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ABSTRACT

This paper presents a performance comparison of several allocation policies for producing
read optimized file systems. The file systems are designed to provide high bandwidth between
disks and main memory by taking advantage of parallelism in an underlying disk array, catering
to large units of transfer, and minimizing the bandwidth dedicated to the transfer of meta data.
Our goal is to provide efficient support for large files without sacrificing small file efficiency,
either in terms of disk capacityor read/write performance. All of the file systems describeduse a
multiblock allocation strategy. That is, rather than supporting a fixed block size, the file systems
supportmultiple block sizes. In this way, both largeand small files may be allocated efficiently.

Simulation results show that such multiblock policies result in systems that are able to util
ize a large percentage of the underlying disk bandwidth; more than 90% in sequential cases and
20-80% under application specific workloads. Furthermore, this high throughput is attainable
without suffering poor disk utilization due to internal and external disk fragmentation. As gen
eral purpose systems, which have traditionally catered to small files and a time sharing environ
ment, are called upon to satisfy largerand more data intensive applications such as databases and
supercomputing, these multiblock policies offer an opportunity to provide superior performance
to a larger class ofusers.

1. Introduction

Most current file systems may be divided into two distinct categories: fixed block systems

and extent based systems. Traditionally, database oriented operating systems (e.g. MVS) have

chosen extent based systems while time sharing oriented systems (e.g.UNIX) have used fixed

block systems. Fixed block size file systems have received much criticism from the database

community. The most frequently cited criticisms are discontiguous allocation and excessive

amounts ofmeta data [STON81]. On the other side ofthese debates, extent based file systems are

often considered too brittle with regard to fragmentation and too complicated in terms of ease of

allocation.



IBM's MVS system provides extentbased allocation allowing users to specify extent sizes

for each file [IBM]. If the user specifies sizes wisely, their file systems allow most files to be

stored in a few large contiguous extents, and there is little wasted space on the disk. However, if

extent sizes are chosen poorly, both external and internal disk fragmentation can greatly reduce

the efficiency of the disk systems. In addition, managing the free space and finding extents of

suitable size canbecome increasingly complex as free space becomesmore andmore fragmented.

Frequently, background disk rearrangers need to be run during off peak hours to coalesce free

blocks.

Fixed block systems, such as the original UNIX V7 file system [THOM78] solve the prob

lems ofkeeping allocation simple and fragmentation to a minimum, but they do so at the expense

of efficient read and write performance. In this system, files are composed of some number of

512 bytes blocks. Free blocks are maintained on a free list and allocated off the head of this list.

Unfortunately, as file systems age, logically sequentialblocks within a file get spread across the

entire disk, and file system ends up requiring a disk seek to retrieve every 512 bytes of data.

The BSD Fast File System is an evolutionary step from the simple fixed block system.

Files are composedof a numberof fixed sized "blocks" and a few smaller "fragments". In this

way, tiny files may be composed of fragments, thus avoiding excessive internal fragmentation.

At the same time, the larger block size (usually on the orderof 8K or 16K) used for most files,

allows moredata to be transferred for each seekof thedisk. Furthermore, allocation is performed

in a rotationally optimal fashion so that successive blocks of the same file may be retrieved dur

ing a single rotation. [MCKU84]

Even on optimized systems such as this, commercial database vendors usually choose to

implement their own file system on a raw disk partition. [SYB87] Inthis way, theycan guarantee

physical contiguity within blocks of a file. The drawback to such amechanism is that it requires

a static partitioning between the database files and all other files on the system. If either grows



unexpectedly, this partitioning may prove unacceptable.

Another optimized UNIX file system design presented in [STON89] is designed to provide

large transfers from an array of disks. Hies are allocated to sequential blocks within striped

tracks (a disk track on each disk of an array) and read ahead and write behind are used to achieve

mil stripe reads and writes. The resulting allocation for large files is similar to that in an extent

based system where a file is composed of a few large contiguous extents. This is the extent based

policy simulated in this study.

In an attempt to merge the fixed block and extent based policies, Koch designed a multi-

block file system using binary buddy allocation [KOCH87]. Files are composed of a fixed

number of extents, each of whose size is a power of two (measured in sectors). Files grow by

doubling their size at each allocatioa Periodically (once every day in the DTSS system

described) a reallocation algorithm runs. This reallocator shuffles extents around to reduce both

the internal and external fragmentation. Using this combination, most files are allocated in 3

extents and average under 4% internal fragmentation. This policy is also simulated in this study.

The goal of this study is to analyze how well different allocation policies perform on an

array of disks without the use of an external reallocation process. In designing a file system for a

disk array, the utility of large blocks increases. Not only does a largerblock size provide more

data transferred per disk seek, but it also allows the file system to force striping across the disks,

guaranteeing the ability to exploit parallelism in the underlying disk system. Since we wish to

support both large and small files, it becomes apparent that the file system must support a range

of block sizes. Small blocks are required to provide reasonable fragmentation for small files, but

large blocks or contiguous allocation are required to support high data throughput for large files.

Our allocation policies strive to providecontiguousallocation as well as disk striping.

This study introduces three allocation policies. Each of the policies optimizes for reading

over writing in that the emphasis is placed on allocating files contiguouslyso that maximum per-
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formance is attained on sequential operations. We call such systems, read optimized, in contrast

to log structured file systems which optimize for writes [ROSE90]. In this paper, we compare the

performance of these three read optimized file systems in terms of fragmentation and disk system

throughput. The rest of this paper is organized as follows. First we present the simulation model

and establish the evaluation criteria. Next, we present the different allocation policies, and the

simulation results that characterize each. Finally, we present a comparison of the different poli

cies.

2. The Simulation Model

We analyze these allocation policies by means of an event driven, stochastic workload

simulator. There are three primary components to the simulation model: the disk system, the

workload characterization and the allocation policies. The disk system and workload characteri

zation are described below while the allocation policies are described in detail in Section 4.

2.1. The Disk System

The disk system is designed to allow multiple heterogeneous devices. The disks may be

configured as an array of disks (wheremultiple disks are addressed a single logical disk allowing

data to be striped across multiple disks), a set of mirrored disks (where all data is stored on two

identicaldisks), a RAID(an array of diskswhere for eachN blocks,there is one block containing

parity information for the remaining N blocks [PATT88]), or a parity striped configuration (an

array of disks containing parity information acrossmultiple disks, but files are allocated to single

disks [GRAY90]). The results described in this study assume no parity information in the disk

system and merely stripe the data across an array of disks.

When data is striped across disks, there are two parameterswhich characterizethe layout of

disk blocks, the stripeunit and the disk unit. Thestripe unitis thenumber of bytes allocated on

a single disk before allocation is performed on the next disk. This unit mustbe greater than or



equal to the sector sizes of all the disks in the system. The disk unit is the minimum unit of

transfer between a disk and memory. This is the smaller of the smallest block size supported by

the file system and the stripe size. The disks are addressed by disk units.

Each disk is described in terms of its physical layout (track size, number of cylinders,

number of platters) and its performance characteristics (rotational speed and seek parameters).

The seek performance is described by two parameters, the one track seek time and the incremen

tal seek time for a seek over more than 1 track, if ST is the single track seek time and SI is the

incremental seek time, then an N track seek takes ST+N*SI ms. Table one contains a listing of

the parameters which describe one common disk and their default values in these simulations.

Note that the configuration simulated contains 8 disks and a total system capacity of 2.8G.

2.2. Workload Characterization

The workload is characterized in terms of file types and their reference patterns. A simula

tion configuration may consist of any number of file types. Each file type defines the size charac

teristics, access patterns, and growth characteristics of a set of files. Table two summarizes those

parameters which define a file type.

For each file type, initialization consists of two phases. In the first phase, the indicated

number ofevents arecreated, and each is assigned a starttime (uniformly distributed in the range

Disk Parameters
Based on the CDC 5 1/4" Wren IV Drives (94171-344)

actual simulated

Number of disks NA 8

Total Capacity NA 2.8 G

Maximum Throughput NA 10.8 M/sec
Number ofplatters 9 9

Number ofcylinders 1549 1600

Number ofbytes per track 24K 24K

Single Track Seek Time 5.5 ms 5.5 ms

Seek Incremental Time 0.0320 ms 0.0320 ms
Single Rotation Time 16.67 ms 16.67

Table 1: Disk Drive Parameters and Simulator Default Values



File Parameters

Number of Files How many files of this type should be created
Number of Users How many parallel events access this file type
Process Time Number ofmilliseconds between successive requests from a single user.
Hit Frequency Number ofmilliseconds between requests from different users
Read/Write Size Mean number ofbytes per read/writeoperation
RW Deviation Standard deviation in Read/Write Size.
Allocation Size For extent based systems, mean extent size.
Truncate Size How many bytes to deallocate for a deallocate request.
Initial Size Mean size of the file at initialization time.
Initial Deviation Deviation in the mean file size.
Read Ratio Percent operations which are reads.
Write Ratio Percent operations which are writes.
Extend Ratio Percent operations which are extends.
Delete Ratio Of the deallocate operations, percent which are file deletes.

Table 2: File Parameters and Description

[0, (number of users * hit frequency)]). The events are maintained in a heap, sorted by their

scheduled time. For the second phase, the files are created. For each file a size is selected from a

uniform distribution with mean equal to initial size and deviation of initial deviation. Allocation

requests are made until the allocation length of the file is greater than or equal to this size.

The simulation runs by selecting the first event from the heap. Since each event

corresponds to a file and therefore a file type, an operation may be selected based on the read,

write, extend, and delete ratios. Then the rw size, rw deviation, and truncate size areused to gen

erate a size parameter. Based on the operation, a call is made to one or both of the allocation and

disk subsystems. After completion of an operation, the operation completion time is added to an

exponentially distributed value with mean equal to process time and an event is scheduled at that

newly calculated time. This event is returnedto the heap and the events are reheaped.

If an allocation request cannot be satisfied, a disk full condition is logged, and the current

event is rescheduled (according to the process time parameter as above). If the test being run is

an allocation test, the simulation ends. For non allocation simulations, two parameters are used

to maintain a level of disk utilization. The lowerbound, N, indicates how full the disk system



should be before measurementsbegin. The upperbound, M, indicateshow full the disk system is

allowed to become. Any extend operationoccurringwhen the disk utilization is greaterthan M is

converted into a truncate operation. In this way, the disk utilization is kept between N and M

while measurements are being taken.

As mentioned above, simulation may be terminated by a disk full condition. It may also be

terminated by two other conditions, either a specified number of milliseconds have been simu

lated or the throughput of the system has stabilized. The throughput, measured as a percentage of

the maximum possible sequential throughput of the disks sytem, is considered stabilized when

the throughput calculation for 3 consecutive 10 second intervals are within .1 % ofeach other.

This study uses 3 simulated workloads to represent a time sharing or software development

environment (TS), a large transaction processing environment (TP), and a super computer or

complex query processing environment (SC).

The time sharing workload is characterizedby an abundance of small files (mean size 8K

bytes) which arecreated, read, and deleted. Two-thirds of all requests areto these files. In addi

tion there arelarger files (mean size 96K) which get the remaining requests. These files areusu

ally read (60% of all requests) and occasionally extended, written or truncated (15% writes, 15%

extends, 5% deletes and 5% truncates).

The transaction processing environment is characterized by 10 large files (210M) represent

ing data files or relations, 5 small application logs (5M) andone transaction log (10M). The rela

tions are randomly read 60% of the time, written 30% of the time, extended 7% of the time, and

truncated 3% of the time. The log files receive mostly extendoperations ( 93% and 94% respec

tively ) with a periodic read request (2% and 5%) and an infrequent truncate (5% and 1%). The

system log receives a slightly higher readpercentage to simulate periodic transaction aborts.

The super computer environment is characterized by 1 large file (500M) 15 medium sized

files (100M) and 10 small files (10M). The large and medium files are all read and written in



large contiguous bursts(32K or 512K) with a predominance of reads (60% reads, 30% writes, 8%

extends, and 2% truncates). The small files are also read and written in 32K bursts, but are

periodically deleted and recreated as well as being read and written (60% reads, 30% writes, 5%

extends, 5% deletes).

3. Evaluation Criteria

We will examine three allocation policies in terms of how efficiently they make use of the

available space on the disk, the application performance presented to each of the workloads

described above, and the sequential performance of each workload.

The metrics for measuring how efficiently the disk space is being used are the external and

internal fragmentation present when the disk system initially fills. External fragmentation is the

amount of space still available in the disk system when a request cannot be serviced. This will be

expressed as a percentage of the total available disk space. Internal fragmentation is the amount

of space allocated to files, but not being used by the file. For example a IK file stored in a 4K

block suffers internal fragmentation of 75% because 75% ofthe allocated space is not being used.

This will be expressed as a percentage of the total allocated space. The allocation tests are run by

performing only the extend, truncate, delete, and create operationsin the proportion as expressed

by the file type parameters. As soon as the first allocation request fails, the external and internal

fragmentation are computed.

The performance metrics for reading and writing will be expressed as a percent of the sus

tained sequential performance the disk system is capable of providing. For example, the

configuration described in section 2.1 is capable of providing a sustained throughput of 10.8

Mbytes/sec. A throughput of 1.1 Mbytes/sec is expressed as 10% of the maximum available

capacity.

We perform two tests to evaluate the system throughput They are the application perfor

mance test and the sequential performance test. For both tests the lower and upper bounds on



disk utilization are set at 90% and 95% respectively, thus insuring that the disks are at least 90%

full and no more than 95% full during the test For the application performance test, the applica

tion workloads as described in section 2.2 are applied. When the throughput has stabilized the

throughput numbers are recordedand the sequentialtest begins. Forthis test, only read and write

operations are performed and each read or write is to an entire file. Stabilization for bom the

application and sequential tests occurs when the reported throughput at 3 consecutive 10 second

intervals are within .1% ofeach other.

4. The Allocation Policies

This analysis considers three different allocation policies. The first is a buddy system simi

lar to that described in [KOCH87]. The next is a restricted buddy system in that it supports only

a few different block sizes. The last is an extent based policy as described in [STON89]. Each

design is described in more detail and includes a discussion of the selection of the parameters

relevant to each model.

4.1. Buddy Allocation

The buddy allocation policy described in [KOCH87] includes both an allocation process

and a background reallocation process that runs at night rearranging the disk system. In this

simulation, we consider only the allocation and deallocation algorithm (i.e. not the background

reallocation). A file may be composed of some number of extents. The size of each extent is a

Workload

Disk Usage Throughput

Internal

Fragmentation
(% allocated space)

External

Fragmentation
(% total space)

Application
Performance

(% max throughput)

Sequential
Performance

(% max throughput)
SC

TP

TS

43.1%

15.2%

18.4%

13.4%

9.0%

2.3%

88.0%

27.7%

8.4%

94.4%

93.9%

12.0%

Table 3: Results for Buddy Allocation.
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power of two multiple of the sector size. Each time a new extent is required, the extent size is

chosen to double the current size of the file. As previous work suggests [KNOW65][KNUT69]

such policies are prone to severe internal fragmentation, and our simulation results bear this out

as shown in table three. However, the smallnumberof extents results in very high throughput in

the presence of large files as is evidenced by the percentutilization shown in table three for the

supercomputer workload (SC).

4.2. Restricted Buddy System

As in the buddy system, the restricted buddy system applies the principalthat as a file's size

grows, so does its block size. In this way, small files are allocated from small blocks and don't

suffer high fragmentation. As files grow, they are allocated in largerand largerchunks providing

the ability to make largesequential transfers betweenthe disk system andmain memory. In addi

tion, logically sequential disk blocks within a file are allocated contiguously in the disk system

whenever possible. Therefore, even though files may startout with a small allocation, if they are

laid out contiguously, we can still transfer a large quantity of data with only a single seek.

Finally, the disk may be divided into regions and blocks within a single file may be clustered

within these regions to reduce the seektime whensequential layout is not possible.

The disk system is addressed as a linear address spaceof disk units. Each block size is an

integral multiple of the disk unit and of all the smaller block sizes. In order to keep allocation

simple, a block of size N always starts at anaddress which is an integral multiple N. If a system

supportsblock sizes of IK and 8K, the IK blocks located at addresses 0 through 8 areconsidered

buddies in that, together they form a block of the next larger size. These allocation policies

attempt to coalesce buddies whenever possible, both when allocating blocks as well as when free

ing them.

Free space is managed both by bit mapsand free lists. A bit map is used to record the state

(free orused) of every maximum sized block in thesystem. For smaller blocks, acircular doubly

-10-



linked list of free blocks is maintained in sorted order. Within each of these lists, blocks are

arranged sequentially, and the allocator attempts to allocate logically sequential blocks of a file to

physically contiguous regions. In this way, the free map is kept very compact Maximum sized

blocks which are completely unused require one bit Smaller blocks are represented only ifone of

their buddies is in use.

The parameters which define a file system in the restrictedbuddy policy are the number of

block sizes, the specific sizes, when to changeblock sizes (the grow policy), and whether or not

to attempt to cluster allocations for the same file, hi order to pick a robust configuration for this

pohcy, we consider four different sets of block sizes, two different algorithms for choosing when

to increase the block size, and both clustered and unclustered policies.

We consider four different block size configurations:

Number of Block Sizes Block Sizes

2 IK, 8K
3 IK, 8K, 64K
4 IK, 8K, 64K, 1M
5 IK, 8K, 64K, 1M, 16M

For each block size, we consider both a clustered configuration and an unclustered configuration.

In the clustered configuration, the disk system is broken up into 32M bookkeeping regions. Free

hsts and file descriptors aremaintained perbookkeeping region.The goal in selecting regions and

blocks is to select a block that is conveniently close to relatedblocks (either meta data or the pre

viously allocated block within the same file). When an allocation request is issued an attempt is

made to satisfy that request from the "optimal" bookkeeping region as defined below.

The definition of the optimal regiondepends on the type of request If the request is for a

block of a file, the optimal region is that regionwhich containsthe most recently allocated block

for that file. If no blocks have been allocated, the optimal regionis that region in which the file

descriptor was allocated. If the allocation request is for a file descriptor, the optimal region is the

region after the region in which the last requestwas satisfied.
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If a request is made to a specific region, and there is adequate contiguous space, but no

block of the appropriate size, then a larger block (preferably the next sequential block) is split.

The larger block is removed from its free list (or bit map). A block of the desired size is allo

cated, and the remaining space is linked into the free hsts for the appropriate sized blocks. If the

request fails in the desired region, a block of the appropriate size in any region is sought out

Only if no blocks of the appropriate size are found in any region does a block become split. The

following summarizes the region selection algorithm.

Region Selection

1. Select Optimal Region
• same as last

• same as file descriptor
• "next" region

2. Select region with a block of the correct size
3. Select next region with available space

In this way, the system attempts to keep largecontiguous regions available for largerallocations.

The grow pohcy determines when we change the size of the block being allocated. The

grow pohcy is expressed in terms of a multipher. If g is the grow pohcy multipher, then the unit

of allocation increases from a,- to ai+] when the total size of all blocks of size at is equal to

g * fl,+i. Forexample, a system with block sizes IK and 8K and a grow pohcy multipher(grow

factor) of 1 will allocate eight IK blocksbeforeallocating any 8K blocks. If the next larger block

size were 64K, then eight 8K blocks would be allocated before growing the block size to 64K.

Intuitively, we expect that a smaller grow factor will suffer worse internal fragmentation (since

we use bigger blocks in smaller files), but might offer better performance (since fewer small

block transfers are required). However, if the small blocks are allocated contiguously, then the

performance should be similar.

The allocation and throughput tests were run on all the configurations described above.

Figure one (a-f) show the fragmentation results. The most striking observation is that the

attempts to coalesce free space and maintain large regions for contiguous allocation are
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Figure 1: Internal and External Fragmentation Results for the restricted buddy allocation
policy. Notice that eventhe worstfragmentation is under6%. Since the supercomputer andtran
sactionprocessing workloads consistof large files, fragmentation is rarelydiscernible.
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successful None of the polices show fragmentation greater than 6%. As expected, the time shar

ing workload which has the blend of large and small files exhibits the greatest fragmentation

(figures le and If), and fragmentation increases as the number of blocks sizes and the block sizes

themselves increase. Increasing the grow factor from one to two reduces the internal fragmenta

tion by approximately one-third (in figure If, note the difference between each pair of adjacent

bars). External fragmentation increases slightly as we go to an unclustered configuration all

blocks areeligible for splitting ratherthan just those in the' 'optimal**region.

Figure two (a-f) shows the results of the application and sequential tests for the three work

loads under each configuration of the restricted buddy pohcy. As expected, the configurations

which support the larger block sizes provide the best throughput, particularly where large files are

present (figures 2a, 2b, 2c, and 2d). The supercomputer application in figure 2a shows up to 25%

improvement for configurations with large blocks while the transaction processing environment

shows an improvement of 20%. These same workloads show relatively little sensitivity to either

the grow pohcy or clustering. For the five block size configurations (the rightmost on each

graph), most show slightly improved performance with a non clustered configuration. The expla

nation of this phenomena lies in the movement of files between regions. In a clustered

configuration, when a change of region is forced, the location of the next block is random with

regard to the previous allocation. In a non clustered configuration, the attempt to keep subse

quent allocations contiguous results in the slightly improved performance.

The time sharing workload reflects the greatest sensitivity to the clusteringand grow policy.

Uniformly, clustering tends to aid performance, by as much as 20% in the sequential case (in

figure 2f, the first two bars of eachset represent the clustered configuration and represent higher

throughput numbers thanthe third and fourth bars). Since this environment is characterized by a

greater number of smaller files, even with the larger block sizes, data is being read from disk in

fairly small blocks. As a result, the seek time has a greater impact on performance, and theclus

tering pohcywhichreduces seektime provides thebetter throughput
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Figure 2: Applicationand Sequential Performance for the Restricted Buddy Policy.
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Figure 3: How contiguousallocation and grow factors interact Because the total file lengthis
not a multiple of the new block size,we are required to pay a seek whenthe block size grows.

Figures le and If also indicate that the highergrow factor provides better throughput (the

second and fourth bars in each set representhigher throughput than the first and third bars). This

is counter intuitive since a higher grow factor means that more small blocks are allocated. To

understand this phenomena, we need to analyze how the attempt to allocate blocks sequentially

interacts with the grow pohcy. Figure three shows a IM block that is subdivided into sbcteen

64Kblocks, eachof which may be subdivided into eight 8Kblocks. When the grow factor is 1,

any file over 72K requires a 64K block. However, when it is time to acquire a 64K block, the

next sequential 64K block is not contiguous to the blocksalreadyallocated. In contrast, when the

grow factor is two, the 64K block isn't required until the file is already 144K. Since most files in

thetimesharing workload are smaller than this, they never pay the penalty ofperforming the seek

to retrieve the64K block. Thus ourgrow pohcy and ourattempts to layoutblocks sequentially

are inconflict with one another. If we were not successfully allocating small blocks sequentially,
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then the greater grow factor would show a decrease in performance.

Since none of the configurations suffered excessive fragmentation we use the application

and sequential performance results to select a configuration for the final section. Since clustering

had little effect on the large file environments and improved performance in the time sharing

environment, we will select a clustered configuration, hi four of the six cases a-f, the grow factor

of 1 provided slightly improved throughput so we will select that, knowing that it will penalize

sequential performance for the time sharing workload. This is the leftmost bar in each group of

each graph. Since the larger blocks sizes did not increase fragmentation significantly, we select

the 5 block size configuration (IK, 8K, 64K, IM, 16M) which is the rightmost group on each

graph.

4.3. Extent Based Systems

hi the extent based models, every file has an extent size associated with it. Each time a file

grows beyond its current allocation, additional disk storage is allocated in extent sized chunks.

As in the restricted buddy pohcy, we view the disk system as a linear address space. However, in

this model, an extent may begin at any address. When an extent is freed, it is coalesced with its

adjoining extents if they are free.

hi such a system, the significant design parameters are how to select extents for allocation

and how widely varied the extent sizes are. We considertwo different allocation policies, first-fit

and best-fit and five different extent configurations. We assume that the high bandwidth will be

achieved by selecting large extent sizes for large files so we make no effort to allocate logically

sequential extents contiguously in the disk system. Eachextent configuration is characterized by

the number of extent size ranges. An extent size range is a normal distribution with a standard

deviation of 10% of the mean. Forexample an extent rangearound IM with IK disk units would

produce a normal distribution of extent sizes with mean IM and standard deviation of 102K.

Thus, most extents would fall in the range 716K to 1.3M. As the number of extent ranges
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increases, we expect to see increased fragmentation since we are allocating a more diverse set of

extent sizes.

Figure four shows the fragmentation results for the extent based polices. The x axis indi

cates the number of extent ranges in each configuration. The extent ranges for the different work

loads are listed below.

Workload NumberofExtentRanges Range Means
TS 1 4K

2 IK, 8K
3 IK, 8K, IM
4 1K,4K,8K, IM
5 1K,4K,8K, 16K, IM

TP/SC 1 512K
2 512K, 16M
3 512K, IM, 16M
4 512K, IM, 10M, 16M
5 10K, 512K, IM, 10,16M

With extent sizes ranging from IK to 16M, we expect to see poor results for fragmentation,

but the results to not support this. One possibleexplanation is that the ratioof large files to small

files is fairly constant in these simulations. As a result, new extents are allocated to extents of the

correct size. This would explainwhy best fit consistentiy resulted in less fragmentation.

We expect throughput to be fairly insensitive to the selection of best fit or first fit since in

both cases, files are read in the same size unit. Figure five shows the application and sequential

performance results for the extent based polices and validates this intuition. In general, we see

slightly betterperformance from first fit, dueto the slight clustering thatresults from tendency to

allocate blocks toward the "beginning'' ofthe disk system.

In order to understand the small changes in performance, we need to look at the average

numberof extents per file for the differentworkloads andextent ranges. These numbersare sum

marized in table four. We expect to seethebestsequential performance when theaverage number

of extents per file is a minimum since the fewest seeks are performed. The supercomputer and

transaction processing workloads behave as expected (figure 5b and 5d) while the time sharing
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Figure 4: Internal and External Fragmentation Results for the Extent Based Allocation pol
icies. Surprisingly, we find that even with a wide range of extent sizes, neitherinternal nor exter
nal fragmentation surpasses 5%.
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Figure 5:Application andSequential performance for the extentbased policies.
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Average Number of Extents Per File

Number ofExtent Ranges SC TP TS

1 162 267 5

2 124 13 9

3 97 12 9

4 151 14 7

5 162 108 6

Table 4: Average number ofextents per file for each extent based configuration.

workload does not exhibit this tendency. Further inspection indicates that the ratio of small to

large files alters this result Since most of the files are small in the TS environment, they can be

allocated in one or two 4K extents. The larger files require 24 extents (96K file length/4K extent

size). However, the larger files consume more disk space and take longer to read and write. As a

result, the time spent processing large files is greater than the time spent processing small files.

Therefore, in the configurations where the large files have fewer extents (12 extents in the sys

tems that use 8K extents for these files), the overall throughput is higher.

In selecting the configuration to compare in section 5, we select the first fit allocation pohcy

since it consistently provides slightly better performance than best fit. Next we must select a

number of extent ranges. For the transaction processing and supercomputer workloads simulated,

the 3 range sizes result in the highest sequential performance. Although it does not offer the best

performance for the timesharing workload, it is within 10% of the best performance.

5. Comparison of Allocation Policies

As we've seen in the preceding sections, all the allocation policies except for the buddy sys

tem yield satisfactory fragmentation. As a result we focus on the application and sequential per

formance. We compare all the performance number against a 4K and a 16K fixed block system

which does not bias towards automatic striping or contiguous layout The 4K system is more

compared with the timesharing workload while the 16Kis compared for the transaction process

ing and supercomputer workloads.
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Figure 6: Comparative Performanceof the different allocation policies.

Figure 6a shows the sequential performance of the four methods (the three discussed above

and a fixed block pohcy). As expected, all of the multiblock policies perform better than the

fixed block pohcy due to the ability to read and write very large contiguous blocks. Onthe large

file applications (SC andTP) we find that all the large block policies utilize nearly the complete

bandwidth. In the time sharing environment, none of the policies succeed in pushing the system

above 20% utilization dueto the presence of somany small files. However, theextent based pol

icy can respond to this burden most effectively since each file is limited to a small number of

extents.

hi the application performance (figure 6b), we find similar results. However, there are two

points tonote. First, in the supercomputer environment, the buddy system performs substantially

bettersince, for large files (over 100M), it is using substantially larger block sizes (64M). In the

transaction processing environment, all thepolicies arelimited by the random reads and writes to

the large data files.
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6. Conclusions

We can see that allocation policies which force striping across disks and contiguous alloca

tion provide improved performance over those which do not. In the large file environments such

as supercomputer applications, this improvement is on the order of25%. Even for workloads like

the transaction processing environment, which are dominated by small reads and writes to large

files, the improvement is as great as 10%. While the large blocks do not benefit the small file

environment greatly, they don't hinder it either in terms of performance or fragmentation. There

fore in systems with both extremely large and extremely small files we are likely to be able to

derive this improved performance without handicapping the small file efficiency.

This results suggests that time sharing environments could benefit significantly from these

allocation techniques. Without hindering the small file performance, such systems could then

effectively compete with larger systems designed with database or supercomputer applications in

mind.

There are several more areas that warrant further investigation. First, varying the file distri

butions so that the proportion of large and small files is not constant may affect fragmentation

results. Secondly, the impact of a RAID in the underlying disk system will reduce the small write

performance, hi order to correct of this, block sizes and extent sizes may need to be selected

based on the configuration of the RAID. In the small file environment we might want to incor

porate policies from a log structured file system to allocate blocks [ROSE90]. The different poli

cies may show different sensitivities to the stripe size parameter. And as always, applying the

allocation policies to genuine workloads will yield a much more convincing argument
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