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Abstract

In this thesis decentralized resource allocation is formulated and analyzed from the view

point of economic theory of mechanism. Allocation problems are expressed as constrained

optimization problems, where each resource user's valuation of the resources is private

knowledge and the goal is to maximize the aggregate valuation of all users. Since the

relevant information is distributed among resource users, messages need to be exchanged
between them so that the goal can be accomplished.

Mechanism theory is applied to determine the minimum requirement for information-

carrying capacity—the minimum size ofmessage space in the language of mechanism theory.

A single-stage deterministic allocation problem is analyzed first. Then the effects of uncer

tainty and intertemporality in users' valuation on the size of information-carrying capacity

are examined through examples from electric power pricing and assignment of a digital

communication link. The main result is that the information-carrying capacity needs to

be large enough to accommodate prices for commodities in the sense of the Arrow-Debreu

economy in order to accomplish the goal.

As a special case of assignment of a digital communication link, a multi-armed

bandit problem is studied. A new proof of the optimality of the (Gittins) index rule is
obtained. The asymptotic optimality of the index rule under the average reward criterion
is also derived.

^ork supported by NSF grant IRI-8902813
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Chapter 1

Introduction

1.1 Decentralized Procedure

Imagine a system consisting of many participants such as our economic system

where the individual characteristics of its participants are, to a certain degree, kept private.

When such a system faces a certain task, the communication of private information and

the coordination of actions among its participants are essential to the fulfillment of the

task. A typical task is the efficient allocation of a limited resource: the system may be a
university and the resource may be processors in its computer center, a community and its

telecommunication networks, the world economy and the oil supply, and so on. Another

example is the coordination of parallel computations; a number of processors work on
related subproblems and coordination of the actions of the individual processor is achieved
by passing messages among them.

Situations like these call for procedures which take account of the distributed

nature of the relevant information. Unfortunately, many of procedures proposed in the
control theoretic literature for analyzing systems and designing control strategies are based
on the presupposition of centrality: it is implicitly assumed that all the information in the

system is available to a central decision making body and it performs all the necessary
calculations.1 These procedures are not directly applicable to situations with distributed
information.

Let us consider a task of a system which is to be accomplished at a specified
time (in the future). A formal approach to the solution of this task needs to include the

'Refer Sandel et al.[21] for a survey ofdecentralized control methods for large scale systems.



specification of

1. a well-defined goal of the system,

2. the initial distribution of the information relevant to accomplish the goal,

3. possible actions.

A decentralized procedure (to solve the task) involves two phases:

1. the communication phase in which messages are exchanged among the participants,

2. the action phase in which the 'consensus' or the terminal message is translated into

actions.

The design of procedures includes the choice of

1. type and size of messages to be exchanged,

2. method of communication,

3. rule to terminate the communication phase.

In an economic system, a specification of behavioral assumptions regarding participants'

emissions of and responses to the chosen messages will be needed as well. Incentive com

patibility in the game theoretic framework is an important issue there.

In economics, the procedures just described above are often termed adjustment

procc5ses[10]. However, wenote that the communication phase in an adjustment process is

not a real-time dynamical system but what is in economics called a tatonnement process.

1.2 Communication vs. Computation

Since the aim is to design a procedure, it is desirable to have criteria to compare

the performance of different procedures. One of the criteria studied by economists is the

'size' of messages that must be exchanged according to a procedure. For example, the price

of a commodity announced by a seller and the expressed demand of the consumers for

the commodity constitute a two-dimensional message space. The sizeof the message space

represents a part of the cost of communication; namely, the channel capacity or information-

carrying capacity required by the procedure, supposing the participants are transmitting



their messages simultaneously. Considerable research has been conducted to find a lower

bound on the size of the message space for a goal-realizing procedure; in particular, Pareto

optimal allocation of resources in the exchange economy has been under extensive study.

These analyses are indifferent to how the communicationsare conducted. They are sensitive

only to the resulting terminal messages, called equilibrium messages. This static form of a

procedure is often called a mechanism by economists.

An obvious drawback of the these analysis is that they ignore the computational

efforts necessary to find the terminal messages. There appears to be a tradeoff between the

size of message space and the computational efforts in realizing the goal of the system. A

unifying qualitative measure has yet to be defined.2

1.3 Constraints on Communication Capability

Designers of decentralized procedures may not have the liberty of selecting the
medium of communication and building the necessary capacities. Rather they may them
selves confined to the existing medium and capacities. When this is the case, a model of
the system should in principle include the specification of types and sizes of feasible mes

sages just as it includes a specification of feasible actions. This is an issue which does not

appear in the design of centralized procedures, but it bears practical importance when we
consider the implementation of a procedure. Even when the designers have freedom to
build anew capacity, it will be impractical to have huge message spaces. We can imagine
the situation that the system has to settle for a slightly lesser goal to keep the burdens
of communications and associated information processing manageable. In Chapter 4, we
study the pricing schemes for the allocation ofelectric power under uncertainty. We will see
that when the consumers of electric power are inflexible, the efficient allocation requires the
communication of the distribution function of the underlying stochastic events. When the
distribution is continuous, communicating a finite approximation of it will be a practical
alternative, provided the resulting efficiency loss is within the reasonable range.

2See the discussion in Mount and Reiter[16].



1.4 Message Exchanges over Time

The importance of limited communication capability is even more pronounced

when the accomplishment of the goal requires coordinating the participants' actions over

long periods of time. It is possible to regard the issue of communication just as in a

single period case; namely, to communicate all the relevant information at the beginning

of the periods (and do nothing after that). Indeed, as dynamic programming methodology

suggests, it is necessary to do so in general. In Chapter 5, we will see an example of a goal

for which all the relevant information has to be revealed at the beginning of the periods

to accomplish the goal.3 However, such an approach will most likely require unpractically

hugecommunication capability. An alternative willbe to relax the goal and spread message

exchanges over time.

1.5 Scope of this Thesis

This thesis studies informational aspects of resource allocation problems. Alloca

tion problems are formulated as (constrained) optimization problems. Each participant's

valuation over allocation patterns is regarded as private knowledge. Optimality conditions

of the problems turn out to be the key to the design of the decentralized procedures. The

communication issue is addressed. Lower bounds on the sizes of messages spaces are de

rived. Trice mechanisms' are of particular interest. Computational aspects, regrettably,

are not covered. Game theoretic issues concerning participant behavior are not addressed.

In Chapter 2, the economic theory of 'allocation mechanisms' is reviewed to the

extent needed in this thesis. A class of mechanisms which have a convenient form for the

study of price mechanisms is introduced.

In Chapter 3, a deterministic resource allocation problem is formulated as a convex

program. The minimum size of message space for a goal-realizingmechanism is found.

In Chapter 4, pricing schemes for allocation of electric power are studied as an

example of resource allocation under uncertainty. Uncertain events such as a generator

failure or a sudden burst of consumer demand will cause a shortage of supply and the need

for rationing. A two-stage recourse model is employed to formulate the interruption cost of

consumers whose demands are rationed.

3In the same chapter, we also see a problem which allows us to spread message exchanges over time.



In Chapter 5, assignment of a 'digital pipe' is studied in deterministic setting.

A digital pipe is a communication link that connects a source and a destination and can

transport one fixed-length packet per unit time. Several users are to share the pipe over

a fixed time interval. Users' valuations of the use of the pipe are intertemporal. The

possibility of spreading message exchanges over time is discussed.

In Chapter 6, a multi-armed bandit problem is studied. This is a special case of

the assignment of the digital pipe in a stochastic setting. A new proof of the Gittins index

rule is given. The case where the system admits arrivals of new pipe users is also studied.

Concluding remarks and suggestions for future work are made in Chapter 7.



Chapter 2

Allocation Mechanisms

In § 2.1 the economic theory of 'allocation mechanisms' is reviewed to the extent

needed in this thesis. An extensive survey of this subject is found in Hurwicz[10]. Refer

also to Reiter[19].

In § 2.2 a class of allocation mechanisms with message spaces in a form convenient

for the study of 'price mechanisms' is introduced.

2.1 Review of Mechanism Theory

Since we study decentralized resource allocation problems posed as (constrained)

optimization problems, an example of an allocation problem is given below, and the basic

terminology, concepts, and proof techniques are illustrated through the example.

2.1.1 Example of a decentralized allocation problem

Imagine that a company consists of N divisions which share K resources among

them, and a resourcemanagement division. The goalof the company is to allocate resources

amongits divisions so that its profit is maximized. Only the resource management division

knows the amounts of the resources available for the company. Each of the other divisions

knows the profit it can make as a function of the amounts of the resources allocated to it.

The profit function of each division is assumed to be independent of the allocation to the

other divisions.1 A division does not know the profit functions of the other divisions, nor
what the resource management division does.

1A more general problem will be studied in Chapter 3.



Let us index the resource management division by N + 1 and the other divisions

by 1 through N. Let the profit function of division j be denoted by uJ(«) and the amount of

resource i available to the company by 6j. Also let y\ be the amount of resource i allocated

to division j. With this notation, the goal of the company is

P:

max EjLi^{vi> vi> •••>Vic)
sub. to EJii2//<*,-, t=l,2,...,jr

y/>o, j=i,...,;\r, t=i,...,ir.

We assume

• the profit functions are concave and continuously differentiable,

• an optimal solution of problem P exists.

2.1.2 Terminology

We consider a task of someone who is asked to design a decentralized procedure
for the company. It should be kept in mind that the designer's task is not just to find an

optimal solution for a particular problem instance, but to devise an algorithm which works
for different problem instances of the same sort.2

Environment: 'Characteristics' of participant jt say e3\ are called a local environment of

participant j. The set of possible local environments of j is denoted by E3\ The (system)
environment is a tuple consisting oflocal environments ofall the participants in the system
and denoted by e. The set of possible system environments is denoted by E.

In our example, the local environment of the resource management division is
a vector of the amounts of the resources available to the company, i.e., e^+1 = b :=
(&i, 62,..., 6a-),3 and the local environments of the other divisions are their profit functions,
i.e., e3 := u3(-). The sets of local environments are

E3 := the set ofdifferentiable convex functions on R+, j = 1,2,..., N,
EN+* := JJ*

2See the distinction made between an instance of optimization problem and an optimization problem in
Papadimitriou and Steiglitz[l8].

throughout this thesis M:=5" stands for UA is defined as Bn.
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and the set of system environments is E := E1 x • • • x EN x EN+1.

Action space: A set of possible actions by the system is called an action space or an

outcome space, and denoted by A.

In our example, the feasible region of problem P is the action space.

Goal correspondence: The relation between environments and desired actions of the

system is represented as a point-to-set mapping. This point-to-set mapping is called a goal

correspondence or a performance standard, and denoted by F. We will refer to it simply as

a goal.

In our example, the goal is the relation between the problem instance and its

corresponding optimal solutions. That is, denoting the set of optimal allocations for problem

instance e := (w1,..., uN,b) by argmax P(e), the goal F : E -» A is defined by

F(e) := argmax P(e).

The terms so far introduced are needed to describe the system. We move on to

introduce (static) procedures, to be called mechanisms. Definitions of the components of a

mechanism follow.

Mechanism: A triplet (M,ft,h) of a message space M, an equilibrium correspondence fi,

and an outcome function h is called a mechanism in equilibrium correspondence form. A

triplet (M,g,h) of a message space M, a verification function g, and an outcome function

h is called a mechanism in verification function form.

Message space and its size: A set of messages chosen for communication by the designer

is called a message space and denoted by M.

Throughout this thesis, message spaces are taken to be subsets of real vector

spaces. The size of a message space M is defined as the dimension of the smallest real

vector space in which there is an open set W such that M C W. It is denoted by dim M.

For a discussion of more general message spaces and their sizes, refer to Hurwicz[10] and

the references therein.

As mentioned in Chapter 1, there is no specification of dynamics (neither real-time

nor tatonnement) in the 'static equilibrium framework' of mechanisms. What is specified

are terminal messages.

Equilibrium messages: Terminal messages of the communication phase of a procedure



are called (joint) equilibrium messages.

Equilibrium correspondence: The relation between environments and a mechanism's

equilibrium messages is represented as a point-to-set mapping. This mapping is called

an (joint) equilibrium correspondence, and denoted by fi(: E —«• M). The individual or

(coordinate) equilibrium correspondence of participant j, \i3 : E3 —» M, represents a relation

between the local environments of j and terminal messages emitted or accepted by j.

To capture the private nature of the initial distribution of the information, we

require the following privacy-preserving property on the equilibrium correspondence:

/*) = fVV), Ve 6 £, (2.1)
j

where the intersection is taken over all the participants of the system.

Intuitively, the equilibrium messages are the messages accepted by every partic
ipant. This notion of consensus may be better captured through the use of verification
functions.

Verification function: An alternative way ofspecifying terminal messages acceptable to
participant j is to introduce a (vector-valued) function g3:MxE3-* Rni such that

gj(m,e3) =0 «=» me fi3(e3), W e E3, m e M.

The function g' is called a verification function or an agreement function ofparticipant j.
Participant j answers 'yes' or returns value 0, when a message announced publicly is to its
liking. Collectively, the individual verification functions is called the verification function
of the system, and denoted by g := (g1, g2,...).

Outcome function: Afunction which translates messages intoactions iscalled an outcome
function, and denoted by h(: M —• A).

A mechanism is said to realize the goal F over the system environment E if

Ktie)) CF(e), Ve € E. (2.2)

The direct revelation mechanism is a trivial example ofa goal-realizing mechanism
in which every participant reveals its characteristics, and a centralized procedure is devised.
In our example, the direct revelation mechanism consists of

M := E,
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l*> := E1X'"XE3-1x{u3(-)}xE3+1X'"XENxEN+1, j=l,2,...,N,

HN+l := E1X"'XENx{b},

and a centralized algorithm for solving problem P as an outcome function. Notice this

mechanism requires an infinite dimensional message space. It is natural to ask if there is a

goal-realizing mechanism with a smaller message space; and if there is, what a lower bound

of the size of message spaces is. For our example, we will see that K(N + 1) is such a lower

bound. The following subsection introduces a proof technique to show it.

2.1.3 Uniqueness property

There is a useful proof technique to show the minimum size of a message space of

a goal-realizing mechanism. Since the technique is used later, it is outlined here. We follow

Hurwicz[10].

A key step is to choose a subset E* in the set of system environments E such that

1. E* has the target size (a candidate for a lower bound on a message space of a goal-

realizing mechanism),

2. an equilibrium correspondence \l (of any goal-realizing mechanism) has a single-valued

inverse on fJ-(E"), i.e.,

fi(e) n ^(e) ^ 0 => e = e, for all e, e € E*. (2.3)

By definition, when restricted to n{Em), /z_1 is onto. Therefore, naively speaking, the size

of fi(E*) is at least as large as that of E*. Since fi(E*) C M, the size of the message space

M is also at least as large. Hence, the size of E* gives a lower bound for the size of a

message space of a goal-realizing mechanism. If we can show that there is a goal-realizing

mechanism with a message space of the target dimension, then the lower bound is indeed

the minimum size of a message space.

Rigorous arguments require a certain regularity condition on either equilibrium

correspondences (or verification functions) or their inverses. Regularity conditions are in

troduced to prohibit the use of dimension-increasing mappings such as Peano's space filling

curves. This will be discussed further in the following subsection.

Since every equilibrium correspondence must have a single-valued inverse on Em,

it is convenient to have a sufficient condition for the single-valuedness of /x"1 in terms of

the goal F. The following condition provides just that.
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Uniqueness property: The subset E*(C E) is said to have the uniqueness property with
respect to the goal F, if and only if

for all e,e € E*, if3a€ A such that a € F(e)0F(e)n (f]F(e®je)), then e-e, (2.4)
j

where e ®j e := (c1l-",c^-1,c',eJ+1,...), and the last intersection is taken over all the
participants of the system.4 •

Note that the e ®j e's are not required to stay in E*.

Lemma 2.1.1 Let (M,fi,h) be a privacy-preserving mechanism realizing the goal F over
E. Let E* C E be a subset having the uniqueness property with respect to F. Then the
inverse ofp is single-valued on n(Em). In other words, (2.4) implies (2.3).

Proof Let (M,fi,h) be as stated in the lemma. Let e and e be in Em. Assume m e
Ke) n M^). Then by the privacy-preserving property (2.1),

m6 fi3\e3) n fi3'(e3), Vj.

Thus

m 6 fi(e ®j e), Vj.

Since (M,fi,h) realizes the goal, by (2.2),

h(m) e F(e) n F(e) n (f) F(e ®,- e)).
i

But then by the uniqueness property (2.4), e = e as desired. •

Remark The uniqueness property can be strengthened. In the stronger form, the con
clusion of (2.4) holds when we intersect with Dj^e ®j e) the value taken by F for any
two environments in which some components are from e and the rest from e. We use this
stronger version freely.

Example: We apply the proof technique to our example in §2.1.1 to show K(N +1) is a
lower bound for the size of a message space of a goal-realizing mechanism.

As the first step, it will be shown for K = 1.

As shown above, it comes down to the choice of E*. Consider profit functions of
the form:

u3(y) = 2a3\/y, where a3' > 0.

4We follow the notation of Mount and Reiter[l5]. See their paper for details of this crossing condition.
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We abuse notation and write

£*>:={<*>€#++}, j=l,2,...,N,

rather than writing E*3' = {«''(•) = 2a3\f\a3' € #++}.

£*N+1 := R++.

And £* := E*1 x EmN x E*N+1. Notice E* has the dimension JV + 1.

Lemma 2.1.2 As defined above, E" has the uniqueness property with respect to the goal

F.

Proof Since the derivatives of uJ's tend to infinity as their arguments tend to 0, the resource

should be exhausted, and both the allocation and the associated Lagrange multiplier are

strictly positive at the optimal for every problem instance from Em.

Lete := (a1,...,«**,&),€ := (d1,...,^,*) € Em besuch that y := (ya,...,3/N) e
F(e) n F(e) n (fljii1 F(e ®j e)). Then by the optimality condition for problem P(e),

a1 a2 aN

VF x/y1 y/y77'
N

Since ye F(e ®jv+i e), y is optimal for Pfa1,..., aN, &). Thus 6= EjLi V3 = &• For j = 1,
since y € F(e ®ie), da/\/y^ = aP/y/y2 = ot/y/y*. Thus d1 = a1. Similar arguments show
that a3 = qj for j = 2,3,..., N. Thus e = e as desired. •

Now for K > 2, consider the profit function of the form

K . n
uJ(yi>...,yA') = ]£2QiVtf> where af>0, i = 1,2,...,K.

i=i

We can choose E* as follows

E*3 := {(a{,...,ajK)eR^+hJ=h2,...,N,

Em := Emlx---xEmNxE*N+1.

Since the problem can be decomposed into A'-subproblems of the type involving a single

resource that we just analyzed, we can see that E* has the uniqueness property.
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2.1.4 Regularity condition

We turn to the discussion of regularity conditions briefly mentioned in the previous

subsection.

It is possible to Smuggle' two or more variables by encoding them in the value

of one variable, for example, by the use of a space-filling curve. When such encoding is

allowed, the notionof the size of a message spaceor information-carrying capacity becomes

ambiguous. A regularity condition on equilibrium correspondence is needed to avoid the

possibility of smuggling of information.

Let E*be a subset (in some realvector space) havingthe uniqueness property. One

way ofruling out smuggling is to force a mechanism to have an equilibrium correspondence
\i satisfying the following conditions:

1. there is an open set WC E*, such that there is acontinuous selection m:W -• ti(E*),
i.e., there is a continuous function m such that m(e) 6 fi(e), Vc € W,

2. fi"1 is continuous on p(W).

Then, since a*"1 is single-valued on n(W) C n(Em), m"1 = n~l on fi(W), and it follows
that W and fJ.(W) are homeomorphic. In real vector spaces, this implies

dimJET = dimW = dim fi(W) < dimfi(Em) < dimM,

and we will have the desired inequality for the size of the message space. The first require
ment on \l is known as spot-threadedness. The precise definition will be given shortly.

In order to state the minimality results with sufficient rigor, the relevant defini
tions, a lemma, and a proposition are cited below from Hurwicz[10].

The idea ofusing homeomorphism tocompare the 'size' ofspaces can be extended
to the comparison of the size ofmore general topological spaces. Since generalization is fairly
straightforward in many cases that we will study, the relevant definitions are included.

Frechet size: A topological space X is said to have Frechet size at least as great as a
topological space Y (written X >F Y) if and only if there exists some subspace WofX
such that W is homeomorphic to Y, i.e., Y can be 'embedded homeomorphically' in X.

Note that >F has the monotonicity property with respect to subspaces.
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Similarity property: A topological space X has the similarity property if and only if

every open set W in X has a subset W which, in the relative topology, is homeomorphic

toX.

Spot-threadedness: A correspondence $ : X -+*• Y between two topological spaces is

spot-threaded (with W as a spot-domain) if and only if there is an open set W in X and a

continuous function (spot selection) <f>: W -*• Y such that <f>(x) € $(x) for all x in W.

Lemma 2.1.3 Let X and Y be topological spaces, with X having the similarity property.

Let $ : X —» Y be a spot-threaded infective correspondence (i.e., $_1 is single-valued) with

a spot-domain W. Then

Y>F X

if either of the following two conditions is satisfied:

1. both X and Y are Hausdorff and X is locally compact; or

2. the inverse function $_1 : $(X) —• X is continuous on $(W).

Refer to Hurwicz[10] for the proof of the lemma. We just remark that the first condition is

used to imply the second by appealing to the fact that a one-to-one, onto, and continuous

function from a compact space to a Hausdorff space is a homeomorphism (see for example,

Armstrong[l], Theorem 3.7).

In the context of mechanism theory, E* plays the role of X, // that of $, and M

that of Y in the lemma above. The following proposition is immediate from the lemma.

Proposition 2.1.1 Let E be a topological space of environments and {M,fi,h) a mecha

nism on E. Let E* be a subspace of E having the similarityproperty and let the restriction

of fi to E* be injective and spot-threaded (with a spot-domain W C Em). Then

M>F E*

if either of the following two conditions is satisfied:

1. both M and E" are Hausdorff, and E* is locally compact; or

2. n~l is continuous on fi(W).
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If the subspace E* is homeomorphic to the real vector space offinite dimension n, the above

conclusion becomes M >F Rn.

Note that if E* has the uniqueness property with respect to a goal F and the mechanism is

goal-realizing, the injectiveness of \i is automatic and the proposition gives the desired size

inequality. When M is a subset of a real vector space, M > F Rn means dim M > n.

We refer to the condition on \l in Proposition 2.1.1 as the regularity condition in

this thesis. Only regular mechanisms are considered throughout this thesis and they are

referred simply as mechanisms.

Other ways of comparing size of the topological spaces and associated regularity

conditions appeared in the literature. Walker[28] clarifies the relationships among them.

Example: Weimpose the regularitycondition introduced above on mechanisms, and we

will see that theminimum size ofa message space ofa goal-realizing mechanism isK(N+1)
for our example in §2.1.1.

As before we examine the case with A' = 1. Theextension to the cases with larger
K is straightforward.

First, we introduce a price mechanism in equilibrium correspondence form. The

price mechanism is goal-realizing and has a message space of the target dimension, N + 1.

Price mechanism, (M,fi,h):

A message is a pair comprising a price vector of the resource p £ R+ and an
allocation vector y := (2/\...,yN) € ££. Let Abe the set ofprice vectors, and A the set
of allocations (i.e., the action space). Then the message space is

M := AxACRN+1.

This is an example of the product form message space we examine in the next section. We
endow M with the usual topology of RN+1.

The equilibrium correspondence of each division is designed tocheck the optimality
condition of problem P, i.e.,

//V'(-)) := KP,y)eM\^(y3)-p<0, and ^(^(yi) _p) =0}, j=l,...,N,
N N

fiN+1(b) := {(p, y) e M\ J2 Vj < b, and p(b - £ yJ) =0}.
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Roughly speaking, division j(^ N + 1) maximizes its own profit at the given price p, and

checks its own resource utilization. The resource management division checks the resource

utilization of the system.

The outcome function projects a message on the space of allocation, i.e.,

Hp>y)'-=y-

Defined as above, it is clear that the price mechanism realizes the goal.

Let E* be as defined in §2.1.3. A topology on this set has to be specified. We

endow each of E*3 —J2++ with the usual topology, and E* with the product topology.

Restricted to E*, (p, y) € /j(e) implies that (p, y) solves

93X(p,y),oc3) := -jL-p=0, j=l,...,N,
9N+1((p,y)J) := 6-][>" = 0.

3=1

It is easily seen that the pair of the optimal solution and the associated Lagrange multiplier

for problem P(a1,...,aN,b) is the unique solution of g3((p,y),e3) = 0,j = 1,...,JV + 1.

Therefore /z is a singleton, and thus a function on E*. Moreover, it can be shown that //(•)

is continuous on some open subset W of E*. (Apply the Implicit Function Theorem to the

system of equations g((p,y),e) = 0. In §3.1.3, a detailed proof for a similar problem will

be given.) Hence, \i restricted to E* is spot-threaded. By arguing in a similar manner for

a general K and appealing to Proposition 2.1.1, we have shown

Theorem 2.1.1 Let E be a topological space of environments containing E* as a subspace

in its relative topology. Let (M,fi,h) be any mechanism realizing goal on E such that fi is

spot-threaded on E" and M is Hausdorff, then M>F RK(N+1).

Remarks:

1. Since we are only interested in message spaces in real vector spaces, we suppress

topologies associated with them in the rest of this thesis. Likewise topologies on 'test

classes', £*'s, will be understood.

The results about lower bounds on message space size will be phrased loosely as

"A goal-realizing mechanism has a message space of dimension at least K(N + 1)."
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2. Ideally, we want the topology on E* to be the relative topology inherited from E or its

equivalent. For our example in this section, we could take the EN+1 to be some compact

subset of RN, say [0, B]K, where B is a sufficiently large positive number representing a

conceivable upper bound for the available amount of any of K resources, and could take

E3, j = 1,..., N to be a set of the profit functions defined on that compact set. If we would

endow E3 with the uniform topology, i.e., ||u'|| := supe*r+i€£;tf+i u*(eN+1), then the relative

topology on E* would be equivalent to that in the example above.

2.2 Message Spaces of Product Form

In the previous section, we saw an example of a price mechanism. Since price

mechanisms play a central role in subsequent chapters, it is worthwhile to study the form

of message spaces which best accommodates price mechanisms.

We may break down the communication process of the price mechanism of the

previous section into the following two steps:

1. The resource management division sets prices for the resources, and transmits them

to the other divisions.

2. Given the price, each division finds consumption levels of the resources which maximize

its own profit, and transmits them to the resource management division.

In this story, a common /^-dimensional price vector is sent to each division in the step 1, and

then N differentA'-dimensional allocationvectorsare sent back to the resource management

division. In this process, a channel capacity large enough to carry if-dimensional vectors

is needed between the resource division and each of the other N divisions. It would be

nice if we could single out this type of communication requirement (dimension K in this

example) from the capacity requirement we discussed in the previous section—the total

capacity requirement for the system (dimension K(N + 1)).

One motivation to study this type of capacity requirement is its potential role

in the design of algorithms. In the two steps above, when the equilibrium message is

exchanged, this communication process terminates without any iterations. Nonetheless

this form suggests an algorithm or a tatonnement process which takes the system to the

equilibrium messages starting with an arbitrary initial message; namely, as step 3, the

resource division checks the 'supply-demand balance' and adjusts the price, and the system
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repeats the three steps until equilibrium is reached. Throughout this iterative process,

AT-dimensional messages will be communicated at each message exchange.

In §2.2.1, the notion of message spaces of level sets is introduced in the attempt

to formalize the capacity requirement mentioned above.

In §2.2.2, the idea developed in §2.2.1 is applied to the pure exchange economy

setting.

2.2.1 The message space of a level set

Let E, F, and A be a set of environments, a system goal, and an action space

respectively. We assume F(e) ^ 0 for all e € E, and A = F(E), i.e., every environment has

an optimal action and every action in the action space is optimal for some environment.

Level set: A level set of an action a € A under the goal F is the inverse image of a and

denoted by F"1(a), i.e.,

F-X(a) := {e € E\a € F(e)}, a 6 A.

Let the collection of the level sets be denoted by E/F, i.e., E/F := {F~1(a)\a €

A}. Clearly, E = Uae.4 •^~1(a)« Note that when F is a. function (rather than a correspon

dence), E/F is a partition of E. With this notation, the goal may be restated as:

Given an environment e, find its correct levelset F~l(a) € E/F, i.e., such that
e£F-1(a).

A centralized goal-realizing procedure would find the correct levelset F^x(a) and

take the action a. If a decentralized goal-realizing mechanism could assign one message

to each level set just as a centralized procedure does, it would be, naively speaking, most

efficient. Forsuch an (imaginary) mechanism, the message space size would be that ofF(E)
(or E/F, with the proper topology). But such efficiency is highly unlikelyto be attainable.

We may ask the following questions:

1. Given a level set F~1(a) and a goal-realizing (decentralized) mechanism (M,y.,h),
how many different messages are needed on this subset of E for the mechanism to

realize the goal?

2. Is there a 'minimum' message space required for the task above regardless of what

mechanisms we use?
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These are the same kind of questions which prompted the search for a lower bound on the

message space size, only this time we are looking at a particular level set rather than the

entire set of environments. We can proceed to determine a lower bound in much the same

way. Let (M,fi,h) be a mechanism.

Message space of a level set and its size: The message space of level set of action a is

defined as the image of level set of a under an equilibrium correspondence fi, and is denoted

by Ma, i.e.,

Ma'.= v{F-1(a))> a€A.

Its size is defined as the dimension of the smallest real vector space in which there is an

open set W such that Ma Q W. It is denoted by dimA^

Informationally maximal level set: A level set whose message space has the largest

dimension among Ma is called an informationally maximal level set under the mechanism

(M, fi, h). It will simply be called a maximal level set.

The following coroDary of Lemma 2.1.1 is of frequent use later.

Corollary 2.2.1 Let(M, //,h) be a privacy-preserving mechanism realizing F over E. Fix
a in A. Let E' C F~1(a) be such that

for all e,ieEm, ife®je£F~l(a),^j, then e-e.

Then the inverse of /i is single-valued onn(Em).

Proof This is a special case of Lemma 2.1.1. •

For any choice of a or F-1(a), if there is an E* satisfying the condition of the
corollary, then

dim£* < dimfi(E*) < dim^(F'1(a)) = dimMa,

provided the regularity condition is met. Thus dim£* provides a lower bound for the size

ofmessage space of a maximal level set. If we can find a mechanism which has a message
space of a maximal level set of this size, then the lower bound is tight, and dim£* is the

minimum dimension required for any goal-realizing mechanism.

Example: We will see that K, the number of the resources involved, is the minimum size

of a message space of a maximal levelset, and the price mechanism has this dimension for

our example in §2.1.1.
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Choice of E* is the key step. As before we restrict the profit functions to be of

the form

^(^•••,y*) = I32atV2tf> where aj>0, i=l,...,K.
«=i

Again a3 := (a{,...,a3K) is understood to represent the profit function of division j by

abuse of notation.

Let Ik denote the IT-vector whose components are all 1. E* is defined by

E* :={(a,a,...,a,NlK)\ae R%+}.

Thus in this subset, every division has the same profit function, and the amount of each

resource is fixed at TV. E* has dimension K.

By the concavity of the profit function and the symmetry of the problem, it is clear

that allocating resources evenly to each division is optimal. Let this allocation be denoted

by Ikn- With this notation, E* C jF-1 (I/tat).

Lemma 2.2.1 As defined above, E" has the uniqueness property.

Proof Let e := (z,z,...,z,NlK)->e := (w,w,...,w,N1k) € E* such that e ®j e €

F"1(1kn) for j = 1,...,N. We need to show z = w. Since the problem instances c,e, and

e <&j e are all separable with respect to resources, it suffices to argue for a fixed resource.

We choose resource 1.

Assume z\ > w\. Consider the problem instance e®i e = (w,z,---,z,N1k)> It is

clear that allocatingresource 1 evenly is not optimal, and hence e ®i e £ ip~1(l^-^), which

is a contradiction. Similarly we can rule out z\ <W\. Thus z\-=- w\. •

We have established that K is a lower bound on the size of maximal level sets.

Let us examine the price mechanism in §2.1. As noted there, it has a product form message

space. Since it is goal-realizing, given any allocation y, the message space of the level set of

y is included in R% x {y}.5 Thus the price mechanism has a if-dimensional message space
of a maximal level set. We have shown

Theorem 2.2.1 The minimum size of a message space of a maximal revel set is K, i.e.,

the number of the resources involved.

5Strictly speaking, there is a possibility of an environment belonging to two or more level sets. For such
an environment, the outcome function k provides a 'tie-breaking' rule. Depending on a tie-breaking rule
which a particular price mechanism employs, the allocation part of a message may not be a but another
allocation. Such ambiguity may be removed by incorporating a tie-breaking rule in the goal and thereby
making it a function rather than a correspondence.
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We proceed to define message spaces of the product form.

Observe that message spaces of different level sets cannot share the same message
except possibly a message corresponding to environments in the intersection of these level

sets. Thus, when a goal is a function, the collection of message spaces of level sets {M 0|a G

F(E)} defines a partition of p(E). Let us go back to the algorithm story. Imagine that

an equilibrium message of a mechanism {M, \l,h) is reached by running an associated

algorithm. Given an environment, the algorithm will visit messages from different M a's

(or participants emit messages from different Af0's) in an effort to identify the correct
equilibrium message and the associated action.

Consider the smallest real vector space in which there is an open set A such that

Ma C A for all a € F(E). In our scenario, it is necessary to have enough information-
carrying capacity to accommodate A. We may just as well install this set A as an information-

carrying capacity. Then, in effect, the implementation of the mechanism through an algo

rithm takes a message space of A x F(E)(D /*(£)) or more. The dimension of a message
space of a maximal level set under this mechanism captures the dimension of A.

We call a message space of the form A x A as a message space of the product form.
If A has the minimum size ofa message space ofa maximal level set, then a goal-realizing
mechanism with amessage space AxF(E) will have the minimum message space size among
mechanisms with the product form message spaces.

We note that the price mechanism in our example has the minimum message space
not only among mechanisms with the product form message spaces but also among any goal-
realizing mechanisms. It appears that this is not in general the case. We suspect that the
minimality ofa product form mechanism hinges upon what we call agentwise separability
in Chapter 3.

The use of the product form A x F(E) or A x A has an intuitive appeal for the
problems we will face in this thesis. Ahas an interpretation as a space of'price' and, A as
a space of'consumer demands' or acommodity space in terms ofthe market economy. Or
they can be interpreted as aspace of'dual variables' or 'Lagrange multipliers', and aspace
of 'primal variables' in terms of optimization theory.

The notion of size of a message space of a maximal level set proves to be useful
when A is a discrete set as will be the case in Chapter 5. In such instances, we cannot
speak of dimension of A, yet we can speak of dimension of A.
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We apply the technique developed here to the pure exchange economy, where the

theory of mechanism initiated, in order to singleout the dimension of 'price', and close the

chapter.

2.2.2 Minimum size of message space of maximal level set in pure ex

change economy

The problem instance is briefly described. Refer, for example, to Varian[26] for

more details.

Imagine a system consists of N consumers, each of whom holds some initial bundle

of K+l commodities. The preference of each consumer is represented by the utility function

over the commodity bundles. The goalof the system is to find a 'trade' which is 'individually

rational' and 'Pareto optimal'. The meaning of these terms will be made precise shortly.

An initial endowment of commodities 1 through K of consumer j is denoted by

x3' := (x{,x32,..., x3K) G#£, and thatofcommodity K+l by y3' € R+. Thelatter acts as the
'numeraire commodity'. A utility function ofconsumer j isdenoted by u3 : R% x R+ —• R+.
Utility functions of consumers are assumed to be concave and differentiable. The set of local

environments of consumer j is defined by

E3:={e3:=((x3,y3),u3)},

and the set of system environments E := El x E2 x • • • x EN.

Imagine the consumers are exchanging commodities among themselves. A trade

is the net gain in amounts of commodities after the exchanges. A trade of agent j is

denoted by (Ax3, Ay3). When agent j has a net increase in the amount of commodity k

after the exchange, we take Ax3k > o, and in case ofa net decrease Ax{ < o. Similarly for
the numeraire commodity. Given an initial endowment {(x3,y3),j - 1,2,...,N], -x3' <

Ax3 < Unjtj *n an<* y3' < Ay3 < J2n*j yn- The entire trade for the system is denoted by
(Ax, Ay) for brevity. The action space A is the set of trades.

The goal of the system F is to find a trade (Ax, Ay) which satisfies the following
two conditions:

1. Individual rationality: every consumer is at least as well-off after the exchange as
before the exchange, i.e.,

u3(x3 + Ax3, y3' + Ay3) > u3(x3', y3), j = i, 2..., N.
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2. Pareto optimality: there is no trade which makes at least one consumer strictly well-

off than under (Ac, Ay) without making at least one consumer strictly worse off, i.e.,

there exists no (Ax, Ay) ^ (Ax, Ay) such that

u3(x3 + Ax3,y3' + Ay3) > u3(x3' + Ax3,y3' + Ay3), j = i,2,...,N,

with at least one strict inequality.

It is well-known that the minimum dimension of a message space of a goal-realizing

mechanism for this goal6 is KN. We now proceed to show that K, the number of com

modities not counting the numeraire commodity, gives a lower bound for size of a message

space of a maximal level set.

Consider the following subset E* in E:

Every agent has the same initial endowment and utility function. Moreover, the
initial endowment of the numeraire commodity is fixed at yo > 0, and the utility
function is given by

K r-r
u3(x3, y3) := Y^ Vxk + y3-

Jt=i

Thus the only variable characteristics are the levels of (common) initial endowments of

commodities 1 through K, and E* has dimension A'.

Let 'no trade' be denoted by (0,0). Clearly,no trade realizes the goal on E*, i.e.,

E-Cf-^CO).

Lemma 2.2.2 E* has the uniqueness property with respect to the goalF.

Proof We abuse notation to denote e € E* by (z,z,...,z), where z € R\ represents the
levels of common initial endowments of commodities 1 through K.

Let e := (z,z,..., z),e := (w, w,..., w) € E * be such that e ®j e € F"1(0,0),for
,; = 1,2,..., N. We need to show that w = z.

Firstwe assume wk > Zk for some k, and show that it leads to e®ie = (w, z,..., z) £
F_1(0,0), which is a contradiction.

Consider the following trade:

From agent 1 to agent 2: amount Ax* := %(wk —*k) of commodity k.
From agent 2to agent 1: amount Ay := yj\(wk + zu) - y/zj of the numeraire
commodity, i.e., the payment for commodity k received.
No other net exchanges.

'Strictly speaking, the minimality results are obtained for the interior-valued goal correspondence.
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We assume yo is large enough so that the full payment can be made. Agent 2's utility is

unchanged after the trade, since Ay is chosen to offset the agent 2's utility gain from the

increase in commodity k, i.e.,

u2(zi,...,zk-!,zk + Axk,zk+l,...,zL,y0-Ay)- u*(zx,z3,...,zL,y0)

= ]J2^Wk + zk) + yo-Ay- (VZk + yQ)
= o.

But agent l's utility increases, because of the strict concavity of the utility function with

respect to commodity k. To see that

u*(wi,...,Wfc_i,wk - Axk,wk+l,...,wL,y0 + Ay) - u1 (to,,wa,...,wL,y0)

= y2^* +̂ )+yo +4y- Wm +yo)
= Ay- \Jwk~- J-(wk +zk)J

= (y J(wk +**) - Vzk) - (y^k - y2(wk +ZkY)
= 2\J-(wk +Zk)~ L/Zk~+ y/Wk
> 0.

The last inequality is due to the strict concavity of the square root function. But this means

'no trade', (0,0), is not Pareto optimal. Thus, we have shown wk < zk.

To show wk > zk, we need only to reverse the direction of the exchange and repeat

the argument. •

Clearly, the proof above is applicable to any N greater than or equal to 2. Ap

pealing to Proposition 2.1.1, we have established

Proposition 2.2.1 A goal-realizing mechanism has a message space of a maximal level set

at least as large as dimension K.

Remark We remark that F(E) C A has dimension K(N —1). It is known that for

an individually rational and Pareto optimal (interior) trade (Ax, Ay), there exists a 'price

vector' p := (pi,P2> ••>iPk) such that

duJ/dxjk(x3 + Axi,y3 + Ay3) _
dui/dy'XxJ +Axi, yi +Ayi) ~ Pkl " '' **' '
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and
K

^pkAx3k + Ay3 = o,
k=i

for all consumers. Combined with Y^jLi ^3 = ° and Y^^Li A/J = 0» we can see that only
K(N —1) of trades need to be specified. The argument may be made rigorous by appealing

to the Implicit Function Theorem.
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A Deterministic Resource

Allocation Problem
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In this chapter, a deterministic resource allocation problem is formulated as a

convex program. The problem involves the optimal allocation of K resources among N

participants. The objective function is the aggregate utility of the participants.

Our aim is to find the minimum size of a message space of a goal-realizing mech

anism.

In § 3.1, a certain class of convex programming problems, which we call agentwise

separable convex programming (ASCP), is studied. Many deterministic resource allocation

problems belong to this class. The main results are that a message space large enough to

accommodate both an aUocation and the associated Lagrange multipliers is needed, and

that the price mechanism has the minimum size message space.

In § 3.2, linear programming is discussed as a special case of ASCP.

In § 3.3, a nonseparable example is examined. It is shown that a nonseparable

problem requires a larger message space than its separable counterpart.

3.1 Agentwise Separable Convex Programming

In §3.1.1 a problem instance is stated.

In § 3.1.2 the optimality conditions of the (centralized) problem are stated, and

the price mechanism is described.
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In § 3.1.3 it is shown that the price mechanism has the minimum size message

space among goal-realizing mechanisms.

In § 3.1.4 the minimum size of a message space of a maximal level set is obtained.

3.1.1 Problem Instance

Imagine once again a company consisting of N divisions which share K resources

among them, and a resourcemanagement division. The company is to decide 'activity levels'

of each division so that its profit is maximized while meeting the resource constraints.

The resource division knows the resources available for the company. Each of the other

divisions knows the profit and the consumption levels of the resources as functions of its

own activity levels. We assume the profit function and consumption functions of each

division are independent of the activities of the other divisions. We call this situation

agentwise separable.

Let us index the resource management division by N + 1 and the other divisions

by 1 through N. The activity levels of division j is denoted by x3' G RnJ, its profit function

by /o> and the consumption function ofresource i by //. The amountof resource i available
to the company is 6,-. With this notation, the company's problem is:

P:

max £f=1/0V)

sub. to ££i fl(x3) < bi, i=l,2,...,K,

x3>0, j=l,2,...,N.

Assumption 3.1.1 We assume

• The feasible region is nonempty and has an interior point.

• The profit functions are concave and the consumption functions are convex. All are

differentiable.

• An optimal solution exists.

The assumption guarantees the existence of an optimal solution which satisfies the Karush-

Kuhn-Tucker (KKT) conditions. The KKT conditions will be stated in the next subsection.

They suggest the price mechanism as a goal-realizing mechanism.
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Local environments, action space, and goal for this problem are now specified.

The sets of local environments are defined by

E* := {ei:=(fi,fi,...,fjc)}, j = l,2,...,N,

E"*1 := {ew+1:=(ii,i2,...,6*)€<}.

The set of system environments is E := E1 x ••• x EN x EN+1. Its generic element is

denoted by e := (ea,e2,...,e^+1).

The action space A is the set of feasible allocations of the resources (not the space

of feasible activity leveb1). The allocation to division j is denoted by y3 := (yl^y^ •—iyk)i
where y\ is the amount of resource i allocated to division j.

The goal F is to find an optimal allocation of resources. The set of optimal

allocations for a problem instance specified by e is denoted by F(e).

3.1.2 The KKT conditions and the price mechanism

Let At- be the Lagrange multiplier to the constraint for resource i, and let A :=

(Ai, A2,..., Aa')- The Lagrangian for the company's problem P is

L(x\...,*", A) := £ fl(x3) - £ A,K//(*') - bi].
3=1 «=i i=i

The KKT conditions for problem P are:

x3n >0, -y <0, and 4t-T =0, j = 1,...,N, n= l,...,n3, (3.1)
uxn oxn

i.e.

and

xUo and ^-tyx<0,

OXJn i=1 dx3n

Or f\r

A,>0, ^:>0, and A,-^- = 0, i= 1,...,A', (3.2)

1We can take the_space of feasible activity levels as an action space, say A,and the goal as finding optimal
activity levels, say F. It turns out that F(E) C A has the same dimension as F(E) C A for ASCP.
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i.e.,

N

A;>0 and £//(**)< &•,

N

a,->o =* ]£//(**•) = &,•,
i=i

Let us consider a property of an optimal solution. Given any optimal allocation

y :== (yli ♦ —iyN)y the agentwise separability implies that division j's problem

P'V):

max fi(x3)

sub. to //(si) < y{, k=l,2,...,K,

x3' > 0,

is optimized.

Conversely, the KKT conditions for these JV-subproblems suggest that given an

allocation y, if the optimal solutions of these subproblems share the common Lagrange

multipliers and the complimentary slackness condition for the resource utilization of the

system is met, then such an allocation is optimal.

The price mechanism stated below (in equilibrium correspondence form) utilizes

this property of the optimal solution.

Price mechanism, (M,fi,h) :

Announced publicly is a pair comprising a 'price vector' p— (p\,pz,. --,Pk) € R+ and an
'allocation' y = (y\ y2,..., yN) e R$N'. Thus

M := R$ x R$N,

and it has dimension K(N + 1).

The equilibrium correspondence of division j(^ N + 1) is given as follows:

The first step is to find an optimal solution to the profit maximization problem

F3(p):
K

mB.xfi(x3)-^Pif3(x3).
i=i
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Note this optimization involves only the local characteristics of division j. Let x 3(p) denote

an optimal solution to problem P3(p). The equilibrium correspondence of division j is

defined by

fi3'(e3'):=l(p, eM
3x3(p) such that 1

//(*'(?)) < y'i and p;[tf-//(*%>))] = 0, t = 1,2,...,K J
(3.3)

It may be interpreted that given price p, division j maximizes its own profit and checks the

resource utilization of its own.

The resource division checks the systemwide resource utilization or the comple

mentary slackness condition (of the system). Its equilibrium correspondence is defined by

N N

fjiN+1 := {(p,y)€M\y£y3i<l>i and pt(6t-- £yf) =0, i =1,2,...,K}. (3.4)
i=i i=i

The outcome function is given by

Kp>y)'=y-

Lemma 3.1.1 The price mechanism realizes the goal F.

Proof Since x3(p) is optimal for problem P3(p), it satisfies

^iW)-gp,|J(^))<0, and x3n(p)[^(x3(p))-f:pi^(x3(p))] =0,
for n = 1,2,..., n'. Together with (3.3) and (3.4), this implies that pand (x l(p),...,xN(p))
satisfy the KKT conditions of the system problem. D

3.1.3 Minimum size of a message space

In this subsection, we will find a subset E* of dimension K(N + 1) which has

the uniqueness property with respect to the goal. It will be shown that the equilibrium

correspondence of the price mechanism is spot-threaded on E".

We start from the following subset (which includes E*) of E:

• Eachdivision has onlyoneactivitylevel to decide, i.e., n3 = 1forj = 1,2,..., N. Thus

in the remainder ofthis subsection, x3' is a scalar, and we let x := (xl,x2,..., xN).
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• All divisions have the same profit function fl(z) := 2y/z, for j = 1,2,..., N.

• The consumption functions are linear, i.e., f3(z) := a\z for i = 1,2,...,Jif, j =

1,2,..., N. We take a\ to be nonnegative.

We denote the (K x JV*)-matrix with entries af's (coefficient matrix of activity levels) by

A, its jth column by A3, and the resource If-vector by 6. By abuse of notation, the local

environment of division j(^ N +1) is represented by A3. The local environment of division

N + 1 is denoted by 6 as before. We denote the set of these environments by E, i.e.,

Problem P now becomes

P(A,b):

E:={(A,b)eR™xR!<}.

max T.jLiZ^/x3
sub. to Ax < b

x>0.

Let y3 be a feasible allocation to division j. Then the optimal activity level for

division j under this allocation is x3' = min{y3/a{\a{ ^ 0, *= 1,2,..., K} (by Assumption
3.1.1, the optimal value is bounded). Thus finding optimal activity levels is no harder

than finding an optimal allocation. Conversely, given optimal activity level x3, an optimal

allocation to j is found as y3 = A3x3, though an optimal allocation need not be unique

when some of the constraints are not binding. If we can find a subset of E on which all the

constraints are tight at the optimal solution, then the optimal allocation and the optimal

activity levels will have one-to-one correspondence on such a subset.

With this in mind, we study optimal activity levels, rather than optimal alloca

tions. Let F be the goal which asks for any optimal activity levels.

We will find an open set E* in E which has the uniqueness property with respect

to goal F. This set is chosen sothat both the optimal solution and the associated Lagrange

multipliers are strictly positive for every problem instance from this set. Then E* has the

uniqueness property with respect to goal F, too.

Let A be the Lagrange multiplier.
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Lemma 3.1.2 There exists an open set E* C E such that the optimal allocation x, and

the associated Lagrange multiplier A are strictly positive for all (A, 6) 6 E*. The set E* has

the uniqueness property with respect to goal F.

Proof First we assume the existence of E* with stated properties, and prove that it has

the uniqueness property with respect to F.

Since the Lagrange multipliers are strictly positive, the constraints are binding,

i.e.,
N

5>jV = &,-, »= 1,2,...,iJT,
i=i

for all problem instances (-4,6) G E*.

Let e := (Al,...,AN,b),e := (A1,...,AN,6) € Em be such that there exists x

with
N+i

x £ F(e) n F(e) n ( f] F(e ®j e)).
3=1

We need to show A = A and 6 = 6.

First we will show 6 = 6. Since x € F(e), Ax = 6. Since x € F(e ®n+i c) =

F(A1,...,AN,b),Ax = b. Thus 6 = 6.

Similarly for j ^ N+1, since x € F(e) and x 6 F(e®je), and x is strictly positive,

4 =SJ =i(6t-- ^a^xk), i=1,2,...,K.
kfr

Thus E* has the uniqueness property with respect to F.

It remains to show the existence of E*. Let q and r be nonnegative integers such

that

N = qK + r, 0 < q, 0<r<K.

Let ln be the n-dimensional rowvector whose components are all 1. Let a (K x JV)-matrix

A' be

/
L9+l

\

A*:=
L9+l

W
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where rows 1 through r have lg+J as their entries, and rows r + 1 through K have 1, as

their entries. Also let

6* := 1*.

We will show that we can take the open set E* around (A*,bm). It is easy to see that

(Am,b*) satisfies the desired property; namely, both the optimal solution and the associated

multipliers are strictly positive for problem P(A*,6*). In fact, the optimal solution and the

associated multipliers are:

x*3 =

x*3 =

A- =

A? =

l

9+1'

1

7'

i

v7g+T
l

V?'

fori = 1,2,...,(9+l)r,

for j = (q+l)r+l,...,N,

for i = 1,2,...,r,

for i = r + 1,..., K.

They are unique.

We utilize the KKT conditions to complete the proof. Let /: RKN x RK x RN x

RK ->RN x RK be defined by

K 1l5(A,b,x,X) := ^AjtaJ--^, j = 1,2,...,JV,
Jfe=i vzJ

N

lN+i(A,b,x,X) := ^a?xn-6t-,i=l,2,...,iir.
n=l

The KKT conditions say that the strict positivity of the optimal solution and the associated

multipliers imply that / evaluated at the problem instance and the solution is 0.

Provided x is positive,

(K*1)-3/2 0 \
AT

0 K*")-3/2

\ A 0 j

where AT is the transpose of A. It is easy to see that (Dxl, D\l) evaluated at (A*, 6*, a;*, A")
is nonsingular. Applying the Implicit Function Theorem, we see that there is an open set

E 5 (A*,bm) in RKN x RK and a unique differentiable function G : E -> RN x RK such

that l(A,6, G(A,b)) = 0 for (4,6) € E. Since G(Am,bm) = (z*, A") > 0, we can take an open

set E* C E so that G(A,b) > 0 for (A,b) e E*. Thus we have shown the existence of the

desired subset. D

(Dxl,Dxl) =
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Corollary 3.1.1 As defined above, E" has the uniquenessproperty with respect to goal F.

Proof Let x3(A, 6), y3(A, 6) be the optimal activity level and optimal allocation respectively

at the problem instance (A,b) € E*. Since constraints are tight, y3(A,b) = A3x3(A,b). D

Note that the price mechanism for goal F is easily modified to obtain a goal-

realizing mechanism for F. We can replace the outcome function h(p, y) = p by h(p, y) :=

(x1(p),..., xN(p)).2 Thus the following spot-threadedness result is applicable for both ver

sion of mechanisms.

Lemma 3.1.3 The equilibrium correspondence y, is spot-threaded on E".

Proof On E* the optimal solution and the associated Lagrange multipliers are unique, and

with the notation in the proof of the previous lemma, (x(A, b), X(A,6)) = G(A, 6). Hence the

equilibrium message m(A, 6) = (X(A,b), Ax(A,b)) is a singleton. Thus continuity follows. D

By appealing to Proposition 2.1.1, we have, for both F and F:

Theorem 3.1.1 The minimum size of a message space of a goal realizing mechanism is

K(N + 1), and the price mechanism has a message space of the minimum size.

Remark: It is not hard to directly prove that fi"1 restricted to E* is continuous in this

case. At the optimal, we have

yj _ A3x3' = 0

Thus (x3,A3) is a continuous function of (y, A). Then 6 = Ax is also a continuous function

of(y,X).

Corollaries of the theorem are stated below.

Corollary 3.1.2 Consider problem P with additional 'local1 constraints ofthe form k3m(x3) <
0, where k3m(-)'s are convex and differentiable. Under Assumption 3.1.1, the results of the
previous theorem hold.

It may be necessary to specify a tie-breaking rule among the optimizers of problem PJ(p). However, it
can be 'privately' done.
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Proof Let k3m(x3) < 0,m = 1,. ..,m3, be division j's private constraints. Let the associ

ated Lagrange multipliers be fi3 := (/i{,.. .,y,3mi). Then the KKT conditions are

£%;> - f; \M(x') - y; ti^v) <o,
dxV ' h dx3« iti dxC '-

ft (3 K flfj Mi q.j
*'[ jt(*') - E A.?T(li) - E ATfW] =°' i =1,•••, iV, n=1,2,..., ni,

C/a?n t-_2 C7Xn m=l Cten

iV

M£//(*')-*.] =0, i =1,...,#,

fiP&O*')] = 0, i=l,...,JV, m=l,2,...,mi,

along with the feasibility of activity levels and nonnegativity of the multipliers.

The price mechanism is modified slightly. Division j(^ N +1) solves a constrained

profit maximization problem

P3(p):

max fi(x3)-EliPiff(x3)
X3>0

sub. to k^x^KO, m = 1,2,...,m3.

In the definition (3.3) of the equilibrium correspondence fi3, we take x3(p) to be an optimizer

of this problem. It is easy to see this modified version of the price mechanism realizes the

goal.

We can use the same E* for the uniqueness argument. D

Corollary 3.1.3 When the resource availability, b, is public knowledge, the minimum size

of a message space of a goal realizing mechanism is KN.

Proof Division N can take over the resource division's task by modifying the price mech

anism slightly.

Announced publicly is (p,yl,y2,.. .,yN~l) € RKN. Division N computes yN by

yN = 6—Ejii1 y3- It carries out the profit maximization with price p, and compare
the resulting optimal consumption levels of the resources with this yN. It also checks the

systemwide resource utilization previously done by the resource division. The other divisions

respond as before. This mechanism realizes the goal.

The subset E* with 6 fixed, say at 6*, in the proof of Lemma 3.1.2 has the unique

ness property with respect to the goal. D
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Corollary 3.1.4 When some or all of the inequality constraints are replaced by equality

constraints in problem P, the minimum size of a message space remains the same, pro

vided that there exists an optimal solution which satisfies the KKT conditions. Also the

nonnegativity constraints on activity levels can be removed without affecting the minimum

size.

Proof The price mechanism can be modified to accommodate the KKT conditions with

the equality constraints without increasing the size of messages announced. The subset E*

has the uniqueness property with equality constraints as well, since Em is so chosen to begin

with. A similar argument holds for the case of unrestricted activity levels. •

3.1.4 Minimum size of a message space of a maximal level set

The price mechanism of § 3.1.2 has the product form Ax^, with A as the space

of price vectors. One may suspect that this A has the minimum size of a message space of

a maximal level set. We verify it here.

We consider the same subset of environments E = {A,b} as in § 3.1.3. We take

our goal F to be finding optimal activity levels.

Let a be a Ar-dimensional positive column vector. The subset Em is defined by

E* := {(a,a,...,a,Na)\ae R++},

namely, every division has the same activity coefficients, and the amount of resource avail

able is N times that coefficients. E* has dimension K. Because the profit functions are

concave and divisions are identical, allocating resources evenly among divisions 1 through

N is optimal. In other words, optimal activity levels are x3 = 1 for all j. We denote this

activity level by Iff. With this notation E* C F~l(ln).

Lemma 3.1.4 As defined above, E* has the uniqueness property with respect to goal F.

Proof Let e := (z,z,...,z,Nz),e:=(w,w,...,w,Nw) € E* be such that

e®iC€ J-^ljv), j=l,2,...,j\r+l.

We will show w = z.

Since e ®N+1 e = (z,z,.. ,,z,Nw) € f-^l^), the feasibility of 1^ implies Nz < Nw and
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hence z < w (i.e, Z{ < Wi, i —1,2,...,K). Similary, e ®\ e = (w,z,...,z,Nz) € F~l(ljy)

implies w + (N —l)z < Nz, and hence w < z. D

Since the price mechanism has Jf-dimensional message spaces of maximal level

sets, it follows

Theorem 3.1.2 The minimum size of a message space of a maximal level set is K, the

number of resources. The message spaces of level sets of the price mechanism has the

minimum size.

3.2 Linear Programming

Linear programming (LP) is a special case of the agentwise separable convex pro

gramming. In § 3.1, we found that linearity of the constraints in ASCP does not reduce the

minimum size of a message space. However, a linear objective function along with linear

constraints does reduce the size. It is because LP has a basic optimal solution.

We state the problem instance, and then obtain the minimum size of message

spaces of goal-realizing mechanisms.

3.2.1 Problem instance

The company's problem is restated. In this section, we assume

N>K,

i.e., the number of divisions is at least as large as the number of the resources. We seek

optimal activity levels in this section, since that is the more LP customary.

In this section, we take all vectors as column vectors. A row vector is denoted as

the transpose of a column vector.

Let A3 be (K x nJ)-coefiicient matrixof activity levels x3 e Rn3 of division j. The

profit function of division j is given by fl(x3) := c3Tx3, where c3T := (c{, ...,c3 ). With
this notation, the company's problem is

LP:

max E£iC>7V

sub. to £jli A3x3' < 6,

*'>0, j=l,2,...,N.
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We assume that an optimal solution exists.

The sets of local environments are

E3' := {(c3,A3)eRnJ xRKxni},j = 1,2,...,N,

EN+1 := {b€RK}.

The action space A is defined as the set of the feasible solutions of problem LP.

The goal jF is to find optimal activity levels.

3.2.2 Price mechanism

We modify the price mechanism of § 3.1 in order to take advantage of LP. Note

that in a basic feasible solution (or at an extreme point of the polyhedron defined by

the constraints), at most K divisions receive the resources, and LP has a basic optimal

solution. Thus we need only specify K bundles of the resources rather than N bundles

needed for ASCP, providedthe recipientsof these K bundles are also specified. We introduce

an allocation indicator for that purpose. It is defined as an one-to-one function from the

set of indices of K resource bundles {1,2,...,K} into the set of the indices of divisions

{1,2,..., N}. The set of allocation indicators are denoted by II, and its generic element by

7T. Note II is a finite set with N\/K\(N —K)\ elements.

Price mechanism:

Announced publicly is a triple consisting of a price vector p € R+, an allocation indicator

it, and a collection of K resource bundles y := (y^\ y(2\... ,2/^)- A resource bundle yW

is allocated to division ir(k). We do not exclude the possibility that yW = 0 for some k.
Thus the message space is

M := R$ x {n x R%2}.

Note II x R% C A, so M is of the product form. This is the first example of the message
space which has a discrete set in its specification. We will see other examples in Chapter 5.

The equilibrium correspondence of division j (^ N + 1) is defined in a manner

similar to the ASCP case. Let z € R%. The first step is to solve

LPi(z):

m*x{c3Tx3\A3x3 < z, x3' > 0}.

Let x(z) be an optimal solution of LPJ(z). Then, fi3(c3, A3) is defined as the set of messages

(p, ir,y) 6 M which satisfy
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1. if a—Hi) = 0, then y3' = 0 and c3T - pTA' < 0, and

2. if 7r_1(i) ^ 0, then there exists x'Xyl*'1^))) such that

(a) c3T - pTA3 < 0 and x3(y^~xW)[c3T - p7^'] = 0, and

(b) A'x'Xy^W)) < y(*_1(i)) and pT[y(*-»(j)) _ A'a^y**"1^)] = 0.

The equilibrium correspondence of the resource division is defined by

K K

lf+\b) := {(p,*9y) €M\J2 yW <6and pT[b- £ y<*>] = 0}.
*=i *=i

The outcome function h is defined by

**(P,*,V) := ^(,r"1(i)))fori€7r({l,...,ir}),

*J'(p»iTitf) •= 0, otherwise.

Lemma 3.2.1 The price mechanism realizes goal F.

Proof The allocation h(p,ir,y) is a feasible solution of LP. Also p is a feasible solution of

its dual. Together, they satisfy the complementary slackness conditions. Thus, h(p,ir,y) is

an optimal solution. a

Proposition 3.2.1 The size of the message space of a goal-realizing mechanism is at least

as large as K(K + 1).

Proof We will show that there exists E* of dimension AT(A' + 1) and which has the

uniqueness property with respect to goal F. As before, we want both the optimal activity

levels and the associated multipliers to be strictly positive for problem instances from Em.

The same argument as in the proof of Lemma 3.1.2 leads to the uniqueness property.

We consider the case N = K.

As in the proof of Lemma 3.1.2, we consider the case when each division has only

one activity levels to decide. Thus A3 is a column vector. Furthermore we take c = 6.

Therefore, this subset of environments is specified by (Al,...,AK,b) and has dimension

A'(A'+1). When A is nonsingular, it is clear that both optimal solution and the associated

multipliers are given by A"16. Now take A to be the (K x iif)-identity matrix Ik and

6 = 1a'. Then, the optimal solution is x = 1^-, which is strictly positive. We can take an
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open set E* in a neighborhood of (J#, ljb) so that A is nonsingular and the optimal solution

for problem instance (A, 6) is strictly positive for every (A, 6) in E *. O

Corollaries similar to those of Theorem 3.1.1 can be derived.

We state the minimum size of a message space of a maximal level set.

Proposition 3.2.2 The minimum size of a message space of a maximal level set of a goal-

realizing mechanism is K, the number of the resources.

Proof The proof of Lemma 3.1.4 is applicable for the uniqueness argument. The price

mechanism has a message space of a maximal level set of dimension K. •

3.3 Nonseparable Example

When a convex program is not agentwise separable, the minimum size of a message

space required to realize the goal (finding an optimal allocation or optimal activity levels)

is in general larger than its separable counterpart—a problem with the same number of

resources and the same number of participants. In this section, we show an example of such

a convex program.

We consider a resource allocation problem that involves one resource, its man

agement division, and two divisions sharing the resource. The instance is similar to the

example in Chapter 2 except two divisions incur a nonseparable joint cost between them.

We consider a specific joint cost function of the form

Weassume that k^s are nonnegative, convex, and twice differentiable. Wealsoassumethat

the profit function is concave and differentiable as before. The company's problem is
P:

max fl(xl) + f2(x2) - \(k\x*) + k2(x2))2

sub. to x1 + x2 < 6

x1 > 0, x2 > 0.

It is easy to see that the objective function is concave.
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Sets of local environments are

E1 := {A*1}, E2 := {f2,k2}, and E3 := {6 € R+}.

The action space A is the set of feasible allocation, and the goal F is to find an optimal

allocation.

Let A be the Lagrange multiplier to the resource constraint. The KKT conditions

include

ll[£(ll)~£-(llHfcI(x,)+*J(x2)}-A] = 0, (3.5)
df2 dk2

x2[^(l2)~^(x2){fcl(:Cl) +fc2(x2)}~Al = °» <3"6>
X[xx + x2-b] = 0. (3.7)

The price mechanism described in Chapter 2 does not work, because the first

condition includes the term k2(x2) which is unknown to division 1, and also the second

condition includes the term k^(xl) which is unknown to division 2.

The KKT conditions suggest that we need at least a 4-dimensional message apace,

which accommodates x1, x2, X, and a part of marginal 'social cost' kx(xx) + k2(x2), while it

is sufficient to have a 3-dimensional message space for its ASCP counterpart.

We proceed to show that dimension 4 is indeed a lower bound, by choosing a subset

E* of that dimension which has the uniqueness property.

In the rest of this section, we use a subscript to index the divisions in order to avoid a

confusion between them and the exponents for power.

Profit functions are restricted to be of the form

fj(xj) = 2zjy/xj, j- 1,2,

and contributions to the joint cost to be of the form

kj(xj) = WjXj, j= 1,2,

where zj,wj are strictly positive. Hence the subsets of these instances are

Ei = E2 = R++, and E3 = £++.

The Lagrangian for the problem is

L(xi,x2iX) := 2ziy/x~[ + 2z2y/x~2~- -(wi^i + w2x2)2 - X(xi -rx2-s)
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Note that a profit function has a derivative which tends to infinity as its argument tends to

0, while a cost function has a derivative which tends to 0 as its argument tends to 0. Thus

xi and x2 is strictly positive at the optimal allocation. By the KKT conditions (3.5) and

(3.6), we have

A = —— —wi(w\X\ + w2x2)
y/X\

X = —= - W2(WiXi + w2x2)
y/x2

By inspection, we see that for Zj large and Wj small, A is also strictly positive. We take a

subenvironment which yields strictly positive multiplier. We take

E* := {e = ((*i,tt0,(22,u>),6)|l < z\ < z2, 0 < w < 1, 0 < 6 < -}.

Note the coefficients in the cost terms are taken to be equal. This subset has dimension 4.

Proposition 3.3.1 E* has the uniqueness property with respect to the goal.

Proof Let e := ((zx,w),(z2,w),b),e := ((zi,w),(z2,w),i) € Em be such that there exists
x := (x\, x2) which satisfies

3

x € F(e) n F(e) n (f] F(e ®,- e)).
3=1

We will show that e = e. Because of the choice of Em, all problem instances defined by
e, e, e <g>j e yield strictly positive multipliers at the optimal.

Since the resource constraint is binding, it is immediate from x GF(e) and x €
F(e ®3 e) that 6 = 6.

From the KKT conditions for the problem instance e, we have

_ sz\ _ sz\
Xl ~ 4 +4'Xi ~ W+4'

Similarly, from the problem instance e,

_ sz2 _ sz\
Xl - zi +q> Xi - TfTq-

Thus we have

(zuh) = oc(zuz2), (3.8)
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The KKT conditions for problem instance e <g>i e is, denoting the multiplier by \i,

H — —=. —w(wx\ + wx2) (3.9)
y/x\

z2
\i — —==. —w(wxi + wx2) (3.10)

y/X2

from which, we get
t ~\ _ WZl WZ2

•\/xi y/xi

Substituting values of x\,x2 and (3.8) into the above, and setting c := ;Y/ we have

fi(w - w) = (wk - w)/c. (3-11)

The KKT conditions for problem instance e <S>2 e is, denoting the multiplier by v,

v — -— - w(wxi + wx2) (3.12)

h

y/xi
v — -—z —w(wx\ + wx2) (3.13)

from which, we get

v(w - w) = (wk- w)/c. (3.14)

By (3.11) and (3.14), we have

(/Lt - U)(W —w) = 0.

Suppose fi - v - 0. Then by (3.9) and (3.12) with Z\ = azu

a —1 = («)2 —iy2)ca:i.

Similarly by (3.10) and (3.13) with z2 = az2,

a - 1 = (iy2 - IU2)C22.

Therefore,

(w2 - w2)(xi - x2) = 0.

By our assumption, x\ —x2 = c2(z\ - z\) ^ 0. This proves iD = ty.

Lastly, by substituting w = w into (3.11), we have a = 1. In view of (3.8), this
completes the proof. •

The minimum size of a message space of a maximal level set also increases.
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Proposition 3.3.2 Size of a message space of a maximal levelset of a goal-realizing mech

anism is at least 2.

Proof It can be shown that a subset

{((z,w),(V2z,w),V3)\z,w e R++} C J1"1 (1/^3,2/^)

has the uniqueness property. •

Remark The situation here is similar to a case of 'market failure' under the presence of an

externality in welfare economics. The increase in the minimum size of a message space of a

maximal level set may be compared to the need for a Pigouvian tax/subsidy, or a Coasian

bargaining or a creation of market for a public bad.

Under the presence of join costs or externalities, the need of assumptions on par

ticipant behavior is more pronounced. Under the agentwise separability, a price mechanism

can be thought of as an incentive-compatible scheme. Here, what is meant by 'incentive

compatible' is not clear without behavioral assumptions. In this thesis, each participant is

assumed to cooperate in order to accomplish a system goal. A participant in ASCP may be

understood as a coalitionof individuals whose activities affect each other in a nonseparable

manner. Within a coalition information is centralized.
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Chapter 4

Pricing of Electric Power under

Uncertainty

4.1 Introduction

Allocation of resources is often done through various pricing schemes. Prices may

be set by 'market force', or by regulatory bodies acting as caretakers of society's welfare.

In either case, prices signal the value of resources to the system, and evoke responses from
its members.

In terms of mechanismdesign, we can regard the efficientallocationof the resources

as a goal of the system, each participant's valuation of resources as private knowledge, an
allocation of resources as an action, and the prices as a message made public for the sake of
realizing the goal. An important additional requirement on mechanism design is incentive
compatibility.

We have already seen an example ofa price mechanism in Chapter 3, though the
emphasis there was to show the minimum size of the message space needed to solve convex

programming problems. In this chapter, we add an element of uncertainty to a resource

allocation problem and explore itseffect on decentralized mechanisms, in particular, on price
mechanisms and their variants. An allocation problem is posed as a two-stage stochastic
recourse model, and as such it has a flavor of sequential decision-making.

Our problem is presented as allocation of electric power, partly because we can

reexamine existing work on electric power allocation from the view point of mechanism de-
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sign. But more importantly, we believe the recourse model provides a convenient framework

to analyze and design a pricing scheme for electric power allocation, and we wish to show

the need to start from the model.

In § 4.2 some pricing schemes from the literature are briefly reviewed. Among

these are Brown and Johnson[3], Crew and Kleindorfer[6], Caramanis et al.[4], and Chao

and Wilson[5].

In §4.3 the spot pricing scheme and the priority service scheme are described.

Consumers are assumed to be 'flexible'—capable of adjusting their consumption levels to

the price without experiencing any inconvenience. A nested structure of the priority service

is shown.

In § 4.4 the aUocation problem is formulated as a two-stage recourse model in

order to capture inflexibility of consumers. A price forecast mechanism is described and

shown to have a message space of the minimum size among goal-realizing mechanisms with

product form message spaces. The implication is that the probability distribution of the

underlying stochastic events needs to be made public in one way or other.

In §4.5 the pricing schemes from the literature are applied to our two-stage recourse

model and compared.

The results of this chapter are summarized in §4.6.

4.2 Review of Pricing Schemes

When there is no uncertainty in a system, the efficient allocation of electric power

will be achieved by equating marginal value of demand for energy to marginal cost of energy

supply. When allocation takes place over time, it would be ideal to update price in 'real

time' so that the price could signal the value where marginal demand and cost are equated,

provided there are available means to communicate pricing information in real time and the

means to respond to it automatically. Vickrey[27] argued the effectiveness of this scheme

and called it 'responsive price'1. (It should be noted that his argument was not limited to

a deterministic setting, in fact it was the consideration of uncertainty in the system which

1When valuations of powerof suppliers and consumersshow intertemporal dependency, the notion of spot
price is not clear. In order to retain the property that the information it provides is sufficient to obtain an
optimal allocation, the spot price must be the Arrow-Debreu equilibrium price. The dimension of (the space
of the Arrow-Debreu equilibrium) prices can be enormous; and such a price no longer has the properties
implicit in the true 'spot price'.
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prompted his argument.) In this scheme, the price acts as an indirect means to control

demand levels. The system will incur less frequent blackouts, less fuel consumption, lower

level ofoptimaltotal capacity, and other benefits. Unfortunately, the infrastructure required

for this scheme is not yet generally available, and a price is predetermined in practice.

In a real lifesystem, there will always be stochastic elements: fluctuation of power

supply due to generation failures, changes in consumer demand due to weather, and so on.

In a stochasticsetting, the effectiveness ofallocation is often measured by value of expected

social welfare it achieves. It is conceivable that the uncertainty complicates the pricing
schemes for effective allocation.

Caramanis et al.[4] proposed 'optimal spot pricing'2 which can be thought of as

an elaboration of Vickrey's idea. They recognized the need to communicate the probability

distribution offuture spot prices for an effective allocation. They also proposed a pricing
schemewhich combines the spot price and the 'predetermined' price. This scheme will also

appear in Section 4.5, where it is applied to the two-stage model we study in Section 4.4.

For now, we move on to the schemes proposed by Brown and Johnson[3], and Crew and
Kleindorfer[6].

The schemes involve a 'future price' and 'rationing'; a price is announced in period

0 (today)for energy to be delivered in period 1 (tomorrow), and excess demand is rationed
if demand exceeds supply in period 1.

In their rather controversial yet seminal paper[3], Brown and Johnson study the

case of random demand and deterministic supply. A simplified version of their work is

described to illustrate the idea. We ignore the long run marginal costs and associated

consideration of capital investment. Supply cost is assumed non-random. Demand at time

1 is random. Asocial planner knows the aggregate demand curve for each contingency and
its probability distribution, as well as the supply curve. The planner's task is toseta single
price at time 0 to maximize expected social welfare (aggregate utility of consumers minus
cost of supply).

Brown and Johnson show that the maximum expected social welfare is achieved

by setting the price at the value where expected aggregate demand curve meets the supply
curve, assuming the demands with lower marginal utility levels are rationedwhen demand

exceeds supply.

2Again, this is an equilibrium price system in the Arrow-Debreu sense.
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Figure 4.1. Brown & Johnson scheme

48

Figure 4.1 illustrates the scheme for the case when there are only two contingencies, high
and low, with equal probability.

Turvey[24] criticized this scheme for failing to recognize the cost of rationing:
consumers whose demands are curtailed are likely to suffer the loss due to the rationing.
Crew and Kleindorfer[6] took up Turvey's point and included rationing cost as a function
of excess demand in the social welfare.

From the viewpoint of mechanism design, a more pointed criticism involves the

communication required by optimal rationing. Let us examine the Brown and Johnson

scheme using Figure 4.2.
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The demand curve of consumer A, ujj, is drawn as well as the aggregate demand curve,

u'H. What is known to the social planner is the entire ufa-curve and A's response to the

predetermined price p, i.e., DA(p). But the assumed rationing requires knowing DA(pjj),
which is not available to the social planner. The inadequacy of the information obtainable

from a single predetermined price undermines their results. Crew and Kleindorfer's analysis
suffers the same drawback.

The issue raised above presents a problem whenever allocation schemes employ a
combination of future prices and rationing. Efficient rationing requires more information

than can be extracted by a singleprice. The question rises: "How much more information?"

The theory of mechanism can answer this question when it is formulated properly. We will

see the answer in Sections 4.3 and 4.4.

There is another type of interruptible (or rationing) scheme proposed by Oren et

al.[17] and Chao and Wilson[5], which they term 'priority service'. In their formulation,
each unit of valuation of electric power is regarded as a decision maker responding to the

priority service contract. Because of that formulation, it is not immediately clearwhat kind

of consumer model is assumed, and how proposed contracts are interpreted by a consumer

of the usual kind. We address these points in Section 4.3.
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Many pricing schemes are proposed, but unfortunately, it is not easy to compare

these schemes because we lack a basic model or a common ground to which we can apply

different schemes and compare them. The recourse model described in Section 4.4 provides

such common ground.

4.3 Single-stage Model

This section serves two purposes. One aim is to prepare for the analysis of the

two-stage model discussed in the next section. The difference between the two models has to

do with the 'flexibility' of consumers. Here consumers are assumed to be flexible (allowing

costless rationing, if necessary). The precise meaning of flexibility will be given in § 4.3.1.

The spot pricing scheme is described and shown to have the minimize message space in

§ 4.3.2.

The second goal is to understand a consumer model underlying the priority service

proposed by Chao and Wilson[5], which is the subject of § 4.3.3.

4.3.1 Problem instance

Since the purpose of this chapter is more to extract the essence of various pricing

schemes than to proposea newpricingscheme, problems in the simplestform are considered;

network constraints, capacity constraints on lines and generation equipment are assumed

not to be binding (simply put, ignored), and the network is assumed lossless. We assume

the system consists of a supplier, who is a social planner as well, and N consumers. The

supply is costless. In short, the problem is much like the allocation problem in Chapter 2,

except that there is uncertainty in the system, suchas fluctuation of supplyand changes in
consumer's valuation of power due to various causes.

We assume that the underlying probability space consists of a finite number of

events (or contingencies), ui,^,...,uK. The probability distribution of the events is de

noted by q := (q\,q2,.. .,gif), where g* is the probability that event Uk occurs. Allocation

takes place at time 1 after everyone in the system observes the outcome of the stochastic

event.

Consumers are indexed by numbers 1 through N, and the supplierby N +1. Con

sumers are assumed to be flexible, meaning that they can respond to any event without
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experiencing any inconvenience. Consumer j's valuation of power under event uik is rep

resented by a utility function u{(-). The supply under w* is denoted by S*. The goal of
the system is to find an optimal (contingency-dependent) allocation which maximizes the

expected aggregate utility. Our allocation problem is

PI:

max EE=i ft £&!«£(*£)
sub. to ££i *£<£*, k=1,2,...,K,

z3k>0, j=l,2,...,N,k = l,2,...,K.

We assume that the supplier alone knows the probability distribution q. The

assumption makes sense in the main case considered later, with deterministic demand and

random supply.

Let SA* be the A'-dimensional simplex, i.e., E* := {q e RK\ Y,iL\ Qi = !}•
The sets of local environments are

E3 := {(u{(.),k=\,2,...,K)},j=\,...,N,

EN+1 := {(q,S)\qtY.K, S := (S1,S2,.. .,SK) € R^+}

We assume the u3k(-) are concave and differentiable.

The action space A is defined as the set of feasible allocations.

The goal F is to find an optimal allocation for every contingency.

4.3.2 Spot price

Let us consider the minimum size of message spaces of goal-realizing mechanisms.

Note that Theorem 2.1.1 is not directly applicable because of the presence of q in the

objective function of the individual profit maximization problem.

However, it is clear that a (centralized) optimal solution is obtained by solving
A'-different problems, one for each contingency,

PI*:

max E&i «{(*£)

sub. to ZjLi 4 < sk,
4>0> j=l,2,...,N.
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Supply

For these subproblems, Theorem 2.1.1 applies, and we see that the minimum size is N + 1

for each one of them. Thus for problem Pi, we find that K(N + 1) is the minimum size of

message spaces.

Rather than finding an optimal solution for every contingency, our goal may be

finding an optimal allocation for any particular event that happened to prevail at time 1.

For this goal the minimum size of a message space is N -f 1.

As often done in the literature, let us assume that the supplier knows the aggregate

utility Uk(-) := J2jLi «*(*) for each contingency w*. Then the supplier can set the price for
commodity k (contingency commodity) at the point where the aggregate demand curve

meets the vertical line Sk (see Figure 4.3). We call this price the spot price (at contingency

wjt). Applied to this simple setting, this scheme was proposed by Caramanis et al.[4]. The
spot price hereis the Lagrange multiplierA%for the resource constraintassociated with the

optimal solution in problem Pi*. Note that the probability distribution q is immaterial.

We summarize the scheme.

Spot pricing scheme

A t time 0; no action.

At time 1; from the supplier to the consumers.
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After observing the outcome of the random event, the supplier announces the spot price.

At time 1; from the consumers to the supplier.

A consumer responds to the spot price and demands the amount of energy he desires. He

solves

maxu£(*D-****•
z>k>o

4.3.3 Priority service

The idea of priority service proposed by Chao and Wilson[5] is best illustrated in

a situation with deterministic demand and stochastic supply. We consider this situation

until otherwise stated. The difference between the spot pricing scheme and the priority

service scheme becomes clear when we understand the respective commodity spaces. As

noted above the spot price scheme regards energy supplies under different contingencies as

different commodities. The priority service organizes a commodity space in a different way.

Assume that contingencies are indexed so that

0 < Si < S2 < •••< SK. (4.1)

We can think of amount Si of electric power as most 'reliable' supply (with supply proba

bility 1), the amount S2 —Si as the second most reliable supply (with supply probability

1- qi), and so on. This way of viewing supply contingencies leads to selling different levels

of reliability3 as commodities. The priority service contract described below is designed to
create a market for these commodities. See also Figure 4.4.

Priority service

At time 0; from the supplier to the consumers.

Contracts which specify the reliability level of delivery of unit amount of energy, say 1
kWh, are offered. We denote reliability levels by (n,r2,.. .,r^). (We will see shortly that

K contracts are enough to sustain the optimal allocation.) The contract with reliability

level rt- is priced at p,-. Notice that the price is for the contract and not for the delivered

energy, that is, what the consumer pays will not be refunded in case of nondelivery.

3In the literature ofelectric power systems, the term 'reliability' is used in the context ofsystem security.
Here weuse the term reliability to denote the tail distribution of electric power supply.
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We refer to the pair (r,-,p{) as contract t, and the collection {(r;, p{), i = 1,2,..., K} as the
priority service price menu, or simply, the price menu.

The reliability levels characterizing contracts are not independent of each other
but nested as follows:

Assume the contracts are indexed so that

ri > r2 > •••> rK. (4.2)

Let y3 be units of contract i purchased by user j at time 0. Let Y3' be the total amount
delivered at time 1under this menu. Then (rur2,...,rK) is the tail distribution of Y3, i.e.,

Prob{Y'>£y/} =r*, k=l,2,...,K,

or, more specifically,

Y3 = <

y{ + y2 + --+ 3&_i + yjc, with prob. rK =: ArK,
yi+ y2 + --+ y3K^, with prob. rK-i - r# =: Atk-i ,

yi' +W,
{yi

with prob. r2 - r3 =: A*3,

with prob. r! — r2 =: A*,.

(4.3)
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This may be summarized by saying that the energy associated with a lower reliability level

will be delivered only after energy associated with higher reliability levels is delivered.

The reason for the nestingis to guarantee the highest quality service (the highest

reliability level) is always received by those who value it most.

From a consumer's point of view, 1 kWh of delivered power associated with a

lower reliability level is just as good as 1 kWh of delivered power associated with a higher

reliability level, but knowing the nested structure of the price menu is essential to her

decision-making.

At time 0; from the consumers to the supplier.

A consumer purchases the contracts as she needs. We denote consumer j's purchase of

contract i by y\ as above. It will be determined by solving

Pl'(r):

max ESiMH,*-^^,
sub. to y{>0, i=l,2,...,K.

The subscripts indicating contingencies are dropped from the utility functions since they

are assumed to be deterministic.

At time 1:

The supplier will fill the contracts starting with the highest reliability and going down till

the supply is exhausted.

The task of the supplier/social planner is to design an optimal menu, that is,

a menu that induces an optimal allocation through the procedures described above. It

is necessary to recover the tail distribution of the system supply by adding up the tail

distributions of the consumers. Thus, it is natural to set reliability by

K

Ti := 2?*> k-1,2,...,K, and hence Ar,- =#. (4.4)
k=i

Note this choice of reliability is consistent with (4.1) and (4.2).

Let u3'(-) be the derivative of a utility function u3(-). The KKT conditions for
problem PlJ(r) include

K k

vi>o => E^i;(E2//)-Pt = o,
*=i /=1
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K k

52qkU3'CT,yj) < pi =* y/ =0.
k=i /=1

Let z*3 := (z\3,. . .,2$) and Xk be the optimal solution and the associated Lagrange mul

tipliers of problem PI*. Suppose that this scheme induces the optimal allocation and

customer j receives energy under every contingency. Checking against the optimal solution

of Pi*, we are led to

«*(£»/) =as,
f=l

and

tit =*£i - ZV =' &l3\ for i =0,1,...,K - i,

where Zq3 = 0. This will be satisfied by setting

K

Pi = Y,KXl- (4.5)
*=i

Price pi of contract i can be interpreted as the expected marginalutility from this contract,

since the energy will be delivered for the contingencies k > i under this contract.

Since pi is independent of consumer j, this price menu induces an optimal alloca

tion. We have seen

Proposition 4.3.1 When the reliabilities and prices are set by (4.4) and (4.5), priority
service induces the optimal allocation.

Priority service can be combined with 'insurance' or 'payback' in case of nondeliv

ery. Let Ck be the cash paid back per unit ofnondelivered energy associated with reliability

level r*. Let the price of this contract be denoted by Pk(ck)- Thus the price menu is
{(***, ck,Pk(ck)),k= 1,...,A'}.

The consumer j's problem now is

K i k k

max 2?MEy?)+ £ ckyi\-Y,Pi(ci)yi-
n>° t=i jb=i jkst+i t=i

By proceeding in a similar manner, we see that if the price is set by

t-i

Pi(ci):=Pi + CiY^9k,
k=l
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i.e., the price of the priority service without payback plus expected payback from the con

tract i, this price menu induces the optimal allocation.

When the payback is set equal to the marginal utility, i.e., c* := Xk, it may be

thought of as a fair premium. The scheme of'callableforward contracts' proposed by Gedra

and Varaiya[7] uses this payback.

Remarks

1. A reliability level of, say 90%, may be understood to mean that when the allocation

scenario repeats (independently) over time, the energy associated with the contract will be

delivered 9 times out of 10.

2. Let us consider the expected revenue of the supplier under the spot price. Let ASk :=

Sk —Sfc_j, with So = 0. The expected revenue is given by

^[Revenue] = ftAJSi + q2Xm2S2 + •••+ qK^kSK

= (qiAI + fcA; + •••+ tfA'A^ASx + (g3AJ + •••+ qKXk)AS* + •••

+qKXKASK

= p1AS1+p3AS, + -'- + pKASK.

The last term is the revenue under priority service. Note, however, the difference between

the two. Under priority service, this amount is always collected by the supplier, while it is

the expected revenue under spot pricing.

3. Note that the priority service communicates the probability distribution as reliability

levels. Its message space has dimension K(N +1) + (K - 1). We can extend the argument

to the case where the supply has a continuous distribution (or a density function). It should

be noted that in that case the priority service asks for complete revelation of the demand

curve of eachconsumer. It induces 'truth telling'. Once we realizethat, the efficiencyresults

found in the literature of the priority service can be anticipated.

4. When consumer demand is random, the priority service scheme appears to lack a

consumer model consistent with its nested structure (or its commodity space). Let us

consider the two contingency case. Let (z[3, z^3) be the optimal allocation to consumer j.

In the case of deterministic demand and random supply discussed above (S\ < S2), we
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know z\3 > z\3 for all consumers (see Figure 4.5a). But when demand is random this will

not be guaranteed. For some consumer, it could well be z23 < z\3 (see Figure 4.5b), which

cannot be sustained by priority service contracts.

Thus priority service is pricing with a one-dimensional characteristic, and it has

its limitation. The claimed general applicability of priority service hinges upon the presup

position of

"Each consumer can freely choose from the menu any priority option and assign
it to any increment of his consumption. Therefore, without loss of generality,
each consumer can be simply characterized by a single unit of demand and the
associated willingness-to-pay[5] ..."

However, the example above shows that there are cases in which a consumer (in the usual

sense, as represented by its utility function) cannot identify itself as a collection of 'the

single units' which supposedly responds to the priority service menu.

5. Consider the case when the allocation scenario repeats over time. In this context, priority

service can be regarded as an 'off-line' procedure and spot pricing as an 'on-line' procedure.

Priority service requires a one-time message exchange at the beginning of the allocation

interval, while spot pricing requires a 'real-time' communications infrastructure. The choice

of a pricing scheme should take into account the transaction cost incurred by information

exchange as well as the allocation efficiency. In the absence of a real-time communications

infrastructure, priority service can be a practical alternative to spot pricing.
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See Chao and Wilson[5] fora discussionof implementation issues of priority service.

We have considered flexible consumers (and hence costless rationing). In the next

section, we take up Turvey's point, and consider the costs of interruption.

4.4 Two-stage Recourse Model

The consumers are assumed to make commitments at time 0 based on their knowl

edge of the underlying stochastic events. Interruption costs of consumers are modeled as

the penalties associated with the recourse actions they take at time 1.

In § 4.4.1 the model is described. In § 4.4.2 the KKT conditions for the problem

are stated. In § 4.4.3 the price forecast mechanism is presented and shown to have the

minimum size of a message space of a maximal level set among goal-realizing mechanisms.

The implication is that when consumers are not flexible, a price forecast of some sort is

necessary for efficient allocation.

4.4.1 Problem instance

As in the previous section, we assume that a system consists of a power supplier,

whom we regard as a social planner, and N consumers. The network constraints, losses in

the networks, and the other capacity constraints are ignored. There are stochastic elements

in the system. Supply of energy becomes available at time 1, and hence actual allocation

of power takes place at the time. At time 0, the probability distribution of the underlying

stochastic events is known to the supplier.

When all consumers are flexible, the stochastic elements can be suppressed as in the

spot pricing scheme of the previous section. However, when not all consumers are flexible,

this wait-and-see approach results in a worse allocation than the well-planned allocation

made at time 0. In practice, some of the consumers need to plan their consumption levels

ahead of the actual time of consumption. A factory owner may need to commit other

resources, such as manpower, at time 0 for activities at time 1. Her commitment could

depend on the amount of power she expects to receive.

This 'inflexibility' of consumers is formulated in a recourse model. At time 0,

each user plans to consume an amount x of energy and makes a commitment based on it.

We refer to this planned consumption level as a commitment. After observing the event
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occurrence at time 1, she takes a recourse action z, a deviation from commitment x. Thus

the commitment x is contingency-independent, while the recourse action z is contingency-

dependent, say z(lj). The recourse action z(u) can be either positive or negative. The

initial commitment x is restricted to be nonnegative. Also, the actual allocation x —z(u) at

time 1 is assumed to be nonnegative. Each consumer is assumed to have a valuation on the

pair (x, z(u)). The task of the supplier/social panner is to maximize expected aggregate

valuation.

The problem is stated in a general format first. As in the previous section, a finite

sample space is considered. Dependency on contingencies is denoted by subscripts. Let user

j's value function under event Uk be fl.(x3,z3k). Our optimization problem is:

P2:

max EfciftE&i/ft^)

sub. to E£i(*' -*£)<&. k=l,...,K,
x3>0, j=l,2,...,N,

x3-z{>0, j=l,2,...,N, k=l,...,K.

Assumption 4.4.1 Assume that

• the value functions f3k are concave in (x3, z{) with partial derivatives df3k/dx3, df3k/dz{
continuous except at a finite number of points.

• an optimal solution which satisfies the KKT conditions exists.

The set of local environments are

E3 := if3,k=l,...,K}, j=l,...,N,

EN+1 := {(q,S)\q <E E* S € **}.

The set of system environments is E := E1 x ••• x EN x EN+1 and its generic element is
denoted by e as usual.

The action space is the set of feasible solutions A = A(0) X.4(1), where .4(0) is
the space ofcommitments (time 0 decision), and A(l) is the space ofrecourse actions (time
1 decision).

The goal F is to find an optimal solution, i.e.,

F(e) := argmax P2(e).
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4.4.2 The KKT conditions

First we regard this problem as a centralized problem, and derive the optimality

conditions. Refer to Rockafellar and Wets[20] for an analysis of a a multi-stage recourse

model with a more general sample space.

Let qkXk be the Lagrange multiplier to the resource constraint for the fcth contin

gency. Also let qkfik be the multiplier to the nonnegativity constraint on x3 —z3k. We also

use the abbreviated notation EkXk for EjtLi QkXk- The Lagrangian is defined by

L(x,z, X,fi) := Ek(Zft(x3,z3k) - X^i*3' - 4) ~ Sk) +X>i(*J' - 4))
3=1 3=1 3=1

Under the assumption above, the KKT conditions for optimality are:

*''>0, ^<0, and sJ|| =0, j=l,2,...,N,
thus,

and

i.e.,

and

thus

and

3>0 =* Ek?£(x3,z3k) =EkXk-Ekri
dx3

df3 •
£kir!7(23>4)<Ek><k-Ekti3k =* x3 = 0

dx3

(4.6)

(4.7)

6L—k=0,j =l,2,...,N,

-^4(^4) =̂ -^, (4.8)
dzk

qt N
Ajk>0, ^->0, and Xk[^2(x3' - z3k) - Sk] =0, k=1,2,...,K,

N

Ajfc > 0 => £(**•-*£) = & (4.9)

N

52(*J-4)<Sk =» AA = 0, (4.10)
3=1

or

/4>0, jj, and ni(x3-z3k) =0,j=l,2,...,N, k=l,2,...,K,
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/4>0 => 4 = x3' (4.11)

4<x3' =* 4 = 0 (4.12)

The conditions (4.8), (4.11), and (4.12) can be combined to form

«*-ij>0 =» -24(«i,^) =Afc (4.13)
dz{

-®l±(x3,z3k)<Xk =» sJ'-*j =0
^

(4.14)

(4.13) says that when actual allocation is positive, the scarcity cost is equal to the marginal

valuation with respect to the recourse action.

The conditions (4.6) and (4.8) can combined to form

x*>0 * Ekyi(x',zi) =-Ek^i(x',z'k), (4.15)
E*i£(xi>4)<-Ek?£(x*,4) * x' =0. (4.16)

k

That is, when the optimal commitment is positive, the expected marginal utility gain with

respect to the commitment and that with respect to the recourse action are equal.

4.4.3 Price forecast mechanism and the minimum size of message space

If the probability distribution of the underlying stochastic events were public

knowledge, then the price mechanism would work. The results from Chapter 3 would

apply, and the minimumsize of message spaces would be K(N + 1) and the minimum size

of a message space of a maximal level set would be K.

In the price forecast scheme, the supplier announces the probability distribution,

and proceeds as in the price mechanism. Thus the price forecast mechanism would use an

additional message of dimension K —1.

Price forecast mechanism

Announced publicly are a triple consisting of a probability distribution q € S^, a price

vector pe R$, and an allocation y := (y1,..., yN) € R$N. A price vector p:= (pi,..., pK)
isalistofcontingency prices, i.e., pi is the price ofenergy under contingency i. An allocation
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to consumer j, y3 := (y{,..., y3K), isa vectorof the amounts of energyallocated to consumer

j at time 1 under respective contingencies. Thus the message space of this mechanism is

M := E* x R£ x R$N.

Given the probability distribution q, each consumer can consider E*Li Qifj as her
(deterministic) utility function. Each consumer follows the step of the price mechanism in

Section 3.1.2.

Since it reduces to an ASCP in Chapter 3, this mechanism realizes the goal.

Thus we have a goal realizing mechanism with a 2K — 1 dimensional space A.

From the form of the KKT conditions, it appears that this A has the minimum size (of a

message space of a maximal level set). We will verify this conjecture. The key step is the

choice of the subset Em of environments we use for the uniqueness property.

Since we compare a few allocation mechanisms for a special form of value functions

in the next section, the form is described here. The subset E* is chosen to fit the problem

instances generated by them.

The value functions are restricted to be deterministic and to take the following

form:

/M4) == »''(*'' -4)- <j(4) (4-i7)

The first term u3(-) is interpreted as the utility over the actual allocation, and the second

term /•*'(•) as the penaltyassociated with the recourse action. We denote the actual allocation

x3 - z{ by y{.

As we have seen, the trick is to choose E* so that all resource constraints are tight

(strictly positive multipliers) and nonnegativity constraints on decision variables are not

binding at the optimal solution.

Let us examine the KKT conditions for the problem at hand. Let the derivatives

of u3(-) and l3(-) be denoted by u3'(-) and /•>'(•) respectively. Since dfj./dx3 = u3', and

-df3k/dz{ = u3' + I3', (4.15) becomes

x3' >0 =» Ekl3'(z3k) = 0. (4.18)

Also (4.13) becomes

4 < x3 =» u3>(y{) +P'(4) = Xk (4.19)
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We want optimal solutions such that

x3' >0,z3k< x3,Vk, j, and Xk > 0,VJb. (4.20)

Now assume every consumer shares the same utility and penalty functions. Then, because

of the concavity of the objective function, there is an optimal solution such that every

consumer has identical commitment and recourse. For such an instance, (4.18) becomes,

letting sk := Sk/N,
K

Y^qklj'(x3-sk) = 0. (4.21)
fc=i

This equation allows us to determine the optimal commitment x 3 and subsequently optimal

recourse actions as z3k = x3 - sk. E* is chosen to satisfy conditions (4.20).

From our earlier experience in ASCP, we can expect dimension K to come out

of the K equations in (4.19). We pull another K —1 dimensions out of a single equation

(4.21).

Observe that (4.21) is essentially the computation of the inner product. We will

digress a little and study the size of message space required for the computation of the inner

product.4 It will help to understand the rather odd-looking choice of E*.

Computation of expectation as inner product of two vectors

The underlying sample space is finite with K events. Participant 1 knows the

probability distribution q := (qi,.. .,$#), and participant 2 knows the values of a random

variable X expressed as a vector (X\,...,Xk)-

The sets of local environments are

E1 := XK and E2 := RK.

Goal / : E1 x E2 —> R is to compute the expectation, i.e.,
K

f(q,X):=Y,KXk-
k=i

The action space is the range R of /.

If participant 1 would communicate the distribution q, a (A'- l)-dimensional mes

sage, participant 2 would compute the inner product and communicateit back to participant

1. This takes A'-dimensional message space and (A' - l)-dimensional message space of a

maximal level set. We show that this is the best possible.

4See also Hurwicz[10].



65

Lemma 4.4.1 The minimum size of a message space of a maximal level set is K —1.

Proof Let subset E* be defined by

E* := {(<?,*)€ E* XR^\(qu...,qK_uqK),(qu...,qK-u-^^U >0}.

Clearly,E* C /_1(0), and it has dimension A" —1. We willshow that E* has the uniqueness

property.

Lete := (q,X),e:= (q,X) € E* be such that e®i e € /""H0) and e®2e G /_1(0)-

Since e ®i e € /~1(0), we have

tf-i tf-i

£ ft«b - 9tf( E Vk)/qK = 0. (4.22)
*=i Jb=i

Similarly, from e®2e € /~1(0),

K-i K-\

Y. ^fa - qi<( Y, Vk)/9K = 0. (4.23)
Jfc=i fc=i

These two equations together yield

A'-i K-i K-i

(£?«*)2 = (£?2)(£?l).

The Cauchy-Schwarz inequality says LHS < RHS in the above with equality only when

qk = ctqk,k = 1,2,...,A'— 1 for some scalar a. Since the qk are positive, a > 0. By

substituting fa = aqk into (4.23), we obtain qjc = ctqK. Since ElfeLi Qk = EaLi 9fc = 1> it
follows a = 1, and q = g as desired. D

We are ready to define E*. We may assume 0 < S\ < S2 < • • • < Sk- E" is chosen

so that the optimal solution to problem instances from this set is

x3 = x* :=sK-l, j- 1,...,#,

4 = z*k:=x*-sk, j=l,...,N, *=1,...,A-1,

z3K = zK'.= -h j=l,...,K.

In the above, zK is (arbitrarily) fixed at -1, and the rest are determined so that the resource

constraints are tight. We denote this solution by (x*,zm).

We start with the set of local environments of the supplier, E*N+1, defined as

follows:
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• Let levels ofsupply be denoted by S := (Si,S2,..., Sk)- Let us use s := (si ,s2,..., sk)

S/N since this is more convenient in the subsequent definitions and analysis.

Supply s (hence S) is fixed at levels which satisfy

0 < 61 < s2 < • •' < sk, and sk > sk-i + 2

• Probability distributions are restricted to the following subset of E K.

Q:={qe E*|gi > q2 > ... > qK > e}

where € is a prespecified small positive number less than 1/K.

• EmN+l :=Qx {S}. It has dimension of K - 1.

Consumers in E* are taken to be identical. We specify the types of utilities and

penalties in this subset. Utility functions are restricted to be piecewise linear;

let dk '.— \(sk-\ + &k)i for k= 1,2,..., A with so = —si. Also <f#+i = +00.

u(y) := aky + bk, dk <y < dk+u k = 1,2,...,K (4.24)

where a := (a\,a2,...,ok) satisfies

ai > a2 > •••> aK > 1/e (4.25)

We denote this set of a by A. A has dimension K. The constants bk are chosen to make

u(-) continuous, namely

61 := 0, and 6* := 6jt_i + 4-i(a*-i - a*), k = 2,3,..., K.

Loss functions are restricted to be piecewise linearfor the positive value of z and quadratic

for negative values of z:

1Z^=1 ?fc 2 z < A

l(z) := \ 9A'-i^, 0<z<xm - dK-i (4-26)
k Qkz + Ck, x* -dk+i< z<xm -dkik=l,2,...,K-2

where the constants Ck are defined to make /(•) continuous, namely

ca'-i :=0, and cjt_i := ck + (xm - dk)(qk - qk-i),k = K - 2,K - 3,- •-,!.
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We abuse notation and identify the element of E* with a and q, i.e.,

E*:=le:=(a,q)\aeA,qeQ}.

We proceed to show that E* has the uniqueness property with respect to the goal.

Lemma 4.4.2 All problem instances in E* have (x*,z*) as an optimal solution.

Proof We check the the KKT conditions with this solution.

u\xm - z*k) = u'(sk) = aki k=l,2,...,K,

V(zl) = /'(*• - sk) = qk, k= 1,2,...,K - 1,

Jfc=i

Since xm - zk = Sk > 0, we have by (4.19),

*k = <ik + qk>0, k=l,2,...,K-l,

and
K-i

XK = aK-(Y Qk)/QK >aK- l/€ > 0.
Jk=l

Also
K-\ ypK-l „2

EklXzt) =E?'- **^*f-^ =0
M qK

Clearly all resource constraints are binding. Therefore the KKT conditions are satisfied. •

Proposition 4.4.1 As defined above, E* C F~1(x*,z*) has the uniqueness property with

respect to goal F. Hence, a goal-realizing mechanism has a message space of a maximal

level set of dimension at least (2K —1).

Proof Let e = (a,q),e = (a,q) € E* be such that e ®j e € F~1(xm,zm), and e ®j e €

F~1(xm,z*),j = 1,2, ...N + 1. We need to show that a = a and g = q.

First we will show q = q. Since e ®at+i e € F_1(a;*,2:*), it has to satisfy the KKT

conditions with (x*,z*). Following the steps in the proof of the previous lemma, we see

that
K A'-l K-l

E »/'W) = £ mk - QK( £ qft/qK = 0. (4.27)
*=i fc=i Jt=i



68

Similarly, from e ®n+i e, we have

K-i K-l

£ Qkfa - Qk( £ qD/VK =0. (4.28)

By the same arguments as in the proof of Lemma 4.4.1, we see q = q.

Next we will show a = a. Since e ®i e € F~1(xm,z*), we have, Xk = a* + & for

consumer 1 and A* = ak + qk for consumer 2 for all /c. In view of q = q, we have a = a. •

Remarks

1. In the example above, at an interior solution, the scarcity cost is equal to the sum of

the marginal utility gain and the marginal avoided loss. Also, the expected scarcity cost is

equal to the expected marginal utility gain.

2. It is intuitively clear that commitment and recourse actions have to be jointly determined

in general. In fact, it takes at least (2K —l)-dimensional message space of a maximal level

set to determine the commitment x alone.

Let F"1(x") denote the set of environments such that (x3 = x*,j = 1,. ..,N) is a

correct commitment at time 0. Clearly, Em € F(xm).

Lete :=(a,q),e:=(a,q) € Em be suchthat e®je € F~1(x*,zm), j = l,2,...JV-fl.

Consider problem instance e ®n+i «• Since consumers are identical, the concavity of the

objective function implies the symmetric solution. Thus we can consider the constraints of

the form

x* - ZK < Sk.

Also it is clear that at the optimal solution,

Ai>A2>...>Atf,

again by concavity (and Si < S2 < ••• < Sk)- If we show that A*- > 0, then the resource

constraints are tight, and we are back to the case examined above.

Since x* —zk = sk - 1 - Zk < sk> zk > -1 at the optimal solution. Assume

zk > -1. Then

u%x* - zK) + /'(**) = aK + ^,=1 HxzK <Xk = 0.
QK

(Xk is 0, since the constraint is not binding.)

But fly+S£7 rfg* >aK-\ >0. Thus zK =-1, and A* =aK - ^jf 9? >0.
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4.5 Comparison of Pricing Schemes

In this section, we compare various pricing schemes in the context of the two stage

recourse model introduced in the previous section. We consider the following special case

of the recourse model.

P3:

max Ef=i ft EJLi «V - *£) - l3(4)
sub. to T,jLi(x3-z{) < Ski k=l,2,...,K,

x3>0, j=l,2,...,N,

x3-z3k>0, j=l,2,...,N, k=l,2,...,K

The benefit from the consumption of energy depends only on the actual energy allocated.

The penalty associated with the recourse action depends only on the amount adjusted. We

allow negative values of z3k, i.e., consumers can consume more than they planned at a cost.

We assume that t^(«)'s are concave, P(-) convex, both positive and u3(0) = 0, /J(0) = 0.

We denote the respective derivatives by u3'(') and l3'(-). Flexible consumers have /(•) = 0.

A problem similar to this is studied by Tan and Varaiya[23]. One of their models

deals with a mass of identical (infinitesimal) consumers indexed by j € [0,1]. In their formu

lation, they restrict the recourse action to be of an 'all-or-nothing' type, i.e., z3k € {0,x3}.
These extra constraints impose the need to differentiate identical consumers into several

groups. They show when there are K contingencies in supply, it suffices to differentiate

the population into at most K groups. They also show that the optimal allocation can be

sustained by implementing reliability-based contracts.

Price forecast scheme:

This is the modification of the price forecast mechanism in the previous section.

At time 0; from the supplier to the consumers.

Price forecast {(Xk,qk),k = 1,2,...,A} is announced, where the qkXk are the Lagrange

multipliers associated with the optimal solution of P3. We note that A* can be obtained

from knowledge of the aggregate utility and the aggregate loss.

At time 0; the consumer problem.

Consumer j decides her optimal commitment level along with recourse actions. She solves
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PZ3(X*):

max ZfLi 9k[u3(x3 - z{) - l3(z3k) - X%(x3 - z{)]

sub. to x3' > 0, x3-zi > 0, k= 1,2,...,A.

At time 1; from the supplier to the consumers.

After observing the event occurrence, the supplier announces the price.

At time J; from the consumers to the supplier.

Consumers adjust to the price and demand the energy.

Priority service

Priority service canalso be implemented for this problem. Contracts{(r *,pk), k = 1,2,..., K]

are interpreted as in Section 4.3. We assume the contingencies are indexed so that Si <

S2 < •••< Sk as before. Also, weset r* := Eii* qiy k = 1,2,..., K.

At time 0; from the supplier to the consumers.

Contracts {(rjt,p*)} are offered.

At time 0; from consumers to the supplier.

Consumers purchase the contracts. Let y3' := (yf,^*•••»!&•) be consumer j's purchase. It
will be determined by solving

P3''(r):

max E£i 9iME[=i rf) - /'"(** - El=i rf)] - E£i IW
sub. to j/£ > 0, k=l,2,...,K

The KKT conditions include

*'C>>V'-£sji)] = o

y/t£?*K'(£^')+/iV-£^)}-p,] = o
*=i *=1 *=i

As before, by setting pk := E^fcAj, k = 1,2,...,A, the optimal allocation will be sus
tained.

The same remark as in Section 4.3 applies for priority service. When the con

sumers' valuations are arbitrary functions of (x, Zk), there is no consumer model consistent
with the nested structure of the contracts.
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Spot price with predetermined price

Caramanis et al.[4] and Schweppe et al.[22] propose the use of the predetermined prices

along with spot prices. The idea is to group the consumers according to their communication

capabilities and/or needs. They develop the scheme for a multi-stage problem, but applied

to our two stage model, and stripped of the network and other constraints, it may be stated

as follows.

A predeterminedprice is denoted by tt. This is the price announced at time 0, and

there is a group of consumers who respond to this price by maximizing their utility function

UK') by solving
mSiXuHx3) —Trr7.
xJ>0

We denote this group by J. There is another group of consumers who respond to the spot

price at time 1. The spot prices are contingency-dependent. We denote this group by J.

Their response is given just as the consumers in group J, i.e., under contingency <*>*> they

solve

maxu'(xjL) —irkxl.

If the aggregate demand exceeds supply at time 1, the excess demand of consumers in group

J will be rationed and they experience the loss according to the amount rationed. Thus

this is a special case of the recourse model we have studied. Their model may be stated as

max Ef=i flbEiejM^'M)" H4)) + Ei€j «'(**(*!*))] '

sub. to EiejC^W-^ + E.-e/*''(»*) < Sk, *= 1,2,...,IT,
4>o, ie J, fc = i,2,...,/ir,

where xj(tt) and xl(xk) are the maximizers of the respective consumer problems above and

z3k represents amount rationed.

This model of group J consumers' response is rather unnatural. Since these con

sumers suffer from rationing, they are the ones who would benefit from the price forecast.

The supplier can improve the expected social welfare by announcing the price forecast rather

than announcing a single predetermined price.
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4.6 Concluding Remarks

We have seen that a model which distinguishes individual participants of a sys

tem clarifies the communication issues associated with decentralized resource allocation

processes.

The recourse model studied in this chapter is a natural starting point for studying

various pricing schemes. The different commodity spaces can be used to sustain an efficient

allocation. The choice of the commodity space will depend on the context at hand.

When the consumersare inflexible, someform ofa price forecast improves expected

social welfare. Any scheme which announces a single price will not be efficient.

We have ignored the network constraints and the other constraints for simplicity

of exposition. A full-blown version of the recourse model is found in Kaye et a/.[ll]. The

focus of their paper is to assure system security through pricing. They termed the recourse

actions by participants of the system as contingency offerings.

Considerations of system security, network constraints, and losses in the system

inevitably make the problem agentwise nonseparable. The implication is that a uniform

price cannot sustain the optimal allocation simply because it does not stimulate enough
message exchanges.

That leads to 'individualized prices' in which the participants pay more or less

than the average according to their contribution to the nonseparable (or joint) costs or the
nonseparable constraints affecting the social welfare. Kaye et a/.[ll]'s pricing scheme may

be viewed as inducing a Nash equilibrium allocation for a game played by the participants
of the system.

It is essential to have the knowledge of the underlying stochastic events for al
locating resources efficiently. This information will in general be distributed among the
participants of the system. Thus the exchange of information on stochastic events will be

as important as exchanging information about thewillingness to pay and themarginal cost
of supply which have been emphasized in previous studies.

There is need to implement a procedure which extracts the private information
about the uncertainty.



73

Chapter 5

Assignment of Digital Pipe

5.1 Introduction

Defining and studying 'good coordination' of digital communication networks is

important for the formulation of policy regarding public carriers. As a first step, we study

assignment problems of a data pipe shared by many users. A data pipe, which we call a

digital pipe, is a communication link connecting two points, a source and a destination, and

through which data are sent. We assume data are gathered into packets by each user. The

pipe can send only one packet per time period. The pipe users take turns to use the pipe

to send their packets from the source.

Each user is assumed to have a utility over her own assignment pattern, i.e., the

time periods her packets aresent. Her utility is independent of the other users' assignment

patterns. Given an overall assignment pattern, we call the sum of the utilities of users the

aggregate utility under the assignment. The pipe owner's task is to choose an assignment

which maximizes the aggregate utility.

We introduce some notation. Assume there are N (> 1) users, and that the pipe

is available for T time periods. Let [y'(*), t = 1,2,..., T, j = 1,2,..., N] be an assignment,

where yj(t) takes values 0 or 1, and y'(t) = 1 indicates that user j is assigned the pipe at
time t. The utility of user j is U* : {0,1}T -»> R+. With this notation, the task of pipe
owner/social planner is

P:

max Ef=i tfV(l). yJ'(2), •••,Vj(T))
[y-'tOJ
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sub. to EjLi yj(t) <1, *= 1,2,..., T
y'(t)€{0,l}, t = l,2,...,T, i=l,2,...,JV\

The utility of each user is private information, i.e., the set of local environments

of user j is

The set of system environments is E := E1 x • •• x EN.

The action space A is the set of feasible assignments of problem P, i.e.,

N

A := MOIE^'W < LVt;^) € {0,l},Vi,i}.

The goal F of the system is to find an optimal assignment, i.e.,

F(Ul,...,UN):=ax&n»xP(U\...tUN).

Note the utility functions of pipeusers areintertemporal. The possibilityof spread

ing necessary message exchanges over time is of particular interest. In this chapter, we

analyze two special cases of the problem which we call a multi-armed bandit problem and a

matching problem. We shall show that a multi-armed bandit problem admits spreading of
message exchanges, while a matching problem does not.

In §5.2 a problem instance of a multi-armed bandit problem is described, and the

minimum size of message space is obtained. In § 5.3 a matching problem is studied in a
similar manner.

In § 5.4 the possibility of spreading message exchanges over time is discussed.

5.2 Multi-armed Bandit Problem

A special case of problem P is discussed. A stochastic version of this problem
is well-known and called the multi-armed bandit problem. We borrow the name for our

problem.

In §5.2.1, the problem instance is stated.

In §5.2.2, the problem is converted to a simpler but equivalent problem which in

turn reduces to the problem of finding the ordering of T real numbers.

In §5.2.3, a lower bound for the size of a message space required for finding the
ordering of real numbers is derived.
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In §5.2.4, a goal-realizing mechanism, which we call a sequential auction mecha

nism, is presented. The possibility of spreading message exchanges is noted.

5.2.1 Problem instance

Userj has L3(> 1) packetsto send. Her utility increases in an incremental manner,

that is, each packet sent adds to her total utility by a certain amount. However, there is

a discounting associated with time which depreciates the value of the increment. The

discounting is done in geometric manner and we assume that the value of the discount

factor /? € (0,1) is common and known to all users (and the pipe owner). This assumption

is essential to our results. User j's prediscount increments are represented as a 2^-vector

Z3' := (ZJ(1), Z3(2),..., Z3\L3)). When her /th packet is sent at time *, it adds f}lZ3{l) to
user fs utility.

We assume that T= EjLiLJ\ that is, pipe is available for a long enough time to
send all thepackets in thesystem. This is another crucial assumption. When T < E^Li L3\
our analysis below does not apply.

We also assume that Z3(iys are nonnegative for simplicity. This is not essential
to our results.

The set of local environments of users are

E3:={Z3zR»},j=l,...,N.

The set ofsystem environments is E := E1 x •••x EN C JfcJ.
We change the notation for an assignment from [y3(t)] to [Ac-*(*)] in this section.

This is to emphasize the cumulative nature of the utility at hand. The cumulative number

of packets of user i sent by time t is denoted by x^(t), i.e., x3\t) = El=i £c3(s). We set
x'(0) = 0 and Z3(0) = 0 for all users. With this notation, problem P reformulated as
PI:

max E£i EL ^(^(0)4^0

sub. to E£iAcJ'(<) = i, t = l,2,...,T

Ar3\t) € {o,i}, t = 1,2,....T, j = 1,2,...,N.
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5.2.2 Equivalent problem

We convert a vector of the incremental rewards Z3 to a new vector Z"7 which has

a convenient property for our analysis. The definition of Z3 will be given shortly, but its
properties and their consequences are stated first.

Properties oflP:

1. The conversion can be done in a private manner, i.e., Z"7 is obtained independent of

the other users' Z*'s.

2. The problem instances ¥1{Z1,Z2,...,ZN) and Pl^Z2,...,^) yield the same
optimal assignments, i.e., an assignment [Ac3{t]\ is optimal for Pl(Za, Z2,..., ZN) if

and only if it is optimal for Pl( Z , Z ,..., Z ).

3. IP(I) is nonincreasing in /, i.e., W(l) > Z*(2) > •••> TP(IJ).

Because of thoseproperties ofZ^'s,we need to consider only the problem instances
with nonincreasing ZJ(/)'s.

When all ZJ's are nonincreasing, finding an optimal assignment is easy. The

myopic rule, which assigns the pipe to a user withthe largest immediate incremental reward,

is optimal. If there is a tie in the immediate largest incremental reward, we can break the

tie arbitrarily. It can also be shown that an optimalassignment is necessarily myopic. As

a consequence, the problem reduces to finding the ordering of T nonnegative real numbers,

i.e., the largest incremental reward receives assignment at time 1, the second largest at time
2, and so on.

Let us fix T, the total number ofpackets in the system. Then from the view point

of information gathering, the worst case is when each user has one packet (so there are

N = T users in the system), since each reward is stored separately. The minimum size of

a message space of a mechanism for finding the ordering of T real numbers, each number

is privately known to its holder, coincides with the minimum size of message space of a

goal-realizing mechanism for the multi-armed bandit problem. Finding the orderingof real

numbers is the topic of the next subsection.

The conversion of Z3 to Z3 is done in two steps:
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T(l) := min v3(l), I= 1,2,..., L3.

u3(l) is known as the Gittins index after Gittins who studied the stochastic version of this

problem and proved the optimality of the celebrated index rule. (The index rule is to assign

the pipe to the user with the largest current index.) We call Z3 a concave envelope of Z3.

From the definition, it is clear that IP is nonincreasing in /. For details, see Chapter 6.

5.2.3 Finding the ordering of N numbers

Imagine 3 persons each with a number. The goal is to find out who has the smallest,

the middle, and the largest number respectively. The exact values of these numbers are not

required. Once the middle number is identified, the rest is a matter of asking a series of

yes-no-answer questions such as "Is you number larger than this?", "Smaller?", and so on.

It appears that the problemis solved by a mechanism with 1 dimensional message space (of

a maximal level set). In general, for N = 2k and 2k+ 1, a message space of k dimension is

needed. It will be shownthat wecannot realize the goalwith a mechanismhaving a smaller

message space.

We start by stating the problem instance, and then choose a subset which has the

target dimension and the uniqueness property.

Problem instance

There are N participants each with a nonnegative number. The set of local envi

ronments of participant j is E3 = J2+.

The action space A is theset ofpermutations of{1,2,..., N}, a :{1,2,..., N} -»
{1,2,..., N}. We identify a with its value {a(l),a(2),...,a(N)}; for example, the identity
permutation will be denoted as {1,2,...,TV}. A has N\ elements.

The goal, F : E -»• A, is defined by

,{N)a € F(e\e2,...,en) *=> eaM < e°(2> < ... < e°

A lower bound for size of a message space of a maximal level set

We assume N = 2k, and will show that A; isa lower bound for the size ofa message
space of a maximal level set. For N = 2k + 1, it will be clear that k is a lower bound as

well. In the next subsection, it will be shown that k is the minimum size for both cases.

We consider the level set of the identity permutation {1,2,..., N} =: id.
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A subset E" C F^iid) is defined by

Em :={(z1,zi,z2,z2,...,zk,zk)\0< *i < *2 < •••< zk}. (5.1)

It has dimension k. We proceed to show that it has the uniqueness property.

Lemma 5.2.1 Defined as in (5.1), E* has the uniqueness property with respect to goal F.

Proof Let z := (zuzi,z2,z2,...,zk,zk),w := {w\,wi,w2,w2,...,wk,wk) € E" be such

th&t w^jzeF^iid), j = l,2,...,N.

Consider w <g>2t_i z = (zx,zx,...,*,_!,z^uwiyz{,zi+1,zi+1 ,...,zk,zk) and w ®2»

z = (zi,zi,...,Zi-.i,Zi-i,Zi,Wi,Zi+i,Zi+i,...,zk,zk) for i = 1,2,...,k. Since w ®2i-i z €

F~l{id), we have w{ < Z{. Also, since w <g>2t- z € F^^d), we have Z{ < w{. Therefore,

W{ = Z{ for i —1,2,..., k. Thus w = z, as desired. D

5.2.4 Sequential auction mechanism

Let us go back to the multi-armed bandit problem. Let the total number of the

packets be T := 2k+ 1 (k > 1). Here is a goal-realizing mechanism with a message space
of size k.

Sequential auction mechanism

Announced publicly area pair comprising a vector ofk-winning bids (at even time periods)
A:= (A1}A2, ...,A*) and an assignment [ArJ'(t)]. At- is nonincreasing in i, i.e., Ai > A2 >

•••> A* > 0. Let A:= {A 6 R%\\i > •••> A*}. The message space is

M := A x A.

Let A:= (A(l),A(2),...,A(T)) be A= (A^A^Az,A2l...,Afc,A*,0). The vector A

may be regarded as the rents of the pipe at respective time periods.

Pipe user j agrees to a message if whenever the pipe is assigned to her, her con

verted incremental reward ~Z3(x3(t)) is greater than or equal to the rent A(t) at the time of
the assingment. Otherwise she rejects the message. To guarantee the optimality, the rents

for the even time periods should exactly equal the converted incremental rewards of those

who are assigned the pipe. Thus the equilibrium correspondence of user j is

[ Aci(t) = i =s> ZV(0)>A((), t = 2« + l, t = 0,l,...,fc J
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The outcome function h is the projection of a message on the action space, i.e.,

h(\,[Ax3(i)]):=[Ac3(t)].

Lemma 5.2.2 The sequential auction mechanism realizes the goal.

Proof Since X(t) is nonincreasing in t, the mechanism assigns the pipe in the decreasing

order of the converted incremental rewards. Thus the assignment is optimal. D

Consider E* in the previous section (translated into the problem instances of

the multi-armed bandit problem). It is clear that the equilibrium correspondence of the

sequential auction mechanism is a continuous function on E*. Thus we have shown

Theorem 5.2.1 W/ien each user has one packet (hence the informationally worst case)

and the total number of packets in the system is T = 2k, or T = 2k + 1, the minimum size

of a message space of a maximal level set is k.

The way the sequential auction mechanism works, it does not need to communicate

k numbers (Ai,..., A*) at once. At time 1, it suffices to communicate Ai, and identify the

largest and the second largest converted incremental rewards. Then at time 3, we can

communicate A2, and identify the third and forth largest increments, and so on. This is

a very attractive property, since we need one dimensional information-carrying capacity at

each time. For very large T, a mechanism which exchanges all the necessary information at

time 1 will not be implementable, whereas the sequential auction mechanism can be easily
implemented.

Unfortunately, this property is due to a special structure of the multi-armed bandit

problem, and is not generally available. In §5.4,wediscuss the structure of a problem which

admits sequential message exchanges.

5.3 Matching Problem

We study another special case of problem P which we call a matching problem. In

this problem, each pipe user has only one packet to send, and his utility is determined by

when it is sent. Thus the problem can be seen as a matching of a user and a time frame.

Koopmans and Beckmann[12] called this 'the linear assignment problem'. They

emphasized the use of 'price' in decentralized assignment. We follow their analysis closely.
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In §5.3.1 the problem instance is stated.

In §5.3.2 a price mechanism is presented. It attaches a price to each time frame

and hence it has a message space of dimension T.

In §5.3.3 it is shown that T is the minimum size of a message space of a maximal

level set. The impossibility of spreading message exchanges over time is noted.

5.3.1 Problem instance

User j has one packet to send. His utility is represented by a T-vector v3 :=

(v3(l),v3(2),...,v3(T)), where v3(t) is the reward he receives when his packet is sent at

time t. We assume that v3(t) is nonnegative. It is not essential for the minimality results.

The set of local environments of user j is

E3 := {v3 e Rl}.

The set of the system environments is E = E1 x •••x EN C R^N.
The action space and the goal are as defined in § 5.1.

Weassume that there are more users (hence more packets) in the system than the

available time periods, i.e.,

N >T.

P2:

Problem P is an integer linear program:

max E2LiE£i"WM

sub. to EiLi yj(t) < 1, t = 1,2,...,T

Tl=iyj(t)<i, j=i,2,...,N

y3(t)<E {0,1}, t=l,2,...,T,j=l,2,...,N.

5.3.2 Price mechanism

A price mechanism is presentedand shown to realizethe goal. It is a variant of the

price mechanisms appearing in Chapters 2 and 3. The optimality conditions of P2 are the

starting pointofanalysis. Let us take the dual ofP2. Since the matrixdefining constraints

ofP2 is totally unimodular, we can replace {0,1} constraint by [0,1]. Moreover, it is easy
to see that the constraints giving the upper bound to the yJ(t)'s (i.e., y3(t) < 1, Vj) are
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redundant. Thus, the following dual and the associated complementary slackness conditions

may be used to argue optimality.

D2:

min ESaAM +EftiM*
sub. to \(t) + n3>v3\t), t = l,2,...,T, j=l,2,...,N

A(0>0, t=l,2,...,T

»3>0, j=l,2,...,N.

The dual variable X(t) is the multiplier to the capacity constrains at time t, and p,3 is the

multiplier to the constraint on user j's pipe usage.

The complimentary slackness conditions include

f p? - v3(t) - X(t)
y>(t) = 1 => S .

[ yJM = 0, and pi > v3\s) - X(s), s ^ t,
y3(s) = 0,s = 1,2,...,T s> ti3 = 0>v3'(s)-X(s), 5 = 1,2,...,T

We can eliminate p3 from the above to obtain:

The optimality condition for P2

An assignment [y3(t)] is optimal if and only if there is a nonnegative T-vector
A := (A(l),A(2),...,A(r)),such that

y3(t) = l =» v3\t)-X(t)>max[0,ma.x(v3Xs)-X(s))], (5.2)

y3(s) = 0,Vs =» v3(s) - X(s) < 0,Vs. (5.3)

This optimality condition suggests the following mechanism.

Price mechanism

Announced publicly is a pair comprising a price (or rent) vector A:= (A(l),..., A(r)) and
an assignment [yJ'(t)]. Thus the message space of this mechanism is

M := Rl x A.

User j considers X(t) as a rent of the pipe for time frame t, and maximizes his own

profit over time. He agrees to a message if either (5.2) or (5.3) is satisfied. Otherwise, he

rejects the message.

The outcome function is the projection of a message on the action space.

It is clear that the price mechanism realizes the goal.
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5.3.3 Minimum size of message spaces

We will show that T, the number of time periods, is the minimum size of a message

space of a maximal level set. Even though this is the size expected from the minimality

results in Chapters 2 and 3, it does not follow from them. In those chapters, the proofs of

the minimality results called for the optimal solution which spreads resources evenly to all

participants, while here the resource is 'indivisible'.

We fix an assignment, and choose a subset E* in its level set. E* has the dimension

T and the uniqueness property.

We choose an assignment which assigns the pipe to user 1 at time 1, user 2 at time

2, and so on. Users T + 1 through N do not receive any assignment. Let [63(t)] be this

assignment, i.e.,

63(t)=l1 if ' =*•
{ 0 if j^t, t = l,2,...;T.

Let E" 6 F~l([63\t)]) be the set of environments in which every user has the same
utility, i.e.,

E* = {(v,v,...,v)eE\v£ RQ, (5.4)

where v := (v(l),v(2),...,v(T)).

Proposition 5.3.1 Defined as in (5.4), E" has the uniqueness property with respect to goal
F. Thus goal-realizing mechanisms have message spaces of at least dimension T.

Proof Let c := (z,...,z), e := (w,...,w) € Em be such that e®je € F^dS^t))), j =
1,2,..., N. We need to show that w = z.

First we will show that u>(l) > 2(1). Consider e ®i e = (w,z,z,...,z). Assume

w(l) < 2(1). Then the assignment which assigns the pipe to user N (who is notassigned to
the pipe in [63(t)]) at time 1,and follows [63(t)] for the rest of the time yields strictly better
aggregate utility than [63(t)]. But this contradicts the optimality of [63(t)] for problem
instance e ®i e.

By a similar argument, we can show iy(l) < z(l), and hence w(l) = 2(1). Again
by a similar argument, it can be shown that w(t) = z(t), for all t. •

Unlike the multi-armed bandit problem, message exchanges cannot be spread over

time without losing allocation efficiency in the matching problem. We will see that making
a correct assignment at time 1 alone requires a message space of at least dimension T.
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Let F~1(Sl(l)) be the set of problem instances to which assigning the pipe to user

1 at time 1 is optimal. Clearly, E* C ^(^(l)).

Lete := (z,...,z), e :=• (w,...,w) € E* be suchthat e®je,e®je € F~1(61(l)), j =

1,2, ...,N. As in the proof of Proposition 5.3.1, we have u;(l) = z(l). Assume for t ^ 1,

w(t) > z{t), so u>(l) + z{t) < z(l) + w(t). Consider e ®i e = (w, z,..., z). By the inequality

above, the assignment which assigns the pipe to user N at time 1, and to user 1 at time t,

and assigns the pipe arbitrarily for the rest of the time outperforms the assignment which

starts by assigning the pipe to user 1. But this is a contradiction, and hence w(t) < z(t).

By a similar argument, we have w(t) > z(t). Thus w[t) —z(t).

This shows that the task of assigning the pipe correctly at time 1 alone requires a

message space of dimension at least T.

5.4 Possibility of Sequential Message Exchanges

The two cases we examined in this chapter exhibit quite a contrast; the multi-

armed bandit problem admits spreadingmessage exchanges over time so that only a scalar

needs to be exchanged at each time, while the matching problem does not admit any sort

of spreading at all. The difference is in the structuresof optimal solutions of the respective

centralized problems.

It would be nice to have a characterization of a problem structure which admits a

sequential message exchanges, even if it were merely conceptual. The optimality principal

of dynamic programming is at the heart of the following discussion.

Consider a centralized problem which requires making decisions over T time peri

ods. Let E be a set of problem instances for the problem. Let a(t) be a decision at time t,

and a := (a(l),..., a(T)). To simplify notation we write aW := (a(l),..., a(t)) for decisions
made by time t. Let A := .4(1) x ••• x A(T) be an action space, where A(t) is a space of

time t decision variables. Also, let A^ := .4(1) x •••x A^).1 Let F :E -> A be the goal.
For simplicity, we assume it is a function.

Level set of aW under F at time t is defined as the set of problem instances to
which oW is a'correct decision' during the first t time periods, and denoted by F~1(a^).
More precisely, it is defined inductively (backward in time) as follows:

^he set ofpossible actions at time t could depend on actions taken by that time, say ^(t,^'"^). A{t)
might be thought of as A(t) := Ua(«-»)€>»(«-»-4('.a(,~1))-
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• for t = T, it is the level set of a under F, i.e.,

F-^aW) := F~l(a) = {e € E\F(e) = a},

• for other t,

F-^aW):^ |J J-l(a«,6(t+l)), t =T- 1,T- 2,...,1.
6(i+l)€^(t+l)

Note that the definitions have to be made backward in time in order not to be sorry for the

current decision in future.

Now let us consider a decentralized mechanism which realizes F. Realizing the

goal amounts to classifying a given problem instance (or environment) into the level set of

the action to which it belongs. Thus for a mechanism to be goal-realizing, it is necessary

to be able to classify a given instance into its proper level set at time t by time t.

We can consider the classification of problem instances into their proper levelsets

at time t as a goal of its own. The minimum size of message space needed to realize this

goal gives a lower bound for amount ofmessage exchanges needed by time t by a mechanism
realizing F.

In the matching problem, it turns out that the classificationinto level sets at time 1

already requires at least as muchmessage exchanges as the goal itself. Note this is inherent
in the problem and there is nothing we can do in this regard.

The bandit problem has a particularlynice structure. The classification into level

sets at time 2 can be done with 1-dimensional message exchanges, and within that level

set, further classification into level sets at time 4 can be done with another 1-dimensional

message exchanges, and so forth.
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Chapter 6

Multi-armed Bandit Problem

6.1 Introduction

In the previous chapter, we had a glimpse of the multi-armed bandit problem. A

stochastic version is studied in this chapter. As before, it is presented as an assignment

problem of a digital pipe.

In a stochastic version, incremental rewards of pipe users are stochastic processes.

The reward processes are (stochastically) independent of each other. As a user sends a

packet, she learns more about her reward process. When she is not assigned to the pipe,

her knowledge about her reward process remains unchanged (her knowledge or state is

frozen). The task is to find an allocation which maximizes the expected aggregate reward.

This problem hasreceived considerable attention with a good reason. The formula

tion covers a wide range of problems. For example, Gittins lists 'single machine scheduling*,
'goldmining', 'industrial research7, and other problems [8].

In 1972, Gittins and Jones[9] showed that, in a Markov control process framework,
the optimal policy is obtained by

1. attaching an index to each user which is a function only of her own state, and

2. assigning the pipe to the user with the largest current index.

The index which Gittins termed dynamic allocation index is now, rightfully, called the

Gittins index in the literature. The policy is generally referred as the index rule.

The index result is significant for our theme of decentralization of allocation pro

cesses. It means that, despite its apparent complexity, an optimal assignment can be sus-
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tained by exchanging one scalar at a time among participants. That is, our results in § 5.2

extend to the stochastic version.

In 1980, Whittle provided an elegant proof using dynamic programming, and what

he called 'M-process'. Whittle's Af-process will be related to the proof provided here in

§6.4.

Varaiya et al.[25] recognized that the following properties are essential for the

optimality of the index rule:

1. the reward processes are independent,

2. states of those users who are not assigned to the pipe are frozen,

3. frozen users contribute no reward.

They extended the index result to non-Markovian cases. Their proof of the optimality of

index rule is based on the interchange argument.

Mandelbaum[13] reformulated the problem as a control problem over a partially

ordered set. He introduced the 'lower envelope* of the index processes. The lower envelope

process is what wecalled a concave envelope of a reward process in §5.2. It is a nonincreasing

reward process 'equivalent' to the original reward process in the sense described there. It

played a key role in his proof of optimality of the index rule for a continuous time multi-

armed bandit problem[14].1

In this chapter, an alternative proof of the optimality of the index rule is obtained

by utilizing properties of the equivalent reward processes. It adds a new insight to the

problem. Weber[29] recently gave the very similar proof for a Markovian bandit.

In § 6.2 ideas of the proofareillustrated for a deterministic versionof the problem

in a discrete time setting. The same ideas areapplied to show the asymptotic optimality of

the index rule under the average reward criterion. They are also extended to a continuous

time problem. The index is related to the Lagrange multiplier of the capacity constraint.

In § 6.3 stochastic counterparts of the problems in § 6.2 are studied. The difference

is the addition of information constraints on admissible policies.

1He established the optimality of the index rule through the interchange argument for a discrete time
bandit following Varaiya et al[25]. It gave him an inequality involving the lower envelope processes which
was central to his proof for the continuous time version.



87

In § 6.4 and § 6.5, superprocesses and an arm-acquiring bandit problem are dis

cussed respectively. There we follow Varaiya et al.[25] closely.

6.2 Deterministic Bandit Problem

Ideas of the proof come from simple observations. They are best illustrated in a

deterministic setting. A problem is an assignment of a digital pipe as in § 5.2. Users take

turns to send their packets through a digital pipe. The pipe can send one packet per unit

time. Utility of a user is represented as a series of incremental rewards. Unlike in § 5.2,

users may have an infinite number of packets. The pipe is available over the infinite time

horizon.

There are two criteria favored in the literature for an infinite horizon problem. One

is the 'discounted reward' criterion, namely, to maximize the discounted total (aggregate)

reward. The other is the 'average reward' criterion, namely, to maximize the time average

of the reward earned over the infinite horizon. Both criteria are discussed below. Discrete

time cases are studied in detail and the results are extended to continuous time problems.

In § 6.2.1, an assignment problem under the discounted reward criterion is ex

amined in a discrete time setting. Key observations are made and steps of the proof are

shown.

In §6.2.2, a problem under the average reward criterion is examined. The asymp
totic optimality of the index rule is derived.

In § 6.2.3, a multi-pipe case is considered. More than one digital pipe is available

for the system. However, users are to send one packet at a time. They cannot occupy
more than one pipe. The average reward criterion is considered. The result of § 6.2.2 is

extended to this case. The derivations ofasymptotic optimality are inspired by Weiss' work
on parallel machines stochastic scheduling [30].

In §6.2.4, the result of §6.2.1 is extended to the continuous time counterpart. A
hidden concavity of the problem, and a relation of the index and the Lagrange multiplier
of the capacity constraint are revealed.

6.2.1 Discounted reward criterion: discrete time

We start our analysis with a problem under the discounted reward criterion in a

discrete time setting.
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User i is characterized by a reward process Z{ := {Z*(l)}fllt where Z*(/) is the

incremental reward of user i when her /th packet is sent.

Associated with clock time is a discount factor /? € (0,1). A user's earning at

time t is discounted by a factor of/?'. For example, when user t's /th packet is sent at time

t, she receives incremental reward of filZ*(l) (in present value at time 0).

An assignment of the pipe is indicated by a variable Ac^t). When user t is

assigned to the pipe at time t, Ac%(t) takes value one, and zero otherwise. By a load level

of user i at time t, we mean the cumulative number of packets of user i sent by time t,

including the packet sent at t if user i is assigned to the pipe at t. It is denoted by x%(t).

Thus x{(t) = 2Ui &*(*)- We set XKQ) = ° and ^'(O) = 0 for all users. We also assume

E£i /?'|£X'(0I < oo for all users.

Formally the problem is:

PI:

max E&iE£i/^V(0)M0

sub. to ^=1Aci{t) = i, t = 1,2,...,

Ac{(t) e {o,i}, i = 1,2,...,N, t = 1,2,....

A myopic policy, assigning the pipe to the user with the largest current in

cremental reward at all times (breaking ties arbitrarily, if necessary), is optimal for the

following special case.

Fact When all reward processes are nonincreasing in their load levels, the myopic policy

is optimal.

This is intuitively clear and may be formally proved by the interchange argument.

Note that when all reward processes are nonincreasing, the myopicpolicy is optimal regard

less of the length of time horizon.

When reward processes are arbitrary sequences, future rewards have to be consid

ered as well as the immediate reward. Note that the magnitude of discounting affects the

trade-off between the immediate reward and future rewards.

The Gittins index, which may be viewed as the maximum attainable average re

ward rate (adjusted by the discount factor), resolves the dilemma. The idea is to assign the

pipe to the user with the largest average reward rate at all times.



Cumulative reward

(discounted)

Load level

(discounted)

8=1

Figure 6.1. Index as the maximum slope

The index of user i at load level / is denned by

^+l):=^^y,/=0,l.-.
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(6.1)

The argument / appears in the definition in an awkward way, but it is meant to be consistent

with the definition of the index for a stochastic version. The index at load level /,v*(l+ 1)
is the largest attainable average reward rate from load level / + 1 onward, computed after
the /th packet is sent. Figure 6.1 illustrates how to find the index at load level 0.

Notice that theindex is computed as if user i were the only user of the pipe, but
the distinction between load level and clock time should be kept in mind.

The maximizing stopping time at load level / is the maximizer in the definition

of the index (6.1) and denoted by r*(/ + 1). If there are two or more maximizers, the most

immediate one is taken. The following fact about the maximizing stopping times can be
proved:

t\1 + 1) = inf{s > /+ l\u{(s + 1) < !/•(/ + 1)} (6.2)
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It says, the maximum average reward rate at any load level between / and t*(/+ 1) is greater

than the rate at load level /. In other words, to stop when the future reward rate from that

point onward is no greater than the rate we started with. A proof for a stochastic version

is found in [25].

The index rule is the policy which assigns the pipe to the user with the largest

index at the current load level at all times. A tie in the highest index can be broken

arbitrarily without affecting the optimality of this policy.

The following process plays a key role in our proof. The concave envelope of

the reward process of user i is defined by

7(I):=im4), /=1,2,.... (6.3)

Figure 6.2 shows the picture of a reward process and its concave envelope. As seen

there, the cumulative reward from this new process is the concave envelope to the cumulative

reward of the originalprocess. This process was first introduced by Mandelbaum [13] and

called the lower envelopeof the index process as the definition (6.3) suggests.

Properties of this process, which make our proof work, will be listed shortly in

Lemma 6.2.1. But first we inductively define a sequence ofstopping times {r£}£L0:

4 = 0 (6.4)

rj+1 := mHs>4\i,i(s+ l)<vi(Tki + l)},k = 0,l,.... (6.5)

This definition is made so that r£+1 is the maximizing stopping time at load level tL i.e.,
r£+1 maximizes

max —=fr>r'+l Ea=7j+1/?s

over stopping times r > r£. If for some k, rj. = oo, we define rj := oo, for j > k. By the
characterization of the maximizing stopping time (6.2) and the definition (6.3) of Z1,

T(s) = v\ri + 1), for 4 + 1<s < r*k+1 (6.6)
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Figure 6.2. Original process and its concave envelope
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Lemma 6.2.1 The concave envelope has the following properties:

1. Z (/) is nonincreasing in I.

2. At any time/load level, the concave envelope yields at least as much cumulative reward
as the original reward process,

I l

*=i «=i

$. At the stopping times defined by (6.4) and (6.5), the both processes yield the same
cumulative reward,

/ t

£/?TO =2>^(s),/or /=rj,*=l,2,...
«=1 5=1
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Proof All properties are fairly direct consequences of the definitions of the index (6.1)

and the concaveenvelope process (6.3). They represent the properties illustrated in Figure

6.2.

Property 1 is immediate from (6.3).

Property 2 is derived as follows:

Let s At denote the minimum of s and t. We write

/ OO /ATfc+l

8=1 k=Oa=Ti+l

For each k,

lATUi lATUi
£ 0»Z\s) < i/<(tJ + 1) £ F

»=Tj[+l «=Tjj+l

'AT*+1

= zvi + i) £ f
*=Ti+l

'AT*+1

In the above, the inequality is by thedefinition of the index, and the equalities are by (6.6).
Summing over k, we obtain Property 2.

Property 3 is obtained by noting that when / = r£ for some k, the inequality above

becomes equality for each j < k, again by the definition of the index. D

So far, we have converted the original reward processes to their concave envelopes.
The next step is to splice the original reward processes, and to compare them with the

processes obtained by splicing the concaveenvelopes in the same manner. Let II be the set

of feasible policies (i.e., the set of assignment patterns) of Pi, and let n be a policy in it.

Also let V(ZX,Z2,...,ZN\Tt) be the total discounted reward earned by splicing processes
(Zl,Z2,...,ZN) according to policy it.

Our proof of the optimality of the index rule proceeds in the following steps:

Claim 1. When the concave envelopes are seen as reward processes (rather than the
original processes), the myopic policy is optimal, i.e., denoting the myopic policy by n*,

V(z\r,...,ZN^) = maxV(Z1,Z2,...,ZN;ir).
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The myopic policy ir* for the envelope processes is precisely the index rule for the original

problem.

Claim 2. When the same policy is applied to two problem instances, one with original

reward processes, the other with their concave envelopes, the latter yields at least as much

total reward, i.e.,

V(Z\Z2,...,ZN;ir) < V(z\T,...,?N;ir), Vtt € H.

Therefore V(Z ,Z ,...,Z ; irm) gives an upper bound to the optimal total reward from the

original processes.

Claim 3. When n* is applied to the original processes, it yields the same total reward as

it does from the envelope processes, i.e.,

v(z\z2,...,zN'X) = v(zl,z2,...,zN',**y

Since the upper bound is attained, the index rule is optimal.

The first claim follows from monotonicity of the concave envelopes and the char

acterization of the maximizing stopping time (6.2).

We verify the second claim. It is a consequence of Property 2. The following

lemma is useful.

Lemma 6.2.2 Let{X^)}^ be a process such that

sup£*W<0,
T>°,=i

and let {7(*)}£i be a nonincreasing sequence such that

1>7(1)>7(2)>...>0.

Then,

£t(0*M<o.
*=i

A proof for a stochastic version of this lemma is found in [25].

The next step is to convertour problem to the setting of the lemma above through

a change of variables from clock time to load level.

Lemma 6.2.3 Let x := {x(0}?=o &e an arbitrary load pattern of user i over the infinite

horizon. (x(0) = 0, and Ac(t) = x(t + l) - x(t) € {o, l}.^
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Ifflien x is applied to both the original process Zx and its concave envelope ~Z*, Y1

yields at least as much total reward as Zl does, i.e.,

t=l

Proof Let x'1 be the left inverse of the load pattern:

a;-1(/):=inf{t>0|a:(<)>/}, /=1,2,....

That is, £-1(/) is the first time the load level reaches /. If / is never reached, we set

ar-1(/) := oo. Observe that ar_1(/) —/ is nonnegative and nondecreasing in /. Let us use the

convention 0°° = 0.

£^(^«W)-2i(»(0))2b(0 = £^"1(/)(^(0-^(0)
t=i /=i

= Jt^w-vptiZiW-zm
/=i

Take X(l) := P1{Z{{1) - Z{(1)) and 7(/) := j5(*",(0-0 in Lemma 6.2.2.

X(t) satisfies the condition of Lemma 6.2.2 because of Property 2 in Lemma 6.2.1,

and so does 7(/) by the observation made above. D

Since any feasible assignment is a combination of the type of assignments examined

above, the second claim is verified.

The third claim is a direct consequence of Property 3 in Lemma 6.2.1.

Thus we have proved the optimality of the index rule:

Theorem 6.2.1 The index rule achieves the optimal total reward for problem Pi.

Remark

We can imagine the following fictitious auction scheme to interpret a concave

envelope and the index rule. An auction is held by a pipe owner. Auctioned is the right

to use the pipe. A bid price is interpreted as a rent per unit time that a user is going to

pay if he wins the bid. The highest bidder is allowed to use the pipe as long as he wishes,

provided he keeps paying the rent. When it comes to the point that he incurs a loss if

he keeps the pipe with the current rent, he simply returns the pipe to the owner. The

owner then holds another auction and repeats the procedure. The concave envelope is then

interpreted as the user's highest possible bids (and the subsequent rents) as his packets are
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sent out. Naturally his bids will decrease as more of his packets are sent out. The pipe

owner's profit is maximized by taking the highest bid whenever the pipe becomes available.

Refer to Weber's interpretation of the concave envelope as a 'fair charge' of a

bandit [29].

6.2.2 Average reward criterion

A bandit problem with a deadline is considered first. The pipe is available only

for T (< oo) time frames. There is no discounting.

The index rule is no longer optimal for a finite horizon problem. Concave envelopes

are utilized to obtain a bound on the difference between the optimal total reward and the

total reward earned under the index rule. When this bound is independent of the length

of time horizon, it leads to the asymptotic optimality of the index rule under the average

reward criterion.

To illustrate suboptimality of the index rule let us examine the following example:

A pipe is available for T = 4 time frames.
Users 1,2, and 3 are characterized by Z1 = Z2 = (0,4,0,0), and Z3 = (0,0,7,0).

Each of user 1 and 2 has two packets to send and user 3 has 3 packets, and the rewards are

earned only when all packets of respective users are sent.

The index rule suggests to serve user 3 and earn the reward of 7, but the optimal

policy is to serve users 1 and 2 and earn the total reward of 8. In this example, the cause of

suboptimality is the inefficient utilization of the pipe near the end of the service duration.

It is conceivable that when each user has a relatively small number of packets compared to

T, the index rule does not do too badly compared to an optimal policy. The difference in

total reward will be bounded by the reward from the last job that the index rule started

but did not finish.

The purpose of this subsection is to make those notions precise. The problem is

P2:

max E&E^iS'WOJMO

sub. to E£i^''(0<i> t = l,2,...,T

At«(0€{o,i}, i = l,2,...,N, t = l,2,...,T.
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The index is defined as before:

!/«'(/ +1) := max S=t+1fW,/ =0,1,.... (6.7)
t>/+1 T-l V '

The concave envelopes are defined with a slight modification:

T(l) := max[0, mini/f*)], /= 1,2,....

When reward processes are positive, the capacity constraint in P2 will be tight, and the

above definition of the concave envelope reduces to the one given by (6.3). Here the pipe

owner is allowed to stop renting the pipe. This may be thought of as having the reward

process with 0 increments.

The maximizing stopping time is characterized as in (6.2).

Define a sequence of stopping times {r^}^l0 as in (6.4) and (6.5).

The index rule is the policy which assigns the pipe to the user with the largest

index as long as there are users with positive indices. When there are no users with positive

indices, it stops assigning the pipe.

Clearly,Properties 1and 2 of the concaveenvelopes in Lemma 6.2.1hold. Property

3 holds for the r£'s before the index takes negative value. Hence, Claim 1 and 2 of the

previous subsection remains valid. The following claim replaces Claim 3.

Claim 3'. Let AV be the difference between the optimal total reward and the total reward

earned under the index rule for a finite horizon problem. Then,

AV<V(Z1,Z2,...,ZN;x*)-V(Z1,Z:>,...,ZN;nm)

It is more convenient to have a bound in terms of rj. and the index. Let « be the

user whose packet is sent at time T. Let /*" be the load level of user t at T (including the

one delivered at T for user «) under ir\ Also let r£ be such that r* < lK < r£+1 < oo.
Then,

AV < V(Z\Z2,...,ZN',<K*)-V(Z\Z2,...,ZN',**)

t=l S=l t=l 3=1

t=l a=l t=l a=i

= ££*«+ £ 3*M-££2'M
i=l a=l a=/*+l t=l a=l
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'n+l

= £ ZK(s) (6.8)
«=/*+i

Let us impose uniform bounds on stopping times and indices.

Assumption 6.2.1 We assume

1. t{(1+1)-1<D, for i=l,2,...,N, /= 1,2,...

2. v{{l)<W, for i=l,2,...,N, 1=1,2,...

We can think of a situation that there are several groups of identical users. For such an

instance, the assumption above is not an unreasonable one.

Under the assumption above, we have

AV < WD, (6.9)

since

'n+l

£ Z"(s)<v«(l" +l)(r;+1-Z") <WD

by the definition of index at load level /*.

Since the bound on AV does not depend on the length of horizon,

Therefore, we have

AV
lim -;=- = 0.

T^oo T

Theorem 6.2.2 Under Assumption 6.2.1, the index rule is asymptotically optimal under

the average reward criterion.

6.2.3 Multiple pipes

In the previous subsection, we saw that the suboptimality of the index rule was

due to the inefficiency near the end of service duration. The same can be said when more

than one pipe is available. We derive a bound on the difference between the optimal total

reward and the total reward from an index rule as in the previous subsection. Let M (> 2)

be the number of digital pipes available. The problem is
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P3:

max ^EliWO^'tO

sub. to ££* Ac«'(t) < M, t=l,2,...,T

Acx\t)e {0,1}, t = i,2,...,jv, t = i,2,...,r.

Let us pose the following conditions on the reward processes.

Assumption 6.2.2 1. Each user has a finite number of packets, ox, to send and

al<D, i= 1,2,...,N.

2. Indices are bounded, i.e.,

u{(l)<W, /= 1,2,...,*«', i=l,2,...,N.

The first assumption here is much stronger than the first assumption in Assumption 6.2.1.

It may be weakened in a specific application.

An index rule is a policy which assigns the pipes to the users with M highest indices

as long as there are users with positive indices. Unlike the single-pipe case, a tie-breaking

rule affects the total reward. Examine the following example:

Two pipes (M = 2) are available for T = 2 time frames.
Users 1,2, and 3 are characterized by Z1 = Z2 = (1,0), and Z3 = (1,1).

In this example, all users have the same index 1 at the beginning, but sending packets of

users 1 and 2 at time 1 results in a suboptimal assignment.

When all reward processes are nonincreasing, one may suspect that an optimal

policy is found among index rules. But that is not the case as the following example

illustrates.

Two pipes are available for T = 2 time periods.
Users 1,2, and 3 are characterized by Z1 = Z2 = (2,0), and Zz = (1,1).

Even though user 3 has smaller index at the beginning, it is optimal to send his packet at

time 1 along with a packet of user 1 or 2.

As we saw through these examples, Claim 1in §6.2.1 does not make sense anymore.

But the first half of Claim 2 is still valid, i.e.,

V(Z\Z\...,ZN;w)<V(ZlX,.•.,?";*),
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where tt is any feasible policy for P3, and V denotes the total reward as before. For

simplicity, assume there are enough packets and users (and positive rewards) so that none

of the pipes become idle at time T. Let k\,k2, ... ,«m be the users whose packets are sent

at time T under an index policy. Let /• be the load level of user i after the delivery at T.

By definition of an index policy, none of the users who have unsent packets and are not

assigned to the pipes have greater current indices than those who are assigned to the pipe

at T. This observation leads to the following lemma:

Lemma 6.2.4 Let ic be an index policy and Km's and lx,s be defined as above. If it were

allowed to finish sending packets of users «i through km and collect rewards from them

accordingly, it would yield at least as much total reward as an optimal policy, say irm, would,

i.e.,

M ffK">

V(Z\Z2,...,ZN;*~)<V(Z\Z2,...,ZN;*)+J2 £ ^W« (6-10)
171=15=/*m+l

Proof By property 2 of the concave envelope in Lemma 6.2.1,

V(Z1,Z2,...,ZN;ir*)<V(Z1,'Z2,...,ZN;ir*).

We will argue that

V(Z\32,...,z";*')<V(2-1X,...,Z*!;*)+'£ £ Z"-(*). (6.11)
m=l j=/"m+>l

Since the right hand side of (6.11) is equal to the right hand side of (6.10) by property 3 in
Lemma 6.2.1, this proves the lemma.

Let us regard the Z 's as reward processes (nonincreasing reward sequences). Note
that the optimal total reward from a single-pipe case with the deadline MT is at least as

large as the optimal total reward from M pipes with the deadline T.

Let us assume that aci is the user with the smallest immediate reward among the
^m s, i.e.,

FSl(/'tl)= min Ftm(/«-).
l<m<M V '

Let TKm be such that

ZKm(r«'" + 1) < Z*1^), for m = 2,...,M.

Let lKm V rKm be the larger of the two. If n were allowed to continue until /*m V rKm were

reached for each user (k2,...,km) and would collect the associated rewards, then 7r would
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yield as much total reward as an optimal policy for a single-pipe problem with the deadline

MT+ ^Jf=2(/Km VrKm —lKm) would yield. Because all the rewards greater than ZKl(/Kl)
would be collected, and no reward less than ZKl(/Kl) would be included under ir in that

total pipetime. Thus,

V(Z,f2,,...,3*r;x-) < V(Z\2'1...fZ*';»)+£ E T"{»)
8=2 3=l«rn +1

M aKm

< V(I\?,...,JN;*)+-£ E 2""«.
m=l s=l*m +1

as desired. D

Assumption 6.2.2 and the lemma above give the following bound on the error of

an index policy:

AV* := V(Z\Z2,...,ZN',ir*)-V(Z1,Zi,...,ZN;Tr)
M c"m

< E E *-«
m=l «=/"m +1

M

< ^2 i/Km(lKm+ l)(aKm - lKm)
m=l

< MWD

The second inequality is by the definition of the indices.

The asymptotic optimality of an index rule under the average reward criterion

follows.

Let us now assume that the number of the available pipes changes over time, say,

M(t),t = 1,...,T. And let M := maxtM(t). When an index rule is applied, there are at

most M users such that r£, < /' < r£i+1, where {r*J is the sequence of the maximizing
stopping times defined by (6.4) and (6.5). Note those users have greater indices at T than

the others. An argument similar to the one above leads to AV* < MWD.

6.2.4 Discounted reward criterion: continuous time

When a pipe owner has many pipes and the ability to switch among users in

relatively short time, the problem will be well approximated by treating both load level and

time as continuous variables. The problem instance is stated below and the the optimality

of the index rule is proved through similarsteps as in § 6.2.1. At the end of this subsection,

the index is related to the Lagrange multiplier to the capacity constraint.
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A reward process is defined by {Zx\l),l > 0}, where / is the load level as before
except that it is continuous rather than discrete. When the load level ofuser i is l(t) at
time t, the prediscounted reward in a small time interval [t, t + dt] is approximated by
Zl{l(t))i{t)dt. Associated with the clock time is a discount rate a > 0. Auser's earning
at time t is discounted at the rate e~at.

An allocation of the pipe capacity is indicated by a variable xx(t). By the load
level ofuser i at time t, we mean the cumulative amount ofcapacity allocated to user i by
time t. It is denoted by xx\t). Thus xx\t) = f*xx(t)dt. Let us set xx(0) = 0 and Zx(0) = 0
for all users. Let Af be a fixed capacity (rate) limit. At any time instance, the sum of load
rates is not allowed to exceed this limit.

Weassume that the £*(•) are continuous and fg° e-at\Zx\t)\dt < oo.
The problem is

P4:

max /0°° e-o* ££x Zx\xx\t))xx\t)dt

sub. to E£i ***(<) < M, t > 0,

x*'(t)>0, i = 1,2,...,7V, t>0.

Since xx(t) < M, and xx(>) is nondecreasing, x*(-) is absolutely continuous and £•'(•) is
defined almost everywhere.

The index of user i at load level / is defined by

•7i\ f,Te-Qa!MZx(s)ds

where /, r and s are load levels.

The concave envelope of reward process of user i is defined as before:

?{l) := max[0, inf /(«)], / > 0. (6.13)

The concave envelope has similar properties as its discrete counterpart.

Properties of an envelope process

1. 2F(/) is nonincreasing in /.

2. flQe-QalMZi{s)ds > fl0e-QalMZx(s)ds, I> 0.

3. f0e-°'alMZi(s)ds = IlQe-aalMZx\s)ds, for / such that Z(l) is strictly decreasing.
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Property 1 is immediate from the definition of the envelope processes. Properties 2 and

3 may be obtained by appropriately discretizing and applying the results in § 6.2.1, and

taking limits.

An index rule is the policy which allocates the capacity to the users with the

highest indices as long as there are users with positive indices.

Optimality of the index rule is proved through the same three steps as in § 6.2.1.

Let us prove the second claim for the continuous-time version. The continuous-time version

of Lemma 6.2.2 is useful.

Lemma 6.2.5 Let {X(t), t > 0} be a process such that

sup fT X(t)dt<0,
r>oJo

and let {f(t),t > 0} be a nonincreasing process such that

1 >l(t)>l(s)>0,t>s.

Then,

[°°l(t)X(t)dt<0.
Jo

The next step is to prove the continuous-time version of Lemma 6.2.3 by the change

of variables.

Lemma 6.2.6 Let {x(t),t > 0} be an arbitrary load pattern of user i over time.(x(0) = 0,

and 0 < x(t) < M.)

When x(') is applied to both the original process Zx and its concave envelope "2*,

Z yields at least as much total reward as Zx does, i.e.,

f°° e-aafM(Zx\s) - T(s))ds <0.

Proof Let the left inverse of the load pattern be x-1:

aT1^) :=inf{i>0|x(t)>/}, / > 0.

If / is never reached, set x~1(/) = oo. Observe that z-1(/) - l/M is nonnegative and

increasing in /. Let us use the convention e~°° = 0.

f^ €-"•!**(&{*)-?{s))d8 = y~e-oa;-1(/)(z«(/)-F(/))(f/
= l™ e-Q(x~l(')-//M)e-a//Af(z,(/) _£*'(/))<*/

Jt=o
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Take X(t) := e-al/M(Zx(l) - T(l)) and 7(/) := c-^'W-'/") in the previous lemma. D

To complete the proof of the optimality of the index rule, we need to show that

the index rule does maintain a tie in the largest index while allocating the capacity to those

users with the largest index. Refer to Mandelbaum[14] for details.2

Theorem 6.2.3 The index rule achieves the optimal total reward for problem P4.

We observe a hidden concavity property of P4, and relate the concave envelopes

to the Lagrange multiplier of the capacity constraint through the dual problem.

Let RX(ZX, x) be the total reward of user i with reward process {£*(/), / > 0} under

an allocation £(•), i.e.,

R^Z^x) := I™ e-atZ\x{t))x(t)dt
Jo

Let X be defined by {x\x(0) = 0 and 0 < x(t) <M,t> 0}.

Lemma 6.2.7 Rx(Zx,x) is concave in x(-) € X if and only ifZx(') is nonincreasing in load
level.

Proof First we assume Zx\l) isnonincreasing in /. let xi(-),x2(*) € X and 6 € [0,1]. Since
allocations are nondecreasing in time, we have

Z\eXl(t) + (1 - 6)x2(t)) < Z'XOx^t)) < Zx\xx{t)), t > 0.

Similarly, Z^dx^t) + (1 - 6)x2(t)) < Zx(x2(t)). Therefore,

&(&, $Xl +(1 - 0)x2) = I™ e-^Z^Oxiit) +(1 - e)x2(t))(0x1(t) +(1 - 9)x2(t))dt
jo

= r e-^Z^Oxxit) +(1" 0)x2{t))ex1{t)dt +
jo

f°° e-^Z^Bx^t) +(1 - 6)x2{t)){l - 6)x2{t))dt
jo

< 6r e'^Z^x^t^x^dt -¥(1-6) f°° e-QtZx(x2{t))x2(t)dt
JO Jo

= 0Rx\Z\ xx) +(1 - 6)R\Zi,x2)

Thus R is concave in load pattern.

Maintaining a tie involves knowing how fast indices are changing. Hence the additional information
needs to be communicated.
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Conversely, assume R is concave in load pattern. Let 0 < Si < 52, and xi(-) and

X2O) be such that

. , x f 1, for 0<t < st
[ 0, for t> si

. , N ( 1, for 0<t < s2
i2^ := { ' ,[ 0, for t > s2

Then

R'iZ^exi +(1 - 0)x2) = H e-QtZx(t)dt +(1-0) I'* Z\{1 - 0)t)dt
Jo Js\

and

0Ri(Zi,x1) +(1 - 0)R\Zx,x2) =0 r e-aiZx(t)dt +(1 - 0) H e-atZ\t)dt
Jo Jo

Therefore, concavity implies

j'2 e-at{Zx((l - 0)t) - Z^tfidt >0.
Jsi

Since 0,S\, and s2 are arbitrary, Zx is nonincreasing in load level. D

Remark

An (incremental) reward process Zx\l) can be thought of a derivative of U(l) :=
/0 Zx(s)ds. When Zx(l) is nondecreasing, U(l) is a concave function of/. The lemma above
is a consequence of this fact.

From the lemma above and the definition of Z*, wesee that when the original pro

cesses are replaced by their concave envelopes in problem P4, we havea concave program.

We saw that the optimal solution to the concave envelope version is the optimal solution

to the original problem, and yields the same total reward. The recognition of this hidden

concavity leads to the dual formulation. Let us define the Lagrangian by

£(*(.), A(-)) := re-^ZWWMdt- f°°'«"a<*(0(I>'(0 ~M)dt
Jo i=i J° ±1

= / e-a'[£ i\t){Z\xx(t)) - \(t)} +MX(t)]dt, (6.14)
J0 .=1

where x(-) := (xJ(.),.. .,xN(-)). Define the functional G(A) by

G'(A):=supi(x,A(.)) (6.15)
x>0
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Above, the supremumis taken overx* > 0 but free of the constraint £v=i x* < M.

The dual of P4 is defined by

D4:

infG(A) (6.16)

The weak duality relation follows from the definition: let y and n be feasible

solutions to P4 and D4 respectively, then

G(n) = supX(x,77)

> L{y,n)

= r e'at 2 ZWWmdt - f0e-atX(t)(£ W) - M)dt,
Jo ,=i J° ,=i

since y and n are feasible, X(t)(J2iLi y'(0 - M) > 0 for all t, and

„ N

e-**'
'o

roo N

L(y, n) > / e-at £ Zx\yx\t))yx\t)dt.
J0 »=i

Moreover, the strong duality relation holds. To see that replace Zx by "Z1. Let x" be an

allocation under an index rule, and set the corresponding multiplier by

A'(l)» max: ZV(*)).
t€{l,...,iV}

Note
roo N

G(\m) = sup / e-°'QTxi(t){F(xi(0) - \m(t)} +MA-(t)]dt '

is maximized by x*. Thus,

f°°e-atY^T{x*\t))x^(t)dt =L(x\\*) =G(A*) =Mf°°e-Qi\*(t)dt.
0 t=l •'o

Remarks

1. We may formulate a conjugate dual of P4 and obtain the concave envelopes as the

optimal dual variables.

2. Note the similarityof the bandit problem to a linear program. If the incremental rewards

were associated with the clock time rather than the load levels, it is a linear program

with timewise separability. As in LP, integer constraints Ac x(t) £ {o, 1} can be relaxed to

Acx(i) € [o, l] without affecting the optimality (provided a fractional assignment is properly
interpreted).
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6.3 Stochastic Bandit Problem

The results obtained through the analysis of deterministic problems are extended

to their stochastic counterparts. The main difference is an additional information require

ment on feasible policies: outcomes of future events should not be used in current decisions.

Since learning from past history becomes an essential part of the problem, the

dependency of reward processes across pipe users becomes an important issue. Unfortu

nately, the optimality of the index rule holds only under the restrictive condition of the

independence among reward processes.

In a stochastic setting, the index is defined as a forecast (or conditional expecta

tion) of the maximum attainable average reward rate (adjusted by the discount rate) based

on the past history of a reward process. The index rule is defined accordingly using this

index.

6.3.1 Discounted reward criterion: discrete time

User i is characterized by a reward process Zx := {Zx\l),Tx\l —l)}f-i- Zx(l) is a

(stochastic) prediscounted incremental reward from sending her /th packet, ^{l —1) is the

tr-field representing the information available after her load level reaches / —1. Zx(l) is in

general not T\l —Immeasurable, but we assume that it is part of the information contained

in Fx(l). Let

F(oo):=\[r(l).
/=o

To ease the notational burden, ^(O) is taken to be trivial for all users. Associated with

clock time is a fixed discount factor f3 € (0,1).

Assumptions on reward processes are listed below.

Assumption 6.3.1 We assume

1. independence of reward processes, i.e., ^,*(oo),« are independent,

2. information is never forgotten,

^(l)QTx\l-rl), i=l,2,...,N, / = 0,1,2,...,

3. expected total discounted reward is finite,

ET,fit\Zi(t)\<*>, i=l,2,...,N.
t=i
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An assignment is denoted by Acx(t) as before. Let Ac{t) := (Ac1(t),Ac:t(t),...,AcN(t)).
The problem is:

SP1:

max E.Zg* ££i ^Zx\xx\t))Acx\t)

sub. to J2^LiAcx(t) = i, t = l,2,...,

Acx\t) €{o,i}, t=l,2,...,iV, t=l,2,....

Ac(t) is V£i -F'Vt* - i))-measurable, <= 1,2,...

The last constraint is referred as the information constraint: an assignment at time t must

be based on information available from the actions taken by time t —1. All constraints are

meant to be satisfied almost surely.

Mandelbaum [13] formulates the problem as an optimalcontroloverpartiallyor

dered sets and characterizes an admissible policy as an optional path of multiparameter

processes. Let it be an admissible policy. One technical point involved in the proof by

the interchange argument is to show that the 'filtration associated with n\ say {^(t)}0^,
is well-defined as a single parameter (clock time) filtration, and what is expected, i.e.,

•?vM = Vi=i - '̂(sSrM)* where x^t) is the load level of user i at time t under policy x.
Also a '^-stopping time' need to be well-defined. The multiparameter process framework

provides a way to justify these intuitive notions. We take this for granted.

The index of user i at load level / is defined by

„(/+l).-esssupT>,+1 £K=i+i/W/)] , (6.17)

where the essential supremum is taken over all .^-stopping times.3 Infinite is allowed as

a value of a stopping time. Varaiya et ai [25] and Mandelbaum [13] showed that the

essential supremum in the definition is actually attained by a .^-stopping time under our
third assumption,4

t'(/ + 1) = inf{s > /+ l|i/«(j + 1) < !/•*(/ + 1)} (6.18)

Let us call this stopping time as the maximizing stopping time at load level / as before.

3The term 'stopping time' is used as customary in probability theory. However, the parameter is not a
dock time but a load level.

4Thus it may be justified to use 'max' instead of somewhat cumbersome 'esssup'. We use 'max' in most
of the rest of this chapter without further justification.
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The index rule is the policy which assigns the pipe to a user with the largest

index at the current load level at all times (almost surely).

We make an observation which we use later in the proof of the optimality of the

index rule. Let TX{1\ oo) be the information field representing the user Vsinformation about

her own reward process up to load level / and all the information about the other users'

reward processes, i.e.,

JFi(/;oo):=^(/)V(V^(°0))-

Because of the independence of the reward processes, the essential supremum of

£EJ=i+i/W;<»)]

over Tx('\ oo)-stopping times r > / + 1 will again be obtained by the maximizing stopping

time of (6.17), yielding the vx(l + 1) as the maximum value.

The concave envelope of reward process of user t is defined pathwise by,

?(l):=mi/(s), 1= 1,2,....

Asequence ofstochastic maximizing stopping times {rj(}jgL0 is defined as in (6.4) and (6.5).
The properties of the concave envelope are listed below.

Lemma 6.3.1 The concave envelope has the following properties:

1. Z (/) is TX{1 —Immeasurable for all I, and pathwise nonincreasing in I.

2. Stopped at an arbitrary ^-stopping time (or Tx\'', oo)-stopping time), the concave

envelope yields at least as much expected cumulative reward as the original reward

process,

T . T

EJ2 P'Z'is) >ES /^'(s), f°r al1 ?{- and ^(S oo)-stopping time r.
»=1 a=l

3. EZUifi'^is) = EZUiP'&i*), forr = rxk,k = 1,2,...

Proof Property 1 is immediate from the definition of the concave envelope. Let us derive

Property 2. Let r bean arbitrary . '̂-stopping time. Also let ft* := {rj. < r} for k = 0,1,...
and ljjfc their indicators. We write

~ tatj[+1

Ej20*Zi(s) = EY; £ 0-Z*(«)lofc.
*=1 *=0a=Tj+l
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For each k,

TATi+i TATk+i
E £ PaZ\s)lQk = E[lQkE[ J2 FZ^riTi)}]

«=Tj[+l tf=STfc+1

TAT*+1

< Ell^EWri + l) £ ^l^'(ri)]]
*=7j+l

TATfc+l
= £[lnkF(rj + l)JB[ 53 /^M)]]

,=T«+1

TAT*+i
= f?[l0jkf?[ 53 /?sF(5)|^(r^)]]

«=T«+1

TATfc+l

= E 53 j0T(j)1O|,
*=T'+1

Summing over A:, we obtain Property 2. When r is a .?"*(•; oo) stoppingtime, condition on
jF'(r«; oo).

Property 3 is obtained by noting that when t = t£ for some k, the inequality
above becomes equality for each j < k. D

The claims made in §6.2.1 is valid for the stochastic version provided we interpret
the total reward as the expected total reward. Claim 1 is valid because the myopic policy
for concave envelopes are informationally feasible and optimal by Property 1.' Claim 2 is

verified by utilizing stochastic counterpart of Lemma 6.2.2 cited below from Varaiya et
a/.[25].

Lemma 6.3.2 Let {X^t)}^ be a sequence of random variables on a probability space
(toiG,'P)- Let {.F(0}t=i be an increasing family of sub-a-field of Q, and suppose that
£E2iW*)l<oo. V

T

m*xE(£X(t)\f(l)]<0 (6.19)

where the supremum is taken over all^-stopping times, then,

^E«(«W*)I^(1)]<0 (6.20)
<=i

for all T-adapted random sequences {^(t)}^ such that

l>a(t)>a(t+l)>0, t = 1,2,...
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The following lemma is the stochastic counterpart of Lemma 6.2.3.

Lemma 6.3.3 Let {x(t)}fl0 be an arbitrary load pattern of user i such that x(0) = 0,

Ac(t) € {o, i}, and Ac(t) is rx(x{t - 1); oo)-measurable. Then,

JS?f)i9«(Z«(«(t)) - ?{z(t)))M*) <o-
t=i

Proof As before let x"1 be the left inverse of the load pattern.

£f><(Z'(x(t)) - ?(z(t)))Mt) =EJTP(X~HI)-1)P1(ZV) - '̂(0)
t=l t=l

Since x_1(/) - / is pathwise nonnegative and nondecreasing in /, it remains to showthat it

is ,?"*(•; oo)-adapted, i.e., x_1(/) is Fx(l - 1;oo)-measurable. But this follows from the load

pattern's measurability. •

Since any informationally feasible assignment satisfies the condition on a load

pattern in the lemma above for each user, the second claim is verified.

The third claim follows from Property 3. Thus the optimality of the index rule is

proved.

Theorem 6.3.1 The index rule achieves the optimal rewardfor problem SPl.

6.3.2 Average reward criterion

The result of § 6.2.2, the asymptotic optimality of the index rule, is extended to

the stochastic counterpart of the problem.

We replace the third assumption of Assumption 6.3.1 by the following.

Assumption 6.3.2 We assume

3'. The essential supremum of the following is attained by a ^-stopping time.

£EJ-/+i Zx(s)\Tx(l)] .esssupT>,+1 ^Iji^)"', ••=1,2,...,* 1-0,1,...
As before let us start with an assignment of a single pipe with the deadline T.

SP2:

max EY:$LiT,t=iZx(xxXt))Acx(t)

sub. to ESiM')<i. t = l,2,...,T

Acx{t)€ {o,i}, i=l,2,...,N, t=l,2,...,T

information constraint.



The information constraint is same as in SP1.

The index at load level / is defined by

Ill

,.(,+i):=ma,£!%H|^)l£!(01,/=o,i,..
t>/+i E[t-1\T1{1)] ' '

The concave envelope is defined by

F(/) := max[0, infi/'($)], /= 1,2,....
8<l

The index rule is defined accordingly. Claims 1,2, and 3' made in deterministic case are

valid provided the total reward is interpreted as the expected total reward. A bound in

terms of r£ and the index is desirable. Let tt be an index rule. We employ the same notation

as in § 6.2.2. Now k is the user to whom ir assigns the pipe at time T, and /*' := xj^T). r£
is random. Let EAV be the difference between the optimal expected total reward and the

expected total reward earned under ic. The stochastic counterpart of (6.8) is

EAV<E 53 Z«{s).
a=/*+i

(Note that (6.8) does not hold pathwise.)

We pose the following uniform bounds on conditional expectations ofmaximizing
stopping times and indices.

Assumption 6.3.3 We assume

1. E[rx(l + 1) - /|^(/)] < D, for i = 1,2,...,N,l= 1,2,...

2. vx\l)<W, for i= 1,2,...,N, 1=1,2,...

These are very strong conditions. However, when there are specific structures on reward
processes, there will be better and obvious bounds.

Proposition 6.3.1 Under Assumption 6.3.3, we have

EAV < WD.

Proof Let {^v(0}fei be the filtration associated with 7r. T^(t) represents the information
available at time t (after the delivery at the time).

Tn+i r-+1

E 53 Z«(s) = E[E[ 53 ZK(s)\^(T))]
S=l«+1 5=/*+l
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rn+l

= E[E[ 53 Z'tol^/*)]]
S=/*+ l

< £[*/*(/* + l)£[r£+1 - /*|:F«(/*)]]

< £[T'7£[r£+1 - /W)]]

< WZ)

as desired. •

Since the bound on EAV does not depend on the length of horizon, we have

Theorem 6.3.2 Under Assumption 6.3.3, the indexpolicy is asymptotically optimal under

the average expected reward criterion.

6.3.3 Multiple pipes

We move on to an assignment of multiple pipes. A finite horizon problem is

SP3:

max £EHiEf=i^(i,'(0)^,'W

sub. to E£i^(*)<M, t=l,2,...,T

Acx(t) €{o,i}, i = l,2,...,JV, t = l,2,...,T.

information constraint.

Again, the information constraint is as in SP1.

Let us pose the following conditions on the reward processes.

Assumption 6.3.4 1. The expected number of remaining packets is uniformly bounded,

E[ax-l\r(l))<D, i=l,2,...,N, 1= 1,2,...

2. The index is uniformly bounded,

u\l)<W, i=l,2,...,N, 1= 1,2,...

By arguing as in § 6.2.3 and § 6.3.2, we have

Proposition 6.3.2 Under the assumption above, the difference between the optimal ex

pected total reward and the expected total reward from an arbitrary index policy is bounded
by MWD.

When the number ofthe available pipes changes independently ofreward processes
and of assignments, and satisfies 2? max* M(t) < M, we have an error bound of MWD.
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6.3.4 Discounted reward criterion: continuous time

The stochastic version of the continuous time bandit is briefly discussed.

Mandelbaum[14] showed the optimality of the index rule. Details are left to [14].

A reward process is defined by {£*(/),-F*(/), / > 0}. Interpretation of Zx(l) is as in

§ 6.2.4, and J71^) is the a-field representing the information available after user t's load level

reaches /. The capacity of the pipe is fixed at M over the infinite horizon. Assumptions on

reward processes include

1. independence of reward processes, i.e., ^'(ooj's are independent,

2. information is never forgotten,

F(l) C F(l'), i = 1,2,...,N, 0 < / < /',

3. {?*(')} is right continuous, i = 1,2,...,N,

4. Zx(') is pathwise continuous, i = 1,2,..., N,

5. expected total discounted reward is finite,

Er e-at\Zi{t)\dt < oo
Jo

The problem is

SP4:

max E /0°° e-at££i Zx\xx\t))xx\t)dt

sub. to £fci xx(t) <M, t>0,

xx(t)>0, i= 1,2,...,N, t> 0.

information constraint

The index of user i at load level / is defined by

,/n E[f,T e-as/MZx(s)ds\Tx(l)]

where l,r and s correspond to load levels, and the maximum is taken over .^-stopping
times.
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The concave envelope of the reward process of user i is defined pathwise by

T(l) := max[0, inf ux(s)], I> 0. (6.22)

Properties of an envelope process

1. Z*(/) is pathwise nonincreasing in /.

2. E^e-aslMZi(s)ds > E/0T e^aafMZx\s)ds, for all Tx- and .P'(.;oo)-stoppmg time r.

3. E^e-Q3lMZi(s)ds = Eft e-aalMZx(s)ds, for r such that Z(r) is strictly decreas
ing.

A proof of the above involves successive discretization of reward processes and consideration

of stopping times which take values at the grid points created by the discretization. The

optimality of the index rule may be shown by followingthe steps in the proof of the discrete

time version.

The Lagrangian is defined by

£(«, x(-), A(.)) = r e~at £ Zx\xx\t))xx\t)dt - j*e-°"A(*)(53 *•(*) - MJdt (6.23)
Jo t=i Jo ,=i

where x := (x1,.. .,xN).

A functional G(u, A) is defined by

G(u, A) := sup L(lj, x, A).
&>o

The dual of SP4 is defined by

SD4:

essinf\>oEG(u>, A).

The weak duality result follows from the definitions. Let x* be the allocation under the

index policy. By setting

A*(t) := max Zi(xmi(t)Y

the strong duality, too, can be obtained.
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6.4 Superprocess

In this and the following sections, we reexamine the results about superprocesses

and an arm-acquiring bandit problemin § C and § D of Varaiya et al.[25].

The definition of domination is cited and expressed in terms of concave envelopes.

The expression clarifies the relation of the domination to Whittle's M-process.

6.4.1 Problem instance

The problem instance of superprocesses in [25] is repeated here.

A superprocess is a collection of reward processes. We assume there are N super-

processes. Superprocess i" is denoted by XJ := {Xx, i € /}, where by abuse of notation, J

represents some index set. We assume that superprocesses are independent, i.e., given any

collection of N reward processes, one from each superprocess, {Xx € XJ,J = 1,...,N},

(Txl(co),. ..,TX (oo)) are independent. Note that independence ofthe reward processes
within a superprocess is not assumed.

For each selection {X{ e X*,I = 1,2,...,N}, let V*(X\X2,.. .,XN) be the
maximum expected reward of the 'standard' bandit in § 6.3.1. The bandit problem associ

ated with the N superprocesses is to find {Xx € X7,1 = 1,2,...,N} to maximize

max V*(XX,X2,...,XN).
{X«€XO v ' '

The selection of the optimal collection (X1,X2,...,XN) will usually have to be jointly
determined. However, when there is a dominant process (the definition will be given in the

next subsection) within each superprocess, then the selection can be made independently
of each other.

6.4.2 Domination among Reward Processes

The definition ofdomination is cited from [25]. Let X := {X{l),Tx(l - 1)}^
and Y := {Y(l),TY(l- 1)}^ be two reward processes.

Process X dominates process Y if

TX ty

Va € R, max E£ Pl(X(l) - a) > max EV (3l{Y(l) - a), (6.24)
T >0 /=i tV>° £1

where rx ranges over .FA'-stopping times and rY over J"r-stopping times.
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The stopping times in (6.24) are easily found when we consider the concave en

velopes X and Y.

Lemma 6.4.1 The original rewardprocess and its concave envelope dominate each other,

r t

m&xE^2/3l(X(l)-a) = maxE^^(X(/) - a), Va € R.

Moreover, there is a common maximizing stopping timefor both processes for each value of

a.

Proof LHS < RHS follows from Property 2 of the concave envelope in Lemma 6.3.1. We

will find an optimal stopping time for RHS and show that the same stopping time applied

to LHS yields equality.

Since X(l) is nonincreasing in /, the optimizing stopping time is easily found. Let

ra := inf{/ > 0|X(/ + 1) < a}. (6.25)

Since X(l + 1) is ^"^(/J-measurable, r0 is indeed ^-stopping time. Thus by Property 3 of

the concave envelope in Lemma 6.3.1.

To T0

as desired.

eY,P1x{1) = eY:p1x(1),
/=1 /=1

From definition (6.25), we see that when a < b, r0 < rj. Also notice that X

dominates Y if and only if X dominates Y. The domination expressed in terms of the

concave envelopes has an intuitive interpretation which relates to Whittle's M-processes.

Let X(l) Va := max(J\T(/),a). Since

max2?X>'W0-a) = ^/3l(X(l) - a)
l=i l=i

= Ef^j3l(X(l)Wa-a)
i=i

/=1 L ~ P

X dominates Y if and only if

E53 (3l(X(l) Va) >E£ /?'(F(/) Va), Va <= R. (6.26)
/=i /=i
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The process {X(l) Va}^ may be interpreted as the reward process obtained under the

optimal retirement plan. Thus X dominates Y, if for all values of retirement pension a, X

is favored over Y.

Given a reward process X and a retirement pension a, let V(a) be the maximum

expected reward under the optimal retirement plan, i.e.,

V(a):=£f>'(X(/)Va).
/=i

Lemma 6.4.2 V(a) is nondecreasing and convex in a.

Proof Nondecreasing part is clear from the definition.

Let v(a) be the pathwise total reward under the optimal retirement plan when the

pension is a,

v(a) := 2>(X(/)Va)
/=i

Ta

P= £/?<T(/) +a/T«-4-.
/=i L P

We will show that v(a) is convex in a. Let a < b, 0 < A< 1, and c := Xa + (1 - A)6. We

have t\, < tc < ra. Consider retirement plans which run the process up to rc and retire

with pension b and a respectively. We note that v(c) is a convex combination of the total

rewards from these plans. Clearly, v(b) and v(a) are at least as large as the total rewards

from these plans respectively. Thus the claimed convexity. In equations,

V> Tc

»(6) = X>T(;)+ £ /j'i +i/r'-A-j
(=1 l=TJ+l L P

> E/3'X(/)+ f; /3'T(/) +rr^f
1=1 1=^+1 L- p

= E/^O +W*^
/=1 l "

v(a) = jrP<X(l)+ f; p>X(l) +al3«>-L-
1=1 |=T<!+1 L-P

> f)/JT(/)+ f) 0<a +air°-£-
i=i /=Te+i x ~ ^

= £>'*(/)+ «/T«-A-
/=1 -1 - P
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P-v(c) = £/?'*(/)+ c/r<-^-
/=i i P

Therefore, Av(a) + (1 - A)v(6) > v(c). To complete the proof, take expectation. D

6.4.3 Domination and optimal selection

Our goal is to prove Lemma 3.2 of [25] cited below.

Lemma 6.4.3 Let X,Y,Z be three reward processes such that ,F-*(co) and .Fz(oo) are
independent, and TY(oo) and Tz(oo) are independent. IfX dominates Y, thenV*(X,Z) >
V*(Y,Z).

Let X, Y,Z be reward processes satisfying the conditions of the lemma above. For

simplicity we assume they are nonnegative. The pair {X, Y] is viewed as a superprocess

here. From this lemma, it is straightforward to derive

Theorem 6.4.1 Suppose Xx € X7 dominates every other Yx € X7. Then

V*(X\X2,...,XN) = max V*(Y\Y2,...,YN).
{y«eX'} v J

Refer to [25] for the derivation of the theorem.

Given two independent reward processes X and Z, let the reward sequence ob

tained by applying the index rule to this pair be denoted by {i/ix^(t),^x^(t - 1)}^.
We will show that i/Wrf dominates i/M, that is, the optimal sequencing of the pair [X, Z]
with the optimal retirement plan yields at least as large expected reward as the pair [Y, Z]
does for every retirement pension. This implies Lemma 6.4.3.

Note that the concave envelope of v\x#\ is identical to the concave envelope of
u\x,Z) Also note that process v^x^{t) is nonincreasing, since Xis nonincreasing. Therefore
theconcave envelope ofi/lA''Zl isitself. So it is enough to show that i/f^2! dominates vF#\.

The following observation is the key to prove the dominance relation.

Lemma 6.4.4 Let Z be a deterministic reward process defined by

[ 0, / >s,
where b > 0. Let a (< b) be a retirement pension. Then

53 p\^z\t)Va) =(1 - F) f; fi\X(t) V6) +0a £ p(X(t) Va). (6.27)
*=i t=i f=1



Proof Note that

OO Tb

53 WO v&) = E/^W +^nh?
t=i t=i l p

f><(X(*)va) = f)/3«X(t) +/r*f;^(T(n +0va),
and

EW^wva) = E^w+^E^+^+'E/^fo+ova)
t=i

T6

<=1 t=l t=l

E
t=i t=i t=i t=i

th a oo
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= E0'*(O +^T6rr^(i - /n + /?5/?T6 E(7^ +0 va).
t=l L p t=l

The claim of the lemma follows. •

Note that the coefficients of the convex combination in (6.27) depends only on

Z. So we have the same coefficient of the convex combination for Y process. Thus taking

expectation of (6.27) and its counterpart for Y, and using the domination of X over Y,

we have £££i0'("tr,*,(O v °) > EE£i PK^^W Va) for a < b. When a > b,
uix^(t) Va = T(t) Va and £££i ^{v^^t) Vo)> f?E£i /^^W Va) follows
immediately from the domination ofX over Y. Thus for this Z, i/P^l dominates i/l^l.

Now let Z be a deterministic and nonincreasing reward process defined by

Z(l) := 6„, 5„_i < / < 6„, n = 1,2,..., . (6.28)

where sq = 0 and &i > 62 > •• • > 0. We will show the dominance of u^x,z^ over i/P^ for

this case. Let Zn(l) be the reward sequence curtailed at time sn, i.e.,

I 0, />s.

Let w^(a) := ££1 /?'(i/lA''z»](t) Va) be the optimal (pathwise) reward from pair [X,Zn]
when the retirement pension is a. Set 60 = 00, and wx(a) := ££1 /?'(X(<) Va). Then
arguing as in the proof of Lemma 6.4.4, we find for n > 1,

X, n / vfi-M* a>bn,
1(1- /3a»-s«-1 )w*.1(6n) + /J-—-1 w* !(o), a < bn.

Thus we can inductively prove Ewx(a) > EwY(a) for all a. Since Yl^i /^(i/f^Jt) Va) =
u>*(a) for bn > a > 6n+i» the desired dominance follows.
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Finally, let Z be random but independents both X and Y. We argue through

their concave envelopes.

Lemma 6.4.5 Let X,Y,Z be as in Lemma 6.4-3. Then i/lx>z] dominates u^YZ^.

Proof Let {crfc}£°_0 be the sequence of the maximizing stopping times defined as in §6.3.1,

i.e.,

(To = 0,

ak+1 := inf{/ > ok\vz(l+ 1) < vz(pk + 1)}, k = 0,1,...

Let Zn be the Z curtailed at <rn, wj(a) := ££i (3\v^^\t) Va) for n > 1. As before
wj(a) := E£i P*(^(t) Va). Then as in (6.29), for n > 1,

wX/a) =i w£-i(a). on {a >Z(an)},
\ (1 - /^-'"-O^-lC^K)) +^n-an_1^_i(a)j on {fl <2(<rn)}.

We claim

E[wx(a)\Tz{cn)] > E[wY(a)\Fz(an)], a > 0, n = 0,1,...

We prove the claim by induction. Recall that Z(/) = ~Z{ak +1) = Z(<7jt+i) for crfc + 1 < / <

<rk+i, and also that Z(/ + 1) is .Fz(/)-measurable. Hence Z(<rjt+i) is .Fz(<7fc)-measurable.

For n = 0, the claim is true by the domination of X over Y.

Suppose that the claim is true for n —1. Fix a. On {a < Z(a„)},

E[wX(a)\Fz(an)) = (1 - /J'.-'-i )E[W;Al1(Z((7n))|^(orn)]+/J*«-*-i E[^_1(a)|^z(an)].

Since Z(crn) is .Fz(<7n_i)-measurable and by its definition wx_x{a) does not include any
incremental reward from Z-process beyond ~Z(an-{),

£[«&l(^(*»))l^(*n)] = £?[wJ.1(7(crB))|^(0rn„1)].

Also the independence of X and Z implies

B[vZ-i(*)\rZ(*n)] = ^-iMI^Vn-i)].

Thus the claim for n - 1 implies that for n on {a < Z(an)}. A similar argument can be
made on {a > Z(an)}.
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Since E£i W^(*)Va) = wx{a) on nn-:= (Z(an) > a > Z(an+1)} € Tz{an),
we may write

oo oo

£/jV"l(«)Va) =£ln.iDj(a),
t=l n=0

where ft0 •= {a > Z(l)} is either the empty set or the entire space. Thus the lemma

follows from the claim above. •

Remark

Consider a problem involving several controlled machines. States of each machine

are independent of states and control actions of other machines. We may regard each

machine with all its possible 'local' feedback laws as a superprocess.

As Varaiya et a/.[25] shows, wheneach superprocess contains a dominant machine,

the optimal strategy for the controlled multi-armed bandit problem is to operate these dom

inating machines according to the index rule. Note this result does not immediately follow

from Theorem 6.4.1, since an admissible control policy can use the information gathered

through past activities. See [25] for details.

6.5 Arm-acquiring Bandit

We move on to the case in which thesystem admits new arrivals ofpipe users (and
hence reward processes). Along with Assumption 6.3.1, we assume:

Assumption 6.5.1 The future arrivals are independent of the past and the present control
actions.

We introduce notation for the arrival processes here. Throughout this section,

A(t) is the set of pipe users that arrived at time t after the assignment of the pipe at the

time (hence they become eligible for an assignment at time t+1, but not at time t). A(0)
is the set of pipe users initially present in the system. A(t) is the set of users present at

the end of time t, i.e., A(t) := \Jl=0 A(s).

In § 6.5.1 it is shown that when the unassigned user processes are frozen as assumed

in the case of the ordinary bandit problem, an optimal policy has a greedy nature in the

sense that it maximizes the expected average reward rate (adjusted by the discount factor)
at every state as in the ordinary bandit problem.
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In § 6.5.2 the nested structure of the optimal policy for an arm-acquiring bandit

with i.i.d. arrival processes is shown.

6.5.1 Domination by an optimal policy

The index rule for the ordinary bandit problem in § 6.3.1 is a greedy policy in the

sense mentioned above. We assume the existence of an optimal policy and show that under

our assumptions the greedy policy is optimal for the arm-acquiring bandit problem.

We approach the task through the examination of optimal policies for problems

with retirement pensions. In the following we assume the existence of an optimal policy

for every problem with a retirement pension. Also all the relevant essential supremums are

assumed to be attained by well-defined stopping times.

Our immediate goal is to prove Lemma 3.5 in [25] restated below as Proposi

tion 6.5.1. The proof given in [25] is incomplete, and we aim to fill the gap.

Let 7r be an arbitrary admissible policy. Let X* := {X*(t),?"*(t - 1)}°°-! be the

reward sequence realized under t. The concave envelope of X*" can be formed as usual.

It is denoted by X*. Let V(a; x) be the expected reward from policy tt with the optimal
retirement when the pension is a,

V(a;x):=£E/?'(:rr(t)Va).
t=i

Let r*(a) be the time of the earliest optimal retirement,

T*{a) := M{t > 0\X"(t +1) < a}. (6.30)

Let 7r(6) be an optimal policy for theproblem with pension b, i.e., V*(6) := maxT V(6; 7r) =
y(6;7r(6)). In Proposition 6.5.1, it will be shown that for a smaller pension a < b, there

is an optimal policy n(a) which is a continuation of 7r(6) from rfl"(6)(6) on. Therefore, in

effect, the optimal policy for the assignment problem without any retirement pension is

an optimal policy for all problems with retirement pensions, and hence it maximizes the

expected average reward ratein any state. In view ofLemma 6.4.2, V*(*) isa nondecreasing
convex function as Whittle[32] showed.

We make a few observations on admissible policies.

Let a reward sequence from an admissible policy x be denoted by

A'(l),...,X(C1),X(Ci + l),...,X(C2),X(C2+l),...,X(C3),X(C3+l),...,X(C4),-..,
block 1 block 2 block 3 block 4
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where the C„ are ^-stopping times.

Observation 1: Assume that the sequence obtained by exchanging block 2 and block 4,

;y(i),..M*(Ci),,*(C3+i),..^
block 1 block 4 block 3 block 2

constitutes a reward sequence from another admissible policy. Then, policy tt has chosen the

reward sequence of block4 independent of the events in block2 and 3 (includingarrivals in

theseperiods and the associated information) given the eventsin block 1. Thus forexample,

<4 C4

E[ E ^(OI^Ks)] =E[ £ /^MI^(Ci)].
<=C3+1 t=C3+l

(Here and in the following, reward sequences and their filtrations are indexed by the time

appeared in their original sequences.) Also policy ir has chosen the reward sequence of

block 3 independent of the events in block 2 given the events in block 1. Therefore, any

sequence obtained by placing blocks 2, 3, and 4 in an arbitrary order can be the result from

an admissible policy. Note that this makes senseonly because the unassinged processes are

frozen and the arrival processes are independent of the past control actions.

Observation 2: Assume that the sequence obtained by removing a block, say block 2,

X(i),...,X((1),x(C2+i),-..,X((3),x((3+i),...,x(<;4),....
block 1 block 3 block 4

constitutes a sequence from another admissiblepolicy. Then, policy x has chosen the reward

sequence from the time £2 onward independent of the events in block 2 given the events in
block 1.

Lemma 6.5.1 Let 7r(6) be an optimal policy when the retirement pension is b, and let
T*(b)(b) =: t be as in (6.30). Let

Z(l)^.,Z(Ci),Z(Ci + l),...,Z(C2),Z(C2 + l),...,Z(C3),
block 1 block 2 block 3

Z(C3 + l),...^(C4),Z(C4+l),...,Z(r),6,6,6,....
block 4 block 5

be the associated reward sequence.

Assume that the sequence obtained by removing block 2 constitutes a sequence from
another admissible policy. Then the expected average reward rate in block 2 given the events
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in block 1 (i.e., conditioned onT^b\Ci)) is no less than that in blocks 3, 4, and 5, and also
the expected average reward rate in blocks 3, 4f o,nd 5 given the events in block 1 is in turn

no less than b, i.e.,

£E&<1+1/J'l^>«i)] _ *EL<2+1/5'l^<6>«i)] - ' as- (b-il)
Assume that the sequence obtained by exchanging block 2 and block 4 constitutes a

sequence from another admissible policy. Then, the expected average reward rate in block 2

given the events in block 1 is no less than that in block 3, and which is in turn no less than

that in block 4> Also the expected average reward rate in block 5 given the events in block 1

is no less than b.

Assume that a block of rewards Y(l),...,Y(p) is inserted after a Tr^-stopping

time £ (< r) and the resulting sequence constitutes a reward process from another admissible

policy. Then, the expected average reward rate from the inserted block given the events by

time £ (i.e., conditioned on T^iQ) is no greater than the expected average reward rate
during £ < t < r nor b.

Proof We prove the first inequality of (6.31). Other claims can be proved in a similar

manner. Note that the sequence obtained from exchanging block 2 and the rest of reward

sequence up to time r (block 1, block 3, block 4, block 5, block 2, 6,6,6,... ) constitutes

a reward sequence from some admissible policy, say f. To ease the notation, let us write

^ := C2 - Ci> an<* n:= r - £2. Let A be the difference in the (pathwise) rewards from ir(b)
and ft, i.e.,

A := /?Cl[[E/^(Ci +t) +/?*E^^^
L*=i t=i *=i t=i J
r s v i

= p* (1 - /?*) E P'zib +1) - (1 - ps) 53/?<z(c2 +1) .
1 t=i t=i J

Let ft0 := {.EtAl.P^Ci)] < 0}. On {ft = 00}, we use the convention A = 0. We assume
Prob({Ci = 00}) < 1. Note that 6and £?=i /3*Z(C2 +1) are conditionally independent given
^(^(Ci), and similarly for r/ and YLi P^iCi + t). Thus

J5[A|̂ *<6>(Ci)] = ^[^[l-^I^^^CiME^^Ci +OI^^CCi)]

•e[i - ^Vr(6)(Ci)]^[E^z(c2 +oi^(6)(Ci)]l
*=1 -I
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We will show that Prob(Qo) = 0, which leads to the desired result.

Consider the policy which follows 7r(6) except for events in £lo, for which it follows

ft after ("l- The policy is admissible since both 7r(6) and ft are admissible and Ho € ^""^(Ci)-

Thus if Prob(fto) > 0, this policy yields strictly larger expected reward than 7r(6) does. But

this contradicts the optimality of fi"(6). •

Remarks

1. Inequalities involving 6, for example the second inequality in (6.31), may be strengthened

to strict inequalities by using the definition (6.30) of r = r^6)(6) as the earliest optimal

retirement time.

2. Roughly speaking the lemma above says that an optimal policy arranges exchangeable

blocks, if there are any, in the decreasing order of the expected average reward rates. We

call this the 'greedy' property of an optimal policy.

Proposition 6.5.1 Let ir(b) be an optimal policy for the problem with the retirement pen

sion b. Let t be an optimal retirement time under tt(6) (not necessarily the earliestpossible

one). Let a be another retirement pension strictly less than 6. Then there is <in optimal

policy for the problem with the retirement pension a which follows tt(6) up to r.

Proof Let {Z(l), Z(2),..., Z(t)} be the reward sequence under tt(6) up to r. Let ir(a)

be an optimal policy for the problem with the pension a. Let the corresponding'(pathwise)

reward sequence under 7r(a) be

y(i),...,y(Vl),z(Ci + i),...,z(Ci + ^),...,y(vi + i) y(t>2),

Z(C2 + l),...,Z(C2 + ^),...,yK + l),...,y(rff(°)(a)),a,a,a,....

where the Z(-) in this sequence represent the incremental rewards appearing as a part of

{Z(l), Z(2),..., Z(t)}, but not necessarily in the same order. By the observations we made

about admissible policies, we see that the sequence

z(i),...,z(r),y(i) y(^i),yK + i),...,y(t;2),...,

Y(vK + l),...,Y(r^)(a)),a,a,a,...

constitutes a reward sequence from an admissible policy. Lemma 6.5.1 may be applied to

show that the second sequence can be obtained from the first one by inserting blocks and
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exchanging blocks pairwise in a manner it does not decrease the expected reward while

maintaining admissibility. •

Remark

From the optimality of ir(a) and Lemma 6.5.1, we see that 7r(a) retired at r ^°)(6),

too, is optimal to the problem with the retirement pension 6. Also note that when r :=

r*(6)(6) is the earliest optimal retirement time, there is no room to insert another block

in {Z(1),Z(2),...,Z(r)}. It is the optimal reward sequence up to the interchange within
itself.

Theorem 6.5.1 A policy for the assignment problem without a retirement option is optimal

if and only if it is optimal for all problems with retirement pensions. In other words, the

reward sequence from an optimal policy necessarily dominates reward sequences from all the
admissible policies.

Proof Immediate from Proposition 6.5.1. •

6.5.2 Nested structure of an optimal policy for i.i.d. arrival processes

In this subsection, we assume that arrival processes {Aty}^ are i.i.d.. With this

additional restriction, an optimal policy is shown to have a nested structure which allows

decentralization of decision making.

The nested structure of an optimal policy may be explained through a fictitious

auction. The pipe owner holds the initialauction at time 1. The participants of this auction

are the users present in the system initially (at time 0). Auctioned is the right to use the

pipe oneself or to sublet the pipe to another pipeuser. A bid is interpreted as a rent in each

period while a user occupies the pipe as its user or subletter. A user is free to terminate

the lease. In general, each user's bid price will depend on the information about reward

processes of the other users present at the time as well as the information about her own

reward process and the arrival processes. When the arrival processes are i.i.d., the matter

simplifies. It will be shown that in this case, a primary renter sublets to only those who
arrive after she wins the bid, if she ever sublets. Therefore, each participant decides her
bid price based on the information about her own reward process and the arrival processes
alone. Once the primary renter sublets (to the highest bidder of auction held by her, if
the highest bid is higher than her rent), the secondary renter behaves just as the primary
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renter, either he uses the pipe or sublets. When he-is through (with on going rent to the

primary renter), the pipe is returned to the primary renter, upon which she uses it herself

or sublets it or returns to the owner. We call this process of auctions and sublets the nested

(auction) structureof the optimal policy. The expected total reward from an optimal policy

is the amount the pipe owner collects from the primary renters.

We utilize the following properties of a reward process and maximizing stopping

times in showing the nested structure.

Lemma 6.5.2 Let {Z(/),^"(/— l)}^ be a reward sequence. Let indices {v(l + 1)}£0 be

defined as usual. Let t* := r(l) = inf{.s > l\v(s + 1) < ^(1)} be the earliest stopping time

at load level 0 which maximizes the expected average reward rate. Let a be an arbitrary

^-stopping time. Then on {a < r*},

ElU-^iP'Z^Hcr)]

From the above we have

Proof Let

fio -{a<T} ni eei^pW] - *(1)/'
We will show that Prob(fto) = 0. Consider the stopping time £ which takes value a on Q.q,

and r* otherwise.

E'Ep'ZW = «-(l)£i>'Z«--E[lno £ P'Z(t)]
t=l t=l t=a+l

= *(l)f:f>Z(t)-.E[lo.£[£ P'Z(t)\H°)]]
t=l t=a+l

> v0.)Ej2P'Z(t)-»Q.)E[ltkf[J£ p'\H")]]
t=l t=o+l

= u(1)EJ2p'
t=l

eV m>

By the definition of i/(l), the inequality above is satisfied with equality. But this contradicts

the assumption that t* is the earliest stopping time maximizing the expected average reward

rate. •
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The result extends to the case involving themaximizing stopping time at any load

level. Let r(l + 1) = inf{s > I+ l\v(s + 1) < u(l + 1)}, then on {a < t(1 + 1)},

rr—r > Uil + 1), a.S.

E[Zr£l\P>\H°)]
The next property is immediate from the definition of r(/ + 1).

Lemma 6.5.3 Fix I, thenfor I < s < t(1 + 1), v(s + 1) > v{l + 1) and r(s + 1) < r(/ + 1).

Let us go back to the arm-acquiring bandit with i.i.d. arrival processes.

Let tt* be an optimal policy and {Z(t),T*(t —l)}?^i be the reward process under

7T*, where F*(t —1) represents information available at time t gathered through control

actions by time t—1.

Let u(') and r(-) be defined as usual, i.e.,

f(t + 11 := max—_,—_ . , _ ,,.,—, i = 0,1,2,....v } r>t+i E[£l=t+1pa\F*(t)]
r(<+l) := mf{s>t+l\v(s+l)<v(t + l)},t = 0,l,2,....

Theorem 6.5.2 Let k be the user to whom the optimal policy ir* assigns the pipe at time 1.

Then for the time interval 1 < s < r(l), tt* does not assign the pipe to the other users

present at time 0.

In general, let «(t) be the user to whom n* assigns the pipe at time t. Then for

the time interval t < s < r(t), ir* does not assign the pipe to the other users present at the

end of time t—1 (users in A(t - 1) \ {n(t)}).

Proof We prove the theorem for the initial assignment. The general case can be proved

in a similar manner.

Let t* := r(l). Let o\ + 1 be the first time w* assigns the pipe to some user other

than k who are initially present in the system. Since the assignment of the pipe at time

s + 1 is made based on the information gathered by time s, a is a ^""-stopping time. Let

ft0 := {<7j < r*}. We will show that on fi0»

sei;„+i/^(*)i^>i)i . ...
£[Ei:„+1 /»Woi)] - (1)' a-s'

In view of Lemma 6.5.2, it follows Prob(ft0) = 0, which is the desired result.
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Let A((T0) := A(0) \ {k} and A(<7i) := A(ai) \ A(a0). A(<70) is the set of users

who do not receive the initial assignment. A(<7i) is the set consisting of users who arrive

by the end of time C\ and user k. Thus A(oo) is the set of users who do not receive an

assignment in the time interval 1 < s < a\, while A(a\) is the set of users who may receive

assignments in the same interval. a\ + l starts the time interval during which the users in

A(oti) do not receive an assignment of the pipe.

We claim that on ft0> ** assigns the pipe to users in A(a{) at some time in the

interval a\ + 1 < s < r* (a.s.). Let ft0 Q &o be the set on which this claim fails. By

Lemma 6.5.2 and the definition of r(a\ + 1), on H0

"(i) <

£EI=„1+,/3*.zM|.f>i)]
max* -eE;=„1+i/js|;p.(<ti)]

E[T7£Slp°z(s)\r\„x))
a.s.

Note r(eri + 1) < r* by Lemma 6.5.3 on J20« Since the maximum expected reward rate is

attained without assigning the pipe to the users in A(oi) (the users arrivingin 1 < s < o\

and k, who contribute to T*(o\)) and the reward processes are independent, the last term

is equal to
En:=^iPaz{s)

max—„_,JT ——
- EZTs=*1+iPs

( i.e., T*(<J\) may randomize the optimal stopping time but the randomization does not

increase the expected reward rate). Now consider a slightly different problem in that the

users initially present in the system do not include k, the one who receives the first assign
ment in the original problem, but otherwise the same as the original problem. Let t be an

optimal policy for this new problem and {X(t), F*{t - 1)} be the reward sequence under
tt. Then

mi^^y=max*fe£*«
T EU=a1+iPs T £ £1=10s

where the maximum is taken over ^""-stopping time in the left hand side and over T*-

stopping time in the right hand side. By the greedy property of optimal policies for the

original problem, the right hand side is not greater than v(l). This is possible only when

Prob(fi0) = 0- Thus the claim is verified.
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Let <r2 + 1 be the first time after a\ + 1 at which tt* assigns the pipe to a user in

A(oi). Note 02 is a ^"*-stopping time. Arguing in a similar manner, we obtain

CS^tiP'Z{s)\F>y)\ „ m
£EX,1+1 0sl^(*i)] - n ''

Also note that Prob({cr2 + 1 = r*}) = 0 by the greedy property of an optimal policy.

Let A((72) := A((72) \ A(<7i). A((72) is the set consisting of users who arrive in the

interval o~\ + 1 < s < (72 and user k. Note that A(a{) is the set of users who do not receive

an assignment in the interval a\ + 1 < s < (72, while A(cr2) is the the set of users who may

receive assignments in the same interval. (72 + 1 starts the time interval during which users

in A((72) do not receive an assignment of the pipe.

We claim that on too, tt* assigns the pipe to users in A((72) at some time in the

interval (72 + 1 < s < t* (a.s.). This claim can be verified by following the steps in the

verification of the previous claim. Reset &o to the set on which the new claim fails. By

Lemma 6.5.2 and the definition of r((72 + 1), on fto>

,,lu , E{ET£$p-z(s)\r-(<x2)]
v\ 1) ^ / • 1 \ 1 a.s.

•EE.t&V p>\r-(.°2)]
where <72 + 1 < r* by Lemma 6.5.3. Noting the absence of an assignment to the users in

A((72) in maximizing the expected reward rate, we see that the right hand side is equal to

_...-EE,Wi/?'ZWI^-(<n))
- £EJ=„2+1 P'^'icr,)) •

Now we may consider a problem which starts at time C\ with the samestate as the original

problem except the users in A((72) are absent. Again write an optimal policy for this

problem as tt and the reward sequence under ir as X. Then we have

sESi+i P'Z{*)\T'(<n)) E[EU,1+1 yjr(«)| j>(oi)]
£E£„1+i WWd] ~ (>< * £EU+i/3*I^(<ti)] •

Note that given T*(c\), the first term and the third term can be viewed as the expected

reward ratesfrom exchangeable (with respect to tt*) blocks. But this contradicts the greedy
property of tt*. Thus Prob(ft0) = 0.

Let (73 + l be the first time after a2 + 1 at which tt* assigns the pipe to a user in

A((72). Then by arguing in a similar manner (by the greedy property of 7r*),

m ^ •EESg.+i yz(«)|J>fo)] , E[T,lLn+1 PZ(,)\rin)\
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The steps above may be carried out inductively to show that on too? r* = oo a.s. and

„m > SEg+i P'Z(s)\T'{,ai)]

which completes the proof.

Consider an arm-acquiring bandit problem with only user i with load level / is

initially present in the system. Let ir be an admissible policy for this problem and X * the

associated reward sequence. Let

uUl 4- n - rnav ™v ElU=l+lPSX*(s)\FV)} ,_ w, (/ +1).- max max ^[EJ=/+1 |̂̂ (/)] - («•«)

We cite Theorem 3.5 of [25].

Theorem 6.5.3 For the bandit problem with i.i.d. arrivals, it is optimal to assign the pipe

at each time to the user with the largest current index defined by (6.32).

Proof It follows from Proposition 6.5.1 and Theorem 6.5.2. •.

Remark

When each reward process is a finite state Markov chain, Theorem 6.5.3 reduces

to the result in Whittle[32] where the index is associated to each state of each class of arms.
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Chapter 7

Conclusions

The main results are summarized, and topics for future work are suggested.

7.1 Summary

The most important message in this thesis is the most obvious one: we must

recognize the need for message exchanges in achieving a system goal when information is

distributed among participants of the system.

Throughout this thesis, the goals of the system were the efficient allocation of

resources. Participants' valuations of resources were private knowledge.

Though the need for message exchange may appear obvious, it can be overlooked.

We sawan example in Chapter 4 where weexamined pricing schemes of electric power. A

'centralized' pricing scheme proposed in a literature turned out to be an informationally
infeasible procedure.

Minimality results about message space size obtained in this thesis are in accord

to what we have known intuitively.

By introducing a 'message space of a level set' (§ 2.2), we succeeded to ex

tract the dimension of a space of 'prices' from that of a message space previously studied

by economists. In § 3.1, under the assumption of agentwise separability the number of

resources—the dimension of price vector, was shown to be the minimum size of a message
space ofa level set. Then in §3.3, we saw that the presence of ajoint cost oran 'externality'

increases size of a necessary message space. Through the analysis of a two-stage recourse
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model for the electric power pricing in §4.4, we saw that uncertainty and intertemporality
in users' valuations necessitates the 'price forecast'. Again this is in accord to what the

Arrow-Debreu economy model suggests.

Two assignment problems of a digital pipe examined in Chapter 5 offered two

extreme cases in regard to the possibility of sequential message exchanges. A multi-armed

bandit problem admitssequential message exchanges and a matchingproblem does not. The

difference was traced in the problem structures of the respective (centralized) problems. In
general, intertemporality in valuation forces the exchange of messages at the beginning of
planning periods.

In Chapter 6, a multi-armed bandit problem was further examined. In a stochastic

version of the problem, pipe users were assumed statistically independent, which preserved

the agentwise separability in stochastic setting.

An alternative proof of the optimality of the index rule was derived for a discrete

time problem under the discounted reward criterion. The key idea was to convert the re

ward process to its concave envelope, which is pathwise nonincreasing and both dominated

by and dominating the original process. The same idea was applied to prove the asymp
totic optimality of the index rule under the average reward criterion. The analysis of the

continuous time version of the problem revealed the hidden concavity of the problem and
relation between the index and the Lagrange multiplier.

7.2 Future Work

Computation

In mechanism theory, equilibrium messages and the size of message space size

have received the most attention. It does not address how fast the equilibrium is reached.

However, the time is an important factor in design of procedures.

The theory of parallel and distributed computation in computer science may pro
vide 'complexity measures' to quantify the amount of computational effort in the decen

tralized system. Each participant with his private valuation of resources may be thought
of as a processor with the initial relevant data in its local memory. Then the design of a
dynamical procedure involves networking the processors and devising an algorithm which

runs on the networks.
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Two of the relevant complexitymeasures in the area of the distributed computation

are[2]

• time complexity: the time until the algorithm terminates.

• communication complexity: the number of messages transmitted in the course of the

algorithm.

It would be nice if we could incorporate the minimum requirement on information-carrying

capacity obtained from the 'static' analysis of the mechanism theory into the design of the

networks and algorithms.

Limitation on communication capability

The results in this thesis indicate that inter-participant and intertemporal factors,

and uncertainty in the systemincrease the necessary information-carrying capacityin order

to sustain an efficient allocation in a decentralized manner.

However, the real-world systems, most notably our economic systems, have a phys
ical limitation on communication capability.

Since it is impractical to implement the required information-carrying capacity in
many cases, it is important to identify the capacity requirements of existing or proposed

procedures and see 'howfar off' they can be for typical cases and/or the worst case.

Stochastic system control

In a decentralized stochastic system, the underlying stochastic process may be
partially and privately observed by participants. In such an instance 'learning about the
system' in the sense ofcentralized system control will not be complete unless the observa
tions are communicated.

Communication ofprivate information about the stochastic process from the view
point ofdecentralized control is an unexplored but important area.
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