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Abstract

We present fifteen examples of one-dimensional maps that are de
rived from the generalized Chua equations. These maps illustrate the
diversity ofone-dimensional maps that arise from the Chua equations.

1 Introduction

This paper derives one-dimensional maps from a class of generalized Chua
equations we call the restricted doublescrolls. Section 2 defines the restricted
double scroll and derives a canonical form that will be usedto derive the one-
dimensional maps. Section 3 discusses the single scroll mechanism. Section 4
illustrates fifteen one-dimensional maps derived on the basis of the analysis
in Sec. 2.

2 The Restricted Double Scroll

The restricted double scroll is a subset ofthe type I generalized Chua equa
tions, [Brown, 1992]. We add the modifier "restricted" to indicate that the



dynamics of this class contains only the double scroll dynamics and not the
broader class of dynamics that arises from Chua's circuit equations, [Chua,
1992]. The general form of the restricted double scroll is given by the equa
tion:

all ^12 <*13

a21 a22 a23

«31 <*32 «33

( z-fa+risgn(w)) "\

y-(92 + r2sgn(u))

\, 2-(g3 +r3sgn(u)) )
where the matrix M, defined by

where

M =

°11 a12 ^13

a21 ^22 ^23

fl31 ^32 °33

has eigenvalues —7, and a1 ±ja2> where 7 > 0, and ax > 0, and j = V^T;
ft, rt- are any real numbers. The variable u defines a plane in three space:

u = V*(X-P)

X =

(1)

and V and P are any three-dimensional vectors, and "•" indicates vector
inner product. We can write this more briefly as

where

X = M (X - (Q + Rsgn(V • (X - P))))

Q =

91

92

93



R =

and

P =

r2

7*3

Pi

V2

.P3 .

We require that the vector Q must lie in the plane defined by w, i.e.,
V • (Q - P) = 0. By a change ofcoordinates as done in [Brown,1992] we can
bring M into the form:

Oil CL\2 0

M = a2i a22 0

0 0-7

By a rotation in the x —y plane we can change the vector V to

m\

V = 0

m3

and by factoring m2 out of V and including it in R we may assume that V
has the following form:

" -1

V =

m



After these changes we have the following

Canonical Restricted Double Scroll:

m

\ i(t) )

al\ °12 0

o2i o22 0

0 0-7

( a* - (ft + rx sgn(u)) \

V- (ft + r2 sgn(u))

^ 2-(ft + r3sgn(u)) ,

(2)

where u = m(z —p2) —(x —px), and the transformed vector Q also lies in
this plane. Of course the constants in this transformed equation are different
from those of the previous equation, but, for convienence we use the same
set of notation.

Also note that the canonical equation is invariant under the transforma
tion F(X) = 2Q —X, which is a flip through the point Q which lies in the
plane defined by u, called the transfer plane. This is essential if we are to
derive the one-dimensional mapswe seek. This symmetry amounts to saying
that the vector field on one side of the plane u is topologically conjugate to
the vector field on the other side by the conjugacy F.

Clearly this decoupled set of equations may be solved on each side of
the plane u = 0, and the actual solution can be generated from these two
separate sets of solutions. However, since this equation has a symmetry,
we can do more, just as in [Brown, 1992]. We may study the dynamics of
Eq.(l) by using only the vector field on one side, say where u > 0, and then
applying the conjugacy to obtain the component of the solution on the other
side. Following [Brown, 1992] we have the following situation:

I *(t) \

m

all a12 0

Q>21 0.22 0

0 0-7

/ * - (ft + ri) \

V - (ft + r2)

\ z - (ft + r3) )

(3)

where we apply the map F(X) = 2Q - X when the solution reaches the
plane u = 0.

We may write down the solution of Eq.(3) as follows:



* = ft +n +exp(st)((x0- (qi +r1))cos(wt) + Asin(u>*)) (4)

V = ft + r2 + exp(s *) ((i/o - (ft + r2))cos(u; 2) - £ sin(u; *)) (5)
z - ft + r3 + (z0-(ft + r3))exp(-7*) (6)

where,

A_ ai2 (yo - (ft +r2)) +(flu - s)(x0 - (qj +rx))

Bo = (ai2(/yo - (ft + r2)) - (s - an)(:co - (ft + rx)))(axi - s)

B^u2(x0-(qi-{-r1))-Bo
ax2w

a = tr(Af )/2

u> = y/det(M) - s2
The single scroll equations needed to obtain the one-dimensional maps

we will illustrate are obtained by letting 7 —• 00. When 7 —> 00, z —• g3 + r3
and u —» m(g3 + r3 —p3) —(x —pi). The line in the plane where we apply
the translated flip map, X —• 2Q —X, is given by-,

x —m(q3 + r3 —p3) + px

3 The Mechanism of the Single Scroll

The general single scroll equations are given by:

x = qx + rx + exp(s2) ((x0 - (ft + rx)) cos(u; t) + Asin(u; *)) (7)
y = ft + r2 + exp(s<)((y0-(ft + r2))cos(u;*) - £sin(u;*)) (8)

where the curve at which the general flip is applied is given by:

x = m(q3 + r3 - p3) + pi

The genreal flip, X —• 2Q - X, reduces to (x,y) —»• (2$x —a:,2g2 —y).



3.1 Misiurewicz's Single Scroll

The single scroll of Misiurewicz isobtained from the general restricted double
scroll equations by setting:
an = a22 = 5, a21 = —o12 = 1, gt- = 0, r3 = 1, p, = 0, m = 1, and
rx = a, r2 = 6,r3 = 1, where a, 6 are arbitrary; u = z —x, and Q is the
origin. As a result we have the following restricted double scroll determined
by Misiurewicz's form of the single scroll:

( *(*) \

m

5-10

1 s 0

0 0-7

f x —asgn(u) ^

y-bsgn(u)

\ 2r-sgn(u) y

(9)

where u = (z —x).
To obtain the solution of these equations from Eqs. (4),(5),(6) we need

only set:

A = -(2/o-6)
B = (z0 - a)
u = 1

The single scroll is obtained by letting 7 —* 00 in which case, z-» 1.
Doing this we have the following single scroll equations:

x(t) = a + exp(5r) ((x0 —a) cos(r) - (y0 —b) sin(r)) (10)

y(r) = 6+ exp(sT)((2/o-&)cos(T) + (x0-a)sin(r)) (11)

Since, as 7 —> 00, z —»• 1, the flip map is now applied when,

u = 1 — x = 0

or, in other words, when x = 1. The general flip, X -* 2Q —X, reduces to
standard flip (l,y) -> (-1, -j/) for this case.



3.2 Invariant Regions and Fixed Points

The role of the y coordinate 6 for a fixed value of the x coordinate a is
to define an invariant region. Invariant regions, as shown by Misiurewicz,
are determined by the point where the single scroll is tangent to the line
x = m(q3 + r3 —p3) -f- px- We obtain this point by solving

axx a\2

(12)
a2x ct22

for dy/dx.
Doing this gives the equation:

ffy = <*2i(s - (ft +rx)) + a22(y - (q2 +r2)
dx an(x - (qi + n)) + a12(y - (q2 + r2)

To obtain the vertical tangent to the line u = 0 we need to evaluate

dx

dy

at x = m(q3 + r3 - p3) + pl. This requires that

an(* - (ft + rx) + au(y - (q2 + r2) = 0

for this value of x. To simplify the illustration we choose qi = pt- = 0,
rx = a, r2 = 6, r3 = 1 to get the equation for y,

y = b-(au(m-a)lai2)

This determines the point, (m,y) at which the tangent line is x = m. If we
take this as an initial condition and integrate forward in time to the place,
yu where this curve next strikes the line x = -m and then where it goes
on to strike x = m, say as y2l it defines the potential invariant region. In
particular, if we choose bso that \y2\ < |yx|, we will have an invariant region.

We may make this invariant region maximal in some sense if we require
that \y2\ = |yx|. This means that the point (-l,yx) must be a fixed point for
the one-dimensional map. We examine the fixed points for the special case



where an = a22, a12 = 1 = —a21. We have the following equation for fixed
points in this case:

cos(t) —6sin(r) = cosh(sr) —asinh(sr)

When a = —1 we get the equation

cos(t) —6sin(r) = —exp(s t)

And so there are infinitely many fixed points.

3.3 A Special Case: Exact Solutions

In some special cases we can obtain closed form equations for the inverse of
the one-dimensional map. We begin with the equations of Misiurewicz:

x(t) = a + exp(s r) ((x0 - a)cos(r) - (y0 - b) + sin(r)) (13)
y(r) = 6+ exp(sT)((j/o-6)cos(r)-f(x0-a)sin(r)) (14)

In the special case where a = Xo these equations reduce to

x(t) = a + exp(sr)(-l)(y0-fe)sin(r) (15)

y(r) = 6+ exp(sr)(j/0- 6)cos(r) (16)

When x(t) = 1, a = —1 we apply the flip map and so we have the
equations for the one-dimensional map:

1 = -H-exp(sr)(-l)(j/0-6)sin(r) (17)

yj = 6+ exp(s r)(y0 - b) cos(r) (18)

Solving these equations for y0, yj we have

j/o = b—2exp(—st)csc(t) (19)
yf = 6-2cot(r) (20)

8



This equation can be solved for yo to give

3/0 = b—2esc(arccot(2(6 —y/))) exp(—sarccot(2(6 —yj)))

or more simply

2/o =6- 2v/l+4(6-j//)2exp(-s arccot(2(6 - yf)))

In this case we also have the following equation for the derivative:

dys _ 4 + (6-y/)2
dyo {b-y0){2s + b-yf)

3.4 The Transfer Surface

The transfer surface in the restricted double scroll was taken as a plane in
our opening discussion. There is nothing in that discussion that prevents us
from taking this surface to be an arbitrary manifold. In the case of the single
scroll this reduces to taking the transfer curve to be defined by a nonlinear
equation, such as a polynomial or as a series of connecetd line segments
having different slopes. In fact, the line segments need not be connected.
In the figures presented, we use both linear and nonlinear transfer curves in
order to illustrate the diversity of one-dimensional maps that are possible.

4 One-dimensional Maps

Wenow investigate theone-dimensional maps that can arise from the general
single scroll. In all figures Q = P = 0. In each example we show two
figures. The first figure is the one-dimensional map and the second figure
is the restricted double scroll associated to the one-dimensional map. A
complete explanation of the manner in which the one-dimensional maps are
produced can be found in Brown [1992]. The equation appearing with each
one-dimensional map is the equation for the single scroll. The equation
appearing with the double scroll figures is the equation used to obtain the
figure. For the single scroll, the general form of the initial conditions is
needed to write the computer program for the one-dimensional mapexplaned



in Brown [1992]. These are provided with each one-dimensional map figure.
Also provided is the equation for the curve at which the flip map must be
used.

10
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0 -8 (x-0.5\

1 1/3 y + .05)

Where x(0) = 1 and y(0) = yo. Apply flip
map when sgn(x —y 4-1) < 0.



Uw

0-8 0

1 1/3 0

0 0 -10

' x —0.5sgn(x —y 4- z)>

y 4- .05sgn(x —y + z)

J \ 2 —sgn(x —y 4- 2) /



0 -5 x-1

1 0.3 J V 2/4-1J

Where x{0) = 1 and y(0) = y0- Apply flip
map when sgn(x —y 4- 1) < 0.



I x(t) \ 0-5 0 ' x —sgn(x —y + z)

m 1 0.3 0 y + sgn(rc -y + z)

vm, 0 0 -10 z - sgn(x -y + z) j

iv»



' x(t) ^ 0.1 -1 fa:-0.613

Uw 1 0.1 JV 2/+ 0.5 ,

Where #(0) = 1 and y(0) = yo. Apply flip
map when sgn(# + 1) < 0.



(x{t)

m

Im)

0.1 -1 0

1 0.1 0

Ix - 0.613 sgn(z -I- z) \

y + 0.5 sgn(rc + z)

0 0 -10 J{ z - sgn(x + z)



x(t) 0.1 -1 x-1

m 1 0.1 2/+ 0.21

Where x(0) = 1 and y(0) = yo. Apply flip
map when sgn(x + 1) < 0.



x(t)

m

{m)

0.1 -1 0

1 0.1 0

' x —sga(x + z) >

y + 0.21 sgn(x + z)

0 0 —10 JV z - sgn(a; + z)



' x(t)' 0.1 -1"

1 0.1

fx-Zy

.2/ + l>

Where x(0) = 1 and j/(0) = yo- Apply flip
map when sgn(x + 1) < 0.



x(t)\ 0.1 -1 0 ' x —3 sgn(rr + z)N

m 1 0.1 0 y + sga(x + z)

{m) 0 0 -10 V z - sgn(rc + z) ;



' x{t) *
—

0.1 -1

1 0.1

fx-0A'

vtf + 0.4,

Where x(0) = 1 and y(0) = yo. Apply flip
map when sgn(# 4- 1) < 0.



(x(t)

m

{m)

0.1 -1 0

1 0.1 0

0 0 -10

(x —0.4 sgn(x + z) ^

y + 0.4sgn(x + z)

J \ z —sgn(rc + z) t



' x(t)y

<m >

—

.1 -i

i .1

' x-2'

,y + -5;

Where x(0) = 1 and j/(0) = y0. Apply flip
map when sgn(:c + 1) < 0.



x(t))

m

.1 -1 0

1 .1 0

0 0 -10

' x —2 sgn(# + z) >

y + .5sgn(a: + z)

z —sgn(aj + z)



I*(*)) 0.08 -1 / x - 0.3575

y(t)) 1 0.08 y + 2.64

Where x(0) = 1 and y(0) = y0. Apply flip
map when sgn(# + 1) < 0.



(*w ^

{m)

0.08 -1 0

1 0.08 0

0 0 -10

x - 0.3575 sgn(a? + z) \

y + 2.64sgn(# + z)

v z-sgp(x + z) j



0.1 -1"

1 0.1

rz-0.4'

.2/ + 2.1,

Where x(0) = 1 and y(0) = y0. Apply flip
map when sgn(# + 1) < 0.



x(t)

m

0.1 -1 0

1 0.1 0

0 0 -10

' x —0.4sgn(rr + z)>

2/ + 2.1 sgn(rc + z)

J \ z —sgn(# 4- z)



' x(t) ^ 0.1 -1 ( x - 0.05 \

Uw 1 0.1 y + 2.1 j

Where x(0) = 1 and 2/(0) = 2/o- Apply flip
map when sgn(ar +1) < 0.



x(t)

m

Uw

0.1 -1 0

1 0.1 0

' x —0.05sgn(# + z)y

y + 2.1sgn(x + z)

0 0 —10 J[ z-sgn(x + z) ,



' x(t)>
—

0.0 -5.0'

1 0.4

'z-0.5'

.y + i-o,

Where x(0) = 1 and 2/(0) = yo.
Apply flip map when
sgn(2z - 1.510.1 - x\ + 1 - y) < 0.



0.0 -5 0

1 0.4 0

0 0 -10

' x —0.5 sgn(w)>

y + l.Osgn(u)

z —sgn(w)

where u = (2x —1.5 |0.1 - x\ + z —y).



' x(t) ^ 0.0 -1.0 (x-0.5\

{m) 1.0 0.3 U + 3-0

Where x(0) = 1 and 2/(0) = 2/0- Apply flip
map when sgn(#3 + l —y) < 0.



I*(t) \ 0.0 -1 0 ' x —0.5 sgn(w) ^

m 1.0 0.3 0 2/ + 3.0 sgn(w)

{m) 0 0 -10 k z - sgn(w) ,

where u = (re3 + z —y).
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0.0 -5.0 (x-0.5\

1.0 0.4 U + i-oj

Where x(0) = 1 and 2/(0) = y0. Apply flip
map when sgn(0.5 x3 + x2 - x + z - y) < 0.



(*W ]

m

z(t)

0.0 -5 0

1.0 0.4 0

0 0 -10

' x —0.5sgn(ti)>

y + l.Osgn(w)

z - sgn(w) j

where u = 0.5 xz + x2 —x + z —y.



J(t)

0.0 -8.0 (x-0.5\

1.0 1/3 { y + 0.5

Where x(0) = 1 and 2/(0) = y0. Apply flip
map when sgn(#3 + 1 - y) < 0.



(*(*) \ 0.0 -8 0

1.0 1/3 0

' x —0.5sgn(tt)>

2/ + 0.5 sgn(w)

0 0 -10 J[ z-sgn(u)
where u = (x3 + 1 —y).


