIGGERS

These two functions are very powerful. They canbe used to remove large numbers of bindings at
once. At the sametime, they are very dangerous and should be avoided by inexperienced users.
The combination of receipts and automatic nullification will handle almost all cases.

TECHNICAL NOTES

There are a few details aboutthe implementationof bindings of which users should be aware be
cause they have an impaa on the functionality in extreme cases. This sectionpresents several of
these details. Many of these are limitations which we anticipate removing in a laterrelease of Pi-
casso or areconsidering changing in future releases. Any such changes will be noted in the Release
Notes of such future releases.

Propagation is implemented by Common Lisp setf methods. The dependees in anypropagation
have their setf method altered to check for a change and to propagate to their dependents. The
data value being constrained is updatedby using its own set f method to give it anew value. This
allows propagation to continue through multiplebindings until values stopchanging. This imple
mentation of propagation leads to several restrictions on the use of bindings.

The first restriction involves the use of virtual slots. Sincevirtual slotshave no storage, andthere
fore no memory, they are unable to determine whetherthey are being set to the same value they
already have. Since Picasso relies on this technique to detea propagation loops, no loop may be
set up with only virtual slots. A loop must contain at least one real slot or variable.

An additional consequence of the use of set f methods for propagation is that some values may
not wish to propagate all changes, only changes that are "major" in some way. For instance, a
text widget only propagates changes to its data when the user is finished editing. To allow this, the
user canestablish a binding for the slot (or other value) but not use the setf method when per
forming incremental updates. A function is provided for triggering a propagation by hand.

do-propagate [Function]
variable

do-propagate [Function]
slot-name

object

Either form triggers a propagation just as though the variable, slot, or virtual slot had been
changed by use of a set f method.

A final consequence of this implementation is seen whendealing withobjeas whichhavecompo
nents. As shown in the example, the binding mechanism can be used to detea when a variable
points to a new objea, or when a slot in an existing object changes, but not both. This is the result

PICASSO Reference Manual 6-103

PROPAGATION AND TRIGGERS

of an optimization which resolves all references into hard pointers. A technique for handling the
problem case is shown in the section on triggers.

Triggers

Triggers are code attachments which are executed whenever the data value they are attached to
changes. They aresimilar to bindings but do not necessarilypropagateanew value to a dataobjea.
Instead, they may take actions including, if needed, calling a dialog box or performing a database
query.

SETTING TRIGGERS

A triggercan be set on any slot, Picasso variable, or virtual slot. The following forms can be used
to set triggers.

set-trigger [Macro]

slot-name

object
code

set-trigger [Macro]

picasso-variable
code

Both forms acceptcode in a formreadyto evaluate without any specific lexical context. Any
resolution ofLisp or Picassovariables shouldbe done in advanceusing the backquotemacro
and, ifnecessary, the comma macro as well. When a trigger is set, the code attachedis auto
matically executed once. This corresponds to the fact that the trigger cannot know whether
the variable or slot value is new or original.

Once a trigger is set, any change to the value of the slot or variable causes the code to be executed.
The changes must occurthrough the use of the Lisp set f form. Changes made in otherways do
not trigger the code. The codedoes notexecutewhenthe valueset is not different from the previ
ous value except in the case of virtual slots which trigger the code with every setf.

«W PICASSO Reference Manual

PROPAGATION AND TRIGGERS

EXAMPLE

The typical trigger is set tohandle acondition which can only occur when acertain value changes.
The following trigger would call aLisp function whenever the Picasso variable age exceeds 65.

(set-trigger #!age
'(if (>(value ',#?age) 65)

(force-retirement)))

Note that the use of backquote and comma are necessary here because the trigger code isexecuted
in an empty lexical environment. A similar example will alert the user when atext field contains
inappropriate language:

(set-trigger 'value #!text-area

Mif (bad-words-in (value ' ,# !text-area))
(call ',#!alert-dialog)))

In this case, the quote and comma are used to evaluate #! text-area to get apointer tothe spe
cific text widget. When quoted, this can beused later by the value method to get the actual text.
Similarly, the variable alert-dialog is resolved at the timethetrigger is set.
We have seen that bindings alone are unable tohandle the case where both an objea and its slots
may bechanged externally. By combining bindings with triggers wecan develop asolution to this
problem. Assume wehave aPicasso variable employee which points to an object. The objea has
a slot name which holds the employee's name. We have a second Picasso variable emp-name
which would like to be bound to the employee's name regardless of whether the object changes
(and #!employee points toanewobjea)orthe slot value changes within thesame object. This fol
lowing code sets up precisely that binding. Assume, for simplicity, that bothPicasso variables are
defined in the current lexical environment.

(let ((trigger-code
* (let ((emp-object (value ',#?employee))

(name-loc ',#?emp-name))
(eval Mbind-slot 'value \name-loc

(list 'var

'name

',emp-object))))))
(eval Mset-trigger #!employee ',trigger-code)))

PICASSOReference Manual 6-105

PROPAGATION AND TRIGGERS

This is a rather complex example. The outer let statement creates the code for the trigger and
then evaluates a set-trigger call with that code on the employee variable. Thus, whenever #! em
ployee points to a new object, this code will be executed. The code itself is a let which takes
advantage to the backquote macro twice to plug in both trigger-set-time and bind-time constants.
This let sets up two local variables withthe location of the employee name and with a pointerto
the employee record (both generated from trigger-set-time values, though the pointer itself is re
solved at bind time) and then binds the employee name variable to the name slot in the employee
objea. A moreefficient implementation could also remove oldbindings by generating receipts (or
by using unbind functions).

This last example is about as complicated as triggers and bindingcan get. The code illustrates that
triggers are implemented on top of bindings. As such,thevar structureis synthesized at bindtime
so as not to be misinterpreted by the trigger handler.

REMOVING TRIGGERS

There is no explicit function for removing triggers. Instead, set a trigger with nil as the function.
Eachtriggeron a data locationreplaces the previous one and therefore settingthe code to nil ef-
feaively removes the trigger.

Lazy Evaluation

Picasso supports slots which serve as caches for computed values. A slot is referred to as lazy
whenit recomputes its valueonlywhenthevalueis read. Lazyslotsonlymarkthe cacheas invalid
when a setf operation is performed onthem. Lazy slots are most useful when the computation
needed to update the slot is expensive and the slot is written to many more times than it is read
from.

MAKING SLOTS LAZY

Twofunaions existformaking slotslazy. Tomake a slotlazyforeveryinstance in an entireclass,
use:

6ml06 PICASSO Reference Manual

PROPAGATION AND TRIGGERS

make-slot-lazy-for-class [Function]
slot-name

class-name

computation

Slot-name and class-name are the names ofthe respective slot and class. They should typi
cally be quoted, although they can beexpressions that evaluate to slot and class names. The
computation should bean expression which can beevaluated to yield the appropriate value
for the slot. It is evaluated whenever the cache needs to be updated.

The funaion make-slot-lazy-for-instance isused tomake aslot lazy only for asingle
instance of the class.

make-slot-lazy-for-instance [Function]
slot-name

object
computation

The only difference between this function and make-slot-lazy-for-class is that
this function takes an object instead of a class name.

Once aslotislazy, set f of anyvalue intothat slot merely marks it invalid. Themacro invali d-
p can be used to check whether a slot value is invalid.

invalid-p [Macro]
value

This macro can be used tocheck whether the slot value value is invalid. For example,

(invalid-p (value entry-widget))

is used to checkwhether the value slot of the specified entry widget is invalid. In addition,
the function lazy-p can beused to tell whether a slot in aparticular objea is lazyornot.

lazv-P [Function]
slot-name

object

This Funaion can beused totell whether the slot slot-name inthe object object islazy or not.

PICASSO Reference Manual 6-107

PROPAGATION AND TRIGGERS

EXCLUDING SUBCLASSES FROM LAZINESS

When a class has be made lazy with make-slot-lazy-for-class, all subclasses also inherit
the laziness. To specify that a subclass should not treat the slot as lazy, use the function make-
slot-unlazy-for-subclass.

make-slot-unlazy-for-subclass [Function]

slot-name

class-name

This funaion will make a subclass, and all of its subclasses, unlazy for that slot.

TECHNICAL NOTES

Formost purposes, the programmer can set lazy slots and ignore them. When they arewritten to,
they become invalid, but when they are read fromthey automatically re-cache the computed value.
Ofcourse,it does not make senseto propagate from alazy slot (sincethatwould automatically gen
erate a read for every write) and it does not make sense to make slots lazy when they have visible
side effects (such as displaying data on the screen).

Lazy evaluation slots shouldbe used very carefully. They canimprove performance dramatically,
but only when the computation or side effect being avoided is expensive enough to support the
caching overhead. The implementation of setf for lazy slots merely shoves amarker into the slot
to mark it invalid. The accessor method will check the cache and read it, if it is up-to-date, orre
fresh it from the computation. Lazy slots can be bound to other slots, since this merely serves to
cut off the propagation chain early. They cannot be boundto, sincethis would completely defeat
lazy evaluation.

*-108 PICASSO Reference Manual

COLLECTIONS

COLLECTIONS

Overview

Widgets inPicasso are grouped into collections which arrange themonthe screen and control their
display attributes. Forms are a type of collection used in the framework. Each collection uses a
geometry manager to specify the layout of the widgets it contains. Picasso has several predefined
geometry managers as well as the facilities for defining new ones.

This chapterdocuments the following:

Collections

Anchor-GM

Packed-GM

Stacked-GM

Matrix-GM

Root-GM

Null-GM

Collections

Picasso windows are organized in ahierarchy, with ancestors enclosing their descendents. How
ever, many windows do nothave children. For example, most widgets that appear onthe screen
(i.e., buttons) do not have children. Collections, which are comprised ofthe collection-gadget class
and its subclasses, most notably collection-widget, are the Picasso abstractions for windows that
have children.

A question all collections mustanswer is,what happens when the coUeaion changes size (is "re
sized")? Do the children just stay the same size, or are they, too, resized? Consider, for example,
a collection with a title bar, a scroll-bar, and a text-editor as children. When this collection is re-

PlCASSO Reference Manual 7-109

COLLECTIONS

sized, we'd like the title-bar to span left to right along the top of the coUeaion, the scroU-bar to
remain on the right side, spanning top to bottom in the remaining space, and the text-editor to fiU
in whatever space is left. Other tools wiU behave differently when the are resized. The problem of
resizing the children of a coUeaion when the collection is resized is caUed geometry management,
and the action of resizing and moving the children of a coUection is caUrepacking.

A coUection in Picasso is responsible for managing the layout of its children. The child's geom
etry is stored in x, y, width and height slots, combinations of which form the cluld's location (x, y),
size (width, height) and region (x, y, width, height).

CREATING COLLECTION-GADGETS

CoUection gadgets are a subclass of gadgets. As a subclass, they inherit keys and methods from
gadgets.

make-collection-gadget [Function]

&key

(name "A Collection")

(value "Collection")

(gm 'null-gm)

(children nil)

(repack-flag nil)

(repack-needed nil)

(conform : grow- shrink)

(repack-count 0)

(min-size nil)

(gm-data nil)

;; Defaults inherited from gadgets

(status : exposed)

(font *default-font-name*)

(background nil)

(dimmed-background nil)

(inverted-background nil)

;; Plus keys inherited from window
&aUow-other-keys

7-110 PICASSO Reference Manual

COLLECTIONS

CREATING COLLECTION-WIDGETS

CoUection widgets are asubclass ofboth widgets and coUection gadgets. As asubclass, coUection
widgets inherit thekeys and methods specified for widgets and coUeaion gadgets.

make-collection-widget [Function]
&key

(event-mask '(:exposure))

(background "white")

(inverted-background "black")

(dimmed-background "white ")
(foreground "black")

(dimmed-foreground "black")
(inverted-foreground "white ")

;; Defaults inherited from widgets:
(name "A Widget";

(status : exposed)

;; Defaults inherited from coUection gadgets:
(value "Collection")

(gm 'null-gm)

(children nil)

(repack-flag nil)

(repack-needed nil)

(conform : grow- shrink)

(repack-count 0)

(min-size nil)

(gm-data nil)

;; Defaults inherited from gadget:
(font *default -font-name*)

;; Plus keys inherited from window, opaque window and x-window:
&aUow-other-keys

PICASSO Reference Manual 7-111

COLLECTIONS

COLLECTION ATTRIBUTES

Most of the interesting attributes of coUections are used in geometry management. Attributes faU
into two major classes. One is used to determinethe base-size of the coUection, andthe other spec
ifies how the coUections children are resized when the coUection is resized.

Since coUection widgets are a subclass of coUeaiongadgets, these attributes are inherited by col
lection widgets.

children [Reader]

(self collection-gadget)

This method returns a list of the child windows of the coUection-gadget self. This value
should not be set f'd by an application program; use the add-child macroto add a sub-
window instead.

conform [Accessor]

(self collection-gadget)

This methodreturns the conformity specification of the coUection-gadget self. It wiU be one
of the values : grow-only, : grow-shrink or : dont-conform, each of which wiU
be described below. This value may be setf'd.

RecaU thatthebase-size of awindowis theminimumwidthand heightthewindowshould be sized
to in order to reasonably display its data. For example, awindow that displays the string "HeUo"
would set it's base-size to the size needed to display thosecharaaers in its current font.

The base-size for a coUeaion is, in general, a function of the base-sizes of the children. This con
formity specification defineshow to map from the base-sizes of the children to the base-size of the
coUeaion-gadget in the foUowing way. If theconformity specification is :dont-conform, then
thebase-size of the coUection-gadget is simply composed from the value stored in thebase-width
and base-height slots. If the conformity specification is :grow-shrink, then the base-width of
the coUeaion-gadget is the minimum of the value stored in the base-width slot and the smaUest
width needed to fit aUthe children on the screen such that none of the children has a width smaUer
than its own base-width. The base-height is computed similarly. FinaUy, if theconformity speci
fication is :grow-only, then the base-width of the coUection-gadget is computed thesame as in
the : grow-shrink case, except that the value is never decremented.

S111 [Accessor]

(self collection-gadget)

This method returns a symbol that identifies the type of geometry-manager used to repack
the children of the coUection-gadget self Currently, Picasso supports the foUowing geom
etry-managers: anchor-gm, matrix-gm, packed-gm, root-gm, stacked-gm and

7*m PICASSO Reference Manual

COLLECTIONS

nil, the "nuU-gm". Specifics about each type of geometry-manager are given in the fol
lowing sections. This value may be setf'd.

gm-data [Accessor]
(self collection-gadget)

This method returns the gm-data used by the geometry-manager of the coUection-gadget
self. The gm-data is extra data used by specific geometry-managers in repacking their chil
dren. Currently, the only Picasso geometry-managers that use gm-data are the matrix-gm
and the stacked-gm. Specifics about what goes into this slot are given in the foUowing
seaions on each geometry-manager. This value may be setf'd.

min-size [Accessor]
(self collection-gadget)

repack-flag [Accessor]
(self collection-gadget)

This method returns the repack-flag ofthe coUection-gadget self. This flag, if nil, prevents
acoUection from beingrepacked. This is useful whenmanychanges wiU be madeon acol-
leaion, and itwould bewasteful torepack before aU the changes are finished. For example,
when initiaUy creating the coUection-gadget, cluldren are being added and if arepack were
performed each time a chUd was added, the running time of creating the coUeaion-gadget
would beproportional to the square of the number of children. If the repack-flag is set to
nil wrule the chUdren are being created, then only one repack need be done after aU the
children are in place, resulting in a run time proportional to the number of chUdren. This
value is normaUy changed via the repack-of f and repack-on macros, though it may
also be setf'd.

COLLECTION MACROS

add-child [Macro]
collection

child

This macro adds child tothe list ofchildren ofcollection, and informs the geometry-manager
ofcollection of the change by caUing the gm- add-chi1d method. This has the side-effect
of repacking and repainting collection as necessary.

PICASSO Reference Manual 7.113

COLLECTIONS

delete-child [Macro]

collection

child

This macroremoves child from the list of chUdren of collection, andinforms the geometry-
managerof collection of the changeby caUing the gm-delete-child method. This has
the side-effea of repacking andrepainting collection asnecessary.

force-repack [Macro]
collection

This macro forces arepack of acoUection-gadget, regardless of the value of therepack-flag
or whether the window is-exposed, concealed or pending. The min-size of the collection is
alsorecalculated. This macro is rarely usedby the user, except interaaively in debugging or
designing.

just-repack [Macro]
collection

- This macro forces arepack of acoUection-gadget, regardless of the value of the repack-flag
or whether the window is exposed, concealed or pending. Its function is the same as the
force-repack macro, except that the min-size of the coUection is not recalculated. This
macro is rarely used by the user, except interactively.

repack [Macro]
collection

This macro repacks acoUeaion-gadget if the coUection isexposed, the repack-flag ison, and
a repack is needed. If no recent changes have been made that may have effected the chil
dren, then this macro has no effect. It is rarely used by the user, except interactively.

repack-ofT [Macro]
collection

This macro sets the repack-flag of the coUection-gadget tonil, i.e., it turns repacking off
for acoUeaion. See the documentation for the repack- flag method for further details.

repack-on [Macro]
collection

Thismacro sets therepack-flag of the coUection-gadget to t, i.e., it turns repacking on for a
coUection and repacks the coUection if necessary. Seethe documentation for therepack-
flag method for further details.

7*114 PICASSO ReferenceManual

COLLECTIONS

COLLECTION SUMMARY

Reader Methods Setf Methods Macros

chUdren add-cmid

conform conform delete-chUd

gm gm force-repack
gm-data gm-data just-repack
repack-flag repack-flag repack

repack-off
repack-on

Anchor-GM

Anchor-gmhandles reshaping of chUdren according to the placement of figurative "anchors'' and
"arrows". Arrows are usedto specify that awindowcanbe stretched. Anchors canbe thought of
as thumbtacks on the side of a window ~ they specify that the given side should be pinned down
at a specified distance from the side of the parent

The geom-specof the chUd ofan anchor-gm is alist of (%x %y %width %height <anchors>
<arrows> (:borders nil) (: label nil)) where arrows, anchors, (:border nil)
and (: label nil) areoptional. %x, %y, %width and %height arenumbers between 0.0
and 1.0, inclusive, and specify the location and percent of the region the chUd wiU occupy within
theparent, withthe origin in theupper left comer of theparent. For example, specifying a%width
of 0.75 would imply that the chUd should always be 75% of the width of the parent. If %x is 0.1
and the parent is 100 pixels wide, then the chUd wiU be placed at an x-offset of 10 pixels. Speci
fying percentages implies that arrows should be specified as weU, since specifying percentages
only makes sense if things can grow and shrink.

There are two typesof arrows, vertical &horizontal, whichspecify the directions in which agiven
cluld should be resized. Arrows always imply proportional reshaping, as though the crrild were on
a sheet ofrubber; for example, if the parent doubles in size, so wiUthe cluld. If arrows areomitted,
the cluld is notresized, butrather moved to the center of the area which thechUd would occupy if
it were resized.

PICASSO Reference Manual 7-115

COLLECTIONS

In the geom-spec, arrows are specified by the keyword :arrow foUowed by an unquoted Hst of
arrow types, which can be either :horiz or :vert.

Four types of anchors, left, right, top,&bottom, specifythe sideof the coUeaion to whichthe cluld
should be anchored. Anchorsimply absolute reshaping. Associated with eachanchor is aninteger
which specifies the gap (in pixels) between the given side of the cluld and the given side of the
coUeaion. For instance, a cluldcanhave its upper left comer anchored at coordinates (20 35)by
putting a left anchor at 20 and a top anchor 35. Anchor-gmtakes into account border-width in re
packing so that awindow with border-width 5 wiU be positioned 5 pixels in from its specified po
sition (x andy) and wiU be 10pixels shorter and thinner thanspecified, overriding base-width
and base-height if necessary. Border-width is ignored if (: border nil) occurs in the
geom-spec. Similarly, labels are ignored in repacking if (: label nil) occurs in the geom-
spec.

In the geom-spec, anchors are specified by the keyword :anchor foUowed by a property list of
sideoffset pahs,where side is one of the keywords : left, :right, :top or :bottom and off
set is an integer specifying the gap, in pixels.

EXAMPLE

The foUowing geom-spec specifies a window which sticks to the bottom, grows upward, but re
mains centered horizontaUy within its parent and always takes up 1/2 of the width and 3/4 of the
height of the parent:

(1/4 1/4 1/2 3/4 ranchor (:bottom 0) :arrow Overt))

EXAMPLE

The foUowing specifies a scrolling text-widget of initial dimensions 100 x 100, with a vertical
scroU bar along the left edge and a horizontal scroU bar along the bottom. The first make-
scroll-bar specifiesthe left vertical scroU bar; the second make-scroll-bar specifies the
bottom horizontal scroU bar; and the third make-text-widget specifies a text widget for the
remaining (majority) upper right region.

(make-collection-widget
:gm 'anchor-gm

7'116 PICASSO Reference Manual

size '(100 100)

parent (root-window)

children '((make-scroll-bar

:orientation :vertical

:base-width 2 0

:geom-spec '(:anchor

(:left 0

:top 0
:bottom 0)))

(make-scroll-bar

:orientation :horizontal

:base-height 20
:geom-spec '(:anchor

(:left 20

:bottom 0

:right 0))

:height 20)
(make-text-widget

:region ' (20 0 80 80)

:geom-spec '(:anchor

(:left 20

:bottom 20

:right 0
:top 0)

:arrow (:vert :horiz)))))

Packed-GM

COLLECTIONS

Packed-gm is a geometry manager that aUows for perpendicular packing of subwindows in a style
much like that of the SX toolkit. Consider a simple text editor, with a title-bar, scroU-bar andwin
dow for editing. You can use packed-gm to specify, for instance, that the title-bar should be along
the top of the window, span the window left to right and be taU enoughto display the text in what
ever font it's using, that the scroU-bar should be on the left side of the window with a width of 20
pixels, and that the text window should fiU in the remaining space.

To calculatethe region occupied by a cluld window within a parent,packed-gm uses the foUowing
algorithm: Start with the first chUdin the list of chUdren, and place it along the side of the coUec
tion specified in the geom-spec of that cluld spanning that side. The region remaining unoccupied
is a (smaUer) reaangular region. Go on to the next cluld and place it within this region along the
side specified by its geom-spec, spanning that side in the remaining region, leaving yet another
smaUerreaangular region. Go on with the rest of the chUdren until you either a) run out of clul-

PlCASSO Reference Manual 7-117

COLLECTIONS

dren,or b) the leftover region is so smaU that no more chUdren can be placed within it. In the laner
case, pend aU the remaining children since there is nowhere to put them; this effectively makes
them invisible.

The geom-spec of a chUd under packed-gm determines the side on which the cluld wiUreside, and
its size in the direction perpendicularto that side. It can be one of the keywords : left, :right,
: top, :bottom or : fill, it can be nil, or it can be a list consisting of one of the keywords
: left, : right, :top or :bottom foUowed by an integer that specifies the size of the cruld,
in pixels, in the direction perpendicular to the specified side. Examples of the geom-spec are:

:left Place the cluld on the left side of the par
ent, with the width determined by the
base-size of the chUd.

(:top 20) Place the chUd along the top of the par
ent, with a height of 20 pixels.

:nU Place the chUd in the remaining unoccu
pied region of the parent.

nU Treat as :top for taU windows, : left
for wide windows, (wide windows have
width > 3*height)

Inaddition, thegeom-spec of acluld can contain thekeyword/value pairs (:before window) and
(: after window), which specify where to place this cluld in the list of children. The child is
placed before (or after) window in the Hst of chUdren. If window is omitted, the window is placed
at the beginning orend orthe list, as appropriate. This feature is particularly useful when adding
chUdren to a window after the window has been created.

FinaUy, the geom-spec of acluld can contain keyword/value pairs that specify padding onthe left,
right, top or bottom sides of the chUd. This padding serves as avisual "guUy" toseparate two chU
dren. The keywords recognized are:

(: left-pad size) Padthe left side with size pixels

(: right-pad size) Pad the right side with size pixels

(: top-pad size) Pad the top side with size pixels

(:bottom-pad size) Pad the bottom side with size pixels

7-118 PICASSO Reference Manual

COLLECTIONS

(:horiz-pad size) Pad the left and right sides with size pixels

(: vert-pad size) Pad the top and bottom side with size pixels

(:pad size) Pad aU sides with size pixels

EXAMPLE

Another version of the example given for anchor-gm: the foUowing specifies a scroUing text-wid
get of initial dimensions 100 x 100, with a vertical scroU bar along the left edge and a horizontal
scroU bar along the bottom. The text-widget is surrounded by a guUy of4 pixels. The firstmake-
scroll-bar specifies the left vertical scroU bar; the secondmake-scroll-bar specifies the
bottom horizontal scroU bar; and the thirdmake-text-widget specifies a text widget for the
remaining region.

(make-collection-widget
:gm 'packed-gm
:size '(100 100)

:parent (root-window)

:children '((make-scroll-bar

:orientation :vertical

:geom-spec :left)
(make-scroll-bar

:orientation :horizontal

:geom-spec :bottom)

(make-text-widget
:geom-spec '(:fill :pad 4))))

Stacked-GM

Stacked-gm is avery simple geometry managerthat places as many chUdren as wiU fit left to right
across the coUection, then overflows into the next row. This process is continued until either there
is no more space for another row or aU chUdren have been packed in.

PICASSO Reference Manual 7-119

COLLECTIONS

The geom-specs of the chUdrenare ignored. The chUdren are given a size equal to their base size.
The gm-data of the coUection, however, is used to determine the gap between the chUdren. Gm-
data is a list of (inter-row-gap inter-column-gap), where inter-row-gap speci
fies how many pixels to place between each cluld in a row, and inter-column-gap specifies
how many pixels to place between the rows of chUdren,

EXAMPLE

A stack of 5 buttons, with a gap of 4 pixels between each:

(make-collection-widget
:gm 'stacked-gm
:gm-data '(4 4)

:parent (root-window)

:children '((make-gray-button rvalue "Add")
(make-gray-button rvalue "Delete")

(make-gray-button rvalue "Cancel")
(make-gray-button rvalue "Reset")

(make-gray-button rvalue "Close")))

Matrix-GM

Matrix-gmis the geometry-manager used by table-fields, matrix-fields, and list-boxes. It manag
es an array-style organization of windows. The geom-specs of the chUdren contains a list which
specifies the row and column of the chUd, and the gm-data of the coUection contains a structure
which holds data private to the matrix.

Most of theparameters of thematrix-gm are set at initialization, which is performed by caUing the
gm-matrix-init function (see below). This function sets the number of rows and columns in
the matrix,the maximum numberof rows and columnsvisible atany one time, the row andcolumn
defining the upper left comer, and the rninimum and maximum size a row/column can shrink or
grow to. By default, the maximum number of rows an columns visible are the number of rows and
columns in the matrix, the upper left comer is (0 0), andthe rninimum size of rows andcolumns
are set such that eachrow wiU be at least as taU as required by the taUest window in that row and
eachcolumn wiU be at least as wide asneededto display the widest window.

7-120 PICASSO Reference Manual

COLLECTIONS

gm-matrix-init [Function]
self
&key

(rows (rows self))
(cols (cols self))
(max-visible-rows rows)
(max-visible-cols cols)
(row-mins nilJ
(col-mins nil,)
(row-maxs nil)
(col-maxs nil)
(row-index 0)
(col-index 0)
(inter-row-pad 0)
(inter-col-pad 0)
(conform nilj

This function initializes the matrix-gm associated with the coUection self. Rows and cols
specifies the number of rows and columns in the matrix. Max-visible-rows and max-visible-
cols specify the maximum number of rows and columns visible at one time. Row-mins, col-
mins, row-maxs and col-maxs are sequences of length rowsor cols that specify the rninimum
and maximum size for a row or column. By default these are set such that each row wiU be
at least as taU as required by the taUest window in that row and each column wiU be at least
as wide as needed to display the widest window. Row-index and col-index specify the ele
ment to be displayed in the upper left comer of the matrix. Inter-row-pad and inter-col-pad
specify the numberof pixels to appearbetween two itemsin a givenrow or column, respec
tively. FinaUy, if conform is t, the base-size of the matrix is set to display max-visible-rows
and max-visible-cols of windows.

Null-GM and Root-GM

Picasso has two other buUt-in geometry-managers, which are used intemaUy. The functionality
contained in these geometry-managers is occasionaUyuseful for widget writers and writers of new
geometry-managers. This seaion briefly documents the foUowing geometry-managers:

• root-gm, the geometry-manager which manages aU chUdren of the root-window.

• null-gm, the geometry-manager which defines the default behavior of geometry-
managers.

PICASSO Reference Manual 7-121

COLLECTIONS

Root-gm is the geometry-manager used by the root-window, the coUeaion-widget that is at the top
of the x-window instance hierarchy. Root-gm sets awidget's size based on the foUowing logic, ig
noring the geom-spec of the cluld: if the width-increment of the window is zero, implying that the
window's width cannot be changed, then the window's width is set to its base-width; otherwise,
the width-increment is non-zero, and the window's width is chosen such that a) it fits within the
confines of the root-window, b) that it is no smaUer than the base-width and c) that the window's
width isn't decreased if it's currently greater than the base-width. The last rule prevents the root-
gm from resizing a window to its base size after the user enlarges the window. A simUarlogic is
used to determine the window's height.

Null-gm defines the default behavior of aU geometry-managers. It honors aU requests for a wid
get's placement, and it sets a widget's size based on the same logic as root-gm; see the above de
scription of root-gm for detaUs. The rrunimum size for a coUection with a nuU geometry-manager
is the size the coUection must be in order for aU of its subwindows to be visible.

GEOMETRY MANAGER SUMMARY

The foUowing table summarizes theuseof thegeom-spec and gm-data slots for thevarious geom
etry managers. For anchor-gm and packed-gm, pos is one of the keywords : left, :right,
:top or :bottom. For anchor-gm, x, y, w and h are aU in the range 0.0 ... 1.0.

Geometry Manager gm-data geom-spec

anchor-gm unused (%x %y %w %h :anchor ({pospixels}*)
:arrow (dir) where dir is :horiz or :vert or
both

packed-gm unused pos\:GU\(pos pixels)

stacked-gm (row-gap column-gap) unused

matrix-gm used intemaUy (row-num column-num)

nuU-gm unused unused

root-gm unused unused

7-122 PICASSO Reference Manual

WIDGETS AND GADGETS

8

WIDGETS AND GADGETS

Overview

Almost aU inputand output behavior of Picasso is implemented through two interface abstractions:
gadgets and widgets. Gadgets are abstraaions for output behavior, and widgets are abstractions
for input/output behavior. The rest of this manual describes the Picasso toolkit and the more than
30 predefined widgets and gadgets implemented in it. AU widgets and gadgets share some com
mon behavior. Forinstance, aU widgets andgadgets canhave borders andlabels defined forthem.
In addition, many of the slots and methods are common to aU widgets and gadgets. This chapter
presents aU of the common behaviors of widgets and gadgets.

This chapter is organized as foUows:

Gadgets

Widgets

Synthetic Gadgets

Borders

Labels

Gadgets

The gadgets class is a subclass of windows, and therefore inherits keys and methods via the win
dow class. Although most developers are unlikely to need to use make-gadget directly, the
foUowing funaion is avaUable to define gadgets.

make-gadget [Function]

&key

PICASSO Reference Manual 8-123

WIDGETS AND GADGETS

;; defaults overridden from superclasses
(name "A Gadget")

(status : exposed)

(font *default- font -name*)

(background nil)

(dimmed-background nil)

(inverted-background nil)

;; Plus keys inherited from windows
&aUow-other-keys

Each of the attributes listed for make-gadget is described in Chapter 2 under windows.
Since gadgets are a subclass of windows, the additional attributes, methods and macros giv
en for windows also apply to gadgets. In addition, the foUowing arealso defined on gadgets:

determine-class [Method]

(self gadget)
value

Returns what class gadget is a member of. Possible values include (null-gadget
text-gadget bitmap-gadget image-gadget paint-gadget arrow-
gadget). If gadget is not a member of any of these classes, a warning is issued and
' null-gadget is returned.

repaint-x [Method]
(self gadget)

Returns the x offset of the gadget from the enclosing window. If the gadget itself is awin
dow, the x offset is 0.

repaint-y [Method]
(self gadget)

Returns the y offset of the gadget from the enclosing window. If the gadget itself is awin
dow, the y offset is 0.

8-124 PICASSO Reference Manual

WIDGETS AND GADGETS

Widgets

The widgets class is defined as a subclass of opaque windows, and therefore inherits keys and
methods via the opaque window class. Although developers are unlikely to use make-widget
directly, the foUowing function is provided to define widgets.

make-widget [Function]

&key

;; defaults overridden from superclasses
(name "A Widget")

(status : exposed)

;; Plus keys inherited from opaque windows
&aUow-other-keys

As a subclass ofopaque windows, widgets inherit aU of the methods defined on opaque win
dows, described in Chapter 2.

Synthetic Gadgets

Creating complex widgets and gadgets can become expensive, and some of this expense can be
avoided by using synthetic gadgets. Synthetic gadgets, sometimes caUed synths, are very light
weight abstractions for output purposes only. Unlike widgets and gadgets, synthetic gadgets are
not a defined class. As a result, they arenot quite as flexible as gadgets, but are considerably faster
and smaUer. Many of the widgets/gadgets in Picasso that were originaUy implemented using col
lections have since been rewritten using synths instead. In complicated widgets like tables or
menus, using synths results in a dramatic speed increase.

A synth is simply a LISP list consisting the arguments to a put method, as described in [Seitz 90].
Applying the put method to a synth wiU draw the synth on the screen. The synth list format is:

(<string> { (key value) }*)

The foUowing keys are standards in creating synths:

PICASSO Reference Manual 8-125

WIDGETS AND GADGETS

Key Default

window ml

font

(gc-res self)
rul

X 0

y

height
width

mask

0

(height self)
(width self)
rul

dimmed rul

inverted rul

horiz-just xenter

vert-just :center

Synthetic gadget keyword values canbe queried by using getf, and can be set by using setf.
For example, if we have the synthetic gadget my-synth specifiedas

("hello" rwindow <win> :gc <my-gc>)

then

(getf (cdr my-synth) :window)

wiU return <win>, and

(setf (getf (cdr my-synth) rwindow) <my-window>)

wiU set the window ofmy-synth to <my-window>, and

(apply #'put my-synth)

wiU draw the synth my-synth on the screen.

The foUowing macro is also defined on synthetic gadgets:

8-126 PICASSO Reference Manual

WIDGETS AND GADGETS

S?nth-P [Macro]
object

Retum t if object is asynthetic-gadget, nil otherwise.

Borders

The border of awindow can beset toany of six predefined Picasso border types, and can have var
ious widths. The three keys ofinterest for specifying the border ofawindow are :border-type,
:border-width, and border-attributes.

Six types of predefined border types exist inPicasso. These border types are box, stand out, inset,
drop shadow, frame, and null. The desired border type for a window can be specified with the
:border-type key, and the default border is the nuU border.

A box border is simply a black rectangle around a window, and can be created by specifying
:border-type :box when creating a window. The default border-width of box borders is 1.

Stand out borders lookliketheborder used for gray buttons (see gray buttons in Chapter 11) in that
the upperandleft-most edges are fUled with "white" paint, and the lower andright-most edges
are fiUed with "black" paint as the foUowing diagram Ulustrates:

Standout borders are created by specifying :border-type : standout when creating awin
dow, and the default border width for standout borders is 2.

Inset borders are inverted standout borders, i.e., the upper and left- most edges are fiUed with
"black paint, and the lower and right-most edges are fiUed with "black paint. Inset borders
are created by specifying :border-type : inset, and the default border width for inset bor
ders is also 2.

A frame border is a combination of an inset border drawn inside a standout border, and looks
somewhat like a picture frame. In addition, the area between the inset and standout border can be

PICASSO Reference Manual 8-127

WIDGETS AND GADGETS

fiUed with a designated color by using the :border-attributes key, as the foUowing dia
gram illustrates:

Frame borders have a default border-width of 7, and can be created usingthe foUowing spec
ification:

:border-type :frame
:border-width <width>

:border-attribute ' (rbackground <paint>)

Shadow borders have adrop-shadow fiUed withthepaint "gray2 5". Shadow borders can be cre
atedby specifying :border-type : shadow, andhave default border-widthof'(0 0 7 7)
(where eachlist element corresponds to: left top right bottom).

NuU borders are no border (i.e., border-width is 0). NuU borders are the default border type,
and can be explicitly created by specifying aborder-type oft, orany border typethat doesn't exist.

MANAGING BORDERS

The foUowing methods are defined on borders:

border-clear

border

self

Clears the border of self.

8-128

[Method]

PICASSO Reference Manual

WIDGETS AND GADGETS

border-init

border

(self)

Initializes the borderof self, with default border width.

border-repaint

border

self

Redraws the border of self.

[Method]

[Method]

BORDER SUMMARY

border-type border-width comments

:box 1 black rectangle

:stand-out 2 look like gray buttons
:inset 2 inverted standout buttons

:frame 7 inset inside standout

:shadow '(0 0 7 7) drop fiUed shadow1
nuU 0 no border (default)

Labels

The label of a window can be set to any of four predefined Picasso label types, and can have var
ious widths. Keys of interest for specifying the label of a window are : label, : label-font,
: label-type, :label-x, :label-y, and label-attributes. : label-at
tributes can be used to specify various attributes of the label, such as the color of the label.

The four of predefined label types are left, bottom, frame, and null. The desired label type for a
window can be specified with the : label-type key, and the default label is the nuU label.

PICASSO Reference Manual 8-129

WIDGETS AND GADGETS

Left labels arecreatedby specifying : label -type : left, andgo just above the window. The
x and y offset of a left label (: label-x and label-y) arerelative to the upper left comer of the
window.

Bottom labels are created by specifying : label-type :bottom, and go just below the win
dow. The x and y offset of a bottom label (: label-x and label-y) are relative to the lower
left comer of the window.

Frame labels are designed to fit inside a frame border. They are created by specifying : label-
type : frame, and are displayed in the fill portion between the framed border of the window
(see the section on frame borders above). The x and y offset of a frame label (: label-x and la
bel-y) are relative to the inner left comer of the frame of the window, and default to 10 and 0,
respectively.

NuU labels are basicaUy no label, and are the default.

For example, the foUowing specification creates a redleft label, in the default "8x13" font:

label-type

left :label-font "8x13"

label-attributes '(:paint "red")

MANAGING LABELS

The foUowing function and methods are defined on labels.

make-label [Function]
&key
x-offset
y-offset
label

&optional

(font (make-font))

This function creates alabel. The label string is displayed at the specified x-offset and y-
offsetin the specified font.

label-clear [Method]
label

self

Clears the label of self.

8-130 PICASSO Reference Manual

WIDGETS AND GADGETS

label-init

label

self

Initializes the label of self.

label-repaint

label

self

Redraws the label of self

LABEL SUMMARY

label-type comments

:iert

:bottom

:frame

nuU

just above and lett ot wmdow

just below window
fit inside frame border

no label (default)

PICASSO Reference Manual

[Method]

[Method]

8-131

WIDGETS AND GADGETS

8-132 PICASSO ReferenceManual

TEXT

TEXT

Overview

The many types oftext gadgets and widgets provide the user with avariety ofoptions for display
ing, entering and editing text data. Shown below are avariety of text widgets and gadgets:

^•mHtmnnninm

t J Toft. Gadget:
' i t hui i (pa sr sri cti i tir i am t*& i nj in

FT =" "-"I
=1. eft' u.

m

f s ^ fc. * w S3 nello|
fel lii? Hi Es fe'.!ifai! Si"'—!

•D '* E. if L ffif IS.|p|T!Cw^dJeJr- 1 utf„1E,|if k.M EMM
I". .11 1

3- !S Us

ZFT31! If jilt H

V*! £text-gadget

••pps
c na, .1—-

H.1 BPT nuQl~e.ntr!dt I:
B u; f — rr en as — m

'ype here...|

3. BC IL es E " la' ill In

_. i -. L - "" ' '
«"! o."- .. !2r £. rJ £: Is if

3 jfj 'Ih.C £ j.-
fi

•ft. i& p- SE 'P y
«i_ 33" 5- s- Bg- E

PI 'fi!''

&• It!

IS! Js _S "B S,

e> if s1 jg I:
|T«. "* tl II . Iff
lit: Hi !i !!.! it'

I a ii1 P!.» n.

scroll^le^urn-_entrju[gg g j» g, j «f

SH i~ SE&S'PS'bESB; §.„ Quit
IB D!i !!_ ~ [r if _ "; rn q ^ «• ;r si p

i, L ;r n ...or here.l
ui rs

Hs. £L

3 eC JHH

' %c ~-

,L i>

r e l ss

31''Iji,!]

Sg

icrollinj-text-widgeti

•s e e- r sift hi

'$: b= i: L '£ b
s'i E e g g r;

e e s-1, & m:

u '!•• .gffi' ip GS

'B (& Zfc m

g|
**£ 1 P

-H 3J2_ Eg s

ss iJZ S5 is

.ffiniFffif K ff'Efr H

The main classesof text gadgets and widgets are:

• text-gadget - used for displaying small amounts of text

• text-buffer-gadget - used for viewingapotentially large buffer of text

• text-widget- used for editing atext-buffer-gadget

• scrolling-text-widget - a text-widget with a scroll-bar

PICASSO Reference Manual 9-133

TEXT

• entry-widget - a one-line text-widget

• num-entry - a numeric entry-field

Also, instancesof the bujferclass are used by text-buffer-gadgets to storetheir text information. In
practice, instances of buffer andtext-buffer-gadget are almostnever used without a text-widget.

Text Gadget

A text-gadget allows the user to display uneditable text information:

(Text Gadget!

The text canhaveone ormany lines,and is displayed all atonce. Only one font is allowed pertext-
gadget, but there areno restrictions on the type of font chosen. The text may be horizontally and
vertically justified, repaints may be masked or non-masked, andthe base-size of a text-gadget can
be self-adjusting.These attributes areexplained in more detail below.

CREATION

make-text-gadget [Function]
&key

(value"")

(font (make-font))

(horiz-just : center)

(vert-just : center)

(maskt)

(self-adjusting nil)
&allow-other-keys

*-134 PICASSO Reference Manual

TEXT

ATTRIBUTES

dimmed [Accessor]
(self text-gadget)

Returns if self is dimmed. A setf method is also defined.

font [Accessor]
(self text-gadget)

Returns the font ofself Eachtext-gadget has only one font. A set f method is also defined.

horiz-just [Accessor]
(selftext-gadget)

Returns the horizontal justification of self which will be one of : left, : center or
: right. A setf method is also defined.

mask [Accessor]
(self text-gadget)

Returns t ornil, indicating if selfis repainted with amask. If mask is t, selfis repainted
directly onto its repaint region. If mask is nil, selfis repainted on top of areaangular area
of the color indicated by (inverted-foreground self). The default mask is nil for mono
chrome displays, and t for color displays. A setf method is also defined.

self-adjusting [Accessor]
(self text-gadget)

Returns t or nil, indicating if se/fautomatically readjusts its base-size on calls to (setf
font) or (setf value). A setf method is also defined.

(setf value) [Writer]
(self text-gadget)
(value string)

Setsthetext displayed by seIfto value. Automatically repaints selfinorder to update thetext
displayed.

(setf value) [Writer]

(self text-gadget)

PICASSO Reference Manual 9-135

TEXT

(value list)

Sets the text displayed by selfto value, which must be a list of strings. Each string in value
corresponds to a line of text in self Automatically repaints self in order to update the text
displayed.

value [Reader]

(self text-gadget)

Returns a list of strings, with each string corresponding to a line of text in self

vert-just

(self text-gadget)

[Accessor]

Returns the vertical justification of self which will be one of : top, : center or :bot
tom. A setf method is also defined.

TEXT GADGET SUMMARY

9-136

Reader Methods Setf Methods

dimmed dimmed

font font

horiz-just horiz-just
mask mask

self-adjusting self-adjusting
value value

vert-just vert-just

PICASSO Reference Manual

TEXT

Buffer

A bufferstores text in an array of strings. The maximum number of lines of text that can be stored
in abuffer is system-dependent, and determined by the constant array-total-size-limit.
The main role of buffers is to store text for text-buffer-gadgets.

ATTRIBUTES

columns [Reader]

(self buffer)
row

Returns the number of columns in row row of self. The default value of row is 0.

new [Reader]

(selfbuffer)

Clears allthe contents of self. Instead of actually erasing the old array of strings, this method
just creates a new array and lets the old one be garbage-collected.

rows [Reader]

(selfbuffer)

Returns the number of rows in self.

(setf value) [Writer]
(selfbuffer)
val

Sets the contents of buffer to val,which must be an adjustable vector of strings.

value [Reader]
(selfbuffer)
&key

(row 0)

PICASSO Reference Manual 9-137

TEXT

(column 0)

Returns a string with the contents of row row of self, starting at column column. Rows and
columns are numbered starting withzero. Ifrowand column are notspecified, thentheentire
array of strings is returned.

LINKING WITH SCROLL BARS

These methods are provided to facilitate the interaction of bufferswith controllers, such as scroll
bars.

data [Accessor]
(selfbuffer)

This slotmay be usedin anyway. There is also a corresponding setf method.

rows-changed-function [Accessor]
(selfbuffer)

Returns the rows-changed-function, which is ahook for other widgets and gadgets
to know when the numberof rows in the buffer changes. A setf method is also defined.
Thz func used mustbeeither a function ornil. Iffunc is notnil, then, whenever thenum
ber of rows in self changes, func is calledwith

(funcall func (data self) nil)

9-138 PICASSO Reference Manual

BUFFER SUMMARY

Reader Methods Setf Methods

data data

columns

new

rows

rows-changed-function rows-changed-function
value value

Text Buffer Gadget

TEXT

A text-buffer-gadget displays avariable subset ofthe text stored in its buffer (of class buffer). This
contrasts with the text-gadget class, in which all the text is displayed at once. Only fixed-width
fonts are supported.

ACCESSING THE TEXT

buffer

(self text-buffer-gadget)

Returns the buffercontaining the text data of self.

(self text-buffer-gadget)

value

[Accessor]

[Reader]

Returns an array of strings corresponding to the lines of self This is the same as (value
(buffer self)).

PICASSO Reference Manual 9-139

TEXT

MODIFYING THE TEXT

new [Method]

(self text-buffer-gadget)

Deletes all text in self, and placesthe cursor at the home position.

put [Method]

(self text-buffer-gadget)
str

&key
(overwrite nil)
(repaint t)

Insert string str into self ax row and column. Update row and column. If overwrite is
nil, insertin insertmode. If overwriteis t, insertin overwritemode. If repaintis t, repaint
new text.

(setf value) [Writer]

(self text-buffer-gadget)
value

Set the text dataof self to value,which canbe a string, avector of strings, a list of stringsor
a number.

THE TEXT WINDOW

Oftenatext-widget is notbigenough to display all thetext in it.When thishappens, only aportion
of the text gets displayed. The following methods indicate and determine what part of the text is
displayed.

columns [Reader]

(self text-buffer-gadget)

Returns the number of visible columns of text of self. This is calculated from the font-size
and the height of self There is no corresponding setf method.

0-140 PICASSO Reference Manual

TEXT

left-of-screen [Accessor]

(self text-buffer-gadget)

Returns the numberof the leftmost column of text displayed in the text window. A corre
sponding setf method is also defined.

rows [Reader]

(self text-buffer-gadget)

Returns the number of visible rows of text of self. This is calculated from the font-size and
the width of self. There is no corresponding set f method.

top-of-screen [Accessor]
(self text-buffer-gadget)

Returns thenumber of therow of text that appears onthe top of the text window. A corre
sponding setf method is also defined.

THE CURSOR

column [Accessor]
(self text-buffer-gadget)

Returns the current columnofthe cursor of self This valueis offset from the first columnof
text inthebufferof self, nottheleft-of-screen. A corresponding set f method is also
defined.

cursor-mode [Method]
(self text-buffer-gadget)

Returns :overwrite, :insert, ornil, corresponding to the cursor being asolid block,
a vertical bar, or invisible.

row [Accessor]
(self text-buffer-gadget)

Returns the current row of the cursor of self This value is offset from the first row of text in
thebufferofself notthetop-of-screen. A corresponding set f methodis also defined.

PICASSO Reference Manual 9.141

TEXT

MARKING TEXT

Marking means highlighting a portion of text for a special purpose, such as deleting or copying.
All text between the cursorposition andthe mark position is marked.

copy-mark

(self text-buffer-gadget)

[Method]

Copy marked text into cut-buffer number 0 (cut-buffer is a temporary holding buffer
[Scheifler 89], and is compatible with xterm).

delete-mark

(self text-buffer-gadget)

Zap marked text into non-existence.

mark

[Method]

[Method]

(self text-buffer-gadget)
&key
(mark-row (mark-row self) J

(mark-column (mark-column self))

Mark all text between the cursor position and mark-row and mark-column.

unmark

(self text-buffer-gadget)

Unmark any marked text, and set mark-row and mark-column of selfto nil

FILE I/O

[Method]

append-to-file

(self text-buffer-gadget)
filename

[Method]

Append the contents of selfto the end offilename.

9-142 PICASSO Reference Manual

TEXT

load-file [Method]
(self text-buffer-gadget)
filename
&key

(count -1)

Replace the contents of selfwiththe first count lines offilename. If count is -1, thenuse all
of the lines offilename.

put-file [Method]
(self text-buffer-gadget)
filename
&key

(count -1)

Insert file the first count lines offilename into self at the current cursor position. If count is
-1, then insert all of the lines offilename.

save-file [Method]
(self text-buffer-gadget)
filename

Save the contents of self intofilename.

SEARCHING TEXT

search-backward [Method]
(self text-buffer-gadget)
pattern

Search for first backward occurrence ofpattern. Iffound, return t and position cursor at the
first letter ofthe occurrence. Ifthe pattem cannot be matched, or ifthe pattem is the empty
string, return nil.

search-forward [Method]
(self text-buffer-gadget)

PICASSO Reference Manual 9.143

TEXT

pattern

Search for first forward occurrence ofpattern. If found, return t and position cursor one po
sition past thelast letter of theoccurrence. If the partem cannot be matched, orif the pattem
is the empty string, return nil.

OTHER ATTRIBUTES

font [Accessor]

(self text-buffer-gadget)

Returns the current font of self There is acorresponding set f method, but only fixed-width
fonts are supported.

invert [Accessor]

(self text-buffer-gadget)

Returns t ornil, indicating if selfis in invert mode(where background and foreground are
swapped.) A setf method is defined for this attribute.

9-J44 PICASSO Reference Manual

TEXT BUFFER GADGET SUMMARY

Reader Methods Setf Methods Misc.

butter butter append-to-hie
column column copy-mark
columns cursor-mode

font font delete-mark

invert invert load-file

left-of-screen left-of-screen mark
row row new

rows put
top-of-screen top-of-screen put-file
value value save-file

search-backward

search-forward

unmark

Text Widget

A text-widget allows the userto edit the contents of a text-buffer-gadget:

TEXT

Actually, text-widget is a combined subclass of text-buffer-gadget and widgets. This means in
effect that text-widget isatext-buffer-gadget with an X window and event handling capabilities.

PICASSO Reference Manual 9-145

TEXT

CREATION

Since text-widget is a subclass of text-buffer-gadget, it accepts all of the keyword arguments of
text-buffer-gadget.

make-text-widget [Function]

(editable nil)
(insert-mode nil)
(tab-step S)
(scroll-right-at nil)
(horizontal-scroll-up nil)
(vertical-scroll-up nilJ

;; Plus keys inherited from text-buffer-gadget
&allow-other-keys

ATTRIBUTES

editable [Accessor]

(self text-widget)

Retums t or nil, indicating if the text contents of self can be modified through the key
board. A setf method is also defined.

horizontal-scroll-step [Accessor]

(self text-widget)

Retums the number of columns to scroll at a time when scrolling to the right or to the left. If
nil, a whole screen width is scrolled at a time. A set f method is defined for this attribute.

insert-mode [Accessor]

(self text-widget)

Returns t or nil, indicating whether self is in insert or overwrite mode, respectively. In
insertmode, when text is typed into the text-widget, the characters to the right of the cursor
are pushed over and preserved. In overwrite mode, they are overwritten. A setf method
is also defined.

0-146 PICASSO Reference Manual

scroll-right-at

(self text-widget)

TEXT

[Accessor]

Retums the number of columns to the right of left-of-screen at which selfwill auto
matically scroll right by the number of columns specified by horizontal-scroll-
step. A setf method is defined for this attribute.

tab-step [Accessor]

Returns the number of columns between tab stops. In text-widgets, tabs are actually simu
lated with spaces. A corresponding setf method is also defined.

vertical-scroll-step

(self text-widget)
[Accessor]

Retums the number of rows to scroll at atime whenscrolling up ordown, ifnil, awhole
screen height is scrolled at a time. A setf method is defined for this attribute.

Scrolling Text Widget

A scrolling-text-widget is a collection containing a text-widget and a scroll-bar which are linked
together.

PICASSO Reference Manual 9-147

TEXT

CREATION

Scrolling textwidget is a subclass of collection gadget, so scrolling-text-widget accepts all of the
keyword arguments of coUection-gadgets.

make-scrolling-text-widget [Function]
(scroll-bar nil)
(text-widget nil)
(gm 'packed-gm)
(conform : grow-only)

;; Plus keys inherited from collection-gadget
&allow-other-keys

ATTRIBUTES

scroll-bar [Accessor]

(self scrolling-text-widget)

Retums the scroll-bar of self. There is also a set f method defined.

text-widget [Accessor]

(self scrolling-text-widget)

Retums the text-widget of self. There is also a setf method defined.

0-148 PICASSO Reference Manual

TEXT

Entry Widget

An entry-widget is a one-line text-widget with a slot to store a function to be called whenever the
return key is pressed.

hello|

CREATION

Entry widgets are a subclass of text widgets, so they accept all of the keyword arguments of text
widgets.

make-entry-widget

(return-function nil)

;; Plus keys inherited from text-widget
&allow-other-keys

ATTRIBUTES

return-func

(self entry-widget)

The(return) function to be executed after the user presses return.

setf return-func

(selfentry-widget)

PICASSO Reference Manual

[Function]

[Accessor]

[Accessor]

9-149

TEXT

func

Sets thefunction to be executed after theuserpresses return tofunc. Iffunc is nil, no func
tion is executed.

Num Entry

A num-entry is an entry-widget that only accepts numeric input from the keyboard.

^o

A scrollable option is available which creates a num-entry with two scrolling buttons that incre
ment and decrement the numeric value of the num-entry:

CREATION

Num entries are a subclass of entry widgets, so they accept all of the keyword arguments of entry
widgets.

make-num-entry [Function]

(scrollable nil)

;; Plus keys inherited from entry-widget
&allow-other-keys

Retums a num-entry. If scrollable is t, the num-entry is associated with two buttons which
increment or decrement the value of the num-entry.

0-150 PICASSO Reference Manual

BUTTONS

10

BUTTONS

Overview

Buttons are used to allow the user aconvenient way to specify an action. Buttons can contain any
text or image and execute code either when pressed or released. Examples of several types of but
tons are shown below:

j[X| Buttons

Press Me

button

= Me Too!
MMMMMMIIMI

gray-button

tt itiuttit j, 1111 jii. i i ifttt

Picasso provides several predefined button types:

• Button

• Gray Button

• Pop Button

• Gray Pop Button

• Click Button

• Button Groups

• Radio Buttons Groups

• Check Buttons Groups

• Implicit Buttons in Panels and Dialogs

PICASSO Reference Manual

....,P°P~button

10-151

BUTTONS

Buttons

The button class is a subclass of the widget class. As a subclassof widget, buttons inherit keys and
methods from the widget class. Pictured below is a button with all default values except value:

The following function is used to create buttons like the one shown above.

make-button [Function]

&key
(default nil)
(pause-seconds nil)
(press-func nil)
(release-func nil)
(pushed t)
(flag t)
(data nil)

(mask color-display-p)

;; defaults overridden from superclasses
(name "A Button")

(geom-spec : center)
(border-width 1)

(event-mask '(rexposure :button-press

:button-release :leave-window

:enter-window))

(base-width 0)
(base-height 0)
(font "-b&h*bold-r*14*")

;; Defaults inherited from widgets
(status : exposed)

10-152 PICASSO Reference Manual

;; Plus keys inherited from opaque window, x-window and window
&allow-other-keys

This function creates a button at the specified location.

ATTRIBUTES

BUTTONS

default [Accessor]
(selfbutton)

Indicates whether the button is the default button. The LISP-form bound to the default but
ton is evaluated if the user enters a return character and there is no input component in the
interface object. Default buttons are commonly used in dialogs. They allow theusertoexit
the dialog without having to move his or herhands from thekeyboard.

pause-seconds [Accessor]
(self button)

The time toleave the button pushed, after being selected and before calling thefunction (can
be fractional).

press-func [Accessor]
(selfbutton)

A LISP-form that will be evaluated when the user selects the button. The LISP-form is eval
uated in a lexical environment that binds the COMMON LISP symbol selfto the button ob
ject and the event to the X event that triggered the call.

Pushed [Accessor]
(selfbutton)

Indicates whether button is currently pushed or not.

release-func [Accessor]
(selfbutton)

A USP-form that will be evaluated when the user releases the button. The LISP-form is eval
uated in a lexical environment that binds the COMMON LISP symbol selfto thebutton ob
ject and the event to the X event that triggered the call.

PICASSO Reference Manual 10-153

BUTTONS

value

flag

data

(self button)

Specifies the label on the button, and should be a string.

(self button)

If flag is t, call the press- func when the button is selected.

(self button)

mask

(self button)

MANAGEMENT

button-p

self

Retums t if selfis a button, nil otherwise.

func

(self button)

The release function on the button.

10-154

[Accessor]

[Accessor]

[Accessor]

[Accessor]

[Macro]

[Accessor]

PICASSO Reference Manual

BUTTON SUMMARY

Reader Methods Setf Methods Misc.

data data button-p
default default

flag flag
tunc func

mask mask

pause-seconds pause-seconds
press-func press-func
pushed pushed
release-func release-func

value value

Gray Buttons

BUTTONS

Gray buttons are a subclass of thebutton class andthus inherits keys and methods via buttons.

H A Gray Button H|

The graybuttonabove contains all default values except value, which has been set to "PressMe".
The following function can be used to create gray buttons.

make-gray-button

&key
(depress t)
(drawn-border-width 2)
(invert-width 4)
(gray t)

PICASSO Reference Manual

[Function]

10-155

BUTTONS

(old-attributes nil)

;;defaults overridden from superclasses
(name "A Gray Button")
(border-width 0)

;; Plus keys inherited from button
&allow-other-keys

ATTRIBUTES

depress [Accessor]

(self gray-button)

When set, the gray-button looks "depressed" when selected.

drawn-border-width [Accessor]

(self gray-button)

Gray buttons are drawn with a standout border (see Borders in Chapter 8), and drawn-bor
der-width refers to the width of the standout border.

gray [Accessor]

(self button)

Retums whether or not the button is a gray button. This value may be setf'd; setting a
button gray changes its class from button to gray-button. Setting a gray button to gray-nil
(i.e.

(setf (gray <gray-button>) nil)

changes its class from gray-button to button.

invert-width [Accessor]

(self gray-button)

Inverted gray buttons aredrawn with a frame border (see Borders in Chapter 8) and inverted-
width refers to the width of the enclosed inset border.

10-156 PICASSO Reference Manual

old-attributes

(self gray-button)

BUTTONS

[Accessor]

Keeps track of prior backgrounds (background and :border-width) before button was
changed from buttonclass to gray button class. If the buttonis madeungray, the prior back
grounds are restored.

MANAGEMENT

gray-button-p

self

Retums t if self is a gray button, nil otherwise.

inverted

(self gray-button)

Whether or not gray-button is currently inverted.

make-gray

(self button)
&key
(border-width 2)
(background " gray75 ")
(invert-width (invert-width self))

Make a button a gray button (creates a gray border).

make-ungray

(old gray-button)
self

Make a gray button aregular button (gets rid of a gray border).

PICASSO Reference Manual

[Macro]

[Accessor]

[Method]

[Method]

10-157

BUTTONS

Pop Buttons

A pop-button is abuttonexcept that,when selected, it popsup amenu panewhich has a user-spec
ified behavior. By default, the selection of a menu-item just sets the value of the button to the se
lected value. This pop-button was created using default values for all attributes except items which

was set to "red" and "blue*'. In this example, "blue" has been selected.

Pop buttons are a subclass of buttons, thus they inherit keys and methods from the button class.
The following function can be used to createpop buttons.

make-pop-button [Function]

&key
(menu nil)

(items nil)

(items-font nil)

;;defaults overridden from superclasses
(event-mask ' (:exposure :button-press :button-release))

;; Plus keys inherited from button
&allow-other-keys

ATTRIBUTES

items [Accessor]

(selfpop-button)

Pop buttons take a list of menu entries, for example

10-158 PICASSO Reference Manual

BUTTONS

:items '("red" "blue" ...)

and afont along with all the other button arguments. Optionally, the :items may be alist
of lists where each list has an object and an expression to eval (the code for the menu-en
try). Forexample:

:items '(("hello" '(print "This is Great"))

("good-bye" *(print ',val))

"welcome"

("cancel" nil))

Alternately, the :menu key can be used to specify menu pane entries.

items-font

(selfpop-button)

The font of the menu entry items.

menu

(selfpop-button)

[Accessor]

[Accessor]

The :menu key can be used to specify menu pane entries. The difference between :items
and :menu is that :menu takes an object of type menu-pane.

MANAGEMENT

pop-button-p

object

Retums t if object is a popbutton, nil otherwise.

PICASSO Reference Manual

[Macro]

10-159

BUTTONS

Gray Pop Buttons

A gray-pop-button is agray buttonthat, when selected, pops up amenu whichhasauser-specified
behavior. By default, the selection of amenu item just sets the value of the button to the selected
value, as shown in the example below, where item "blue" has been selected. The menu-items like
wise set the value of the button to their value.

Gray pop buttons are a subclass of gray buttons, thus they inherit keys and methods via gray but
tons. The following function can be used to create gray pop buttons.

make-gray-pop-button [Function]

&key
(menu nil)

(items-font nil)
(event-mask ' (:exposure :button-press :button-release))

;; Plus keys inherited from gray-buttons
&allow-other-keys

Gray button attributes and methods are described under pop buttons and gray buttons (see
above). The following macro can be used to determine whether an object is a gray pop but
ton.

gray-pop-button-p

object

Retums t if object is a gray pop button, nil otherwise.

10-160

[Macro]

PICASSO Reference Manual

BUTTONS

Click Buttons

A clickbutton is abutton that has one function for each mouse button (left, middle, and right).

Click buttons are a subclass of buttons, thus they inherit keywords and methods via the button
class.

make-click-button

&key
(name "A Click Button")
(left-func nil)
(middle-func nil)
(right-func nil)

;; Plus keys inherited from buttons
&allow-other-keys

ATTRIBUTES

left-func

(self click-button)

The function to be executed when the user presses theleft mouse button.

middle-func

(self click-button)

The function to be executed when the user presses the middlemouse button.

PICASSO Reference Manual

[Function]

[Accessor]

[Accessor]

10-161

BUTTONS

right-func

(selfclick-button)

The function to be executed when theuserpresses the rightmouse button.

MANAGEMENT

click-button-p

self

Retums t if selfis a click button, nil otherwise.

Button Groups

[Accessor]

[Macro]

A button groupis a groupof indicator "buttons", where eachindicator has a label image, andclick
ing the indicator toggles the label image, as illustrated below:

X] Button-Groups

HI Picasso

rVT Matisse

• Degas

Ivf Renoir

• Van Gogh

Icheck-groupj

^ Soup

@i Salad

^ji Software

^ Shrimp

@i Sizzler

radio-group

HillQuJtn

Button groups are a subclass ofwidgets, thus they inherit keys and methods from widgets.

10-162 PICASSO Reference Manual

BUTTONS

make-button-group [Function]
&key
(active-image nil)
(inactive-image nil)
(items ' (""))

(orientation :vertical)

;; defaults overridden from superclasses
(name "A Button Group")
(event-mask ' (: exposure :button-press))
(font "8x13")

;; Defaults inherited from widgets :
(status : exposed)

;; Plus keys inherited from opaque windows
&allow-other-keys

For example, the following code creates abutton-group with 3items, oriented horizontally,
with the label displayed below the button images.

(make-button-group

:items '("Equipment" "Utilities" "Lots")

:orientation :horizontal

:label-just :bottom)

ATTRIBUTES

active-image [Accessor]
(self button-group)

The image todisplay when abutton indicator is toggled on.

inactive-image [Accessor]
(self button-group)

The image to display when abutton indicator is toggled off.

PICASSO Reference Manual 10-163

BUTTONS

items [Writer]

A list of specs, one per button, thatcanbe passed to make-button-group, but cannot be
setf'd or read after creation. A spec is either a label or a property list, for example
'("hello" :font "8x13")

orientation [Accessor]

(selfbutton-group)

The orientation of the group of buttons, either :vertical or :horizontal. Vertical
groups display their images to the left of each label, and horizontal groups display their im
ages above each label.

MANAGEMENT

dim-item [Method]

(self button-group)
item

Dim item item of button-group.

update-value [Method]

(selfbutton-group)

Force an update of the value of the button-group.

vertical [Method]

(selfbuttongroup)

Retums true if selfs orientation is :vertical.

10-164 PICASSO Reference Manual

BUTTONS

Radio Button Groups

Radio buttons display asmall boxthat looks likea(pressed or depressed) radio dial, and buttoning
them toggles their state.

% Soup

$ Salad

<®> Software

$ Shrimp j

$ Sizzler j

Radio-groups are a subclass of button-groups, thus they inherit keys and methods from button-
groups.

make-radio-group

&key
(name"A Radio-Button Group")
(value 0)

(active-image (make-image
.name "radio-select"

file "radio-selected.bitmap")
(inactive-image (make- image

.name "radio-deselect"

file "radio-normal.bitmap")
;; Plus keys inherited from button-groups
&allow-other-keys

SINGLE RADIO BUTTONS

[Function]

Single radio buttons are aspecial case, and are asubclass ofwidgets. As asubclass, they inherit
keys and methods from widgets.

PICASSO Reference Manual 10-165

BUTTONS

make-radio-button [Function]
&key
(select-image nil)
(deselect-image nil)

;; defaults overridden from superclasses
(value nil)
(border-width 0)
(base-width 25)
(base-height 20)
(event-mask x(i exposure :button-press))

;; Plus keys inherited from widgets
&allow-other-keys

ATTRIBUTES '

deselect-image [Accessor]

(selfradio-button) I

The image to display when the radio button is toggled off.

select-image [Accessor]

(selfradio-button) \

The image to display when the radio button is toggled on.

10-166 PICASSO Reference Manual

BUTTONS

Check Button Groups

Check buttons display asmall boxthat iseither checked ornot, and buttoning onthem toggles their
state:

• Picasso

ET Matisse

• Degas

Ef Renoir

D Van Gogh j

Check button groups are a subclass of button-groups, thus they inherit keys and methods via but
ton-groups.

make-check-group

&key
(active-image (make - image

.name "check-select"

:file "check-true.bitmap"))
(inactive-image (make- image

:name "check-deselect"

:file "check-false.bitmap"))
;; defaults overridden from superclasses
(name "Check-Box Group")

;; Plus keys inherited from button-group
&allow-other-keys

SINGLE CHECK BUTTONS

[Function]

Single check buttons are aspecial case, and are asubclass ofwidgets. Asasubclass, they inherit
keys and methods from widgets.

PICASSO Reference Manual 10-167

BUTTONS

make-check-button [Function]
&key
(select-image nil)
(deselect-image nil)

;; defaults overridden from superclasses
(value nil)
(border-width 0)
(base-width 25)
(base-height 20)
(event-mask ' (: exposure :button-press))
;; Plus keys inherited from widgets
&allow-other-keys

The check buttons attributes deselect-image and select-image are the same as
those listed under radio buttons.

Implicit Buttons

Implicit buttons can be defined in dialogs and panels byusing the optional button clause. The
button ofthe dialog or panel is defined by abutton-spec, which is alist ofbutton specifications.
Each button specification has aname, an optional documentation string, an optional documentation
string, and optional list of control arguments (any of those you would pass tomake-button), and a
function to be executed when the button is selected.

Optional control arguments (discussed under buttons) can be specified to control the look and be
havior of implicit buttons. If the button is declared inactive, the name of the button is dimmed to
provide feedback to the user that the button is inactive; moreover, the button will not respond when
selected with the mouse.

IMPLICIT BUTTON EXAMPLE

The following specification might be used for a save-cancel-ok dialog that prompts users as to
whether they want to quit a tool without saving their files. This dialog contains three buttons,
"Save", "Cancel", and "Ok". Clicking on "Save" returns t to the caller, clicking "Cancel" returns
: cancelled, and clicking "OK" returns nil.

10"168 PICASSO Reference Manual

(defdialog ("picasso" "save-cancel-ok" . "dialog")
"example of implicit button specification"
(buttons ("Save"

(ret-dialog) t)
("Cancel"

(ret-dialog :cancelled))
("OK"

(ret-dialog nil)))

BUTTONS

PICASSO Reference Manual 10-169

BUTTONS

10-170 PICASSO Reference Manual

CONTROLS

11

CONTROLS

Overview

Controls are interface abstractions that allow auser to modify her view of an object. Scroll-bars
are agood example ofacontrol. Controls are typically used inconjunction with other widgets rath
er than as stand-alone widgets, and use the Picasso binding mechanism to communicate withthe
widgets they control.

The types of controls implemented in Picasso are:

• Scroll-bars

• Sliders

• Rover-widgets - allow two-dimensional scrolling

Scroll Bars

Picasso applications use scroll-bars to allow the user to adjust her view ofanother object that is too
big to fit on the screen. A good example of such an application is atext editor, where the docu
ment's length is unlimited. In this application, vertical scroll-bars are placed alongside the editor
to allow the user to easily change the editor position within the document. The widget that the
scroll-baris controlling is called the client of the scroll-bar.

A scroll-bar is awidget conceptually containing two buttons and aslider. It may be either horizon
tal or vertical. The buttons may be placed at either the top or bottom ofthe scroll-bar (left or right
for horizontal scroll-bars). The slider has an indicator that typically reflects the current offset with
in the viewed object, and what portion ofthe object they are viewing. For efficiency, scroll-bars
are implemented as a single window rather than a collection.

Itistypically desirable for the clients ofascroll-bar to use a coordinate system convenient for them
inpositioning the scroll-bar. For example, for atextwidget it is desirable that the coordinate of the

PICASSO Reference Manual 11.171

CONTROLS

top of the scroll-bar should be "1", and the position at the bottom of the scroll-bar should be the
number of lines in the text editor.

Using the normalPicassobinding mechanismto propagate updates from the scroll-bar to the client
(e.g., a text-widget) would lead to unacceptably poor performance in the dynamic drag mode.
Therefore, a hand-tuned propagation mechanism is usedto achieve higher performance synchro
nization with clients. Scroll-bars communicatewith their clients (e.g., a text-editor widget) by ex
ecuting s-expressions held in slotsof the scroll-bar. See the description of the execute function
for details of this mechanism. Typically, the expression causes the client to adjust its data struc
tures and then update the position of the indicator in the scroll-bar.

The interaction of a scroll-bar is as follows. Buttoningwithin the prev-linebutton causes the s-ex-
pression held in the prev-line-func slot of the scroll-bar to be executed. By pressing and holding
the button, this s-expression is executed repetitively. Since this can cause some applications to
scroll too fast, repetitive executions are delayed by an amount held in the pause-seconds slot of
the scroll-bar. Buttoning within the next-line button acts in a similar fashion.

Buttoning in the area above the sliderindicator causes the s-expressionheld in the prev-page-func
slot of the scroll-barto be executed; similarly, buttoning in the area below the indicator causes the
s-expression held in the next-page-func slot of the scroll-bar to be executed. Finally, if the user
buttons within the area of the indicator, the s-expression held in the moved-func slot of the scroll
baris executed. This is typically used for dynamic drag.

The programming of the dynamic drag function is a bit tricky, and deserves some discussion.
When the moved-func is executed, it usually setsup any internal stmcturesin the client needed for
fast scrolling, and calls the drag-scroll-bar function, passing it the scroll-bar instance (sb), a func
tion (func), andthe arguments of the event thattriggered this sequence. When the mouse moves,
func is called with two parameters: the scroll-bar instance (sb) and the value of the data slot in that
instance. At the time of the call, the slider-location of the scroll-bar instance contains the new po
sition of the slider.

A picture of a typical scroll-baris shown below:

11-172

-PR*

•Kw

PICASSO Reference Manual

CONTROLS

CREATING A SCROLL BAR

make-scroll-bar [Function]
&key
(buttons :bottom-right)
(data nil)
(lower-limit 0.0)
(moved-func see below)
(next-line-func see below)
(next-page-func see below)
(orientation :vert i ca1)
(prev-line-func see below)
(prev-page-func see below)
(slider-location 0.0)
(slider-size 25.0)
(upper-limit 100.0)
&allow-other-keys

Creates and returns a scroll-bar. Buttons specifies the position of the buttons and is one of
(:left :right :top :bottom :bottom-right :bottom-left :top-
right :top-left). This argument has the following interpretation in vertical and hor
izontal scroll-bars:

Argument Vertical Horizontal

:iett bottom left

:right bottom right
:top top left

:bottom top right
:bottom-right bottom right
:bottom-left bottom left

:top-right top right
:top-left top left

Data is stored inthescroll-bar's data slot, and istypically filled inby scroll-bar clients toholdtheir
own data structures. Lower-limit and upper-limit gives the coordinates of the top and bottom (left
and right) of the scroll-bar, respectively. Slider-location specifies theposition of theindicator, and
slider-size specifies the length of the indicator, relative to lower-limit and upper-limit. Finally,
moved-func, next-line-func, next-page-func, prev-line-func and prev-page-func are s-expressions
which are executed (using the execute function) and default to expressions which adjust the po
sition of the indicator.

PICASSO Reference Manual 11-173

CONTROLS

SCROLL BAR ATTRIBUTES

ScroD-bars are implemented in avery flexible way in Picasso, which allows the clientto commu
nicate with the scroll-bar in coordinates convenient for the client. The scroll-bar does almost no
error checking on these coordinates. It is the client's responsibility to ensure that all values are in
range; otherwise strange effects on the screen may occur.

button-pos

(self scroll-bar)

[Reader]

Returns the position of the buttons within the scroll-bar self This value will be one of
:bottom-right, :bottom-left, :top-right or :top-left. The setf buttons
should be used to change this value.

(setf buttons)

(self scroll-bar)
value

[Writer]

This function sets the position of the buttons within the scroll-bar self. Value should be one
of the keywords :left, iright, :top, :bottom, :bottom-right, :bot-
tom-left, :top-rightor :top-left. If : left, :right, :topor:bot-
tom are given, they are mapped into :bottom-right, :bottom-left, :top-
right or :top-left and storedinto the button-pos slot of the scroll-bar as shown:

Argument Stored value

:top

deft-

:right
:bottom

:top-iett

:top-left
:bottom-right
:bottom-right

The scroll-bar is repainted as a side-effect. The value stored is returned.

lower-limit

(self scroll-bar)

[Accessor]

This function retums thelower-limit of the scroll-bar, i.e., theclient coordinate correspond
ing to the top or left of the scroll-bar. This valuemay be setf'd.

11-174 PICASSO Reference Manual

CONTROLS

orientation [Accessor]
(self scroll-bar)

This function retums the orientation of the scroll-bar, either :horizontal or :verti
cal. This value may be setf'd.

slider-location [Accessor]
(self scroll-bar)

This function retums the position of the indicator in client coordinates. This value may be
setf'd.

slider-size [Accessor]
(self scroll-bar)

This function retums the length of the indicator in client coordinates. This value may be
setf'd.

upper-limit [Accessor]
(self scroll-bar)

This function retums the upper-limit ofthe scroll-bar, i.e., the client coordinate correspond
ing to the bottom or right of the scroll-bar. This value may be setf'd.

SCROLL BAR SYNCHRONIZATION

data [Accessor]
(self scroll-bar)

This slot is used by scroll-bar clients to store client information. Typical applications will
store apointer to the client instance in this slot, but the actual stored value is completely up
to the client.

moved-func [Accessor]
(self scroll-bar)

This slot holds aform that is executed when amouse button ispressed within the slider. The
form will beeval'd inalexical environment where ^//evaluates tothe scroll-bar instance.
Typical applications will use the drag-scroll-bar function to aid in implementing dynamic

PICASSO Reference Manual 11-175

CONTROLS

drag. See the description ofdynamic scrolling earlier in this section for details. The default
value for this slot is:

(drag-scroll-bar self nil event)

next-Iine-func [Accessor]
(self scroll-bar)

This slot holds aform that is executed when amouse button is pressed in the down or right
button in ascroll-bar. The form will be eval'd in alexical environment where .ye//evalu
ates to the scroll-bar instance. If the button is held down, the form will be executed repeti
tively until the button is released. See the text near the beginning ofthis section for details.
The default value for this slot is the following form:

(if (<= (+ (slider-location self) 1 (slider-size self))
(upper-limit self))

(incf (slider-location self)))

next-page-func [Accessor]
(self scroll-bar)

This slot holds aform that is executed when amouse button is pressed .in the area below or
tothe right of the indicator inascroll-bar. The form will beeval'd inalexical environment
where ^//evaluates to the scroD-bar instance. See the text near the beginning ofthis section
for details. The default value for this slot is the following form:

(if (<= (+ (slider-location self) (slider-size self)
(slider-size self))

(upper-limit self))

(incf (slider-location self) (slider-size self))
(setf (slider-location self) (- (upper-limit self)

(slider-size self))))

pause-seconds [Accessor]
(self scroll-bar)

When users press and hold the prev-line-button and next-line-buttons in ascroll-bar, the
forms associated with those actions are executed repetitively. In very high performance ap
plications, this can lead to ascrolling rate that is too fast. The value returned by this function

11-176 PICASSO Reference Manual

CONTROLS

sets the delay, in seconds, between successive executions of the form. This value may be
setf'd. Agood value seems to be about 0.1 for high-speed applications.

prev-line-func [Accessor]
(self scroll-bar)

This slot holds aform that is executed when amouse button is pressed in the up or left button
in ascroll-bar. The form will be eval'd in alexical environment where ^//evaluates to the
scroll-bar instance. If the button is held down, the form will be executed repetitively until the
button is released. See the text near the beginning ofthis seaion for details. The default value
for this slot is the following form:

(if (>= (l- (slider-location self)) (lower-limit self))
(decf (slider-location self)))

prev-page-func [fe^
(self scroll-bar)

This slot holds aform that is executed when amouse button is pressed in the area above or
to the left of the indicator in ascroll-bar. The form will be eval'd in alexical environment
where ^//evaluates to the scroll-bar instance. See the text near the beginning of this section
for details. The default value for this slot is the following form:

(if (>= (- (slider-location self) (slider-size self))
(lower-limit self))

(decf (slider-location self) (slider-size self))
(setf (slider-location self) (lower-limit self)))

SCROLL BAR MISC

drag-scroll-bar

(scroll-bar func args)

This function is typically called by the code stored in the moved-func slot of the scroll-bar
for use with dynamic drag. Scroll-bar is ascroll-bar instance,Jbnc is afunction to be called
whenever the scroll-bar changes position, and args are the args of the event that triggered
the function. When the mouse moves, the display of scroll-bar is updated andfunc is called
with two parameters: the scroll-bar and the value stored in the data slot of scroll-bar. At the

PICASSO ReferenceManual
11-177

[Function]

CONTROLS

timeof thecall, theslider-location of scroll-bar contains thenewposition of the slider. This
function returns nil.

vertical-p

(scroll-bar)

[Macro]

This macro retums t if the orientation of scroll-bar is :vertical, otherwise it returns
nil.

SCROLL BAR SUMMARY

11-178

Reader Methods Setf Methods Misc. Methods

button-pos buttons drag-scroll-bar

data data vertical-p
lower-limit lower-limit

moved-func moved-func

next-line-func next-line-func

next-page-func next-page-func
orientation orientation

pause-seconds pause-seconds
prev-line-func prev-line-func
prev-page-func prev-page-func
slider-location slider-location

slider-size slider-size

upper-limit upper-limit

PICASSO Reference Manual

IMAGES

12

IMAGES

Overview

Images are color or black-and-white rectangular representations of pictures. Picasso Displays im
ages through the image-gadget. Chapter 3 describes image resources in detail.

Picasso displays images usingthe following widgets:

• Image Gadget

Image Gadget

An image gadget allows the user to display bitmap images. Image gadgets are a subclass of gad
gets,and thus inherit gadgets keys and methods. The following function canbe used to create and
return an image gadget:

make-image-gadget [Function]
&key
(src-x 0)

(src-y 0)
(src-width nil)
(src-height nil)
(bitmap-p nil)
(horiz-just: center)
(vert-just : center)

;; defaults overridden from superclasses
(name "A Gadget")
(status : exposed)

PICASSOReference Manual 12-179

IMAGES

;; Plus keys inherited from windows
&allow-other-keys

Image gadgets inherit several otherkeys of interest from the windows class, all of which are
described in Chapter 2 onWindows. Some of the more notable keys include value, x-offset,
y-offset, width, height, and geom-spec. The image displayed by the image-gadget can spec
ified by the value key. x-offset and y-offset specify the x and y offsets, respectively, of the
image-gadget from the upper left comerof its parent, width and height specify thewidth and
height of theimage gadget, geom-spec isdiscussed inmoredetail in theCollections chapter.

ATTRIBUTES

src-x [Accessor]

(self image-gadget)

Specifies the x coordinate of the origin of the image. Of type integer, default 0 (left edge
of image).

src-y [Accessor]

(self image-gadget)

Specifies the y coordinate of the origin of the image. Of type integer, default 0 (upper
edge of image), andsrc-y is used to specify the origin of the image,

src-width [Accessor]

(self image-gadget)

The width of the image in pixels. Of type integer, default nil. If src-height and
src-width arenot set, then the entire image below and to the right of the origin is used;
otherwise the portion src-height below andsrc-width across the imageis used.

src-height [Accessor]
(self image-gadget)

The height of the image in pixels. Of type integer, default nil. If src-height and
src-width are not set, then the entire image below and to the right of the origin is used;
otherwise the portion src-height below and src-width across the imageis used.

I2-!80 PICASSO Reference Manual

IMAGES

bitmap-p [Reader]

(self image-gadget)

Specifies if the image is a bitmap (vs. pixmap) image, defaultnil.

horiz-just [Accessor]
(self image-gadget)

The horizontal justification of the image, and is one of :center, :left, or :right. Of
type keyword, default : center.

vert-just [Accessor]
(self image-gadget)

The vertical justification of the image, and is one of :center, :top, or :bottom. Of
type keyword, default : center.

value [Accessor]
(self image-gadget)

Sets the image displayed byselfto value. Automatically repaints selfin order to update the
image displayed.

EXAMPLE

The following specifies the display of the upper-right quarter of a100 pixel-square image next to
the lower-right quarter of another 100 pixel-square image.

(children

' ((picture

(make-collection-gadget
:size ' (100 100)

:gm 'rubber-gm
:children

' ((shown-on-the-left

; upper-right quarter of image
(make-image-gadget
rvalue (make-image :file "image.bitmap")
:src-x 50

:src-height 50

PICASSO Reference Manual 12-181

IMAGES

:geom-spec '(.05 0 .40 .75 reenter)))

(shown-on-the-right
; lower-right quarter of image
(make-image-gadget

rvalue (make-image rfile "image.bitmap")
rsre-x 50

rsrc-y 50

rgeom-spec '(.55 0 .4 .75 reenter))))))))

In this example, the image displayed is taken from the file image. bitmap. The portion of the
image displayed on the left is centered at an x-offset of 5 pixels and a y-offset of 0 pixels from
the upper left comer of its 100 pixel-wide parent, and occupies 40% of the width and 75% of the
height of the parent. The portion of the image displayed on the right is centered at an x-offset of
55 pixels and a y-offset of 0 pixels from the upper left comer of its parent, and occupies 40% of
the width and 75% of the height of the parent.

IMAGE GADGET SUMMARY

12-182

Reader Methods Setf Methods

sre-x sre-x

src-y

src-width

src-y

src-width

src-height
horiz-just

src-height
horiz-just

vert-just

x-offset

vert-just
x-offset

y-offset
width

y-offset
width

height height
geom-spec

value

geom-spec

value

PICASSO Reference Manual

MENUS

13

MENUS

Overview

Picasso supports pull-down and pop-up menus as well as tear-off menu panes. This chapter de
scribes the use of the Picassomenu system. An example of a Picasso menu bar is:

g^«»»»»^«w»»^:«»ww>«»w»w>:«v»:»:« VMvWMWwvwwwwvMywwvv

i [X] Picasso Tool

Picassoiii!

!gwwww,W)IWH'W|yW^^

The chapter is organized as follows:

• Menu bars

• Menu entries

• Menu panes

• Menu buttons

• Menu interaction techniques: pull-down, pop-up, and tear-off menus.

• Implicit menus: defining menus in frame, panels,and pop-buttons

Menu Bars

Menu barsare a subclassof collection gadgets, thus they inheritkeys andmethods from collection
gadgets. The following function can be used to create and return a menu bar.

PICASSO Reference Manual 13-183

MENUS

make-menu-bar [Function]
&key

;; defaults overridden from superclasses
(base-height 40)
(geom-spec :top)
(gm ' just-pack-gm)

;; Defaults inherited from collection-gadgets:
(name "A Collection")
(value "Collection")
(children nil)
(repack-flag nil)
(repack-needed nil)
(conform : grow-shrink)

;; Plus keys inherited from gadgets
&allow-other-keys

Menu bars inherit their attributes from collection gadgets (see Chapter 7 onCollections). No
new attributes are defined for menu bars.

The following macro can beused to determine if an object is amenu-bar object.

menu-bar-p [Macro]
object

Retums true if object is amenu-bar object, nil otherwise.

Menu Entries

Menu entries are implemented as synthetic gadgets. The following can beused to create aand re
turn a menu entry:

make-menu-entry [Function]
&key
(left nil)
(center nil)
(right nil)
(left-font nil)
(center-font nil)

13-184 PICASSO Reference Manual

MENUS

(right-font nil)
(font (get-font))
(code nil)

(dimmed nil)

(,yfcz?M.snil)
(left-status nil)
(center-status nil)
(ng/ir-.yfcmtfnil)
(parent nil)
&allow-other-keys

A menu entry has a left, center, and right component. The entry name is displayed in the
center component. The left and right components can be used to display additional informa
tion about theentry. Forexample, a menu entrymightrepresent an optionthat is seleaed or
not selected, and a check mark can be displayed in the left component of the menu entry to
indicate that it is selected. Another example might be a walking menu, which could be in
dicated by an arrow in the right component of the menu entry.

Optional arguments can be given after the menu entry code to specify: 1) the entry font
(: font); 2) whether the entry is inactive (: dimmed); and 3) values for the left and right
components (: left and : right). The font for the left and right components can be dif
ferent than the font for the center component by overriding the : font argument with
:left-font and :right-font arguments. :status is one of :concealed or
: exposed.

MENU ENTRY EXAMPLE

Forexample, the following specification describes afont menu for a simple text editor that displays
font names, font sizes, and type faces:

("Font"

("Times" (set-font #!timesl0)

rfont #!times12

rright "10"
rright-font #!helvl2)

("Helvetica" (set-font #!helvl2)

rfont #!helvl2

rright "10")

("Normal" (set-typeface 'normal)

rleft #!check-mark

PICASSO Reference Manual 13-185

MENUS

rfont #!helvl2)

("Bold" (set-typeface 'bold)

rfont #!helvl2))

Assuming that the Picasso variables #! timeslO, #! timesl2, # !helvl2, and #! check
mark exist and are bound correctly, this menu entry specification defines four menu items: two
font names and theirsizes (Times and Helvetica), and two type faces (Normal and Bold).
The font names are displayed in the font itself,and the font size is displayed in theright component
in a standard font (helvetica 12). The type faces are displayed as entries with acheck mark for the
seleaed type face (initially Normal).

The funaions set-font and set-typeface change the font and typeface, respectively,
set-type face turns off the check mark in the current menu entry and turns on the check mark
in the selected menu entry.

Noticethatthe :right - font didnothaveto be setto helvetica12 forthe "Helvet i ca" entry
because the : font argument is already set to helvetica 12.

MANAGING MENU ENTRIES

Menu entries are implemented as synthetic gadgets. The following are provided to manage menu
entries:

menu-entry-p [Macro]

self

Retums t if self is a menu entry.

set-me-parent [Function]

self
pane

(setf me-parent) [Function]
pane

(self list)

Adds selfto menu pane pane.

13-186 PICASSO Reference Manual

MENUS

me-left [Function]
self

The :left component of self. This value can be setf'd, oruse (set-me-left self
pane).

me-center [Function]

self

The : center component of self. This value can be setf'd, or use (set-me-center
selfpane).

me-right [Function]
self

The :right component of self. This valuecanbe setf'd, or use (set-me-right self
pane).

me-font [Function]
self

The : font of self. This value can be setf'd, oruse (set-me-font selfpane).

me-dimmed [Function]
self

The :dimmed of self. This value can be setf'd, oruse (set-me-dimmed selfpane).

show-menu-item [Function]
self

Sets the :exposed of selfto t.

hide-menu-item [Function]
self

Sets the :exposed of selfto nil.

PICASSO Reference Manual 13-187

MENUS

Menu Panes

Menu panes are made up of menu entries. Menu panes are a subclass of collection widgets, thus
they inherit keys and methods from the collection widget class.

MENU PANE CREATION

make-menu-pane [Function]

&key
(tearable t)

(center-left-justified nil)
(ptab nil)
(menu nil)

(synths nil)

;; defaults overridden from superclasses
(name "A Menu Pane")
(parent (root-window))

(status : concealed)
(gm 'menu-gm)
(width-increment 0)
(height-increment 0)
(conform : grow-shrink)
(event-mask ' (: enter-window : leave-window

.button-press .'button-release

.pointer-motion .'visibility-change))
(attach-when-possible t)
(background nil)
(border-width 0)

;;Plus keys inherited from collection-widgets
&allow-other-keys

13-188 PICASSO Reference Manual

MENUS

ATTRIBUTES

P [Accessor]
(self menu-pane)

Used to specify apixel table that maps ascreen position to amenu entry. Of type vec-
torP, default nil.

center-left-justified [Accessor]
(self menu-pane)

Specifies whether the menu center column is left justified. Oftype atom, default nil.

menu [Accessor]
(self menu-pane)

The pointer from menu-pane back to its parent menu-button. Oftype menu, default nil.

svnths [Reader]
(self menu-pane)

Menu pane entries, which are implemented as synthetic gadgets.

tearab,e [Accessor]
(self menu-pane)

Whether ornotthe menu-pane is atearable menu. Tearable menus are described below un
der "Menu Interaction Techniques". Of type atom, default t.

MANAGEMENT

menu-pane-p [Macro]
object

Retums true if objectis amenu-pane object, nil otherwise.

PICASSO Reference Manual 13-189

MENUS

num-cells [Method]

(selfmenu-pane)

The number of menu entries in menu-pane.

Menu Buttons

Menu buttons implement pull down menus automatically. Menu buttons are a subclass of gray but
tons, thus they inherit keys and methods from gray buttons. The following function creates and
retums a menu button.

make-menu-button [Function]

&key
(menu nil)

(bring-back nil)

;; defaults overridden from superclasses
(/wif "8x13")
(border-width 1)
(invert-width 3)

;; Plus keys inherited from gray-buttons
&allow-other-keys

ATTRIBUTES

menu [Accessor]

(selfmenu-button)

The pointer from menu-button to its child menu-pane. Of type menu-pane, defaultnil.

bring-back [Accessor]

(selfmenu-button)

Whether menu-button is invisibleor not. Of type atom, defaultnil.

13-190 PICASSO Reference Manual

MANAGEMENT

menu-button-p

object

Retums true if object is a menu-button object, nil otherwise.

Menu Interaction

MENUS

[Macro]

Three menu interaction techniques are provided in Picasso, including tear-off, pull-down menus,
and pop-up menus.

A menu pane can be specified as tearable by setting : tearable to t when it is created. Right
buttoning on a tearable menu causes it to tear off.

A menu pane can be aaivate as a pull-down menu by using the following function:

activate-pull-down-menu

pane menu-button event

Activate pull down menu pane when menu-button receives event event.

A menu panecanbe activated as a pop-up menu by using the following function:

activate-pop-up-menu

pane event

Activate pop up menu pane when menu-button receives event event.

Implicit Menus

[Function]

[Function]

Implicit menus can be defined in frames and panels by using the optional menu clause, and in pop-
buttons by using the :menukey. The menu bar ofthe frame, panel, orpop-button is defined by a

PICASSO Reference Manual 13-191

MENUS

menu-bar-spec which is a list of menu pane specifications. Each menu pane has a name, an op
tional documentation string, anoptional list of control arguments, and a list of menu entries (i.e.,
menu operations) that the usercan execute. A menu entry specifies the entry name and the code
to be executed when the user selects the entry.

Optional arguments can be specified to control the look and behavior of menu panes and entries.
Arguments to the pane are specified before the list of menu entries. Pane arguments can specify
options such asthe font to use forthe name,whether the pane is active(i.e., responsive to userse
lection), and whether the pane can be torn off.

If a pane is declared inactive, the nameof the inactive paneis dimmed to provide feedback to the
user that the pane is inaaive; moreover, the panewill not pop-up when seleaed with the mouse.
Tear off menus can be retained on the screenby right buttoning, and menu panes behave like any
other window.

MENU EXAMPLE

For example, a menu pane specification for a simple text editor in an edit frame might be:

(defframe ("editor" "demo" . "frame")

"example of implicit menu pane specification"
(menu (("Edit" "Edit Selection"

rtear-off

("Cut" LISP-form)

("Paste" LISP-form)
("Copy" LISP-form)
("Search" LISP-form))

(("File" "File operations"
r dimmed

("Load" LISP-form)

("Save" LISP-form)

("File List" LISP-form))))

and a similar specification in a pop-button might be:

13-192 PICASSO Reference Manual

(make-pop-button

ritems * (("Edit" "Edit Selection"
rtear-off

("Cut" LISP-form)
("Paste" LISP-form)
("Copy" LISP-form)
("Search" LISP-form))

(("File" "File operations"
r dimmed

("Load" LISP-form)
("Save" LISP-form)
("File List" LISP-form)))

MENUS

^Z11" T6 Specmcations both define *™ nienu panes. The Edit menu pane is atear-off
S^oST.T1 entnes t0 cut'paste'copy'or search for text- ™e Fil* menu P« Jcurrently dimmed, and contains entries to load, save, or list files.

PICASSO Reference Manual
13-193

MENUS

13-194 PICASSO Reference Manual

TABLES

14

TABLES

Overview

It is often desirable todisplay data in atabular format. For example, adeveloper whocreates atool
that uses a relational database might want to provide an interface abstraction for a relation as a
table. At other times, users want to browse through large amount of data that is hierarchically or
ganized. An example of a table, abrowse-widget, is shown below:

Class

Annealer

Bonder

Developer

Etcher

Evaporator

Furnace^
Measuring

Misc

II

iffTff &\vt^£fy:w*\\\vwni.iWivMKw

Make Instance

wvi'&WfflillhT&tilli'iUtt^

The widgets described inthis chapter are used todisplay data intabular format. Theyvary inpower
and ease of use - table-fields have the greatest flexibility, buttheyalso require theuser to specify
the most options. In contrast, list-boxes are less flexible, but are very easy to use.

The types of controls implemented in Picasso are:

• Browse-Widgets - used for browsing hierarchical data.

• Matrix-Fields - used for displaying and editing an array of data with arbitrary elements
• Table-Fields - a matrix field with optionallabels and scroll-bars.

• List-Boxes - used for displaying a single row or column of data.

PICASSO Reference Manual 14-195

TABLES

Browse Widgets

Browse-widgets allow the userto browse through a list of objects in a hierarchical manner. For
example, consider browsing a list of objects that have department, course and section slots. A
browsewidget for this list would contain three tables, arranged left to right. Initially, the first table
would contain a sorted list of all the departments, the second and third tables would be blank.
When the user selects a department by buttoningwith the left mouse button, the second table fills
in with alist of all the course nameswithin thatdepartment. If the user selects acourse, the third
table lists all the seaions of that course. In this way, a user may browse ahierarchal data structure.

The user may also view the contents of more than one subtree of the hierarchy at a time. In the
example below, a browse-widget with two tables is shown. In the left table, "Edouard Monet" has
been seleaed, andthe secondtablereflectsalist ofhis paintings. The usercannow view the paint
ings of both the *'Edouard Monet" and "Edgar Degas" at one time. To extend the selected paint
ings, the user, using the right mouse button, selects "Edgar Degas" from the left table. The right
table will contain a list of the paintings of both artists-

Browsewidgets communicate with otherwidgetsby usingthe selection slot in the browsewidget.
At any time, this slot (which is initiallynil) contains the subsetof objeas thatthe useris viewing.
In the example above, this slotwould contain a list of all courses in the math and english depart
ments.

Browse-widgets also have a notion of the current-selection, which is a list of items that have been
fully specified by the user. The user selects these when they button in the rightmost table of the
browse-widget.

14-196 PICASSO Reference Manual

TABLES

CREATION

Browse widgets are asubclass of colleaion widgets, thus they inherit keys and methods from col-
leaion widgets. The following function creates and returns abrowse widget:

make-browse-widget rE. . ,
b [Function]

&key
(title-font (make-font))
(col-widths nil)
(font (make-font))
(sort-keys nil)
(data nil)

;; defaults overridden from superclasses
(event-mask ' (: exposure :button-press))
(gm ' rubber-gm)
(name "A Browser")

;; Plus keys inherited from collection-widgets
&allow-other-keys

Creates and retums abrowse widget.

ATTRIBUTES

data
[Accessor]

(self browse-widget)

The list ofobjects currently viewable within the browse-widget.

sort-keys
[Accessor]

(self browse-widget)

Alist of cons cells, one cons cell per column in the browse-widget. The car of each
cons cell is astring label for its column, and the cdr is areader function for the object
which should return astring. In the example given at the beginning ofthis seaion, the value
ol the sort-keys argument should be:

(list (cons "Department" #'dept)

PICASSO ReferenceManual
14-197

TABLES

(cons "Course" #'course)

(cons "Section" #'section))

column-widths [Accessor]
(selfbrowse-widget)

A list ofnumbers giving the relative widths ofthe columns. If not supplied, the relative
widths ofthe columns will be determined the same as the relative lengths ofthe labels of
each column.

font [Accessor]
(selfbrowse-widget)

The font to use in displaying the itemsin the table

title-font [Accessor]
(selfbrowse-widget)

The font to be used for displaying the column labels. Theseshould be fixed-width fonts.

BROWSE WIDGET SYNCHRONIZATION

se,ection [Method]
(selfbrowse-widget)

This method retums the list of objects currently seleaed by the user. This list contains all
objects that match the users specification, including partial matches. In the department-
course-seaion example, ifthe user has seleaed the' 'math" department, this slot would con
tain alist ofall courses in the data slot that were in the ' 'math'' department.

current-selection [Method]
(selfbrowse-widget)

This method retums the list ofobjects currently fully specified by the user. Only those ob
jects for which the user has specified avalue in the last column will be part ofthis list.

14-198 PICASSO Reference Manual

BROWSE WIDGET SUMMARY

Attributes Methods

data current-selection

col-width selection

sort-keys
font

title-font

Matrix-Field

TABLES

Table-fields (or just tables) and matrix-fields (or just matrices) are designed to display data which
is intrinsically tabular (i.e., canbe organized into rows andcolumns) in structure. Matrix-fields (or
just matrices) are the "bare-bones" of the Picasso table-field. A table in Picasso is merelyacon
tainer for amatrix, so most of learning how to use tablesis figuring out matrices.Matrix-fields are
very powerful and versatile, but they can be rather complex and creating/managing them can be
difficult at first. Thekey realization isthat, though there are somany options, sufficiently powerful
matrices can be created/managed employing only a small subset of the options. An example of a
matrix-field, taken from a table-field, is shown below:

Xto8**X>BI>'H>nM*Sf*#l?^^

The Bridge at Langlois Van Gogh

PICASSO Reference Manual 14-199

TABLES

DISPLAY FORMAT

The matrix-field displays a 2-dimensional array of data in a 2-dimensional array of fields. The
mapping between data and fields need not be one-to-one, as there may be more data objects than
fields.

Note: Matrix-fields do not support dynamically changing the number of rows or columns dis
played. However, the data displayed in the matrix field can easily be changed (see section on data
management).

CREATION

On instantiation, a matrix-field creates

(1) an array of data (if the data is not already in an array format)

(2) an array of fields

(3) a matrix-fieldfor columntitles (optional)

(4) a matrix-field for row titles (optional)

(5) a cache of scrolling functions (for optimization)

(6) other stuff (to be discussed later)

The first two of these have alreadybeen discussed. Items (3) & (4) may or may not be used (even
if they are created). The columns titles are of dimension (1 rows) and the row-titles are of dimen
sion (1 columns), where the whole matrix (without titles) has dimension (rows columns). The col
umn and row title matrices can be accessed through the methods row-title-matrix and
col-title-matrix described above. Item (5) is just a cache of functions to use for scrolling
up, down, left, and right. Depending on whether the rows/columns of fields are of uniform
height/width (respectively), different scrolling functions are more efficient than others. The deci
sion and cache is made at instantiation and both are updated if necessary whenever the base-size
of a field in the matrix changes.

The creation options to matrix-field are somewhat intricate,but they allow for a range of different
types of matrices to be created (many quite easily). The tricky part is specifying what types of
fields are to be displayed in the matrix. The default field-type is the synthetic gadget which is just
an un-editable displayer of an arbitrary data item (e.g., string, image, etc.). In the default case, the
col-widths and row-heights may be usedto tailor the sizes of the fields in the matrix. Syn
thetic gadgets are used unless either : row-elements or : col-elements is specified. Fol
lowing is a briefdescription of thenon-standard creation options.

14-200 PICASSO Reference Manual

TABLES

make-matrix-field [Function]
&key
(inter-row-pad 3)
(inter-col-pad 3)
(row-index 0)
(col-index 0)
(data nil)

(data-rows 0)
(data-cols 0)
Crows nil)
fctffonil)

(data-rows rows)
(data-cols cols)
(data-array-size (list (num-rows dara) (num-cols data)))
(overflow-increment 5)
(grid-lines t)
(row-elements nil)
(col-elements nil)
Trow-togJttt 40)
(a>/-u>z<if/wl00)
(initial-rows nil)
(initial-cols nil)
(/o/ir (default-font))
(rif/ej nil)
fa?/-fzf/ejnil)
frou'-rif/Vj nil)
(default-titles t)
(row-title-width 100)
(col-title-height 40)
(row-title-elements nil)
(col-title-elements nil)
(row-title-font (de f au11- font))
(col-title-font (de fault - font))
(self-adjustable nil)
(selection : entry)
(current-indices nil)
(select-func nil)
(unselect-func nil)
(unique-selection nil)
(row-title-selectable nil)
(col-title-selectable nil)
(editable nil)
(editable-row-titles nil)

PICASSOReference Manual 14-201

TABLES

(editable-col-titles nil)
(return-func nil)
(just : center)
(horiz-just : center)
(vert-just : center)
(field-table nil)
(free-nomad nil)

;; Pluskeys inherited from collection-widgets
&allow-other-keys

Creates and retums amatrix field. Matrix fields are asubclass ofcolleaion widgets, and thus
inherit keys and methods from collection gadgets.

ATTRIBUTES

inter-row-pad [Accessor]
(self matrix-field)

The space (in pixels) betweeneach row. Default 3.

inter-col-pad [Accessor]
(self matrix-field)

The space (in pixels) between each column. Default 3.

row-index [Argument]
(self matrix-field)

The index into the data that should be displayed in the top visible row ofthe matrix. See
above note on display format of a matrix. Default 0.

coMndex [Accessor]
(self matrix-field)

The index into the data that should be displayed inthe top visible column ofthe matrix. See
above note on display format of a matrix. Default 0.

14-202 PICASSO Reference Manual

TABLES

data [Accessor]
(selfmatrix-field)

The data to be displayed in the fields ofthe matrix. Data may be specified in either one of
three ways:

(1) As a list of data items

(<rowl> <row2> <row3> . . .)

where each row is a list of data items. This can also be seen as

(<rowl>

<row2>

<row3>

• • •)

(2) A two dimensional array, inwhich the first dimension is the rows, the second is the
columns.

(3) A pgclos portal.

The default is an array (rows cols) of nil.

data-rows [Accessor]
(selfmatrix-field)

The number of rows of data from the data-table to be used in the matrix.

data"cols [Accessor]
(selfmatrix-field)

The number of columns of data from the data-table to be used in the matrix.

rows

(selfmatrix-field)
[Reader]

The total number ofrows offields (not all are necessarily displayed at the same time). The
default is determined dynamically based on others args.

PICASSO Reference Manual 14-203

TABLES

cols [Reader]
(self matrix-field)

The total number of columns of fields (not all are necessarily displayed at the same time).
The default is determined dynamically based on others args.

data-rows [Accessor]
(self matrix-field)

The number of rows of data from the data table to be used in the matrix. The default is all
rows.

data-cols [Accessor]
(self matrix-field)

The number of columns of data from the data table to be used in the matrix. The default is
all columns.

data-array-size [Argument]

An initial argument only. If specified, alist (rows columns) specifying how large the initial
data-array should be. :data-array-size is useful if an initial :data is specified and
the data is expected to grow. The default is the size of data.

overflow-increment [Accessor]
(self matrix-field)

The increment by which to "grow" the data-table if it should over-flow (bymeans of insert-
row/col operations). If nil, table can't grow. The default is 5.

grid-lines [Accessor]
(self matrix-field)

Draw dotted lines between rows & columns if non-nil.

I4"204 PICASSO Reference Manual

TABLES

row-elements, col-elements [Argument]

Initial arguments only. A listof expressions which maybeevaluated individually to actually
create the fields that should constitute the elements of each row/column of the matrix.

Only one of row-elements orcol-elements should be specified, or one will be ig
nored.

For example:,

rrow-elements

(rbase-height 20 rfont "8x13" reditable t)

(make-check-widget rbackground "green")

(rbase-height 50 runselectable t)

(make-gray-button rbase-height 20))

creates a matrix in which the first row is all meter-widgets, the secondrow consists of syn
theticwidgets, the thirdrow of check-widgets, the fourth of synthetic gadgets, and the fifth
of gray-buttons. The first and fourth rows of the matrix are unselectable. An unselectable
field cannot become acurrent-field of the matrix. The :value should generally notbespec
ified by any of these expressions asthe value will only be overridden in the matrix. A non-
editable matrixrow/column is typicallymadeby specifyingone of the row/col-elements to
be a gadget of some sort (either real or synthetic). All fields in a matrix are selectable by
default, unless either themf-selectable slot of thewidget isnil, orthekeyword :un
selectable is specified with value t in any of the fields of the row/col-elements
(see above example).

If used in association with : rows or :row-heights, the matrix will create how ever
many rows are specified and reuse the lastrow-element for anyremaining rows not speci
fied by a :row-elements. This allows creation of a table of unseleaable synthetic gad
gets by means of:

(make-matrix-field

rrow-elements '((runselectable t))

rrow-heights '(30 60 10 20 30 40 50 29)

rfont "8x13")

Creation, scrolling, and resizing timebecome major bottlenecks with large matrices. Hence,
we have invented things called synthetic fields which mimic real fields (widgets and gad
gets) but with real time behavior. Timings indicate that a table can be speeded up by be-

PlCASSO Reference Manual 14-205

TABLES

tween 1000 and 2000 percent by using synthetic fields instead of "real" ones. A synthetic
widget can be created using the :editable keyword in either the : col-elements or
: row-elements. Basically, a synthetic field is a synthetic widget if it's editable, a syn
thetic gadget if it's not. Synthetic widgets have the property that whenever you select one,
a real widget jumps to replace it on the screen(and disappears when it is no longer current).
Thus, insteadofcreating widget forevery place in the matrix (225 entries for a 15x15table)
we are now creating only one (called a nomad-widget). This explains the enhanced perfor
manceof matrices with synthetic fields. Synthetic widgetsandgadgets candisplay (and edit)
simpledata-items considerably faster than any real widget/gadget. Users are strongly urged
to use synthetic fields in place of text widgets and gadgets. The default is synthetic gadgets.

row-heights, col-widths [Argument]

Initial arguments only, an integer or list specifying the heights/widths of eachrow/column
in the matrix. The defaults are 100 for rows, 40 for columns.

initial-rows, initial-cols [Argument]

Initial arguments only, the numberof rows/columns of fields to be displayed initially in the
matrix. The defaults are the total number of rows/columns that fit.

font [Accessor]

(self matrix-field)

The font of all synthetic widgets/gadgets in the matrix.

titles [Argument]

Imtial argument only, usedto specify alist of data to display in the column-titles.

col-titles [Accessor]

(self matrix-field)

A list of data to display in the column-titles, default nil. Column titles are displayed adja
cent to every column, in separate matrix fields that scroll synchronously with the matrix.
This value can be set f'd only if the matrix-field is created with a col-title.

row-titles [Accessor]

(self matrix-field)

A list of data to display in the row-titles, default nil. Row titles are displayed adjacent to
every row, in separate matrix fields that scrollsynchronouslywith the matrix. This value can
be setf'd only if the matrix-field is created with a row-title.

14-206 PICASSO Reference Manual

TABLES

default-titles [Argument]

Initial argument only, If t, :col-titles are not specified, and :data is aportal, then
default column titles will be created consisting of the names of all the fields of the relation
(designated by the portal).The default is t.

row-title-width, col-title-height [Argument]

Initial arguments only. The widths/heights of all fields in the row/col-titles.

row-title-elements, col-title-elements [Argument]

Initial arguments only.Can be used to specify thetypes of fields to be used in therow/col
umn titles. Format isthe same as for :row/col-elements. The default is synthetic gad
gets.

row-title-font, col-title-font [Argument]

Initial arguments only, may be used to set the font of the row/col-titles. The default is
"8xl3bold".

self-adjustable [Argument]

Initial argument only. If t, the fields will automatically adjust tomeet their base-sizes. This
can benice, but it slows things down somewhat and itmakes the table change considerably
whenever the values displayed change considerably (i.e., if along string is suddenly scrolled
into view). The default is nil.

selection [Accessor]
(self matrix-field)

Determines what type of selection protocol touse. Possible values include :entry (select
any data-item), :row (select any row), :col or :column (select any column), and nil
(selection is disabled).

The default is :entry.

unique-selection [Argument]

Initial argument only. If passed with a value of t, all button clicks will invoke the handler
select-unique and multiple field selections will be disabled. The default is nil.

row-title-selectable, col-title-selectable [Argument]

Initial arguments only. If non-nil, row/column titles can be selected (marked current). The
default is nil.

PICASSO Reference Manual 14-207

TABLES

editable [Argument]

Initial argument only. The default editable attribute for synthetic fields specified in : row/
col-elements. For example,

(make-matrix-field

rrows 5

rcols 2

reditable t)

creates amatrix consisting entirely of synthetic widgets (each field can be independently ed
ited). The default is nil.

editable-row-titles, editable-col-titles [Argument]

Initial arguments only; same as .'editablebut for row/column titles. The default is nil.

current-indices [Accessor]

(self matrix-field)

A list of all the indices of the data-items that are currently seleaed. When selection is
:entry, the format of current-indices is: ([row column]*), where each row and column are
the row and columnoffsets of the data-item intothe data-array, for example:

(setf (current-indices mf)

'((3 0) (52 37)))

The data-item itself canbe obtained by passing row and column to mref.

In the case of row-selection or column-seleaion, current-indices has the form: ([index]*)
where each index corresponds to onerow orcolumn of data, forexample:

(setf (current-indices mf)

'(0 7 3 87 24))

14-208 PICASSO Reference Manual

(setf (current-indices mf)

' (2))

TABLES

The current-indices accessor should be used whenever the list of current items needs
to be changed.

return-func [Accessor]
(self matrix-field)

An expression to beexecuted whenever the return key is pressed in a synthetic widget; ac
tually the return-func of the nomad-widget. The default is nil.

select-func [Accessor]
(self matrix-field)

The expression to execute whenever current-indices has been changed and the cur
rent-fields have been updated. The expression is executed with the following lexical envi
ronment: selfis the matrix-field, and event is the new current-indices.

unselect-func [Accessor]
(self matrix-field)

The expression toexecute whenever current-indices has been changed but before the
current-fields have been updated. The expression isexecuted with the following lexical en
vironment: selfis the matrix-field, and event is the new current-indices.

Just [Argument]

Initial argument only. Specifies the default justification (horizontal and vertical) of every
synthetic gadget in the matrix. The default is : center.

horiz-just, vert-just [Argument]

Initial arguments only. Specifies the default horizontal/vertical justification ofevery syn
thetic gadget in the matrix. The defaults are : center.

field-table [Accessor]
(self matrix-field)

The table of fields to display in the matrix. Usually not specified (do not specify unless you
know exactly what you're doing) Any type of Picasso gadget or widget can be a field in a
matrix. In addition, synthetic gadgets or synths can be used as fields in amatrix. It is usually
agood idea to use synths instead ofreal widgets/gadgets because matrices are highly opti-

PlCASSO Reference Manual 14-209

TABLES

mized in the use of synths. See the section on creation for more information on fields. The
default is constructed at run-time.

free-nomad [Accessor]

(selfmatrix-field)

If non-nil, the nomad-widget is set to be a child of the root-window. The nomad-widget is
the editable widget that pops up whenever an editable synthetic gadget (a synthetic widget)
is edited.

DISPLAY MANAGEMENT

visible-rows [Accessor]

(selfmatrix-field)

The number of rows of fields that are currently visible. Unless explicitly set, visible-rows
will be the maximum that fit into the area occupied by the matrix (see matrix-gm for more
information).

visible-cols [Accessor]
(selfmatrix-field)

Thenumber of columns of fields thatarecurrently visible. Unless explicitly set,visible-cols
will be the maximum that fit into the area occupied by the matrix (seematrix-gm for more
information).

row-title-matrix [Reader]
(selfmatrix-field)

A matrix-field through which row-titles are displayed.

col-title-matrix [Reader]
(selfmatrix-field)

matrix-field through which col-titles are displayed.

14-210 PICASSO Reference Manual

TABLES

DATA MANAGEMENT

Aspreviously mentioned, matrices coordinate two tables: the field-table and the data-table.
The following additional accessors can be used to set and retrieve attributes concerning the data-
table.

"""^ [Function]
matrix-field
row

column

Used in amanner similar to aref to access data elements from the matrix a-matrix-field, and
is settable. The expression:

(mref matrix-field row col)

is equivalent to the expression:

(aref (data matrix-field) row col)

However, the expression:

(setf (mref matrix-field row col) new-val)

Does the corresponding aref in addition to updating the output of the matrix to reflect the
new data value. This funaion and setf should be used whenever individual data objeas need
to be altered. Updating the output of the matrix can be disabled by turning off the re
paint-flag ofthe matrix (but make sure you turn it on again when you're through). For
example,

(mref mf (row-index mf) (col-index mf))

retumsthe data objectdisplayed in the upper left comerof the matrix.

There are two methods which indicate how much data from the table should be used.

PICASSO Reference Manual 14.2U

TABLES

There are a few other utilities to handle keeping the data consistent with the fields:

mf-sync-data [Method]
(self matrix-field)
row

column

Update the field (if any) corresponding to the specified row and column of the data. This
funaion is not needed ifmref is used.

mf-sync-row [Method]
(self matrix-field)
row

Update the fields (if any) corresponding to the specified row of data. This function is not
needed if mre f is used.

mf-sync-col [Method]
(self matrix-field)
column

Update the fields (if any) corresponding to thespecified column of data. This function isnot
needed if mref is used.

mf-sync-field [Method]
(self matrix-field)
field

Update the field with the data-item (if any) at the corresponding index into the data.

mf-propagate-field [Method]
(self matrix-field)
field

Update the data-item corresponding to the field with the current value of the field.

mf-propagate [Method]
(self matrix-field)

Update all fields in the matrix with their corresponding data-items.

I4"2!2 PICASSO Reference Manual

TABLES

CURRENT INDICES

Anynumber of data-items in amatrix can be selected or made current. If acurrent data-item is
currently viewable through a field in the matrix, that field will be marked witha dark border to
indicate that it is displaying acurrent data-item. Notice that it is not the field that is marked, but
the data item (a particular data-item may be displayable through any one of several fields in the
matrix). Matrix-fields are set up such that only one field can receive input-events (except expo
sures) at atime. The field, if any, that is currently receiving input events may be accessed by the
current-field method in the matrix.

Matrices can be configured to select based on entry, row, or column. By default, amatrix selects
by entry. With entry-selection, any individual data-item can be seleaed. With row-selection or
column-selection, awhole row or column is selected at atime. Fields can only be edited in entry-
selection mode.

Amatrix will not allow the selection ofafield which does not have acorresponding data-item. For
instance, if amatrix is created without any data, the matrix will be unselectable. It is possible to
make the matrix believe that it has data by setting the data-rows and data-cols of thematrix to
positive values (e.g., the number of rows & and columns of the matrix).
The following are relevant methods:

current-value [Reader]
(self matrix-field)

The data-object corresponding to current-indices. Only applicable when current-in
dices has onlyone entry and selection is :entry.

current-values [Reader]
(self matrix-field)

The data-objeas corresponding to current-indices. Only applicable when selection is
: entry.

current-fields [Reader]
(self matrix-field)

Lists of fields currently displaying data-items (may include synths).

current-field [Reader]
(self matrix-field)

Field currently active. If a field is receiving input, it is current-fieId.

PICASSO Reference Manual 14.213

TABLES

add-current

index-spec
matrix-field

[Function]

Adds index-spec to current-indices and selects the corresponding field (if any), in
dex-spec should be list of (row col) if selection is :entry, else a number indicating the
row or column to be made current.

delete-current

index-spec
matrix-field

[Function]

Removes index-spec from current-indices and deselects the corresponding field (if
any), index-spec should be list of (row col) if selection is :entry, else a number indicat
ing the row or column to be made not current.

changed-indices

(self matrix-field)

[Reader]

A list of indices corresponding to data-objects that have beenchanged via user editing oper
ations.

It is often useful forthe application to be notified when the current - indices of amatrix have
been changed. Hence, the following accessor is useful:

In addition to beingaccessible from the level of programmer, the current-indices are acces
sible to the user via the following handlers:

Handler Default Mapping
select-unique

select-multiple
swap-rows

swap-cols

(:button-press :detau :iert)

(:button-press :detail :right)
(:button-press :detail :right :state :shift)
(:button-press :detail :left :state :shift)

The twoswap handlers allow user todynamically rearrange the order inwhich fields are displayed.
For example, to swap the position of columns A and B, simply press the buttoninside column A
orB while holding the shiftbutton. A dashed box around the column will be drawn. Then drag
the box over the other column and release the button. The two columns will then be switched.

14-214 PICASSO Reference Manual

TABLES

SCROLLING

Matrices support scrolling through both rows and columns of data. Functionally, Scrolling entails
nothing more than changing the row-index or col-index of the matrix and the title matrices
(if they exist). If amatrix-field has titles, the titles will scroll synchronously with the matrix. For
each direction (left, right, up,and down), there are twodifferent types of matrix scrolling functions.
When the matrix has uniform row-types (: row-elements, :row-heights not specified)
or uniform column-types (:col-elements, :col-widths not specified) scrolling can beoptimized. In
these cases, the scrolling functions mf-uni-scroll-up, mf-uni- scroll-down, mf-
uni-scroll-left, and mf-uni-scroll-right are optimal. Otherwise, the somewhat
slower versions for variable row/column-types mustbeused; mf- var- s cro11-up, mf- var-
scroll-down, mf-var-scroll-left, andmf-var-scroll-right must be used (or
the programmer can use his/her own scrolling algorithm if he/sheis really ambitious). The "best"
scrolling algorithm is determined automatically when the matrix-field is created and cached away
intheslots up- func, down- func, right - func, and le f t - func. The following utilities
are useful:

mf-scroll-up [Macro]
matrix-field
n

scroll matrix-field up n rows. If there are less than n rows left to scroll, mf-scroll-up
scrolls the maximumnumber of rows possible. Uses cached optimal scrolling function.

mf-scroll-down [Macro]
matrix-field
n

scroll matrix-field down n rows. If there are less thann rowsleft to scroll, mf-scroll-up
scrolls the maximum numberof rows possible. Uses cached optimal saolling function.

mf-scroll-left [Macro]
matrix-field
n

scroll matrix-field left n columns. If there are less than n columns left to scroll, mf-
scroll-up scrolls the maximum number of columns possible. Uses cached optimal
scrolling function.

mf-scroll-right [Macro]
matrix-field

PICASSO Reference Manual 14-215

TABLES

scroll matrix-field right n columns. If there are less than n columns left to scroll, mf-
scroll-up scrolls the maximum number of columns possible. Uses cached optimal
scrolling function.

uniform-rows [Accessor]

if t, matrix treats allrows of fields the same way and optimal scrolling algorithm iscached.

uniform-rows [Accessor]

if t, matrix treats all columns of fields the same way and optimal scrolling algorithm is
cached.

up-func [Accessor]

the cached scrolling function to useforscrolling upwards. Default is determined once when
the matrix is created.

down-func [Accessor]

the cached scrolling funaion to use for scrolling downwards. Default is determined once
when the matrix is created.

left-func [Accessor]

the cached scrolling function to use for scrolling left. Default is determined once when the
matrix is created.

right-func [Accessor]

thecached scrolling function touseforscrolling right. Default is determined once when the
matrix is created.

UnLITlES

There are several utilities for matrix-fields that may be ofuse for some types ofapplications. These
are as follows:

14*2i6 PICASSO Reference Manual

current-fields-by-row

matrix-field

a list of the current-indices (increasing) sorted by row.

current-fields-by-col

matrix-field

a list of the current-indices (increasing) sorted by column.

uncurrent-fields-by-row

matrix-field

a list of all data indices that are notcurrent (increasing) sorted byrow.

uncurrent-fields-by-col

matrix-field

a listof the data indices that are not current (increasing) sorted by column.

all-fields-by-row

matrix-field

a list of all data indices (increasing) sortedby row.

all-fields-by-col

matrix-field

a list of all data indices (increasing) sorted by column.

enumerate-row

matrix-field
row

a list of the data indices for all items in the row numbered row.

enumerate-col

matrix-field
column

a list of the data indices for all items in the column numbered col.

make-row-current

matrix-field

PICASSO Reference Manual

TABLES

[Function]

[Function]

[Macro]

[Macro]

[Function]

[Function]

[Function]

[Function]

[Method]

14-217

TABLES

row

make all data-items in the specified row current (use only if selection is :entry).

make-col-current [Method]
matrix-field
row

make all data-items inthespecified column current (use only if selection is :entry).

make-row-uncurrent [Method]
matrix-field
row

make all data-items inthespecified row not current (use only if selection is :entry).

make-col-uncurrent [Method]
matrix-field
row

make all data-items in the specified column notcurrent (use only if selection is :en
try).

insert-row [Method]
matrix-field
row

make all data-items inthe specified row not current (use only if selection is :entry).

insert-col [Method]
matrix-field
row

make all data-items in the specified column not current (use only if Selection is :en
try)

14m21S PICASSO Reference Manual

MATRIX-FIELD SUMMARY

Reader Methods

rows

cols

visible-rows

visible-cols

inter-row-pad
inter-col-pad
grid-lines
field-table

row-titles

col-titles

row-title-matrix

col-title-matrix

vert-scroll-bar-p
horiz-scroll-bar-p
data

row-index

col-index

data-rows

data-cols

selection

current-indices

current-value

current-values

current-field

current-fields

changed-indices
select-func

unselect-func

PICASSO Reference Manual

Setf Methods

visible-rows

visible-cols

inter-row-pad
inter-col-pad
grid-lines
field-table

row-titles

col-titles

row-title-matrix

col-title-matrix

vert-scroll-bar-p
horiz-scroll-bar-p
data

row-index

col-index

data-rows

data-cols

selection

current-indices

select-func

unselect-func

TABLES

14-219

TABLES

Table-Field

While matrix-fields are powerful and versatile, they are somewhat lacking in the area of user-in
terface. A matrix by itself provides no interface for scrolling, displaying row or columntitles, or
performing any of the operations discussed in the last section. Therefore, it is rare that a matrix-
field is used alone, without a table-field.

The primary purpose of the table-fieldis justto piecetogetheramatrix-field,scroll-bars, titles, and
controls into acoherent userinterface. The table-field consists of aprimary matrix-field, zero,one,
ortwotitles, oneortwo scroll-bars, and an optional "tf-button". The tf-buttonis apop-button which
can be used to make standard matrix-operations available to the user (e.g., deselea-matrix and
add/delete rows/columns). The operations ofthe tf-button arecustomizable. The table-field shown
below contains two titles, two scroll-bars, and no tf-button:

CREATION

make-table-field

&key
(tf-button nil)
(tf-items nil)
(tf-image "swap. bitmap")
(horizontal-scroll-bar-p nil)
(vertical-scroll-bar-p nil)

14-220

[Function]

PICASSO Reference Manual

;; Defaults inherited from matrix-fleld
(inter-row-pad 3)
(inter-col-pad 3)
(row-index 0)
(col-index 0)
(data nil;
(rows nilj
(cols nil;
(data-rows rows;
(data-cols cols;
(data-array-size (list (num-rows data) (num-cols data)))
(overflow-increment 5)
(row-elements nil;
(col-elements nil;
(row-heights 40)
(col-widths 100)
(initial-rows nil;
(initial-cols nil;
(font (default-font;;
(titles nil;
fc0/-rzY/e,s nil;
(row-titles nil;
(default-titles t)
(row-title-width 100;
(col-title-height 40;
(row-title-elements nil;
(col-title-elements nil;
(row-title-font (default-font);
(col-title-font (default-font);
(self-adjustable nil;
(selection :entry)
(unique-selection nil;
(row-title-selectable nil;
(col-title-selectable nil;
(editable nil;
(editable-row-titles nil;
(editable-col-titles nil;
(return-func nil;
(/to : center;
(horiz-just: center;
(vert-just : center;
(field-table nil;

TABLES

PICASSO Reference Manual 14.221

TABLES

;; Pluskeys inherited from collection-widgets
&allow-other-keys

ATTRIBUTES

tf-button [Argument]

Initial argument only. If non-nil, the table-field will contain a tf-button if there is room (if
there are column titles and a vertical-scroll-bar)

tf-items [Argument]

Initial argument only. The menu-items for the tf-button (see pop-button). The default items
are:

deselect set current-indices of primary-matrix to nil.

odd insert a row at the selected row position of the primary-matrix.

delete delete the current row of the primary-matrix.

free-nomad free the nomad widget of theprimary-matrix.

tf-image [Argument]

the image to display in the tf-button.

ADDITIONAL ACCESSORS

Most information about the table concerns the primary matrix of the table. Hence, it is often nec
essary to extract the primary matrix and use the matrix-fieldaccessors defined above. However, a
few accessors are redefined at the table-field level for convenience.

matrix-field [Accessor]

the primary-matrix for the table

14-222 PICASSO Reference Manual

TABLES

horiz-scroll-bar-p [Accessor]
if non-nil and the primary-matrix is more than one row, the table-field will contain ahori
zontal scroll-bar.

vert-scroll-bar-p [Accessor]
ifnon-nil and the primary-matrix is more than one column, the table-field will contain aver
tical scroll-bar.

horiz-scroll-bar

the horizontal scroll-bar for the table.

vert-scroll-bar

the vertical scroll-bar for the table.

current-indices

current-indices of the primary-matrix.

current-value

current-value of the primary-matrix

select-func

select-func of the primary matrix.

data

data of the primary matrix.

value

data of the primary matrix.

rows

rows of the primary matrix.

cols

cols of the primary matrix.

PICASSO Reference Manual

[Accessor]

[Accessor]

[Accessor]

[Reader]

[Accessor]

[Accessor]

[Accessor]

[Reader]

[Reader]

14-223

TABLES

visible-rows.

visible-rows of the primary matrix.

visible-cols.

visible-cols of me primary matrix.

row-titles

row-titles of the primary matrix.

col-titles

col-titles of the primary matrix.

row-title-matrix

row-title-matrix of the primary matrix.

col-title-matrix

col-title-matrix of the primary matrix.

[Accessor]

[Accessor]

[Accessor]

[Accessor]

[Accessor]

[Accessor]

Since atable-field creates itsprimary matrix-field (unless explicitly passed in),*all the matrix-field
instantiation keywords should be passed tothe table-field. The table-field passes all of its instan
tiation arguments to the matrix-field.

TABLE-FIELD SUMMARY

14-224

Reader Methods Sett Methods

matnx-neid matrix-held

horiz-scroll-bar horiz-scroll-bar
vert-scroll-bar vert-scroll-bar

current-indices current-indices

current-value current-value

select-func select-func

data data

value value

rows

cols

PICASSO Reference Manual

List-Box

Reader Methods Serf Methods

visible-rows visible-rows

visible-cols visible-cols

row-titles row-titles

col-titles col-titles

row-title-matrix row-title-matrix

col-title-matrix col-title-matrix

TABLES

Alist-box issubclass oftable-field with only one row orone column. Alist-box contains only syn
thetic widgets or gadgets (see table-field) and therefore creation and scrolling are pretty quick.
Other than these restrictions, the only differences between list-boxes and table-fields are the cre
ation options and extra accessor methods. Below is an example of a list-box:

3gBg53g5gSSSSS££5gBg5£gB55ggJgggg&ggg^gj^^

Some Uorics of Pablo Ruiz Picasso

The Acrobat's Family with a Monkey
Bottle of Vieux Marc. Guitar and Newspaper

Dejeuner sur 1'Herbe

Les Demoiselles d'Avignon
The Dream

The Dream and Lie of Franco
wxMMweaaBwwwswswws^^

CREATION

make-list-box

&key

PICASSO Reference Manual

[Function]

14-225

TABLES

(value nil,)
(items nil)
(pad 0)
(orientation :vertical)
(col-width nil,)
(col-height nil)
(max-elements nil)
(max-height nil)
(max-width nil)
(title nil)

;; Plus keys inherited from table-fields
&allow-other-keys

ATTRIBUTES

Many of the instantiation arguments for list-boxes are different than for table-fields:

value [Accessor]

(self list-box)

A list of data-objects (string, image, dtext, etc.) that areto be the values of the list-box.

orientation [Reader]
(self list-box)

The orientation of the list-box. Either :vertical or :horizontal, the default is
: vertical.

items [Argument]

A list ofdata-objeas (string, image, dtext, etc.) that areto be the values ofthe list-box (same
as value).

row-height,col-width [Argument]

height/width ofrows/columns of the list-box (use : row-height if .orientationis :ver
tical, otherwise use : col-width).

14-226 PICASSO Reference Manual

TABLES

Pad [Reader]
(self list-box)

Padding in pixels (in addition to inter-row/column gap) between rows or columns. Depends
on orientation, default 0.

max-elements [Argument]

The maximumamount of rows (if .orientation is :vertical) or columns (if .orientation
is :horizontal) which can be viewed at once. This is necessary since the table cannot
"gain" rows or columns dynamically.

max-height [Argument]

May bespecified instead of :max-elements tomean the minimum height necessary tobeable
toview all rows of the table at once. If the table can conceivable grow tobethe fall height
of the screen, this value could be specified as (height (root-window)). Incidentally, large
values for :max-elements or :max-height have litde noticeable effect on overall performance
of the list-box.

max-width [Argument]

Used instead of :max-height if '.orientation is :horizontal.

t!^e [Accessor]
(self list-box)

Title of the list-box.

title^font [Argument]
Font of title of list-box.

ADDITIONAL ACCESSORS

font [Accessor]
(self list-box)

Font of the list-box.

PICASSO Reference Manual 14-227

TABLES

row-height

(self list-box)

Height of the rows of the list-box (use only if .orientation is .-vertical).

col-width

(self list-box)

Width of the columns of the list-box (use only if .orientation is :horizontal).

LIST-BOX SUMMARY

Reader Methods Sett Methods

title title

value value

font font

row-height row-height
col-width col-width

pad pad

[Accessor]

[Accessor]

14-228 PICASSO Reference Manual

GRAPHICS

GRAPHICS

Overview

Picasso has built-in support for plotting x-y graphs and displaying two dimensional graphic ob
jects. Bybuilding in these advanced graphics capabilities intoPicasso, a variety of interesting and
complex applications canbe easily written. Shown below is a graphic browser developed for a Fa
cility Manager Tool, a Picasso application which is explained more fully in Chapter 17.

PICASSO Reference Manual 15-229

GRAPHICS

The types of graphic widgets implemented in Picasso are:

• Graphic-gadgets - display two dimensional graphic objects.

• Graphic-browsers - display and allow the user to select twodimensional graphic objects.

Graphic Gadgets

Picasso graphic-gadgets are an output-only interface abstraction (a gadget) which allows for the
display of graphic objects called shapes. Currently, all structures are two dimensional. Function
ality includes the ability to set color, line-widths, line-styles, fonts andmapping functions of the
displayed graphics, programmer controlled pan and zoom, fast refresh, and basic shape manipulat
ing functions. First, the objects displayed and shaped by graphic gadgets will be described; then
the functionality and usage of graphic gadgets will be discussed.

In Picasso, the objects displayed by graphic gadgets are subclasses of the shape class. The next
several sub-sections describe the predefined shapes in Picasso, including:

• Annotations to display text.

• Polygons.

• Boxes.

Shapes are designed to be easy to create in Picasso, and new subclasses can easily be created to
specify new object types.

After describing shapes, some of the concepts associated with two-dimensional graphics will be
reviewed. In Picasso, these concepts are embodied in the 2d-mapper-mixin class. Next, utility
functions for creating and manipulating 2d-points, the fundamental structure onwhich 2d-graphics
is based, will be presented. Finally, the creation and use of graphic gadgets will be discussed.

SHAPES

The basis fordisplay of graphic objects is a shape. Shapes are maintained in a tree structure, the
branches ofwhich are subparts of ashape, and theleaves of whichare geometric primitives. This
allows one to conveniently create, assemble and reuse instances of shapes. For example, arobot

15-230 PICASSO Reference Manual

GRAPHICS

could be specified by creating an object to represent the arms, legs and body, and then assembled
in a tree as show below:

(ROBOT ^)

J (LEGS *)

(ARM-1) (ARM-2) (LEG-1) (LEG-2)

It isbeyond the scope ofthis document to describe the implementation ofnew shape types; this
will (eventually) be provided in the form of a Shape Writers Guide.

CREATING A SHAPE

make-shape [Function]
&key
(name nn)
(sub-objs nil)
(viewers nil)

Creates and returns a shape. Name isastring specifying the name ofthe shape, which can be
usedlaterto search for the shape in a hierarchy in muchthe sameway that files are searched
for inadirectory. Sub-objs isalist ofshapes that are parts ofthis shape. Inthe robot example
above, the sub-objs of the arms shapewould be the list (arm-1 arm-2). This value can
alsobe a list of s-expressions that,whenevaluated, returna shape; the mechanism is similar
to the : children clausein collection creation. See the example at the end of this section
for details. Viewers specifies a list of the graphic-gadgets, graphic-browsers and other ob
jects that will be displaying this shape.

PICASSO Reference Manual 15-231

GRAPHICS

SHAPE ATTRIBUTES

name [Accessor]

(self scroll-bar)

Returns the nameof the shape self of type string. This value may be setf'd. The name is
provided to make identification of the shape with a hierarchy easy, in much the same way
that files are given names in a file system.

sub-objs [Accessor]

(self scroll-bar)

Returns a list of shapes that are the sub-pans of the shape self If this value is set f'd, all
the viewers of the shape are notified of the change as a sideeffect. Most viewersdisplay all
the sub-objs of a shape when they display the shape itself, and transform all the sub-objsof
a shape when the shape itself is transformed.

viewers [Accessor]

(self scroll-bar)

Returns a list of viewers of the shape self. This valuemay be set f'd. Viewers are usually
graphic-gadgets and graphic-browsers, but can be any objectthat is interested in beingnoti
fied when the shape changes its geometry ordefault graphic display attributes.

SHAPES FUNCTIONS AND METHODS

add-object [Method]
(self shape)
(obj shape)

Addstheobject objto thesub-objs listof theshape self and notifies theviewers of theshape
of the changes. This function is equivalent to (pushnew obj (sub-objs self)).

add-viewer [Method]

add-viewer-recursively [Method]
(self shape)

i5"232 PICASSO Reference Manual

GRAPHICS

viewer

Add-viewer registersviewer as a viewerof the shapeself.After this function,viewer will be
notified of changes to the geometry anddefault display attributes of the shape. Add-viewer-
recursively registers viewer with all the ancestors of self as well.

copy [Method]

(selfshape)

Creates and returns a deep copy of the shape tree whose root is self Alltheancestors ofself
are copied by calling copy recursively.

delete-object [Method]
(self shape)
(obj shape)

Deletes the object obj from thesub-objs listoftheshape self and notifies theviewers of the
shape of the changes. This function is equivalent to

(setf (sub-objs self)
(delete objects (sub-objs self)))

delete-viewer [Method]

delete-viewer-recursively [Method]
(selfshape)
viewer

Delete-viewer unregisters viewer as a viewer of the shape self. After this function, viewer
will no longer be notified of changes to the geometry and default display attributes of the
shape. Delete-viewer-recursively unregisters viewer with all the ancestors ofselfas well.

flatten [Method]
(selfshape)

Returns alistofshapes that consists ofselfand alltheancestors ofself This isa "flattened"
version of the shape tree whose root is self.

find-shape [Function]
root

PICASSO Reference Manual 15-233

GRAPHICS

pathname

Searches a shape tree whose root isroot for the shape instance whose name is specified by
this listofstrings pathname. This isanalogous totraversing a directory tree ina file system.
Using the robot example at the beginning ofthis section, the expression

(find-shape robot '("Robot" "arms" "arm-1"))

will return theshape arm-1. The string " *" can beused as a wild-card pattern tomatch all
strings.

SHAPES SUMMARY

Reader Methods Sett Methods Misc. Methods

name name acid-object
sub-objs sub-objs add-viewer

viewers viewers add-viewer-recursively
copy

delete-object
delete-viewer

delete-viewer-recur

sively
flatten

find-shape

2D-SHAPES

2d-shapes are a subclass of shapes that implement two dimensional graphics. 2d-shapes are de
scribed in a device independent coordinate system called world coordinates. This coordinate sys
tem is a standard cartesian system, with the x axis running left to right, and the y axis running
bottom totop. Unlike thecoordinate systems found inmostwindowing systems, world coordinates
can be fractional.

15-234 PICASSO Reference Manual

GRAPHICS

CREATING A 2D-SHAPE

make-2d-shape [Function]
&Mey
(ctrl-pts nil)

;; Defaults inherited from shape:
(name **)

(subj-objs nil)
(viewers nil)

Creates and returns a2d-shape. Ctrl-pts isalist of 2d-points which are used for editing. For
convenience, alist (x y) can be passed instead ofaId-point, discussed later inthis chapter.
Each subclass associates an appropriate meaning to this slot, but editors can depend on its
existence.

2D-SHAPE METHODS

2d-rotate [Method]
(self shape)
theta

ox

oy

Rotates the 2d-shape selfby an angle theta about an origin whose coordinates are ox, oy. All
sub-objects of selfare. rotated as well.

2d-scale [Method]
(self shape)
sf
ox

oy

Scales the 2d-shape selfbyafactor sfabout an origin whose coordinates are ox, oy. All sub-
objects of selfait scaled as well.

2d-translate [Method]
(self shape)
tx

PICASSO Reference Manual 15-235

GRAPHICS

*y

Translates the2d-shape selfby an amount txinthedirection of thepositive x axis and by an
amountty in the direction of the positivey axis. All sub-objects ofself are translated aswell.

SEGMENTS AND ANNOTATIONS

Segments are a subclass of 2d-shape that implement line-segment-oriented graphics. Annotations
areasubclassof2d-shapethat implement character orientedgraphics. Both classesprovide default
graphic properties appropriate for the type of graphics they implement. Forexample, both provide
a default for the color to display the graphic in, and segments provide a default line-width and de
fault line-style to use in drawingthe graphic, whereas annotations provide a list of fonts to use.

Annotations areguaranteedto fit in a box on the screenthat is specified in the definition of the an
notation, and the viewer of the annotation will pick the largest font from a font list that fits with
that box.

CREATING SEGMENTS AND ANNOTATIONS

make-segment [Function]

&key
(color "white")
(line-width 0)
(line-style : s o 1 i d)

;;Defaults inherited from 2d-shape
(ctrl-pts nil)

;; Defaults inherited from shape
(name x> ™)
(sub-objs nil)
(viewers nil)

Creates andreturns a segment. Colorspecifies the default colorof the line segment, and can
be either a string giving the name of a color or an instance of the color class. Line-width is
the default line-width of the line segment. The special value 0 is used to indicate the line is
"thin", i.e., 1 pixel wide. Line-style is the default line-styleof the line segment, and should
be one of the keywords : solid, : dash or : double-dash.

15-236 PICASSO Reference Manual

GRAPHICS

make-annotation [Function]

&key
(color "white";
(fonts <see below>)
(text"")

(lower-left (make-2d-point :x 0.0 :y 0.0);
(width l.O;

(height l.O;
(just :LC;

;; Defaults inherited from 2d-shape
(ctrl-pts nil;

;; Defaults inherited from shape
(name * ^)

(sub-objs nil;
(viewers nil;

Creates and returns an annotation. Color specifies the default color of the annotation, and
can beeither a string giving the name ofa color oran instance ofthe color class. Fonts spec
ifies a list of fonts to be used to display the annotation, whichshouldbe a list of instances of
thefont class. Indisplaying the annotation, the largest font that will fit into the box specified
by width and heightwill be used. The default value for this is a list of helvetica fonts with
point sizes 34,20,14,10,8 and the "nil2" font. The fonts should besorted themost preferable
font (usually the largest) first. Text specifies the string to display. Lower-left is a 2d-point
that specifies the position of the lower-left comer ofthe annotation. Just specifies the justi
fication of the annotation within the box specified by lower-left, width andheight. It should
be one of the keywords :LC, :LB, :LT, :CC, :CB, :CT, :RC, :RBor:RT,
which are interpreted as follows:

Keywords Horizontal Vertical

Justification Justification
:LB Left .bottom

LC Left Centered
.LT Left Top
CB Centered Bottom

CC Centered Centered

CT Centered Top
RB Right Bottom

RC Right Centered

RT Right Top

PICASSO Reference Manual 15-237

GRAPHICS

ANNOTATION ATTRIBUTES

color [Accessor]

(selfannotation)

Returns the default color of the annotationself, which may be either a string giving the name
of a color or an instance of the color class. This value may be set f d. All viewers of self
will be notified of the change and can update their display accordingly.

fonts [Accessor]

(selfannotation)

Returns the default font list ofthe annotationself which is alist of instances of thefont class.
This value may be set f d, but the new list of fonts should be sortedwith the most prefera
ble font (usually the largest) first. All viewers of se//will be notified of the change and can
update their display accordingly.

text [Accessor]

(selfannotation)

Returns the stringdisplayedby the annotation self.This value may be set f d. All viewers
of selfwill be notified of the change and can update their display accordingly.

lower-left [Accessor]

(selfannotation)

Returns the 2d-point that specifies the position of the lower-left comer of the annotation.
This value may be setf'd. the value it is changed to should be created using make-2d-
point : x x : y y). All viewers of seZ/willbe notified of the change andcan update their
display accordingly.

width [Accessor]

height [Accessor]

(selfannotation)

Returns the width and height of the annotation in world coordinates. This defines the size of
the box the annotation must fit within when displayed on the screen. Either of these values

15-23* PICASSO Reference Manual

GRAPHICS

may be setf'd. All viewersof selfwill be notifiedof the change andcanupdate theirdis
play accordingly.

just [Accessor]

(selfannotation)

Returnsthe type ofjustification usedby the annotation self This valuemay be setf'd. The
new value should be one of the keywords :LC, :LB, :LT, :CC, :CB, :CT, :RC,
:RB or :RT. All viewers of selfwill be notifiedof the change andcan update theirdisplay
accordingly.

SEGMENT ATTRIBUTES

color [Accessor]
(self segment)

Returns the default color of the segment self which may be either a string giving the name
of a color oran instance of the color class. This value may be set f 'd. All viewers of self
will be notifiedof the change and can update their display accordingly.

line-width [Accessor]
(self segment)

Returns the default line-width of the segment self This value may be setf'd. All viewers
of se/fwill be notified of the change and can update their display accordingly.

line-style [Accessor]
(self segment)

Returns the default line-styleof the segment self, This valuemay be set f'd. The new value
should be oneof thekeywords :solid, :dash or :double-dash. All viewers of self
will be notified of the change and canupdate theirdisplay accordingly.

PICASSO ReferenceManual 15-239

GRAPHICS

POLYGONS

Polygons are asubclass of segments that have alist ofpoints that are the control points ofthe poly
gon. They can be "open" or "closed" - closed polygons imphcitly contain thelast vertex as the
start vertex.

Polygons also have a' 'hook point", a2d-point stored inthe hook-pt slot, which defaults to apoint
whose world coordinates are 0.0,0.0. Thehook point isused as adefault anchor point for various
graphic editors, e.g., for the origin for rotation and scaling operations. Thectrl-pts of apolygon is
alistof 2d-points (created withmake-2d-point) that are thevertices of the polygon.

CREATING POLYGONS

make-polygon [Function]
&key
(closed nil)
(hook-pt (make-2d-point :x 0 :y 0))

;; Defaults inherited from segment
(color "white";
(line-width 0)
(line-style : solid)

;; Defaults inherited from 2d-shape
(ctrl-pts nil;

,*; Defaults inherited from shape
(name * *)

(sub-objs nil)
(viewers nil)

15'240 PICASSO Reference Manual

GRAPHICS

POLYGON ATTRIBUTES

closed [Accessor]
(selfpolygon)

Returns t if the polygonis implicitlyclosed (i.e., the lastpoint is the sameasthe first), nil
otherwise. This value may be setf'd, causing the viewers of the polygon to update their
display, if necessary.

hook-pt [Accessor]
(selfpolygon)

Returns thehook-pt of the polygon, a 2d-point indicate the user-defined origin of the poly
gon. This value maybe set f'd, causing the viewers of thepolygon to update their display,
if necessary.

BOXES

Boxes are asubclass of polygons that have awidth and aheight and are constrained to be orthog
onal. The hook-pt of the box is interpreted as the lower-left comer of the box.

CREATING BOXES

make-box [Function]
&key
(width 1.0;
(height 1. o;

;; Defaults inherited from polygon
(closed t;
(hook-pt (make-2d-point :x 0 :y 0);
;; Defaults inherited from segment
(color '"white";
(line-width 0)
(line-style : solid)

PICASSO ReferenceManual 15-241

GRAPHICS

;; Defaults inherited from 2d-shape
(ctrl-pts nil;

;; Defaults inherited from shape
(name* ")

(sub-objs nil;
(viewers nil;

BOX ATTRIBUTES

width [Accessor]

height [Accessor]
(selfbox)

Returns widthand heightof the box self Thesevalues maybe setf'd, causing the viewers
of the box to update their display, if necessary.

2D MAPPER MIXINS

The2d-mapper-mixin class isdefined tohandle themapping and clipping ofworld coordinates into
Xwindow device coordinates. It is an abstract class - it isnot intended that any 2d-mapper-mixins
instances willbe created. Routines are provided to map from world coordinates to device coordi
nates, from device coordinates toworld coordinates, and toclip polygons andlinesegments against
the window of the mapper.

The mapping from world coordinates to device coordinates is accomplished by specifying the
width and height of themapper, and giving theworld coordinates of the lower left and upper right
comers of thedevice. One other parameter that must be specified is whether themapping is isotro
picor anisotropic. Isotropic mappings preserve thegeometry of thedisplayed objects, so a square
comes out square, whereas anisotropic mappings don't preserve the proportions. In other words,
in isotropic mappings, the sizeof oneuniton thex axis is the same as the sizeof oneunitof they
axis, regardless of the aspect ratio of the display device.

15-242 PICASSO Reference Manual

GRAPHICS

2D-MAPPER ATTRIBUTES

mapping [Accessor]
(self2d-mapper-mixin)

Type ofmapping, either :isotropic or :anisotropic, default :isotropic.

he'ght [Accessor]

width [Accessor]
(self2d-mapper-mixin)

Returns the width and height of the 2d-mapper-mixin selfThese represent the dimensions
of the output device that mapper ismixed into. For example, graphic-gadgets inherit from
the gadget class and the 2d-mapper-mixin class, so width and height in this case are inter
preted as the size of the window. Classes that use the 2d-mapper-mixin class should call the
recache-map method whenever these value change.

x*1"11 [Accessor]

xmax [Accessor]

ymin [Accessor]

vinax [Accessor]
(self2d-mapper-mixin)

Returns the world coordinates of the lower-left and upper-right comers of the mapper self.
In other words, the point (xmin, ymin) will map to the lower-left comer of the device, and
the point (xmax, ymax) will map to the upper-right comer of the device. These values may
be setf'd individually, or as agroup via the set-lower-left, set-upper-right
and set-world methods, to implement zoom in, zoom out, pan, etc.

MAPPER METHODS

map-dc-to-wc [Macro]
self
dx

PICASSO Reference Manual 15.243

GRAPHICS

dy
wx

wy

This macro destructively sets wx, wy to the world coordinates that represent the device co
ordinates dx,dy in the mapperself This macro is used, for example, to find the world coor
dinates of a mouse hit on the mapper.

map-wc-to-dc [Macro]

self
wx

wy

dx

dy

This macrodestructively sets dx,dy to the device coordinates that represent the world coor
dinates wx, wy in the mapperself. This macro is used, forexample, to find the device coor
dinates of a point in world coordinates.

pan [Method]

(self2d-mapper-mixin)
x-factor
y-factor

This methodmodifiesthe world coordinates of themapper selfsMch that theview presented
on the screen is "panned" by an amount determined by x-factor and y-factor. The values
are interpreted as follows. An x-factor of 1.0 pans to the right by one-half the current size
of the screen, i.e., a pointthat was on the right edge of the screen wouldnow appear in the
middle of the screen. Similarly, ay-factor of 1.0 pans down one-halfscreen. Negative val
ues can be used to pan up or left.

ppu [Function]

mapper

The function returns the number of pixels used to represent one unit of world coordinate
space (the number of "pixels per unit").

recache-map [Method]

(self2d-mapper-mixin)

This methodrecalculates the internal parameters usedinmapping from worldcoordinates to
device coordinates in the mapperself. It is called automatically whenever the world coordi-

15-244 PICASSO Reference Manual

GRAPHICS

nates ofse//change. Subclasses that inherit from the2d-mapper class should callthis meth
od whenever either of the following occur:

• The size of the mapperobject selfchanges.

• The world coordinates slots of self are setf'd via slot-value.

Note that slots referred tointhe latter case include the mapping, xmin, xmax, ymin and ymax
slots of self.

Subclasses will also typically add functionality to this method to redraw their screen and
update any internal data structures that depend on the world coordinates to device coordi
nates mapping. Since the side effects of this method are used to do the actual world coordi
nate to device coordinate mapping, new methods should first execute a call-next-
method before attempting any such mappings.

set-lower-left [Method]
(self2d-mapper-mixin)
xmin

ymin

Set the lowerleft comer of the mapper.

set-upper-right [Method]
(self2d-mapper-mixin)
xmax

ymax

Set the upper right comer of the mapper.

set-world [Method]
(self2d-mapper-mixin)
xmin

ymin
xmax

ymax

These methods change theworld coordinate system ofselfas specified.

zoom-factor [Method]
(self2d-mapper-mixin)
factor

This method modifies the world coordinates ofthe mapper selfsuch that the view presented
onthescreen is *'zoomed'' inorout byanamount determined byfactor. The value offactor

PICASSOReference Manual 15-245

GRAPHICS

is interpreted as follows. Afactor of2.0 "zooms in" around the middle of the screen, i.e.,
objects inthe middle ofthe screen will be drawn twice as big after the call. Factors less than
1.0 cause the screen to "zoom out". It is an error to specify afactor less than 0.

2D-POINT FUNCTIONS

2d-points are the fundamental structure used by the Picasso graphic functions. They are defined
using the Common Lisp defstruct facility, and have two attributes: x and y. 2d-points are of
ten used as vectors. Since their use is so widespread, explicit allocation and freeing functions have
been created.

ALLOCATING, FREEING AND COPYING 2D-POINTS

2d-points can be created using the following function:

make-2d-point [Function]
&key
(x0)
(yo)

This function creates and returns afresh 2d-point with coordinates x and y. Although this
function exists, the following function isusually used instead:

aI,oc-2d [Function]
x

y

This function also returns afresh 2d-point with coordinates xand y, but the returned 2d-point
is obtained from afree list of2d-points. Anew 2d-point is created usingmake-2d-point
if the free-list is empty. The return value may be placed on the free list using the macro:

free-2d [Macro]
2d-point

This function adds 2d-point to the free list of2d-points for recycling.

15-246 PICASSO Reference Manual

GRAPHICS

™ [Macro]
dst

src

This macro destructively sets the xand yvalues of the 2d-point dst to the xand yvalues of
the 2d-point src.

COpy-2d [Macro]
V

X

y

This macro destructively sets the xand yvalues of the 2d-point vto xand y, respectively.

duPIicat*^ [Function]
v

This function returns afreshly allocated 2d-point whose xand yvalues are the same as those
ofthe2d-point v.

2D-VECTOR UTILITY FUNCTIONS

2d-points are often used as vectors. This section describes the basic mathematical vector functions
available on all 2d-points.

2dv+! rr . .
[Function]

vl

v2

This function destructively sets the xand ycomponents of the 2d-vector vl to the sum of the
x and y components of the 2d-vectors vl and v2.

[Function]
vl

v2

This is the non-destructive version of 2dv+.». It returns a2d-point whose xand ycompo
nents are thesumof the x andy components of the 2d-vectors vl and v2.

PICASSO Reference Manual - - - A-
15-247

GRAPHICS

2dv-!

vj [Function]
v2

2dv-

vj [Function]
v2

2dv-dot-product
vj [Function]
v2

This function returns the dot-product of the 2d-vectors vl and v2.
2dv-length

vj [Function]

TTus function rerun* afloating point value that is the length of the 2d-vector vl.
2dv-negate!

vj [Function]

2dv-negate
vj [Function]

2dv-normaIize!
vy [Function]

This funaion destructively scales the 2d-vector vl so that it is normalized.

15-248

PICASSO Reference Manual

2dv-normalize

vi

GRAPHICS

[Function]

This is the non-destructive version of 2dv-normalize!. A new vector is created that is
the vector resulting from normalizing the 2d-vector vi. VI is left unchanged.

2dv-scale!

vi

Sf

This function destructively scales the 2d-vector vi by the scale factor sf.

2dv-scale

vi

sf

[Function]

[Function]

Thisisthenon-destructive version of 2dv- s cale i. A newvector iscreated that is thevec
tor resulting from scaling the 2d-vector vi bythe scale factor sf. VI isleft unchanged.

2dv-zerop

vi

This function returns t if the 2d-vector vi is thezero vector, nil otherwise.

2D-VECTOR SUMMARY

[Macro]

Allocation Destructive Non-Destructive Misc.
auoc-Zd

duplicate-2d
free-2d

make-2d-point

zav-i

2dv+!

2dv-negate!
2dv-normalize!

2dv-

2dv+

2dv-negate
2dv-normalize

Zdv-dot-proauct

2dv-length
2dv-zerop

2dv-scale! 2dv-scale

copy-2d
2dv-copy

PICASSO Reference Manual
15-249

GRAPHICS

LINESTRING UTILITY FUNCTIONS

Lists of 2d-points are used to create linestrings. Conceptually, a linestring is like a polygon, but
can be either open or closed. A "closed" linestring implicitly has its last point connected to its
first.

dopoints [Macro]

(pi p2 linestr closed)
&rest

body

This macro iterates through all the points of a line string. If closed is non-nil, linestr is
treated as a closed linestring.

First, dopoints evaluates linestr(which shouldbe alist of 2d-points), andclosed. During
the first iteration, pi is assigned the first point in the line-string, andp2 is assigned the sec
ond. Duringsubsequent iterations, pi and p2 are assigned successivepoints. After all suc
cessive pairs of points have been exhausted,pi is assigned the last point in the line-string,
andp2 is assigned the first point in the line-string if closed is non-nil.

linestr-gravity-pt [Function]
linestr

closed

do-midpt

Linestr-gravity-pt finds the gravitypoints for the line stringpassed. It returns a list
of parametric values thatdescribe the gravity pointsof the line string thatmay be used in the
linestr-normal, linestr-point and linestr-pt-normal functions. If do-
midptis t, the midpoints are includedas gravity points. If closed is non-nil, linestr is treat
ed as a closed linestring.

linestr-normal [Function]
linestr

closed

value

Returns the 2d-vector (of type 2d-point) that is the vector normal to the linestring linestr at
the parametric value value. If closedis non-nil, linestr is treated asa closedlinestring. This
point should be freed with free-2d when it is no longer needed.

linestr-point [Function]
linestr

15-250 PICASSO Reference Manual

GRAPHICS

closed

value

Returns the 2d-vector (of type 2d-point) that is the point on the linestring linestr at the para
metric value value. If closed is non-nil, linestr is treated as aclosed linestring. This point
should be freed with free-2d whenit isno longer needed.

linestr-pt-normal

linestr

closed

value

[Function]

This function returns alist of2d-vectors (oftype 2d-point) that are the point on the linestring
linestr at the parametric value value and the normal vector to the linestring linestr at that
point. Ifclosed is non-nil, linestr is treated as aclosed linestring. Both these points should
be freed with free-2d when they are no longer needed.

nearest-pt-to-linestr [Function]
linestr

closed

Pt

This function finds the nearest point on the linestring linestr to the 2d-point pt. It returns a
list whose first element is the parametric value corresponding to this nearest point, and
whose second value is the distance from that point tothe 2d-point pt.

LINESTRING SUMMARY

Macros Functions

dopoints unestr-gravity-pt

linestr-normal

linestr-point
linestr-pt-normal
nearest-pt-to-linestr

PICASSO Reference Manual 15-251

GRAPHICS

CREATING A GRAPHIC GADGET

Graphic-gadgets are used for output-only display oftwo dimensional graphic data, i.e., 2d-shapes.
Theyinherit attributes from the 2d-mapper-mixin class as well as the gadget class.

make-graphic-gadget [Function]
&key
(value nil)
(zoom-extent t)

;; Defaults inherited from 2d-mapper-mixin
(xmin 0.0)
(ymin 0.0)
(xmax 1.0)
(ymax 1.0)
(mapping : isotropic)

Creates and returns a graphic-gadget. Ifzoom-extent is non-nil, the initial world coordinate
to device coordinate mapping is set so all of value is visible. Otherwise, the initial world
coordinate to device coordinate mapping is determined by the parameters mapping, xmin,
xmax, ymin and ymax. The value supplied should be a tree of shapes. The graphic-gadget
automatically registers itself as a viewerof the shape value, and any changes made to value
are therefore automatically synchronized withthe graphic-gadget returned.

GRAPHIC GADGETS METHODS

set-color-recursively [Function]
self
shape
color

This funaion sets isused to set the color ofthe graphic object shape within the graphic-gad
get self. All sub-objects of shape will also have their color changed. The screen is updated
dynamically.

set-visibility-recursively [Function]
self
shape

15-252 PICASSO Reference Manual

GRAPHICS

visible

This function sets is used to set the visibility ofthe graphic object shape within the graphic-
gadget self. Shape will not be displayed if visible in nil, otherwise it will be drawn. All
sub-objects of shape will also have their visibility changed. The screen is updated dynami
cally.

zoom-extent [Method]
(self graphic-gadget)

This method resets the world coordinate system ofselfto asize sufficient to display the en
tire object represented inthe value slot of self

Graphic Browsers

The Picasso graphic-browser is an interactive form ofthe graphic-gadget that allows for the dis
play and selection of shapes.Functionality includes basic browsing facilities, such as pan and
zoom, and selection features which allow the user to select an object by mousing near it or dragging
abox around agroup ofobjects. Graphic-browsers inherit attributes from the graphic-gadget class
as well as the widget class.

make-graphic-browser [Function]
&key
(selection nil)
(selectables nil)
(search-rad 50)
(highlight-font-list see below)

;; Defaults inherited from graphic-gadget
(value nil)

;; Defaults inherited from 2d-mapper-mixin
(xmin 0.0)
(ymin 0.0)
(xmax 1. 0)
(ymax 1.0)

(mapping : isotropic)

Creates and returns agraphic-browser. Selection is alist ofthe selectable objects currently
selected. Search-rad is the radius, inpixels, which will be searched around amouse button
event to find objects. Finally, highlight-font-list is alist of fonts that are used to display se-

PlCASSO Reference Manual 15.253

GRAPHICS

lected annotations. This value defaults to alist of bold, oblique helvetica fonts ranging in
size from 34 to 10 points. A typical graphic-browser would have selectables eq to (flat
ten value).

GRAPHIC BROWSER METHODS

(setf selection) [Method]

new-selection

(self graphic-browser)

This methodchanges the selection of the graphic-browser self to new-selection. Objects are
highlighted or unhighlighted from the screen as necessary.

GRAPHIC BROWSER INTERACTION

The graphic-browser allows selection of individual objects and groups of objects. The current list
of selected objects is stored in the selection slot of the graphic-browser. To make a single object
the(unique) element of the selected list, left button within search-rad pixels of theintended object.
Thegraphic-browser will find theclosest object that is intheselectables listwithin search-rad pix
elsofthemouse (called thehitobject), and that object willbecome the selection and behighlighted
on the screen. All otherobjects previously selected will be unhighlighted.

To add orremove asingle object from theselected list, right button within search-rad pixels of the
intended object. If the hit object is currently selected, it will be removed from the selection and
become unhighlighted on the screen, otherwise it will be added to the selection and becomehigh
lighted on the screen.

To make a group of objects the selection, use the middle mouse buttonto drag a box around the
group of objects. All objects wholly contained within that box will become the next seleaion. To
add or remove a group of objects to or from the selection, use the middle mouse button in combi
nation with the shift key to drag abox around the group of objects. For any objectwholly within
thatbox, its statusin the selectionwill be toggled: if it was amember of the seleaion before, it will
be removed, otherwise it will be added. The graphics screen is updated dynamically at all times.

Dynamic zoomand pan are also supported by thePicasso graphic-browser. To zoominonaregion
of the screen, click-and-drag a box around the desired region by usingthe left mousebuttonwhile
holding down the control key. If thebox drawn is too small (less than 5 pixelson aside), then the
bellis sounded and no effect takes place. This prevents "getting lost" if the mousebutton is ac-

15'254 PICASSO Reference Manual

GRAPHICS

cidentally released too early. To pan the screen dynamically, use the control/middle-button com
binationto "drag" the image to the desired position.

EXAMPLE

In this seaion we present a simple browser of a graphic data structure that consists a container ob
ject to hold two pans: abox and atriangle. The box has alabel. All objects are named. Below is
a picture of this data structure:

(PARTS-IiST)

)TRIANGLE

Thebox is in red, the label in blue, and the triangle in green if we'reon acolor display, otherwise
everything is in white. The box and the triangle are seleaable, but the label is not.

;;; Make colors

(if (black-and-white-display-p)
(setq red "white"

green "white"

blue "white")

(setq red (make-color :name "red" :attach-p t)
green (make-color :name "green" :attach-p t)
blue (make-color :name "blue" :attach-p t)))

;;/ Make parts-list

(setq parts-list

(make-2d-shape

PICASSO Reference Manual 15-255

GRAPHICS

:name "parts-list"

:sub-objs '((make-box

:name "box"

:color red

:hook-pt (alloc-2d 0 0)

:width 30

•.height 30

:sub-objs '((make-annotation

.•name "box-label"

:color blue

:lower-left (alloc-2d 0 0)

:just :CC

:text "a-box"

:width 30

iheight 30)))

(make-polygon

rname "triangle"

:hook-pt (alloc-2d 10 10)

:color green

:ctrl-pts '((10 10) (20 10) (15 25))
:closed t))))

;;; Make a browser, attach it, and zoom all the way out
(setq selectables

(list (find-shape parts-list '("parts-list" "box"))
(find-shape parts-list '("parts-list" "triangle"))))

(setq gb (make-graphic-browser rvalue parts-list
:selectables selectables

:width 200

:height 200
:parent (root-window)))

(attach gb)

15-256 PICASSO Reference Manual

APPLICATION-SPECIFIC WIDGETS

16

APPLICATION-SPECIFIC WIDGETS

Overview

Indeveloping applications for Picasso, wehave defined several widgets which donoteasily fit into
the categories already covered. In this chapter we present the rest of the widgets defined in the
Picasso toolkit. An example of an appUcation-specific widget developed for a Recipe Generator
Tool is shown below:

The following additional widgets are defined in Picasso:

• Meter Widget

• Qual Widget

• Plot Widget

PICASSO Reference Manual 16-257

APPLICATION-SPECIFIC WIDGETS

Meter Widget

A meter widget consists of a meter-slider and three numeric fields. Meter widgets are used as one-
dimensional indicators, similar to the indicator (slider-bar) of a scroll-bar. The indicator is the
meter-slider, which consists of a diamond-shapedlocator and a horizontal grid. The three numeric-
fields specify the lower and upper bounds and the currentposition of the locator.

Thelowerandupperbounds maybeedited byclicking onthem, typing in thenewvalue, andpress
ing return. The current-value can only be set by the programmer.

CREATION

make-meter-slider [Function]

&key
(low 0)
(high 0)
(increment 5)
(value 0)
(update-flag t)

;; Plus keys inherited from widget
&allow-other-keys

Creates and returns a meterslider. Metersliders are a subclass of widgets, and thus inherit
additional keys and methods from widgets.

ATTRIBUTES

low [Accessor]
(selfmeter-slider)

The lower bound of the indicator. Of type number, default 0

l<>-258 PICASSO Reference Manual

APPLICATION-SPECIFTC WIDGETS

high

(self meter-slider)

The upper bound of the indicator. Of type number, default 0

increment

(self meter-slider)

The grid increment. Of type number, default 5.

value

(self meter-slider)

The current position of the locator relative to low and high. Oftype number, default 0

update-flag

(self meter-slider)

[Accessor]

[Accessor]

[Accessor]

[Accessor]

Used whenmorethan one of low, high, value, or increment is set at
once (for optimization). For example,

(setf update-flag mw) nil)
(setf (low mw) 0

(high mw) 100
(value mw) 25)

(setf (update-flag mw) t)

MANAGEMENT

meter-slider-p

object

Whether or not object is a meter slider.

PICASSO Reference Manual

[Macro]

16-259

APPLICATION-SPECIFIC WIDGETS

Qual Widget

A qual-widget is effectively two labels, one of which pops up amenu when buttoned upon (see
pop-button for details). It looks something like the following:

GOAL: 75% RESULT: 50%

All fields are customizable at instantiation, and the data fields ("75%" and"50%" in the aboveex
ample) can be accessed dynamically aswell, by means of the goal and result accessor meth
ods.

When the user clicks on "75%" above, the goal field is inverted and alist ofmenu options pops up.
If amenu item is selected, the menu goes away and the goal field is replaced by the chosen item.
The process is aborted if the mouse is released outside of the menu-pane. The menu items can be
set dynamically and/or at instantiation by means of the items accessor.

NOTE: the result field ("50%" in above example) can bebound dynamically to some function on
goal by using abind-s 1ot; for example:

(bind-slot

'result

<qual widget>
*(let ((goal (var goal ,qw)))

(cond ((string= goal "75%") "50%")
((string= goal "50%") "25%")

(t "0%"))))

Seethedocumentation onbindings (Chapter 6) for more information.

16-260 PICASSO Reference Manual

APPLICATION-SPECIFIC WIDGETS

CREATION

make-qual-widget

(goal nil)
(result nil)
(first-title "Goal: "J
(second-title "Result:")
(first-value "")
(second-value "")
(first-font (make-font)j
(second-font (make - font))
(items nil,)

(orientation : 1 e ft)

;; defaults overridden from superclasses
(gm 'rubber-gm)

;; Plus keys inherited from collection-widget
&allow-other-keys

[Function]

Creates and returns a qual widget. Qual widgets are a subclass of collection widgets, and
thus inherit additional keys and methods from collection widgets.

ATTRIBUTES

goal

(selfqual-widget)

result

(self qual-widget)

first-title

Initial argument only. The title of the first field, default " Goal".

second-title

Initial argument only. The title of the second field, default "Result".

PICASSO Reference Manual

[Accessor]

[Accessor]

[Argument]

[Argument]

16-261

APPLICATION-SPECIFIC WIDGETS

first-value

Initial argument only. The value of the first field, default " ".

second-value

Initial argument only. The value of the second field, default " ".

first-font

Initial argument only. The font of the first field.

second-font

Initial argument only. The font of the second field.

[Argument]

[Argument]

[Argument]

[Argument]

items [Argument]

The pop button list of menu entries (see pop buttons for more information).

orientation [Argument]

The orientation of the pop button label, one of : left, :bottom, : frame, or ni1. The
default is :left.

MANAGEMENT

qual-widget-p

object

Whether or not object is a qual widget.

16-262

[Macro]

PICASSO Reference Manual

APPLICATION-SPECIFIC WIDGETS

Plot Widget

A plot-widget displays XY plots of multiple curves,andoptionally attaches a label to each curve.
Shown below is anexample from the RecipeGenerator application.

S AUUgcl

-iipl»r thtst Plets: 1 ^""

gf Thii».nett 5ft>.

1 \

V*

Ef T-.icI . urn-.

Ef St-ts: |
gf Sitrrs* uni*.

Fres |
t
i

i

i

\

11706

\

i \
\ \

\
30v. ^

i.'C'i 7f*r Ht.7

Tine «r.jr>:: 9v.

iiHi •teen.!: 10"..

be'.'. 01 . , f

// j
•.;• t i i

•'It ' '
f ! ' ' /

/ / ' /
/ / / /
' / / .'

/ / / /200. Ol. • t> • • /' •' . i 1

Thi:*nras Unif.

Each curve consists of an array of points. A plot-widget automatically scales its X andY axis in
order to make visible all the specifiedpoints. However, eachplot-widget also has optional interac
tive pan and zoom controls which allow the userto examineany part of the plot in detail.

PICASSO Reference Manual 16-263

APPUCATION-SPECIFIC WIDGETS

CREATION

make-plot-widget [Function]
&key
(value nil)
(K-label"")

(y-label"")
(x-pad 5)
(y-pad 5)
(font (get-font))
(mark-font (get-font))
(paints nil)
(range nil)
(domain nil)
(x-increment 5)
(y-increment 5)
(mark-points t)
(curve-labels nil)
(x-axis t)
(y-axis t)

;; Plus keys inherited from collection-widget
&allow-other-keys

Creates and returns aplot-widget. Here is an example:

(setq pts

(list (make-array 5 :initial-contents
MdO . 10) (20 . 30) (50 . 15)

(60 . 70) (90 . 40)))
(make-array 8 :initial-contents

'((5 . 60) (15 . 30) (30 . 15)
(35 . 12) (38 . 10) (45 . 8)
(65 . 40) (90 . 80)))))

(make-plot-widget :base-size '(200 200)
:x-label "Hello"

:y-label "There"

rvalue pts

:paints (list "green" "red"))

See below for more information.

16-264 PICASSO Reference Manual

APPUCATION-SPECIFIC WIDGETS

ATTRIBUTES

update-flag [Accessor]
(selfplot-widget)

Either t ornil, indicating whether update is on oroff. This slotworks like repaint-
flag or repack- flag. Use when changing more than one attribute at once to avoid wast
ing time with multiple updates.

value [Accessor]
(selfplot-widget)

The curve orcurves to be plotted. Each curve is an array of dotted pairs, with each dotted
pair representing apoint onthe curve. This slot can contain either onearray (when onlyone
curve is to be displayed) or a list of arrays.

x-label [Accessor]
(selfplot-widget)

The label of the x-axis of the plot-widget. This slot can contain a string, an image, or any
thing with a put method.

y-label [Accessor]
(selfplot-widget)

The label of the y-axis of the plot-widget. This slot can contain a string, an image, or any
thing with a put method.

x-pad [Accessor]
(selfplot-widget)

The empty space to leave on the left and right, in pixels.

y-pad [Accessor]
(selfplot-widget)

The empty space to leave on the top and bottom,in pixels.

f°n* [Accessor]
(selfplot-widget)

The font used for x-label, y-label and curve labels.

PICASSO ReferenceManual 16-265

APPUCATION-SPECIFIC WIDGETS

mark-font [Accessor]
(selfplot-widget)

The font used for the numbers associated with the tick marks.

Paints [Accessor]
(selfplot-widget)

A list of colors orpaintscorresponding to thedesired colorof each of the curves in value.
If this slot is nil, the curves are drawn in black. If this slot is not nil, there should be as
many paints as curves. If there are not enough paints, the plot-widget will pad the list with
the last paint on the list.

range [Accessor]
(selfplot-widget)

A dotted pair indicating the range to be displayed. This attribute overrides the automatic
scaling which normally occurs.

domain [Accessor]
(selfplot-widget)

A dotted pair indicating the domain to be displayed. This attribute overrides the automatic
scaling which normally occurs.

x-increment [Accessor]
(selfplot-widget)

The increment between tick marks on the x-axis.

y-increment [Accessor]
(selfplot-widget)

The increment between tickmarks on they-axis.

mark-points [Accessor]
(selfplot-widget)

Either t or nil, specifies ifeach point on the plot should be marked with alittle square. If
not, only lines between points are drawn.

16,266 PICASSO Reference Manual

APPLICATION-SPECIFIC WIDGETS

curve-labels [Accessor]
(selfplot-widget)

A list of stringlabels,eachcorresponding to a curve invalue. The labels are drawnby the
curves. If this slot is not nil, there should be as many labels as curves.

x-axis [Accessor]
(selfplot-widget)

Either t or nil, specifies if the x-axis should be drawn.

y-axis [Accessor]
(selfplot-widget)

Either t or nil, specifies if the y-axis should be drawn.

PICASSO Reference Manual 16-267

APPUCATION-SPECIFIC WIDGETS

1^-268 PICASSO Reference Manual

LD3RARY PICASSO OBJECTS

17

LIBRARY PICASSO OBJECTS

Overview

A numberof library PO's are provided with Picasso. The Picasso package contains a set of gen
eral-purpose dialogs and panels which can be called from any application. In addition, several
complete applications are provided asexamples of toolkit use.

This chapter describes the following groups of provided objects:

• Library Panels and Dialogs

• Facility Manager Tool

• Robbie the Robot Tool

• Employee/Department Browser

Library Panels and Dialogs

The Picasso package contains anumber of predefined general-purpose dialogs whichcan be called
from any application. There are predefined dialogs for

• confirming or cancelling actions

• exiting tools

• displaying messages (notifying)

• opening files

• quitting without saving files

• saving files

• prompting for input strings

PICASSO ReferenceManual 17-269

LIBRARY PICASSO OBJECTS

These Picasso objects are in the ~picasso/lib/po/picasso directory, and are described in
the following sections.

The confirmer dialog (confirmer. dialog) takes one argument, msg, and displays the mes
sage bound to the msg variable. The dialog also displays two response buttons, "OK" and "Can
cel";buttoning the "OK" button will return t to the calling PO, and buttoning "Cancel" will return
nil.

The exit dialog (exit. dialog) displays the message "Are you sure you want to quit?", as well
as two response buttons, "OK" and "CANCEL". Selecting the "OK" button will exit the currently
running tool with a return value oft. Selecting the "CANCEL" button will return : cancelled
to the calling PO. This dialog is automatically in the Picasso menu.

The notifier dialog (notifier. dialog) takes one argument, msg, and displays the message
bound to the msg variable. The dialog also displays an "OK" button, and clicking on the "OK"
button will return t to the caller.

The open file dialog (open-file. dialog) takes an initial directory path dir, prompts for a
file name, andretums the full pathname (in string form) of the file to be opened. It displays three
buttons, "Open", "Cancel", and "Change-Dir", as well as a list of current directory files.

The save-cancel-ok dialog (save-cancel-ok.dialog) prompts users as to whether they
want to quit a tool without saving their files. Specifically, it displays the message "Do you want
to do so without saving your files(s)". It also displays three buttons, "Save", "Cancel", and "OK".
Clicking on "Save" returns t to the caller, clicking "Cancel" retums : cancelled, and clicking
"OK" returns nil.

The file saving dialog (save- file. dialog) takes aninitial directory path dir, prompts for a
file name, andreturnsthe full pathnameof a file to be savedto. It has threebuttons, "Save", "Can
cel" and "Change-Dir", as well as a list of current directory files.

The string prompter dialog (str-prompter. dialog) takes and displays a variable prompt,
prompts the user for a string, and retums the string if the user clicks the "OK" button. If the user
clicks the "CANCEL" button, the dialog retums nil to the caller.

The following table summarizes the predefined picasso Picasso panels and dialogs in the ~pic-
asso/lib/po/picasso directory:

17-270

File PICASSO Name

conhrmer.dialog ("picasso" "conhrmer". 'dialog')
exit.dialog ("picasso" "exit" . "dialog")
notifier.dialog ("picasso" "notifier" . "dialog")
open-file.dialog ("picasso" "open-file" . "dialog")
save-cancel-ok.dialog ("picasso" "save-cancel-ok". "dialog")
save-file.dialog ("picasso" "save-file" . "dialog")
str-prompter.dialog ("picasso" "str-prompter" . "dialog")

PICASSO Reference Manual

LIBRARY PICASSO OBJECTS

Facility Manager Tool

The Facility Manager Tool (FM Tool) isasample application ofthe Picasso GUI development sys
tem. In particular, FM Tool is a browsing tool for spatial andproduction-lot manufacturing data.
A novel end user interface to a geometric database, FM Tool was developed to help facility man
agers in an IC fabrication facility. A sample is shown:

PICASSO Reference Manual 17-271

LIBRARY PICASSO OBJECTS

To run FM Tool:

% picasso

% <picasso> (run-tool-named ' ("fmtool" "tool"))

The key binding for pan and zoom, as well as selection,on the graphic screen is as follows:

Action Key Binding
select single object:

Extend selection by a single object:
Select within region:
Extend selection within region:
Zoom by click-and-drag:
Pan by click-and-drag:

Lett .button

Right Button
Middle Button

Shift/Middle Button
Ctrl/Left Button

Ctrl/Middle Button

Robbie the Robot Tool

Robbie the Robot is a Picasso tool developed for teaching LISPprogramming to beginning pro
grammers, giving a gradual introduction to LISPcontrol and data structures. This tool presents a
graphic display of a robot world, and using this tool, students learn to write and call their own func
tions to control the robot. Robbie the Robot is comprised of a Tool window and three panels; the
Editorpanel, the Lessonpanel, and the Stepper/Debugger panel, as shownbelow.

The Toolwindow presents a graphic display of therobot world, as well as a textual representation
of the world information. It also displays the controls and menus for the tool.

The Editorpanel displays a formatted test windowthat highlightsexecuting code, a LISP custom
ized type-in window, a browser for functions and command names, as well as controls for file in
put/output.

The Lesson panel handles administrative details, such as giving the student a lesson text and dis
playing a list of data files. The lesson manager facilitates teacher control of lesson content and
sample solutions, and allows the student to control the pace of learning.

17-272 PICASSO Reference Manual

LIBRARY PICASSO OBJECTS

The Stepper/Debugger panel allows the student to set breakpoints and to continue operations.
Stepper functions and a dynamic tracer with zoom facilities are also provided.

To run Robbie:

% picasso

% <picasso> (run-tool-named '("robbie" "tool")

PICASSO Reference Manual 17-273

LIBRARY PICASSO OBJECTS

Employee/ Department Browser

The Employee/Department Browser is a Picasso application that displays information about em
ployees and departments, and consists of a tool window, a department panel, and a search dialog:

The tool window displays information about an employee:

j{\ Picasso: Demo Tool |UHBS£M%£?£

Wcassd i •SlTOV^

tTFFr

W^&K^^^ ill

'8«B8$

•V.Vi

r»«iiiMiiimimiiiiiiimmiMi>i«—t—iwiniiiiiin

llfffl
? • tsm

It consists of a frame containing a form which describes the employee (e.g., name, age, etc.), and
a menu bar with pull-down menus that contain operations the user can execute. Buttons at the bot
tom of the frame allow the user to step through the employees in the database.

17-274 PICASSO Reference Manual

LIBRARY PICASSO OBJECTS

The department panel displays information aboutthe departmentto which the employee belongs:

mmaga^w^iwwaraxiraw^

Department-Panel

Departwent

? Dissertation

t Documentation
aProductior^

Name: '

•Floor:

Joe Konstan

Larru Roue

Documentation

. .5

Manager: Larru Roue

iijl,iil|ijn»i»jti»»;»»»jp

Employee

^»

si

At the top of the panel is a hierarchy browser that lists departments and the employees in a selected
department. Information about the department that the current employee belongs to is shown be
low the browser. The department information includes the manager and a graphics field that shows
a floor plan with the selected employee and his or her manager's office highlighted. If the user
selects a button at the bottom of the frame to display the previous or next employee and that em
ployee is in a different department, the department information in the panel is automatically updat
ed.

The user can search for an employee on any attribute (e.g., age or department). For example, se
lecting the By Age... menu operation from the tool window calls the search dialog box. The user
can then enter the desired age in the type-in field and press the Ok button, which returns from the
search dialog box and changes the display to the employee closest in age to the value entered.

To run the Employee/Department Browser:

% picasso

% <picasso> (run-tool-named ' ("paper" "demo" . "tool"))

PICASSO Reference Manual 17-275

LIBRARY PICASSO OBJECTS

17*276 PICASSO Reference Manual

DEFAULTS

18

DEFAULTS

Overview

In any toolkit, it is essential to have some sort ofmethod for defaulting unspecified attributes of
the various objects that make up the toolkit. For instance, complex widgets like table- fields
and text-widgets have ahuge number ofoptions, any number ofwhich can be specified when
the widget is created. However, it is not expected that the user specify very many ofthese options.
All unspecified options will default to some reasonable value, determined bythe widget either stat
ically (applicable to all instances) ordynamically (deduced from some combination of other at
tributes on a per-instance basis).

InPicasso, there is athree-level defaults hierarchy:

• user-level

• system-level

• widget-level

User-level defaults apply only to applications run by aparticular user. System-level defaults are
global to apanicular installation ofPicasso; they apply to all applications run using that particular
installation ofPicasso. Widget-level defaults are custom coded in the actual widget-code; they
apply to every Picasso application (on earth). User-level defaults override system-level defaults
which, in tum, override widget-level defaults. Any default which is not found at the user-level is
looked for in the system level and then the widget-level so it is possible to combine defaults be
tween the levels.

Selecting Defaults

User-level and system-level defaults are specified intwo files having the same format. The user-
level defaults should be in a file named

PICASSO Reference Manual 18-277

DEFAULTS

picasso-defaults"

in the user's home directory. The system-level defaults (if present) are in a file with the path

'* —TO
picasso/lib/picasso-defaults"

FORMAT OF USER/SYSTEM DEFAULTS

fi^SS^^^^^'m attHbMe< "* a"**• ** collection of (dossft«SSd«S n . t *&*•*"• Any member of the default-spec can be awild card

ctois used to specify the global name which identifies the object to which the default aonlies

fields is i field'or list offields that partially qualifies the default in ahierarchical manner *„+

aarito/fe is the specific attribute ofthe default that is to be set.
Perhaps an example would best illustrate how defaults are specified.
Here is a sample setof defaults:

FUass

text-gadget
demo-tool

demo-tool

18-278

Fields

framel, panel2, entry3
frame2, *, *

Attribute

torn

font

background
font

Value

8x14

6x10

PukeGreen

-b&h*bold-r*14*

PICASSO Reference Manual

DEFAULTS

This is the corresponding picasso-defaults file for the preceding set ofdefaults:

*.font: 8x13

text-gadget.font: 6x10

defaults for demo-tool

demo-tool.framel.panel2.entry3: BrightGreen

demo-tool.frame2.*.font: -b&h*bold-r*14*

BLACK & WHITE VS. COLOR

Because Picasso supports both monochrome &color displays, Picasso applications often need to
be customized in different ways, depending on whether the current-display is color or mono
chrome. Hence, Picasso allows specifications of defaults that are interpreted automatically as spe
cifically applicable to a certain typeof display.

Any default-spec that is postpended by the string "b&w" is treated as a default exclusively for
black-and-white (monochrome) displays.
For example:

*.background: blue

a global default for monochrome

*.background.b&w: gray75

demo-tool.frame2.*.background: BrightGreen

demo-tool.frame2.*.background.b&w: White

button.background: black

In the above example, for a

monochrome-display:

default background is gray75 (an image/tile), default background for widgets inframe2 of
demo-tool is White, default background for buttons is black.

color-display:

PICASSO Reference Manual 18*279

DEFAULTS

default background is blue, default background for widgets in frame2 of demo-tool is
BrightGreen. default background for buttons is black.

EVENT DEFAULTS

In addition so specifying defaults for attributes of objects, Picasso also allows a way of specifying
defaults for class-level event-mappings. The user should consult the chapter on Events in the
Widget Writer's Guide to get an understanding of event-mappings, but a brief overview will be
given in this section.

When an event is sent to a widget, what actually happens is that Picasso looks for and invokes a
handler for the event. Picasso consults a table of event-mappings to find this handler, event-map
pings can be either fully qualified or partiallyqualified. Picasso always invokes the handler most-
specific to the widget and the event.

An event-mapping is specified by five fields: class, event-type, state, detail, and handler. These
fields can be specified in apicasso-defaults file like any other default.

Here is a sample set of event-defaults:

Class Event-Type State Detail Handler

text-widget Key-press control k Jall-iine

text-widget key-press control K kill-line

matrix-field button-press ♦ * select-unique
matrix-field button-press * right-button select-unique
* button-press (meta shift) middle help

This is the correspondingpicasso-defaults file for the preceding set of event-defaults:

text-widget.key-press.control.k: kill-line

text-widget.key-press.control. K: kill-line

matrix-field.button-press.*: select-unique

matrix-field.button-press.*.right-button: select-multiple

global help facility (same for all widgets)

*.button-press.(meta shift):middle-button: help

18-280 PICASSO Reference Manual

DEFAULTS

Notice that the handler kill-line maps to two different types of events. Specifying multiple
mappings with the same handler is fine. However, specifying the same mapping twice (with adif
ferent handler) has unpredictable results. For the two mappings on matrix-field, the more
specific mapping has precedence. Hence, if the right-button is clicked on a matrix-field, the se
lect-multiple handler will be called. If any other button is clicked in the matrix, select-
unique will be called.

Requesting Defaults

While both the userandsystem canselect defaults, therequests will only by honored if the widget
itself requests the default. Currently, defaults that are requested from the widget code include
background, foreground, and font for all windows. Also, all event defaults are auto
matically requested.

To request a default, the following function is used.

get-default [Function]

object
attribute

&key
bw-p

gets the default from the resource-database that most closely matches object and attribute.
Defaults are retrieved in a hierarchical fashion, as described in the last section, object is of
type (member (pel: :object pel:: class stringable nil)). If object is an
object, it is convened into the class-name of the object. If object is a class, it is convened
into the name of the class. If nil, object matches any class in the database, attribute is
either a single field (stringable) or alist of fields. The, objectand attribute are appended to
form the default-request. Finally, get-de fault looks up the default-request and retums
the value correspondingto the closest matchingdefault-spec, get-de fault takes into ac
count if it is acolorormonochromedisplay. If it is amonochromedisplay,get-de fault
looks for the specified default with the "b&w" suffix in the defaults database. If there is no
corresponding default, the regular default (without the suffix) is looked-up andreturned. If
bw-pis non-nil, get-de fault forces amonochrome display lookup. In this case, if no de
fault was found, get-de fault returns nil (it does not lookup the color default).

Following is anexample of the way defaults are requested.

PICASSO Reference Manual 18-281

DEFAULTS

picasso-defaults file:

*.font: 8x13

text-gadget.font: 6x10

*.background.b&w: White

*.background: Orange

defaults for demo-tool

demo-tool.framel.panel2.entry3.background.b&w:Black

demo-tool.framel.panel2.entry3.background:BrightGreen

demo-tool.framel.*.background: Purple

sample requests:

—> (get-default a-button "font")

"8x13"

—> (get-default "button" "font")

"8x13"

—> (get-default a-text-widget "font")

"6x10"

--> (color-display-p)

T

—> (get-default "demo-tool"

'("framel" "panel2" "entry3" "background"))

"BrightGreen"

—> (get-default "demo-tool"

'("framel" "panel2" "entry4" "background"))

"Purple"

—> (get-default "demo-tool"

'("frame2" "panel2" "entry4" "background"))

"Orange"

—> (color-display-p)

18'282 PICASSO Reference Manual

NIL

—> (get-default "demo-tool"

'("framel" "panel2" "entry3" "background"))
"Black"

—> (get-default "demo-tool"

'("framel" "panel2" "entry4" "background"))
"Purple"

—> (get-default "demo-tool"

'("frame2" "panel2" "entry4" "background"))
"White"

Utilities

Here are acouple of useful utilities for managing defaults:

DEFAULTS

load-defaults

&key
(erase-old t)

[Function]

reload all system and user-level defaults from the appropriate files. The system-level de
fault-file is specified by the variable *picasso-defaults-path (defaults to ~pic-
asso/lib/picasso-defaults). The user-level defaults file is specified by the
variable *user-defaults-path* (defaults to -/.picasso-defaults). When
erase-old is non-nil, the current defaults that were previously loaded in are discarded. Oth
erwise, the newdefaults are added to the previous ones.

clean-event-mapping

&key
(widgets nil)

[Function]

clear default event-mappings for specified widgets. This function should only be called if
there is adefault event-mapping (previously loaded in) that needs to be removed. Usually,
load-defaults iscalled following acall to clean-event-mapping, widgets isei
ther nil, a symbol, or a list of symbols. When widgets is nil, the entire set of default
event-mappings for the toolkit are cleared. When widgets is a symbol (e.g.,' text-wid
get), the default event-mappings for the widget corresponding to that symbol are cleared.
When widgets is alist of symbols, the default event-mappings for the widgets corresponding

PICASSO Reference Manual 18-283

DEFAULTS

to each of the symbols in the list are cleared. Qearing default event-mappings has no effect
on the current event-mappings. To change the current event-mappings, use make-class-
event-map.

make-class-event-map [Function]

window

recreate the class level event-mappings for the specified window from the default event-
mappings, window should be an instance of an x-window (or subclass).

18-284 PICASSO Reference Manual

References

19

References

[Chamess 89] D. Chamess and L. Rowe, SLING.SQL - Common LISP to INGRES/SQL Inter
face, Computer Science Division - EECS, U.C. Berkeley, Dec. 1989.

[Goldberg 83] A. Goldberg,Smalltalk-80: The Interactive Programming Environment, Addi-
son-Wesley, Reading, MA, 1983.

[Keene89] S. Keene, Object-Oriented Programming in Common Lisp, Addison-Wesley,
Reading, MA, 1988.

[Linton89] M. A. Linton, "Composing User Interfaces with Interviews", IEEE Computer,
Feb. 1989.

[Myers 89] B. Myers, et. al., The Garnet Toolkit Reference Manuals: Supportfor HighlyIn
teractive, Graphical UserInterfaces inLisp, Technical Report CMU, Pittsburgh,
PA-CS-89-196, Carnegie-Mellon University, Nov. 1989.

[Rowe 90] L. A. Rowe, J. Konstan,B. Smith,S. Seitz, and C. Liu, The PICASSO Application
Framework, Computer Science Division - EECS, U.C. Berkeley, May 1990.

[Scheifler 86] R. W. Scheifler and J. Gettys, "The X Window System", ACM Trans, on Graph
ics 52 (Apr.1986).

[Scheifler 89] R. W. Scheifler and O. LaMott, CLX Programmer's Reference, Texas Instru
ments, 1989.

[Schmucker86] K. J. Schmucker, "MacApp: An ApplicationFramework", Byte,Aug., 1986.

[Seitz90] S. Seitz, P. Schank, and G. Ogle,Widget Writers Guide, Computer Science Di
vision - EECS, U.C. Berkeley, June 1990.

[Wensel 89] S. Wensel, "POSTGRES Reference Manual", Electronics Research Lab Techni
cal Report m88/20 (Revised), Apr. 1989.

PICASSO Reference Manual 19-285

References

19-286 PICASSO Reference Manual

Master Index

Master Index

2d-rotate [Method] 15-235
2d-scale [Method] 15-235
2d-translate [Method] 15-235
2dv-! [Function] 15-248
2dv- [Function] 15-248
2dv+! [Function] 15-247
2dv+ [Function] 15-247
2dv-copy [Macro] 15-247
2dv-dot-product [Function] 15-248
2dv-length [Function] 15-248
2dv-negate! [Function] 15-248
2dv-negate [Function] 15-248
2dv-normalize! [Function] 15-248
2dv-noimalize [Function] 15-249
2dv-scale! [Function] 15-249
2dv-scale [Function] 15-249
2dv-zerop [Macro] 15-249
activate-pop-up-menu [Function] 13-191
activate-pull-down-menu [Function] 13-191
active-image [Accessor] 10-163
active-p [Macro] 2-25
add-child [Macro] 7-113
add-current [Function] 14-214
add-object [Method] 15-232
add-viewer [Method] 15-232
add-viewer-recursively [Method] 15-232
all-fields-by-col [Function] 14-217
all-fields-by-row [Function] 14-217
alloc-2d [Function] 15-246
append-to-file [Method] 9-142
attach [Function] 2-20
attach [Function] 3-34
attached-of [Macro] 2-21
attached-p [Macro] 2-21
attached-p [Macro] 3-34
attach-when-possible [Accessor] 2-21
background [Accessor] 2-12
background [Accessor] 3-42

PICASSO Reference Manual Index-1

Master Index

background [Accessor] 3-44
base-height [Accessor] 2-10
base-size [Accessor] 2-10
base-width [Accessor] 2-10
bind [Macro] 6-95
bind-slot [Function] 6-96
bind-var [Macro] 6-96
bitmap-p [Reader] 12-181
bitmap-p [Reader] 3-38
blet [Macro] 6-94
blue [Reader] 3-36
border-attributes [Accessor] 2-15
border-clear [Method] 8-128
border-init [Method] 8-129
border-repaint [Method] 8-129
border-type [Accessor] 2-15
border-width [Accessor] 2-15
bring-back [Accessor] 13-190
buffer [Accessor] 9-139
button-p [Macro] 10-154
button-pos [Reader] 11-174
call-dialog [Macro] 4-75
call-frame [Macro] 4-71
center-left-justified [Accessor] 13-189
changed-indices [Reader] 14-214
children [Reader] 7-112
circle-down : [Method] 2-28
circle-up [Method] 2-28
clean-event-mapping [Function] 18-283
clear [Method] 2-15
clear-env [Function] 5-82
clear-region [Method] 2-16
click-button-p [Macro] 10-162
closed [Accessor] 15-241
close-panel [Macro] 4-78
close-portal [Method] 5-87
cl-to-db-type [Function] 5-87
col-index [Accessor] 14-202
color [Accessor] 15-238
color [Accessor] 15-239
colormap [Accessor] 2-13
colormap [Reader] 3-36
cols [Reader] 14-204

Index-2 PICASSO Reference Manual

Master Index

cols [Reader] 14-223
col-title-matrix [Accessor] 14-224
col-title-matrix [Reader] 14-210
col-titles [Accessor] 14-206
col-titles [Accessor] 14-224
column [Accessor] 9-141
columns [Reader] 9-137
columns [Reader] 9-140
column-widths [Accessor] 14-198
col-width [Accessor] 14-228
conceal [Function] 2-24
concealed-of [Macro] 2-24
concealed-p [Macro] 2-24
conceal-inferiors [Method] 2-29
configure [Method] 2-27
confomi [Accessor] 7-112
con-name [Accessor] 2-31
copy [Method] 15-233

copy-2d [Macro] 15-247
copy-mark [Method] 9-142
current-database [Function] 5-87
current-dialog [Macro] 4-75
current-field [Accessor] 4-67
current-field [Reader] 14-213
current-fields [Reader] 14-213
current-fields-by-col [Function] 14-217
current-fields-by-row [Function] 14-217
current-frame [Macro] 4-71
current-indices [Accessor] 14-208
current-indices [Accessor] 14-223
current-package [Function] 4-53
current-panel [Macro] 4-78
current-selection [Method] 14-198
current-tool [Macro] 4-62
current-tuple [Method] 5-87
current-value [Reader] 14-213
current-value [Reader] 14-223
current-values [Reader] 14-213
cursor [Accessor] 2-26
cursor-mode [Method] 9-141
curve-labels [Accessor] 16-267
data [Accessor] 14-203
data [Accessor] 10-154

PICASSO Reference Manual Index-3

Master Index

data [Accessor] 11-175
data [Accessor] 14-197
data [Accessor] 14-223
data [Accessor] 9-138
data-array-size [Argument] 14-204
data-cols [Accessor] 14-203
data-cols [Accessor] 14-204
data-rows [Accessor] 14-203
data-rows [Accessor] 14-204
db-to-cl-type [Function] 5-87
default [Accessor] 10-153
default-titles [Argument] 14-207
defdbclass [Macro] 5-89
defdialog name (arguments) [Macro] 4-73
defform name (arguments) [Macro] 4-64
defframe name (arguments). [Macro] 4-70
defpanel name (arguments) [Macro] 4-77
deftool tool-name (arguments) [Macro] 4-58
delete-child [Macro] 7-114
delete-current [Function] 14-214
delete-mark [Method] 9-142
delete-object [Method] 15-233
delete-viewer [Method] 15-233
delete-viewer-recursively [Method] 15-233
depress [Accessor] 10-156
depth [Reader] 3-41
depth [Reader] 3-43
deselect-image [Accessor] 10-166
destroy [Method] ,2-16
detach [Function] 2-21
detach [Function] 3-34
detached-of [Macro] 2-21
detached-p [Macro] 2-22
determine-class [Method] 8-124
dialog-p [Macro] 4-75
dim [Method] 2-16
dim-item [Method] 10-164
dimmed [Accessor] 2-11
dimmed [Accessor] 9-135
dimmed-background [Accessor] 2-12
dimmed-foreground [Accessor] 2-13
display [Reader] 2-8
display [Reader] 3-40

Index-4 PICASSOReference Manual

Master Index

display [Reader] 3-45
display [Reader] 3-47
do-attach [Method] 2-21
do-attach [Method] 3-34
doc [Accessor] 2-7
do-conceal [Method] 2-24
do-detach [Method] 2-21
do-detach [Method] 3-34
do-expose [Method] 2-25
domain [Accessor] 16-266
do-make-invisible [Method] 2-23
do-make-uninvisible [Method] 2-23
do-pend [Method] 2-22
dopoints [Macro] 15-250
do-propagate [Function] 6-103
do-propagate [Function] 6-103
do-repaint [Method] 2-17
down-func [Accessor] 14-216
drag-scroll-bar [Function] 11-177
drawn-border-width [Accessor] 10-156
duplicate-2d [Function] 15-247
editable [Accessor] 9-146
editable [Argument] 14-208
editable-row-titles, editable-col-titles [Argument] 14-208
enforce-constants [Macro] 5-84
enumerate-col [Function] 14-217
enumerate-row [Function] 14-217
event-mask [Accessor] 2-27
exclude-package [Function] 4-53
expose [Function] 2-24
exposed-gadgets-of [Macro] 2-26
exposed-of [Macro] 2-25
exposed-p [Macro] 2-25
expose-inferiors [Method] 2-29
fetch-dbobject [Method] 5-90
fetch-dbobject [Method] 5-90
fetch-tuples [Method] 5-87
field-table [Accessor] 14-209
find-po-named [Function] 4-54
find-shape [Function] 15-233
first-font [Argument] 16-262
first-title [Argument] 16-261
first-value [Argument] 16-262

PICASSO Reference Manual Index-5

Master Index

fix-location [Method] 2-27
fix-region [Method] 2-27
fix-size [Method] 2-28
flag [Accessor] 10-154
flatten [Method] 15-233
font [Accessor] 14-198
font [Accessor] 14-206
font [Accessor] 14-227
font [Accessor] 16-265
font [Accessor] 2-13
font [Accessor] 9-135
font [Accessor] 9-144
font-ascent [Reader] 3-45
font-descent [Reader] 3-45
font-height [Reader] 3-45
font-path [FunctionlSetf] 3-46
fonts [Accessor] 15-238
font-width [Reader] 3-45
force-repack [Macro] 7-114
foreground [Accessor] 2-12
foreground [Accessor] 3-42
foreground [Accessor] 3-43
form-p [Macro] 4-67
frame-p [Macro] 4-71
free-2d [Macro] 15-246
free-nomad [Accessor] 14-210
func [Accessor] 10-154
gadgets-of [Macro] 2-25
geom-spec [Accessor] 2-10
get-<resource-type> [Function] 3-35
get-default [Function] 18-281
gm [Accessor] 7-112
gm-data [Accessor] 7-113
gm-matrix-init [Function] 7-121
goal [Accessor] 16-261
goto-frame [Macro] 4-71
grab-mouse [Method] 2-29
gray [Accessor] 10-156
gray [Accessor] 2-15
gray-button-p [Macro] 10-157
gray-pop-button-p [Macro] 10-160
green [Reader] 3-36
grid-lines [Accessor] 14-204

Index-6 PICASSO Reference Manual

Master Index

height [Accessor] 15-238
height [Accessor] 15-242
height [Accessor] 15-243
height [Accessor] 2-10
height [Reader] 3-38
height [Reader] 3-39
height [Reader] 3-41
height [Reader] 3-43
height [Reader] 3-45
height-increment [Accessor] 2-11
hide-menu-item [Function] 13-187
high [Accessor] 16-259
hook-pt [Accessor] 15-241
horiz-just [Accessor] 12-181
horiz-just [Accessor] 9-135
horiz-just, vert-just [Argument] 14-209
horizontal-scroll-step [Accessor] 9-146
horiz-scroll-bar [Accessor] 14-223
horiz-scroll-bar-p [Accessor] 14-223
icon [Accessor] 2-31
image [Reader] 3-41
image [Reader] 3-43
inactive-image [Accessor] 10-163
include-package [Function] 4-54
increment [Accessor] 16-259
increment-size [Accessor] 2-11
initial-rows, initial-cols [Argument] 14-206
insert-col [Method] 14-218
insert-mode [Accessor] 9-146
insert-row [Method] 14-218
inter-col-pad [Accessor] 14-202
inter-row-pad [Accessor] 14-202
invalid-p [Macro] 6-107
invert [Accessor] 9-144
invert [Method] 2-16
inverted [Accessor] 10-157
inverted [Accessor] 2-11
inverted-background [Accessor] 2-12
inverted-foreground [Accessor] 2-12
invert-width [Accessor] 10-156
invisible-of [Macro] 2-23
invisible-p [Macro] 2-23
items [Accessor] 10-158

PICASSO Reference Manual Index-7

Master Index

items [Argument] 14-226
items [Argument] 16-262
items [Writer] 10-164
items-font [Accessor] 10-159
just [Accessor] 15-239
just [Argument] 14-209
just-repack [Macro] 7-114
label [Accessor] 2-13
label-attributes [Accessor] 2-14
label-clear [Method] 8-130
label-font [Accessor] 2-14
label-init [Method] 8-131
label-position [Accessor] 2-14
label-repaint [Method] 8-131
label-type [Accessor] 2-13
label-x [Accessor] 2-14
label-y [Accessor] 2-14
lazy-p [Function] 6-107
left-func [Accessor] 10-161
left-func [Accessor] 14-216
left-of-screen [Accessor] 9-141
lexical-environment [Macro] 5-82
lexical-parent [Accessor] 2-8
linestr-gravity-pt [Function] 15-250
linestr-normal [Function] 15-250
linestr-point [Function] 15-250
linestr-pt-normal [Function] 15-251
line-style [Accessor] 15-239
line-width [Accessor] 15-239
load-defaults [Function] 18-283
load-file [Method] 9-143
locate-window [Function] 2-17
location [Accessor] 2-9
lookup [Function] 5-82
low [Accessor] 16-258
lower [Method] 2-29
lower-left [Accessor] 15-238
lower-limit [Accessor] 11-174
make-2d-point [Function] 15-246
make-2d-shape [Function] 15-235
make-annotation [Function] 15-237
make-box [Function] 15-241
make-browse-widget [Function] 14-197

Index-8 PICASSO Reference Manual

Master Index

make-button [Function] 10-152
make-button-group [Function] 10-163
make-check-button [Function] 10-168
make-check-group [Function] 10-167
make-class-event-map [Function] 18-284
make-click-button [Function] 10-161
make-col-current [Method] 14-218
make-collection-gadget [Function] 7-110
make-collection-widget [Function] 7-111
make-color [Function] 3-36
make-colormap [Function] 3-38
make-col-uncurrent [Method] 14-218
make-cursor [Function] 3-40
make-dbobject-from-database [Method] 5-90
make-display [Function] 3-47
make-entry-widget [Function] 9-149
make-font [Function] 3-45
make-gadget [Function] 8-123
make-graphic-browser [Function] 15-253
make-graphic-gadget [Function] 15-252
make-gray [Method] 10-157
make-gray-button [Function] 10-155
make-gray-pop-button [Function] 10-160
make-icon [Function] 3-44
make-image [Function] 3-39
make-image-gadget [Function] 12-179
make-instance [Function] 5-90
make-invisible [Function] 2-23
make-label [Function] 8-130
make-list-box [Function] 14-225
make-matrix-field [Function] 14-201
make-menu-bar [Function] 13-184
make-menu-button [Function] 13-190
make-menu-entry [Function] 13-184
make-menu-pane [Function] 13-188
make-meter-slider [Function] 16-258
make-num-entry [Function] 9-150
make-opaque-window [Function] 2-30
make-plot-widget [Function] 16-264
make-polygon [Function] 15-240
make-pop-button [Function] 10-158
make-portal [Function] 5-86
make-qual-widget [Function] 16-261

PICASSO Reference Manual Index-9

Master Index

make-radio-button [Function] 10-166
make-radio-group [Function] 10-165
make-row-current [Method] 14-217
make-row-uncurrent [Method] 14-218
make-screen [Function] 3-47
make-scroll-bar [Function] 11-173
make-scroUing-text-widget [Function] 9-148
make-segment [Function] 15-236
make-shape [Function] 15-231
make-slot-lazy-for-class [Function] 6-107
make-slot-lazy-for-instance [Function] 6-107
make-slot-unlazy-for-subclass [Function] 6-108
make-table-field [Function] 14-220
make-text-gadget [Function] 9-134
make-text-widget [Function] 9-146
make-tile [Function] 3-42
make-ungray [Method] 10-157
make-uninvisible [Function] 2-23
make-widget [Function] 8-125
make-window [Function] 2-6
make-x-window [Function] 2-26
managed-of [Macro] 2-25
managed-p [Macro] 2-25
map-dc-to-wc [Macro] 15-243
mapping [Accessor] 15-243
map-wc-to-dc [Macro] 15-244
mark [Method] 9-142
mark-font [Accessor] 16-266
mark-points [Accessor] 16-266
mask [Accessor] 10-154
mask [Accessor] 9-135
matrix-field [Accessor] 14-222
max-elements [Argument] 14-227
max-height [Argument] 14-227
max-width [Argument] 14-227
me-center [Function] 13-187
me-dimmed [Function] 13-187
me-font [Function] 13-187
me-left [Function] 13-187
menu [Accessor] 10-159
menu [Accessor] 13-189
menu [Accessor] 13-190
menu-bar-p [Macro] 13-184

Index-10 PICASSO Reference Manual

9 fi
u

X

3
3

3
3

n
<

*
o

o

a
*

*
$ •a C

O

H
-»

O
©

U
>

*
*

M
M

\
0

<
0

U
l

•
i

k
i

•
C

O
L

ft
'

•
•

•
»

-*
h

-»
|

H
-»

I—
»

I
|

I—
"

»—
»

I—
»

»—
»

U
i
J
k
0

0
N

l
O

s
l
s
l
0

\
0

\
v
l
O

C/
»
4
^

•-
»

^
4

©
4
*

4
*

4
*

•&
.

4
^
4
^
4
^
4
^
4
^
4
^
0
\
U
>
c
o
u
>
c
o

v
i

;
v
i

t
-
»
^
—

•
^
«
i

<
—
»
•
+
*
•
•
*
+
»
•
*
»
:

•
*
»
+
*

-
t
^

-
»
^
+
*

+
»
•
v
\

v
>
*

v
*
j

\
>
j
v
j

1
C
O

C
O

C
O

C
O

C
O

C
O

C
O

C
O
•
!
•
!

k
i

i
•

i
i

•
•

i
i

i
i

i
i

i
i

i
i

i

U
i
^
^
^
^
^
O

J
O

^
^

i
w

h
-
's

J
m

m
O

\
»

-
*

i
-
*

i
-
'i

-
'i

h
h

h
h

h
h

^
o

O
O

O
O

O
V

O
M

O
\
U

i
W

H
O

O
O

>
J
O

\
O

O
K

)
M

U
O

\
W

M
t
s
)
K

)
|
O

N
)
O

O
U

i
U

L
A

y
i
K

)
K

)
\
0

>
J
V

O
O

\
M

P a

Master Index

orientation [Argument] 16-262
orientation [Reader] 14-226
overflow-increment [Accessor] 14-204
package-search-list [Function] 4-54
pad [Reader] 14-227
paints [Accessor] 16-266
pan [Method] 15-244
panel-p [Macro] 4-79
parent [Accessor] 2-9
pause-seconds [Accessor] 10-153
pause-seconds [Accessor] 11-176
pend [Function] 2-22
pended-p [Macro] 2-22
pending-of [Macro] 2-22
pending-p [Macro] 2-22
pixel [Reader] 3-36
pop-button-p [Macro] 10-159
ppi [Method] 5-91
ppu [Function] 15-244
press-func [Accessor] 10-153
previous-tuple [Method] 5-88
prev-line-func [Accessor] 11-177
prev-page-func [Accessor] 11-177
primary-screen [Reader] 3-46
pt [Function] 2-17
ptab [Accessor] 13-189
pushed [Accessor] 10-153
put [Method] 9-140
put-file [Method] 9-143
qual-widget-p [Macro] 16-262
query-region [Function] 2-28
raise [Method] 2-29
range [Accessor] 16-266
recache-map [Method] 15-244
red [Reader] 3-36
region [Accessor] 2-10
related-p [Method] 2-29
relax-constants [Macro] : 5-84
release-func [Accessor] 10-153
reload-picasso-objea-named [Function] 4-54
repack [Macro] 7-114
repack-flag [Accessor] 7-113
repack-off [Macro] 7-114

Index-12 PICASSO Reference Manual

Master Index

repack-on [Macro] 7-114
repaint [Function] 2-17
repaint-flag [Accessor] 2-13
repaint-region [Function] 2-17
repaint-x [Method] 8-124
repaint-y [Method] 8-124
res [Reader] 2-9
res [Reader] 3-36
res .[Reader] 3-37
res [Reader] 3-38
res [Reader] 3-40
res [Reader] 3-41
res [Reader] 3-43
res [Reader] 3-44
res [Reader] 3-46
res [Reader] 3-47
reshape [Method] 2-16
resize [Method] 2-16
resize-hint [Accessor] 2-11
<resource-type>-attach [Macro] 3-34
<resource-type>-detach [Macro] 3-34
result [Accessor] 16-261
ret-dialog [Macro] 4-75
ret-form [Macro] 4-67
ret-frame [Macro] 4-72
ret-tool [Macro] 4-62
return-func [Accessor] 14-209
retum-func [Accessor] 9-149
rewind-portal [Method] .5-88
right-func [Accessor] 10-162
right-func [Accessor] 14-216
root [Reader] 3-47
row [Accessor] 9-141
row-elements, col-elements [Argument] 14-205
row-height [Accessor] 14-228
row-height, col-width [Argument] 14-226
row-heights, col-widths [Argument] 14-206
row-index [Argument] 14-202
rows [Reader] 14-203
rows [Reader] 14-223
rows [Reader] 9-137
rows [Reader] 9-141
rows-changed-function [Accessor] 9-138

PICASSO Reference Manual Index-13

Master Index

row-title-elements, col-title-elements [Argument] 14-207
row-title-font, col-title-font [Argument] 14-207
row-title-matrix [Accessor] 14-224
row-title-matrix [Reader] 14-210
row-titles [Accessor] 14-206
row-titles [Accessor] 14-224
row-title-selectable, col-title-selectable....[Argument] 14-207
row-title-width, col-title-height [Argument] 14-207
run-dialog [Macro] 4-76
run-frame [Macro] 4-72
run-panel [Macro] 4-79
run-tool [Macro] 4-62
run-tool-named [Macro] 4-63
save-file [Method] 9-143
screen [Reader] 2-9
screen [Reader] 3-37
scroll-bar [Accessor] 9-148
scroll-right-at [Accessor] 9-147
search-backward [Method] 9-143
search-forward [Method] 9-143
second-font [Argument] 16-262
second-title [Argument] 16-261
second-value [Argument] 16-262
select-func [Accessor] 14-209
select-func [Accessor] 14-223
select-image [Accessor] 10-166
selection [Accessor] 14-207
selection [Method] 14-198
self-adjustable [Argument] 14-207
self-adjusting [Accessor] 9-135
server-x-offset [Function] 2-28
server-y-offset [Function] 2-28
set-color-recursively [Function] 15-252
(setf buttons) [Writer] 11-174
setf return-func [Accessor] 9-149
setf-current-database [Function] '. 5-88
(setfme-parent) [Function] 13-186
(setfportal-tuple-index) [Method] 5-88
(setf selection) [Method] 15-254
(setf value) [Writer] 9-135
(setf value) [Writer] 9-135
(setf value) [Writer] 9-137
(setf value) [Writer] 9-140

Index-14 PICASSO Reference Manual

Master Index

set-lower-left [Method] 15-245
set-me-parent [Function] 13-186
set-trigger [Macro] 6-104
set-trigger [Macro] 6-104
set-upper-right [Method] 15-245
set-visibility-recursively [Function] 15-252
set-world [Method] 15-245
show-menu-item [Function] 13-187
size [Accessor] 2-10
slider-location [Accessor] 11-175
slider-size [Accessor] 11-175
slot-type [Method] 5-91
slot-value [Function] 5-91
sort-keys [Accessor] 14-197
src-height [Accessor] 12-180
src-width [Accessor] 12-180
src-x [Accessor] 12-180
src-y [Accessor] 12-180
status [Accessor] 2-8
store-dbobject [Method] 5-91
sub-objs [Accessor] 15-232
synth-p [Macro] 8-127
synths [Reader] 13-189
tab-step [Accessor] 9-147
tearable [Accessor] 13-189
text t [Accessor] 15-238
text-widget [Accessor] 9-148
tf-button [Argument] 14-222
tf-image [Argument] 14-222
tf-items [Argument] 14-222
tide [Accessor] 14-227
tide-font [Accessor] 14-198
title-font [Argument] 14-227
titles [Argument] 14-206
tool-p [Macro] 4-63
top-of-screen [Accessor] 9-141
unbind-fast [Function] 6-102
unbind-slot [Function] 6-102
unbind-var [Function] 6-102
uncurrent-fields-by-col [Macro] 14-217
uncurrent-fields-by-row [Macro] 14-217
ungrab-mouse [Function] 2-29
uniform-rows [Accessor] 14-216

PICASSO Reference Manual Index-15

Master Index

uniform-rows [Accessor] 14-216
unique-selection [Argument] 14-207
unmark [Method] 9-142
unpend [Function] 2-22
unselect-func [Accessor] 14-209
update-flag [Accessor] 16-259
update-flag [Accessor] 16-265
update-value [Method] 10-164
up-func [Accessor] 14-216
upper-limit [Accessor] 11-175
value [Accessor] 10-154
value [Accessor] 12-181
value [Accessor] 14-223
value [Accessor] 14-226
value [Accessor] 16-259
value [Accessor] 16-265
value [Accessor] 2-8
value [Accessor] 5-83
value [Reader] 9-136
value [Reader] 9-137
value [Reader] 9-139
vertical [Method] 10-164
vertical-p [Macro] 11-178
vertical-scroll-step [Accessor] 9-147
vert-just [Accessor] 12-181
vert-just [Accessor] 9-136
vert-scroll-bar [Accessor] 14-223
vert-scroll-bar-p [Accessor] 14-223
viewable-p [Macro] 2-26
viewers [Accessor] 15-232
visible-cols [Accessor] 14-210
visible-cols [Accessor] 14-224
visible-rows [Accessor] 14-210
visible-rows [Accessor] 14-224
visual [Reader] 3-37
warp-mouse [Method] 2-29
warp-mouse-if [Method] 2-30
width [Accessor] 15-238
width [Accessor] 15-242
width [Accessor] 15-243
width [Accessor] 2-9
width [Reader] 3-38
width [Reader] 3-41

Index-16 PlCASSO Reference Manual

Master Index

width [Reader] 3-43
width [Reader] 3-45
width-height-ratio [Accessor] 2-11
width-increment [Accessor] 2-11
x-axis [Accessor] 16-267
x-increment [Accessor] 16-266
x-label [Accessor] 16-265
xmax [Accessor] 15-243
xmin [Accessor] 15-243
x-offset [Accessor] 2-9
x-pad [Accessor] 16-265
y-axis [Accessor] 16-267
y-increment [Accessor] 16-266
y-label [Accessor] 16-265
ymax [Accessor] 15-243
ymin [Accessor] 15-243
y-offset [Accessor] 2-9
y-pad [Accessor] 16-265
zoom-extent [Method] 15-253
zoom-factor [Method] 15-245

PICASSO Reference Manual Index-17

Master Index

Index-18 PICASSO Reference Manual

Index of Accessors

Index of Accessors

active-image [Accessor] 10-163
attach-when-possible [Accessor] 2-21
background [Accessor] 2-12
background [Accessor] 3-42
background [Accessor] 3-44
base-height [Accessor] 2-10
base-size [Accessor] 2-10
base-width [Accessor] 2-10
border-attributes [Accessor] 2-15
border-type [Accessor] 2-15
border-width [Accessor] 2-15
bring-back [Accessor] 13-190
buffer [Accessor] 9-139
center-left-justified [Accessor] 13-189
closed [Accessor] 15-241
col-index [Accessor] 14-202
color [Accessor] 15-238
color [Accessor] 15-239
colormap [Accessor] 2-13
col-title-matrix [Accessor] 14-224
col-tides [Accessor] 14-206
col-titles [Accessor] 14-224
column [Accessor] 9-141
column-widths [Accessor] 14-198
col-width [Accessor] 14-228
conform [Accessor] 7-112
con-name [Accessor] 2-31
current-field [Accessor] 4-67
current-indices [Accessor] 14-208
current-indices [Accessor] 14-223
cursor [Accessor] 2-26
curve-labels [Accessor] 16-267
data [Accessor] 14-203
data [Accessor] 10-154
data [Accessor] 11-175
data [Accessor] 14-197
data [Accessor] 14-223
data [Accessor] 9-138

PICASSO Reference Manual Index-19

Index of Accessors

data-cols [Accessor] 14-203
data-cols [Accessor] 14-204
data-rows [Accessor] 14-203
data-rows [Accessor] 14-204
default [Accessor] 10-153
depress [Accessor] 10-156
deselect-image [Accessor] 10-166
dimmed [Accessor] 2-11
dimmed [Accessor] 9-135
dimmed-background [Accessor] 2-12
dimmed-foreground [Accessor] 2-13
doc [Accessor] 2-7
domain [Accessor] 16-266
down-func [Accessor] 14-216
drawn-border-width [Accessor] 10-156
editable [Accessor] 9-146
event-mask. [Accessor] 2-27
field-table [Accessor] 14-209
flag [Accessor] 10-154
font [Accessor] 14-198
font [Accessor] 14-206
font [Accessor] 14-227
font [Accessor] 16-265
font [Accessor] 2-13
font [Accessor] 9-135
font [Accessor] 9-144
fonts [Accessor] 15-238
foreground [Accessor] 2-12
foreground [Accessor] 3-42
foreground. [Accessor] 3-43
free-nomad [Accessor] 14-210
func [Accessor] 10-154
geom-spec [Accessor] 2-10
gm [Accessor] 7-112
gm-data [Accessor] 7-113
goal [Accessor] 16-261
gray [Accessor] 10-156
gray [Accessor] 2-15
grid-lines [Accessor] 14-204
height [Accessor] 15-238
height [Accessor] 15-242
height [Accessor] 15-243
height [Accessor] 2-10

Index-20 PICASSO Reference Manual

Index of Accessors

height-increment [Accessor] 2-11
high [Accessor] 16-259
hook-pt [Accessor] 15-241
horiz-just [Accessor] 12-181
horiz-just [Accessor] 9-135
horizontal-scroll-step [Accessor] 9-146
horiz-scroll-bar [Accessor] 14-223
horiz-scroll-bar-p [Accessor] 14-223
icon [Accessor] 2-31
inactive-image [Accessor] 10-163
increment [Accessor] 16-259
increment-size [Accessor] 2-11
insert-mode [Accessor] 9-146
inter-col-pad [Accessor] 14-202
inter-row-pad [Accessor] 14-202
invert [Accessor] 9-144
inverted [Accessor] 10-157
inverted [Accessor] 2-11
inverted-background [Accessor] 2-12
inverted-foreground [Accessor] 2-12
invert-width [Accessor] 10-156
items [Accessor] 10-158
items-font [Accessor] 10-159
just [Accessor] 15-239
label [Accessor] 2-13
label-attributes [Accessor] 2-14
label-font [Accessor] 2-14
label-position [Accessor] 2-14
label-type [Accessor] 2-13
label-x [Accessor] 2-14
label-y [Accessor] 2-14
left-func [Accessor] 10-161
left-func [Accessor] 14-216
left-of-screen [Accessor] 9-141
lexical-parent [Accessor] 2-8
line-style [Accessor] 15-239
line-width [Accessor] 15-239
location [Accessor] 2-9
low [Accessor] 16-258
lower-left [Accessor] 15-238
lower-limit [Accessor] 11-174
mapping [Accessor] 15-243
mark-font [Accessor] 16-266

PICASSO Reference Manual Index-21

Index of Accessors

mark-points [Accessor] 16-266
mask [Accessor] 10-154
mask [Accessor] 9-135
matrix-field [Accessor] 14-222
menu [Accessor] 10-159
menu [Accessor] 13-189
menu [Accessor] 13-190
mf-selectable-widget [Accessor] 2-8
middle-func [Accessor] 10-161
min-size [Accessor] 7-113
moved-func [Accessor] 11-175
name [Accessor] 15-232
name [Accessor] 2-8
next-line-func [Accessor] 11-176
next-page-func [Accessor] 11-176
old-attributes [Accessor] 10-157
orientation [Accessor] 10-164
orientation [Accessor] 11-175
overflow-increment [Accessor] 14-204
paints [Accessor] 16-266
parent [Accessor] 2-9
pause-seconds [Accessor] 10-153
pause-seconds [Accessor] 11-176
press-func [Accessor] 10-153
prev-line-func [Accessor] 11-177
prev-page-func [Accessor] 11-177
ptab [Accessor] 13-189
pushed [Accessor] 10-153
range [Accessor] 16-266
region [Accessor] 2-10
release-func [Accessor] 10-153
repack-flag [Accessor] 7-113
repaint-flag [Accessor] 2-13
resize-hint [Accessor] 2-11
result [Accessor] 16-261
retum-func [Accessor] 14-209
retum-func [Accessor] 9-149
right-func [Accessor] 10-162
right-func [Accessor] 14-216
row [Accessor] 9-141
row-height [Accessor] 14-228
rows-changed-function [Accessor] 9-138
row-tide-matrix [Accessor] 14-224

Index-22 PlCASSO Reference Manual

Index of Accessors

row-titles [Accessor] 14-206
row-titles [Accessor] 14-224
scroll-bar [Accessor] 9-148
scroll-right-at [Accessor] 9-147
select-func [Accessor] 14-209
select-func [Accessor] 14-223
select-image [Accessor] 10-166
selection [Accessor] 14-207
self-adjusting [Accessor] 9-135
setf return-func [Accessor] 9-149
size [Accessor] 2-10
slider-location [Accessor] 11-175
slider-size [Accessor] 11-175
sort-keys [Accessor] 14-197
src-height [Accessor] 12-180
src-width [Accessor] 12-180
src-x [Accessor] 12-180
src-y [Accessor] 12-180
status [Accessor] 2-8
sub-objs [Accessor] 15-232
tab-step [Accessor] 9-147
tearable [Accessor] 13-189
text [Accessor] 15-238
text-widget [Accessor] 9-148
tide [Accessor] 14-227
title-font [Accessor] 14-198
top-of-screen [Accessor] 9-141
uniform-rows [Accessor] 14-216
uniform-rows [Accessor] 14-216
unselect-func [Accessor] 14-209
update-flag [Accessor] 16-259
update-flag [Accessor] 16-265
up-func [Accessor] 14-216
upper-limit [Accessor] 11-175
value [Accessor] 10-154
value [Accessor] 12-181
value [Accessor] 14-223
value [Accessor] 14-226
value [Accessor] 16-259
value [Accessor] 16-265
value [Accessor] 2-8
value [Accessor] 5-83
vertical-scroll-step [Accessor] 9-147

PICASSO Reference Manual Index-23

6* O
.

3 o & o a 8 2 g e E
L

X
X

§•
g-

r-
2.

£•
K"

K'
K*

R-
2

2
2

2
a

*
«

•
S

*
«

•
»

ft
:

t
t

ft
:

3

<
D

fp
fp

<
p

52
2

o
<">

o
o

o
o

<
<

C
A

C
A

C
A

C
A

§
s

a
*

c
r

5

C
A

C
A

>
>

>
>

>
>

>
>

>
>

>
>

>
>

>
>

>
>

>
>

>
>

>
>

>
>

>
>

>
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o

C
A

C
A

C
A

C
A

C
A

C
A

C
A

C
A

C
A

C
A

C
A

C
A

C
A

C
A

C
A

G
A

C
A

C
A

C
A

C
A

C
A

C
A

C
A

C
A

C
A

C
A

C
A

C
A

C
A

C
A

C
A

C
A

C
A

C
A

C
A

C
A

C
A

C
A

G
A

M
C

A
C

A
C

A
C

A
C

A
C

A
C

A
C

A
C

A
C

A
C

A
C

A
C

A
C

A
C

A
C

A
C

A
C

A
O
O
O
O
O
O
O
O
O
O
P
O
O
P
P
O
O
O
P
P
O
O
O
O
O
P
P
O
P

,H
,

M
.

M
"-

I
M

,i
-l

,
M

i-
i

N
«

h
i

i-
l

M
»

-
l
^
i
-
l
»

-
l
»

-
l
»

-
l
»

-
I
H

»
-
l
»

-
l
*

-
l
»

-
l
"
-
*

»
-
«

«
-
l
»

-
I
H

O
N

C
/»

C
/i

O
n

O
n

P
\

O
n

C
A

C
A

O
n

O
n

O
n

C
A

C
A

C
a

4
^
4

^
4

^
4

^
^
4

^
4

^
v
O

K
>

'
(
O

K
)

0
\
i
^
4

i
O

\
0

\
0

\
O

N
i
^
^
a

O
\
0

\
i
-
'
M

7
^
^
W

N
)
M

|
O

M
W

t
O

K
)
W

O
O

(
J
)
\
O

W
W

U
i
O

\
n

J
U

i
v
O

W
W

(
J
i
O

\
n

J
m

m
\
O

W
S

)
O

O
^
O

^
O

I
s
)
W

U
O

\
h

a R o o C
A

C
O o C
A

Index of Arguments

Index of Arguments

data-array-size [Argument] 14-204
default-titles [Argument] 14-207
editable [Argument] 14-208
editable-row-titles, editable-col-titles [Argument] 14-208
first-font [Argument] 16-262
first-title [Argument] 16-261
first-value [Argument] 16-262
horiz-just, vert-just [Argument] 14-209
initial-rows, initial-cols [Argument] 14-206
items [Argument] 14-226
items [Argument] 16-262
just [Argument] 14-209
max-elements [Argument] 14-227
max-height [Argument] 14-227
max-width [Argument] 14-227
orientation [Argument] 16-262
row-elements, col-elements [Argument] 14-205
row-height, col-width [Argument] 14-226
row-heights, col-widths [Argument] 14-206
row-index [Argument] 14-202
row-title-elements, col-title-elements [Argument] 14-207
row-title-font, col-title-font [Argument] 14-207
row-title-selectable, col-title-selectable....[Argument] 14-207
row-title-width, col-title-height [Argument] 14-207
second-font [Argument] 16-262
second-title [Argument] 16-261
second-value [Argument] 16-262
self-adjustable [Argument] 14-207
tf-button [Argument] 14-222
tf-image [Argument] 14-222
tf-items [Argument] 14-222
title-font [Argument] 14-227
titles [Argument] 14-206
unique-selection [Argument] 14-207

PICASSO Reference Manual Index-25

Index of Arguments

Index-26 PICASSO Reference Manual

Index of Functions

Index of Functions

2dv-! [Function] 15-248
2dv- [Function] 15-248
2dv+! [Function] 15-247
2dv+ [Function] 15-247
2dv-dot-product [Function] 15-248
2dv-length [Function] 15-248
2dv-negate! [Function] 15-248
2dv-negate [Function] 15-248
2dv-noimalize! [Function] 15-248
2dv-noimalize [Function] 15-249
2dv-scale! [Function] 15-249
2dv-scale [Function] 15-249
activate-pop-up-menu , [Function] 13-191
activate-pull-down-menu [Function] 13-191
add-current [Function] 14-214
all-fields-by-col [Function] 14-217
all-fields-by-row [Function] 14-217
alloc-2d [Function] 15-246
attach [Function] 2-20
attach [Function] 3-34
bind-slot [Function] 6-96
clean-event-mapping [Function] 18-283
clear-env [Function] 5-82
cl-to-db-type [Function] 5-87
conceal [Function] 2-24
current-database [Function] 5-87
current-fields-by-col [Function] 14-217
current-fields-by-row [Function] 14-217
current-package [Function] 4-53
db-to-cl-type [Function] 5-87
delete-current [Function] 14-214
detach [Function] 2-21
detach [Function] 3-34
do-propagate [Function] 6-103
do-propagate [Function] 6-103
drag-scroll-bar [Function] 11-177
duplicate-2d [Function] 15-247
enumerate-col [Function] 14-217

PICASSO Reference Manual Index-27

Q
. 8 3 n in O K g e E
L

3
3

3
3

3
3

3
3

g
g

g
g

g
g

g
g

g
g

^
g

g
g

g
g

g
g

g
g

^
g

g
^
^
^
^
^
^
^
^
^
^
^
^
^
^
^
^
^
^
^
^

g
g

g
g

g
g

g
O
O
O
O
Q
g
O
O
O
O
O

g
g

g
g

g
g

g
g

g
g

g
g

g
g

o
o

o
o

o
o
o
o
o
o
o
o
o
o
o
o
o
o
o

a
.

a
.

a
.

a
.

a
.
a
.
a
.

a
.

a
.

a
.

p
\

a
.

a
.

a
.

a
.

a
.

a
.

a
.

2
.

a
.

a
.

a
.

a
.

a
.
d
.

a
.

a
.
a
.

a
.

a
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o

3
.
.3
.
3
.
.3
.
.3
,
.3
.
.3
.
3
.
3
.
.3
.
5

3
3
.
.3
.
3
.
.3
.
O
O
O
O
O
O
O
O
O
O
O
O
O

o
o

o
o

o
o

o
a

.
a

.
a

.
a

a
.

a
.

a
.

o
o

o
o

o
o

o
3

.3
3

3
3

3
3

I
•

I
I

I
L

O
•

W
1>

J
O

J
l*

>
'

I
I

•—
H

-
JO

N
>

I—
|

H
-

l
|

|
I

H
-

H
-

H
-

,_
,
_

.
,
.
_

,
_

.
.

.
_

.
_

.
_

.
_

.
_

O
W

K
)
W

W
U

i
v
0

>
J
O

0
0

0
\
H

O
t
-
'
^
>

g
0

0
W

|
O

>
>

4
H

s
J

_
_

_

O
O

O
O

O
O

^
U

i
U

i
U

U
i

O
O

W
(7

i
V

i
tf

t
O

N
U

)
s
|

0
0

i
l
l
i
l
t
l
l
l
l
f
7

)
|
0

>
l
>

i
l
l
l
^
l
l
l
t
O

U
3

U
)

o
\

IO
n

1
W

m

o
o

o
o

o
o

s C
O

o
o

o
o

o
3

3
3

3
.

3

l
Si

"h
^

f4"
K)

0
0

0
«

-
J
4

^
«

-
J
>

—
•
—

•
L

r
tO

S
U

J
-
t^

4
^
U

>
-
J

a 9 o o* 3

make-icon [Function
make-image [Function
make-image-gadget [Function
make-instance [Function
make-invisible [Function
make-label [Function
make-list-box [Function
make-matrix-field [Function
make-menu-bar [Function
make-menu-button [Function
make-menu-entry [Function
make-menu-pane [Function
make-meter-slider [Function
make-num-entry [Function
make-opaque-window [Function
make-plot-widget [Function
make-polygon [Function
make-pop-button [Function
make-portal [Function
make-qual-widget .[Function
make-radio-button [Function
make-radio-group [Function
make-screen [Function
make-scroll-bar [Function
make-scrolling-text-widget [Function
make-segment [Function
make-shape [Function
make-slot-lazy-for-class [Function
make-slot-lazy-for-instance : [Function
make-slot-unlazy-for-subclass [Function
make-table-field [Function
make-text-gadget [Function
make-text-widget [Function
make-tile [Function
make-uninvisible [Function
make-widget [Function
make-window [Function
make-x-window [Function
me-center [Function
me-dimmed [Function
me-font [Function
me-left [Function
me-right [Function

PICASSO Reference Manual

Index of Functions

... 3-44

... 3-39

12-179

... 5-90

... 2-23

8-130

14-225

14-201

13-184

13-190

13-184

13-188

16-258

9-150

.. 2-30

16-264

15-240

10-158

.. 5-86

16-261

10-166

10-165

.. 3-47

11-173

9-148

15-236

15-231

6-107

6-107

6-108

14-220

9-134

9-146

.. 3-42

.. 2-23

8-125

.... 2-6

.. 2-26

13-187

13-187

13-187

13-187

13-187

Index-29

Index of Functions

mref [Function] 14-211
nearest-pt-to-linestr [Function] 15-251
package-search-list [Function] 4-54
pend [Function] 2-22
ppu [Function] 15-244
pt [Function] 2-17
query-region [Function] 2-28
reload-picasso-object-named [Function] 4-54
repaint [Function] 2-17
repaint-region [Function] 2-17
(setfme-parent) [Function] 13-186
server-x-offset [Function] 2-28
server-y-offset [Function] 2-28
set-color-recursively [Function] 15-252
setf-current-database [Function] 5-88
set-me-parent [Function] 13-186
set-visibility-recursively [Function] 15-252
show-menu-item [Function] 13-187
slot-value [Function] 5-91
unbind-fast [Function] 6-102
unbind-slot [Function] 6-102
unbind-var [Function] 6-102
ungrab-mouse [Function] 2-29
unpend [Function] 2-22

Index-30 PICASSO Reference Manual

Index of Macros

Index of Macros

2dv-copy [Macro] 15-247
2dv-zerop [Macro] 15-249
active-p [Macro] 2-25
add-child [Macro] 7-113
attached-of [Macro] 2-21
attached-p [Macro] 2-21
attached-p [Macro] 3-34
bind [Macro] 6-95
bind-var [Macro] 6-96
blet [Macro] 6-94
button-p [Macro] 10-154
call-dialog [Macro] 4-75
call-frame '. [Macro] 4-71
click-button-p [Macro] 10-162
close-panel [Macro] 4-78
concealed-of [Macro] 2-24
concealed-p [Macro] 2-24
copy-2d [Macro] 15-247
current-dialog [Macro] 4-75
current-frame [Macro] 4-71
current-panel [Macro] 4-78
current-tool [Macro] 4-62
defdbclass [Macro] 5-89
defdialog name (arguments) [Macro] 4-73
defform name (arguments) [Macro] 4-64
defframe name (arguments) [Macro] 4-70
defpanel name (arguments) [Macro] 4-77
deftool tool-name (arguments) [Macro] 4-58
delete-child [Macro] 7-114
detached-of [Macro] 2-21
detached-p [Macro] 2-22
dialog-p [Macro] 4-75
dopoints [Macro] 15-250
enforce-constants [Macro] 5-84
exposed-gadgets-of [Macro] 2-26
exposed-of [Macro] 2-25
exposed-p [Macro] 2-25
force-repack [Macro] 7-114

PICASSO Reference Manual Index-31

a R i W s n O D 8 e E
L

1
^

3
m

i
l
's

O
K

"
fl

to
GQ

J
T

3
^

B
B

B
B

B
B

B
S

B
B

B
B

B
B

B
B

B
B

B
B

B
B

B
S

B
S

B
B

B
B

S
B

S
S

S
B

B
S

B
B

S
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

l—
I

l—
J

U
-J

t—
I

l—
l

I—
J

U
_

<
U

_
l

U
_

l
U

_
l

U
_

l
l_

_
t

l_
_

l
l_

_
l

l_
_

l
l
_

l
I

1
l_

_
l

l
_

l
U

_
J

U
_

i
l_

J
L

_
l

l_
J

U
_

l
l
_

l
l
_

l
U

-J
1

_
_

J
l_

_
)

U
-J

U
-J

U
_

J
U

_
l

U
_

l
V

__
J

U
-J

U
-J

U
-J

U
-J

U
_

J
U

—
I

U
_

l

^
1

>
o

«
o

o
\

©
^
4

^
^
|
i
.
O

\
W

W
W

W
U

i
L

f
t

o
\

©
©

^

I
I

I
I

I
I

I
H-

»
!-

•»
-»

,
JO

M
1

•
1

1
|
|
0

|
O

t
O

M
|
O

M
M

H
H

|
0

|
0

I
I

I
I—

•
I

»
I-

**
—

>
H

-
7

^
V

tO
I

I
>

J
O

\
N

)
O

\
v
J
W

W
M

M
M

0
0

0
\
U

|
|
O

t
O

|
O

N
l
N

)
H

'M
H

'M
O

»
0

0
0

0
\
0

0
0

fc
^
K

)
K

)
O

O
m

K
)
M

O
O

\
U

i
s
J

t
o

-
J

O
N

U
J
U

«
L

ft
tO

J
>

.U
>

U
>

«
»

J
©

-
O

i-
'l

^
lO

\i
—

^
j

a to o e
n

Index of Macros

run-frame [Macro] 4-72
run-panel [Macro] 4-79
run-tool [Macro] 4-62
run-tool-named [Macro] 4-63
set-trigger [Macro] 6-104
set-trigger [Macro] 6-104
synth-p [Macro] 8-127
tool-p [Macro] 4-63
uncurrent-fields-by-col [Macro] 14-217
uncurrent-fields-by-row [Macro] 14-217
vertical-p [Macro] 11-178
viewable-p [Macro] 2-26

PICASSO Reference Manual Index-33

Index of Macros

Index-34 PlCASSO Reference Manual

Index of Methods

Index of Methods

2d-rotate [Method] 15-235
2d-scale [Method] 15-235
2d-translate [Method] 15-235
add-object [Method] 15-232
add-viewer [Method] 15-232
add-viewer-recursively [Method] 15-232
append-to-f31e [Method] 9-142
border-clear [Method] 8-128
border-init [Method] 8-129
border-repaint [Method] 8-129
circle-down [Method] 2-28
circle-up [Method] 2-28
clear [Method] 2-15
clear-region [Method] 2-16
close-portal [Method] 5-87
conceal-inferiors [Method] 2-29
configure [Method] 2-27
copy [Method] 15-233
copy-mark [Method] 9-142
current-selection [Method] 14-198
current-tuple [Method] 5-87
cursor-mode [Method] 9-141
delete-mark [Method] 9-142
delete-object [Method] 15-233
delete-viewer [Method] 15-233
delete-viewer-recursively [Method] 15-233
destroy [Method] 2-16
determine-class [Method] 8-124
dim [Method] 2-16
dim-item [Method] 10-164
do-attach [Method] 2-21
do-attach [Method] 3-34
do-conceal [Method] 2-24
do-detach [Method] 2-21
do-detach [Method] 3-34
do-expose [Method] 2-25
do-make-invisible [Method] 2-23
do-make-uninvisible [Method] 2-23

PICASSO Reference Manual Index-35

a ? o & O
S

O 1

g-
S

B
3

"2
.

8
r
t

&<&
8 C

O i

3
3

A
3

C
O

<
&

C
O

C
O

_
.

.
.

o
o

o
o

*T
3

*t
3

JL
J*

.
A

A
P>

P

C
L

*°
i

(P
r
t

(5
ft

O
(
t

r
t

3
3

3

& O «
£ a 3 g

o

"
H

3^
& O R

5
'

C
O I 3 3

o C C
O

&
0» I
c
o

o 3a
53

*
O C

O C
D

g*
S*

S"

S
H

&

2
o

.a
*

3
co

a
*

o

9
9

a
.

c
l

o
o

M
il

u.
.

£
.

Q
*

I" 8

i.
g

.i
.g

.g
.i

.g
.g

.g
.g

.i
.g

.g
.g

.g
.g

.i
.g

.g
.g

.g
.g

.g
.g

.g
.g

.i
.g

.g
.g

.g
.g

.g
.g

.g
.g

.g
.i

.g
.g

.g
.g

.g
.

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o

V
O

V
O

-
C

ft
U

J
•

v
©

•
j
>

j
>

j
>

•
|
-
'
m

j
.
l
M

|
-
,
i
,
-
'
i

\
0

O
O

^
M

H
H

H
b

O
•$»

>
.&

>
V

O
W

O
o

o
o

o

^
^
\
0

0
^

^
0

:
j>

.j
>

.;
v
o

o
o

o
o

o
o

i
•

i
•

i
i

i
r
/
i

i
i

k
j

*
i
i

•

£
£

>—
>

t—
'

i—
»

4
^

L
/1

•—
»

»—
*

0
-
J
O

O
M

O
S

)
K

)
K

)
N

>
N

)
N

)
n

J
M

t/
i

V
O

m
h

N
)

N
]
s
)
0

0
0

(
»

\
O

W
M

M
O

O
\
0

0
0

0
\
O

W
b

6
>

4

K
)

•
'

tO
•

it
O

tO
V

't
O

^
W

W
W

M
M

M
(
s
)
W

K
)
N

)
W

O
O

V
O

v
O

N
)
M

t
o

W
I
O

K
)
U

U
U

(
O

N
)
N

)

-
J

-
4

©
©

v
©

-O
.

K
)

a !•
•• s
r

o a C
O

& C
O O f I I a (!»
J

N
N

O
O

C
O

C
O

C
O

C
O

C
O

C
O

C
O

C
O

M
^
«

J
*

*
.

*
£

r
*

£
r

*
*

*
-

*^
^

v
*

*
*

v
v
*

^
»

•
<

£
2s

t5
2

co
t*

3
&

g.
,v

5

o o

i
O

p c
* 8*

s.
Q

j

o E
L

a
a

a
a

h
a

to
n

n
a

o
to

*<
:

&
T3

4, 3 P

i
l
H

I
I
I
I
I
&

l
l
l
l
i
l
l
l
l
l
l
l
&

l
l

o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o

a
a
&
a
a
a
a
a
a
a
a
a
&
a
a
a
a
a
a
a
a
c
L
&
a
a

U
U

•
•

©
©

v
O

•
U

U
i

U
l/

i
•

^
v
o

V
O

V
O

•
•

o
o

o
o

•
U

\
-
'
J

tO
tO

'
•

i
U

i
I
a

i
•

•
•

L
/i

'
'

'
>

L
/i

tO
IO

•
•

tO
'

^
U

W
K

)
O

>
O

\
^
*

O
'
O

^
^
*

>
^
0

0
V

0
^
^
^
0

0
M

i
-
'
K

)
t
s
)
W

l
i
.

U
i
W

O
\
O

J
>

-
^
K

)
M

M
(
y
i
(
7

i
U

i
^
0

0
0

0
W

W
W

0
0

0
\
O

\
^
^
\
O

^

9 a
.

x Q to s
r

o a
.

C
O

Index of Methods

Index-38 PICASSO Reference Manual

Index of Readers

Index of Readers

bitmap-p [Reader] 12-181
bitmap-p [Reader] 3-38
blue [Reader] 3-36
button-pos [Reader] 11-174
changed-indices [Reader] 14-214
children [Reader] 7-112
colormap [Reader] 3-36
cols [Reader] 14-204
cols [Reader] 14-223
col-title-matrix [Reader] 14-210
columns [Reader] 9-137
columns [Reader] 9-140
current-field [Reader] 14-213
current-fields [Reader] 14-213
current-value [Reader] 14-213
current-value [Reader] 14-223
current-values [Reader] 14-213
depth [Reader] 3-41
depth [Reader] 3-43
display [Reader] 2-8
display [Reader] 3-40
display [Reader] 3-45
display [Reader] 3-47
font-ascent [Reader] 3-45
font-descent [Reader] 3-45
font-height [Reader] 3-45
font-width [Reader] 3-45
green [Reader] 3-36
height [Reader] 3-38
height [Reader] 3-39
height [Reader] 3-41
height [Reader] 3-43
height [Reader] 3-45
image [Reader] 3-41
image [Reader] 3-43
name [Reader] 3-36
name [Reader] 3-37
name [Reader] 3-38

PICASSO Reference Manual Index-39

Index of Readers

name [Reader] 3-40
name [Reader] 3-41
name [Reader] 3-43
name [Reader] 3-45
name [Reader] 3-46
new [Reader] 9-137
number [Reader] 3-47
orientation [Reader] 14-226
pad [Reader] 14-227
pixel [Reader] 3-36
primary-screen [Reader] 3-46
red [Reader] 3-36
res [Reader] 2-9
res [Reader] 3-36
res [Reader] 3-37
res [Reader] 3-38
res [Reader] 3-40
res [Reader] 3-41
res [Reader] 3-43
res [Reader] 3-44
res [Reader] 3-46
res [Reader] 3-47
root [Reader] 3-47
rows [Reader] 14-203
rows [Reader] 14-223
rows [Reader] 9-137
rows [Reader] 9-141
row-title-matrix [Reader] 14-210
screen [Reader] 2-9
screen [Reader] 3-37
synths [Reader] 13-189
value [Reader] 9-136
value [Reader] 9-137
value [Reader] 9-139
visual [Reader] 3-37
width [Reader] 3-38
width [Reader] 3-41
width [Reader] 3-43
width [Reader] 3-45

Index-40 PICASSO Reference Manual

Index of Writers

Index of Writers

items [Writer] 10-164
(setf buttons) [Writer] 11-174
(setf value) [Writer] 9-135
(setf value) [Writer] 9-135
(setf value) [Writer] 9-137
(setf value) [Writer] 9-140

PICASSO ReferenceManual Index-41

PICASSO WIDGET WRITER'S GUIDE

(Version 2.0)

by

Steve Seitz, Patricia Schank, and Ginger Ogle

Memorandum No. UCB/ERL M92/53

1 April 1992

ELECTRONICS RESEARCH LABORATORY

Collegeof Engineering
University of California, Berkeley

94720

PICASSO Widget Writer's Guide*
(Version 2.0 April 1,1992)

Steve Seitz, Patricia Schank, and Ginger Ogle

Computer Science Division - EECS

University of California

Berkeley, CA 94720

Abstract

Picasso is an object-oriented graphicaluser interface development system. This manual describes
how to write new widgets that can be used in the system.

tTbis researchwas supported by the National Science Foundation (Grants DCR-8507256 and MEP-
8715557), 3M Corporation, and Siemens Corporation.

Table of Contents

Table of Contents

Chapter 1: INTRODUCTION 1-1
Overview 1-1

Widgets and Gadgets 1-1
Contents 1-3

Chapter 2: WHAT'S A WIDGET? 2-5
Overview 2-5

Widgets 2-5

Chapter 3: WRITING A WIDGET 3-7
Overview 3-7

Widget Definition 3-7
Gadget Definition 3-9
Accessor Methods 3-10

Initialization 3-12

Interface 3-13

Widget 3-15

Chapter 4: STANDARD METHODS 4-19
Overview 4-19

Initialization 4-19

Event-handling Methods 4-20
Connections 4-23

Chapter 5: INHERITED ATTRIBUTES 5-25
Overview 5-25

Resources 5-25

Region 5-26
Geometry Hints 5-27
Graphics 5-28
Borders 5-31

Labels 5-31

Status 5-32

Miscellaneous 5-34

Chapter 6: EVENT HANDLING 6-35
Overview 6-35

Widget Writer's Guide

Table ofContents

Requesting Events
Handling Events ^-35
Special Event Handling Zl...... 6"37
Instance Event-Handlinc 6-40

6 6-44
Chapter 7: GRAPHICS

Overview 7-45
Graphics Contexts 1Z....... 7-45
Graphics Operations 7_45
Put Method 7"49

7-49

Chapter 8: COLLECTIONS
Overview 8*55
Adding Children 11....... **~55
Other Details.... 8'55

8-56
Master Index

Index-1
Index ofAccessors

Index-5
Index of Functions

Index-7
Index of Macros

Index-9
Index of Methods

Index-11
Index ofReaders

Index-13

u

Widget Writer's Guidel

INTRODUCTION

INTRODUCTION

Overview

Whendo you need to write a new widget? Many Picassoprogrammers will never need to write a
widget. In general, you need to design a widget whenever you wish to create an interface which
can't be done well with a combination of predefinedwidgets.

The need to create a new widget generally arises in two cases:

• you're designing an application which does fancy or nonstandard graphics operations
• you wish to design a new typeof look-and-feel thatpredefined widgets don't provide.

Thetask of implementing a widget belongs tothewidget-writer. This document isprovided forthe
widget-writer, and should be read in conjunction with the PICASSO Reference Manual, which
covers most aspects of application writing.

Widgets and Gadgets

Almostall input and outputbehaviorof Picasso is implemented throughtwo interfaceabstractions:
gadgets andwidgets. A gadget is an abstraction for output behavior (e.g.,text-gadget). A widget is
the abstraction for input behavior. Many interface objects in Picasso need both output and input
behavior. Toaccomplish this inPicasso, we faaor theoutput code into a gadget and theinput code
into a widget, and combine the two classes into an interface object which "inherits" the behavior
ofboth the gadget and thewidget. More specifically, Picasso has apre-defined class named "gad
get" and another class named "widget". Suppose we want to implement a text-editor widget. We
could first implement a text-gadget to simply draw a specified text-string. Thenwe could write a

Widget Writer's Guide 1.1

INTRODUCTION

text-widget that handles input. Finally, we could write atext-editor-widget that inherits from text-
gadget and text-widget as shown below:

c gadget

text-gadget

"""""»"»"

text-editor-widget

This scheme works but it is cumbersome to implement. The problem involves duplication and co
ordination of code. The text-widget and text-gadget abstractions are not truly independent - the
programmer must make sure that attributes intext-widget have the same names and definitions as
those in text-gadget. Furthermore, the text-widget class is useless by itself. A better scheme that
is usedin most Picasso widgetsis to eliminate thetext-widget class altogether (without eliminating
text-gadget, which is useful in itself), as shown in the following diagram:

(The actual Picasso text-widget is designed differently from what is shown above. See the PICAS
SO Reference Manual for more details.)

This example illustrates how widgets are usually implemented. In some cases, particularly if the
widget is very simple, intermediate classes such as text-gadget can be eliminated. In thatcase, the

1-2 Widget Writer's Guidel

INTRODUCTION

widget inheritsdirectly from the widget class. The Picassobutton widget is designed this way. For
convenience, we use the term "widget" to mean an interface object with both input and output be
havior. This fits with the model suggested in the diagram above.

Contents

The remainder of this guide is organized as follows: Chapter 2 describes widgets. Chapter 3 de
scribes how to writeawidget. It includes a full definition of sample widget anda shortdiscussion
of the functions that implement thewidget abstraction. Chapter 4 describes thepredefined methods
that are usedto write widgets. Chapter 5 describes the attributes common to all widgets (i.e., in
herited slots inwidget objects). Chapter 6describes how widgets receive and process events. Chap
ter 7 describes the basic utilities available to do graphic output with widgets. And lastly, chapter
7 describes how to make complexwidgets (i.e., collection widgets).

Widget Writer's Guide 1.3

INTRODUCTION

1-4 Widget Writer's Guide!

WHAT'S A WIDGET?

WHAT'S A WIDGET?

Overview

This chapter describes widgets and how they areused in Picasso.

Widgets

Widgets provide the interface between the user and the program. All interaction (input and out
put) is performed through widgets. To make the job easier on the programmer, Picasso provides
more than 30 predefined widgets and gadgets for a variety of purposes. Different types ofwidgets
areneeded for different types of input/output behavior. Usually, some combination of these exist
ing widgets will produce a reasonable interface for any Picasso application.

Picasso's widget abstraction is extensible, meaning that any newly defined widget can be com
pletely incorporated into the system. The new widget can be used in place of any predefined wid
get. Furthermore, Picasso makes no internal distinction between widgets that are "predefined"
(distributed with the system) and those that are added on later.

Picasso predefinedwidgets range from extremely simple to relatively complex. A simple widget
is one that allows only rudimentary input behavior (if any) and is intuitive in function. For in
stance, the most widely used widget in Picasso is also the simplest: the button.

® A Button @]

Press Me

Widget Writer's Guide 2-5

WHAT'S A WIDGET?

In its simplest form, a button has one output value (astring orimage) and one device for input (a
pointer click). A complex widgetis more intricate in its input/output behavior and is generally less
intuitive in function. Complex widgets are typically tailored to a particular type of use so they
appear in asmaller varietyof applications than do simplewidgets. An exampleof acomplexwid
getis atable-field. Table-fields canbeusedto display data in atabular format (rowsandcolumns).

Because each cell of a table can contain any type of widget, the input behavior of a table is very
complex. Tables are extremely powerful in this respect. However, tables can be extremely con
fusing, so proper care must be taken to design a clean interface for the user.

Naturally, widgets which are simple or complex for the user are going to be correspondingly sim
ple or complex for the applicationwriter andwidget writer. While abutton can be fully specified
in two attributes, tables need between 2-20 attributes to be fully described. The burden of speci
fying all the attributes of a widget lies on the application-writer.

2-6 Widget Writer's Guidel

WRITING A WIDGET

WRITING A WIDGET

Overview

This chapter gives an overview of the process of writing awidget, and briefly describes each task
involved. Later chapters contain complete descriptions of these steps.

Widget Definition

In this chapter we will go through the process ofcreating awidget. We will explain each step and
show the actual widget code.

The first step is to design the widget. In some cases, the design procedure can be incremental
(e.g., incrementally adding functionality), but you should always knowwhat awidget will do be
fore sitting down towrite it. If you are writing agadget that will beused by awidget through in
heritance, it is a good idea to decide ahead of time how the interface between the gadget and
widget components will work. This avoids the hassle ofhaving torewrite the gadget to fit together
with the widget.

Inthis chapter, wewill write a"bitmap-editor". The design and representation is as follows. Our
bitmap-editor provides agraphical interface for viewing and editing abitmap. The bitmap is rep
resented internally as atwo-dimensional array ofbits. A bit is either 0 or 1. The bitmap is repre
sented onthe screen as atwo-dimensional grid of squares. Each square can have one of twocolors.
All squares are of the same size, which can be dynamically changed by the user -when the user
resizes the bitmap-editor window, each square is grown or shrunk proportionately. Allediting is
done through simple bit-toggling (clicking on a"bit" inverts its color). There are many simple ex-

Widget Writer's Guide 3.7

WRITING A WIDGET

tensions to ourdesign (e.g., converting the edited bitmap intoclx format) that canbe added easily,
with only a few more lines of widget code.

3-8 Widget Writer's Guidel

WRITING A WIDGET

Gadget Definition

Adhering to the policy described in the previous chapter, we will create a gadget along the way
which handles the intemal representation and viewing of the bitmap. When we're finished, the
class inheritance will look like this:

The responsibilities of bitmap-gadget are:

• Initialize the bitmap (get intemal representation correct)

• Draw a graphical representation of the bitmap

• Handle simple requests (new bitmap, resize). Bitmap-gadget will be used by bitmap-
editor, and should be designed to allow a simple interface to editing. This issue will
resurface frequently.

To begin the widget-writing process, we define the new gadget class.

(defclass bitmap-gadget(gadget);; inherits from gadget class
((dimensions ;; (<bits-wide> <bits-high>)

Widget Writer's Guide 3-9

WRITING A WIDGET

:type list
rinitform nil

:initarg

:dimensions

:reader dimensions)

(bit-size

:type integer

:initform 1)

(gc-dotted

:type vector

:initform nil)

(gc-spec

tinitform '((gc-res "default")

(gc-dotted (:paint "gray50"))))))

User-specifiable
in instantiation

Implicitly defines
reader method

Size of each square

on the screen

Graphic-context for
drawing grid

Graphic-context specs

A gadget or widget is defined using aCLOS defclass. Noother registration is required. Bitmap-
gadget inherits all slots from gadget and, in addition, defines the following four slots: dimensions,
bit-size, gc-dotted, and gc-spec. Of these, only dimensions is intended for external access. The oth
er three slots are intemal. The dimensions slot is used to store the dimensions of the bitmap (in
pixels). Since we intend to allow the application-writer access to the dimensions of a bitmap the
: initarg and :reader arguments are specified. : initarg specifies that :dimensions
canbe used as an instantiation argument to initialize thedimensions slot (initialization is discussed
later). :reader implicitly creates amethod (called dimensions) that returns the slot-value of
the dimensions slot, bit-size will be used to cachethe size of one square on the screento speed up
redrawing. The last two slots are used for graphic-contexts (see chapter 7 for more information
on graphics-contexts). Specifying :reader dimensions implicitiy creates areader-accessor
method for the dimensions slot. Because the other three slots are internal (not accessible to the ap
plication-writer), we do not define reader-methods forthem.

Accessor Methods

Accessormethods in CLOS provide access to slots of an instance of a class. A simple accessor
methodcan be implicitlygenerated by specifying the :reader, :writer, or :accessor ar
gument in the defclass (see above). These simple accessor methods only provide aninterface
to the slots. Specifying :reader myslot is equivalent to:

3-10 Widget Writer's Guidel

(defmethod myslot ((self myclass))
(slot-value self 'myslot))

Specifying :writer myslot is equivalent to:

(defmethod (setf myslot) (val (self myclass))
(setf (slot-value self 'myslot) val))

WRITING A WIDGET

Specifying : accessor myslot is the same as defining both of these methods.

Sometimes it is desirable to produce certain side-effectswhenever a slot is accessed. In this case
the implicitly defined accessors are not sufficient, so we need to explicitly define accessors.

Forexample, we want the writer method for the dimensions slot to create a new blank bitmap with
the specified dimensions, in addition to setting the value of the slot. It is also important to do some
error checking. We define the following writer method:

(defmethod (setf dimensions) (val (self bitmap-gadget))

(if (not (and (pos-intp (car val))
(pos-intp (cadr val))))

(warn

"bitmap-gadget.setf.dimensions: invalid dims: ~S~%"val)

(setf (value self)

(make-array val
:initial-element 0

:element-type 'bit))))

This definition relies on the fact that there is a value writer method already defined. You must al
ways define a setf-method before it is referenced. It tums out that there is a value writer-method
already defined in one of our superclasses, so we don't have to worry about it here.

We need special processing to occur when abitmap-gadget's value is changed. Let's examine what
needs to be done when somebody wants to set the value of a bitmap-gadget.

• Check the new value to make sure that it's valid.

• Set the slot-value of the "value" slot.

• Update the "dimensions" slot.

• Adjust the intemal representation of the bitmap to reflect the changes in dimension.

• Redraw the representation of the bitmap on the screen.

The following method does the trick.

Widget Writer's Guide 3-11

WRITING A WIDGET

(defmethod (setf value) (val (self bitmap-gadget))
(if (not (arrayp val))

(warn "bitmap-gadget.setf.value: bad array: ~S~%" val)
(progn

(setf (slot-value self 'value)
val

(slot-value self 'dimensions)

(array-dimensions val))
(resize-window-handler self)
(repaint self))))

There arethree important points to note from this section.

First, accessor code should be concise and straightforward. Instead of making the value writer-
method to explicitly adjust all related data-structures and redraw the screen, the code is factored
out into functions and methods (like resize-window-handler and do-repaint).

Second, accessors can be interdependent. The dimensions writer method uses the value writer
method to handle a lot of the necessary work. This avoids duplication of code. However, it is im
portant to understand the nature of the interdependences. In complex cases, it may be difficult to
trace exactly what happens when a slot is accessed. The widget writer should make sure that in
terdependent slot accesses don't call functions twice!

Third, the order of definition matters. CLOS requires all setf-methods (writer methods) to be de
fined before they are referenced. For instance, the value writer must be defined before the dimen
sions writer because the value is setfd from within the dimensions method. Luckily in this case
the value writer was inherited from a superclass. In general, if two writer methods are mutually
dependent, one must be defined implicitly in the class-definition (use :writer or : accessor)
and redefined later.

Initialization

To actually create a bitmap-gadget object, we use the make-instance method in CLOS. How
ever, it is usually helpful to define a function to simplify this.

(defun make-bitmap-gadget (firest keys)
(apply #'make-instance

'bitmap-gadget
:allow-other-keys t
keys))

3-12 Widget Writer's Guidel

WRITING A WIDGET

The argumentsto make-bitmap-gadget arekeyword-value pairsthat correspondto slots and
initial values in the new instance. Only slots defined with : initarg specified can be initialized
in this fashion. For example:

(make-bitmap-gadget:dimensions '(16 16)

:background "green")

Specifying slotsandinitial-values in this manneris equivalent to settingthe slotswith writermeth
ods.

It is often desirable to do some extra initialization when awidget is instantiated, such as argument-
checking and creating relevant data-structures. In Picasso the method called new-instance
exists for just this purpose. In the caseofbitmap-gadget, we need to worry aboutthe slots "dimen
sions" and "value". The superclasses handle other slots. Since we defined writer methods to do
errorchecking and initialization, we caninvoke those directly from the new- instance method.

(defmethod new-instance ((self bitmap-gadget)
&key

value

dimensions

&allow-other-keys)
(call-next-method)

(if value

(setf (value self) value)

(if dimensions

(setf (dimensions self) dimensions))) self)

The call-next-method is used to let superclasses initialize inheritedslots. It is customary to
invoke call-next-method before anything else in the new-instance method. This way
the child class can override any initialization done in the parentclass.

Interface

At this point, we have methods to create, initialize, and access a bitmap-gadget instance from the
level of the application writer. However, the bitmap-gadget is still just a bunch of data structures,
so we need to provide routines to handle interactions with the user. At the gadget level, the inter
action is relatively simple. A gadget is basically anomput-only device. The only type ofuser-level

Widget Writer's Guide 3-13

WRITING A WIDGET

input that a gadget may choose to handle is resizing.Picassoprovides two methods for output and
one for resizing.

To handle the output behavior of bitmap-gadget, we use the do-repaint method (see chapter
on methods). The do-repaint method is invoked whenever a bitmap-gadget instance needs to
be drawn or redrawn. Our do-repaint method must draw every bit of the bitmap, and a grid
to visually separate all the bits. The following definition is sufficient:

(defmethod do-repaint ((self bitmap-gadget)
&aux dims bit-size bit-array gc)

(setq dims (dimensions self)
bit-size (slot-value self 'bit-size)

bit-array (value self)
gc (gc-res self))

(when bit-array
(dotimes (x (car dims))

(dotimes (y (cadr dims))
(draw-bit self bit-array bit-size gc x y)))

(draw-grid self)))

Notice that there areno explicit xub calls in the do-repaint method; the calls are factored out
into the functions draw-bit and draw-grid. The code for these two functions is at the end
of this chapter. This factoring out of code simplifies the writing of bitmap-editor (the widget for
bitmap-gadget). Bitmap-editor needs draw-bit since clicking on a bit forces it to be redrawn in
an inverse color. By factoring common lines ofcode into auxiliary functions or macros (like draw-
bit), we can reduce duplication of code and make the program more readable. It tums out that
draw-grid is only used by the do-repaint method, rjowever, it is still good practice to faaor
this code into separate functions to make the code more readable and manageable.

You may be wondering how the "bit-size" slot is used. As we see above, bit-size is used by draw-
bit (and hence by do-repaint) to specify the size of the square region that represents a bit on the
screen. Bit-size is calculated by determining the maximum size of a bit that will allow all bits to
"fit" inside the space allocatedto a bitmap-gadget instance. When should this calculationbe per
formed? Since die size of a bitmap-gadget may change dynamically, bit-size must be updated dy
namically. We could do everything in the do-repaint method. However, this would entail
recalculating bit-size every time the bitmap-gadget is redrawn. This is costly. It is better to recal
culate bit-size only when the size of the bitmap-gadget changes and cache the new value in the bit-
size slot We can use the Picasso resize-window-handler method for just this purpose.

(defmethod resize-window-handler ((self bitmap-gadget) &aux dims)
(if (setq dims (dimensions self))

(setf (slot-value self 'bit-size)

(min (truncate (width self) (car dims))

(truncate (height self) (cadr dims))))))

3-14 Widget Writer's Guidel

WRITING A WIDGET

This completes bitmap-gadget.

At this point, you canuse bitmap-gadget in any Picasso application, provided you load into a Pic.
asso dump what we have written so far (defclass, accessors, new-instance, do-re
paint, & resize-window-handler) and include the functions draw-bit & draw-
grid, found at the end of this chapter.

Widget

The bitmap-editor class inherits all slots of both the widget and the bitmap-gadget classes. The
major responsibility for the bitmap-editor widget is event-handling. We can create the bitmap-ed
itorwidget using the bitmap-gadget. As with the bitmap-gadget,we begin by defining the bitmap-
editor class.

(defclass bitmap-editor (widget bitmap-gadget) *
((event-mask :initform '(:exposure :button-press))))

The event-mask slot specifies which events the widget is interested in - exposure and button-press
events. To actually process an event, we have to define an event-handler. This is done via the
defhandler macro in Picasso. It tums out that the "exposure" event is handled automatically
by widgets because handlers are inherited, so we only need to worry about the "button-press"
event in our widget. What does a bitmap-editor do when the mouse is clicked inside the bitmap-
editor window? It simply figures out which bit was clicked on, updates the corresponding bit in
the intemal representation of the bitmap, and redraws the bit (in the opposite color) on the screen.
All of these are done in the following handler:

(defhandler toggle-bit ((self bitmap-editor)
&key x y

&allow-other-keys

&aux bit-size bit-array dims

fidefault :button-press)

(setq bit-array (value self)
bit-size (slot-value self 'bit-size)

dims (dimensions self))

(setq x (truncate x bit-size)
y (truncate y bit-size))

(when (and (<= x (car dims)) (<= y (cadr dims)))

Widget Writer's Guide 3-15

WRITING A WIDGET

(setf (aref bit-array x y)
(- (lognot (- (aref bit-array x y)))))

(draw-bit self bit-array bit-size (gc-res self) x y)))

The defhandler macro automatically registers a handler function named bitmap-editor-
toggle-bit which is called whenever a button-press event occurs in an instance of the bitmap-
editor class.

Finally,we define a function called make-bitmap-editor, analogous in to the make-bit
map-gadget function we defined earlier.

(defun make-bitmap-editor (firest args)
(apply #'make-instance

'bitmap-editor
:allow-other-keys t
args))

Here is the code for draw-grid, draw-bit, and pos-intp.

(defun pos-intp (val)
(and (integerp val) (plusp val)))

(defun draw-bit (self bit-array bit-size gc i j
&aux w x y)

(setq x (1+ (* i bit-size))

y (1+ (* j bit-size))
w (- bit-size 1))

(if (zerop (aref bit-array i j))
(clear-region self x y w w)
(xlib:draw-rectangle (res self) gc x y w w t)))

(defun draw-grid (self

fiaux gc res dims bit-size rx ry w h)
(setq res (res self)

rx (repaint-x self)
ry (repaint-y self)
gc (gc-dotted self)

dims (dimensions self)
bit-size (slot-value self 'bit-size))

(setq w (* bit-size (car dims))
h (* bit-size (cadr dims)))

3-16 Widget Writer's Guidel

(do ((x (+ rx bit-size) (+ x bit-size)))
(Ox (+ rx w)))

(xlib:draw-line res gc rx 0 x h))
(do ((y (+ ry bit-size) (+ y bit-size)))

((> y (+ ry h)))
(xlib:draw-line res gc 0 ry w y)))

WRITING A WIDGET

Widget Writer's Guide 3-17

WRITING A WIDGET

3.I8 Widget Writer's Guidel

STANDARD METHODS

STANDARD METHODS

Overview

There are several standard methods used by Picasso for defining a widget. These methods canbe
broken downinto three basic categories: Initialization, event-handling, and connections. A widget
may have all, some, or none of these methods defined. Any methods which are not defined for a
particular class of widget are implicitly inherited from the widget's super class. Inheritance can
also be used explicitly with a call to call-next-method.

Initialization

Initialization routines are called only once in the lifetime of a widget. Initialization routineshave
three primary uses: setting defaults, checking instantiation arguments, and creating local data
structures. There are two initialization methods: new-instance andupdate-instance-
for-different-class.

new-instance [Method]
(self class-name)
&iestargs

CONTEXT:

new-instance is called once when anewwidget is instantiated. Self is the newly instantiated
widget and args consists of all thekeyword arguments passed tomake-instance (e.g., :width,
iheight, background, :font, etc.).

INHERITANCE:

All new-instance methods must contain a call to call-next-method. This insures that inher
ited attributes will be correctly initialized. Preferably, the call-next-method occurs near the

Widget Writer's Guide 4.19

STANDARD METHODS

beginning of the new-instance method to ensure that later references to inherited attributes
are correct.

update-instance-for-different-class :after [Method]

(old class-name)
(new class-name)

CONTEXT:

update-instance-for-diff erent-class is called after a change-class op
eration occurs. This method can specified tocfocriminate oneither or bothof itsarguments.

Event-handling Methods

Event-handling methods are generally called either automatically, in response to incoming X
events, ormanually, by intemal Picasso orwidget code. Because of the asynchronous nature of X
events, calls of the former type occur asynchronously. Therefore, all event-handling methods
should be designed and written to execute asynchronously. In other words, an event-handler can
not assume that it will execute at a particular time orin a particular context. An exception is that
event-handlers may assume that the widget has already been attached (has arepresentation in the
server). Event-handling methods, unlike user-defined handlers, enable inherited event-handling
behavior to take place (via call-next-method). For instance, suppose there exists a class named
text-gadget which displays text. The do-repaint method for text-gadget draws the text. Now sup
pose we define aclass named text-widget which inherits from text-gadget and allows input as well
as output. Since drawing the textis already handled bytext-gadget, thedo-repaint method for text-
widget need only contain acall-next-method and code to draw thecursor at itscurrent position. If
the text-widget is implemented without acursor, we can eliminate thedo-repaint method for text-
widget altogether since the methodwill be implicitly inherited from text-gadget.

REPAINTING

There are two types of repaint routines: do-repaint and do-repaint-region

4-20 Widget Writer's Guidel

STANDARD METHODS

do-repaint [Method]
(self class-name)

USE: The do-repaint method isused toredraw the widget in its current position specified
by repaint-x, repaint-y, and size.

CONTEXT:

do-repaint is called as aresult ofan expose event in awindow which does not handle expose-
region. Do-repaint is called by repaint.

INHERITANCE:

A do-repaint method for any widget inheriting from the collection-gadget class must include
a call to call-next-method.

do-repaint-region [Method]
(self class-name)
x

y
width

height

USE/CONTEXT:

The do-repaint-region method is used and called similarly as do-repaint, except that win
dows handling expose-region events will almost always receive calls to do-repaint-region in
place of calls to do-repaint. The x and y arguments are in respect to the repaint-x and re
paint-y positions of the window.

INHERITANCE:

A do-repaint-region method for any widget inheriting from the collection-gadget class must
include a call to call-next-method.

NOTE:

Since widgets may need to be repainted frequently, it is agood idea to do as little computa
tion as possible in the do-repaint and do-repaint-region methods. Typically, these methods
should access values which have been updated and cached away by other means (e.g., re
size-window-handler [sec 3.2.2] is often used purely toupdate caches).

Widget Writer's Guide 4.21

STANDARD METHODS

EXPOSING

All windows canbeexposed and concealed. Picasso provides themethod do-expose which is ex
ecuted whenever a window needs to be exposed.

do-expose [Method]

(selfclass-name)

USE: The do-expose method canbe usedto do miscellaneous processing whichneeds to
be done when the widget is exposed.

CONTEXT:

The do-exposemethod may be invokedfrom a call to expose. Expose can be called from any
level in Picasso. The do-expose methodis rarelyneeded for widgetsbecause do-repaint is
almost always sufficient.

INHERITANCE:

A do-expose should invoke call-next-methodunless it wishes to override the standard expo
sure behavior for windows (not very often).

RESIZE HANDLING

Whenever the size of a window changes, resize-window-handler is called.

resize-window-handler [Method]

(self class-name)

USE: Typically, the resize-window-handler methodis used to updatelocal data-structures
called "caches" which need updating when a widget is resized.

CONTEXT:

Configure can be called from any of three levels in Picasso:
(1) from a geometry manager or a widget (system level)
(2) from an application

4-22 Widget Writer's Guidel

STANDARD METHODS

(3) from a window-manager (user level).
Therefore, resize-window-handler can be activated from any of these levels.

INHERITANCE:

A resize-window-handler may optionally invoke call-next-method. Any collection which
doesn't invoke call-next-method in its resize-window-handlerwill not get repacked [sec7].

NOTE:

resize-window-handler need not call repaint or repaint-region because this will be done au
tomatically after the resize-window-handler completes. The resize-window-handler method
is provided purely for notification purposes, not for actually resizing. Therefore, a widget
should never attempt to resize itself directly within a resize-window-handler method. In
fact, all self resizing at the widget-level should be done through resize-hints [sec 8.2].

Connections

Picassois designedto alloweachwidget to be independentlyattached ordetached from the X-serv-
er. However, reliable detach methods are not implemented in the current version of Picasso.
When detach methods are fully implemented, it will be possible to create a Lisp dump with an ap
plication alreadyloaded, but detached. This would reduce startuptime by half.

ATTACHING

Picasso uses the term "attach" for connecting a widget to the server.

do-attach [Method]

(self class-name)

USE: do-attach attaches a PICASSO object and all its children. Every widget has to be at
tached, either explicitly or implicitly.

CONTEXT:

Do-attach is called from attach.

INHERITANCE:

A do-attach method must invoke call-next-method at the beginning of the method.

Widget Writer's Guide 4-23

STANDARD METHODS

DETACHING

Picasso uses the term "detach" for disconnecting a widget from the server.

do-detach [Method]

(self class-name)

USE: do-detach is not implemented reliably inthecurrent version of PICASSO. When im
plemented, do-detach should do the inverseof do-attach.

CONTEXT:

Do-detach is called from detach.

INHERITANCE:

A do-detach method must invoke call-next-method.

DESTROYING

do-destroy [Method]
(self class-name)

USE: do-destroy isnotimplemented reliably inthe current version of PICASSO. When im
plemented, do-detach will destroy both the intemal representation and the server represen
tation of the object.

CONTEXT:

Do-destroy is called from destroy.

INHERITANCE:

A do-destroy method must invoke call-next-method.

4.24 Widget Writer's Guidel

INHERITED ATTRIBUTES

INHERITED ATTRIBUTES

Overview

Widget attributes are dataofthe widget storedin accessible slots. Inherited attributes are attributes
inherited from the widget's superclass. Picassocontains the following class-inheritance subtree.

A widget inherits attributes from the widget class, the gadget class, and the widow class. An at
tribute may be readable, settable, or readable and settable.

Resources

Every attached window is associated with one window in the server. A widget inheriting from the
widget classhas its own serverwindow. A gadgetinheritsthe server window from its parent.Each
server window is associatedwith a particular screen, which in tum is associatedwith a particular
display in the server.

Widget Writer's Guide 5-25

INHERITED ATTRIBUTES

The following readermethods returnthe appropriate resource usedby a widgetor gadget.

res [Reader]

returns the X-window associated with the object (of type xlib:window), or nil.

screen [Reader]

returns the X screen of a Picasso object (of type xlib:screen), or nil.

display [Reader]

returns the X display of a Picasso object (of type xlib:display), or nil.

The following predicates return the current status of the Picasso object.

attached-p

returns if the object is connected to the X server.

detached-p

returns if the object is disconnected to the X server.

Region

[Macro]

[Macro]

Every window has attributes which specify its location and size on the screen. A window's location
is specified relative to the window's parent, repaint-x and repaint-y are specified relative to win
dow's server-window. All specifications are in pixels. All region accessors are READABLE
AND SETTABLE; but widgets should not configure themselves dynamically (see next section).

x-oflfset [Accessor]

the x-coordinate (in pixels) of window relative to the top-left comer of the window's parent.
Type: integer Default: 0

y-offset [Accessor]

5-26

the y-coordinate (in pixels) ofwindow relative to the top-left comer of the window's parent.
Type: integer Default: 0

Widget Writer's Guidel

INHERITED ATTRIBUTES

,ocation [Accessor]
alist consisting ofwindow's x-offset and y-offset. We will denote this: (x-offset y-offset).
Type: cons Default: (0 0)

width [Accessor]
the width ofwindow in pixels. Type: positive-integer. Default: 1

* [Accessor]

the height ofwindow in pixels. Type: positive-integer. Default: 1

[Accessor]
(width height)

Type: cons Default: (1 1)

8 [Accessor]
(x-offset y-offset width height)

Type: cons Default: (0 01 1)

Geometry Hints

Windows should not configure themselves dynamically. This rule exists to avoid conflicts with
geometry managers. To request aparticular size, awidget can send amessage to its geometry-
manager which the manager can choose to consider or ignore. These messages are propagated via
geometry hints. There are two types of geometry hints: resize-hints and geometry-specification
Resize-hints are typically defined at the widget definition level. Resize hints should be defined
for every widget to be ofany use. Geometry- specification is typically instance specific All ge
ometry hints are READABLE AND SETTABLE.

Widget Writer's Guide
5-27

INHERITED ATTRIBUTES

RESIZE-HINTS

base-width [Accessor]

the smallest desirable width for window. Type: positive-integer Default: 1

base-height [Accessor]

the smallest desirable height for window. Type: positive-integer Default: 1

width-increment [Accessor]

thebest amount bywhich toincrement the width ofwindow. Type: positive-integer Default:
1

width-increment [Accessor]

the best amount by which to increment the height of window. Type: positive-integer De
fault: 1

width-height-ratio [Accessor]

the best ratio for width/height of window. Type: positive-number/nil Default: nil

GEOMETRY SPECIFICATION

geom-spec [Accessor]

various instructions concerning the geometry of window that the window's geometry-man
ager should look at. Type: anything

Graphics

All windows have some predefined attributes that are used in graphics operations. Some of these
attributes are associated withbuilt in mechanisms thatperformthe graphics operations. Othersat-

5.28 Widget Writer's Guidel

INHERITED ATTRIBUTES

tributes handle data-structures which widgets can use explicitly toperform graphics operations. All
are readable and settable except colormap and gc-res.

GRAPHICS ATTRIBUTES WITH INTERNAL OUTPUT MECHANISMS

inverted [Accessor]

when a window is inverted, its background and inverted- background are swapped and its
foreground and inverted- foreground are swapped. Type: t/nil Default: nil

dimmed [Accessor]

when a window is dimmed, its background and dimmed- background are swapped and its
foreground and dimmed- foreground are swapped. Type: t/nil Default: nil

background [Accessor]

the background paint (color or tile) ofwindow. Type: paint/nil Default "white" if widget,
nil if gadget

inverted-background [Accessor]

the background to use when window is inverted. Type: paint/nil Default: "black" ifwidget,
nil if gadget

dimmed-background [Accessor]

the background to use when window is dimmed. Type: paint/nil Default: "gray50" if wid
get, nil if gadget

colormap [Reader]

all windows have a colormap which can be read. A widget's colormap may be set. Type:
colormap Default: inherited from parent

Widget Writer'sGuide 5-29

INHERITED ATTRIBUTES

GRAPHICS ATTRIBUTES FOR CONVENIENCE

foreground [Accessor]

the foreground to use ingraphic operations. Type: paint/nil Default: "black"

inverted-foreground [Accessor]

the foreground to use in graphic operations when the window is inverted. Type: paint/nil
Default: "white"

dimmed-foreground [Accessor]

the foreground to use in graphic operations when the window is dimmed. Type: paint/nil
Default: "gray50"

font [Accessor]

every window has afont which may be used in graphic operations. Type: paint/nil Default:
"8x13"

gc-spec [Reader]

Picasso provides abuilt-in mechanism for creating graphic- contexts on aper-instance basis
[Section 4]. Type: gc-spec-type Default: nil

gc-res [Reader]

gc-res (ifspecified ingc-spec) contains agraphics-context which gets automatically updated
whenever window's foreground orbackground changes. Type: xlib:gcontext/t/nil Default:
nil

shared-gc-table [Accessor]

Picasso provides a built-in mechanism for sharing graphics- contexts across a window. If
shared-gc-table is initially t, this mechanism is enabled [Section 4].Type: t/hityhash-table
Default: nil

5.3O Widget Writer's Guidel

INHERITED ATTRIBUTES

Borders

Picasso has an extensible window-border mechanism (see ref man). Any window can have abor
der. Border attributes areREADABLE AND SETTABLE.

^^P* [Accessor]
the type of border to use for window. The predefined border-types include (nil :box :frame
:black-frame :inset standout :shadow). Type: keywordAiil Default: :box ifwidget nil if
gadget e '

border-width rA ,
[Accessor]

the dimensions of the border to be drawn. Some border-types allow borders to have non
uniform dimensions. Therefore, border-width may be either alist with four elements or an
mteger value (e.g. ashadow-border may have border-width (0010 10)). Type: integer/4-D-

Labels

Picasso has an extensible window-label mechanism (see ref man). Any label can have alabel La
bel attributes are READABLE AND SETTABLE.

"yp [Accessor]
the type of label to use for window. The predefined label-types include (nil :left-label -bot
tom-label :frame-label). Type: keyword/nil Default: :left

[Accessor]

the label to draw. Type: anything Default: nil

label-x P.
[Accessor]

the x-coordinate of the label relative to an origin. The origin is dependent on the label-type
of window. Type: integer Default: 0

Widget Writer's Guide , ,.
5-31

INHERITED ATTRIBUTES

label-y [Accessor]

they-coordinateofthe label relative to anorigin. The origin is dependent onthelabel-type
of window. Type: integer Default: 0

label-font [Accessor]

the font to use in drawing the label.

label-attributes [Accessor]

a list of attributes concerning the label (e.g., (foreground "red" :font "8x13" :italicized t)).
Which label-attributes to specify, if any, is dependent on the label-type of window. Type:
keyword-value-list

Status

The status of a window indicates how it is currently represented on in the server. The status of a
window is one of :exposed, xoncealed, or :pending. If a window exposed, it is viewable on the
screen except if: (1) the window is fully occluded by another window, or (2) the window is a child
of the root-window. In the lattercase, theonly way to determine if anexposed window is actually
on the screen is by use of the viewable-p macro. If a window is concealed it is not on the screen. If
a window is pending, it wants to be exposed but cannot be for some reason.

status [Accessor]

the status of window. Type: member (:exposed xoncealed pending) Default: :exposed

state [Reader]

the state of window:

window is exposed or concealed,

window wants to be exposed but parent is not.

window wants to be exposed but geometry-manager says no for some reason.

Type :member (0 1 2). Default 1.

5-32 Widget Writer's Guidel

The followingpredicates concerning window-status exist

exposed-p

is window exposed?

concealed-p

is window concealed?

pending-p

is window pending?

invisible-p

is state of window 1?

pended-p

is state of window 2?

viewable-p

is window viewable on screen (can be occluded)?

The following functions are provided to change the stams ofa window

expose

INHERITED ATTRIBUTES

[Macro]

[Macro]

[Macro]

[Macro]

[Macro]

[Macro]

[Function]

attempt to expose window. Expose updates window's stams and state appropriately depend
ing if expose succeeds orfails. Retum-type: t/nil

conceal

conceal window and update status/state. Retum-type: t

make-invisible

pend window, update status, set state to 1. Retum-type: t

pend

pend window, update status, set state to2. Retum-type: t

Widget Writer's Guide

[Function]

[Function]

[Function]

5-33

INHERITED ATTRIBUTES

Miscellaneous

parent [Accessor]

the parent window ofwindow. Type: window/nil Default: nil

var-superior [Accessor]

the lexical parent of window. Type: picasso-objectDefault: nil

attach-when-possible [Accessor]

specifies whether or not to automaticallyattach the window when its status is concealed and
its parent becomes attached. Type: t/nil Default: nil

repaint-flag [Accessor]

if set to t, window will not be automatically drawn as a result of either intemal events or a
call to repaint. Type: t/nil Default: t

mf-selectable-widget [Accessor]

specifies whether or not window can be "selected" in a table. Type: t/nil Default: nil

name [Accessor]

a slot used to associate a name with window. Used primarily for debugging. Type: anything

doc [Accessor]

a documentation string associated with window. Type: string

5-34 Widget Writer's Guidel

EVENT HANDLING

EVENT HANDLING

Overview

Picasso is an event-driven application: a Picasso tool creates a set of widgets, then enters a loop
that 1) waits for X events, such as typing a key or mousing in a window, to come in from the X
server; 2) figures out which widget can interpret the event; and 3) passes that event off to the wid
get. This process is called dispatching the event, and the widget is said to handle the event. This
chapterdescribes the event-handling mechanism as implemented in Picasso.

This chapter is designed to describe event-handling only as it relates to writing Picasso widgets.
This section is not designed to be an introduction to event-handling in any other form. For a gen
eral understanding of event-handling, the reader should consult the section on events in the Picasso
Reference Manual and/or in the CLX documentation.

Any Picassowidget canchoose to receive varioustypes ofevents. Only events that are"requested"
by the widget will be "sent" to the widget. Requested events arrive asynchronously. When an
event occurs that concerns an instance of a widget, that instance is notified and must handle the
event immediately. If the widget is unable to "handle" the event, it is "dropped on the floor",which
is to say effectively ignored. All event traffic and interaction with the window-server is done au
tomatically by Picasso, usually. Some special widgets have to do fancy event-handling that re
quires interrupting or superceding the regular processing of events. Such special widgets use
functions like event-loop (event-loop and related functions are described in the section on
special event-handling. However, in the generalcase, the only aspects ofevent-handling that con
cern the widget-writer are requesting and handling of events.

Requesting Events

An event is requested by inserting the request-name of the event-type in the event-mask slot of an
instance (of the widget) that wishes to request it. The request-name of an event is not always the

Widget Writer's Guide 6-35

EVENT HANDLING

same as thename of thecorresponding event that awidget receives (called the sent-name). To de
termine possible return-names from arequest-name, consult the following table.
The particular types of events that awidget can request depend both on the version of the window-
server andthe version of Picasso. Both clx and Picasso have anextensibleevent mechanism, in
the sense that new event-types can beadded easily. The events-types that are supported in the cur
rent release of Picasso are summarized below.

Event Type Event Request Event Sent

Keyboard :key-press :Jcey-press

:key-release :key-release
Pointer :button-press :button-press, dou

ble-click, rtriple-
click

:button-release :button-release

:enter-window :enter-notify
:leave-window :leave-notify
:pointer-motion :motion-notify
:button-motion :motion-notify
:button-l-motion rmotion-notify
:button-2-motion :motion-notify
:button-3-motion :motion-notify
:button-4-motion :motion-notify
:button-5-motion :motion-notify

Exposure exposure SPECIAL

:expose-region SPECIAL

:visibility-change :visibility-notify
Input Focus :focus-change :focus-in, :focus-out
Client Events xlient-message xlient-message

To simplify things, all event-names (request and sent) in the above table correspond directly to
event-names in clx, with theexception of":double-click" and ":triple-click". A Picasso eventcon
sists of a list of fields. The contents of these fields are exactly the same as those for the corre
sponding events in clx. For instance, the button-press event in Picasso has the following fields:
window, event-window, code, x, y, state, time, root, root-x, root-y, child, and same-screen-p.
These are the exact same fields thatthe button-press event in clx contains.

6-36 Widget Writer's Guidel

EVENT HANDLING

Handling Events

When an event is "sent" to awidget, what actually happens is that Picasso looks for and invokes a
handler for the event. Picasso always invokes the handler most-specific to the widget and the
event. The two important concepts involved here are mapping and handling.

MAPPING

Any event-handler can be mapped to any type of event via an event-mapping, event-mappings
can either be fully qualified or partially qualified. Picasso always invokes the handler correspond
ing to event-mapping that most closely matches the event. Anevent-mapping consists ofahandler-
specification and oneormore event-specifications, as follows:
event-mapping:

(handler-spec events-spec)

handler-spec identifies the event-handler that is tobemapped. Since event-handlers are defined
on classes (just like methods), it is sometimes necessary to specify the class of the widget as pan
of the specification of the event-handler. Hence, the handler-spec is either a list of (class-name
handler-name) or just handler-name if the 'context is obvious,
handler-spec:

(class-name handler-name) OR handler-name

event-spec identifies the type ofevent to be mapped to. The hean of the mapping isexpressed by
the properties of the event-spec. Anevent-mapping can include one or more event-specs as fol
lows:

events-spec:

event-spec OR (event-spec^-)

An event-spec consists ofan event-type and two qualifiers: state and detail. Any unspecified qual
ifier is considered to be a"wild-card". A wild-card maps to anything. For instance an event-spec
inwhich only type =:button-press is specified maps to any kind ofbutton-press event. The more
wild-cards an event-spec contains, the less specific it becomes. There are generally three ways to
specify an event-spec:

event-spec:

event-type (event-type statedetail) (event-type {istate state| {.-detail detail))

Widget Writer's Guide $.37

EVENT HANDLING

Any one of the preceding is avalid form forevent-spec. The qualifier fields depend on the event-
type, state concerns the state of the input devices when the event occurs. For instance, state is
usually one of :meta, :shift, xontrol, etc. detail is amore specific indication of what the contents
of the event are. For instance, detail can be a character (in the case of a key event) or a button-
keyword like :left-button, :middle-button, :right-button (in the case of a button event).

Some examples of event-mappings follow:

(select-1 (:button-press :de tail :left-button))

((his-widget select) :button-press)
(save ((:key-press :meta # (:key-press :meta #S)))

Event-mappings in Picasso are defined at three different levels: widget-level, system-level, and
user-level. System-level and user-level mapping capabilities are provided to allow fully customi
zable event-mappings. Forinstance,auser could use user-level mappings to customize text-widget
to be like the user's usual text-editor. A systems administrator could adopt a certain Picasso de
fault mapping using system-level mappings. Definingsystem-level anduser-level event-mappings
is discussed in the section on events in the PICASSO Reference Manual. Widget-level mappings
are done in the Picasso widget code. Picasso provides two ways to define event-mappings at the
widget-level: defevents and defhandler. defevents is explained below and defhan
dler is explained later.

The syntax of defevents is as follows:

defevents [Macro]

class-name

event-mapping

Here is an example usage of defevents:

(defevents my-widget
(select-1 (:button-press :detail :left-button))
((his-widget select) :button-press)
(save ((:key-press :meta # (:key-press :meta #S))))

6-38 Widget Writer's Guidel

EVENT HANDLING

HANDLING

A widget canprocess aninstance of anytype ofevent in the thirdcolumn of the abovetable. Pro
cessing an event is called "event-handling" and is done within an event-handler. Event-handlers
aredefined in Picasso using the defhandler macro. The syntax ofdefhandler is as follows:

defhandler [Macro]

name

arglist
{doc-string}
{body-forms}*

The syntax of defhandler is like that of a function declaration with two exceptions:

1: The firstargumentofarglist is ofthe form (local-var class-name)where class-name
is the name of the class on which the event-handler is being defined (just like a method dec
laration), arglist can include one &defaultargument which defines adefault event-mapping
and consists of one events-spec.

2: return- from statements must specify the entirehandler-name; classname-name.
This is necessary because defhandler declares a function called classname-name to ac
tually handle events.

The arguments to defhandler are keyword arguments corresponding to the fields in the
event being handled. Hence, all defhandler forms must include either an &allow-other-
keys or a &rest argument.

Here are some example uses of defhandler:

(defhandler select ((self button) firest args

&default :button-press)

"Selects a button by inverting it"
(declare (ignore args))

(invert self)

(execute 'press-func self args))

Widget Writer's Guide 6-39

EVENTHANDLING

(defhandler print-location ((self valuator)
&key x y
&allow-other-keys

&default

((:button-press :detail :left-button)
(:button-press :detail :right-button)))

"Prints out where the mouse was clicked"

(declare (ignore args))
(format "Mouse was clicked at X-coord:~S

and Y-coord: ~S~%" x y))

It is possible to call an event-handler explicitly. To call ahandler defined with defhandler, just in
voke the handler as you would invoke a regular function with name classname-handlername. It
is also possible to register acertain types of functions as event-handlers. Any such function must
have a name of the form classname-name and either an &allow-other-keys or a &rest argument.

DEBUGGING EVENT-MAPPINGS

When debugging and changing event mappings for widgets, it is often necessary toreload and re
define event-handlers. Whenever a new defhandler is loaded or an existing one changed, the
following operationshould be invoked.

make-class-event-map [Function]
window

recreate the class level event-mapping for the specified window instance, make-class-
event-map need be called only once per class (not per instance) that have new/altered
defhandlers defined.

Special Event Handling

Allactivity (e.g., running tools) inPicasso occurs inside an event-loop. Theevent-loop continually
polls the window-server for new events and dispatches the events totheir corresponding widgets.
This paradigm ismumally exclusive; awidget can only receives events concerning itself and an
event can only go to one widget.

6.40 Widget Writer's Guidel

EVENT HANDLING

Sometimes, widgets need to "grab" the event-loop in the sense of a keyboard ormouse grab. In
otherwords awidget mayobtain exclusive access totheevent-loopto "intercept" all events coming
in. Picasso provides several functions for doing special event-processing.

dispatch-event [Function]
&rest

event

&key
display
event-window

event-key
&allow-other-keys

Used to send an event to a window (widget), dispatch-event determines and invokes
the event-handler corresponding to event. Exposure events are handled specially and not
dispatched to the window, event is alist of keyword-value pairs corresponding to the fields
in the actual event.

event-loop [Function]
&key
(.display (current-display);
(/handler #'dispatch-event,)
f:hang t)

Invokes .'handler on each event on the event-queue until .'handler returns a non-nil value.
Then the non-nil .'handler valueis returned by event-loop, .'handler must take as arguments
thekeyword-value pairs corresponding tothe fields of theeventbeingprocessed. For further
information on the .'handler function, see the section on handler-function in the clx
documentation. If :hang is non-nil, event-loop will wait indefinitely for new events.
Otherwise, event-loop returns automatically whenall events on the queue are processed.

event-sync [Function]

(:display (current-display) j
Chandler #' dispatch-event-special)
(.•windows t)
(:mask t)
(xount : allj

Cdiscard-after-process nil)
(:discard-p nil)
Chang nil)

Invokes handler on selected events on the event-queue, specifiedby .-windows, .'mask, and
.count, .'handler is called withregular arguments .-windows, :mask, and :discard-p and key
word-arguments thekeyword-value pairs corresponding to the fields of theeventbeing pro-

Widget Writer's Guide 6-41

EVENT HANDLING

cessed. event-sync returns immediately if .handlerreturns : abort. If handler is not
specified, event-sync will use dispatch-event-special to filter out particular
events according to the following specifications:

rwindows

Process only events specific to the these Picasso windows (widgets). If t, can be any win
dow.

Type: t, x-window OR (x-window*)

:mask

Processonly events of type(s) specified in mask. If t, can be any type of event.
Type: t OR (event-type-keyword).

rcount

Process first '.count events on queue. If :all, limit is disabled.
Type: :all ORpos-int

:discard-after-process
ifnon-nil specifies that all selectedevents are to be discarded afterthey are processed. :dis-
card-p if non-nil specifies that all selected events are to be discarded without being pro
cessed. If :hang is non-nil, event-sync will wait indefinitely for new events. Otherwise,
event-sync returns automatically when all events on the queue are processed.

event-sync is less efficient than event-loop so it is advisable to use event-loop
whenever possible.

event-dispatch-current [Function]

&key
(display (current-display))

Dispatches the first event on the event-queue.

event-discard [Function]
&key
(display (current-display))

Discardsall events on the event-queue.

event-count [Function]

&key
(display (current-display))

Returns the number of events on the event-queue.

^-42 Widget Writer's Guidel

EVENT HANDLING

flush-window-output [Function]

&key
(display (current-display))

Flushes any buffered output to the screen.

flush-display [Function]

&key
(display (current-display))

Flushes any buffered output to the display, flushes any buffered errorsto error-handlers, and
makes sure all known events have reached the event-queue, flush-display will not re
turn until all of this is completed (usually quite fast).

grab-display [Function]

&key
(display (current-display))

Grabs the entire window-server and effectively freezes event-processing.

ungrab-display [Function]

&key
(display (current-display))

Releases a grab on the display.

descriptor [Function]

event

retums the event-descriptor for the event. A descriptor consists of a list of (event-type state
detail). event consists ofa list ofkeyword-value pairs that specify the attributes (fields) of
the corresponding X event.

find-entry [Accessor]

table

descriptor

access the event-handler for the specified event-descriptor, descriptor, in the specified
event-mapping-table, table. When find-entry is called, a hierarchical lookup is per
formed, find-entry first looks fora fully-qualified match with the descriptor. If amatch
is not found, first the state and then the detail fields, and then both fields are ignored to find
a less-qualified match. If a match is found, the corresponding event-handler is returned.
Otherwise, nil is returned.

Widget Writer's Guide 6-43

EVENT HANDLING

lookup-event-mapping [Function]

window

descriptor

lookup and return the event-handler (if any) for the specified event-descriptor, descriptor
on the specified window, window, lookup-event-mapping performs a find-en
try on first the instance-event-table andthen the class-event-table to find amatch. If none
is found, nil is returned.

Instance Event-Handling

In addition to specifying event mappings and handlers on a widget class level, Picasso provides
support for specifying mappings and handlers on a per instance basis. As a general rule, instance
event-mappings always take precedence over class event-mappings. The format for instance
event-mappings is the same as for class event-mappings. However, the things are specified a bit
differently.

The specify an instance event-map the following function is used.

register-callback [Function]

window

func
event-type

&key
(state nil)
(detail tiLI)
&allow-other-keys

create an instance event-mapping, window is the instance, tunc is the event-handler, and
event-type, state, and detail constitute the event-spec (see above descriptionofevent-spec).

6-44 Widget Writer's Guidel

GRAPHICS

GRAPHICS

Overview

Picasso is written on top of clx. As described in the PICASSO Reference Manual, Picasso repre
sents resources as CLOS object instances, which can be attached or detached from the X server.
But sometimes Picasso objects make more direct use of clx.

Thischapter explains how to useclx resources ingraphics operations, clx provides a special stmc
tureto group together a setof resources to beused forgraphics operations. This stmcture is called
a graphics-context (abbreviated as gc). Because the graphics-context is so central to graphics op
erations, Picasso has provided facilities for managing graphics-contexts. This first section de
scribes the aforementioned mechanism and subsequent sections describe special graphics
operations that Picasso provides.

Graphics Contexts

In the X window-system, graphics operations are performed with structures called graphics-con
texts, clx represents gc's as a lisp stmcture. For efficiency reasons, gc's are manipulated in their
clx formin Picasso (instead of defining aspecial CLOS class for gc's). Eachgc has the following
fields and default values.

Widget Writer's Guide

Field Default

arc-mode :pie-siice

background "white"

cap-style :butt

clip-mask :none

clip-ordering unsorted

clip-x 0

clip-y 0

7-45

GRAPHICS

Field Default

dash-onset u

dashes 4

exposures

fill-rule

off

even-odd

fill-style
font

solid

undefined

foreground
function

"black"

2

join-style
line-style

:miter

:solid

line-width 0

paint
plane-mask

see below

mask of ones

stipple
subwindow-mode

undefined

:clip-by-children
tile undefined

ts-x 0

ts-y 0

For more information on clx graphic-contexts, see therelevant clx documentation.

GC-SPEC

Each widget/gadget has a special slot named gc-spec. gc-spec can be used to specify gc's to be
automatically created and destroyed when thewidget is attached and detached, respectively, gc-
spec consists of a list of descriptions of gc's and slots in which to put them, gc-spec is typically
specified as an initform inawidget's class-definition. The format ofagc-spec specification isone
of the following:

gc-spec:

slot-spec OR (slot-spec*)

slot-spec is as following:

slot-spec:
(slot-name name-spec)

7-46 Widget Writer's Guidel

GRAPHICS

slot-name must be the name ofanexisting slot,defined on the widget, in which the gc canbe stored
when it is created, name-spec is as follows:

name-spec:

default-gc OR ({default-gc) field-value*)

default-gc, when specified, is a string which represents the name of a default graphics-context
specification. Default gc-specifications are created with register-gc (explained later) and
they specify default values for fields in the gc. default-gc defaults to "default". The field-
value arguments are keyword-value pairs corresponding to the field-value pairsof the gc.
field-value:

'.field-name value

field-name is just the name of the field of the gc. value is the desired value for the field. The type
value must match the type that clx enforces foreach field in the gc, except for the following fields:
paint, background, foreground

Type: string,paint, or integer. If string, it mustcorrespond to the nameof a paint Ifinteger.it corresponds
to the pixel value of a color in the colormap of the window.

tile, stipple
Type: string or image. If string, it must correspond to the name of an image.

font

Type: string or font If string, it must correspondto the name of a font.

Possible gc-specs:

(gc-res (:foreground "green" :font "6x10"))

((gc-res "default")

(graygc (:paint "graySO"))

(weavegc ("weave" :foreground "white" :background "red")))

The ipaint specification in the second example above is a added feature in Picasso. Specifying
:paint asa field-specifier hasthe semantics ofchoosing the correct resource depending on the type
of display, ipaint "gray50" has the following semantics:
If the display is color, :paint"graySO" translates to

:foreground "gray50" :fill-style :solid

If the display is black-and-white, :paint"gray50" translates to

:tile "gray50" :fill-style :tiled

Widget Writer's Guide 7-47

GRAPHICS

GC-RES

In addition to the gc-spec slot, Picasso provides one otherpredefinedgc relatedslot calledgc-res.
Any gc put in the gc-res slot (via gc-specor othermeans)is automatically updatedwhen the fore
ground and background ofthe window change. To be precise, when the foreground orbackground
of the window is set to a color, Hat foreground or background field, respectively, of the gc in gc-
resis setto the pixel numberofthe color and ihtfill-style fieldis setto : s o1i d. If the foreground
or background of the window is set to an image or tile, iht foreground or background field in the
gc is set to the clx resource of the tile and iht fill-style is set to : tiled.

Because gc-res is updated automatically, it is usually desirable to include the gc-res slot in a wid
get's gc-spec.

CREATING GC's

Some widgets need to be able to creategc's dynamically. The gc-spec specification is not appro
priate for dynamically creating gc's. Picasso provides support for dynamic creation of gc's with
the following functions:

make-gc [Function]

window

spec

^optional
(shared nil)

Retums a gc specified by window and spec, window is a widget and spec is a name-spec
having the syntax explained earlier. If shared is non-nil, make-gc will look to see if there
alreadyexists a gc having the same window andanequivalent spec that was also createdwith
the shared option. If the lookup is successful, make-gc retums the existing gc. Otherwise,
a new gc is created and registered as being sharable for future calls. Making shared gc's is
generally more efficient, in both time and space, than making regular gc's. However, chang
ing an attributeof a shared gc has the side-effect ofchanging the output of all operations that
use the gc (not just operations relatingto the one that originally changed the gc).

make-shared-gc [Macro]

window

7-48 Widget Writer's Guidel

GRAPHICS

spec

A short form for making shared gc's. Has the same effect of calling make-gc with the
shared argument non-nil.

clx allows dynamic alteration of gc's. Picasso provides a function providing an easy inter
face for changing fields of a gc that takes advantage of Picasso support for gc's (the ipaint
field, specifying colors as strings, etc.).

alter-gc [Function]

atts

Changes the fields of gc specified in atts. atts consists of a list of field-value specifications
(the syntax offield-value was described earlier in this chapter).

Graphics Operations

Most graphics operations in Picasso are performed either in the do-repaint or do-repaint-region
methods, in event-handlers, or as a result of bindings (e.g., binds, alerters, etc.). The advantage of
doing graphics operations in the repaint methods and event-handlers is that it is safe to assume that
the widget is actually on the screen, exposed. Otherwise, it is advisable to check that the window
is viewable before doing graphics operations or the output will be lost. This checking is done with
following macro.

viewable-p [Macro]

window

Retums t if the window is currently mapped onto the screen (can be occluded), otherwise
nil. Again, this macro is not necessary in the repaint methods and event-handlers.

Put Method

Picasso provides support for some common types of graphicsoperations like drawing text and im
ages in a window. The most generally useful of these support operations is the put method. The

Widget Writer's Guide 7-49

GRAPHICS

^T±0d^tfm^ °n ^typCS ^ Strin*s• *•"«*. «**» and provides auniform interface
Sve rZt3 ^ m' Wind0W' M"* methods** *• lowing format, thTugh sorahave extra keyword-arguments that others don't have.

put
[Method]

self
&key
(window nil)
(gc (gc-res self))
(font nil)
(xO)
(yO)
(height (height self))
(width (width self))
(mask nil)
(dimmed nil)
(inverted nil)
(horiz-just icenter)
(vert-just icenter)
&allow-other-keys

Draws the data object specified by *W/in the window specified by window. The default val
ues may vary for different putmethods.

window:

window inwhich to draw object.

gc:

gcwith which to draw object.

font:

font with which to draw object (used as aconvenience-changes gc).
x, y, width, height:

,Tlt^t0*?***?(not used for :t°P <* deft justification), x, ycoordinates relative
to upper-left origin of wmdow.

mask:

draw in masked (no background-glyph for text) form.

dimmed:

dim the object by XOR'ing agray tile with output

7-50
Widget Writer's Guidel

GRAPHICS

inverted:

invert the gc.

horiz-just:
horizontal justification for the object in area.

vert-just:
vertical justification for the object in area.

As manyof thewidgets usetheput method for output, it is possible to customize theoutput
ofmany of the predefined widgets by defining anew class and acorresponding put method
defined on the class.

For instance, one could makebuttons display vertical text by defining a CLOS class called ver
tical-text and a put method that outputs an instance of vertical-text. To use the
vertical-text in abutton,just setthevalue of thebuttonto aninstance ofvertical-text
andthe button will draw it automatically (since the button uses the put method for output).

SYNTHETIC GADGETS

As described in the section on collections, widgets canbe composedto createmore complex types
of interfaces. Because a complex widget may contain several widgets, creating complexwidgets
can become expensive. Some of this expense can be avoided by using synthetic gadgets. Synthetic
gadgets (abbreviated synths), are much cheaper to create than normal widgets/gadgets and can
even be faster (to output). Moreover, synths are extensible just like normal widgets/gadgets (one
can define new types of synths).

How are synths used and implemented? A synth is simply a list consisting of the arguments to a
put method (described above). To draw a synth on the screen, simply invoke:

(apply #'put synth)

Many of the widgets/gadgets in Picasso thatwere originally implemented using collections have
since been rewritten to use synths instead. The result is a considerable decrease in load-up time
and an increase in speed. In complicated widgets like tables or menus, synths really make a dra
matic difference (try creating and using a table containingtext-widgets as fields).

In using synths, it is often useful to share gc's, especially when severalgc's are sharing the same
window. Sharing gc's further reduces the overhead of creating these clx structures.

WidgetWriter's Guide 7-51

GRAPHICS

GRAY AND DIMMED OUTPUT

Much of the Picasso interface depends onborders in conjunction withvarious shades of gray to
achieve ason of 3-D look. The functions used to draw "gray" things are provided here along with
those used to draw the 3-D borders.

draw-gray-text [Function]
win

gc
str

x

y
w

h

Draws the string str in unmasked form in the region specified by x, y, w, h. The output is
effectively XOR'ed with the tile specified in gc. To be effective, iht fill-style field of gc
must be :tiled and iht function must be 8.

draw-gray-text-mask [Function]
win

gc
str

x

y
w

h

Draws the string str in masked form inthe region specified by x, y, w, h. The output is ef
fectively XOR'edwiththetile specified ingc. To beeffective, ihtfill-style field of gcmust
be :tiled and iht function must be 8.

draw-gray-image [Function]
win

gc
im

x

y
w

7"52 Widget Writer's Guidel

GRAPHICS

Draws the image im in the region specified by x, y, w, h. The output is effectively XOR'ed
with the tile specified in gc. To be effective, ihtfill-style field of gc must be : tiled and
iht function must be 8.

draw-3D-border

win

black-gc
white-gc
x

y
w

h

&key
invert

Draws a "3-D"borderin window win in regionx, y, w,h. The 3-D border consists of a rect
angular box in two colors to achieve a 3-D effect that "stands out":

[Function]

black-gc and white-gc are two gc's used to draw the border. Usually, back-gc is has color
"black" and white-gc has color "white", although this isnot necessary, invert will switch the
use of the two gc's to create an inverse "indented" 3-D effect.

draw-gray-border

win

black-gc
white-gc
&key
invert

x-width

Widget Writer's Guide

[Function]

7-53

GRAPHICS

7-54

y-width

Draws a"gray" border surrounding the window win. The "gray" border consists oftwo con
centric 3-D borders, the inner one inverted to achieve a 3-D effect that looks something like
a picture frame.:

black-gc and white-gc are two gc's used to draw the border. Usually, back-gc is has color
"black" and white-gc has color "white", although this is not necessary, invert will switch the
use ofthe two gc's to create an inverse "indented" 3-D effea. x-width and y-width specify
the horizontal and venical widths ofthe border, respectively. Ifwidth is less than 3, only the
outer 3-D border will be drawn.

Widget Writer's Guidel

COLLECTIONS

8

COLLECTIONS

Overview

Often, it ispossible totake advantage ofexisting widgets when writing anewwidget. For instance,
if we were writing scroll-bars, itwould be wise totake advantage of buttons without having tore
implement them as a part of scroll-bars. Similarly, it would be a ridiculous wasteof effort to im
plement matrix-fields and table-fields independently. Many widgets dolittlemorethan bindother
widgets together to produce a morecomplex interface.

The techniques for collecting widgets together into anew more complex widget are similar to the
techniques, outlined in the PICASSO Reference Manual, for collecting widgets together into col
lection widgets and gadgets.

To beacollection, awidget mustinherit (either directly orindirectly) from either of thetwoclasses
collection-widget orcollection-gadget. If thewidget wants to receive events,it should inherit from
collection-widget, otherwise collection-gadget is sufficient.

Adding Children

A collection can have any number of sub-widgets, called children. The collection is then called
the parent of the children. Anywidget can become achild of the collection by setting its parent
attribute. Tocreate awidget whose parent isthe collection <my-collection>, create the widget with
the :parent argument specified. For example:

(make-button

:parent (root-window)

rvalue "Press-me")

creates a button which is a child of the root-window.

Widget Writer's Guide g.55

COLLECTIONS

Panting „expensive „„££« *S^'St?""""^*"*• -d~«•«*. Hence, child™„usually^^^£SS^SS"^«°

Other Details

can te feuI^l^SSSSSSS^eC,I,^ manaSement "» attaching/detaching,

8-K

Widget Writer's Guidel

Master Index

Master Index

alter-gc [Function] 7-49
attached-p [Macro] 5-26
attach-when-possible [Accessor] 5-34
background [Accessor] 5-29
base-height [Accessor] 5-28
base-width [Accessor] 5-28
border-type [Accessor] 5-31
border-width [Accessor] 5-31
colormap [Reader] 5-29
conceal [Function] 5-33
concealed-p [Macro] 5-33
defevents [Macro] 6-38
defhandler [Macro] 6-39
descriptor [Function] 6-43
detached-p [Macro] 5-26
dimmed [Accessor] 5-29
dimmed-background [Accessor] 5-29
dimmed-foreground [Accessor] 5-30
dispatch-event [Function] 6-41
display [Reader] 5-26
do-attach [Method] 4-23
doc [Accessor] 5-34
do-destroy [Method] 4-24
do-detach [Method] 4-24
do-expose [Method] 4-22
do-repaint [Method] 4-21
do-repaint-region [Method] 4-21
draw-3D-border [Function] 7-53
draw-gray-border [Function] 7-53
draw-gray-image [Function] 7-52
draw-gray-text [Function] 7-52
draw-gray-text-mask [Function] 7-52
event-count [Function] 6-42
event-discard [Function] 6-42
event-dispatch-current [Function] 6-42
event-loop [Function] 6-41
event-sync [Function] 6-41
expose [Function] 5.33

Widget Writer's Guide Index-1

Master Index

exposed-p [Macro]... 5-33
find-entry [Accessor] 6-43
flush-display [Function] 6-43
flush-window-output [Function] 6-43

[Accessor] 5-30
[Accessor] 5-30
[Reader] 5-30
[Reader] 5-30
[Accessor] 5-28
[Function] 6-43
[Accessor] 5-27
[Accessor] 5-29
[Accessor] 5-29
[Accessor] 5-30
[Macro] 5-33

, [Accessor] 5-31
[Accessor] 5-32

, [Accessor] 5-32
, [Accessor] 5-31

[Accessor] 5-31
[Accessor] 5-32
[Accessor] 5-27
[Function] 6-44
[Function] 6-40
[Function] 7-48
[Function] » 5-33
[Macro] 7-48
[Accessor] 5-34
[Accessor] 5-34
[Method] 4-19
[Accessor] 5-34
[Function] 5-33
[Macro] 5-33
[Macro] 5-33
[Method] 7-50
[Accessor] 5-27
[Function] 6-44
[Accessor] 5-34
[Reader] 5-26
[Method] 4-22

font

foreground
gc-res i

gc-spec

geom-spec

grab-display
height
inverted

inverted-background
inverted-foreground
invisible-p
label

label-attributes

label-font

label-type
label-x

label-y
location

lookup-event-mapping
make-class-event-map
make-gc
make-invisible

make-shared-gc
mf-selectable-widget
name

new-instance

parent

pend
pended-p
pending-p
put

region
register-callback
repaint-flag
res

resize-window-handler

screen [Reader] 5-26
shared-gc-table [Accessor] 5-30
size [Accessor] 5-27

Index-2 Widget Writer's Guidel

Master Index

state [Reader] 5-32
status [Accessor] 5-32
ungrab-display [Function] 6-43
update-instance-for-different-class :after.[Method] 4-20
var-superior [Accessor] 5-34
viewable-p [Macro] 5-33
viewable-p [Macro] 7-49
width [Accessor] 5-27
width-height-ratio [Accessor] 5-28
width-increment [Accessor] 5-28
width-increment [Accessor] 5-28
x-offset [Accessor] 5-26
y-offset [Accessor] 5-26

Widget Writer's Guide Index-3

Master Index

Index-4 Widget Writer's Guidel

Index of Accessors

Index of Accessors

attach-when-possible [Accessor] 5.34
background [Accessor] ZZ 5-29
base-height [Accessor] 5_28
base-width [Accessor] 5_28
border-type [Accessor] 5.31
border-width [Accessor] Z!! 5.31
dinmed [Accessor] !!!!!!!!!!! ! 5-29
dimmed-background [Accessor] 5.29
dimmed-foreground [Accessor] ZZZZZ!!!!!!!!!!!!!!!!!!!!!! 5-30
doc [Accessor] 5.34
find"entiy [Accessor] ZZZZZZZZ'6-43
*ont [Accessor] 5 3Q
foreground [Accessor] ZZZZZ 5-30
geom-spec [Accessor] "[5-28
heiSht [Accessor] ...' 5_27
mverted [Accessor] Z" 5-29
inverted-background [Accessor] 5.29
inverted-foreground [Accessor] ZZZZZ!!!!!!!!!!!!!!!!!! 5-30
laDel [Accessor] 5„31
label-attributes [Accessor] 532
label-font [Accessor] Z. * 5-32
label-type [Accessor] ZZZZZ"! 5-31
label-x [Accessor] 5.31
label"v [Accessor] 5.32
location [Accessor] ZZ 5-27
mf-selectable-widget [Accessor] ZZZZZ 5-34
name [Accessor] 5.34
P32*1" [Accessor] !Z. 5.34
reSion [Accessor] 527
repaint-flag [Accessor] 534
shared-gc-table [Accessor] ZZZZZ!!! 5-30
size [Accessor] 5 27
s^s [Accessor] 5"32
var-superior [Accessor] 534
Wldth [Accessor] 5 27
width-height-ratio [Accessor] 528
width-increment [Accessor] ZZZ 5^8
width-increment [Accessor] 528

Widget Writer's Guide , J .
Index-5

Index of Accessors

x-°£set [Accessor] 5.26
y-°ffset [Accessor] 5_26

Index-6
Widget Writer's Guidel

Index of Functions

Index of Functions

alter-gc [Function] 7-49
conceal [Function] 5-33
descriptor [Function] 6-43
dispatch-event [Function] 6-41
draw-3D-border [Function] 7-53
draw-gray-border [Function] 7-53
draw-gray-image [Function] 7-52
draw-gray-text [Function] 7-52
draw-gray-text-mask [Function] 7-52
event-count [Function] 6-42
event-discard [Function] 6-42
event-dispatch-current [Function] 6-42
event-loop [Function] 6-41
event-sync [Function] 6-41
expose [Function] 5-33
flush-display , [Function] 6-43
flush-window-output [Function] 6-43
grab-display [Function] 6-43
lookup-event-mapping [Function] 6-44
make-class-event-map [Function] 6-40
make-gc [Function] 7-48
make-invisible [Function] 5-33
Pend [Function] 5.33
register-callback [Function] Z 6-44
ungrab-display [Function] 6-43

Widget Writer's Guide Index-7

Index ofFunctions

Index-8 Widget Writer's Guidel

Index of Macros

Index of Macros

attached-p [Macro] 5-26
concealed-p [Macro] 5-33
defevents [Macro] 6-38
defhandler [Macro] 6-39
detached-p [Macro] 5-26
exposed-p [Macro] 5-33
invisible-p [Macro] 5-33
make-shared-gc [Macro] 7-48
pended-p [Macro] 5-33
pending-p [Macro] 5-33
viewable-p [Macro] 5-33
viewable-p [Macro] 7-49

Widget Writer's Guide Index-9

Index of Macros

Index-10

Widget Writer's Guidel

Index of Methods

Index of Methods

*>-«»** [Method] 423
do-destroy [Method] 4_24
do-detach [Method] "V24
do-expose [Method] 4_22
do-repaint [Method] 4.2i
do-repaint-region [Method] 42\
new-instance [Method] ZZZ 4-19
Put [Method] 7_50
resize-window-handler [Method] \ 4.22
update-instance-for-different-class:after.[Method] !!!!!!!!!!!!!! 4-20

WidgetWriter's Guide w „ „
Index-11

Index of Methods

Inde*"12 Widget Writer's Guidel

Index of Readers

Index of Readers

colormap [Reader] 5-29
display [Reader] 5-26
gc-res [Reader] 5-30
gc-spec [Reader] 5-30
res [Reader] 5-26
screen [Reader] 5-26
state [Reader] 5-32

Widget Writer's Guide Index-13

Index of Readers

Index-14 WidgetWriter's Guidel

	ERL-92-53 (1 of 5)
	ERL-92-53 (2 of 5)
	ERL-92-53 (3 of 5)
	ERL-92-53 (4 of 5)
	ERL-92-53 (5 of 5)

