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i INTRODUCTION

Abstract

In this paper, we propose a new technique to represent timing behaviors of digi
tal circuits. This technique, Timed Boolean Functions (TBF), conveniently integrates
functionality and timing information of circuits in a form resembling ordinary Boolean
functions. Timed Boolean Functions elucidate temporal interactions of various signals
in the circuits, and hence, make timing analysis more straightforward. We present
some timing properties of combinational circuits, and clarify events that violate the
monotone speed-up property. Using Timed Boolean Functions, we give efficient algo
rithms to compute the exact delays of combinational circuits for two cases: 1) the case
where gate delays track well, and 2) the general case where gate delays are uncorre
cted. In the general case, the problem of computing the exact delay is formulated
as a new computational problem, mixed Boolean linear programming, and a lower-
bound-progressive-updating algorithm is given which solves this problem efficiently.
The algorithms consider a subset of paths at one time; only the paths potentially re
sponsible for the delay of the circuit are considered. Finally, the computation of the
carry delay of a 4-bit ripple bypass adder is used to illustrate how Timed Boolean
Functions can be represented implicitly with circuits and how some core computations
can be translated into test generation and Boolean SAT problems.

1 Introduction

Analyzing timing behavior of logic circuits can be confusing, possibly because of the lack
of an intuitive tool to represent the circuits' timing behavior. All existing representation
methods have a major drawback that the circuits' timing information and functionalities are
not directly and conveniently integrated; hence, temporal interactions of various signals in
the circuits are hard to visualize.

In this paper, we propose an algebraic approach, Timed Boolean Functions, to represent
circuits' functionalities as well as timing information. This representation captures a circuit's
functionality and timing behavior with simple equations. Once a circuit is represented by
a Timed Boolean Function, all timing behaviors of the circuit are captured; therefore, all
timing properties of the circuit can be verifiedvia algebraic operations on the Timed Boolean
Function.

A Timed Boolean Function has three important features. First, its form is similar to
ordinary Boolean functions; hence, many techniques in existing logic optimization and syn
thesis can be used with Timed Boolean Functions with little, if any, modification. Thus,
problems in the temporal domain can be translated to the functional domain. Second, cer
tain timing-related problems, for example, path sensitization, hazard detection, timed test
generation, wave pipelining, can be systematically formulated with Timed Boolean Func
tions, and reduced to a basic computation problem: mixed Boolean linear programming, in
which a quantity / is optimized over a set of points in the Boolean space; at each point
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of the Boolean space, the value of / is the optimal value of a linear programming problem
associated with the point in the Boolean space. Finally, Timed Boolean Functions enable
visualizing temporal interactions of signals in the circuits.

In this paper, we apply Timed Boolean Functions to compute the exact delay of circuits
when theinputs are excited by a pair ofvectors. Most ofproposed solutions to this problem
consider only the restricted case where the gate delays are specified byfixed constants. These
proposed solutions can be divided into two categories: heuristic and algebraic approaches.
Examples of heuristic approaches are [BI88] and [MB89]. Heuristic approaches trade ac
curacy for speed; only upper bounds are computed. Examples of algebraic approaches are
[DKM92] and [HPS91]. (Both [DKM92] and [HPS91] appeared during the preparation of
this paper.) When gate delays are specified by lower and upper bounds, except for explicit
exhaustive search, all proposed solutions (at the time of this writing) give only an upper
bound on the delay of a circuit. In our algebraic approach, we give efficient algorithms to
compute the exact delays of circuits when the gate delays are specified by fixed constants or
in min-max forms.

The organization of this paper is as follows.

1. Timed Boolean Functions are defined, and some properties are illustrated.

2. Some general timing properties of combinational circuits are proved. In particular,
events that violate monotone speed-up properties are clarified.

3. Exact delay computation is formulated as a mixed Boolean linear programming prob
lem and efficient algorithms are presented.

2 Timed Boolean Functions

Definition 1 LA waveform space W is a collection of mappings f: R*-> {0,1}. In
particular, the unit step function U(t) is defined as follows:

[1 ift> 0
U(t)= I 0 ift< 0

( undefined t=0

2. Timed Boolean Functions (TBF) are defined recursively as follows.

• F(v) = v, veW, is a TBF.

• IfG:Wn> h-* W,H :Wn> ^W are TBF's, then F = G,F = G H,F = G + H
are TBF's.
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Figure 1: Representing Waveforms by TBF

Example 1 Let x, y £ Wbe the waveforms shown in Figure 1(a) and 1(b); then the Timed
Boolean Function f(a,b)(t) = a(t —1) © b(t + 1) represents the waveform shown in Figure
1(c) if a=x, b=y.

Example 2 Interpolation with U(t). For any waveform w(t), there exists a Timed Boolean
Function f with only one timed Boolean variable such that w(t)=f(U)(t). That is, any wave
form can be generated by a single step function U(t). Let

w(t) = 6,-; rt_! < * < TV, i=l,2,..., b{ € {0,1}

Then,

f(u)(t) = £»«• u(t - ii-i)t/(t - »j)
i

represents the waveform w(t).

2.1 Modeling Timing Behavior with Timed Boolean Function

Before representing a circuit by a TBF, each component of the circuit needs to be modeled
by a TBF. In this section, we demonstrate the modeling capability of TBF's. It will be
shown that delay information can be directly incorporated into TBF's, in contrast to pre
vious approaches where delay information is kept separate from circuit representation. The
advantage is that temporal interactions among signals are easier to visualize. Here, we only
illustrate through examples the modeling process for some commonly encountered gates.

1. Gates characterized by a single delay for each input-output pair. The complex gate
shown in Figure 2(a) has three inputs; input xi has a delay r,- to the output. This gate
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is modeled with the TBF:

y(t) = x[(t - n) + x2(t - r2) + x3(t - t3).

2. Buffer with different rising and falling delays. Let rr and 17 be the rising and falling
delays, respectively. If rr > t/, then the buffer can be modeled as:

y(t) = x(t - rr) •x(t - Tf).

and if Tr < 77, the buffer can be modeled as:

y(t) = x(t - rr) + x(t - Tf).

3. Gates with different rising and falling delays for each input-output pair. Rising delay
is the delay when the output is rising, likewise for falling delay. Each input is modeled
by a buffer with different rising and falling delays; and the "functional block" assumes
zero delay. The overall TBF for the gate is obtained through the usual functional
composition. An example ofan OR gate is shown in Figure 2(b). Input 1 has a rising
delay of 1 and a falling delay of 2, while input 2 has a rising delay of 4 and a falling
delay of 3. The buffer modeling input 1 is

x1(t-l) + x1(t-2).

The buffer modeling input 2 is represented by

x2(t - 4) •x2{t - 3).

Therefore, the OR gate is

xx(t - 1) + Xl(t - 2) + x2(t - 4) •x2{t - 3).

A common problem in digital circuit design is the pulse shrinkage or dilation. The
pulse shrinkage (dilation) effect occurs when a pulse passes through a chain of gates
with unequal rising and falling delays; the pulse width becomes narrower (wider) at the
end of the chain. With the above modeling technique, this pulse shrinkage or dilation
effect is captured.

2.2 Circuit Formulation with Timed Boolean Function

Once all components of a circuit are represented, the TBF for the circuit can be derived by
identifying the timed variables corresponding to the ports connected to the same net. We
illustrate this with an example.
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Figure 2: Modeling with TBF
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Figure 3: An Example For Delay Computation
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Example 3 The circuit in Figure 3 is taken from [MB89] with wire delays redistributed to
gates. For each gate, the delays are labeled next to the input pins.

First, each gate is represented by a TBF, as follows.

b(t) = a(t - 1)
u(t) = b(t - ru)
d(t) = b(t - S)a(t - 2)
c(t) = a(t - 4-)u(t - 2)
e(t) = c(t - 2)d(t - 2)

where tu=2.

We can also flatten the above equations to a two level representation as follows.

d(t) = a(t - A)a(t - 2)
c{t) = a(t - 4)u(t - 2)

Therefore,
e(t) = a(t - 6)a(t - 5 - ru)a(t - 4).

Fortu = 2,e(t) = a(t - 7)a(t - Q)a(t - 4).

Comments:

1. When each circuit component is represented by a TBF having the time argument of
the form t —kiy ki a constant, then the TBF for the entire circuit also has only the
time arguments of the form t —/?,-.

2. The Equivalent Normal Form (ENF) is a special case of a TBF; because if the delays
from the inputs to the output of the ith gate are all equal to d,, then the timed variables
of the TBF for the circuit are of the form

*(<-XX)
i

Replacing each such form by x^jJ=1 n} gives the ENF. Basically, the ENF subscripts
a variable according to the path followed by that variable. The TBF displays the delays
along the path as arguments.

2.3 Evaluating Timed Boolean Function on Input Waveforms

When properties of input waveforms are known, for instance, the times the input waveforms
switch, TBF's can be evaluated accordingly.
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Example 4 Assume the variables in the TBF f(t) = a(t —l)a(t —2)b(t —3) take on the
waveforms that switch only att = 0. Leta(0~) be the Boolean value a(t) takes fort < 0,a(0+)
(orsimply a), the value a{t) takes fort > 0. Similarly for b(0~) and 6(0+). Then, fort < I,
a(t —l),a(t —2),b(t —3) become a(0~),a(0~),6(0~), respectively. Therefore, f(t) = 0 for
t < 1. For 1 < t < 2, a(t - l),a(t - 2),6(< - 3) become a(0+),a((T),6(0-); respectively.
Therefore, f(t) = a(0+)a(0~)6(0~), for 1 < t < 2, an ordinary Boolean function. Similar
evaluations can be done for 2 < t < 3,3 < i.

This evaluation procedure is formalized as follows. Let

/(*.*) = £ II *«(»«(*))
» 3

be a TBF, and the waveforms of xtJ switch at times {r^, k= 1,2,...}. Denote the value of
Xij(t) for T{jk <t< TtJ(jt+1) by a Boolean variable Xij(k); Ti^-^)) Tij<x> are fictitious transition
times at -co, oo. Partition the time axis by the points of {'^(to'*)} into intervals {//}. For
each interval //, there exists some k such that gij(Ii) C [n^Ty(*+!)]. Denote this k by k(l).
Therefore, for t € //, Xij(gij(t)) = Xij(k(l)). Hence,

an ordinary Boolean function. In the above example, {r^*} = {0}, {^(fy*)} = {1,2,3},
{•W = {(""°°> !)>(!? 2), (2,3), (3,+oo)}, and the symbols 0~ and 0+ were used to represent
{k(l)}.

2.4 Decision Diagram for Timed Boolean Function

TBF's can be represented with BDD's. In this section, we consider the decision diagrams for
TBF's when the input is a pair of vectors switching at t = 0. Treat {&,•} as binary variables.
k{ takes the value of 0 when t < &,-, otherwise, 1. A possible good variable ordering is to
order fc,-'s before the normal Boolean variables.

Example 5 Take the TBF from example 3, e(t) = a(t - 7)a(t - 6)a(t- 4). Fort < 4,e(t) =
a(0-)a(0-)a(0-) = 0. Similarly, e(t) = 0/or4 < t < 6, 6 < t < 7,7 < t. Therefore, the
decision diagram is as shown in Figure 4(a)- The interpretation of the diagram is that for a
ki node, the left branch represents the TBFfort < ki, the right branch fort > ki. When the
encountered node is a Boolean variable, the usual BDD interpretation applies. Upon reducing
the decision diagram in Figure 3(a), we get the constant function ZERO, as expected; because
all paths in this circuit with the specified delays are false. See [MB89].

Ifru = 0, e(t) = a(t - 6)a(t - 5)a(t - 4).

t < 5, e(t) = 0;
5 < t < 6, e(t) = a(0-)a(0+) = a(0")a;
6 < t, e(t) = 0.
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Figure 4: Decision Diagram For TBF

The decision diagrams before and after reduction are shown in Figure 4(b). Extracting the
function from the reduced diagram, we get e(t) = a(t - Q)a(t - 5).

Thus, the first part of the BDD sets up time intervals in which the function is a normal
Boolean function and this points to a regular BDD in x(0~) and x(0+). It can be shown
that the above decision diagram is canonical. And two TBF's with identical canonical forms
represent the same timing behavior. A way to simplify a design while preserving its timing
behavior is to reduce its TBF. Decision diagrams for input waveforms switching at times
other than zero can be similarly derived.

3 Event Properties of Combinational Circuits

Definition 2 1. The derivative with respect to time of a TBFf(t), ^, is defined as:

^ =Jim{/(< +e) ©/(*-£)}

2. Lety(t) be a TBF. Define \\y(t)\\T =| {rt- : ^ |t=T,.^ 0} |, i.e. the number of transition
times. Let \\£\\d be the number of different topological delays from circuit £ 's inputs to
its output, i.e. the number of distinct path delays from inputs to output.
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3. If all the timed variables in a TBF are of the form

n,-

x(t —̂ 2d^) = x(t —k{)
i=i

where d{ is ith gate's delay variable, {ki} are called the time constants of the TBF. A
time constant ki is effective if there exist input waveforms switching at t=0 that will
produce atransition at t=ki, i.e. ^p 1*=*,^ 0. E,dj is called adelay sum. The set of all
delay sums that add up to ki is denoted by [ki]. For example, for d\ = 1, d2 = 2, d^ = I,
the TBFf(t) = x(t-d1) + x(t-d2) + x(t-d2-d3) becomesx(t-l) + x{t-2) + x(t-Z)
which has time constants 1, 2 and 3, and [1] = {di},[2] = {d2},[3] = {d2 + d3}.
Time constants 2 is not effective, because f(2~) = /(2+) = a;(0~) + x(0+), therefore,

Ot \t=2= 0. Time constant 1 is effective, because f(l~) = z(0~), and /(1+) =
x(0~) + x(0+); therefore, -jjp- |*=i^ 0. Similarly, time constant 3 is effective.

Comments:

—§p \t=r^ 0if and only ifthere exist inputs that produce a transition at t=r. ^p \t=T is
an ordinary Boolean function. Asimple application of ^jp is seen in the problem of deciding
whether there is a transition at time t at the output of a circuit for a set of input waveforms.
A possible solution is to simulate the output waveform for the set of input waveforms. A
better solution is to evaluate ^p- |i=T, (as will be seen later, ^jjp \t=T can be represented by
a circuit). Then, decide whether ^jf- \t=T is a tautology. If it is, there is no transition at r.

The following theorem gives an upper bound on the number of output transitions, given
the number of input transitions..

Theorem 1 Let circuit £ have output y and inputs Xi, i=l,...,n. Then

Hy(*)llT<IKIU-ll{*«(*)}llr

and if the TBFfor £ has time constants {ki}, then

h(t)\U <l {k} I -II WOJIIr

Proof. Let {my} be the transition timesof the input waveform Xi(i)'s. Anecessary condition
for the output y(t) to have a transition at t is that there exist z,j, /, such that t —ki = my.
The number of distinct such t is equal to the number of distinct values of mij + ki, which is
bounded by the number of combinations of ki and mij. This is equal to | {ki} \ -\\{xi(t)}\\T.
But | {ki} \< \\£\\d- Hence, the claims follow. D

Comments:

1. We conjecture that if f(t) is prime and irredundant, then there exist £,(£)'s such that
the equality holds.
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2. If ||{x,-(*)}||T < Et Iki'Mllr* then the equality holds when all inputs {xi(t)} change at
different times.

Theorem 2 If each of the inputs {xi(t)} has only one transition, which occurs at t=0, then,

1.

\\y(t)\\r<Uh

\W)\\r <\ {k} I .

2. Transitions at the output can occur only att = ki.

Proof. Follows from the proof of theorem l.D

Example 6 From example 3, when ru = 2,e(t) = a(t - 4)a(t - Q)a(t - 7). // input aft)
makes a transition only at t = 0, then by the above theorem, transitions at the output can
occur only at t = 4,6,7. But ^1 = 0 at t = 4,6,7. Therefore, e(t)=0. When tu = 0, e(t) =
a(t-6)a(t-b)a(t-4:). ^p = 0att = A, and^p ^ 0att = 5,6. Thus, there are transitions
at t = 5,6, as expected. See [MB89], Note that this analysis required no waveforms to be
plotted to determine where the transitions are.

In the following sections we will assume that all input waveforms have transitions only
at t = 0.

4 Delay Properties of Combinational Circuits with
Tracking

4.1 Delay Model for Circuits with Tracking Delays

The delays of a manufactured circuit are very difficult to control, because the physical prop
erties that determine the delays, for example, oxide thickness, conductivity, and mobility,
are sensitive to fabrication parameters like lithography precision, diffusion temperature, and
etching rates, which are not precisely controlled. Therefore, delays of circuits from different
wafers may differ substantially. However, gate delays within the same chip usually track
well, increasing or decreasing by about the same ratio; this is because physical properties of
the devices on the chip are subject to the similar fabrication conditions (due to the small
size of a chip), and hence are closely matched. Although small, there are still local variations
among the gate delays on the same chip. Therefore, delay variations are mainly caused by
these two factors: global variation and local fluctuation. Let r be the delay ratio of a chip
with respect to a referenced chip, and let e be the local gate delay fluctuation within a chip.
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Then the ith gate delay d{ 6 [r •d?(l - e), r •d?(l + e)], where d? is the ith gate delay of the
referenced circuit. This bound on </,• is equivalent to:

di_ *
%

<e

where c?t is the ith. delay of a manufactured circuit, dj, the ith delay of another instance of
the same circuit. A small e means gate delays track well.

Definition 3 We say that a manufacturing process has tracking coefficient t if the delays
associated with the gates of one circuit {di} and the delays associated with another manu
factured instance of the same circuit {d\} obey the inequality

di d't
<

If the delay of a gate is given in terms of

d?in < di < <T{

then

4"
d]

u'n d.m*n

tin J'min
<e

Similarlyfor df

4.2 Delay Properties of Circuits with Tracking Delays

The delay of a combinational circuits is not necessarily monotone; that is, the delay may
increase even if the delays of the circuit's components decrease; this is because some false
paths may become true as the component delays decrease. Example 3 is such a circuit: the
delay increases from 0 to 6 as the gate delay ru decreases from 2 to 0.

For practical situations, we assume the delay model discussed in the above section. In a
manufacturing process with tracking coefficient e, a time constant ki in a design may give
rise | [ki\ \ time constants in a manufactured circuit; because process variation may cause
each delay sum in [ki] to add up to a slightly different time constant; and there are |[&,]|
delay sums. Let {%} denote the set of time constants in the manufactured circuit, resulting
from ki due to process variations.

Theorem 3 Let the TBF £d(t) denote the output function of a design, £m(t), the output
function of a manufactured circuit of the design, and r, the ratio of the nominal delays in
the manufactured circuit to those in the design. Then
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1- UW = U(r •<); for t?[(l- *)ki, (1 + J)*,-].

& fm(*) ^«s a£ most | [&,-] | transitions in the interval [(1 —•;)&,•, (1 + £)&,•].

Proof. If * £ [(1 - *)*,-, (1 + J)fc], and ^ > fc2 > ... > km > t > kn > ... > kp. Consider
the timed variables in £d(t). The timed variables x(t - ki),i < m become rc(0~), while
x(t —ki),i > n become x(0+), which is the same as the Boolean variable x. Now, consider
the timed variables in £m(t). Because the values of {kij} are lower bounded by (r —e)ki
and upper bounded by (r + c)fc, and t £ [(1 - *)*,-, (1 + J)fe], {fcij},^-},..., {&mi} >
r •*> {knj},-.., {kpj}. Therefore, the timed variables in £m(r •tf), x(r •t —k^), i <m become
x(0~), while x(t - kij),i > n become x(0+), which is equal to the Boolean variable x. It can
beseen that the two sets oftimed variables, {x(t—ki),i < m} in&(i) and {x(t—kij),i < m}
in {m(i), are the same. So are {x(t - k{),i > n} in £d(t) and {x(t - %),i > n} in £m(t).
Therefore, &(<) = £m(r •t) for t £ [(1 - *)*,., (1 + J)fe].

In the interval [(1 - J)/;;, (1 + ;)&,], each delay sum of &,- may add up to a slightly different
time constant than &,-, due to process variation. Since there are [ki] distinct delay sums, each
ki may give rise up to | [ki] \ distinct time constants due to process variation. Because each
time constant may cause at most one transition, and transitions can only occur at t = &,-; by
theorem 2, hence, there are at most [ki] transitions in the interval [(1 —-)&,-, (1 + -)jfej. D

An interpretation of above theorem is that the output waveform of {m is a scaled version
of the output waveform of& with possibly groups ofglitches appearing at the location r •&,-.
The width of the group of glitches at ki is bounded by 2efc,-. The presence of the groups of
glitches is caused by manufacturing process tracking variation. Graphically, transitions or
potential transitions at r •ki split into bands of glitches, as shown in Figure 5.

Aninterestingconsequence is that the events that cause delays of circuits to violate
monotone speedup in a good tracking process are only glitches. So, adding a glitch
eliminating device at the outputs canmake the delays ofthe circuits monotonic, and possibly
shorten the delays.

Theorem 4 In the case ofperfect tracking, the delays of combinational circuits obey mono-
tonic speedup.

Proof. Perfect tracking means e = 0. Therefore, there is no glitch due to process tracking
variation. The waveforms of the manufactured circuits are scaled versions of those of the
designs; hence, obey the monotone speedup property. •

5 Computing the Exact Delays of Combinational Cir
cuits

In this section, we present algorithms for computing the exact delays of combinational cir
cuits, where the delays of a circuit's components are specified with lower and upper bounds.
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Figure 5: Splitting of Time Constants Into Bands

We consider first the case where the component delays track with coefficient e, then the
general case where the component delays are not correlated.

Our approach examines the possibility of transitions only at the instants of time capable
of producing a transition, namely, at the time constants of the circuit, instead of investi
gating sensitization of paths. The advantages are: first, a subset of paths are considered
simultaneously, because a time constant may correspond to a subset of paths. Other ap
proaches that consider a subset of paths at one time are [DKM92] and [MB89]. Second, since
the number of time constants is roughly proportional to the number of levels of the circuit,
the number of time constants is relatively few. Third, only the paths potentially responsible
for the delay of the circuit are considered.

5.1 Delays of Circuits with Tracking Coefficient €

We assume that for each component in the circuit, the delay of the component is specified
by [d™m,d™ax], and •£&& = p is equal to the same constant for all i. Further, for simplicity,
we also assume the following definition for tracking coefficient e.

Definition 4 A manufactured circuit's delays are scaled by a factor p with respect to a
reference circuit, with tracking coefficient e, if the ratiosof the gate delays of the manufactured
circuit to those of the reference circuit are between p and p —e.
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5.1.1 Distribution of Time Constants

Before presenting the algorithm, we consider the distribution of the time constants of manu
factured circuits, as the components' delays vary from dfax to d?in with tracking coefficient
e. Consider first the circuit with each component taking its maximum delay, called the max
circuit. This will be used as a reference circuit. Plot the time constants of the max circuit, as
shown in Figure 6. The solid vertical lines represent the timeconstants {ki} that will cause
a transition for some inputs, i.e. effective time constants, while the dashed lines represent
the time constants that will not cause a transition for all inputs. With respect to the max
circuit, as the scaling factor p decreases from 1, the fct's move toward the origin, and at the
same time, each ki splits into a band of possible time constants resulting from variation of
gate delays within the tracking coefficient e. The width of the band at ki is e •k{. At small
enough value of p, a band will merge with its neighboring bands, but the order the bands
started with remains intact as p decreases; that is, bands do not cross each other, because
they move with the same ratio p. Eventually, they all collapse to the axis at the origin at
p = 0.

Figure 6: Variation of Time Constants in Manufacturing

5.1.2 Computing Delay with Tracking e

By theorem 2, transitions can only occur at t = ki. In the first stage of computation, the
algorithm starts with the max circuit and looks for the greatest effective time constant by
deciding whether ^p \t=ki^ 0 starting from the greatest time constant fe. If ke is the
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greatest effective time constant found in this stage, then the delay of the circuit is between
ki and ke. Hence, the search range for the next stage is from ke to k\] so set the lower bound
for the delay, 7)*, equal to ke. Note that &;'s > D* are ineffective.

This stage of computation ends on finding the first effective ki or none. Call this procedure
the zero order computation.

Now, we consider only the fct's > 7)*, and let the scaling factor p = 1. Since gate delays
may vary within the range [(1 - e) •d^ax, dfax]. Each ki splits into a band of time constants,
{kij}. The goal in this stage is to decide whether there is an effective kij.

First partition the time axis into intervals by points {(p —e)^,p^ > 7)*,Vi,m = 1,2,...}.
In this case, p = 1. Label the intervals from right left by 7i,72,... For an interval 7, if
[(p —e)ki)pki\ D 7, then the {k^} can vary randomly in I. Let k(I) be the set of all time
constants in 7, i.e. union of {kij} that [(p —e)fcj,pfc;] D 7. An 7 is effective if k(I) contains
an effective time constant.

To determine whether a time constant kx € k(I), is effective, we need to first assume the
relative magnitudes of fc(7), e.g. k1 > k2 > ... Then, determine whether ^jjp \t=ki= 0. If
-^p |t=fci^ 0, then verify the ordering assumption of k(I) is feasible by determining whether
the inequalities resulting from the ordering are satisfiable. If the inequalities are satisfiable,
kl is effective. If there is an effective time constant, set this time constant to be the lower
bound D*.

Because time constants k(I) can vary randomly in 7. there are | k(I) |! possible orders.
At the first glance, it seems there are | k(I) |! cases needed to be considered before it
can be concluded that there is no transition in the interval 7 for all possible orders of time
constants in Ar(7), for all input waveforms. The following lemmaasserts that only 2'fcW cases
needed to be considered. Usually, | k(I) | is small for large 7; and the 7's examined in delay
computation are greater than 7)*, hence, are usually large.

Lemma 1 Let {xij(t - k{)} be the timed variables off(x) with k{ € k(I). Then, the TBF
f(x) has no transition possible in the interval I regardless of the relative magnitudes of k(I),
if the values off(t) evaluated at {xij(t - k{)} € {{z;j(0+)}, {xij(0~)}} are equal. Thus, the
number of cases to be examined to conclude that k(I) are ineffective for all orders is 2^^.

Proof. Let f(t) be the output function of the circuit, and {xij(t —kl),i = 1,2,...} be the
set of timed variables with time constant k* € k(I). All A'(7) are ineffective in the order
k1 > k2 > k3 > ..., if ^p \tslk= 0,Vfc € *(/), or equivalently, f(k1+) = /(jfe1") = f{k2~) =
f(k3~) = .... At t = k1:t,kj-,j ^ 1, the variables {xij(t - k{)} become either {x,j(0+)} or
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{xij(Q~)}, according to the following table.

*= {Xij(t - k*)} =
&i+ {zt-(0+)}
*1- {^(0-)},{x2i(0+)},...,{^mi(0+)}
k2~ {*ii(0-)},{x2j(0-)h {x3i(0+)},..., {*mi(0+)}

k™- {^(o-)},...,^^-)}

That is, x(t- k) becomes x(0+) at t > k,x(0~) ait<k. It can be seen that for all the orders
of *(/), {xij(t-k{)} is either {a?y(0+)} or {a?y(0-)}. Therefore, k(I) are ineffective for all the
orders if the values of /(*) are equal for {xij(t - k{)} e {{xij(0+)}1 {*,;(()-)}}, i = 1,...,m.
Thus, there are 2'*W cases to consider.•

Let /(oo) be derived from f(t) by replacing each x(t - k{) with x(0+), i.e. f(t) at t = oo,
and {xij(t —kl)J = 1,2,...} be the timed variables with time constants k{ € k(I). Lemma
1 implies the following more efficient method to find D* Instead ofassuming an ordering of
fc(7), evaluating ^^, and verifying the ordering assumption, we assume the sign of t-k\ i.e.
t - kx > 0 or t - kl < 0. Let <7 = (<rt-, <7t-,...) be a choice ofsigns of t - kl\. Then, determine
whether f(a) = /(oo), where f(a) is derived from f(t) by replacing each a?y(< - k*) with
Xij(0+), if <ii is +, and with x;j(°~)> if <Jt- is -; for timed variables, x(t - ks), ks g A:(7),
x(t - ks) becomes x(0") if ka is above 7, x(0+), if below. If f(a) ^ /(oo), then a lower
bound is the maximum value of a linear programming problem which includes inequalities
arising from <7, e.g. (jt- = + gives the inequality t - k{ > 0. a is feasible if f(cr) ^ /(oo) and
the linear programming problem does not give null result, i.e. the inequality in the linear
programming problem are satisfiable. More precisely,

ZT = max r(a) (1)

/(") * /(oo)

t(o-) = max t

*> ]£<*/jif ai = +
k

*< X^/iif <*i =
k

* = 1,2,...

(1 - e)^* < * < d?"
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where Dq is the lower bound from the zero order computation, a is a vector of signs of
t —k\ i = 1,2,3,.... For the linear programming to be meaningful, the strict inequality a < b
is replaced by a < b+ A, A is an arbitrary small positive number. Likewise for a > b. From
here on, this replacement applies in any linear programming with < and >.

Example 7 In the TBF f{xl{t - h),x2x(t - k21),x22(t - k22),x23(t - k23),x3(t - k3)),
fa > {k2i,i = 1,2,3} > k3. Suppose that {k2i,i = 1,2,3} is the band of k2, and from
the zero order computation, k\ and k2 are ineffective, k3 is effective; so 7)J = k3; and that
(1 —t)k2 > k3; thus, in the interval 7 = [(1 —e)k2l k2], k(I) = {k2i,i = 1,2,3}. We want
to determine whether there is an effective time constant in k(I) for some ordering of k(I).
Let a = (<7i, 0-2,0-3) denote a choice ofsign oft—k2\,t—k22,t—k23. Fore = (—,+,—), /(<j) =
/^i(0-),X2i(0-),a:22(0+),X23(0-),a:3(0+)), and /(oo) = /(x1(0+),X2i(0+),a:22(0+),X23(0+),X3(0+)).
Suppose f(o~) ^ /(oo); and the delay sums are k2i = d\ -f d2 -f d3, k22 = d2 + d4, k23 =
d\ -r d3 -f d4. Then, latest transitionfor this a is calculated as follows:

max t

t<dl+d2 + d3
t > d2 -f C?4
t < d\ -r d3 + <£t
(1 - e)d?ax < di < d?ax
t>D*0.

Note that the delay sums for the bands above and below I are not involved in the linear pro
gramming, because their satisfiability is implied by the satisfiability of the inequalities arising
from I. As a result, the linear programming is relatively simple. This sign combination is
feasible if above linear programming does not give a null result, meaning the inequalities are
satisfiable.

If there are m non-empty intervals, then, the number of cases to be examined to conclude
the intervals are ineffective is

m

£2"'
•=sl

where n,- =| fc(7,-) |, and 7t- > D*.
The greatest lower bound, 7)*, is the maximum value of the linear programming problem

over all choices of a.

This procedure together with the zero order computation is called the first order com
putation, which will be used as a fast means to determine a lower bound on the delay.

Now continue decreasing the scaling factor p until some bands above the lower bound D*
start to merge. Let pi be the value of p at which some bands > D* start to merge at above
D*, and p2 < pu be the value of p at which some other bands > D* start to merge at above
D*. For p € [pi>P2]> the overlapping of the merging bands forms new intervals. The method
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to decide whether a new interval is effective is similar to that in the first order computation.
Symbolically,

7T = maxt(<t) (2)

/(*) * /(oo)

t(g) = max t

t>J2diik if ffi =+
k

t <Yldlik if °"» =~
k

t = 1,2,...

(P - e)Cx < * < PC*

P2<P<Pl

where <j is the sign vector ofthe timed variables in the new interval. Theabove procedure
is repeated with decreasing p and increasing lower bound D*, until all bands of time constant
above D* either do not merge or merge below D* when p = p. Then the delay of the circuit
is D*.

In summary,
Algorithm For Computing Delay With Tracking e:

1. Let di = d^ax. Starting from the largest time constant ku find the first ki such that
-&p |t=ifc,7^ 0. Set D* = ki. This is the zero order computation.

2. Partition the time axis into intervals by points {(1 - e)&,-,&,- > 7)*,Vz'}. Label the
intervals from right to left by hj2l... Search for a lower bound D* in the intervals,
starting from 7^ For an interval 7t, Let jbea vector of signs of the timed variables
in 7,. A lower bound D" is computed as:

D* = max t(<t)

t(g) = max t

t > J2 fy tf a* =+
k

*< X) dlH if ai = _
k
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2 = 1,2,...

(1 - e)d?ax < di < dfax

Step 1 and 2 consists of the first order computation.

3. Calculate p\ at which some bands > D* start to mergeabove D* and p2 < p\ at which
some other bands > D* start to merge above D*. For p € [pi,P2]> the overlapping of
the merging bands forms new intervals. Starting from the greatest new interval above
£)*, determine a lower bound D* in the optimization problem (2).

4. If all bands of time constant above D* either do not merge or merge below D* when
p = /?, then the delay of the circuit = D*\ else, go to step 3.

5.2 Validating Condition for First Order Computation

In this section, we derive the conditions under which the first order analysis is sufficient to
produce the delay of circuit. Suppose that we haveperformed the first order computation to
get a lower bound £>*, and found that the bands {fcXj},..., {fcnj} > D* are ineffective. Since
D* is a lower bound, we will ignore the bands < D* and consider only the bands > D*.

Definition 5 The disjoint succeeding band of band B(ki) = [(p —e)ki^pki] is the greatest
band(s) B(kj) = [(p —e)kj,pkj], i.e. the greatest kj, satisfying the property:

1. Ki ^ Kj

5. B(ki)nB(kj) = <l>

The lower bound from the first order computation is the true delay if either 1) at any p > p,
no bands and their disjoint succeeding bands > D* merge, or 2) the bands and their disjoint
succeeding bands > D* that merge at p* > p merge below D*. Let B(ki) be a disjoint
succeeding band of band B(kj), then,

Condition 1) gives:
(kj —ki) -p> ki •e

equivalently,

kj p

Conditions 2) gives:
pm • ki < D*

at

V =

l-t
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at which bands of ki and kj start to merge. Equivalently,

1 1 ^ e
— > —
ki kj ~ D

Therefore, the lower bound from the first order computation is the true delay of the circuit
if at least one of the following conditions is true:

1.

*j P

2.

k kj ~ D*

Above conditions can be graphically illustrated in terms of the intervals between disjoint
succeeding bands, as shown below. Let /,- = kj —ki. The validating conditions give:

1. ki < (f - 1) •h

2.ki<^^l-
For a given /?,-, the validating values of /,- are the shaded area in Figure 7.

Comments:

1. Figure 7 shows that the intervals between time constants should be farther as the time
constants get farther from the lower bound. The order of magnitudes for valid intervals
is illustrated in the following example.

Example 8 Let the tracking coefficient e = 1%, p = ^- = 50%, D* = 100 from
the first order computation, and the ineffective bands of time constants above D* be
k4 = 102, Ar3 = 104, k2 = 106, ^ = 108. Then, minimum of l/k{ - l/kj = 1/106 -
1/108 = 1.75 x 10-3 > e/D* = 10"3. Therefore, the first order computation gives the
true delay of circuit. The delay of the circuit is therefore D* = 100. The intervals
between the time constants > D* are less than 2% of the time constants; hence, the
first order computation is valid even for very close time constants.

2. If the lower bound from the first order computation is not the true delay, then some
bands > D*merge above D* at p* > p. If willing to trade accuracy for speed, we
assume all merging bands at p* > p produce a feasible time constant; hence, an upper
bound for the delay is p* • km > 7)*, where km is the greatest band merged at p* > p.

3. Bands close together may be considered as a single band in the first order computation,
so that other bands are separated far enough for the first order computation to be valid.
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/ (p*-l)Li

-D/s

c: cpsilon

Figure 7: Valid Region For First Order Analysis

5.3 Computing Delay of the General Case: Mixed Boolean Lin
ear Programming

In the general case, gate delays vary independently within the interval [dfin;dfax]. This
situation may rise from delays of chips on circuit boards, and delays of modules on multi-
module chips, in which the components are fabricated separately; so their delays are not
correlated. Computing the delay of circuit can be formulated as a mixed Boolean linear
programming problem, as follows.

Delay = max t

em
dt

7^0

d™» <di <dr°*,vt

Let (7 = (era, ...,<?{;-,...) be a sign vector, where axj is a choice of the sign of t—Yll'J ddj which
is a timed variable in f(i). Then,

Delay = maxa r(a)
r(cr) = max t
m 3*/(oo)
t > ££,J dp, if (Tij = +
t < ££,J dp,if (Tij = -
d?in < di < d?**
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Example 9 Let f(t) ©/(oo) = a(t -dx- d2)b(t -d2- d3)c+ b(t - dx)c(t - ^ - d3) + ab, 1 <
di <2. For a= (+,-_,+,-), i.e. t-dx-d2 > 0,2 -d2-d3 < 0, t-dx > 0,t-c/j -d3 < 0,
then f{a) © /(co)= ab(0~)c + 6c(0") + ab. Then,

t(o~) = max t
t > d\ -f- d2
t <d2 + d3
t > d1
t<dl-\-d3
1_< di < 2
ab(0-)c + bc(0-) + ab^0

^//(<7)©/(o°) 7^ 0 and the linear programming gives a non-null result, then r(cr) is a lower
bound for the delay; otherwise, this sign combination is not feasible. The delay of the circuit
is maxaT(a).

The number of all the possibilities of signs of t —£ dni is exponential in the number of
timed variables with different delay sums. The number of timed variables can be reduced
progressively in solving the mixed Boolean linear programming problem, as discussed in the
following section.

5.4 Solving Mixed Boolean Linear Programming

Observe that ft>T(t) , f(t) restricted to t > r, is no more complicated than f(t). Because
ft>r{t)}s derived from f(t) by replacing x(t - k) by x if k < r. For example, f(t) =
a(t-Z)b(t-2)c(t-l)c(t-2)^a{t-l)b(t-2)c(t-3)b;thenft>2(t) = a{t-3)bcc+abc(t-S) =
abc(t - 3). Hence, once a lower bound D" is computed, f(t) is replaced by ft>D*(t) •

Therefore, use the first order computation to compute a lower bound D*. Replace f(t)
by ft>D*(t)- For a combination of the signs of the timed variables in ft>D*(t), compute a
lower bound, update D*, recompute /t>D*(0» an(^ repeat for another sign combination of
timed variables in ft>D»(t)' Each time D* is updated and ft>D*{t) is recomputed, timed
variables x(t —Sd,-) with Ed,- < D* become ordinary Boolean variables x; Hence, in order
to reduce most timed variables, the largest D* is desired as soon as possible, implying early
choices of sign combination should contain as many "+" as possible.

In summary,
Algorithm For Computing Delay Of The General Case

1. Use first order computation to obtain a lower bound D*.

2.

Delay = max t
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dft>p*(t) ,n
at r

d?in <di< d?ax
t> D*

Specifically,

(a) For a combination, cr, of signs of timed variables in /*>£>•(*), do:

t(&) = maxt
ft>D*(t) 7^/(00)
t > EnkiJ dpAt (Tij = +
t<Enki3d^iiaij =-
dfn < di < d?ax
i>D*

If a is feasible, then D* = r(a) and compute /*>/?♦(£).

(b) If ft>D*(t) still has timed variables with unchecked sign combinations, select a
sign combination with most "-I-" and go to step (a), else the delay of the circuit
is D*.

5.5 Delay Specific Enumeration

In a TBF with n timed variables, there are up to 2n possible combinations of signs of
t —X)i dni. However, some combinations are impossible due to constraints imposed by the
minimum and maximum values of Yli dni. For instance, the following combinations can not
happen: t - d1 - d2 > 0, t - d3 - d4 < 0,1 < dh2 < 2,5 < d3A < 6. Therefore, taking into
account of the specific values of delays reduces the number of sign combinations.

The procedure for delay specific enumeration is as follows. For each delay sum Si =
Ei4o plot its range. Si is minimum (maximum) when all d'n.s take their minimum (max
imum) values. To find the delay, decrease t from the maximum of all delay sums. At t,
the sign of t - £,. dni is "+" if t > maxE,- <*»-,-, "-", if * < minEi 4-i, either "+" or "-",
otherwise.

Example 10 In Figure 8, there are 4 timed variables with distinct delay sums, Si. The
shaded areas are the ranges of Si = £,</„.. At t = 7,t —S2 can be either "+" or "-
", because minS2 < t < max52, while t —Si, t —S3, and t —S4 are all "-"; that is,
t-S1 >0,t-S2<0,t-S3>0,t-S4>0, andt-Sx > 0,t-S2 <0,t-S3> 0,t-S4> 0.
At t=5.5, both t —Si and t —S2 can be either "+" or "-"; thus there are four possible
combinations. But the two not yet enumerated combinations are when t —Si is "-" and
t - S2 can be either "+" or "-". Specifically, t - Si < 0,t - S2 < 0,t - S3 > 0,t - S4 > 0
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andt-Si <0,t-S2> 0,t - S3 > 0,t - S4 > 0. Similarly at t=2.5, 1.5,
there are total of 8 combinations instead o/24 = 16.

26

All together,

Figure 8: Delay Specific Enumeration

Aadvantage of delay specific enumeration is that sign combinations leading to larger t
can be clearly seen. This is beneficial because in the delay computation a great upper bound
is desired as early as possible in the enumerating process. For instance, in Figure 8, the
combination t - Si > 0, t- S2 < 0, t - S3 > 0, t- S4 > 0, corresponding to t = 7, is preferred
over t - Si < 0, t - S2 < 0, t - S3 > 0, t - S4 > 0, corresponding to t = 4.5.

Another benefit of delay specific enumeration is the simplification of linear programming.
Referring to Figure 8, if want to examine a sign combination in region 6 < t < 8, linear
inequalities t > 6,t-S2 < 0can beused, instead oft-S2 < 0,t-Si > Q,t-S3 > 0,t-S4 > 0.
be used.

Of course, a combination in delay specific enumeration still needs to be determined
feasible by linear programming.

6 An Example: 4-bit Ripple Bypass Adder

In this example, we apply the above algorithm to find the carry output delay of an 4-bit
ripple bypass adder, and show how TBF's can be expressed implicitly with circuits and how
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the timed derivative -jjp- (as well as /(<r)©/(oo)) can be computed using existing techniques
in test generation and Boolean SAT. An 4-bit ripple bypass adder is shown in Figure 9. The
range of component delays is shown in parenthesis next to each gate. Gate go models the
delay from the previous stage. The sum bits are ignored.

4-bit ripptebypts idler Coal

Mux
(2.4)

a

(2.4)\^~^ 1M
r TT TT T"l

Al Bl A2 B2 A3 B3 A4 B4

WO)

Cfi-1) AtBitAiC(i-l)+BiCG-l)

Pi

--+—1=*
Ai Bi

Figure 9: 4-bit Ripple Bypass Adder

1. First order computation. Let each gate takes its maximum delay. The time constants,
ki,...,kn, in decreasing order, are the delays from the input Co to the output Cout.
ki =40,fc2 = 24,....

2. Evaluate -ffi. /(40+) can be represented by the original circuit. For /(40"), only
one path has delay > 40, the path being from Co to Cout without bypassing; so, the
timed variable of this path becomes Co(0"), while all other timed variables remain the
ordinary Boolean variables. The circuit representing /(40~) is shown in Figure 10(a).
Therefore, -jjp- \t=40 is represented by the circuit in Figure 10(b). Deciding whether
-jx \t=40^ 0 can be achieved by using Boolean SAT algorithm [Lar92] or by treating
it as a test generation problem for y stuck at 0. In both cases, efficient algorithms are
available. The result is that y is not stuck at 0 testable. So, ki is ineffective; proceed
to k2 = 24, which is the delay from Co to Cout through bypassing. Because all paths
from Co to Cout have delays > 24 while all other paths have delays < 24, therefore, at
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t = 24 , C0 becomes Co(0 ) while other input variables remain as ordinary Boolean
variables. It can be seen that the circuit represent Zffi \t=24 is that shown in Figure 11
(a) and (b). For C0 = 1, Co(0~) = 0, and A{ ®£, = \,y = 1. Therefore, ^ |t=24^ 0.
Hence, a lower bound for the delay, D*, is 24.

«40-)

—>

3E>-

Figure 10: Circuits For TBF Computation

Evaluate ft>24(t). Since the path from C0 to Cout without bypassing is the only path
having delay > 24, hence, all inputs except C0 remain as ordinary Boolean variables.
The timed variable is C0(t - d0 - ... - d5); and its sign combinations are already
considered. Since there is only one band above D*, no merging above D* is possible;
thus, first order computation is done. ft>24(t) has only one timed variable, namely,
C0(t- d0 - ...~d5).

3. Higher order computation. The only sign combinations are t —d0 - ... - d5 > or < 0,
which have been considered in the previous first order computation. So, no higher
order computation is needed. Therefore, the carry delay of the circuit is 24. The path
corresponding to k=40, g0,gl,...,g5, is false.

Comments:
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Al 11 Al U AS U

(»)

df(t)/dmt-24

<b)

Figure 11: Circuits For TBF Computation

1. The TBF for the adder has 18 timed variables; thus has 218 possible sign enumerations.
With the lower bound updating technique, only 2 enumerations were examined in
calculating the delay.

2. Although there are many paths, few have large time constants.

3. Using the lower bound from first order computation, only a few timed variables remain
in the restricted Timed Boolean Function.

4. Timed Boolean Functions can be expressed implicitly with circuits.

5. Timed derivatives can be evaluated using techniques in test generation, and Boolean
SAT.

7 Conclusion

In this paper, we proposed a new technique to represent timing behaviors of digital circuits.
This technique, Timed Boolean Functions (TBF), conveniently integrates functionality and
timing information of circuits in a form resembling ordinary Boolean functions. Timed
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Boolean Functions elucidate temporal interactions of various signals in the circuits, and
hence, make timing analysis more straight forward. We presented some timing properties
of combinational circuits, and clarified events that violate the monotone speed-up property.
Using Timed Boolean Functions, we gave efficient algorithms to compute the exact delays
of combinational circuits for two cases: 1) the case where gate delays track well, and 2)
the general case where gate delays are uncorrelated. In the general case, the problem of
computing the exact delay is formulated as a new computational problem, mixed Boolean
linear programming, and a lower bound progressive updating algorithm is given which solves
this problem efficiently. The algorithms consider a subset ofpaths at one time; only the paths
potentially responsible for the delay of the circuit are considered. Finally, the computation
of the carry delay of a 4-bit ripple bypass adder is used to illustrate how Timed Boolean
Functions can be represented implicitly with circuits and how some core computations can
be translated into test generation and Boolean SAT problems.
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