
Copyright © 1992, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

THE INFLUENCE OF HARDWARE MAPPING

ON HIGH-LEVEL SYNTHESIS

by

David P. Schultz

Memorandum No. UCB/ERL M92/54

28 May 1992

THE INFLUENCE OF HARDWARE MAPPING

ON HIGH-LEVEL SYNTHESIS

by

David P. Schultz

Memorandum No. UCB/ERL M92/54

28 May 1992

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

THE INFLUENCE OF HARDWARE MAPPING

ON HIGH-LEVEL SYNTHESIS

by

David P. Schultz

Memorandum No. UCB/ERL M92/54

28 May 1992

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

Introduction

1.1 Motivation

High-level synthesis in IC design is a process by which a behavioral or

functional description of a system is used to generate a lower level description

such as an architectural description or netlist. The low-level description can in

turn be used as the input to a silicon compiler to produce layout. When the high-

level synthesis process is not influenced by implementation details at the low-

level inefficient use of resources such as area and time may result. By using low-

level information to influence high-level transformations it is possible to improve

resource usage. Possibly more important is the opportunity to see the influence of

high-level decisions on the final result. Since area is a major factor influencing

the cost of an integrated circuit it is important that the designer have a good idea

of the implementation area of a given design. For this reason it is desirable to

have an accurate area estimate early in the design process.

The Hyper system [1] is a high-level synthesis tool targeted for high-

performance computation-intensive systems such as are often found in digital

signal processing, speech processing, or video processing. Hyper takes a

description of an algorithm in the control/data-flowgraph language Silage [2]

and ultimately produces a structural description which can then be used as input

for the LagerlV silicon compiler to produce library-based custom layout.

This report describes the characterization of the hardware mapper,

introduces a new estimation tool to be integrated into the Hyper system, and

2 The Influenceof Hardware Mapping on High-Level Synthesis

discusses a new hardware model which may be used to improve the efficiency of

area usage in future Hyper designs.

1.2 Organization of the report

An overview of the Hyper system is given in chapter 2. Chapter 3

discusses the motivations for using multiple hardware libraries and the extension

of the hardware mapper to use them. Chapter 4 describes the collection of data

from layouts generated by Hyper, the analysis of this data, and the area

estimation formula and its basis. In chapter 5 future directions and a new

hardware model are discussed.

Introduction

1.1 Motivation

High-level synthesis in IC design is a process by which a behavioral or

functional description of a system is used to generate a lower level description

such as an architectural description or netlist. The low-level description can in

turn be used as the input to a silicon compiler to produce layout. When the high-

level synthesis process is not influenced by implementation details at the low-

level inefficient use of resources such as area and time may result. By using low-

level information to influence high-level transformations it is possible to improve

resource usage. Possibly more important is the opportunity to see the influence of

high-level decisions on the final result. Since area is a major factor influencing

the cost of an integrated circuit it is important that the designer have a good idea

of the implementation area of a given design. For this reason it is desirable to

have an accurate area estimate early in the design process.

The Hyper system [1] is a high-level synthesis tool targeted for high-

performance computation-intensive systems such as are often found in digital

signal processing, speech processing, or video processing. Hyper takes a

description of an algorithm in the control/da ta-flowgraph language Silage [2]

and ultimately produces a structural description which can then be used as input

for the LagerlV silicon compiler to produce library-based custom layout.

This report describes the characterization of the hardware mapper,

introduces a new estimation tool to be integrated into the Hyper system, and

2 The Influenceof Hardware Mapping on High-Level Synthesis

discusses a new hardware model which may be used to improve the efficiency of

area usage in future Hyper designs.

1.2 Organization of the report

An overview of the Hyper system is given in chapter 2. Chapter 3

discusses the motivations for using multiple hardware libraries and the extension

of the hardware mapper to use them. Chapter 4 describes the collection of data

from layouts generated by Hyper, the analysis of this data, and the area

estimation formula and its basis. In chapter 5 future directions and a new

hardware model are discussed.

The Hyper
System

2.1 Overview

Hyper is an interactive menu-driven design environment for producing

layout for high-performance digital systems. It consists of a number of software

modules linked under a common X-windows based management tool called

Xhyper. Figure 1 shows the Xhyper window while figure 2 illustrates how the

various modules are interlinked.

The input to Hyper is a Silage description of a digital system. Silage is an

applicative signal-flowgraph language that is well suited for describing digital

systems that have little explicit control. Figure 3 shows an example of a Silage

system description, in this case an IIR bandpass filter.

The Silage description is parsed and translated into an ascii control/

flowgraph description. The flowgraph description is a textual representation of

the nodes and edges of the system graph. This flowgraph can then be

manipulated or transformed by Hyper to achieve the desired results. The final

output of Hyper is a structural description of a digital system consisting of

netlists which interconnect blocks of library layout cells.

The Hyper modules are: parsing, selection, estimation, transformation,

scheduling, and hardware mapping. Essentially each module is a step in the

design process. During parsing the Silage description is translated into a control/

data flowgraph which consists of control and data edges connecting operator

nodes.

The Influence of Hardware Mapping onHigh-Level Synthesis

rail fffart IS! Battatar Cffart «»•

iraufvuliw canaltianala ...
tn—ftrotm itaratar aa«M ...
IflltUlllllkt «ala* MdM ...
allHlartlan »r *aniraa« •awaula— ..

mi ntiwrnilM alialnaUan ...

[ciattarlMj aaaaa laMtrircklMl w*r«Hn

j C<tU SlUta^

| Btt»lw>~
I »"»->

| fall tllrin ->
Salad

I Trantfarn ->

MlMiU

I Sttiaaula"
•uta IUkiU

Eaaflaa

tdaTlaa

Maflaa
Maflaa
Maflaa
Mtflaa
Maflat
IdtflM
ttftriM
MlflM
MtriM
MtflM
Maflaa
MtflM
Maflaa

: iowa—la Walaw - W.O

mu riiKn.m

Caaf* •.M1SSX1B
CaaM.1 -1.IU5
cnfur «.cts
Coafl_l 1
CaaO.4 1
e—n.1 -i.tc
Caafu«.n
CaafZ.1 9.062$
c—n.* i
CaafU -1.US
CaafU «.«!(»
CaafU -4.15
CaafS.« 1
CaafO •♦.TUTS
Caaf<J 1

lw Ml* «• J Hdl) ftrt I nM •
bail*

•^^•1 • aaaUCIaaCaafO)! ...«.«
hT • Ua*-Ulnl. toafl-1. C-Q-*. f—*l-3- J-JHJ!
i«4 • ki^iito. c«fi.i. uari.t. Corfu. Caafi_«>i
Out • flrataraarllM, Caaf*_l. Co.f4.f>»

and!

_. una klajwlliii. al, at. at. at I ~a.tS> I lajaU a

• -—a O.Ol

atata a ta -*<aja»M<alaaUtaM> • »"»*»'«»n«i^fL>!i„.
Iratar* a atata • l«a>IMM«ataU«l> • aaaUCalaatMatZm
andi

fawc ClrataraTaMla, al. Ml a—18> I aaadt a

FIGURE 1. The Xhyper window.

Input: Silage language

func ftr (in: fix) Out: fix =
OuUSum {(1 =1- N):: c(l) • ln@i)

Simulation Flow-graph transformations

|A|

Estimation

Minimum bounds on hardware
2 adders

6 registers
2 buses

FIGURE 2. The Hyper modules.

w&
Assignment / Scheduling

12 3 4 5 6 7

XX XXX

X XXX

XX X

New HYPER tools

• • •

The HyperSystem 5

The selection step assigns a unit from the hardware library to each type

of node in the flowgraph. The hardware library contains a number of different
implementations of certain blocks in order to trade off performance and area.

The transformation step consists of algorithmic transformations which

can be performed on the flowgraph in order to achieve some specific result. Some
possible transformations include expansion of fixed-coefficient multiplications
into a series of adds and shifts, retiming for either critical path reduction or

hardware reduction, loop unrolling, or pipelining.

The estimation step provides the designer with estimated resource

requirements. The resources estimated are: the number of cycles in the critical
path, the number and type of execution units (EXUs), the number of registers
associated with each EXU, and the number of buses connecting the EXUs to each

other.

The assignment/scheduling step assigns each flowgraph node to a

specific hardware unit at a specific time. After this step the number and type of
each EXU and the number of registers is known. Prior to scheduling the clock and

sampling rates must be specified in order to define the number of cycles available

to the system.

The hardware mapping step maps the flowgraph onto the selected

hardware units by generating the interconnect information for the execution

units, placing multiplexers or tri-state buffers where needed, defining the finite
state machine and control block, and then partitioning the datapath. After this

step the system is completely defined. The output of the hardware mapper is a
group of hardware description files suitable for the LagerlV silicon compiler.
These files consist of datapath descriptions in the SDL (Structure Description

Language) format, and control logic specifications in BDS format. An SDL file
contains a series of instance declarations which instantiate library cells followed

by net declarations which describe the connections between the cells. A BDS file
consists of logical equations defining states and outputs.

The Influenceof Hardware Mapping on High-Level Synthesis

/* bpiir3.sil - 6th order UK bandpass filter V

fldefine numl6 fix<8,2>
#defineCoefO 0.015625

fldefine Coefal 1-1.9377627
#define CoefaO 1
#define Coefbl 1-1.9085335
#define Coefbl_2 0.93137014

#define Coefa2_l -1.9910688
#define Coefa2 2 1
define Coefb2 1-1.9320831
#define Coefb2_2 0.96581414

#define Coefa3_2 -1
#define Coefb3 1-1.9601845
define Coefb3 2 0.97627349

func main (In : numl6) Out: numl6 =
begin
InO = numl6(In»CoefO);
Inl = biquaddnO, Coefal 1, Coefal_2, Coefbl_l, Coefbl_2);
In2 =biquaddnl, Coefa2 1, Coefa2_2, Coefb2_l, Coefb2_2);
Out = biquadO(In2, Coefa3_2, Coefb3_l, Coefb3_2);

end;

func biquad(in, al, a2, bl, b2 : numl6): numl6 =
begin
state@@l = 0.0;
state@@2 = 0.0;
state = in - (num16(brstate@l) + numl6(b2*state@2));
return = state + numl6(a1»state®l) + numl6(a2,state@2);

end;

func biquad0(in, a2, bl, b2 : numl6): numl6 =
begin
state@@l = 0.0;
state@@2 = 0.0'
state = in - (numUfbrstate®!) + numl6(b2»state@2));
return = state + numl6(a2*state@2);

end;

FIGURE 3. Silage description ofan ITR bandpass filter.

2.2 Hardware Model

The hardware model or architecture used in the Hyper system maps

each operation onto an execution block consisting of an EXU with its input(s)

connected to a register file or group of register files. An EXU is a functional unit

such as an adder, subtracter, or shifter and a register file is simply a block of one

or more register with a common input bus. In the case of a fully pipelined

design the register file would consist of a single register while in a more

multiplexed design the register files could be of arbitrary size. The output of

each EXU is connected to destination register files through dedicated data buses

controlled by tri-state buffers, one per fanout. Registers can also broadcast their

contents to other register files through tri-state buffers. Control is provided

using a mixture of global and local control units. Global control is provided by

an FSM implemented as a PLA. Local control blocks consisting of address

The Hyper System 1

decoders for the register files and inverters to provide complementary signals
are made up of standard cells. Each local control block is associated with a
datapath partition and is tiled together to approximately pitch-match with the
datapath partition. Figure 4 illustrates this model.

§:
CO -

8

8 -

FSM

4
-m-

• • •

4
•REG

FILE

BUS NETWORK

rtYY Y --Y Y
BUS NETWORK

i

FIGURE 4. Datapath hardware model.

2.3 Layout Style

The Hyper system uses a datapath oriented layout style, i.e., all the

functional blocks are tiled together to form a single row. In most cases this

would result in a layout with a large aspect ratio, a "ruler" shape. Since this is

not an efficient use of area the datapath and the local control block are

partitioned into smaller pieces. The number of partitions can be chosen by the

user or by the hardware mapper.

Once the mapper has generated the sdl files Hyper is finished with the

project and the LagerlV design manager DMoct is used to call the necessary

layout generation tools. The final step is to use the interactive floorplanner Flint

to place and route the blocks that make up the chip core. Flint allows the user to

place each block in any position and orientation desired, define wiring channels,

and route buses through the defined channels. The detailed routing is then

performed by Flint and the layout stored in OCTand/or Magic formats. Figure 5

shows the Flint window with a placed and routed example. This example is the

8 The Influence of Hardware Mappingon High-Level Synthesis

IIR bandpass filter described earlier. The two largest blocks are datapath

partitions and the two smaller blocks adjacent to them are local control blocks.

The remaining two blocks are the FSM and the clock buffers. Figure 6 shows the

finished layout.

iliagal Cnannal
Auto-rem* moat OFF
SELECTED (D n«lt) • Sourco • Op_Opop Oatl • 6pKi3|l«fl
Compiatoo routing

QBB

aMMMrMrW>%WAMMMMMMMlFWr^^

^««^

a>mM <

n J •AMMVMMW

«L*'s

*&

H

FIGURE 5. Flint window showing a placed and routed example.

-*%(

The Hyper System

FIGURE 6. Example of Hyper generated layout.

Standard Cell

Mapping

3.1 Datapath vs. Standard Cell

The default layout method for Hyper designs uses a library of cells which
are designed for a datapath oriented floorplan. The library consists of
parameterized bit-sliced cells that are tiled together to form datapath blocks.
These blocks are then stacked together into a datapath. The datapath is usually

partitioned into two or more smaller datapaths in order to avoid chip cores with
large aspect ratios, i.e., the "ruler" effect. The datapath blocks are connected
together using feedthroughs in the cells or, if there are not enough feedthroughs,
routing cells are inserted between the bit-slices of the blocks. Figure 7 shows the
floorplan of a general datapath. The datapaths are connected together using long
data buses in two metal layers. In designs where resources are shared there is

often a great deal of interconnection between blocks in the datapath and between
datapath partitions. This results in a large percentage of area devoted to routing.
In fact, as will be discussed in chapter 5, the area devoted to routing and white

space accounts for 80% or more of the total area of the benchmarks studied.

3.2 Motivation

It was thought that the area consumed by routing might be reduced if the
rigid datapath structure wasabandoned in favor of a more flexible cell placement
and routing style. A method using standard cells rather than parameterized
macrocells might offer this kind of flexibility. The methodology for a standard
cell design would be the same as for a datapath design except that instead of

10

S
o
as

INVERT

NAND

INVERT

INVERT

NOR

NAND

INVERT

LOCAL
CONTROL
BLOCK

Wo m

SffE ifW1

IPJtFTEkw Et

BtV

LTE
Biro

ADDER

BITO

IP"

M2
ADDER

BIT1

ROUTE ROUTE
BIT 0 BIT 1

Wo Irn

FIGURE 7. General datapath floorplan.

Standard Cell Mapping

IfrS.

IfW1

EtIW1

lr¥F

efrSP

ADDER

BITN

ROUTE
BITN

Bft

o

J
r1

O
n

11

partitioning the datapath into smaller pieces it would be left as one large chunk
of standard cells which could then be placed and routed in way that minimized

net length. TimberWolf is a standard cell placement tool which uses simulated

annealing to find nearly optimal cell placement. Using this tool it was possible to

generate some standard-cell examples to compare with datapath versions.

3.3 Implementation

The standard-cell implementation was accomplished in the following

manner: standard-cell macros were written with an almost one-to-one

correspondence to the macrocell functional blocks, e.g., adder, subtractor, shifter,

etc. In this way when hardware selection is performed the actual library being

used is irrelevant since equivalent blocks are available. The macro for each block

was defined hierarchically, consisting of a parameterized block macro which

instantiates bit-sliced macros of standard cells. The standard cell macro versions

differ in one respect from their datapath counterparts: the control signals. The

control for each block usually requires both true and complementary signals.

When using the datapath cells it is necessary to generate both signals external to

12 The Influence of Hardware Mapping on High-Level Synthesis

the datapath block and then route the signals from the control block to the
datapath. Conversely, it was possible to include the inverters required to
generate complementary signals inside the standard cell macro blocks and thus
eliminate the extra control signal routing. Since this reduction applies to almost
every control signal a significant amount of routing area is eliminated.

Since the control for each block is generated based on the information in

the hardware database it was necessary to write a standard cell hardware

database. The database contains information about each cell in the hardware

library. The information stored in thedatabase includes cell area, terminal names
for both data and control, drive capability, and delay information based on Spice
simulations. One drawback to the standard cell layout style is that the timing

information provided can only be of limited accuracy. This is because the length
of the interconnect cannot be determined prior to placement. The delay

information in the library is for heavily loaded outputs. An example of a
database entry is shown in figure 8, this entry is for a standard cell adder. The
first entry associates a symbol with the operation, in this case "+", this is
associated with a symbol attached to a node in the flowgraph during hardware
selection. The second entry indicates the direction of delay ripple, while the third
and fourth entries specify the one-bit and overall delays for the block. The

(+ ("SC.add" (PARAMETERS (N)) (AREA <• N 76 136)) (DELAY (+ 6 <* N 2)))

(RIPPLE-DIR LSB2MSB)

(ONE-BIT-DELAY 6)

(RIPPLE-DELAY (• N 2))

(DATA-TERMINAL (OUT (INI IN2)))

(POWER-TERMINAL (Vdd GND))

(CTL-IN-TERMINAL ((CIN GND)))

(CTL-OUT-TERMINAL COUT)

(CTL-TERM-EDGE ((CIN BOTTOM) (COUT TOP)))

(COMPLEMENT-OUT OUTINV) (DRIVING-CAP NO)))

FIGURE 8. Examplehardwaredatabase entry.

Standard Cell Mapping 13

remaining entries are simply terminal declarations with the exception of the
"driving cap" entry which indicates whether or not the block output needs to be

buffered.

At this time only two libraries are provided, the datapath library and the
standard cell library, however, with the hardware database now a parameter of
hardware selection it is possible to have any number of hardware libraries. In
particular it might be useful to have specific hardware libraries for high-
performance or low-power implementations.

3.4 Comparison

Table 1 shows a comparison of core areas for standard cell and datapath

style implementations of identical designs. As can be seen, the standard cell
versions are much larger in every case. The reason for this result may be that the
standard cell macros are not the most efficient implementations of the required

functions. A comparison of the area of some the standard cell macro blocks to the
comparable datapath versions indicates that the standard cell implementations

are twice as large in some cases. Since the desired result of this experiment was to

take adavantage of the standard cell place and route functions it may be desirable
to design a special set of standard cells for use with Hyper which would be more

area efficient than using the current standard cell macros. Figure 9 shows a

standard cell layout of the IIR bandpass filter example. Compare this with the

layout in figure 6.

14 The Influence of Hardware Mapping on High-Level Synthesis

TABLE 1. Area comparison: datapath stvle s. standard cell.

Benchmark

Name
Type Purpose

Order or

of Taps

Data

Bit

Width

Datapath
Style
Total

Area

(mm2)

Standard

Cell

Total

Area

(mm2)

HR7 IIR Low pass 7 32 61.0 155.0

BPIIR3 IIR Band pass 6 16 26.3 44.7

HAMMLP FIR Low pass 21 16 30.2 70.8

BMANBP FIR Band pass 21 16 45.8 91.3

BPIIR5 IIR Band pass 6 16 24.1 42.7

FIGURE 9. Standard cell layout of IIR bandpass filter.

Area

Estimation

4.1 Goal

The main goal of this project was to generate an algorithm to estimate

layout area, ideally using factors at the highest level possible. By using high-level

information it would be possible to provide the designer with area estimates at

an early stage in the design process.

4.2 Methodology

There have been many efforts to predict the area of VLSI layouts, [3][5][7]

are a few examples. Some have been targeted for synthesis systems [4][6]. Most of

these seek to derive an estimation formula from layout principles. The approach

taken in this project is based on statistical methods rather than underlying

principles, although it may certainly be possible to relate the findings to those

principles.

In seeking to generate a formula or algorithm to estimate layout area

from statistics there were a two possible avenues to take. One method would be

to perform a multivariate analysis of the parameters found in the studied

systems. However, this method could not be employed due to the high degree of

correlation between the relevant parameters. Another method would be to

empirically generate a formula through careful observation of the data and then

verify it by predicting the areas of the benchmark systems. The formula could

15

16 The Influenceof Hardware Mapping on High-Level Synthesis

then be validated by predicting the areas of some designs outside the data set.

This is the approach adopted in this project.

4.3 Benchmarks

The design benchmarks chosen for this project are all digital filters of one

kind or other. They all fit into one of three filter categories: finite impulse

response or FIR, infinite impulse response or IIR, or wave-digital. Although this

is only a single class of digital systems which can be implemented using Hyper,

these designs offer enough generality to provide useful information. Each IIR

example was described in Silage as a cascade of direct form II biquad blocks and

first-order sections to form the required filter. The FIR examples were based on

the transpose network. The following table summarizes some pertinent

information about each benchmark, a more detailed set of tables and a Silage

description of each benchmark can be found in the appendix.

TABLE 2. Benchmarks.

Name Type Purpose
Order or

of Taps

Critical

Path

(Cycles)

Nodes/

Edges
Sampling

Rate

IIR7 iir Low pass 7 10 43/43 770kHz

BPIIR3 nR Band pass 6 10 55/55 500kHz

HAMMLP FIR Low pass 21 6 50/50 500kHz

BMANBP fir Band pass 21 7 73/73 360kHz

BPIIR5 iir Band pass 6 12 65/65 420kHz

WAVE1 Wave-Digital Noise Shaping 12 35 128/128 290kHz

4.4 Data Collection

In order to generate a large set of data each example was run through

Hyper a number of times while varying certain parameters. For example, IIR7

was run 12 times with bit width varying from 8 to 32 bits in multiples of 2 and the

number of datapath partitions varying from 2 to 4. Each example was

floorplanned at least 10 times and some as many as 20 times in order to find a

final area as close to optimal as possible.

Area Estimation 17

4.5 Analysis

The determination of the parameters that have the strongest correlation

with total area was performed in the following manner: (1) Plots were made of
the total area versus each data point recorded, (2) The area data was corrected to
remove the influence of other parameters, (3) Any observed correlation was

noted. The derivation of the area estimation formulas was accomplished by

fitting curves to the corrected data.

The factors determined to have the strongest influence on final area are

the instance area, the number of global buses connecting the datapath partitions,

and the number of control nets distributed to the datapath partitions. For the

purposes of this report instance area is defined as library cell area, this being the
lowest level at which it was possible to differentiate easily between device area

and routing area.

The data indicates that a strong relationship exists between instance area

and total area. This relationship is roughly linear as can be seen clearly in figure

10. However, it is obvious that there are other factors influencing this

relationship. By successively correcting the area data for other factors it was

determined that the global bus count has a strong effect on the way total area

varies with instance area. This influence is apparent in figure 11 which shows

total area vs. instance area where the area for each benchmark has been

multiplied by a correction factor. This factor is equal to the average number of
global buses divided by the number of global buses in that benchmark. This
results in a more obviously linear relationship than is seen in figure 10 (Note that

the y-scale has changed).

Another factor which shows strong correlation with total area is the

control bus width, i.e., the number of control signals in the system. This

relationship seems to be quadratic in nature as can be seen in figure 12. In this
plotarea hasbeen corrected to minimize the influence of instance area as a factor.
This correction is similar to the correction for global buss count and is a

multiplication of the area for each benchmark by a factor equal to the average
instance area for all the benchmarks divided by the instance area for that

benchmark.

18 The Influenceof Hardware Mapping on High-Level Synthesis

Area vs. Instance Area

4*1066 6'1066

Instance Area

FIGURE 10. Total area vs. instance area.

8*i0e6

Area vs. Instance Area

4*10e6 6'i0e6

Instance Area

8*l0e6

10e7

I0e7

FIGURE 11. Total area vs. instance area - total area has been corrected to
account for the influence of global bus count.

Area Estimation 19

Area vs. # of Control Nets

•s- i"»

250

of Control Nets

FIGURE 12. Total area vs. control bus width.

Instance area, global buss count, and control bus width are factors which

are not known with certainty until after the hardware mapping step. For this

reason the estimation cannot be performed until after this step. In fact, instance

area must stll be estimated to some degree.

4.5.1 Instance Area Estimation

In the benchmark systems instance area is largely a function of the

number and type of EXUs and the number of registers. However, multiplexers,

tri-state buffers, and control also contribute significantly. The estimation of

datapath instance area can be very accurate once a system has been scheduled

since at this point we know how many of each unit there will be and the area of

each unit. However control is not so easily estimated, and since we can't use

deterministic methods we must resort to statistical methods. Fortunately, strong

correlations are found between control area and both the control bus width and

the number of states in the FSM. These relationships are illustrated in figures 13

and 14.

The dependence on control bits is linear and can be approximated by a

simple linear equation. The dependence on number of states is polynomial in

20 The Influence of Hardware Mappingon High-Level Synthesis

<

I SP
3 r-

Control Area vs. # of States

FIGURE 13. Control instance area vs. number of states in the FSM.

8 I

250

Control Area vs. # of Control Nets

300 350 400

Control Nets

450

FIGURE 14. Control instance area vs. control bus width.

Area Estimation 21

nature and a quadratic equation is a good approximation. There is certainly

correlation between the number of states and the control bus width but the

relationship is not well defined. Estimations based on either factor alone gave

fair results with error around 25%. However, a linear combination of the two

equations results in a highly acccurate prediction. The following is the formula

derived for estimation of control area:

EContArea = 0.69/(5) +0.31/(C)

f(S) = 404S2 +202785 +176510

/(C) = 3910 (C- 99)

Where EContArea is the estimated control area, S is the number of states

in the FSM, C is the number of control signals distributed to the datapaths, and

the constants are derived from graphs of the data. This is obviously an

oversimplification since there are certainly other factors influencing control area,

however it does predict control instance area very accurately for the studied

examples. Figure 15 is a bar chart showing the errorbetween predicted and actual

control instance area. The average error is 4.7% and the maximum error is 14.3%.

The estimated control area becomes part of the overall equation for

instance area given by:

ElnstArea = Econtrol +Y,ABixBWi
i

Where ElnstArea is the estimated instance area, AB(is the area of a single

bit-slice of a hardware unit such as an adder, register, etc., and BWi is the bit

width of that unit. In other words, the estimated instance area is the sum of the

known areas of the library cells multiplied by the number of bits per block, plus

the estimated control instance area. The estimated instance area is then used in

the formula for overall area.

22 The Influence of Hardware Mapping on High-LevelSynthesis

Percent Error Between Actual and Estimated Control Area

o _

HI 11 r
fU u

TI
yi

All Examples

FIGURE 15. Error between actual and predicted control instance area.

4.5.2 Total Area Estimation

Now that we can estimate the instance area fairly accurately it should be

simple to estimate the total area using the results. However, experiment shows

that estimations based on instance area alone are highly inaccurate. In order to

improve the accuracy we must model the effects of other factors.

Two factors which have an obvious impact on routing area are the

number of global buses and the number of control signals. Since a large

percentage of the total area is routing, the total area should be a function of these

parameters. This is confirmed by the relationships shown in figures 11 and 12.

The effect of the global bus count can be modeled as a simple scaling factor. The

influence of the control bus width is not as easily characterized. As discussed

earlier this seems to have a quadratic correlation with total area. This correlation

appears only after the data has been corrected for the influence of instance area

which indicates that the area function of control bus width is dependent on the

instance area. Experiments attempting to establish correlation between total area

and control bus width with the global buss count as a scaling factor were not

Area Estimation 23

successful. This seems to indicate that global bus count and control bus width are

uncorrelated and that their influences must be combined.

The method of combining the two uses a linear combination to model the

effect of each factor. An equation showing the relationship of total area with

instance area, global bus count, and control bus width is of the form:

Area = K1B(InstArea +K2) +K3(InstArea) (aC2 +bC +c)

In this equation Area is the actual total area, JnstArea is the actual

instance area, Klf Ki, and X3 are constants to be determined, B is the global bus

count, and C is the control bus width. By extending this to use the estimated

instance area and determining the constants we arrive at a total area estimation

formula. This formula can be shown as a weighted sum of two functions. One a

function of instance area and global bus count and the other a function of

instance area and control bus width. This formula is given below with constants

derived from the benchmark data:

EArea = 0.47/{ElnstArea, B) +0.53/{ElnstArea, C)

Where {(ElnstArea, B) and {(ElnstArea, C) are given by:

f(ElnstArea, C) = (EInstArea\ x (156C2- 1790C+ 1.828 x 107)
5.033 xlO6

f(EInstArea,B) =(^) (ElnstArea+ 3.64 xlO5)

4.6 Results

The overall measure of the accuracy of the estimation formula is the

average absolute error between the estimated area and the actual area of the

layout examples. This is 8.9% with a maximum error of 24.7% and a minimum of

0.07%. It should be noted that only seven of the fifty-seven layout examples have

an absolute error over 15%. Figure 16 shows a bar chart of the error between the

actual and estimated area for all examples.

24 The Influence of Hardware Mappingon High-Level Synthesis

Percent Error Between Actual and Estimated Area

8 n

o _

8 -1

f

JilhrIIJPjf It J L u

Ail Examples

FIGURE 16. Error between actual and estimated total area.

The true test of the validity of a statistically derived estimation formula

is to estimate an example outside the data set. This has been done for one

example, a seventh-order IIR high-pass filter, with the encouraging result of 4.6%

error between actual and estimated area. Table 3 shows the results of each part of

the estimation. The Silage description and statistics for this system are included

in the appendix.

TABLE 3. Results of estimation of non-benchmark system.

Control

Area

(Mm2)

Instance

Area

Oim2)

Total

Area

(Mm2)
Estimated 983003.4 7433307.4 66900731.8

Actual 1168158.0 7618462.0 70111536.0

% Error 15.9% 2.4% 4.6%

Area Estimation 25

4.7 Caveat

The interactive floorplanning using Flint introduces a user-dependent

variation in the final area of the layout. Obviously there are many ways to

floorplan and route a selection of blocks, some of them efficient, others not.

Unfortunately it is difficult to quantify the influence of the user on the area of a

particular floorplan. It seems likely that the user would introduce a constant

scaling factor which may affect the absolute numbers but not the overall factors

governing area. However, since the intent of this project was to show a

classification of the variables influencing area rather than absolute numbers, the

goal has been met.

The data used in this project was derived from a restricted set of

benchmarks. The benchmarks were limited in the amount of resource-sharing and

required only small controllers. This may or may not affect the validity of the

results if applied to other classes of systems.

Future

Directions

5.1 Hardware Model

It has become apparent that the existing Hyper architecture has some

flaws. The percentage of total chip area devoted to routing is generally over 80%

which is an unacceptably high figure. The amount of area devoted to routing is

the result of two factors. The first of these is the interconnect architecture. There

is a great deal of superfluous interconnect arising from the dedicated data buses

that connect each EXU to each of its destination register files as well as the data

buses connecting some register files to several other register files. Another

problem which also increases the interconnect overhead is the partitioning

strategy. The partitioning is accomplished using the min-cut algorithm to divide

the datapath into smaller blocks in order to improve the aspect ratio of the final

core. Unfortunately the algorithm does not take into consideration the

communication between the register files and their associated execution unit.

This often results in the register file(s) being put into partitions other than the

one where the execution unit is, and as a consequence, additional global busing is

required.

Given this result with the current hardware model some new models

have been suggested. One proposed model takes advantage of the fact that the

global data buses are not efficiently used, i.e., many buses are idle during the

majority of system cycles. To take advantage of this we can collapse several

dedicated buses into one shared bus. This does require some additional

hardware, namely some multiplexers must be placed at the inputs to the register

26

Future Directions 27

files in order to select between multiple buses. The partitioning can also be

improved. Instead of partitioning the datapath as in the original model each

individual hardware block can be treated as a partition. Using this model each

partition would consist of a single execution unit, one or two register files, a tri-

state buffer for each shared bus that the execution unit needs to drive, and any

multiplexers that might be necessary due to multiple input buses. Figure 17

shows the proposed architecture while figure 18 illustrates a general floorplan for

this model. It is anticipated that this model will significantly reduce the amount

\ MUX | 1 MUX | MUX] 1 MUX | | MUX |

REG REG REG

FILE FILE FILE

E2 5
\ EXU2 / \ EXU3 /

n n
SHARED BUS NETWORK

FIGURE 17. New hardware model.

of routing overhead at the slight expense of a few additional multiplexers.

Preliminary estimates indicate a decrease in area of 25% may be possible in some

cases.

5.2 Estimation

While the results of the area estimation are good the information which

we use to make our estimations is fairly low-level. This means that the factors

which we need are all generated at a very late stage in the Hyper design process.

28 The Influence of Hardware Mappingon High-Level Synthesis

EXU

«—

aJ
O

o
u

REGISTER

FILES

TRISTATES

MUXES

I

FSM

EXU

8
£ REGISTER

O
U

FILES

TRISTATES

MUXES

I
SHARED BUSES

I
MUXES

TRISTATES

«—-

8

O
U

REGISTER

FILES

EXU

O

O
u

FIGURE 18. Floorplan using new hardware model.

I
MUXES

TRISTATES

REGISTER

FILES

EXU

Of the factors used in the estimation formulas only instance area can be partially

estimated prior to scheduling. This can only be partially estimated because the

control instance area cannot be estimated until after the control nets are

generated in the hardware mapping step. The number of global busses also

cannot be estimated earlier than after the scheduling step since this depends on

the amount of bus sharing which may be possible and the number of partitions

and these in turn depend upon the schedule.

We would like to make estimations at an earlier stage, the question is, can

accurate area estimation be performed at an earlier stage? Of course the answer is

yes, but the estimations will not be as accurate as those which can be made later.

This topic requires more research to determine the fundamental relationships

between the parameters used to describe a system behaviorally and the actual

implementation cost.

Appendix 29

Appendix

This appendix contains tables of data collected during the project and the

Silage descriptions of each of the benchmark designs. Also include is the Silage

description and statistics of a system that was used to validate the estimation

formulas.

TABLE 1. SystemData - Independent of Bitwidth andNumberof Datapath Partitions

Number of Execution Units Number of Registers for each EXU Type

Name

Critical

Path

(cycles)
Cycles Adder Subtracter Shifter Adder Subtracter Shifter

Transfer

Registers
Tri-State

Buffers

IIR7 10 13 2 2 2 14 8 8 4 28

BPHR3 10 20 1 1 1 9 9 6 5 26

HAMMLP 6 20 4 1 1 35 6 2 1 12

BMANBP 7 28 2 1 2 35 7 10 4 25

BPnR5 12 24 1 1 2 9 10 6 5 26

WAVE1 35 35 2 4 2 9 37 2 2 86

TABLE 2.System Data with Dependency on Bitwidth and Number of Datapath Partitions - IIR7

IIR7

Bitwidth
Datapath
Partitions

Data

buses

Control

Nets

FSM

Outputs

X

Dimension

(urn)

Y

Dimension

(UJ11)

Total

Area

(mm2)

%

Instance

Area

%

Control

Area

8 2 11 254 73 5263 3915 20.6 13.9 2.7

8 3 15 248 69 4535 4443 20.1 14.1 2.7

8 4 18 258 80 5561 3420 19.0 15.2 3.1

12 2 11 254 73 5592 4567 25.5 15.7 2.2

12 3 15 248 69 5330 5056 26.9 14.8 2.0

12 4 18 258 80 5927 4056 24.0 16.8 2.5

16 2 11 254 73 5937 5246 31.1 16.6 1.8

16 3 15 248 69 6419 5647 36.2 14.2 1.5

16 4 18 258 80 6475 4988 32.3 16.1 1.8

32 2 11 254 73 8207 7438 61.0 16.0 0.9

32 3 15 248 69 9856 7956 78.4 12.5 0.7

32 4 18 258 80 8606 8474 72.9 13.4 0.8

32 The Influenceof Hardware Mapping on High-Level Synthesis

/*
iir7.sil - Seventh order IIR lowpass filter
V

#define numl6 fix<32,10>

#define CoefO 0.001953125
#defineCoefl_l-1.3125
#define Coefl_2 0.625
#dehne Coefl_3 1
#define Coefl_4 1
#define Coef2_l -1.25
#define Coef2_2 0.75
#define Coef2 3 0.0625
#denne Coef2_4 1
#define Coef3_l -1.125
#define Coef3_2 0.921875
#define Coef3_3 -0.25
#define Coef3_4 1
#dehne Coef4_l -0.71875
#dehne Coef4_2 1

func main (In : numl6) Out: numl6 =
begin
Inl = numl6(In*CoefO);
In2 = biquaddnl, Coefl.l, Coefl_2, Coefl_3, Coefl_4)
In3 = biquad(In2, Coef2_l, Coef2_2, Coef2_3, Coef2_4)
In4 = biquad(In3, Coef3_l, Coef3 2, Coef3_3, Coef3_4);
Out = hrstorder(In4, Coef4_l, Coef4_2);
end;

func biquad(in, al, a2, bl, b2 : numl6): numl6 =
begin
state@@l = 0.0;
state@@2 = 0.0;
state = in - (numl6(al*state@l) + numl6(a2*state@2));
return = state + (numl6(bl*state@l) + numl6(b2*state@2));

end;

func firstorder(in, al, bl: numl6) : numl6 =
begin
state@@l = 0.0;
state = in - numl6(al*state@l);
return = state + numl6(bl*state@l);

end;

TABLE 3.BPIIR3- DataDependent on Bitwidth and Number of Datapath Partitions

BPIIR3

Bitwidth
Datapath
Partitions

Data

buses

Control

Nets

FSM

Outputs

X

Dimension

0«n)

Y

Dimension

(Hm)

Total

Area

(mm2)

%

Instance

Area

%

Control

Area

8 2 12 241 76 4678 3676 17.2 15.3 4.3

8 3 11 238 74 4536 3667 16.6 15.6 4.2

8 4 14 241 76 5982 2870 17.2 15.4 4.3

12 2 12 241 76 5009 4370 21.9 16.4 3.4

12 3 11 238 74 5716 3742 21.4 16.6 3.3

12 4 14 241 76 6295 4022 25.3 14.2 2.9

16 2 12 241 76 5361 4996 26.8 16.9 2.7

16 3 11 238 74 6612 3977 26.3 17.1 2.7

16 4 14 241 76 5841 5208 30.4 14.9 2.4

34 The Influence of Hardware Mapping on High-LevelSynthesis

bpiir3.sil - IIR bandpass filter

#define numl6 fix<8,2>

/* #define CoefO 0.0057643052 •/
#define CoefO 0.015625

#defineCoefal_l -1.9377627
#defineCoefal_21
#define Coefbl_l -1.9085335
#define Coefbl_2 0.93137014

#define Coefa2_l -1.9910688
#define Coefa2_2 1
#define Coefb2_l -1.9320831
#define Coefb2_2 0.96581414

#define Coefa3_2 -1
#define Coefb3_l -1.9601845
#define Coefb3 2 0.97627349

func main (In : numl 6) Out : numl 6 =
begin
InO = numl6(In*CoefO);
Inl = biquaddnO, CoefalJ, Coefal_2, Coefbl.l, Coefbl_2);
In2 = biquaddnl, Coefa2 1, Coefa2_2, Coefb2_l, Coefb2_2);
Out = biquad0(In2, Coefa3_2, Coefb3_l, Coefb3_2);

end;

func biquaddn, al, a2, bl, b2 : numl6) : numl6 =
begin
state@@l = 0.0;
state@@2 = 0.0;
state = in - (num!6(bl*state@l) + numl6(b2*state@2));
return = state + numl6(al*state@l) + numl6(a2*state@2);

end;

func biquad0(in, a2, bl, b2 : numl6): numl6 =
begin
state@@l = 0.0;
state@@2 = 0.0;
state = in - (numl6(bl*state@l) + numl6(b2*state@2));
return = state + numl6(a2*state@2);

end;

TABLE4.HAMMLP - DataDependent on Bitwidth and Number of Datapath Partitions

HAMMLP

Bitwidth
Datapath
Partitions

Data

buses

Control

Nets

FSM

Outputs

X

Dimension

(urn)

Y

Dimension

(\im)

Total

Area

(mm2)

%

Instance

Area

%

Control

Area

8 2 9 275 63 5331 3812 20.3 15.4 3.4

8 3 13 279 67 5160 4117 21.2 14.7 3.2

8 4 15 281 69 6098 3843 23.4 13.7 3.2

12 2 9 275 63 5584 4542 25.3 17.2 2.7

12 3 13 279 67 6314 4589 29.0 15.0 2.3

12 4 15 281 69 6249 4282 26.8 16.5 2.8

16 2 9 275 63 5871 5136 30.2 18.5 2.3

16 3 13 279 67 7598 5483 41.7 13.5 1.8

16 4 15 281 69 7053 5535 39.0 14.4 1.9

36 The Influenceof Hardware Mapping on High-Level Synthesis

hammlp.sil
V

Hamming window lowpass filter

#define numl 6 num<16,5>

define
define
#define
#define
#define
#define
#define
define
#define
#define
#define

aO 0.078125
al 0.109375
a2 0.171875
a3 0.265625
a4 0.390625
a5 0.546875
a6 0.687500
a7 0.812500
a8 0.906250
a9 0.984375
alO 1.000000

func main(In : numl 6) Out: numl 6 =
begin
Accl = numl6(In * aO);
Acc2 = numl6(In * al) + Accl@l
Acc3 = numl6(In * a2) + Acc2@l
Acc4 = numl6(In * a3) + Acc3@l
Acc5 = numl6(In * a4) + Acc4@l
Acc6 = numl6(In * a5) + Acc5@l
Acc7 = numl6(In * a6) + Acc6@l
Acc8 = numl6(In * a7) + Acc7@l;
Acc9 = numl6(In * a8) + Acc8@l;
AcclO = numl6(In * a9) + Acc9@l;
Accll = numl6(In * alO) + Accl0@l;
Accl2 = numl6(In * a9) + Accll@l
Accl3 = numl6(In * a8) + Accl2@l
Accl4 = numl6(In * a7) + Accl3@l
Accl5 = numl6(In * a6) + Accl4@l
Accl 6 = numl6(In * a5) + Accl5@l
Accl7 = numl6(In * a4) + Accl6@l
Accl8 = numl6(In * a3) + Accl7@l
Accl9 = numl6(In * a2) + Accl8@l
Acc20 = numl6(In * al) + Accl9@l
Out = numl6(In * aO) + Acc20@l;

end;

TABLE 5.BMANBP - Data Dependent on Bitwidth and Number of Datapath Partitions

BMANBP

Bitwidth
Datapath
Partitions

Data

buses

Control

Nets

FSM

Outputs

X

Dimension

(um)

Y

Dimension

(um)

Total

Area

(mm2)

%

Instance

Area

%

Control

Area

8 2 10 376 92 7123 4494 32.0 12.6 3.1

8 3 14 380 95 5451 5435 29.6 13.8 3.5

8 5 13 381 98 6101 4525 27.6 14.8 3.8

8 6 14 383 90 5289 5018 26.5 15.5 4.0

12 2 10 376 92 7310 5194 38.0 14.6 2.6

12 3 14 380 95 6170 5847 36.0 15.5 2.9

12 5 13 381 98 6273 5347 33.5 16.8 3.3

12 6 14 383 90 6333 6305 39.9 14.0 2.6

16 2 10 376 92 7551 6062 45.8 15.5 2.2

16 3 14 380 95 7398 6461 47.8 14.9 2.2

16 5 13 381 98 7200 6815 49.1 14.6 2.2

16 6 14 383 90 7283 7057 51.4 13.9 2.0

38 The Influence of Hardware Mappingon High-Level Synthesis

bmanbp.sil
V

Blackman window bandpass filter

#define numl6 num<16,6>

#define
#define
#define
#define
define
#define
#define
define
^define
define

al 0.010066148
a2 0.049648163
a3 0.14402198
a4 0.31796218
a5 0.58364007
36 0.92843705
37 1.3097011
38 1.6610868
39 1.9099674
al 01.9999999

func msindn
begin
Acc2 = numl6(In *
Acc3 = numl6(In"
Acc4 = numl6(In"
Acc5 = numl6(In*
Acc6 = numl6(In"
Acc7 = numl6(In"
Acc8 = numl6(In "
Acc9 = numl6(In"
AcclO = numl6(In
Accll = numl6(In
Accl 2 = numl6(In
Accl3 = numl6(In
Accl 4 = numl6(In
Accl 5 = numl6(In
Accl 6 = numl6(In
Accl7 = numl6(In »a4)
Accl8 = numl6(In*a3)
Accl 9 = numl6(In*32)
Out = numl6(In*3l) +

end;

numl6) Out: numl 6 =

al);
a2)
33)
34)
35)
36)
37)
38)

Acc2@l
Acc3@l
Acc4@l
Acc5@l
Acc6@l
Acc7@l
Acc8@l

* 39) + Acc9@l;
•al0) +AcdOei;
*a9)
*38)

Accll@l
Accl2@l
Accl3@l
Accl4@l
Accl5@l
Accl6@l
Accl7@l
Accl

*37)
*36)
*35)

Accl9@l;

TABLE6. BPIIR5- DataDependent on Bitwidth and Number of Datapath Partitions

BPIIR5

Bitwidth
Datapath
Partitions

Data

buses

Control

Nets

FSM

Outputs

X

Dimension

(um)

Y

Dimension

(um)

Total

Area

(mm2)

%

Instance

Area

%

Control

Area

8 2 10 244 79 4228 3486 14.7 18.3 5.2

8 3 11 243 79 4859 3342 16.2 16.5 4.7

8 4 14 247 80 5416 3248 17.6 15.4 4.5

12 2 10 244 79 4480 3994 17.9 20.4 43

12 3 11 243 79 5789 3734 21.6 16.9 3.5

12 4 14 247 80 5930 4216 25.0 14.7 3.2

16 2 10 244 79 4956 4878 24.1 17.0 2.8

16 3 11 243 79 6167 4739 29.2 15.8 2.6

16 4 14 247 80 6041 4564 27.6 16.8 2.9

40 The Influence of Hardware Mapping on High-LevelSynthesis

bpiir5.sil - IIR bandpass filter

#define numl6 fix<16,6>

#define CoefO 0.015625

#define Coefsl_l -1.2283669
#define Coefsl 2 1
#define CoefbO -1.5145303
#define Coefbl_2 0.96173355

#define Coef32_l -1.7409752
#define Coef32_2 1
#define Coefb2_l -1.4522301
#define Coefb2_2 0.98113835

#define Coef33_2 -1
#define Coefb3_l -1.5987214
#define Coefb3 2 0.98356567

func msin (In : numl 6) Out: numl 6 =
begin
InO = numl6(In*CoefO);
Inl = biqusddnO, Coefal_l, Coefal_2, Coefbl_l, Coefbl_2);
In2 = biqusddnl, Coef32_l, Coefs2_2, Coefb2_l, Coefb2_2);
Out = biqu3d0(In2, Coef33_2, Coefb3_l, Coefb3_2);

end;

func biqusddn, al, a2, bl, b2 : numl6): numl6 =
begin
st3te@@l = 0.0;
st3te@@2 = 0.0;
stste = in - (numl6(bl*st3te@l) + numl6(b2*st3te@2));
return = state + numl6(al*st3te@l) + numl6(32*st3te@2);

end;

func biqusdOdn, 32, bl, b2 : numl6): numl6 =
begin
st3te@@l = 0.0;
st3te@@2 = 0.0;
stste = in - (numl6(bl*st3te@l) + numl6(b2*st3te@2));
return = stste + numl6(32*stste@2);

end;

TABLE 7.WAVEl - Data Dependent on Bitwidth and Number of DaUpath Partitions

WAVEl

Bitwidth
Datapath
Partitions

Data

buses

Control

Nets

FSM

Outputs

X

Dimension

(um)

Y

Dimension

(um)

Total

Area

(mm2)

%

Instance

Area

%

Control

Area

12 3 27 478 147 8909 8760 78.0 9.7 2.0

12 4 28 481 151 11232 8182 91.9 8.2 1.7

12 5 29 487 152 11702 8867 103.8 7.4 1.6

15 3 27 478 147 9772 9495 92.8 9.8 1.7

15 4 28 481 151 12908 9158 118.2 7.7 1.3

15 5 29 487 152 13504 10638 143.7 6.4 1.1

42 The Influenceof Hardware Mapping on High-Level Synthesis

wsvel.sil - A wsve digital noise-shaping filter.

#define numl6 fix<12,3>

#define alphsl.l 0.2728263481983
#define slph3l_2 0.30760606507159
#define slph3l_3 0.018981781960232

#define 3lphs2 1 0.16783644485455
#define 3lphs2l2 0.4122356119527
#define 3lphs2_3 0.057365199668124

#define3lph33 10.091633222582463
#define slpha3_2 0.47386174108547
#define alphs3_3 0.11728595722224

#define slphs4_l 0.034583693538301
#define 3lphs4_2 0.37137396664558
#define3lphs4 3 0.20900698482719

func msin (In : numl 6) Out: numl 6 =
begin
Al = AdsptorKIn, 3lph3l_l);
A2 =Ad3ptor2(Al, slph3l_2);
Outl = Act3ptor2(A2, 3lphsl_3);

Bl = Adsptorldn, 3lph32_l);
B2 = Ad3ptor2(Bl, 3lph32_2);
Out2 = Ad3ptor2(B2, slph32_3);

CI = Adsptorldn, slph33_l);
C2 = AdaptorKCl, alph33_2);
Out3 = Adsptor2(C2, 3lph33_3);

Dl = Adsptorldn, 3lph34_l);
D2 = AdsptorKDl, 3lph34_2);
Out4 = Ad3ptor2(D2, 3lphs4_3);

Out = Outl + Out2 + Out3 + Out4;
end;

func Adsptorl (In, slphs : numl6): numl 6 =
begin
stste@@l = 0.0;
stste = numl6(3lphs * (st3te@l - In)) - st3te@l;
return = stste - st3te@l + In;
end;

func Adaptor2 (In, alpha : numl6): numl6 =
begin
stste@@l = 0.0;
stste = numl6(slph3 * (In - st3te@D) - In;
return = numl6(3lph3 * (In - st3te@l)) - st3te@l;
end;

TABLE 8. HPIIRl- Data.

HPIIRl

Bitwidth
Datapath
Partitions

Data

buses

Control

Nets

X

Dimension

(um)

Y

Dimension

(um)

Total

Area

(mm2)

%

Instance

Area

%

Control

Area

16 4 19 400 10914 6424 70.1 10.9 1.7

Number of Execution Units Number of Registers for each EXU Type

Critical

Path

(cycles)
Cycles Adder Subtracter Shifter Adder Subtracter Shifter

Transfer

Registers
Tri-State

Buffers

16 24 2 2 2 11 19 8 5 65

44 The Influence of Hardware Mappingon High-Level Synthesis

hpiirl.sil - IIR High-psss filter.

#define numl 6 fix<16,7>

#define CoefO 0.6875

#define Coefsl_l -1.9663138
#define Coefal 21
#define Coefbl"l -1.7096749
#define Coefbl_2 0.73967969

#define Coef32_l -1.9932827
#define Coefs2_2 1
#define Coefb2_l -1.7682765
#define Coefb2_2 0.81296479

#define Coefs3_l -1.9782710
#define Coefs3_2 1
#define Coefb3_l -1.8702533
#define Coefb3_2 0.92918093

#define Coefs4_l -1
#define Coefb4 1-0.84541923

func msin (In : numl 6) Out: numl 6 =
begin
InO = numl6(In*CoefO);
Inl = biqusddnO, Coefsl.l, Coefdl_2, Coefbl 1, Coefhl_2);
In2 = biqusddnl, Coef32_l, Cbefs2_2, Coefb2_l, Coefb2_2);
In3 = biqu3d(In2, Coef33_l, Coefs3_2, Coefb3_l, Coefb3_2);
Out = first(In3, Coef34_l, Coefb4_l);

end;

func biqusddn, al, a2, bl, b2 : numl6): numl6 =
begin
st3te@@l = 0.0;
st3te@@2 = 0.0;
stste = in - (numl6(bl*st3te@l) + numl6(b2*st3te@2));
return = stste + numl6(sl*st3te@l) + numl6(s2*st3te@2);

end;

func firstdn, si, bl : numl6): numl6 =
begin
stste@@l = 0.0;
st3te@@2 = 0.0;
stste = in - numl6(bl*stste@l);
return = stste + numl6(sl*st3te@l);

end;

Bibliography

11] C. Chu, et all., "Hyper: An Interactive Synthesis Environment for High Performance
Real Time Applications", Proc. Int'l Conf. Computer Design, IEEE Computer Society
Press, Los Alamitos, Gilif., 1989, pp.432-435.

[2] P. Hilfinger,"A High-level Lsngusge 3nd Silicon Compiler for Digitsl Signsl Process
ing", Proc. Custom Integrated Circuits Conf., IEEE Computer Society Press, Los Alsmitos,
Cslif., 1985, pp. 213-216.

[3] F. Kurdshi snd A. Psrker, 'Technique for Ares Estimstion of VLSI Layouts", IEEE Trsns.
on CAD of IC,Vol. 9, No 9, pp. 938-950,1990.

[4] R. Jsin, "High-Level Ares-Delay Prediction with Application to BehavioralSynthesis",
Technical Report 89-23, University of Southern Californis, 1989.

[5] F. J. Kurdshi, "Ares Estimstion of VLSI Circuits", PhDThesis, University of Southern
Cslifornis, 1987.

[6] K. Kucukcsksr snd A.C. Psrker,"BAD: Behsvioral Ares-Delsy Predictor", Tech. Report
90-31,University of Southern Cslifornis.

[7] M. Pedram snd B. Press, "Accurate Prediction of Physicsl Design Characteristics for
Rsndom Logic", 1989 IEEE ICCDConf., Boston, pp. 100-108,1989.

45

