
Copyright © 1992, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

FORMAL VERIFICATION OF TIMING

CONSTRAINED FINITE-STATE SYSTEMS

by

Felice Balarin and Alberto L. Sangiovanni-Vincentelli

Memorandum No. UCB/ERL M92/8

27 January 1992

ELECTRONICS RESEARCH LABORATORY

Collegeof Engineering
University of California, Berkeley

94720

FORMAL VERIFICATION OF TIMING

CONSTRAINED FINITE-STATE SYSTEMS

by

Felice Balarin and Alberto L. Sangiovanni-Vincentelli

Memorandum No. UCB/ERL M92/8

27 January 1992

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

1 Introduction

Recently, Dill [Dil89] and Alur and Dill [AD90] proposed a method for incorporating timing re

striction into a model of communicating finite-state systems by introducing the notion of a timed

automaton, containingfictitious time-measuring elementscalledclocks [AD90] or timers [Dil89]. The

verification problem is shown to be equivalent to the speed-independent verification problem on an

appropriate automaton. The fundamental problem with both approaches is state space explosion,

i.e. state space growing exponentially in the number of timers (clocks).

Kurshan [Kur91] suggested to carry out the verification process on timed systems with COSPAN

[HK88], a verification system for untimed processes, by relaxing the time constraints, verifying the

relaxed system and if the verification is unsuccessful check whether the run that violates the property

to be verified is infeasible under the timing constraints. If this is so, Kurshan removes the run and

repeats the process. This strategy is appealing but heuristic in nature. There was no proof that the

process would eventually converge to provably the correct answer.

In this paper, we introduce the notion of pauses, and construct an equivalent (non-pausing)

automaton. In contrast to previous approaches, we build an equivalent automaton as a composition

of the speed-independent (or unrestricted) automaton and many small automata. This enables us

to build simple abstractions of the equivalent automaton that are still detailed enough to eliminate

certain undesired behavior. This leads to a verification strategy similar to the heuristic proposed

by Kurshan, where a verification process is started with the unrestricted automaton, which is then

composed with simple automata imposing timing constraints, but only after the verification has

failed, and imposing only those constraints which are violated in the failure report. In the worst

case, all constraints must be used, so that the verification is performed with the automaton of full

complexity. However, some preliminary experiments have shown that the worst case is not the

common case and that this strategy can indeed lead to considerable time and space savings.

The rest of this paper is organized as follows. L-processes [Kur90] are shortly discussed in

section 2. In section 3, we introduce the notion of timed X-process, and then we construct the

equivalent (not timed) X-process in section 4. In section 5 two main steps of the proposed verification

strategy are described: extracting timing violations from the failure report, and imposing that subset

of timing constraints to the model of the system. Final remarks are provided in section 6.

2 L-processes

An L-process [Kur90] is an automaton defined over the alphabet S(L), where L is a Boolean algebra

with product *, sum +, complementT, multiplicative identity 1, and additive identity 0. A partial

FORMAL VERIFICATION OF TIMING

CONSTRAINED FINITE-STATE SYSTEMS

by

Felice Balarin and Alberto L. Sangiovanni-Vincentelli

Memorandum No. UCB/ERL M92/8

27 January 1992

1 Introduction

Recently, Dill [Dil89] and Alur and Dill [AD90] proposed a method for incorporating timing re

striction into a model of communicating finite-state systems by introducing the notion of a timed

automaton, containing fictitious time-measuring elements called clocks [AD90] or timers [Dil89]. The

verification problem is shown to be equivalent to the speed-independent verification problem on an

appropriate automaton. The fundamental problem with both approaches is state space explosion,

i.e. state space growing exponentially in the number of timers (clocks).

Kurshan [Kur91] suggested to carry out the verification process on timed systems with COSPAN

[HK88], a verification system for untimed processes, by relaxing the time constraints, verifying the

relaxed system and if the verification is unsuccessful check whether the run that violates the property

to be verified is infeasible under the timing constraints. If this is so, Kurshan removes the run and

repeats the process. This strategy is appealing but heuristic in nature. There was no proof that the

process would eventually converge to provably the correct answer.

In this paper, we introduce the notion of pauses, and construct an equivalent (non-pausing)

automaton. In contrast to previous approaches, we build an equivalent automaton as a composition

of the speed-independent (or unrestricted) automaton and many small automata. This enables us

to build simple abstractions of the equivalent automaton that are still detailed enough to eliminate

certain undesired behavior. This leads to a verification strategy similar to the heuristic proposed

by Kurshan, where a verification process is started with the unrestricted automaton, which is then

composed with simple automata imposing timing constraints, but only after the verification has

failed, and imposing only those constraints which are violated in the failure report. In the worst

case, all constraints must be used, so that the verification is performed with the automaton of full

complexity. However, some preliminary experiments have shown that the worst case is not the

common case and that this strategy can indeed lead to considerable time and space savings.

The rest of this paper is organized as follows. L-processes [Kur90] are shortly discussed in

section 2. In section 3, we introduce the notion of timed X-process, and then we construct the

equivalent (not timed) L-process in section 4. In section 5 two main steps of the proposed verification

strategy are described: extracting timing violations from the failure report, and imposing that subset

of timing constraints to the model of the system. Final remarks are provided in section 6.

2 L-processes

An L-process [Kur90] is an automaton defined over the alphabet 5(Z), where £ is a Booleanalgebra

with product *, sum +, complement ~, multiplicative identity 1, and additive identity 0. A partial

Abstract

At high levels of design, the task of formal verification is to prove that the design satisfies some
properties. Designs are usually presented in some formof a finite-state system. Verification of many
properties can be done without regard to the speed of the componentsof the system. However, some
ofthe properties canbe verified only under certain timing constraints. It hasbeen shown that timing
constraints can be expressed in the framework of finite-state systems, at the expense of exponential
explosion of numberof states. We propose a new verification strategy for timing constrained finite-
state systems. The strategy is to start the verification process on the unconstrained system, and then
add incrementally timing constraints, but only after the verification process has failed and adding
only those constraints that have been violated. The strategy can avoid the state space explosion
problem for a class of systems. We use our strategy in the context of timed L-process, a new model
that we propose for timing constrained systems.

1 Introduction

Recently, Dill [Dil89] and Alur and Dill [AD90] proposed a method for incorporating timing re

striction into a model of communicating finite-state systems by introducing the notion of a timed

automaton, containingfictitious time-measuring elementscalledclocks [AD90] or timers [Dil89]. The

verification problem is shown to be equivalent to the speed-independent verification problem on an

appropriate automaton. The fundamental problem with both approaches is state space explosion,

i.e. state space growingexponentially in the number of timers (clocks).

Kurshan [Kur91] suggested to carry out the verification process on timed systems with COSPAN

[HK88], a verification system for untimed processes, by relaxing the timeconstraints, verifying the

relaxed system and if the verification is unsuccessful check whether the run that violates the property

to be verified is infeasible under the timing constraints. If this is so, Kurshan removes the run and

repeats the process. This strategy is appealing but heuristic in nature. There was no proof that the

process would eventually converge to provably the correct answer.

In this paper, we introduce the notion of pauses, and construct an equivalent (non-pausing)

automaton. In contrast to previous approaches, we build an equivalent automaton as a composition

of the speed-independent (or unrestricted) automaton and many small automata. This enables us

to build simple abstractions of the equivalent automaton that are still detailed enough to eliminate

certain undesired behavior. This leads to a verification strategy similar to the heuristic proposed

by Kurshan, where a verification process is started with the unrestricted automaton, which is then

composed with simple automata imposing timing constraints, but only after the verification has

failed, and imposing only those constraints which are violated in the failure report. In the worst

case, all constraints must be used, so that the verification is performed with the automaton of full

complexity. However, some preliminary experiments have shown that the worst case is not the

common case and that this strategy can indeed lead to considerable time and space savings.

The rest of this paper is organized as follows, //-processes [Kur90] are shortly discussed in

section 2. In section 3, we introduce the notion of timed X-process, and then we construct the

equivalent (not timed) X-process in section 4. In section 5 two main steps of the proposed verification

strategy are described: extracting timing violations from the failure report, and imposing that subset

of timing constraints to the model of the system. Final remarks are provided in section 6.

2 L-processes

An X-process [Kur90] is an automaton defined over the alphabet S(X), where X is a Boolean algebra

with product *, sum +, complement", multiplicative identity 1, and additive identity 0. A partial

order < in X is defined by: x < y if and only if x * y = x. Atoms are minimal elements with respect

to this ordering. If X is finite (and we willconsider only those), it is completely specified by a set of

its atoms, denoted by S(L).

Atomsof Xcorresponds to the input alphabet in classical automata-theoretic terms. Introducing

algebraic structure on the alphabet enables us to describe easily various sets of letters. Forexample if

x is a letter (an atom), x denotes a set containing all other letters. Boolean algebras are particularly

convenient, when the alphabet contains different alphabets of separate automata. In this case, in

automata-theoretic terms the alphabet is a Cartesian product of components. In Boolean algebra

terms atoms are just products of atoms of independent subalgebras.

Let X= X•Xx where Xand Xx are independent subalgebras ofa Boolean algebra X. Then, for

anya GS(L) it must be true that a = ai *a2 where ax GS(X) and a2 GS(X-L). We say that ax is

a projection of a to X, and write ni,(a) = a\.

The X-process P is a 5-tuple (LP,MP,I(P),R(P),Z(P)), where LP (output subalgebra of P)

is a subalgebra of X, V(P) (a state space of P) is some non-empty set, MP (a transition matrixof

P) maps V(P) x V(P) to X, I(P) (initial states) is some non-empty subset ofV(P), R{P) (recur

edges) is some subset ofV(P) x V(P), and Z(P) (cycle sets) is some set ofsubsets ofV(P).

Let a = (01,02,...) G S(L)W be an infinite sequence of atoms of X, and let v = (vi,i>2,•••)

be an infinite sequence of elements of V{P). We say that v is a run of a in P if and only if

at * MP(vk, Vfc+i) ^ 0 for all k > 1.

Wesay that a G Lw is in the language of P, and write a GC(P), if and only if there exists a run

ofa in P, starting at some ofthe initial states, which neither crosses anyofthe recur edges infinitely

often, nor remains forever in one of the cycle sets.

A projection is naturally extended to sequences of atoms and languages, i.e. a projection of a

sequence is a sequence of projections of its elements, and a projection of the language is a set of

projections of sequences in the language.

It can be verified automatically [HK88] whether the language ofan X-process is contained in the

language describing some properties. If this is not the case, there exists at least one loop of states

reachable from the initial states, that does not contain any recur edges, is not fully covered by any

cycle set and is not in the language ofthe task. Usually, one such a loop is included in the failure
report produced by automatic tools.

3 Timed X-pro cesses

First we introduce the notion ofa simple timed L-process. Intuitively, we describe one pause by a
pair of states {vf,vf), as shown in Figure 1. When a system enters a state vf, a pause begins. An

Figure 1: A pair of states representing one pause

atom Pi, uniquely associated with that state indicates that a pause is in progress. A pause finishes

when a system exits a state vf. An intervaldi contains the allowable durations of the pause.

Formally, a simple timed X-process T is a pair (P, d), where P is an X-process (called unrestricted

process of T) and d is a set of pauses. A pause i Gd is a quadruple (vf,vf,pi,di) satisfying the

following:

• di is an integer bounded interval of positive real numbers (it can be open or close on the left

or right, it can also be unbounded from above),

• vf and vf are states of P and p,- is an atom of the output subalgebra of P, such that

MP(vf,vf) = MP(vf,vf) = pi, no other transitions are conditioned on p,-, vf has no other

fanouts and vf has no other fanins,

• V® (a set ofall vf), Vd (a set ofall vdi) and the set of initialstates of P are mutuallydisjoint.

Figure 2 shows three examples of simple timed X-processes. The set of atoms of output subalgebra

of the process T\ (the output alphabet of T\) is {ai,Pi,&i}. Similarly,output alphabets of T2 and

T3 are {a2,p2,b2} and {03^3,63}, respectively. Each process contains one pause, with associated

intervals (2,00), [1,2)and [1,3], respectively.

For each pause i wedefine a set of feasible elapsed times in that pause, by: *

Fi = [Q,'m{(di)]udi.

It is also useful to define a discretization function A for each pause t. The domain of X>, is F,. We set

Di(x) = x ifx isan integer and Dt(x) = |zJ+ 2otherwise. The exception ismade ifFi isnotbounded

from above when we set Dt(x) = inf(di) + \ whenever x > inf(<*,-). We also define a discretization

1inf(d,) and sup(d,) denote infinum and supremum of d,-

function for a pair of pauses (i,j) such that Dij(x) = Di(x) if x > 0 and Dtj(x) = —Dj(—x) if

x < 0. For the example in Figure 2 F2 = [0,2), the rangeof X>i is {0,0.5,1,1.5,2,2.5} and the range

of X>i,2 is {-2,-1.5,-1,-0.5,0,0.5,1,1.5,2,2.5}.

dr<2.»)

TI

0
T2 T3

©D .?, 0
«i »? 1

©D" [<3> [©D
< <»,-n.2)

.0
<^ p2 drfl.3] <

©

GD- ©0
Figure 2: Examples of simple timed X-processes

©

©D

Let T = {P,d) and assume a = (ai,a2,...) G C(P). Also, let v = (t>i,v2,...) € V(P)W be

some accepting run of a in P. Then, for each t>jb G Vd U F® let first(vk) be the element of v

where that pause has started, i.e. first(vk) = vi € V® if and only if vi ^ v/_i and v/ = vm for all

m = /-fl,...,Ar-l.

Given a sequence a, we define a timed sequence (a,t) where t is a function assigning a real

positive time <* to every a* in a. We can extend naturally a timing function to some run v of

a by: <(«*) = <(a*) = tk. For each Vk element of pause t we define the elapsed time of pause i:

rl = t(vk) —t(first(vk)). It is convenient to extend this definition to the whole v bysetting 7^ = 0,

if Vk is not element of pause i.

We say that a t is a proper timing of v if all of the following consistency conditions hold:

1. ij = 0, tjb+i > tk, for all k > 1 (time is non-decreasing),

2. if Vk &Vd and Vk ^ Vk-i, then tk = tk-i (allstate changes outside a pause are instantaneous,

the time can advance only inside a pause, or in a self-loop),

3. if Vk = vf GVd then t[Gdi (pause-finishing times are in dt).

4. r£ G Ft (elapsed times are feasible, this condition is not redundant only if Vk = vf for all k

greater then some k1),

For example, for the run (t>30i vf, vf, v|, v3i,...) in T3 from Figure 2, (0,0,0.2,2.8,2.9,2.9,...)

is a proper timing, while (0,0.2,...) violates Condition 2, and (0,0,0.2,0.8,0.9,0.9,...) violates

Condition 3.

Now, we can define the language of a simple timed process. We say that a timed sequence (a,t)

is in the language of a simple timed X-process T —(P,d), and write (a,t) G C(T), if and only if

there exists v such that v is an accepting run of a in P, and t is a proper timing of v.

A timedL-process\s a TV-tuple of simple timed processes (T\,..., TV). We say that Tn, 1 < n < N

are the components of T. A language of the timed process T is defined to be an intersection of

languages of Tn's.

For some timed X-process, let Vd, V®, d be unions of corresponding sets of its components. We

say that P is the unrestricted process of T if P is a product of unrestricted processes of components

ofT.

We define an untimed language of T by:

Untime{C{T)) = {a\3t, (a,t) GC{T)}.

Generally, Untime(C(T)) C £(P) holds. It is easy to check that for simple timed X-process the

equality holds.

Figure 2 showsan example ofa timed X-process. ProcessesT\ and T3 starts pausing immediately,

while process T2 starts pausing when process Ti finishes. One of the properties we might be interested

in is:

"Is the state (vn,V2i>v3) reachable?"

We can rephrase this question in terms of the language:

"Does 62 appears before 63 in any sequence in the language?"

It is easy to see that the answer is negative. However, if we remove timing restrictions, the answer

is positive, i.e. the language of the unrestricted process P contains the sequence in which 62 appears

before 63.

4 Equivalent L-process

We will show that for every timed X-process T there exists a process P, such that Il£,(£(P)) =

Untime(C(T)). We will define such a process in some extension X of algebra X, as a product of

the unrestricted L-process U, satisfying Ul{C(U)) —C(P), and the region L-process R, imposing

timing constraints by tracking down the possible values of elapsed times of pauses. Both U and R

are constructed by forming the product of several smaller processes.

In the rest of this section we assume that T = (Ti,...,TV) is a timed X-process, P is its

unrestricted X-process, Pi,..., Pn are unrestricted X-processes, and a\,...,dn are sets of pauses of

its components. We also assume that X is a subalgebra of X.

We construct the process U from the process P by adding to its output information required by

the process R. The first piece of information we need to add is whether or not a transition in P can

take some time, as required by consistency condition 2. Formally, weassume that there exists2 B(<),

a subalgebra of X independent of X, and for n = 1,..., N we define a X-process U'n with output

subalgebra LPn •B(t), state space, initial states, recur edges and cycle sets all the same as in Pn and

transition matrix:

Mn>(v w)= i MPn(viw)*i ifv?w&ndw&Vd
un\ ' I y MPn(v,w) otherwise

We have introduced a new symbol t and labeled with i all transitions in P which must not take

any time. Later on, we will mark transitions in R that must take some time with t, making sure

that they can not happen simultaneously.

Another piece of information required by R is when pauses are finishing. Therefore, we will add

one "flag" for each pause in P signaling when that pause is finishing. Formally, we assume that

B(/,) for all i G Un=i^n are subalgebras of X mutually independent and independent of X and

B(t), and for n = 1,..., N we define a X-process Un with output subalgebra Lwn •n.€dn B(/*)> state
space, initial states, recur edges and cycle sets all the same as in Pn and transition matrix:

*„.(.,.) =Mv,(vM . TI /,. -here /, ={j> %=£ .
Finally, let: U= ®"=1 Un. It is easy to check that Ubehaves exactly like P, i.e. that UL(C(U)) =

£(P). Processes Un for the example in Figure 2 are shown in Figure 3.

Before we formally define the region process .ft, let us consider a simple example. Consider pauses

3 and 2 in the example from Figure 2. In Figure 4 we record on the T^-axis an elapsed time in pause

3, and on the r2-axis, an elapsed time in pause 2. For anysequence a GC{U^ <8» U2) and any timing

2B(x) is a subalgebra of L containing x, with fewer elements than any other subalgebra of L containing x.

U1
U2

U3

Q QD''"" 0
af «Mi

«; V f «,
a3r 'a

(3D-- WD**-- (y>-
p^ p8-»i p,-«.

©00
W f fi

b; t*
b3 «* «3

<3> G> GO
Figure 3: A process U for the example in Figure 2

"3f3

< of a, we can construct a trajectory. The trajectory is constructed incrementally, adding a segment

from (r3, t%) to (r3+1, t*+1) according to a* and tk> The construction rules are as follows:

Rule 1 : we begin at point (0,0) and stay there as long as neither T3 nor T2 are pausing, i.e.

a* <P3*P2>

Rule 2(3) : if T3 (T2) is pausing and T2 (T3) is not, i.e. if a* < P3* P2 (a* < Pz* P2)> we move

forward, along the r3 (r2) axis,

Rule 4 : if both T3 and T2 are pausing, i.e. if a* < P3 * P2, we move forward, along a 45° line,

Rule 5(6) : if T2 (I3) is finishing pausing and T3 (T2) is not, i.e. if a* < f2* h (a* < ji * /a) we

move to the point (r3,0) ((0, r|) respectively),

Rule 7 : if both T3 and T2 are finishing pausing, i.e. if a* < f2* h, we move to the point (0,0).

The length of all forward movements is determined by tk+i —tk- One possible trajectory is shown

in Figure 4. Each segment of the trajectory is labeled with the number of the rule that generated

it. Note that for a proper timing of a rule 5 can only be applied in the region P3 x d2. Similarly,

rules 6 and 7 can only be applied in regions ^3 x P2 and efe x flfe> respectively.

0 1 2 3 T

Figure 4: One trajectory in the feasible rectangle

We can partition the feasible values of (r3, r2) intoregions rx such that (r3, r2) € rx if X>3,2(r3 -

r2) = a:. It is easy to see that such partition exist, and that it is unique and finite. A partition

of the feasible rectangle in Figure 4 is shown in Figure 5. In this case, there are 10 regions: the

region r3contains only a point (3,0), regions r2,r1, r° and r"1 contain segments oflines r3- r2 = 2,

r3 - r2 = 1, r3 - r2 = 0 and r3 - r2 = -1, respectively, and finally regions r2-5, r1-5, r0-5, r~0-5 and

r"1-5 contain strips 2 < r3 - r2 < 3, 1 < r3 - r2 < 2, 0 < r3 - r2 < 1, -1 < r3 - r2 < 0 and

—2 < r3 —r2 < —1, respectively.

^ a trajectory

a boundary of F3xF2

a boundary of d3 and d2

.

-1
r r° 1

r

r"V" y
/r/ r2

y !/,»»
r1* y

r3

X '/ yv5 y .
0 1 2 3 tr

Figure 5: A partition of the feasible rectangle

We will construct the region L-process for each pair ofpauses bymapping the regions intostates,

and mapping the movement rules intotransitions. The region process "observes" processes lh and

U3 and changes states according to the rules above. A transition between regions r* and ry exists if

a segment ofsome proper trajectory connects twopoints in those regions. The transition is enabled

if the conditions stated in the rule that generated the segment are met.

We don't have to construct such processes for all pairs of pauses. If two pauses belong to the

8

same simple timed process they can never be active simultaneously, so they have no interaction.

Pairs of pauses not belonging to the samecomponent process are called interesting pairs ofpauses,

and the set of such pauses for some timed X-process T is denoted by IPP(T).

Generally, there will be more than one region process associated with the same pause. Obvi

ously, all of these processes must agree on the value of elapsed time in that pause. To accom

plish this we introduce one "multi valued variable" for each pause taking values in the range of

associated discretization function and label each transition in every region process with the pos

sible discretized value of the elapsed time in the next state. Formally, we assume that for each

i 6 Un=i ^" there exists X< independent ofany other Lj and all other subalgebras mentioned before,

with the set of atoms: 5(X,) = {If \x in the range of Di}. For example, for pause 1 in Figure 2

S(L1) = W,l^,l\,l\Mll^}.

The process #3,2 resulting from a partition in Figure 5 is shown in Figure 6. All states are shown

(with names v|)2 abbreviated to x), but for simplicity only few transitions are shown. Enabling

conditions for transitions shown in Figure 6 are:

Mr3>3{v3&vI$) = <*p3*p2*#5*/2 + (1)

f*/3*/2*#5*/2, (2)

^.^SJ'5.^'5) = <*P3*P2*/3U5*#5+ (3)

<*/3*/2*(/§*/J'5+/S-5*^5), (4)

M*3.2(»3,2>42) = «*/s*/a *ig*ij. (5)

We now formalize the notion of a region process. For each interesting pair of pauses (i, j) €

IPP(T) we define a pair region X-process Rij. States of Rij are regions described above, i.e.:

V(Rij) = H C Fi x Fj\(t\t2) £ vfj ifand only ifD^r1 - r2) = *}.

Formally, Rij is an X-process with output algebra X,- • Lj, state space V(Rij), unique initial state

v®j (as required by Rule 1),no recur edges nor cycle sets.

We now define the transition matrix of Rij. First we consider transitions that take time. By

Rule 1, we can stay in the initial states as long as neither pause is active. Formally,

#*>&,$) = **ft*fc ♦!?*$. (6)

Possible discretized values of elapsed times are obviously zero in this case. By Rule 2, if i is active

and j is not, we can move from some state vfj, x > 0, to any state v%j satisfying y > x or y > x if

x is not an integer. Clearly, the discretized elapsed time ofj in v\j is 0 and of i is y. Formally, for

0 1 2 3 t

Figure 6: A part of the region process

any x and y satisfying y>£>0ory>x>0,:cgZwe define a transition:

MR,i {vfj, v?) = t *pi *pj */? * lj. (7)

An example of such a transition is (1). Similarly, by Rule 3, for x and y satisfying y < x < 0 or

y<x<0,x&Zvte define:

MrMj^I) = t*Pi*Pj */? *If*. (8)

Finally, by Rule 4, if both t and j are active, Rij remains in the same region. However, ifvfj is an
one-point region (like r3 in Figure 5), Rule 4 can not be applied. Actually, no transition that takes

time is possible from that state. Let Eij(x) be a set ofpairs ofdiscretized values ofpoints in region

vfj, i.e. Eij(x) = {{w,z)\w = Di{rl),z = Dj(r2) for some (t1,t2) 6 vfj}. The possible next-state
values when both i and j are pausing and some time has passed, are all (w,z) e Eij(x) with both
w > 0 and z > 0. Now, we define formally:

MRti(vfj,vfj)=t*Pi*Pj* £ /?*/j,
(w,z)eEij(x)

w > 0, z > 0

(9)

and assume that the sum over an empty set is 0. That is the case ifx = sup(df) or a: = -sup(d'j).
An example of such a transition is (3).

Next, we consider transitions that do not take time. It follows from all the rules that for 0 time

10

step Rij remains in the same region, if neither i nor j are finishing. Formally:

MRti{vfj,vfj) = i*fi*fj* Yi ***ll (10)
(w,z)eEij(x)

An example ofsuch a transition is (4). Rule 5 can be applied between vfj and v?- if for some point

(r1,r2) Gvfj both D^r1) = y and r2 € dj. In this case a discretized value ofelapsed time in v?- is

y for i and 0 for j. Formally, ifthere exists (r1, r2) Gvfj such that AO"1) = Vand r2 Gdj, then:

An example ofsuch a transition is (2). Similarly, by Rule 6, if there exists (r1, r2) Gvfj such that

r1 Gdi and Dj(t2) = -y, then:

Mfi,H,^) = f*/,• *fj */? *ljy. (12)

Finally, by Rule 7, if there exists (r1,r2) Gvg- such that r1 Gd* and r2 Gdj, then:

%(»^5) = i* fi *fj */? * lj- (13)

An example of such a transition is (5).

Some of the pairs (vfj, v?) may satisfy conditions for more than one of (6)-(13). In that case

MRij(vfj, v*j) is the sum ofall applicable expressions, as in (l)-(5).

Next, we define processes Q,- which track whether the elapsed time in pause t can be zero or not.

For each pause i we define an X-process Q,- with two states vf and v}, the first one being a unique

initial state, output subalgebra X,-, no recur edges nor cycle sets and transition matrix:

Mq,(v?,v?)= (t*Pi +t*fi)*l? MQi(v?,v}) = t*Pi*J2lf

MQt(vj, v}) = fi *£**o If MQ,(v}, v?) = fi */?

Intuitively, Q,- is in vf if r* = 0 and in v} if r* > 0. A transition from v? to vj must absolutely

take some time. A transition from v} to vf occurs if the pause t has finished. Note that fi is not

accepted in vf.

Finally, let R be a product of all fly's and all Q,'s and let P = U <8> R. It should be intuitively

clear that any sequence that has a run in U and can be properly timed, has also a run in R. The

opposite is also true, although not at all obvious: if a sequence has a run in P, it can be properly

timed. In the next section we described how abstractions of region processes can be used to eliminate

from the language any sequence that can not be properly timed. These observations are formalized

in the following theorem.

Theorem (equivalence theorem): El(£(P)) = Untime(C(T)).

The proof is given in appendix.

11

5 Verification strategy

Verifying a task on P can run into difficulties, due to the large size of the state space that has to be

searched. We propose a verification strategy to avoid this problem. We start a verification process

with the unrestricted X-process U. If the verification succeeds, we have verified the task. If the

verification fails, there is at least one sequence in S(L)W which is in the language of the current

abstraction of P, but not in the language of the task. We analyze one run of such a sequence. If

that run violates no timing constraints, we stop the verification unsuccessfully. However, if the run

does violate some timing restrictions, we compose the current abstraction of P with some simple

abstraction of process R, which is guaranteed to eliminate that run. We repeat thb process until the

verification is terminated, either successfully or unsuccessfully. This strategy can lead to significant

savings in time and space, provided that the behavior of the system is not heavily dependent on the

timing constraints. The verification strategy is outlined in Algorithm 1.

Algorithm 1: verification strategy

procedure verifyJtask()

initialize Pc = U

while not stop

try to verify a task on Pc

if success then stop, the task is verified

find a timing violating loop G

if such a loop does not exist then stop, the task is not verified

Pc =eliminateJoop(G, Pc)

end while

end procedure

5.1 Identifying timing violation

Assume that the error report from the verifier contains a loop and a path to that loop from the

initialstate. Wecan unfold the loop, thus forming a sequence ofstates. We forma graph with nodes

being states in the sequence and the following set of edges:

• If some pause i begins at node k and is still active at node k' and sup(d,) exists, we add an

edge from k to k' and label it with «t- = (-oo,sup(d,)] if sup(dt) Gdi, and ti,- = (-oo,sup(d,))

otherwise. We denote these edges with f%'k„ and call them forward pause edges. These edges

represent upper bounds on time distance between k and K, required by consistency condition

3.

12

• If some pause i begins at node k and is finishing at node k', we add an edge from k' to k and

label it with lt = [inf(dj). °°) if inf(rf.) Gdiy and /,• = (inf(rff), oo) otherwise. Wedenote these

edges with 6jj,t, and call them backward pause edges. These edges represent lower bounds on

time distance between k and /^required by consistency condition 4.

• We add a edge from k to k —1 and label it with /o = [0,oo). We call these edges backward

non-pause edges. They correspond to consistency condition 1.

• If Mu(vk,Vk+i) <t we add an edge from k to k + 1 and label it with «o = (—oo,0]. We call

these edges forward non-pause edges. They correspond to consistency condition 2.

We say that a loop in the graph is overconstrained if every sum of numbers satisfying upper-bound

constraints in forward edges is smaller than any sum of number satisfying lower-bound constraints

in backward edges. An overconstrained loop indicates a timing violation. A loop that is not over-

constrained can be properly timed. An overconstrained loop can be found by some modification of

the standard constrained graph solver (e.g. [New87]). A modification is necessary to handle both

included and excluded bounds correctly. Without loss of generality, we assume that the loop is

minimal, in the sense that removing any edge enables proper timing of nodes.

Once a loop has been identified, we can collapse all non-pause edges, by merging their incident

nodes. However, we mark nodes obtained by collapsing forward non-pause edges. Such a loop is an

input to the algorithm which eliminates a timing constraint, described in the next subsection.

For example, for the timed X-process in Figure 2, a sequence of states:

/ vn \ / Vii
v2=\ v20 |,V3=| v20 |,v4= vf ,v5= I vi I ,... (14)

is a run in U of a sequence that does not satisfy the property that 62 can not appear before 63.

However, this sequence is not possible under the timing restrictions, because the time difference

between V2 and vq must be at most 3 (due to pause 3), but the time difference between V2 and V3

must be greater than 2 (due to pause 1), between 13 and V4 must be at least 0 and between V4 and V5

must be at least 1 (due to pause 2). The corresponding overconstrained loop (with non-pause edges

collapsed) is show in Figure 7a. It has one forward edge /"3, where «3 = (—00,3] (corresponding to

the requirement that the distance between tfc and V5 is at most 3), and two backward edges: 63*2,

where l2 = [l,oo) (corresponding to the requirement that the distance between u\ and V5 is at least

1), and 62*11 where l\ = (2,00) (corresponding to the requirement that the distance V2 and V3 is

greater than 2).

The constrained graph, as we defined it, is infinite. However, we can build it incrementally,

adding one node at a time. While solving the constrained graph, we can easily compute possible

13

1^(2....) 12-[1, ...) 1-12,...)

u3-(...,3] u3-(...,2r
a) b)

Figure 7: An overconstrained loop in two steps of the algorithm

discretized values of r*—rJ, and we can establish whether t* can be 0. This, together with the state

of U, determines the state of P. Consequently, we can stop building the graph if we have repeated

a state of P. In this case, the run violates no constraints, so the verification process is unsuccessful.

5.2 Eliminating timing constraints

Given an overconstrained loop G, we want to build some abstraction of R which eliminates that run.

The procedure is outlined in Algorithm 2.

Algorithm 2: eliminating a timing violation

procedure eliminateJoop(G, Pc) /* G - an overconstrained loop, Pc - a current abstraction of P */

for each edge &J: m, m marked do Pc = Pe® Q{

for each pair of edges /£'m, &&,„, mmarked do Pc = Pe® i2"/',J <g> Qi
while there exist a pair ./£',„, &m,n

Pc = Pe® R%*
remove from Gedges /£'m and bl4i,n
if k<nthen add to Gedge /J«-^«»'i)
if k>nthen add to Gedge ^^(""'i)

end while

return Pc

end procedure

We start with an overconstrained loop G, and consider a pair of edges f% *m, &jA,n. For a moment,
assume that m is not marked. Then, we candivide a feasible rectangle of t and j into tworegions. A

region where both constraints u,- and lj could be simultaneously satisfied is called a "good" region.

In other words, the good region contains all regions intersecting «, x lj. A "bad" region contains all

other regions. If it* and lj are as originally defined, the finish of pause j is not accepted in the bad

region.

14

(u3=(...,3J.I2=<-.1]
3.2

3 t

u2=(....2].IU(2...)

*) b)

Figure 8: Two abstracted pair region processes

An abstracted pair region process R"j'3. tracks whether the elapsed times ofa pair ofprocesses

are in a good or bad region. Formally, it is a l-process with output algebra X* • Lj, two states

Vfj = {vfj GV(Rij)\vfj intersects (u,- x lj)} and Vfj = V(Rij) —Vfj, a unique initial state being the
one containing vfj, no recur edges nor cycle sets, and transition matrix defined by:

MrV„,j(V,W) = Y E MRij(v,w).

The state Vfj corresponds to a good region, while the state Vk corresponds to a bad region. We

compose /?"•" 3 with the current abstraction of P, to distinguish between the two regions of elapsed

times.

States of the abstracted pair region process for the overconstrained loop in Figure 7a are shown

in the Figure 8a. The bad region is shaded. It contains states v|j2 and v^f of#3,2. This process

accepts the finish of pause 2 only in the good region.

Node marking complicates the procedure slightly. For example, if in the original G, we have

edges /^'m,6m,n and rn is marked, then pause i finishes before pause j, but all transitions between

these two events are subsets ofi, so no time can pass in between. In this case a process i^j" 3 is

not enough, because even if it is in a bad state, when i finishes it will move into a good state. We

need to combine R"j''3 with Kj0,,i and Q{. While flj'»lj is in the bad state, R"?'lj must also be in
the bad state. When i finishes, JLi*'3 will be in the bad state, and must remain there as long as

subsequent transitions are subsets off. Note that 72";°'3 will not accept the finish of j if the elapsed

time of i is 0. But, Q, accepts only 0 elapsed time as long as subsequent transitions are subsets off.

In some cases we also need processes Q, to ensure that the elapsed time can not be greater than

0, before some transition intersect i.

15

Next, we propagate this partition backwards. For example, since the process in Figure 8a accepts

the finish of pause 2 only in the good region, we request that the elapsed time of pause 3 to be larger

or equal to 2 when pause 2 starts. Therefore, we remove the original edges and add an edge with

the new constraint on pause 3, as shown in Figure 7b. Generally, for edges /£'m and &m,m if k < n

and the elapsed time of i is in the region NewUfa, lj) when j starts, where:

NrmTHu. M- / (-°°>suP(w.) - inf(/j)] if sup(tif) € uf, inf(/j) e lji\ewu t«„i3) - ^ (.^sup^.) _ inf(/i)) otherwise

then the elapsed time of i and j are, and will remain in the good region. But, if the elapsed time of

i is outside the NewU(ui,lj), they will remain in the bad region. In this case we remove f%'m and

bm,n from G and add an edge describing a new constraint on i.

Similarly, if k > n and the elapsed time of j is outside the region NewL{ui,lj) when i starts,

where:

NrmT(n- M- J [inf(/j) - sup(u,), oo) if sup(ut) € «,-,inf(/j) 6 ljj\ewL[ut,ij) - | (.nf(/^ _ gup((|f jf ^ otherwise

then the elapsed timeof i and j will remain in the bad region. In this case we remove /£'m and bm,n

from G and add an edge describing a new constraint on ,;'.

We repeat this process until we process all constraints. For the example in Figure 7 this means

just adding the process whose states are shown in Figure 8b. One can check now that a sequence

that has a run (14) does not have a run in the product of processes in Figure 8. Initially, the process
v

in Figure 8a (process A for short) is in the good state, while the process in Figure 8b (process

B for short) is in the bad state. Process B remains in the bad state when pauses 1 and 3 start

simultaneously, while process A can either stay in the good state or move to the bad state. The

process B accepts the finish of pause 1 only if the elapsed time of pause 3 is larger than 2, but as

long as pause 2 is not active, the elapsed time of pause 3 larger than 2 leads the process A into

the bad state. Since A does not accept the finish of pause 2 in the bad region, we have eliminated

a sequence that has a run 14 from the language. Thus, we have verified the property using the

abstraction of R that has only 4 states, in contrast to the full process R that has 960 states ((12 of

#3,i)x(10 offl3,2)x(2 ofQi) x(2ofQ2)x(2 ofQ3)).'
Generally, after we have finished, at each state of the original error run, at least one of the

abstracted region pair processes is in the bad state. Eventually, one of the processes will not accept

the finish ofsomepause. In this way, wehave removed the error run from the languageof the current

abstraction of P.

It is easy to see that £(Rij) C£(J2"y»'->). Therefore, by composing some abstraction of P with
processes Qi and abstracted pair region processes, weare iteratively approaching the language of P.

16

Since there are only finitely many abstracted pair region processes, the iteration will converge in a

finite number of steps.

This approach also offers some insight into the nature of the somewhat restricting assumption of

integer bounded pauses. If we allow arbitrary real numbers to be the bounds for pauses duration,

we can still use the procedure outlined in Algorithm 2 to iteratively approach the language of some

timed X-process. However, in that case we are not guaranteed to converge in a finite number of

steps.

6 Conclusions

To model timing behavior of finite-state systems, we have proposed timed X-processes. We believe

that timed X-processes offer two major advantages over previous approaches. First, an equivalent

X-process is defined as a composition of an unrestricted X-process and many smaller processes. We

provide a transition matrix for each of these processes. In this way, the automatic generation of

the equivalent process is simpler than in [Dil89] where there is one big region automaton and the

computation of the next state function includes non-trivial matrix manipulation, and in [AD90]

where the equivalent automaton is defined as a single automaton with very large state space.

More importantly, we propose a verification strategy to deal with the state space explosion

problem. Basically, we propose a "trial and error" strategy, starting with the unrestricted process,

and using at each step only the minimum subset of timing constraints necessary to eliminate the

reported error. In the simple example discussed in this paper a reduction of two order of magnitudes

in the number of the states has been achieved. Besides time and space saving, this strategy could

have positive impact on the design. Indeed, to perform the required task, a design does not have to

meet all timing constraints, but only those used in the verification. Relaxing of constraints could be

used to optimize the design.

Appendix: Proof of the equivalence theorem

Throughout this appendix we assume that T = (Ti,...,7jv) is a timed X-process, P is its unre

stricted X-process, Pi,...,Pjv are unrestricted X-processes of components of T and d\,...,dx are

sets ofpauses ofits components. Furthermore, let d= Un=i ^n anc* ^ &anc* a^ °f *ts component
processes be as defined in section 4, except that for simplicity, we assume that IPP(T) contains all

pairs of pauses, not only interesting ones. This assumption does not change the complexity of the

proposed verification strategy, because by following the procedure in section 5, only abstractions of

interesting region pair processes will be generated.

17

We have not completely defined the algebra X, but only assumed that it has some independent

subalgebras. It is convenient (although not necessary) to assume that these subalgebrascompletely

specify X, i.e. that the following definition holds.

Definition: X = X •B(<) •UieAB(fi) ' Wi where L» BW» B(/<) and ^ for ^1 *€ <*> aie aU
independent subalgebras of X.

The following two lemmas are direct consequences of the definitions of processes Un (Lemma 1)

and Pn (Lemma 2). In fact, they can be regarded as alternative definitions of transition matrices of

those processes. Therefore, we state them here without a proof.

Lemma 1: For all n = l,...,N and all (v,w) G V(Un) x V(Un), Mun{v,w) = MPn(v,w) *

Mln{v,w) *M{jn(v,w), where MPn(v,w) GX, M{jn(v,w) GB(<), M{jn{y,w) Gn,-6dn B(/0 and

Mt _ i i \fv€Vd . .
Un \ 1 otherwise * *• '

/,. where /, =| £ ^ ""*
Lemma 2: For all (i, j) G IPP(T), all (u,io) € V(#,j) x V(Rtj), all x in the range of Di and

all y in the range of Dj:

a) AfRf>(t), to) > t *pi*pj *If */J ifand only if u= u> = vfj and x = y = 0,

b) Mh0(v, w) > t *pi*pj *If* lj ifand only ifx = 0 and there exists (0, r2) Gv and 6 > 0 such

that (0,r2 + 6) G u> and y = X>j(r2 + 6),

c) MRtj(v, w) >t*pi* pj * /f * /V if and only if y = 0 and there exists (r1,0) G v and 6 > 0 such

that (r1 + 6,0) G to and x = A^r1 -I- £),

d) Afn0-(t>, to) > t *pi *pj * If * /jf if and only if v = w and there exists (r1,r2) € t> such that

x = A(rJ) > 0 and y = .Dj(7-2) > 0,

e) Mr,j{v, vj) >t*fi* fj *lf *l? ifand only if w= vfj, x = y = 0 and there exists (r1, r2) Gv
such that r1 Gdi and r2 6 dj,

f) Mji0(v, to) > i *fi */j *If *Jjf ifand only ifx= 0and there exists (r1, r2) € t> such that r1 € di,
(0,r2) Gu> and y = X>j(r2),

g) MRtj(v, w) >t*fi* fj */f */J ifand only ify = 0and there exists (r1,r2) € v such that r2 € dj,

(r1,0) G w and a: = ^(r1),

h) Mi?0(v, iw) > i* fi* fj * If * lj if and only if v = 10 and there exists (tx,t2) G v such that

x - Di(rl) and y = Dj{r2).

18

ML = || /,. where /, = <*• —^ . (!6)

Intuitively, Lemma 2 states that there exist a transition between two regions (under certain

conditions), if and only if there exists a segment ofsome proper trajectory connecting twopoints in

those regions (under those conditions). Wecan now prove the first half of the equivalence theorem,

i.e. Untime(£{T)) C nL(£(P)). First, for every (a,t) G C(T) we define a G S(L)W such that

a = El(o,), and then we prove that d G£(P).

Definition: Assume (a,t) G C(T) and assume vn = ((vn)i,(vn)2,...,(vn)k,...), for n =

1,..., N, are accepting runs of a in Pn, such that t is the proper timing of all of these runs. Then,

let d G S{L)W be such that for all k > 1:

N

ak =ak*4*(l[Mln)*l[lfi{TM,
n=l t6<f

where Mfj is as in (16) , and:

i / t if'
a* = \i if,

<*+l > tk
tk+1 = <*

Lemma 3: For every n = 1,..., N, a G £(tfn)-

Proof: We show that vn from the definition of d is an accepting run of d in #n. Since initial

states, recur edges and cycle sets are the same in Pn and Un, it is enough to show that vn is a run

of d in Un,\.e. that d* * My,, ((«„)*, (vn)jt+1) ^ 0. By Lemma 1, we have:

a* *Mc/n((un)jk,(vn)fc+1) =
/v

ak*Mpu((vn)ktMk+i)*a1k*M}fn({vn)k,{vn)k+l)*]JM^ *]p? '(t*+i).
n=l igd

eL eB(t) ^ ' >—

To show that the left hand side is different from 0, it is enough to show that each of the underbraced

parts of the right hand side is different from 0, since they belong to independent subalgebras of

X. Last two parts (elements of]\ied3(fi) and Iltgd^i) are themselves products of atoms od

independent subalgebras of X, hence different from 0. The first part (element of X) is different from

0 by the assumption that vn is a run of a in Pn. Finally, the second part (element of B(<)) is

certainly different from 0 when M^n = 1. Since by consistency condition 2, ijb+i must be equal to

tk whenever one of the processes Pn changes states outside a pause, ak must be equal to t whenever

Mljn = t, hence their product is different from 0.D

Lemma 4: For all (i,j) G IPP(T), a GC(Rij).

Proof: We will show that r = (ri,r2,...,rjfc,...) where r* is such that (tI,tD G rjt, is an

initialized run of d in Rij. Since Rij has no recur edges nor cycle sets, r is also an accepting run

of d in Rij. First, we check that r*i is an initial state of Rij. This is true because by consistency

condition 1, r[= 0 for all i Gd, so ri = vfj GI(Rij)-

19

Next, we show that:

a* <MRtj(rk,rk+i) (17)

Generally, (17) follows from Lemma 2. More specifically, let 6 = <t+i —tk (where i* is a proper

timing of ak, from the definition of d). Then:

• if a* <t*Pi*pj*li ' r*+1 *lj J k+I , then by the definition of elapsed times, t\. = t^ = r£+1 =
r£+1 = 0,so rjb = rk+i = vfj and (17) holds by Lemma 2a,

• if ak <t*pi *Pj */fi(T*+l) */J2W+l), then 6>0, rj = rj+1 =0and t^+1 = t{ +6, so (17)
holds by Lemma 2b,

• if ak <t*Pii* pj */f*(T*+,) *if>(r*+l), then 6>0, ^+1 = 7 '̂ =0and rj+1 =rj +6, so (17)
holds by Lemma 2c,

• if ak <t*Pi*Pj*lf>,iH+l) *l?iiT3k+1\ then 6>0, rj+1 =4+6 >0, ^+1 =Tjj+tf >0, so (17)
holds by Lemma 2d,

• if a* < t*fi*fj *li ' Tfc+1 *lj J Tfc+1 , then rj[+1 = Tjj+1 = 0, by consistency condition 3, r£ Gd,-
and t]J Gdj, so (17) holds by Lemma 2e,

• if ak <i*fi *fj */f,'(Ti+l) */JI>i(T*+l), then r*k+l =0, r{+l = t{ and r* Gdt- by consistency
condition 3, so (17) holds by Lemma 2f,

• if ak <i*fi *fj *if,(Tfc+l) */j- JTfc+1 , then r£+1 = 0, rlk+1 = r| and t^ Gdj by consistency
condition 3, so (17) holds by Lemma 2g,

• if ak < i*fi *fj *lf'iTi+l) *lfilT^\ then rj+1 = r{ and t{+i = r{ so (17) holds by
Lemma 2h.D

Lemma 5: For all i G d, d G £(Qi).

Proof: We will show that q —(qi,q2,...,qk,...), where:

= 0
9k — i „i :f -t > q »

is an initialized run of d in Qi. Since Qi has no recur edges nor cycle sets, q is also an accepting

run of d in Qi. Initially, r^ = 0, so qx = vf is indeed an initial state of Qi. Next, consider a case

tI+1 = t\. = 0. It is possible only if tk+i > tk and pause i is inactive (i.e. ak < t*pi), or tk+i = <*

(i.e. ak < i). In either case ajt < /< must also hold, because of the consistency condition 3 and the

fact that 0 £ d,- for any i. So, we have:

ak < (t*Pi+i*fi)*lf = MQt(vf,vf) = MQi(qk,qk+i)>

20

I "l X4

The case t£+1 > r£ = 0 is possible only if tk+i > tk and pause t is active. So,

ak <t*Pi *lfiiTUl) <MQi(vf,v}) = MQi(qktqM).

The case rj+1 > r£ > 0 is possible as long as pause t does not finish, so in this case:

ak <fi*lfiiTl+l) <MQi(v},v}) = MQi(qk,qk+i).

Finally, r£ > r£+1 = 0 is possible only if pause i finishes, in which case:

«* < fi *lfiiTl+l) = MQ,{v},vf) = MQi(qk,qk+i).0

Lemma 6: Untime(C(T)) C UL(C(P)).

Proof: It is easy to check that IU(d) = a, and by Lemmas 3-5 d G £(P). So for every

(a,t) G£(T), hence also for every a GUntime(£(T)) there exists d G5(X)W, such that ^(d) = a

and d G C{P).D

We now turn to the proof of the second part of the equivalence theorem, i.e. we need to show that

Untime(C(T)) D nx,(£(P)). In other words, we need to showthat every sequence in the language of

P can be properly timed. In the rest of this appendix we assume that d = (di, a2,..., d*,...) G S(L)W

is in the language of P and that ((r,-j)i,(r,-j)2,...,(rjj)jfe,...) is an accepting run of d in Rij. We

also assume that a is partitioned into subsequences according to the following rules:

• di is in the epilogue of subsequence 1. We say that di begins subsequence 1 and write 6ey(l) =

1. We also say that di begins the epilogue of subsequence 1 and write epi(l) = 1.

• If djt is in the epilogue of subsequence m and djt < t, then dfc+i is also in the epilogue of

subsequence m.

• If djk is in the epilogue of subsequence m, d* < t and d* < If for all pauses i, then d*+i is in

the prologue of subsequence m + 1. In this case, we say that djt+i begins subsequence m + 1

and write beg(m+1) = k+1. We also say that d* ends subsequence m and write end(m) —k.

• If a* is in the epilogue of subsequence m, djb < t and d* < If for some pause i, then djt+i

is in the epilogue of subsequence m + 1. In this case, we say that af.+i begins subsequence

m + 1 and its epilogue and write beg(m+ 1) = epi(m + 1) = k + 1. We also say that d* ends

subsequence m and write end(m) = k.

• If dfc is in the prologue of subsequence m, and d* < If for all pauses i, then dfc+i is also in the

prologue of subsequence m.

21

• If djt is in the prologue of subsequence m, and d* < If for some pause t, then <ik+i is in the

epilogue of subsequence m. In this case, we say that djfc+1 begins the epilogueof subsequence

m and write epi(m) = ifc + 1.

In summary, subsequences have a prologue,which may be empty and an epilogue, which always

has at least one element. All pauses are active in all but last elements of the prologue, and all but

last elements of the epilogue are contained in t. If the prologue is not empty, at least one of the

pauses finishes at the end of the prologue. The prologue is empty if at least one pause is inactive at

the end ofprevious sequence, so aepi(m)_i < If always holds for some pause i. If end(m) exists, then

aend(m) < < holds. A sequence has infinitely many finite subsequences, or the last subsequence has

infinite prologue or epilogue. We will show that there exist a proper timing of any d GC{P), such

that all elements of the subsequence are assigned the same time. Furthermore, for any two pauses i

and j elapsed timesat step k will be in the region (r,;)*. In the proof, we use the following property

of discretization functions.

Lemma 7: Let T\,r2,a\,a2 be such that:

Dijin - r2) = Dij(<n - c2). (18)

Then there exists 6 such that

Di^ +6) = Diin) and Dj{a2+ 6) = Dj(t2). (19)

Proof First, consider a case where both A(n) = n and Dj(t2) = t2 are integers. Then:

Dij{Ti - T2) = Ti-T2 = Dij(<Ti - <T2) =<Ti- <T2,

implying that 6 = tx - a\ = r2 - <j2 satisfies (19).

Next, consider a case A(t"i) = ri is an integer and Dj{r2) is not, i.e. /oj(r2) < t2 < upj(r2),
where:

loi(x) =Di(x) - i uMx) ={ ~, ,^ x•if* unbounded «"» *>MM .
v ' v ' 2 v ; I Di{x) + \ otherwise

Then:

n - upj(r2) <ti-t2<ti- Ioj(t2). (20)

Since t\ —t2 and a\ —a2 belong to the same region, the bounds on T\ —t2 in (20) must also hold

for g\ —(T2, i.e.:

n - upj{r2) <<n-<r2<Ti- Ioj(t2).

22

which in turn implies that 6 = n - ax satisfies (19), rewritten as:

<y\ + &- n,

Ioj(t2) -or2<6 < upj{r2) —cr2.

Similarly, if Difa) is not an integer, i.e. /o,(ri) < Ti < iift(ri) and Dj{t2) = r2 is , then:

Mri) -t2<ti-t2< upi(n) - r2 =*

lOiM -T2<<Ti-<T2< upi(Ti) - T2,

and 6 = r2 —cr2 satisfies (19).

Finally, if neither X\(ri) nor Dj{t2) are integers, i.e. /o,(ri) < Ti < up.-(ri), hj(r2) < r2 <

uPj{r2) then:

lOi(Ti) - upj(r2) <Tl-T2< upi(ri) - Ioj(t2) =»

loi(n) - upj{r2) <<ti-<t2< upiin) - Ioj(t2),

imply that (19), rewritten as:

loi(n) -<ri<6 < upiin) - ai,

Ioj(t2) —a2<6< upj(r2) - <j2.

has a solutions, because lower bounds on 6 are strictly smaller than the upper bounds. D

The following result follows easily from Lemmas 2 and 7, and the simple fact that for any pause

i: x G di if and only if Di{x) G dj.

CoroUary 1: For any (i,j) G IPP(T) and any d G £{P):

a) ifa* < Pi *pj *lf */J, then for every (r1, r2) G(r.j)* there exists 6 such that: Di(rl + 6) = x,
Dj(r2 + 6) = y and for any such 6: (r1 + S,r2 + 6) G(r,j)jb+i = (rij)fc,

b) if ak < ft * fj * If then for every {t1,t2) G (r,j)jt there exists 6 such that: Di(rl + 6) = x,

t2 +6e dj and for any such 6: (r1 +6,t{+1 = 0) G(r,j)fc+i = vfj,

c) if ak < fi* fj then for every (r1,r2) G(rij)k there exists 6 such that: r1 + £ Gdj, r2 + 6 Gdj

and for any such 6: (rj+1 = 0, ^+1 = 0) G(r,j)fc+1 = t$.

Intuitively, Corollary 1 states that if i and j are both active, then for any point in (ry)*, there

exists a point on the same 45° line connected to some point in (r,-j)fc+i by a segment ofsome proper

trajectory. This result is useful to prove the existence of proper timing of subsequence m + 1, once

a timing for subsequence m has been chosen.

23

We also need the following result.

Lemma 8: For any (i,j) G IPP{T) and any d G C(P):

a) if djfe < If and d*+i < i, then d*+i < ft* /?,

b) ifd* < Pi *If* /J and djt+i < i, then djb+i < p,- *fj *lf *lf or djt+i < /,• *fj *If *lj, the letter

being possible only if x G d,-,

c) if dfc < If *lj, && < Pi for all k' = k,..., k" and d** < t for at least one such k', then dfc« < l\

where y is such that for every r satisfying Di(r) = x there exists 6 > 0 satisfying Di(r+6) = y.

Proof: Part a) follows immediately from the definition of processes Qi.

By part a), dfc+i < fj *lj in part b). Furthermore, ifdjt+i < p,-, then by Lemma 2h (rtj)jt+i =

(rt-j)fc+2> so3 dfc+i < If. By Lemma 2 (parts c), g) or f) can be applied in this case) (r,j)jfc+1 = vfj,
so by Lemma 2f, dfc+i < /,• *fj can be possible only if there exists r Gd,- such that (r, 0) Gvfj. But

the statement 3t G d,- : (r,0) Gvfj is equivalent to 3r Gd,- : Aj(t" —0) = x, hence equivalent to

3t G d,- : Di(r) = x, and finally, the last statement is equivalent to x G d,-.

For the proof of part c) we first consider a case d** < fj for all k < k' < k". If j is not active,

part c) follows from parts c) and h) of Lemma 2. If j is active, then by parts d) and h) of Lemma 2

(rij)k' = vfj for all k'. Furthermore, after the first k! satisfying ay < t, Qj will go to vj and remain
there until at least k". So, ay <l\ *lj, where, (y, z) GEtj(x) (by partsd) andf) ofLemma 2) and

z > 0 (due to the state of Qj). It is easy to check that any such y satisfies the condition in part c).

If ajfci < fj for some k < k' < k", wefirst apply the same argument to the subsequence k,..., k'—l.

We can do that because by Lemma 9a at least one element of d between k and Wmust be contained

in t. It follows from Lemma 2g and the fact (r,-j)fc*_i = vfj, that a^ < /f where y satisfies the

condition in part c). Since ay < fj implies ay < lj, we can now repeat the same argument for the

rest of the sequence (this time with relaxed condition 6 > 0).D

Informally, part a) states that if elapsed time of pause i is 0, i can not finish as long as the

following elements of the sequence are contained in i (e.g. in the epilogue of some subsequence).

Part b) states that a pause can finish in the epilogue only if the signaled discretized value of elapsed

time (i.e. x in If) satisfies consistency condition 3 (x Gdj). These two result are useful to show that

we can indeed assign the same time to all elements of some subsequence. Part c) states that the

signaled discretized value of elapsed time in pause i can only grow between beginning of epilogues

of two consecutive subsequences, unless i finishes in between. We use this result to show that the

*Here,we use the fact that for all regions, if we fix the discretizedvalue of elapsed time in one pause in the next
state (in this case we fix j to 0), then the discretized value of elapsed time in the other pause in the next state is
uniquely determined.

24

time assigned to subsequence m +1 (following the procedure described bellow) is indeed larger than

the time assigned to subsequence m.

The next Lemma provides a basis for an inductive construction of proper timing of d.

Lemma 9: Assume that d G £(P) has been partitioned into subsequences and assume that

subsequences l,...,m (all finite) have been properly timed with ti,...,tm (the same time for all

elements of subsequence). Also, assume that subsequence m + 1 has a finite (possibly empty)

prologue, and that all elements of subsequence m + 1 have been assigned the time tm+i = tm + 6,

where 6 satisfies:

6 > 0 (21)

Di(TLd(m) +$) = *«• whenever depi{m) <pi*lf* (22)

TLd(m) + s € di whenever dcpt(m) < /,- (23)

Then, the following holds:

a) t\,..., tm+i is a proper timing of subsequences 1,..., m + 1,

b) ifforall(i,j)G/PP(T):

(Tlnd{mY ^endim)) € (rtf)«nd(m)i (24)

then there exists 6 satisfying (21)-(23),

c) if (24) is satisfied and 6 satisfies (21)-(23), then

(rcnd(m+l)'Tend(m+l))) ^ (rij)end(m+l)i

for all (i,j)elPP(T).

Proof:

Part a) : Consistency condition 1 is trivially satisfied by (21). Consistency condition 4 is trivially

satisfied by (22)-(23) for pauses that satisfy respective conditions. If the prologue is not empty,

every pause must satisfy either the condition in (22) or the condition in (23). If the prologue is

empty, there mightbe some pauses satisfying dep,(m) < pi*fi*If, but for these pauses elapsed

time is 0 throughout the subsequence, so consistency condition 4 is satisfied for all pauses.

Consistency condition 2 is trivially satisfied for all k in the subsequence, except k = end(m-f 1),

because tk+i = tk- From the definition of processes U„ it follows that enabling condition of

all changes of states outside a pauseare contained in t. Since aen(i(m+i) < <> we conclude that

no changes of state outside a pause can occur in U at aend(m+i)i so consistency condition 2 is

satisfied for k = end(m + 1) as well.

25

Consistency condition 3 is obviously satisfied for all pauses that meet the condition in (23). By

Lemma 9b it is satisfied for all of the pauses that meet the condition in (22), and by Lemma 9a

noother pauses (i.e. pauses satisfying dep,(m) < pi *fi *If) can finish in this subsequence.

Part b) : Each expression of type (21)-(23), defines an interval of possible values of 6, so to show

there is a solution satisfying all of these constraints, it is enough to show that each pair of

constraints has a solution. First, we observe that (r,-j)epj(m+i)_i = (r,j)cnd(m) either because

the prologue is empty, i.e. end(m) = epi(m + 1) —1, or by repeatedly applying parts d) and

h) of Lemma 2 through the prologue of subsequence m + 1 (since all pauses are active in the

prologue, only these two cases apply). Hence, we can rewrite a condition (24) as:

(Tlnd{m)i ^tndim)) € (r«j)ept(m+l)-l (25)

Now, we can apply Corollary 1, to show that if (25) is satisfied, there exists 6 satisfying any

pair of constraints, each being either of type (22) or (23).

The constraint (21)obviously has a solution with a constraint of type (22) if ^nd/m\ = 0. Also,

for such i it must be true tha atnd{m)-\ < '?> because it either has finished in the epilogue of

subsequence m, or was not active at the beginning of the epilogue of m. In either case, at least

one ajt in the epilogue of m was contained in If (by the definition of Qi), and so is aend(m)-i

by Lemma 8a. Note that there always exists at least one such pause.

If this is not thecase, then T\ndtm\ > 0,and there exist j such that aend(m)-i < $• From (24)

and parts b) to d) of Lemma 2, it follows that aemj(m)_i < /t- ' end(m) . Now we can apply

Lemma 8c to show that there exists 6 satisfying (21) and any constraint of type (22).

The constraint (21) obviously has a solution witha constraint of type (23) if 7"*nd/m\ ^ sup(dj).

But, if T*nd,* = sup(dj) the only region satisfying (24) is a region containing a single point

(sup(d,),0), and from Lemma 2 all edges from that state are containedin i. Since aend(m) < t,

we conclude that the case rlndtm\ = sup(d,) is not possible.

Part c) : First we prove:

(Tepi(m+l)-VTepi(m+l)-l' € (rij)ept'(m+l)-l-

If the prologue of m is empty it is trivially true because epi(m + 1) —1 = end(m). If the

prologue is not empty all pauses are active, so none of the Rij change state, and:

(ren«f(m)'̂ ndtm)) ^ \rij)end(m)
(rij)cnd(m) = (r«j)ept(m+l)-l

Tlpi(m+1)-1 = Tlnd(m) +*
^piCm+l)-! = Kndim) "*" *

(rept(m+l)-l'Tcpi(m+l)-l) ^ (r»j)ep»(m+l)-l<

26

Next, we show:

(rep.(m+l)> ^pi(m+l)) € (r»j)ept(m+l)). (26)

If the prologue is not empty, it is true by Corollary 1, however if the prologue is empty weneed

to consider cases acnd(m) < pt *pj*fj and aend(m) < p,- *pj*fi*fj. The latter case is simple

because T^nd(m) = rfnd(m) = r*p,.(m+1) = Tfp.(m+1) =0and (r,j)end(m) = (r$j)cpi(m+1) = v?-.
If Oend(m) < Pi *Pj *fj * /?' * lj, then (22) is equivalent to

Dii((Tind(m) + 6)-0) = Xi,

and since r»p|.(m+1) = r*'nd(m) +£and ^p.(m+1) = 0, this is equivalent to:

(Tlpi(m+l)^Tipi(m+l)) GV&

and finally, by Lemma 2 (r,j)cpt(m+i) = vfy.

Finally, we observe that (26) implies (r£, t{) G(r.j)* for all A: in the epilogue ofm (hence, also
for k = end(m), because of the part b) and c) of Corollary 1 and the fact that if ak < fi *fj

neither elapsed times of i and .;' nor the state of Rij can change in the prologue of m.D

Now, we are able to prove the second part of the equivalence theorem.

Lemma 10: Untime{C(T)) D TlL(C(P)).

Proof:We need to show that there exists a proper timing for every UL(a) G Hl(£(P)), or

equivalently, for every a G C(P). Lemma 9 provides basic inductive argument for the construction

of such a timing. However, we yet need to prove the base case, i.e. that t\ = 0 is a proper timingof

subsequence 1 satisfying (24) with m = 1, and the case where the last subsequence has the infinite

prologue.

A timing t\ = 0 is a proper timing of subsequence 1, because consistency conditions 1 and 4

are obviouslysatisfied, consistency condition 2 is satisfied by the same argument as in the proof of

Lemma 9 and we claim that the consistency condition 3 is satisfied because no pauses can finish in

subsequence 1. This is true, because all processes Qi are initially in the state vf, which does not

accept the finish of pause i, and Qi will remain there until at least end(l) (since all other elements

of subsequence 1 are contained in i).

Since ak < fi* fj *i for all k < end(l), {rij)k = vfj for all k < end(l), so (24) is satisfied,

because:

(rind(i)»^„d(i)) = (0.0) € vfj = (rij)end(1).
If the last subsequence (say m) has an infinite prologue, we assign it a time tm = tm-i, which

obviously satisfies consistency conditions 1 and 2, but also consistency condition 4 by inductive

hypothesis, and consistency condition 3, because no pauses can finish in the infinite prologue.•

27

Finally, Lemma 6 and Lemma 9 prove the equivalence theorem.

Acknowledgment

The authors would like to thank Prof. R. Brayton, R. Murgai and T. Villa for many useful dis

cussions. We also acknowledge R. Kurshan for his presentations at UCBerkeley that sparked our

interest in the subject. This work has been supported by DARPA under contract JFBI90-073.

References

[AD90] Rajeev Alur and David L. Dill. Automata for modelling real-time systems. In M.S. Pater-

son, editor, ICALP 90 Automata, languages, and programming: 17th international collo

quium. Springer-Verlag, 1990. LNCS vol. 443.

[Dil89] David L. Dill. Timing assumptions and verifications of finite-state concurrent systems. In

Joseph Sifakis, editor, Automatic Verification Methods for Finite-State Systems. Springer-

Verlag. 1989. LNCS vol. 407.

[HK88] Z. Har'El and R. P. Kurshan. Software for analysis of coordination. In Proceedings of the

International Conference on System Science, pages 382-385, 1988.

[Kur90] R. P. Kurshan. Analysis of discrete event coordination. In J.W. de Bakker, W.P. de Roever,

and G. Rozenberg, editors, Stepwise Refinement of Distributed Systems : Models, For

malisms, Correctness, pages 414-453. Springer-Verlag, 1990. LNCS vol. 430.

[Kur9l] R. P. Kurshan, 1991. private communications.

[New87] A. R. Newton. Symbolic layout and procedural design. In G. De Micheli and Alberto L.

Sangiovanni-Vincentelli, editors, Design Systems for VLSI Circuits : Logic Syrithesis and

Silicon Compilation. Martin Nijhoff, 1987.

28

