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Abstract

In this note we extend the symbolic analysis of digital filters with overflow nonlinearity

to all values of the parameter a. While behavior of digital filters for | a | < 2 is not

chaotic, it is completely chaotic for | a | > 2.
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1. Introduction

The chaotic phenomena in digital filters [1] has attracted much recent interest (see

the references in [2]). In [1] symbolic dynamics was used to explain the complex behavior of

second-order digital filters with overflow nonlinearity for a = 0.5. It is conjectured that

the trajectories starting from the set I (see [1] for a definition) is chaotic. In this

paper we extend the usage of symbolic dynamics to all values of the parameter a. We show

that the behavior of the digital filter with overflow nonlinearity is in fact not chaotic

if | a | < 2, and that it is completely chaotic when | a | > 2.

2. Symbolic dynamics

Consider a second-order digital filter with overflow nonlinearity. Its dynamics is

governed by the following nonlinear map:

F:I2-> I2, F(x, y) = (y, f(-x + ay))

where

f(v) = v - 2m, for -1 + 2m < v < 1 + 2m, m an integer

The phase space is:

I2 = { x = (x, y): -1 < x < 1, -1 < y < 1 }

The associated linear model is:

G:R2-» R2, G(x, y) = (y, -x + ay)

where

G( X

y
)-

" o r
-1 a

X

y
= A

X

_y

(1)

(2)



Let ql and q^ be the eigenvalues of the matrix A:

%'%'
a ± 1 a - 4

The linear system (2) maps the unit square onto a parallelogram in such a way that

0(1,1) = (1, -1 + a), G(l,-1) = (-1,-1 - a), G(-l,l) = (l,a + 1) and G(-l,-l) = (-1,-a + 1).

Suppose that 2/ - 1 < max {|a- 1|, |a+ 1|} <2/+ 1. Then the map (1) can be rewritten as

F(x, y) = (y, -x + ay + 2s)

or

where

and Int(») is defined as:

Int(v) = -m,

F( X

y
)-A X

y
+

"o"
2

s = Int( -x + ay)

if 2m - 1 < v < 2m + 1, m = -/, ..., -1, 0, 1, ..., /

The integer s is the vertical translation required to return a point to the unit square. It

tells us in which of the 2/ + 1 regions

I = { (x, y) € I2 : 2m - 1 £ -x + ay < 2m + 1}, m =/,..., -1, 0, 1, ..., /
m

lies the point (x,y). Since F is one-to-one and onto [1], F"l(0 exists and is given

explicitly by

F'( X

y
) =

a -1 "
1 0

X

y
+

' 2 '
0

where s = Int( ax - y ).

The trajectory of (1) starting from x(0) = x is defined as

T(x) = { x = F°(x), n an integer}

V



where

F°(x) = x, Fk(x) = F(Fk"I(x)) and Fk(x) = F'l(F-k+1(x))

Define Z as the set of bi-infinite sequences consisting of 2/ + 1 symbols: -/, ..., -1, 0,

1, ..., /. Given an initial condition x € I2 we can generate a symbolic sequence s e Z

corresponding to the trajectory T(x) by

Int( -x. + ay.) &0

s. = -

Int( ax. - y. ) i^-1

Therefore we obtain a well-defined map

S: I2^ Z={ s=( ..., sr sQ, Sj, ... ): s. =-/, ..., -1, 0, 1, ..., / }.
Let Zp = S(I). We say that the sequence s is admissible if s e Z .

The dynamics of second-order digital filters can be described as a second-order

difference equation [3]; indeed the values of coordinate y satisfy the following equation:

*„♦.- av- y„.r 2s„ (3)
It is clear that the trajectory {y } and the symbol sequence {s ) are uniquely determined

for a given initial condition: y. and y . This immediately follows from:

sn = Int( ayn - yn,), nSi

y„t.= ay„ - v.+ 2s„- nSi
For n < i, we have:

s„.! = Int< -y„+ ay„.,)- n *'

yn.2 = - <y»- ay».t - 2s„.,)- n s'
The following theorem gives the conditions when an admissible sequence determines a unique

trajectory of (1).

Theorem 1. If |qj * 1 and |qj * 1, then any admissible sequence determines a unique

trajectory of (1). Moreover, the explicit solution of the trajectory is given by:



+oo

y-= I Ya*V (4)

k=-oo

Y =

" I
(5)

a2-4
where

P =
a - 4 a - 4

Remark 1. Since |q | * 1 and |q | * 1, it follows that | a | > 2. Thus, q and q are

real numbers, qi * a and q a = 1.

Proof of Theorem 1.

The general solution of the inhomogeneous equation (3) has the form

y = y + y*

where yn is some particular solution of (3), and y is the general solution of the

corresponding homogeneous equation

y ,- ay + y = 0 (6)
J n+l J n J n-1 v 7

The general solution of (6) is given by:

y» - c><+ c£
where C and C are arbitrary constants, and q, and q„ are the roots of the characteristic

1 L 12

equation:

q2 - aq + 1 = 0

i.e., q{ and ^ are the eigenvalues of the matrix A.

Now, let us consider equation (3) with s^ of the special form:

0, n * 0

1, n = 0
s = 8" = I

n 0
(7)

The solution of (3) with s given by (7) will be denoted by Y . We will look for the bounded

solution of Y of the following group of equations:



Y„+f aY + Y-i= 0 ,n<-l

Yr aV Yr2

Y+i-aY+Y„-r° .»*i

(8)

(9)

(10)

Let us assume that |qj < 1 and IqJ > 1. The particular solution of equations (8) and (10)
is:

Y = «!
n

'0)„n ' odLnqx + C^qJ n < 0

*(2)„n ^ M2)n

c;x+ c2X n * °

Since Y is a bounded solution, it follows that C(1)= C(2)= 0. Therefore:
n 1 2

Y = i
n

co><

Cf»qJ

n < 0

n > 0

For n = 0, (12) gives one and the same value Y ; so C( '= C( \ From (9) we have:

p(2) _

V a +<
Since

(11)

(12)

Va +%l =(V a+<0 +V ^ =qr ^ =^2" 4
and using the constraint q^ = 1, we obtain (5). In a similar fashion we can obtain the

same result when |q | > 1 and |ql < 1.

For an arbitrary right-hand side { s }, the particular solution y of (3) can be
n n

written in the following way:

+oo

y*= I \±\
k=-oo

where Y is the solution of the following equation:

Y-aY, + Y =25
n+l-k n-k n-l-k k

(13)



and 8£ is defined by:

r 0, n * k
8» = J

1, n = k

Indeed, substituting the series (13) into the left-hand side of (3) we get
+oo +oo +oo

y - ay - by = Y Y ,, s, -a[ Y , s, + T Y s =
•'n+l •'n •'n-l L n+l-k k L n-k k L n-l-k k

k=-oo k=-<» k=-«»

= £ ( Y +i, " aY , + Y i„ >\ = 7 2 8" s =2sU n+l-k n-k n-l-k k L k k n

k=-«» k=-<»

From (5) we can see that Y decreases exponentially for n -* ± «>

IYJ <YpH (14)
2

where Y = > 0 and 0 < p < 1 are constants. In the case of second-order digital

filters we have:

|sj</ (15)

Using (14) and (15) we obtain:

+oo n +oo

k=-oo k=-<» k=n+l

n +oo

< Yl[ I pnk + [ pk"n ]<— I
k=-«» k=n+l

Hence, the series (13) certainly converges.

Let y be another bounded solution of (3). Then:

y ,-ay+y ,= 2s^n+l 'n ''n-l n

* * *

y .- ay + y .= 2s•'n+l "'n •'n-l n

and the difference y = y - y is the solution of the homogeneous equation (6). But, we



can see that the unique bounded solution for (6) is y = 0. Thus, the solution (4) is the
n

only bounded solution for a given right-hand side. |

Remarks:

2. Theorem 1 shows that if | a | > 2, the map S is one-to-one. In the case | a | < 2, the

map S is neither one-to-one nor onto [1].

3. The condition that { y } should lie in the interval [ -1, 1) puts an infinite number of
n

constraints on the sequence { s }:
n

-l < y -?— PJn-ki s <i
k=-oo Ja2 _4

3. Chaotic behavior

Because values of y differing by integers are identified, whereas the corresponding

values of x are not, the phase space of second-order digital filters can be considered as a

cylinder. Then (1) is an area-preserving map known as a sawtooth map. The differential of F

in the points where it is defined is given by the constant matrix A. The product of the

eigenvalues qj and (^ of A is equal to 1, and either q and a are both real, or they are

complex conjugate. In the first case we have

Kl < 1< Icjjl (or |qj < |qj) (16)

In the second case, we have

i - q, %- |q,l2= |q/. q,*^ <")
The third case is

q, = q2 = ± i (is)

8



Since A is a constant matrix, all periodic points of F for a given a belong to the same

class:

(i) If |a. | > 2, then all periodic points are hyperbolic (the first case (16) );

(ii) If a = ± 2, then all periodic points are parabolic (the third case (18) ); and

(iii) If |a. | < 2, then all periodic points are elliptic (the second case (17) ).

Let a = 2. Then the system (1) is integrable; i.e. the line

y = x + y„ - x

is invariant Indeed, (1) can be written in the form:

z = z
n+l n

X = X + Z + 2s
n+l n n n

where z = y - x. The trajectories of (1) can have different qualitative behaviors depending

upon the rationality, or irrationality, of zQ= xQ - y. If zQ is a rational number, then

each trajectory consists of only a finite number of parabolic periodic points. If z is an

irrational number, then each trajectory consists of an infinite number of points which are

dense on a circle.

Let a = 2 ± e, for e small enough. What happens to the parabolic periodic points?

If e = 0, then every point on the circle z = m /m is a fixed point with period m . In
1 * 2

typical area preserving maps [4], after the perturbation, only a finite number of points

remain (generally, this number is 2m2). They form a chain of alternating elliptic and

hyperbolic points, with regular trajectories (or KAM curves) encircling the elliptic fixed

points and chaotic trajectories in the neighborhood of hyperbolic points.

But, the map (1) is not a typical area-preserving map. For e > 0, all periodic points

are hyperbolic, while for e < 0, they are elliptic.

It is easy to evaluate the Lyapunov exponents for the dynamical system (1); indeed,

they are given by:

\ =1* I qj^2 = ln | %\ (19)
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We recall that the Lyapunov exponents are defined by [4]:

X. = lim In I q.(n) I

where q.(n) are the eigenvalues of the matrix

[ B(xjB(xJ ... B(Xi) ]1/h
and B(x) is the Jacobian matrix of F:

n

B<Xn> = 7" F<X„)n ax n

Since the Jacobian matrix of F is a constant matrix A, (19) follows immediately.

If | a | < 2 , the behavior of digital filters is not chaotic; indeed, in this case the

Lyapunov exponents are X = X2 =0 and all periodic orbits are elliptic.

Now we shall deal with the case |a| > 2.

The dynamical system (p defined on torus T2 by

(p(x, y) = ( anx + ai2y, a2lx + a22y) (mod 1)

is an ergodic automorphism if an, aj2, a2j, a22 are integers, ana22 - ai2a2i = 1 and the
eigenvalues of the matrix

all a12

&21 %2

are real numbers. Ergodic automorphisms on the torus T2 are Bernoulli shifts [5].

If the parameter a is an integer, |a| > 2, the map (1) is an ergodic automorphism on

the torus [6]; a = 3 is the well known Arnold - Sinai cat map [4]. When a is not an integer,

|a| > 2, the map (1) becomes discontinuous and its phase space is filled by a dense

countable set of discontinuity lines for the powers of the map and its inverses. Very

recently Vaienti [7] proved that the discontinuous sawtooth map is a Bernoulli system. Thus,

even though (1) evolves in a completely deterministic way, if one makes a measurement with

only a finite number of possible outcomes (e.g. the phase space of the digital filter is

covered by a partition with a finite number of disjoint sets), then the resulting process is

random, and is essentially indistinguishable from a finite coding of a roulette wheel.
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3. Conclusions

We have shown that the symbolic dynamics can be used to analyzed the behavior of digital

filters for all values of the parameter a. It was proven that when |a| > 2 a symbolic

sequence determines a unique trajectory of map (1). The dynamics of the digital filter is

not chaotic when |a| < 2, but it is completely chaotic when |a| > 2. In the case when a is

an integer, |a| > 2, the digital filter is described by a torus automorphism isomorphic to

the Bernoulli shifts. For a = 3, the Arnold - Sinai cat map governs the behavior of the

digital filters.
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