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Improving LPCVD Thin Oxide Quality by Using
Robust Design Methodology

Joseph C. King

A designed experiment usingastandard orthogonal array wasusedto improvethe
quality of thin LPCVD oxide. Important factors affecting the uniformity of the
film thickness were identified and their levels for obtaining optimal oxidequality
weredecided. Verification experiment confirmed the result of the analysis andthe
prediction of the model.

1.0 Introduction

Integrated circuit MOS devices usually usethermally-grown thinoxide asthe gate dielectrics because
of its high quality and controllability. However, the quality of thermal oxide strongly depends on the sub
strate, whichmakesthermal oxideunsuitable in certain cases where highquality substrate is not available,
like thin film transistors built on polycrystalline silicon oramorphous silicon. Oxide grown by low-pres
sure chemical vapor deposition has been considered as an alternative because its quality is virtually inde
pendent of that of the substrate. On the other hand, when combined with conventional thermal oxide, CVD
oxideeven showscertain superior properties which are not obtainable in thermal oxide[l, 2].

The LPCVD oxide in IC processes is most commonly used as thick (2000-5000A) isolation layers,
therefore, films when medium across-wafer uniformity (10%) and high deposition rate (200A/min) are
desired. However, in thin gate dielectric (50-150A), fast growth rate isnot necessary because the deposi
tion time in very short, but high degree of uniformity is very important since the thickness changes the
threshold voltages of devices, and directly affects the circuit performance.

In this project, weuse Taguchi's orthogonal array to improve the LPCVD process for thin oxide depo
sition in theMicrofabrication Laboratory. Based onthegeneric recipe of thelyian 12 LPCVD furnace and
operation condition formally setby Jack Lee[l], weuse adesigned experiment to optimize the process for
high oxide quality.

2.0 Methodology

A standard L9(34) orthogonal array was used to explore and improve the deposition process. First,
important variables and their levels were decided after a thorough check of the process conditions. Then
the appropriate orthogonal array waschosen and a series ofexperiment runs with different variables levels
was planned.

After completing all experiment runs and collecting the data, we use analysis of means (ANOM) and
analysis of variance (ANOVA) to find out the important variables and theiroptimum levels. We can then
build asimple linear model based ontheanalyzed data. This model is used to estimate theresult of thepre
dicted optimal conditions.
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Finally, a verification experiment was run to check the accuracy of the prediction, and to draw some
conclusions about the processunder study.

3.0 Implementation

3.1 Furnace

Theexperiment was run ontheiyianl2 furnace, which is ahotwall lowpressure CVDtube inthe Ber
keley Microfabrication Laboratory. This furnace is depicted inFigure 1.

FIGURE 1. Schematics of the LPCVD tube.

Heater

Gas

re^a • Exhaust
^J^^ Pump

The reaction temperature ismaintained byheaters in3different zones through feedback control. Gases
used are silane (SiH4) and oxygen (02). Phosphine (PH3) can also be used to dope the Si02 but is not used
in this experiment The whole process is controlled by acomputer after the recipe is loaded and the proper
values of the parameters are set.

3.2 Important Variables and Their Levels

The important factors which can be directly controlled are the deposition temperature and the gas flow
rates. From experience, we knowthat a low silane/oxygen ratio should be used to obtain controllable and
repeatable deposition rate and good uniformity. The deposition process isvery sensitive to the temperature
but only asmall range of temperature can be used since too low atemperature will result in poor electrical
properties and these properties are not easily measurable. Although the temperature of different zones can
bespecified differently, we usually use the same temperature for all the three zones.

After choosing the temperature, the silane flow rate and the oxygen flow rate as the variables, we found
we can still have another factor to use the L9(34) orthogonal array. The next important factor which is usu
ally believed tohave certain effect on the uniformity and deposition rate is the orientation of the wafers in
the furnace (facing the inside of the tube or outside). The final experimental matrix is shown in Table 1.
The levels marked with asterisk (*) are the formally used operating conditions. Because the factor C(wafer
orientation) can only have two levels (in or out), we repeat the "out" condition and this replication can be
used to obtain an independent estimate of the experimental error.

Improving LPCVD Thin Oxide Quality by Using Robust Design Methodology EE290W S92
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TABLE 1. The experiment matrix

Factor

Levels

1 2 3

A:Temperature (C) 440 450* 460

B: Silane Flow (seem) 0.5 1* 2

C: Wafer Orientation Facing Out* Facing Out* Facing In

D: Oxygen Flow (seem) 70 90* 110

3.3 Experiment Runs

Table 2 shows the experiment runs and their individual settings. Therun number is theactual sequence
in which each run is executed to reduce confounding with the aging effect of the tube. In each run, eight
test bare silicon wafers are loaded into the tube and the respective recipe is loaded. The main deposition
time ischosen to be 10 minutes but the whole process takes about two hours, therefore achieving high dep
osition rate is not very important in this process.

TABLE 2. The experiment runs and results

Expt
No.

Co umn Number and
"actor Assigned Observations

Run
No.

1
Oxygen
How (D)

2
Temp

(A)

3
Silane

flow (B)

4
Orienta
tion (C)

Qi
(dB)

Q2
(dB)

Q3
(dBam)

1

2

3

4

5

6

7

8

9

5

1

8

3

7

2

9

6

4

1

1

1

2

2

2

3

3

3

1

2

3

1

2

3

1

2

3

1

2

3

2

3

1

3

1

2

1

2

3

3

1

2

2

3

1

32.16

30.55

27.16

30.34

27.70

25.96

28.00

26.76

24.06

20.60

20.86

21.87

19.73

20.49

18.77

21.33

21.67

19.24

22.43

23.73

25.10

22.98

24.35

23.04

24.19

22.75

23.43

After each run isdone, we measure the deposited oxide film thickness using the ellipsometer which is
good formeasuringthin layers. Thickness valuesofthe film for five locationsare recorded and a totalof40
values are collected in each run.

The observations Qi,Q2 and Q3 indicate the within-wafer uniformity, between-wafer uniformity and
thedeposition rate, which are calculated by using the following equations;
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1 5

y=i y=i

*=*£>* °2=^I<V«2

G, = 10 ,!*(3)
fi2 = 10 •log©
e3 = 2o.iog(ii)

4.0 Results

(within each wafer)

(Within each run)

With-in Wafer Uniformity

Between Wafers Uniformity

Deposition Rate

4.1 Analysis of Data

The result ofeach experiment shown inTable 2 isanalyzed using analysis ofmean (ANOM) and anal
ysis ofvariance (ANOVA). Tables 3 to 5show the result ofanalysis and Figure 2 plots the effect ofthe four
factors to the within-wafer uniformity, between-wafer uniformity and deposition rate, respectively. Also
shownin Figure 2 are the 2-sigma(95%)confidence levels.

4.1.1 Within-Wafer Uniformity

From Table 3, we can see that the temperature and oxygen flow rate have strong effect on the unifor
mity within a single wafer. Low temperature and low oxygen flow rates result in high uniformity, while
silane flow rateandwafer orientation arenotsignificant factors.

4.1.2 Between-Wafer Uniformity

The uniformity between wafers shows insignificant dependence on the silane flow rate and the oxygen
flow rate. The noise level can be estimated by looking at the effect of wafer orientation (factor C) since
level 1and 2 forfactor C areessentially the same and any difference should bedueto noise.

Improving LPCVD Thin Oxide Quality byUsing Robust Design Methodology EE290W S92
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TABLE 3. Averagewithin-wafer uniformity (Qi) by factor levels (dB)

Factor

Ave Q2 by Level (dB) degree o Sum of
Squares

Mean
Square F1 2 3

Freedom

A: Temperature

B: Silane Flow

C: Orientation

D: Oxygen Flow

30.17

28.29

27.97

29.96

28.34

28.32

28.17

28.00

25.73

27.62

28.09

26.27

2

2

2

2

29.87

0.94

0.06

20.38

14.94

0.47

0.03

10.19

59.75

40.75

Error 0 0.00

Total 8 51.25 6.41

(Error) 4 1.00 0.25

♦Overallmean Qj =28.08

TABLE 4. Average between-wafer uniformity (Q2) by factor levels (dB)

Factor

Ave Q2 by Level (dB) degree o Sum of
Squares

Mean
Square F1 2 3

Freedom

A: Temperature

B: Silane Flow

C: Orientation

D: Oxygen Flow

20.55

20.35

20.11

21.11

21.01

19.94

20.31

19.66

19.96

21.22

21.09

20.74

2

2

2

2

1.65

2.57

1.60

3.39

0.83

1.28

0.80

1.69

Error 0 0.00

Total 8 9.21 1.15

(Error) (8) (9.21) (1.15)

♦Overallmean Q2=20.50

4.1.3 Deposition Rate

While reaching ahigh deposition rate is not agoal of this study, we still monitored the average deposi
tion rate and found that the silane flow rate is the only important factor. To gain high deposition rate, higher
silane flow rate should be used and that is quite reasonable because the deposition rate is actually limited
by the supply of silicon atoms.
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TABLE 5. Average deposition rageby factor levels (dBam)

Factor

Ave Q3 by Level(dBamJ)egree oj Sum of
Squares

Mean
Square F1 2 3

Freedom

A: Temperature

B: Silane Flow

C: Orientation

D: Oxygen Flow

23.20

22.74

23.40

23.75

23.61

23.38

23.65

23.46

23.86

24.55

23.61

23.46

2

2

2 *

2

0.66

5.03

0.11

0.18

0.33

2.52

0.05

0.09

16.01

Error 0 0.00

Total 8 5.98 0.75

(Error) 6 0.94 0.16

♦Overallmean Q3 = 23.56

4.2 Model Building and Confirmation Runs

We can build a simple linearmodel based on the analysis above to find out the optimal operating con
dition and predictthe result. The errorin the prediction canalsobe obtainedby using the estimated errorin
the analysis above. In choosing the optimal operation conditions, we can get highest uniformity by choos
ing the combination of A^Dj and still have reasonable deposition rate. Because high deposition rate is
not necessarily,no trade-off has to be made in choosing the conditions.

Confirmation experiment runs were executed twice for the determined optimal operating point (tem
perature = 440, silane flow rate= 2, oxygen flow rate = 110). The result is within the range of the predic
tion based on the model.Table 6 summarized the result of the prediction and the confirmation runs.

TABLE 6. The result of the verification runs

Experiment Ql (dB) Q2(dB) Q3 (dBam)

Experiment 1 32.96 20.98 24.86

Experiment 2 32.58 21.12 24.30

Average 32.77 21.05 24.58

Predicted 32.05 +/-1.03 20.96 +/-1.85 24.19 +/- 0.82
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FIGURE 2. The plots of the effects.
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5.0 Conclusions

A statistical experimental design using the robust design methodology is applied to thin oxide LPCVD
process. Based on the result of the experiment, we found that the average uniformity within a wafer is
affected by temperature and oxygen flow rate and the average uniformity between wafers in asingle run is
affected by the flow rate ofsilane and oxygen. The orientation ofthe wafer in the boat is actually not an
important factor. Confirmation runs were done after the analysis and model building, and were consistent
with the model predictions.
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Spatial defect statistics & In-situ monitoring of
contamination

Sean Patrick Cunningham

Airborne particulates in processing equipment can cause catastrophic yield loss in
semiconductor products. A particle defect simulator is developed along with sta
tistical routines to test the goodness of fit of various hypothesized distributions of
particles on the simulated defect maps. These routines make use of the quadrat
method for analyzing spatial dispersion. The negative binomial distribution is
found to fit simulated data provided quadrat sizes are made small enough. Inaddi
tion, a25'1 experiment ispresented inwhich the particle count inaplasma etcher is
measured for different settings of etch rate, gas flow, chamber cleanliness, and
polysilicon type. The results of this experiment are inconclusive, but future exper
iments are discussed based onthe shortcomings of this experiment.

1.0 Introduction

This report presents research in semiconductor yield modeling. Specifically, this report documents two
related efforts to understand catastrophic yield caused by airborne particulates in processing equipment
While semiconductor processing is performed in aclean environment, there is still potential for particles to
land onwafers and destroy circuits. With advances in cassette containers for wafers such as SMIF boxes
and other efforts to reduce environmental cleanliness, the problem ofairborne particles is slowly being
reduced. However, within processing equipment, there is the potential for particles to fall on wafers.
Unlike the randomness ofenvironmental particles, equipment particles may be expected to fall in patterns
which may be thought ofas signatures. Paz and Lawson [8] discovered aradial dependence in defect pat
terns for diffusion in LSI processes, aresult which has been replicated frequently. Whether this sort ofpat
terning effect exists for other processing equipment is important to production planners, chip designers,
and process controllers.

Work has been done describing the statistics ofdispersion, and much ofthis originally came from for
estry and urban operations research applications. The inferential question ofwhat process caused apartic
ular data set to occur is very important to each ofthese fields. Section 3provides background regarding the
origin ofsome ofthe common yield models used. These models can be descriptive ofthe result ofagiven
process, but they are inadequate for determining the causes. For instance, the yield ofaprocess may be
modeled as anegative binomial random quantity1, but this does not imply the existence ofanegative bino
mial random generator for yield. A given clustering model may be used todescribe the result without dis
closing the cause ofthat result. In fact, preliminary results discussed in this report show that the negative
binomial model may be used to describe asimulated defect generating process which evolves without
regard to the assumptions of that model.

Non-functional chips are observable, but often the defects which cause them are not However, using a
laser driven particle counter installed on the exhaust vent ofagiven piece ofprocessing equipment, the

1. The term random quantity is equivalent to the term random variable. The term random quantity is used throughout this report.
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defect process may be better understood. Particle counts are important, and Section 4 documents the result
ofan experiment which investigated particle counts; however, the time-series ofdata may also yield
insight into the defect mechanisms ofprocessing equipment.

Section 5 discusses the work done for this report in the larger context offuture research opportunities
in the field ofequipment based yield modeling.

2.0 Spatial defect simulator

A spatial defect simulator is developed. Inferential statistical testsare then applied to the simulated
defect maps to determine appropriate distributions to describe the dispersion of particles. The motivation
fordeveloping this simulator is outlined ina brief review of catastrophic yield research.

2.1 Yield models

The clustering of defects on wafers is a well documented phenomenon. Cunningham [3] gives a good
history of yield models as theyhaveevolved from simple, pessimistic Poisson models to moreelaborate
models. People learned that the yieldof LSI chips was chronically underestimated by the Poisson model.
This led to a flurry of activity in formulating modified models for defect density and yield prediction.
Manyof theseinvolved convolving a Poisson kernel against someotherdistribution f(X) as shownin equa
tion (1).

k

P«) =je*^f{\)dk (1)
o

Here P(k) is the probability ofhaving kdefects on adie2, where Xis the average defect density in par
ticlesper area and f(K) can be thought of as a probability distribution of defectdensities from which the
current defect density is chosen. Stapper [11 ] claims that the wafer to wafer variation of thedefect density
accounts for a large share of the non-Poisson behavior of yield; thismaybe appropriately modeled by (1)
assuming f(K) describes a distribution from which each wafer takes itsdensity.

The role of f(X) is not well defined in the literature. It is used for wafer to wafer variations, lot to lot
variations, and even within wafervariations [8]. With each of these phenomena present, using a single
mixing distribution to describe them all leads to poorunderstanding of each. More accurate yield predic
tion requires a more careful separationof whichvariationowes itself to between lot, between wafer, and
within wafer effects.

Friedman and Albin [5] recognize the clustering effect at the within waferlevel.They publish one of
400 wafer maps which clearly displays the effects of clustering. This clustering phenomenon appears
where a group of adjacent dice fail on one wafer. This phenomenon is thought to be more likely near the
edge of the wafer, possibly owingto handling. The authors use a Neyman T^pe-A distribution to describe
the numberof non-functioning chips in a sample, shownin (2).

'<» =i'^T* (2)
/el

This is a compound Poisson process: clusters arrive according to a Poisson process, and eachcluster
contains a number of particles distributed as a Poisson unknown quantity.

2. If the existence ofone ormore defects onadie implied a faulty die, then P(0) isan expression for yield.
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Stapper [10] proposes the negative binomial as another distribution which describes clustering phe
nomena. The negative binomial distribution may be derived from (1) when f(k) is a Gamma distribution.
The negative binomial is shown in (3).

Here, a is interpreted as a cluster parameter. As a decreases, the degree of clustering increases.The
negative binomial distribution is used extensively in the literature owing to the good empirical fitobtained
through its use. Otherclustering distributions are discussed by Rogers [9] which are variants of the Poisson
process. Ferris-Prabhu [4] proposes an empirical modification of the Poisson process, this time adding a
clustering exponent to the Poisson as in (4).

Y(A) =e">'(Ao)(A/Ao>,~* (4)

Here, b indicates an empirically determined parameter which describes the clustering effect. The An
refers to an existing product die size, and A refers to anewproduct die size. Ferris-Prabhu notes that, as die
size increases, alarger value of b will account for more clustering, and hence higher yield.

These yield models seek to describe acomplex, multi-variate, stochastic phenomenon with simple
parametric models. The result isthat these models tend to oversimplify reality. For describing yield itmay
be acceptable to use some simple clustering distributions to estimate the effects of die size changes and
future yields. However, for prescribing remedies to improve yield, these models are not adequate. There is
simply not enough causal information in these models.

2.2 Simulator

With this caveat in mind, we developed a wafercluster simulator based on the center-satellite method
discussed in Meyer and Pradhan [7].

The center-satellite method requiring the specification of four distributions regarding the placement of
defects on awafer. The generalized distribution describes thenumberof clusters. The cluster distribution is
a spatial distribution describing where on the wafer the clusters fall. The generalizing distribution
describes the number of defects in acluster. Finally, the dispersion distribution is aspatial distribution
describing the shape of the cluster. For example, the Neyman "type-A distribution uses the Poisson distri
bution for both the generalized and generalizing distributions. The cluster and dispersion distributions are
uniform random processes.

Using the S language [1], acluster simulator has been developed according to this center-satellite
method. Using an algorithm from Stapper [12], clusters are created in 2x2 squares. These clusters are con
structed point by point by comparing auniform (0,1) random quantity against the probability density ofa
two-dimensional Gaussian distribution at the point. Where the density ofthe distribution is greater than the
generated random quantity, adefect point is placed. The number of points in the grid mesh may be speci
fied, and a100x100 grid has been found to be acompromise between resolution ofthe cluster pattern and
speed of the routine. In addition, after all grid points are placed, each point is perturbed by adding auni
form (-0.01,0.01) random quantity ineach of the x- and y-directions.

These symmetrically generated clusters are then stretched and squeezed along the x- and y-axes by
dividing the current x- and y-positions ofeach ofthe defect points by uniform (0.2, 2) random quantities.
These resulting clusters have an elliptical shape. Stapper [12] further suggests rotating these clusters in the
plane, but this feature is not yet available here.
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These clusters are then placed on an 8x8 square. The cluster size is smaller than the 8x8 square, so itis
possible to determine where the clustering has occurred. Using aroutine similar to the cluster generator,
this 8x8 square can have background noise; this background ofdefects is created on the square by compar
ing auniform (0,1) random quantity against aprespecified value. This places points according to abino
mial process: each point has aprespecified probability becoming adefect. Atrue Poisson process would
simply place points at random anywhere in the grid without regard to where previous points were gener
ated. For the background process this is computationally feasible; however, for creating the clusters this
revision in the algorithm dramatically increased running time. The parameters ofthe model are listed by
distribution in Table 1. One additional controllable parameter is the map size, which has been taken as 8x8
throughout; the choice ofcluster squares as one-sixteenth oftotal are is arbitrary, and this ratio is likely one
ofthe most important parameters ofthis model. Some examples ofplots from this algorithm are shown in
Figure 1.

Table 1: Control Parameters for the Defect Simulator

Distribution Parameters Default value
Generalized Cluster count Uniform(0,4)
Cluster Cluster centerpoint Uniform((0,8), (0,8))
Generalizing Gaussian distribution constant 0.8

Cluster grid density 100x100
Cluster square size 2x2

Dispersion Gaussian distribution sigma 0.4
x-translation scalar Uniform(0.2,1)
y-translation scalar Uniform(0.2,1)

Once the point pattern ismapped the statistical inference ofadescriptive distribution may commence.
The quadrat method discussed in Rogers [8] is used. The quadrat method requires the square be partitioned
and the number ofpoints in each partition be summed. Aroutine has been written to partition the square
into smaller squares and construct ahistogram ofthe defect count against the frequency ofeach count.

Given ahistogram offrequency counts, the empirical results are tested against the hypothesized distri
bution. This isaccomplished using a x2 goodness offit testThe x2 statistic isshown in(5).

,^tt-W0(r)]2

Here, fr refers to the frequency ofquadrats with r defects, Nis the total number ofdefects, P0(r) is the
probability of a quadrat containing r defects under thehypothesized distribution, and w+1 is the total num
ber offrequency points. If the data and the hypothesized distribution are close, the bracketed term may be
considered noise. If we assume this to be normally distributed, the total expression is the sum ofsquared
normals ofmean zero and variance one: this isa x2 statistic. It iscompared tothe x2 value atsignificance
level a and wdegrees offreedom. If the statistic deviates from the x2 distribution, the data is said todevi
ate from the hypothesized distribution.

The number of frequency points used, or frequency classes, may not beequal to the number of fre
quency points. That is, Rogers suggests aggregating frequency points such that each frequency class has at
least five points. However, this reduces the degrees offreedom ofthe test, and Rogers notes that the empir-

3. The Figures are located atthe end of this chapter.
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ical data is most likely to deviate in the tails of the distribution where the frequencies are lowest. Another
pitfallis in the specification of the hypothesized distribution; degreesof freedom can be expendedby using
a non-central x2 testwhich will also estimate theparameters of thehypothesized distribution. Tb avoid this
second pitfall, momentestimatorsare used to estimate the parameters of the distributions. These moment
estimators are shown in Table 2. In the Poisson case, the moment estimator is also the maximum likelihood
estimator; for the other cases, finding themaximum likelihood estimator requires an iterative procedure
which uses themoment estimators as a starting point.

Quadrat analysis depends onquadrat areas. Stapper [10] notes that the cluster parameter a of the nega
tive binomial distribution depends onthe chosen area ofthe quadrat. Asquadrat area tends toward zero, the
likelihood ofsignificant clustering decreases. If the quadrat area were small enough, the distribution would
tend toward a binomial process inwhich the quadrat analysis would detect no clustering. Quadrat analysis
ignores the spatial relationship ofthe quadrats. Ousters may be spread over more than one quadrat, but the
analysis does not take this into account. Preliminary analysis reveals that as quadrat area decreases, the
parameters of thechosen distribution tend to approach a limit and fit thegoodness of fit test.

Table 2: Cluster Distributions and Moment Estimators

Distribution Parameters Estimate Estimate
Poisson X X= m,

Neyman Type-A X, q> \ = w> 9 = ™2"m'
mo-rn, Wi

Negative Binomial X, a A, = m, a = wi
fttt — m

An example is shown in Figure 2. There are four clusters on the map as well as some background
noise. When the grid is partitioned some clusters are split into more than one quadrat. For this example, the
cluster parameter a approaches 0.45 as the quadrat area is reduced. Also, the map fits the hypothesized
negativebinomial better as the quadratsize decreases.

Quadrat analysis isdescriptive ofthe degree to which a wafer map departs from Poisson statistics.
However, the analysis is not powerful enough to make prescriptions about how to improve processes.
While it is possible to infer adistribution for the data, itmay be more difficult to develop agenerator which
yields agiven distribution consistently based on the negative binomial or other descriptive clustering dis
tribution.

3.0 In-situ Monitoring Experiment

While work has been done to extract defect density from final wafer probe yield, we seek an under
standing ofthe defect mechanisms in particular processing equipment. Using aparticle counting monitor,
it is possible to gaininsight intotheparticle behavior in onemachine.

3.1 Experiment

This experiment was performed on the LAM etching machine in the Berkeley Microfab. Alaser-
driven particle counter was attached to the exhaust system ofthe etcher such that particles larger than 0.38
microns tripped thebeam and were registered inoneof five size bins.
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Afactorial experiment was chosen for two reasons. First, the causes ofparticulate contamination inthe
plasma etcher were not clear in advance ofthe experiment. One purpose ofthis experiment was to identify
these causes. Second, given our ignorance ofdefect mechanisms inthe plasma etcher, we chose not torule
out interaction effects. Thetwo-level factorial design considers interactions.

The 2 factorial experiment was performed on the first day, and the results warranted further experi
mentation. Additional runs were made such that the combined experiment corresponded to a 16 run, 25*1
design with the day asa blocking variable. The full experimental design isshown inTable 3 in the orderof
the runs.:

Table 3: The full experimental design in the order of the runs

Run
Etch

Rate

Gas

Flow

Pre-

clean

Wafer

set
Day

1 - + + + +

2 + - - - +

3 + - + + +

4 - - - + +

5 + + + - +

6 + + - - +

7 - - + - +

8 - + - + +

9 + - + - -

10 + + - - -

11 - - + + -

12 - - - - -

13 + + + + -

14 + - - + -

15 - + + - -

16 _ + _ + .

Table 4:

Factor + setting - setting
Etch Rate 5000A/minute 3000 A/minute
Gas Flows 150,200,20 seem 100,50,10 seem
Pre-clean Yes No

Wafer set Old New

Day First Second

The etch rate ismeasured in A/sec. Itwas assumed to follow the equation ofMay, et a/.[6], which cal
culated etch rate dependent upon power, pressure, electrode gap, and the three gasflows CCU, He, and 02.
The pressure for this experiment was maintained at250 mtorr, and the electrode gap was maintained at 1.5
cm throughout, sothe etch rate was essentially a surrogate for the power. The gas flow ismeasured in stan
dard cubic centimeters per second; the high gas flow corresponds to 150 seem of CCI4,200 seem of He,
and 20seem of02; the low gas flow corresponds to100 seem ofCCI4,50 seem ofHe, and 10 seem of02.
The pre-clean is an indicator for whether the run follows a standard double cleaning step. The wafer setis
an additional factor necessitated by running the experiment on two sets of wafers. While both sets of
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wafers had surface polysilicon layers of atleast 8000 A, each set was grown ona different day. The day
indicates which of the first or second days the experiments were mn.

Each experimental run on the first day consisted of five wafers etched for 90 seconds. The particle
counteraggregated time into 15 secondintervals; a run beganat the start of the first interval following the
firstwafer starting into the chamber, and a run ended at the end of the interval during which the fifthwafer
left the chamber. Hence, some non-processing time was included in the monitored window.

The order was partially randomized in that the pre-clean steps were left in alternating order so that the
non-clean steps would have only one previous run before it. According to the technician, the performance
of the etcher was sometimes seen to degrade as early as 8-10 wafers into the process.

3.2 Results

The particle counts were much lower than expected. Based on the documentation received with the
particle counter, particle counts as high as 50 per minute were expected. However, the highest particle
count during any run was seven in a 15 second span. The low counts reduced the effectiveness of time-
seriesmethods for analyzing the data.However, for detecting therelative particlecountsfor different runs,
the magnitude of the counts was sufficient.

The experimental runswerenot all the samelength. The data has beennormalized in each case to par
ticle count per 60 time intervals, or 15 minutes. The results are shown in Table 4.

Table 5: Experimental Results

Run
Etch Gas Pre- Wafer

Day
Particle Number of Count per

Rate Flow clean set Count Intervals 15 min.

1 - + + + + 46 58 48
2 + - - - + 73 107 41

3 + - + + + 73 63 70
4 - - - + + 106 58 110

5 + + + - + 80 75 64

6 + + - - + 76 61 75
7 - - + - + 94 62 91
8 - + - + + 88 57 93
9 + - + - - 41 37 66
10 + + - - - 43 37 70
11 - - + + - 35 36 58
12 - - - - - 41 37 66
13 + + + + - 45 36 75
14 + - - + - 60 41 88
15 - + + - - 84 37 136
16 - + - + - 40 36 67
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Plots ofthe time-series ofeach of these runs are shown in Figure 3in the appendix to this report. Time-
series for each day's experiments are shown in Figure 4. Putting the data into canonical form, the effects of
each of the variables and any interactions may be calculated. This is shown inTable 5.

Table 6: Experimental Analysis of Effects

Run
Etch

Rate

Gas

Flow

Pre-

clean

Wafer

set
Day Revised

Count
Effect

1-2

Level

3-5

Level
4 - - - - + 110 76.13 avg. 12345
14 + - - - - 88- -10.50 1 2345
16 - + - - - 67 4.75 2 1345
8 + + - - + 93 4.50 12 345

11 - - + - - 58 -0.25 3 1245
3 + - + - + 70 -4.00 13 245
1 - + + - + 48 4.75 23 145

13 + + + - - 75 -12.50 45 123
12 - - - + - 66 0.00 4 1245
2 + - - + + 41 -21.25 14 235
6 - + - + + 75 15.50 24 135
10 + + - + - 70 -11.25 35 124
7 - - + + + 91 26.50 34 125
9 + - + + - 66 -12.75 25 134
15 - + + + - 136 -3.50 15 234
5 + + + + + 64 -4.25 5 1234

Table 7:

Factor + setting - setting
Etch Rate 5000 A/minute 3000A/minute
Gas Flows 150,200,20 seem 100,50,10 seem
Pre-clean Yes No

Wafer set Old New

Day First Second

A normal probability plotof theeffects yielded a nearly straight line, suggesting that theeffects here
are simply noise. The inconclusiveness of this experiment may be further appreciated by looking at the
results of each day separately, as shown in Tables6-7.

Table 8: The Results of First Day Experiment

Run
Etch Gas Pre- Wafer Revised

Effect
First

Rate Flow clean set Count Effect

4 - - - - 110 74.0 avg.

8 + - - + 41 -14.0 E

3 - + - + 75 -8.0 G

1 + + — - 93 31.0 EG
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Table 8: The Results of First Day Experiment

Run
Etch Gas Pre- Wafer Revised _~ „

„ A Effect
Count

First

Rate Flow clean set Effect

2 - - + + 91 -11.5 P

6 + - + - 70 11.5 EP

7 - + + - 48 -16.5 GP

5 + + + + 64 -12.5 EGP

Table 9: The Results of Second Day Experiment

Run
Etch Gas Pre- Wafer Revised „— fc

~ , Effect
Count

First

Rate Flow clean set Effect

4 - - - + 66 78.3 avg.

8 + - - - 88 -7.0 E

3 - + - - 67 17.5 G

1 + + - + 70 -22.0 EG

2 - - + - 58 11.0 P

6 + - + + 66 -19.5 EP

7 - + + + 136 26.0 GP

5 + + + - 75 -12.5 EGP

What is especially noteworthy here is thatsignificant effects from the first dayhave reversed signs in
the second day. For instance, the interaction of gasflow with etchrate is the mostpositive effect on first
day, but most negative on second day. Nostrong statement about theeffects of etch rate, gasflow, or pre-
cleaning may be madeon the basisof thisexperiment.

33 Discussion

Given the inconclusiveness of thisexperiment, a discussion of improvements is in order. Foremost, the
three largest effects in this experiment were the two-level interactions between wafer set and theequip
ment factors. In thefuture, the wafer setvariable should beeliminated byusing wafers grown together.

Anotherimprovement would be to run all experiments for the same numberof wafers. In addition, it
may be advantageous to collect particle counts only when wafers arebeing processed in thechamber, the
time-series is noisy enough that the small peaks inparticle count during the time intervals when wafers
werebeing removed from the chambermay be hidden.

Finally, the experimental settings taken from May, etal [6] were at the limits of the range forwhich
their model was validated. New experimental runs limiting the range of the factors might bemore conclu
sive; the plasma was not sustained well during some ofthe low power, low gas flow runs owing tothe defi
cient amount of He. Also, etch uniformity was not considered in this experiment; a new experimental
design should take this into account, since the only factors which might have mattered here depended on
the wafer more than the processing equipment.

To further understand how particle counts relate to thecondition of the equipment, the machine was
passively monitored continuously forone month. As it can besees in this figure (page 74), there is a defi
nite relationship between maintenance and cleaning events and particle counts. However, particle counts
seem to be controlled by additional, uncharacterized effects, as it is evident from the unexplained count
reduction midway through themonitoring experiment. Clearly, more analysis is needed.
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4.0 Future research

This report outlines two ofthree parts ofan equipment-based approach to yield modeling. The first part
is the analysis and statistical inference of wafer maps. The quadrat method has been discussed and found
inadequate for analysis beyond measuring departures from Poisson statistics. However, work in under
standing spatial processes has been done, and such methods as nearest-neighbor analysis and random
Markov fields maybe fruitful in providing prescriptive inferences [2].

The second part is the analysis of particle counts on specific equipment types. Currently, the LAM
plasma etcher in the Berkeley Microlab has been equipped with alaser sensor. Although the results of the
experiment described here were inconclusive, itmay be that future experiments will yield better results. In
addition, sensors could be installed on other pieces ofequipment inthe Microlab to learn about particulate
contamination from other processes.

The third part is the linking stepof empirical wafer mapping. Correlating particle counts to actual
wafer maps for different equipment types could lead to the discovery of processing equipment signatures.
However, wafer mapping is an expensive, time-consuming process, and has thus far been ignored in this
analysis.

Combining these three analyses, a spatial yield model based on equipment characteristics observable
through particle counts may beconstructed. For process control purposes, specification limits for accept
able particle counts maybe set for different equipment types and different processes. For production plan
ning purposes, in-line catastrophic yield predictions based onobservable parameters mayprove valuable in
deciding whether to continue processing lots through the fab. For wafer probe purposes, knowing thelikely
distribution of faulty chips could be useful for optimization of probe patterns.

5.0 Conclusion

This report documents two efforts to understand semiconductor yield issues. A simulator of wafer
defect maps is motivated and developed. Statistical tests are developed to characterize the resulting distri
bution. An experiment todetermine the factors impacting on airbome particle generation is performed for
a plasma etching machine. Future efforts in this area arediscussed.
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Using Stochastic Functions for Modeling Computer-
Based Experiments

Zeina Daoud

In this report we present a computer-based experiment used for improving the
manufacturability of integrated circuit designs. This experiment consists of simu
lating in SPICE the performance of an IC design, while varying several of its
design parameters. Since this is acomputer-based (simulated) experiment, it can
not be analyzed with the classical statistical methods. To cope with this problem
we have employed a stochastic function that has been shown to be suitable for
experiments whose replication errors are spatially correlated throughout the
experimental space.

1.0 Introduction

Optimizing acomplex circuit with respect to many design parameters often requires alarge number of
computer simulations. Modeling asimulator's output would allow designers to explore more fiilly the
design space with fewer computer runs. However, the output ofcomputer-based experiments is determinis-
tically replicated with the same inputs, thus calling for modeling techniques distinct from "traditional" sta
tistical designof experiments.

Sacks et al [1] suggest modeling that deterministic output as arealization ofastochastic process, to
account for the lack ofrandom independent error in computer-based experiments. For this project, I pro
pose to explore modeling the output of HSPICE [2] circuit simulator using stochastic functions. The model
is designed using the results ofapreviously studied Taguchi experiment [3]. The resulting model's predic
tions are compared to the actual simulator's outputs.

Section 2contains ageneral description ofthe methodology and some background on the models used.
In section 3, the details ofthe implementation are discussed. The results are presented in section 4, as well
as some modifications tothe model needed to accommodate asmall experiment.

2.0 Methodology

Circuit performances are determined by several controllable and uncontrollable parameters. The
approach followed tomodel these performances ispresented below.

Step 1: Choose acircuit and circuit performances to optimize.

Steal: Choose variable parameters whose effects on circuit performances we want to explore.

Step 3: Postulate amodel for the performances.
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A special family of functions is used to model the output ofdeterministic computer experiments [1].
The output y(x) ofacomputer experiment is modeled by Y(x) consisting ofaregression term and asto
chastic term Z(x).

7<*>=XP/i+Z<*> (1)

For several reasons discussed in [1] and [4], it has been shown that aconstant regression term often
gives asimpler and equally accurate representation ofthe model. So the model adopted for this project is

Y(x) = P+Z(jc) (2)

where (3 isaconstant and Z(x) isastochastic term with amean of zero and acovariance V(x,w) between
Z(x) and Z(w):

V(x,w) = Cov(Z(x),Z(w)) = c2R(x,w) (3)

R(x,w) is the correlation function defined by:

4

The correlation constants 9 and p are unknowns that will beestimated in step 5.

Step4: Design and perform thecomputer experiment, and gather thedata.

Step 5: Use the data to fit the model:

Let y =(yi,..., yn) denote the observed output performances of the experimental runs with n inputs
Sj,..., sn. Itcan be shown [1] that the best linear predictor of the performance y(x) at an untried input x is:

y(x) =P +ryr1(y-p/) (5)

where 1is an n x 1vector of 1*s; Ris the correlation matrix R=[R(sit Sj)] between inputs ofthe experi
ment; rx is the correlation between an arbitrary input x and the inputs s of the experiment (rx =[R(x,si)])t
and

P= (/'/?-,/)"1/'i?-1y (6)

Tocompute these predicted values, thecorrelation parameters 8 and pof thecorrelation matrix mustbe
estimated. Maximum likelihood is used, assuming that y has anormal distribution (see [1] for details). The
optimization simplifies downto numerically maximizing

-/ilog(cF2)-log (<*?/(*)) (7)

where

o" = f(y-p/) "tf-l(y-p/) (8)-2 1 A. T i

n

Step fr Check the model's accuracy of prediction on untried inputs. It isworthy tonote from the form
of the predicted response y, that the model's prediction will match exactly the experimental values used to
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create the model. Therefore, the fit of the model can only be estimated on untried inputs, or points not
included in the original experiment.

These steps describe the general methodology of this problem. The next section describes the details of
the circuit and the experiment used.

3.0 Implementation

In a previous project [3],wehave studied an adder bit slice circuit and explored theeffects of certain
parameters on its performance, using Taguchi's Robust Design Method. Partial results of this study are
used for modeling the simulator's output usinga stochastic function.

The set up of the experiment is briefly reviewed here. Since the performance ofthe ripple-carry adder
is restricted by the speed ofthe carry-out bit, the performance chosen for optimization is the speed ofthe
carry-out. The parameters of interest are:

- topology: either a transmission gate adder or a full static adder

- width ofthe carry input and output buffers: set to 8,10or 12 microns for n type transistors and 20,22
and 24 microns for p type transistors.

- length of the carry output buffers: set to 1.8,2 or 2.2 microns.

Taguchi's L18 orthogonal array shown in Appendix I is chosen for the experimental design. Eighteen
simulation runs are performed using HSPICE circuit simulator and measurements are gathered for the per
formance ofinterest, at those points in the design space. Alisting ofthe collected data is also shown in
Appendix I.

In the next step, the stochastic model presented in section 2 is postulated as a representation ofthe
speed ofthe circuit and the data is used to fit the model. The correlation coefficients 9and p, as well as a2
and pare obtained by numerical minimization using the Han-Powell constraint minimization technique.

The performance model obtained ischecked at untried input vectors xand compared to the actual sim
ulator's output for these given inputs. The inputs chosen, shown in Appendix II, are a set ofparameter
combinations not included inthe original orthogonal array design.

4.0 Results

Appendix II shows the actual results ofHSPICE simulations for agiven set ofinputs, called the confir
mation set, used for checking the model's accuracy. The confirmation set is entirely disjoint from the set of
experimental points, as noted above. The model's prediction for every point inthe confirmation set is com
pared tothe actual circuit simulator result for that given input.

In an initial attempt to model the speed ofthe adder bit-slice's carry-out as obtained by HSPICE, the
full model described in section 2was used. Eight spatial correlation factors are needed to study the varia
tion of four parameters: four values of 9's and four values of p's. Han-Powell optimization technique was
used to determine values for 9and pby solving the problem described by Eq. (7). Table 4 in Appendix III
shows the optimized values ofthe spatial correlation factors, starting from initial guesses of1.0 and 1.1.
Each set ofoptimized values of9 and pdefines aunique model ofthe speed ofthe circuit. As noted above,
the model fits exactly on the experimental points and must bevalidated on the confirmation set The mod-
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el's predictions are tabulated and the graphs of the model's predictions versus the actual HSPICE results
are shown in Appendix III. The solid line y=xon the graphs represents an ideal model where the predic
tion would exactly match the actual response. It is clear from the graphs that the model developed is far
from ideal, and the discrepancy between the predictions and the expected results is large. We believe that
the lack of fit ofthe model is due to the fact that the problem at hand is under-determined. The small exper
iment used (few data points) may be insufficient to determine eight values of the spatial correlation factors
that define the stochastic model.

Motivated by this speculation, aslight modification to the original stochastic model is made to accom
modate asmaller experiment. Instead of solving for eight coefficients, let the four values of pconstant and
optimize for the values of 9 only. The reason for locking the values of p is that, due to the form of the cor
relation matrix R, the p coefficients are most sensitive tothe difference in the orders of magnitude of the
input parameters. A value of 1.0 is chosen for the pj's. The values of 9j are still obtained as before by
numerical optimization, with initial guesses of 1.0 or1.1. Theconstant values of p's and theoptimized val
ues of 9 define a stochastic model for the speed. The optimized values of 9 and the modified model's pre
dictions for the confirmation set are shown in Appendix IV. The graphs of the predicted versus expected
values of the delay (for the confirmation set) display anoticeable improvement of the model, as thepoints
lieclose to the y =x diagonal. This result confirms the idea that the original problem isunder-determined,
and that a way to adapt themethod to a small experiment is to reduce thenumber of unknown spatial cor
relation factors that must be determined.

5.0 Conclusion

Inthis report, some background was presented for modeling theoutput of computer-based experiments
using stochastic functions. Stochastic functions are used to account for the lackof random independent
error in this typeof experiments. An application of this technique tocircuit optimization was shown. Mod
eling the output of acircuit simulator allows the designer toexplore alarger number of variable parameters
at different levels, using fewercomputerruns.

For this stochastic modeling method, the number of unknowns is twice the dimension of the input
space. If a small number of data points are used to fit the model, the model must be altered to avoid an
under-determinate problem. One such modification tothe model was discussed that lead to major improve
ments in the model's prediction capability.
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7.0 Appendix I

Thematrix experiment corresponding to four input parameters, oneat twolevels and three at three lev
elsutilizes theL18 orthogonal array, shown in the table 2 below. Also presented aretheresults of HSPICE
circuit simulations for the carry-out delay.

Table 1: Definition of Parameter Levels

factors level 1 level 2 level 3

topology trans, gate full static

width_out w0 W0 + i w0 + 2i

length_out Lo Lq-0.2 LO" 0.2

width_in w0 W0 + i w0 + 2i

Table 2: Experiment Matrix and HSPICE Delay Results

trial topology width_out length_out width_in delay (ns)
1 1 1 1 1 2.366

2 1 1 2 2 2.152

3 1 1 3 3 2.297

4 1 2 1 1 2.203

5 1 2 2 2 1.997

6 1 2 3 3 2.126

7 1 3 1 2 1.992

8 1 3 2 3 1.822

9 1 3 3 1 2.193

10 2 1 1 3 3.296

11 2 1 2 1 3.315

12 2 1 3 2 3.517

13 2 2 1 2 2.944

14 2 2 2 3 2.733

15 2 2 3 1 3.226

16 2 3 1 3 2.630
17 2 3 2 1 2.700
18 2 3 3 2 2.838
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8.0 Appendix II

The confirmation set isa set ofinputs different from the ones inthe experiment matrix, used to check
the accuracy of the model. Table 3shows the confirmation set and the actual HSPICE results of the delay
as simulated under these conditions.

Table 3: Confirmation Set and HPICE Delay Results
conf. run topology width_out length_out width_in delay (ns)

19 1 1 1 2 2.261
20 1 1 2 3 2.079
21 1 1 3 2 2.371
22 1 2 1 3 2.024
23 1 2 2 1 2.101
24 1 2 3 2 2.200
25 1 3 1 3 1.916
26 1 3 2 1 1.996
27 1 3 3 3 2.007
28 2 1 1 1 3.480
29 2 1 2 3 3.137
30 2 1 3 3 3.453
31 2 2 1 3 2.875
32 2 2 2 2 2.798
33 2 2 3 3 3.017
34 2 3 1 1 2.844
35 2 3 2 2 2.570
36 2 3 3 3 2.762

Using Stochastic Functions for Modeling Compuler-Based Experiments EE290W S92



81-

9.0 Appendix III

The numerical optimization used to solve for eight correlation coefficient values, depends on initial
guessesfor these values. Each set of values defines a unique model whose predictionon the confirmation
set is shown in Table 5.

Table 4: Optimized Values of the Correlation Coefficients

correlation

coefficients

initial

guesses: 1.0
(Group I)

"initial

guesses: 1.1
(Group II)

Pi 1.00 1.100

P2 0.455 0.252

P3 2.849 2.466

P4 0.099 0.038

0i 2.574 1.685
02 0.099 0.095
03 1.338 0.708
e4 0.099 0.051

Table 5: Models Predictions on the Confirmation set (in ns)
conf. run actual delay Group I Group II

19 2.261 2.951 2.573
20 2.079 2.401 2.296
21 2.371 1.786 2.003
22 2.024 3.163 2.587
23 2.101 1.110 1.623
24 2.200 1.622 1.904
25 1.916 3.046 2.5334
26 1.996 1.464 1.671
27 2.007 2.267 2.233
28 3.480 3.115 3.059
29 3.137 3.480 3.529
30 3.453 3.757 3.761
31 2.875 2.622 2.627
32 2.798 3.156 3.147
33 3.017 3.221 3.270
34 2.844 2.516 2.473
35 2.570 2.735 2.746
36 2.762 3.123 3.133

The same information is displayed graphically in the next two pages: predicted versus expected values
ofdelay for each group ofoptimized correlation coefficients, with the y=xdiagonal for reference.
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10.0 Appendix IV

The model is altered to accommodate a smallexperiment. Values of pi's are set to 1.0 and 9's are found
by numerical optimization.

Table 6: Optimized Values of 0

initial initial

optimized guesses: 1.0 guesses: 1.1
(Group III) (Group IV)

61 3.083 3.265
62 0.058 0.029

63 0.347 0.173
64 0.028 0.017

Table 7: Modified Models Predictions on the Confirmation Set (in ns)
conf. run actual delay Group III Group IV

19 2.261 2.263 2.259
20 2.079 2.108 2.102
21 2.371 2.340 2.345
22 2.024 2.041 2.036
23 2.101 2.104 2.105
24 2.200 2.181 2.185
25 1.916 1.927 1.922
26 1.996 2.003 2.008
27 2.007 2.022 2.015
28 3.480 3.448 3.457
29 3.137 3.157 3.154
30 3.453 3.434 3.441
31 2.875 2.865 2.869
32 2.798 2.815 2.809
33 3.017 3.025 3.022
34 2.844 2.804 2.820
35 2.570 2.590 2.576
36 2.762 2.768 2.769

The same information is displayed graphically in the next two pages: prediaed versus expected values
ofdelay for each group ofoptimized correlation coefficients, with the y=xdiagonal for reference.

Using Stochastic Functions for Modeling Computer-Based Experiments EE290W S92



c M 5" o
o C
O l 3 9

0 o o
o

v s. H 3 c? § i C
O 3

G
ro

u
p

JI
I

pr
ed

ic
te

d

2
.0

0
2

.5
0

G
ro

u
p

J
V

/•

/
/

/
/

/
/

/
/

/
/ /

/
•

x=
SP

IC
E

,
y=

m
od

el

2
.0

0
2

.5
0

3
.0

0
3

.5
0

ex
p

ec
te

d

2



-85

Extraction of Bleach Parameters from Peak

Reflectivity Measurements

David M. Newmark

This paper describes the relationship between the peakreflectance measurements
used to characterize positive photoresist, the photoactive compound (PAC) con
centration and photoresist bleaching parameters which describe physical proper
ties of the resist. The validity of the model for PAC concentration is explored by
developing anempirical model for the fraction of PAC remaining in the resist asa
function of wafer track settings. Modified photoresist bleaching parameters are
used as inputs to SAMPLE, anoptical lithography simulation program, to predict
the output reflectance as a function of input reflectance and thickness. The pre
dicted output peak reflectance is compared to experimental measurements. The
difference between predicted and measuredvalues is attributed to lack of knowl
edge regarding the change of absorption of the non-bleachable component of the
photoresist as a function of wavelength.

1.0 Introduction

Theoretical models forresist exposure and development were first introduced by Dill in 1975 [1]. They
provide a convenient way to describe the photoresist exposure and development processes. One problem
with these models is that they require careful extraction of parameters under circumstances which may be
somewhatdifferent from the actual processing conditions of the wafers. In addition, processing conditions
continually drift over time. Thus, it is difficult to use theoretical models to monitor equipment in a manu
facturing environment.

Therefore, manufacturing engineers tend to rely on empirical models obtained using factorial experi
ments. Although such models arc accurate, they offer no insight into the process, and engineers are often
reluctant to acceptempirical models basedon measurements which do not have a solid theoretical base. In
additionto convincing processengineersof the validity of specific measurements, tieing theoreticalmodel
ing to measurements made during production has the addedbenefit of allowing in-situ monitoring of a pro
cess with theoretical models by coupling manufacturing models to simulation tools.

Several methods have been introduced to monitor photoresist in a manufacturing environment One
potential technique is to directly measure, using the appropriate wavelengths, the absorbance of the photo
resist as described by Watts [2]. An alternate technique, which uses peak reflectance to infer absorbance,
was introduced by Ling and Spanos [3]. The problem with these methods is that the relationship between
the absorbance or peak reflectivity measurements and the physical parameters of the resist is not well
understood. The goal of this project is to investigate the relationship of PAC concentration and Dill's
bleaching parameters to peak reflectance. This relationship will be tested by using a model to predict out
put reflectance through SAMPLE.

This paper first describes Dill's positive photoresist bleachingmodel and the use of peak reflectance as
a means to monitor photoresist. Based on this background information, the link between peak reflectance
and the fraction of PAC remaining in the photoresist after the resist spin-coat and bake process is
explained. This result leads quickly to a method for calculatingnew bleach parameters. These parameters
can thenbe usedby SAMPLE to predict the post-exposure peakreflectance. Finally, a model forthe frac-
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tion of PAC remaining as a function of wafer track parameters is developed along with a comparison
betweenthe outputpeakreflectance predicted by SAMPLE and experimental output peakreflectance mea
surements.

2.0 Methodology

2.1 Photoresist Bleaching Model

In 1975, Dill published a classic paper in which he presented a model for photoresist bleaching and
development [1]. This model has been incorporated into a variety of simulators, such as SAMPLE [4] and
PROLITH [5]. The basic model has been extended, for example, to include additional effects such as post
exposure bake [6].

Dill's model is formed from a physical basis, but the actual parameters of the model are substantially
different from the photochemical constants used by manufacturers of photoresist. The physicalbasiscomes
from the assumed relationship of the parameters in the model to the physical process of absorption of light
by the photoactive inhibitor in which the photoactive compound is destroyed under exposure to light In
Dill's model, the process is described by three parameters: "A", an exposure absorption term; "B", an
exposure-independent term; and "C", an optical sensitivity term.

Traditionally, the A, B, and C parameters are extracted by measuring the exposure time versus trans-
mittance curve for the resist on a quartz substrate. A typical curve is shown in Fig. 1 for AZ1350J resist.As
discussed by Dill, Equations (1), (2), and (3) are used to find A, B, and C, respectively. T(0) is the trans
mission at exposure time equal to 0. T(°o) is the transmission of the fully bleached resist, and d is the
thickness of the resist. The A, B, and C parameters are wavelength dependent so the transmission versus
exposure time curves must be measured at the exposurewavelength. However, the resultsobtained for the
model parameters can be used for photoresist of any thickness.

B=-ilogr(oo) (2)
a

A+B v dT(0)

AI0T(0)[\-T(0)] dt
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Optical Transmittance Curve
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FIGURE 1. Optical transmittance of a 2.2um film of AZ1350J photoresist
as a function of exposure time.

Once the A, B, and C parameters are extracted for a given photoresist, the working equations, (4) and
(5), are used to find the fraction of inhibitor concentration remaining after the exposure:

Bx
(x,t) = -/(x,r) [AM(*,/)+£]

^M(x,t) =-I{x,tJM(x,t)C

(4)

(5)

where M(x,t) is the fraction of inhibitor remaining at depth x after exposure time t and I(x,t) is the light
intensity at depth x in the film after exposure time t.

2.2 Reflectance as a Means to Monitor Photoresist

For process development, Dill's model provides an excellent way to characterizenew resist processes;
however, for special manufacturing techniques, such as feed-forward control, running quartz wafers to
monitor the photoresist is prohibitively expensive and impractical.Thus, techniques which measure absor
bance [2] or peak reflectance [3] have been used to monitor the photoresist.

The peak reflectance measurement is particularly useful for several reasons. First, the authors in [3]
assert that it is directly proportional to PAC concentration.They show that peak reflectance is directly pro
portional to absorbance, and since

a = AM+B (6)
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peak reflectance must be proportional to M or the PAC concentration. A and B arematerial constants of the
resist. Second, due to the interaction of several material properties which depend onwavelength, the peak
reflectance is almost constant from about 380nm to 430nm for KTI 820 resist The combination of these
properties impliesthatreflectance is proportional to M for these wavelengths.

Unfortunately, this assertion is not quiteaccurate sinceA and B depend on wavelength as illustrated in
Fig. 2. The relationship is further emphasized by rewriting (6)

a = A(\)M(x)+B(X) (7)

In other words, although peak reflectance is almost constant over the measurement wavelengths and
directly proportional to the absorbance, it is not directly proportional to the PAC concentration since A(K)
changes with wavelength. This presents a serious problem, since peak reflectance is, by definition, mea
sured at wavelengths that shift in order to track thickness variations.

2.3 Calculating the Fraction of PAC Remaining and Dill's A Parameter

Based on these observations, a method for removing the dependence of A(X) is developed in order to
find a more accuratemeasure of the fraction of PAC remaining in the photoresist. The key idea behind this
technique is that the fraction of PAC remaining in the resist is a constant regardless of the measurement
wavelength; thus, it is possible to extract a relative measure of the remaining PAC using tabulated values
for A(X) and B(X). From this information, the experimental value for A at the exposure wavelength of
365nm is calculated. It is important to note at this point that this technique assumesB and C can be mea
sured at the exposure wavelength and do not vary with resist process parameters. Note that Mack has
already established that both A and B vary with oven prebake temperature and time. However, for most
resist systems, the fraction of the absorption due to A is much greaterthan that due to B before exposure,
so ignoring variationsin B is reasonable for most resistsnearthe nominal exposure wavelength.

The method for calculating A based on input peak reflectance and thickness is illustrated in Fig. 3. In
the first step, the wavelength is varied from 380nm to 430nm to find the wavelength which gives maximum
reflection for the given thickness of photoresist spun on 980Aof oxide on silicon. For this calculation, the
index of refraction of the photoresist has no absorption component since maximum (peak) reflection is
mainly determined by the real partof the index. The change in the index of refractionof silicon is accom
modated by using a table lookup function to find the index for a given wavelength. This calculated reflec
tion is normalized to the reflection from a bare silicon wafer to mimic the Nanospec reflectance
measurement. The wavelength for maximum reflection will be referred to as the measurement wave
length. ^

In the second step, the complex index of refraction is increased until the reflection from the silicon sur
face is equal to the measured reflection. At this point, we know the index of refraction of the photoresist,
and use

«' =£ (8)
to find the absorbance of the resist at the measurement wavelength. Since Mack has extracted the A and B
parameters from 300nm to 500nm for KTI 820 resist [5] (see Fig. 2), the absorbance at the measurement
wavelength can be extracted. Note that M is by definition equal to 1 before the exposure.

a' = A(\)fA+B(X) (9)

Solve for fAto obtain (10).

4. REFLOP, wriuen by Prof. Oldham, is used for the reflectancecalculations.
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a'-B(\)

A(X)
fA =^Zf^L (10)

Physically, fA represents the fraction of photoactive compound remaining after the resist spin-coat and
bake process. Since the total amount of photoactive compound is constant, the fraction of PAC destroyed
applies regardlessof the wavelength. Thus, we can use

A' = A(365nm)fA (11)

to find A', a new value for A which now incorporates the knowledge about the reflectance of the wafer.
The remaining bleach parameters, B and C, are assumed to be independent of the resist processing condi
tions, and their value is measured at the exposure wavelength of 365nm.

2.4 Calculating post-exposure Peak Reflectance

To test the theory that reflectance can also be used to monitor the PAC concentration at the output of
the stepper by measuring outputreflectance, the extracted A parameter in conjunction with constant values
for B and C are used to model the post-exposure peak reflectance. Fig. 4 illustrates the procedure used to
obtain the post-exposure peak reflectance. Initially, SAMPLE is run using the A parameter derived above
in conjunction with the assumed values for B and C. SAMPLE returns the M(x) matrix which gives the
fraction of PAC remaining in the resist afterexposure and post-exposurebake. M(x) is specified at approx
imately 200 locations, or layers, in the resist At each layer, the absorbance of the bleached resist is calcu
lated using the formula

a = A(\)fAM(x)+B(\) (12)

and the k value for each layer is determined from,

*=£ (13)
4ji

The refractive index for the photoresist is then simply,

n = n-ik (14)

where n= 1.68 for KTI 820.The thickness of eachlayeris constant, and the thickness and refractiveindex
of eachlayer provides sufficient information to calculate the peak reflectance from all200 dielectric layers
on silicon.

2.5 Implementation

A C program hasbeen written to implement the methodsoutlined above for calculating the fraction of
PAC remaining before exposure, Dill's A parameter, and the output reflectance. The program essentially
implements the block diagrams shown in Figs. 3 and 4. The initial thickness, reflectance, and dose for an
arbitrary numberof wafersare specified in aninput file. The program runsREFLOPto calculate the reflec
tance due to the dielectric stack and SAMPLE to find the M matrix after exposure. The PAC fraction, Dill's
A parameter, and the output reflectance are written to the standard outputaftercalculations for all wafers
are completed.

3.0 Results

To test the model for the fraction of photoactive compound remaining before exposure, data from a
factorial experiment on the wafer track is used to find the PAC fraction and model it based on the wafer

Extraction of BleachParameters from PeakReflectivity Measurements EE290W S92



90-

track settings. The SAMPLE reflectance model istested bycomparing the post-exposure peak reflectance
predicted by the modelwith the results of a factorial experiment on theEATON wafer track [7].

3.1 Model for PAC Fraction

The fraction of PAC remaining in the photoresist before exposure can be modeled as a function of the
variables on the wafer track. The data, the model, and the associated residual Riots are shown in Appendix
A. Although the terms of the model appear significant at the <1% level, the R2 for the model isonly 0.64.
The residuals appear to be IIND. Since the fit of themodel is somewhat questionable, a histogram of the
data is plotted in Fig. 5. It shows that the fraction of PAC remaining isnearly Gaussian. Themean is inthe
center of the distribution and 67% of the measurements arelocated within +-la of the mean. This indicates
that thevariation in thePAC concentration maybe purely random. The histograms for themeasured values
of thickness and reflectance are shown for reference in Figs. 6 and 7. Thesedata do not appear to be Gaus
sian.

In theory, the fraction of PAC remaining should be related to the bake temperature and time, since
Mack has shown theoretically and experimentally that A and B vary logarithmically with these variables
for an oven prebake [6]. Transforming the data bylooking at the logarithm or exponential of the PAC frac
tion does not improve the model. The problem in this case may be that the hot plate bake has anegligible
affect on the photoactive compound concentration. The range ofthe factorial would have to be expanded to
distinguish this effect from the experimental noise.

3.2 Modeling Post-Exposure Peak Reflectance

Assuming the PAC fraction remaining in the resist is more than just a measure of noise, the output
reflectance predicted by SAMPLE, based on the modified values of Dill's A parameter, is compared with
experimental reflectance measurements. The residuals plotted versus measurement wavelength and run
number are shown inFig. 8 and Fig. 9 respectively. For comparison, aplot of thereflectance residuals for a
model in whichA, B, and C are constant is shown in Fig. 10and Fig. 11. Although, the meansquare of the
residuals can be minimized by modifying the dose, the variance will still bemuch greater than theexperi
mental errorof the reflectance measurement.The consideration of the residual plots versus wavelength led
toan exploration of the physical cause for the dependence of SAMPLE'S prediction error with wavelength.

After reviewing the equations used to calculate the post-exposure peak reflectance, the dependence of
output peak reflectance on A(365nm) and Btt.) was examined. A(365nm) affects the output reflectance
through achange in M(x) while M(x) and B(X) affect the output reflectance directly through achange in
the absorbance as shown in Equation (7). More precisely, modifying A(365nm) +-20% from its nominal
value of 1.017 causes a2% change in the output reflectance. This effect is demonstrated more clearly for
the experimental data in the plot of Fig. 12. The difference in predicted reflectance with A equal to 1.017
and A varying from 0.7 to 1.0 according to Equation (11) is plotted versus run number. The maximum
change in reflection is 2.5%, which confirms that output peak reflectance does not change significantly
with large shifts in the initial concentration of photoactive compound. (This change in A should have a
much larger effect onCD.) On the other hand, B(X) has a significant affect onthe output peak reflectance.
For example, if B changes from 0.041 to 0.088 for a given resist thickness and reflectance, the output
reflectance changes by5%. Aslong as B(K) is known, the changes are not aproblem since tabulated values
for B can be used. Unfortunately, B is notwellcharacterized since thetransmission calculated from values
of B used in PROLITH [5] corresponds to the ideal (no absorption) thin film transmission curve as shown
in Fig. 13. Therefore, thewavelength dependence onthe residuals can beexplained by an uncharacterized
change in &(k).

4.0 Conclusion

Peak reflectance is shown to be related to the fraction of photoactive compound present in a resist. The
evaluation of the theoretical relationship has been automated in order to calculate the fraction of PAC
remaining in the photoresist after the resist spin-coat and bake process. Based on the transformation of
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peak reflectance to PAC concentration, a model is derived which relates the spin speed, spin time, bake
temperature, andbake time to the fraction of PAC remaining.

The fraction of PACremaining is used to calculate anew A parameter for the photoresist which is then
utilized in SAMPLE to predict output reflectance. An analysis of the residuals of the predicted output
reflectance compared to the measured output reflectance led to the discovery that an uncharacterized
change in B(X) could account for about 5% of the difference between measured and predicted values of
outputreflectance. In addition to a wavelength dependence, B also probably varies with resist processing.
Furthermore, the relatively subtie change in output reflectance with A suggests that reflectance will catch
process deviations which significantly affect PAC concentration, such as variations in dose and thickness.
The changes due to altered initial resist properties may only be evident after the development of the
exposed photoresist.
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A versus Wavelength for KTI 820
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B versus Wavelength for KTI 820
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FIGURE 2. (a) Bleachable photoresist constant, A, versus wavelength for KTI 820
photoresist, (b) Non-bleachable photoresist constant, B, versus wavelength for KTI
820. Data obtained from PROLITH [5].
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Calculation of Fraction of PAC Remaining

Thickness
Pre-exposure Peak Reflectance

u 380nm

-•] Increment Wavelength

No

Calculate Peak Reflectance of
Resist, Oxide, Silicon stack

I
Calculate Reflectance of
Native Oxide on Silicon

I
Find Normalized Reflectance

I
Find X for Peak Reflectance

• k=0.<
increment k

Calculate Reflectance from
Resist, Oxide, Silicon stack

i ^
Calculate Reflectance of
Native Oxide on Silicon

I
Match Input Reflectance?

| Yes
Calculate Absorbance

Calculate Fraction of
PAC Remaining in Resist

n, k

Lookup
index for
Silicon

FIGURE 3. Block diagram which illustrates the calculation ofthe fraction ofPAC remain
ing in resist.
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Post Exposure Peak Reflectance Calculation

A (from Reflectance Measurement)
B, C, Thickness, Dose

Run SAMPLE

I
Calculate Absorbance

I
Calculate k

i
Calculate Reflectance due
to Resist, Oxide, Silicon
Dielectric Stack

I
Calculate Reflectance from
Native Oxide on Silicon

I
Find Normalized Reflectance

T
Rout

FIGURE 4. Calculation of output reflectance using SAMPLE.

Extraction of Bleach Parameters from Peak Reflectivity Measurements EE290WS92



5 S. S 0
3 8 S- t 50 S a 8. 8 i

P
A

C
F

ra
ct

io
n

R
e
m

a
in

in
g

Q
u

a
n

ti
le

s
m

a
x
im

u
m

1
0

0
.0

%
0

.8
2

6
4

1

9
9

.5
%

0
.8

2
6

4
1

9
7

.5
%

0
.8

2
5

3
7

9
0

.0
%

0
.7

8
5

4
4

q
u

a
rt

il
e

7
5

.0
%

0
.7

6
2

9
2

m
e
d

ia
n

5
0

.0
%

0
.7

4
5

5
7

q
u

a
rt

il
e

2
5

.0
%

0
.7

1
3

0
7

1
0

.0
%

0
.6

8
3

6
9

2
.5

%
0

.6
1

7
6

7

0
.5

%
0

.6
0

8
0

9

m
in

im
u

m
0

.0
%

0
.6

0
8

0
9

M
o

m
e
n

ts
M

e
a

n
0

.7
3

7
0

7

S
td

D
e
v

0
.0

4
3

9
7

S
td

E
rr

M
e
a

n
0

.0
0

5
8

8

up
pe

r
95

%
M

ea
n

0
.7

4
8

8
5

lo
w

e
r

9
5

%
M

e
a

n
0

.7
2

5
2

9

N
5

6
.0

0
0

0
0

S
u

m
W

gt
a

5
6

.0
0

0
0

0

F
ig

ur
e

S.
H

is
to

gr
am

of
P

A
C

fr
ac

ti
on

re
m

ai
ni

ng
In

th
e

ph
ot

or
es

is
t

be
fo

re
ex

po
su

re
.

G
a

u
ss

ia
n

n
a

tu
re

o
f

th
is

d
a

ta
In

d
ic

a
te

s
th

a
t

th
e

va
ri

a
n

ce
Is

si
m

p
ly

n
o

is
e.

I
"

T
h

e

T
h

ic
k
n

e
s
s

Q
u

a
n

tl
le

s
m

a
x
im

u
m

1
0

0
.0

%
1

.4
4

7
5

9
9

.5
%

1
.4

4
7

5

9
7

.5
%

1
.4

4
7

3

9
0

.0
%

1
.4

2
S

1

q
u

a
rt

il
e

7
5

.0
%

1
.3

7
8

4

m
e
d

ia
n

5
0

.0
%

1
.2

9
1

4

q
u

a
rt

il
e

2
5

.0
%

1
.1

4
8

3

1
0

.0
%

1
.0

8
8

8

2
.5

%
1

.0
5

9
9

0
.5

%
1

.0
5

9
2

m
in

im
u

m
0

.0
%

1
.0

5
9

2

M
o

m
e
n

ts
M

e
a

n
1

.2
7

7
4

4

S
td

O
e
v

0
.1

2
5

2
5

S
td

E
rr

M
e
a

n
0

.0
1

6
7

4

up
pe

r
95

%
M

ea
n

1
.3

1
0

9
8

lo
w

e
r

9
5

%
M

e
a

n
1

.2
4

3
8

9

N
5

6
.0

0
0

0
0

S
u

m
W

gt
e

5
6

.0
0

0
0

0

F
ig

ur
e

6.
H

is
to

gr
am

of
T

h
ic

kn
es

s
m

ea
su

re
m

en
u

fr
om

E
at

on
w

a
fe

r
tr

a
ck

.



R
e
fl

e
c
ta

n
c
e

0
.5

5

0
.4

5

0
.3

5

Q
u

a
n

tl
te

s
m

a
x
im

u
m

1
0

0
.0

%
0

.5
3

4
7

0

9
9

.5
%

0
.5

3
4

7
0

9
7

.5
%

0
.5

2
9

3
0

9
0

.0
%

0
.4

6
5

4
1

q
u

a
rt

il
e

7
5

.0
%

0
.4

2
9

5
8

m
e
d

ia
n

5
0

.0
%

0
.3

7
8

8
5

q
u

a
rt

il
e

2
5

.0
%

0
.3

6
7

0
8

1
0

.0
%

0
.3

5
0

0
4

2
.5

%
0

.3
3

7
3

1

0
.5

%
0

.3
3

3
4

0

m
in

im
u

m
0

.0
%

0
.3

3
3

4
0

M
o

m
e
n

ts
M

e
a

n
0

.3
9

6
3

3

S
id

O
e
v

0
.0

4
7

2
4

S
td

E
rr

M
e
a

n
0

.0
0

6
3

1

up
pe

r
95

%
M

ea
n

0
.4

0
8

9
8

lo
w

e
r

9
5

%
M

e
a

n
0

.3
8

3
6

7

N
6

6
.0

0
0

0
0

S
u

m
W

g
ls

5
6

.0
0

0
0

0

F
ig

ur
e

7.
H

is
to

gr
am

of
R

ef
le

ct
an

ce
m

ea
su

re
m

en
ts

.

R
es

id
ua

lP
lo

ts
of

SA
M

P
L

E
M

od
e!

fo
rO

ut
pu

t
R

ef
le

ct
an

ce
fo

r
A

V
ar

yi
ng

w
it

h
In

p
u

t
R

ef
le

ct
an

ce

0.
12

j

0
.1

••

„
0

.0
8

u 1
0.

06

«g
0

.0
4

u 2
0

.0
2

3 g
0

-0
.0

23

•
0

.0
4

0
3

9
0

4
0

0
4

1
0

w
av

el
en

gt
h

(n
m

)
4

2
0

F
ig

ur
e8

.
R

es
id

ua
lp

lo
to

fo
ut

pu
tY

ef
le

ct
an

ce
pr

ed
ic

te
d

by
SA

M
P

L
E

m
in

us
m

ea
su

re
d

ou
tp

ut
re

fl
ec

ta
nc

e
ve

r
su

s
w

a
ve

le
n

g
th

.
N

ot
e

tr
en

d
in

re
si

du
al

s.

0
.1

2
t-

•

0
.1

-

v
0

.0
8

•
w c |

°0
6

•
g»

0
.0

4
•

•

•
•

5
•

S
0

.0
2

•

£
o

•
1

1
1

B
l

-0
.0

2
5

•

5
10

*
1

%
20

ru
n

#
•

•

-0
.0

4
I

F
ig

ur
e

9.
R

es
id

ua
lp

lo
to

f
ou

tp
ut

re
fle

ct
an

ce
pr

e*
di

et
ed

by
SA

M
P

L
E

m
in

us
m

ea
su

re
d

ou
tp

ut
re

fl
ec

ta
n

c
e

v
e
r
s
u

s
r
u

n
n

u
m

b
e
r
.



R
es

id
u

a
l

P
lo

ts
o

f
S

A
M

P
L

E
O

u
tp

u
t

R
ef

le
ct

a
n

ce
fo

r
A

,
B

,
a

n
d

C
C

o
n

st
a

n
t

0
.1

4

0
.1

2
C

I I
0.

1
J

0.
08

i
0

.0
6

•a
0

.0
4

C
0

.0
2 0

-
0

.0

-
0

.0
4p3

J
L0

3
9

0
4

0
0

4
1

0
w

av
el

en
gt

h
(n

m
)

4
2

0

F
ig

ur
e

10
.

R
es

id
ua

l
pl

ot
o

fo
u

tp
u

t
re

fl
ec

ta
nc

e
pr

ed
ic

te
d

by
S

A
M

P
L

E
m

in
u

s
m

ea
su

re
d

o
u

tp
u

t
re

fl
ec

ta
nc

e
ve

rs
u

s
w

av
el

en
gt

h.
N

ot
e

ob
vi

ou
s

tr
en

d
w

it
h

w
av

el
en

gt
h

0
.1

4
-

^

g
0.1

2-J
•

e •2
0

.1
•

%
0

.0
8

•
•

•
•

u
•

«
0

.0
6

•
•

•o
•

"8
0

.0
4

•
•

i
.

0
.0

2
•

•
•

0
•

•
0

.0
2

-

l
•

i
"

"
i

L
5

10
•

fs
20

•
r
u

n
#

-0
.0

4
1

F
ig

ur
e

11
.

R
es

id
ua

l
pl

ot
o

fo
ut

pu
t

re
fl

ec
ta

nc
e

pr
ed

ic
te

d
by

S
A

M
P

L
E

m
in

u
s

m
ea

su
re

d
o

u
tp

u
t

re
fl

ec
ta

nc
e

ve
rs

u
s

ru
n

n
u

m
b

e
r
.

P
lo

t
o

ft
h

e
D

if
fe

re
nc

e
B

et
w

ee
n

P
re

di
ct

ed
O

u
tp

u
t

R
ef

le
ct

an
ce

fo
r

A
C

o
n

st
a

n
t

a
n

d
C

h
a

n
g

in
g

r
u

n
#

(
5

1
0

1
5

2
0

-
0

.0
0

5
-

•

-
0

.0
1

•

•
•

•
•

•

•

-
0

.0
1

5
-

•
•

•

•

-
0

.0
2

-

•
•

-0
.0

25
i

F
ig

ur
e

12
.

R
es

id
ua

l
pl

ot
o

fp
re

di
ct

ed
o

u
tp

u
tr

ef
le

ct
an

ce
fo

r
A

co
n

st
a

n
tm

in
u

s
p

re
d

ic
te

d
o

u
tp

u
t

re
fl

ec
ta

nc
e

fo
r

A
va

ry
in

g
w

it
h

in
pu

t
re

fl
ec

ta
nc

e.
N

ot
e

th
a

t
bo

th
m

od
el

s
gi

ve
th

e
sa

m
e

re
su

lt
to

w
it

h
in

+
-1

%
.



0>

c

V 0.9

03

0.8

98

Transmission versus Wavelength for Ideal Thin

Film Interference of Photoresist on Quartz and

for B Values of KTI 820

I i i i i I i i i i i i i i i | i i i i i i »' » j ' ' ' ' l ' ' ' ' | ' ' ' ' i ' ' ' '

>•> >>x

*a.
>-X

•«••»•.vx.»'«^rf>•>«•,'

>•>•>>>.>

.**•**
JS>'

'-i.\

*?;>*

. . . i .. i•1......... 1.... i... 11 ttii i iiit 1 11111 i 11 i

Pronth
> >

Idea!

380 390 400 410 420 430

Wavelength (nm)

FIGURE 13. Plot of ideal thin film interference pattern from photoresist onquartz in whichthe
photoresist has no absorption component. The transmission derived from Mack's values orB
for KTI 820 are also plotted. The correspondence between these curves indicates that thevalue
for B isdominated bythethin film interference of photoresist with quartz rather than theactual
absorption constantof the photoresist

Extraction of Bleach Parameters from Peak Reflectivity Measuremenu EE290W S92



ST S 8. 8 o •
n

0
3 I" S-

j

I
-

.<
_ f c
:

§ S 3 C
O s

A
p

p
en

d
lx

A
.r

n
o

d
el

o
ff

ra
ct

JM
P

Jo
ur

na
l

Su
nd

ay
.

M
ay

10
.

19
92

1
0

:4
6

A
M

A
p

p
en

d
ix

A
:

M
o

d
el

fo
r

P
A

C
fr

ac
ti

on
re

m
a

in
in

g
in

P
h

o
to

r
e
s
is

t

R
e
sp

o
n

se
:

fr
a

ct
io

n

S
u

m
m

a
ry

o
f

F
it

R
sq

u
a

re
.6

4
3

0
6

3
8

R
oo

t
M

ea
n

Sq
ua

re
E

rr
or

.0
2

6
1

1
9

6
M

ea
n

of
R

es
p

o
n

se
0

.7
3

7
0

7
O

bs
er

va
ti

on
s

(p
/

S
u

m
W

gt
s)

-
5

6

E
ff

e
c
t

T
e
s
t

S
o

u
r
c
e

N
p

a
rm

D
F

"
S

u
m

o
f

S
q

u
a

re
s

F
R

a
ti

o
P

r
o

b
>

F

sp
in

ti
m

e
1

0
.0

1
S

S
0

6
9

8
1

9
.6

1
1

3
0

.0
0

0
1

sp
in

sp
e'

sp
in

tl
m

1
0

.0
1

5
1

7
9

1
5

1
9

.1
9

6
7

0
.0

0
0

1

b
a

ke
te

m
p

1
0

.0
1

0
8

8
4

4
0

1
3

.7
6

5
2

0
.0

0
0

5

sp
in

sp
e
'b

a
k
e

te
rn

•
1

0.
01

79
71

38
2

2
.7

2
8

0
0

.0
0

0
0

sp
in

ti
m

'b
a

ke
te

rn
1

0
.0

0
7

5
6

0
3

6
9

.5
6

1
4

0
.0

0
3

3

P
ol

y(
sp

in
sp

ee
d

,2
)

2
2

0
.0

4
5

1
0

2
5

3
2

8
.5

2
0

0
0

.0
0

0
0

S
o

u
r
c
e

M
o

d
e
l

E
r
r
o

r

C
T

o
ta

l

W
h

o
le

-M
o

d
e
l

T
e
s
t

A
n

a
ly

si
s

o
f

V
a

ri
a

h
ce

DF
Su

m
of

Sq
ua

re
a

M
ea

n
Sq

ua
re

F
Ra

tio
•'

7
C

j0
6

8
3

7
9

4
7

v
-

0
.0

0
9

7
6

8
1

2
.3

5
4

0
)

4
8

0
.0

3
7

9
5

4
4

1
•;

0
.0

0
0

7
9

1
P

ro
b

>
F

'
5

5
0

.1
0

6
3

3
3

8
7

0
.0

0
0

0

A
p

p
e
n

d
lx

A
.r

n
o

d
e
lo

ff
ra

c
t

Jm
p

Jo
ur

na
l

sp
in

ti
m

e

-
r
—

r
-
—

i
1

1
—

*
i—

"
T

r

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0

1

sp
in

ti
m

e
L

ev
er

a
g

e

E
ff

e
c
t

T
e
s
t

S
u

m
o

f
S

q
u

a
re

a
F

R
at

io
D

F
P

ro
b

>
F

0
.0

1
5

5
0

6
9

8
1

9
.6

1
1

3
1

0
.0

0
0

1

Su
nd

ay
.

M
ay

10
.

19
92

1
0

:4
6

A
M

•
P

o
ly

(s
p

in
sp

ee
d

,2
)

(
0.

85
-

r
1

a
>

#
.

c
0

.8
-

1
•

,<
^

1
•

0
0

.7
5

-
:

X
l£

&
\

n
...

..^
.^

^^
0

.7
-
*^

-<
^Y

•
"

'
"

.*
**

'
"

*

0.
65

J

0
.6

-
1

1
1

1
1

1
1

1
1

1

0
.6

8
0

.7
0

.7
1

0
.7

3
0

.7
5

0
.7

7
0

.7

'.P
ol

y(
sp

in
sp

ee
d

.2
)

L
ev

er
ag

e

E
ff

e
c
t

T
e
s
t

S
u

m
of

Sq
ua

re
a

F
R

at
io

D
F

P
ro

b
»

F
0

.0
4

5
1

0
2

5
3

2
8

.S
2

0
0

2
0

.0
0

0
0

$



B1 5 8. 3 2, w 8 8 B 1

A
p

p
e
n

d
lx

A
.r

n
o

d
e
lo

ff
ra

c
t

JM
P

Jo
t/

m
a

/
Su

nd
ay

.
M

ay
10

,
19

92
1

0
:4

6
A

M

sp
in

sp
e
's

p
in

ti
m

,
0.

85
"

r a c
0

.8
-

.

t
•

j
*.

..
--

*

0
0

.7
5

"
n

0
.7

-
.-•

**
""

*
'

0
.6

5
"

0
.6

'
i

i
i

i
i

i

0
.7

0
.7

1
0

.7
2

0
.7

3
0

.7
4

0
.7

5
0

.7
6

0
.7

sp
in

sp
e'

sp
in

ti
m

L
ev

er
ag

e

E
ff

e
c
t

T
e
s
t

S
u

m
o

f
S

q
u

a
re

a
F

R
a

ti
o

D
F

P
ro

b
>

F
0

.0
1

5
1

7
9

1
5

1
9

.1
9

6
7

1
0

.0
0

0
1

0
.6

S
u

m
o

f
S

q
u

a
re

s
0

.0
1

0
8

8
4

4
0

b
a

k
e

te
m

p

t
1

1
1

1
r

1
0

0
1

0
5

1
1

0
1

1
5

1
2

0
1

2
5

1
3

0
1

3
5

14
1)

b
a

ke
te

m
p

L
ev

er
ag

e

E
ff

e
c
t

T
e
s
t

F
R

a
ti

o
D

F
P

ro
b

>
F

1
3

.7
6

5
2

1
0

.0
0

0
5

A
p

p
e
n

d
lx

A
.r

n
o

d
e
lo

ff
ra

c
t

Jm
p

Jo
ur

na
l

0
.8

5

sp
in

sp
e
'b

a
k
e

te
rn

t
1

1
1

1
r

0
.6

9
0

.7
0

.7
1

0
.7

2
0

.7
3

0
.7

4
0

.7
5

0
.7

6
0

.7

sp
in

sp
e'

b
a

ke
te

rn
L

ev
er

ag
e

E
ff

e
c
t

T
e
s
t

S
u

m
o

f
S

q
u

a
re

s
F

R
a

ti
o

D
F

P
ro

b
>

F
0

.0
1

7
9

7
1

3
8

2
2

.7
2

8
0

1
0

.0
0

0
0

sp
in

ti
m

*
b

a
k
e

te
rn

Su
nd

ay
.

M
ay

10
,

19
92

1
0

:4
6

A
M

f
0.

85
"

r a c
0

.8
-

t
i

•
i

1
"

.
.•

•
'—

••
»

'"

0
0

.7
5

"
n

0
.7

"
-r

«
'

,
1

0
.6

5
-

0
.6

n
1

I
i

1
1

0
.7

2
0

.7
2

5
0

.7
3

5
0

.7
4

5
0

.7
!

sp
in

ti
m

'b
a

ke
te

rn
L

ev
er

ag
e

E
ff

e
c
t

T
e
s
t

S
u

m
o

f
S

q
u

a
re

a
F

R
a

ti
o

D
F

P
ro

b
>

F
0

.0
0

7
5

6
0

3
6

9
.5

6
1

4
1

0
.0

0
3

3

S



-101-

A G2 Formulation of Queuing Effects due to
Metrology in a Photolithography Workcell

Bart Bombay

The need for the improvement of photolithography workcell capability requires
regular measurements ofequipment performance. This report analyses anapplica
tion ofGensym Corporation's G2software tosimulate wafer measurement sched
uling problems.

1.0 Introduction

Recent developments in integrated circuit design call for the improvement of the performance of pho
tolithography workcells. In order to accomplish this improvement, computer aided manufacturing tech
niques are being applied to the process, and these techniques require regular measurements of equipment
performance. These measurements, however, are subject to the associated costs of additional hardware,
time, and labor. Hence the industry is faced with the problem of implementing these measurements in a
manner which will minimize the cost per unit product produced yet improve product quality. The most
obvious goals are to increase product yield (decrease the fraction nonconforming) and improve product
performance. Because measurements will slow down the manufacturing process, the desired implementa
tion will attempt to minimize the impact of taking these measurements upon the product throughput, and
thus attempt to maintain a satisfactoryproductionlevel.

There are several issues which must be addressed in any formulation of this scheme. Specifications
mustbe determined on how many wafers to measure, which wafers to measure, andhowoftento measure
them. The types of measurements must be decided upon. Theeffects on work in progress inventory must
beexamined. And finally the production costs must bestudied to determine themagnitude of anyimprove
ment in marginal cost versus marginal revenue.

TheBerkeley Computer Aided Manufacturing (BCAM) group wasrecently presented with the oppor
tunity tostudy anew software product from Gensym Corporation. The product, G2, isa flexible tool which
uses an object oriented environment tosimulate and control various types ofsystems. Ofparticularinterest
arethisproduct's extended graphical capabilities which assist an operator in using thesystem.

For this study, the G2 software was used to simulate a photolithography workcell and to study the
effects ofintroducing a measurement strategy into the workcell. The feasibility ofusing G2 asaninterface
to a control and monitoring system is also addressed.

2.0 Methodology

The G2 software possesses several appealing features. Among these are its graphics capabilities, its
object oriented environment, its simulation ability, and itsgeneral flexibility. In order to introduce custom
ers to the software, Gensym provides a two day course on the G2 system. This course proved effective in
familiarizing new users with the general use of G2.

Although G2 isvery flexible, considerable effort must beexpended toprogram algorithms into the sys
tem. Also, the one second clock cycle ofG2 is rather restrictive. These limitations prevent the use ofG2 to
implement the generalized BCAM control and monitoring system. However, one interesting feature ofthe
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software is its ability to interface with C programs. This feature leads to the possibility of a more limited
use ofG2 as a graphical interface to the BCAM software, which is written primarily in C++. While such an
implementation is attractive, the high cost of G2 precludes such a limited use. Forthis study a more self-
containedapplication is chosen, namely a study of the queuingproblemsassociated with introducing regu
lar measurements into a photolithography workcell.

The design for this study focuses on the construction of a relatively simple model of the photolithogra
phy workcell timing (see figure on the next page). Wafers are processed byamachine and then placed into
a storage area. From this area, wafers are eithertaken to an analytical station for measurement and then
transferred to the following storage area, or they are transferred directly to the next storage area. The next
processing stationthen takes its wafers from that storage area. The decisions about whether or not to mea
sure any particular wafer aredependentupon production flow andcontrol criteria.

Initial work to design a knowledge base with G2 includes the definition of several object types and
icons, and preliminary connections among instances of these icons. Gensym also supplied acustomer sup
port visitwhich is effective in assisting users new to the G2 system. With such assistance, a basic design
was implemented. This basic design may then be further refined with the introduction ofan enhanced set of
rules, more informative readouts, and more precise timing specifications

3.0 Results

This study compares two distinct algorithms for the scheduling of wafer measurements. These two
methods are henceforthreferenced as algorithm A andalgorithm B andare described below.

3.1 Wafer Measurement Scheduling Algorithm A

The first method, algorithm A, uses inventory based rules to decide thenumber of wafers from which
measurements would be taken. Each storage area immediately preceding a processing station has a specific
"low level". If the wafer count in the storage area falls below this low level, the deficit is immediately
taken from the preceding storage area, and the wafers so taken do notget measured. Aslong as the count of
the storage areas remains above or at the low level, each wafer will be subjected to measurement as it
passes between storage areas.

Algorithm A proves to be successful in maintaining production levels since it foregoes measurements
whenever the relevant intermediate wafer inventories fall below designated low levels. Because wafers
require queuing before measurement, this formulation does, however, increase the overhead in progress
inventory. Another drawback to this method is the variability of the frequency of measurement; during
some time periods, manywafers are measured, while during other time periods few orno wafers are mea
sured.

3.2 Wafer Measurement Scheduling Algorithm B

The second algorithm for wafer measurement, algorithm B, sets specific goals for the number of
wafers to be measured at each step in the process. One out of every four wafers is subjected to measure
ment as it passes between storage areas. This algorithm is indifferent to the supply levels in the storage
areas.

Algorithm B is successful at providing a steady stream of data, but results in a somewhat reduced pro
duction level. This method also results in a lower work in progress inventory than the first method,
although still higher than a process without measurements.
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Flow Diagram for the Photolithography Workcell
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3.3 Results of the Simulations

It should be noted that the simulations fail to giveprecise information. This deficiency is attributed to
two factors. The first limitation of the system is that it discretizes time into one CPU-second intervals.
Thus if thetime were scaled to simulate five minutes ofproduction every second, then theresolution of the
process simulation would be limited to five minutes. The time scale chosen for the simulation isone wafer
processing minute per CPU-second. This time scale yields sufficient resolution for the simulation, while
providing results after a reasonable period of time. (At this scale, the simulation of a 24 hour workday
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requires 24 minutes.) The second limitation of the system results from the structure of the G2 rule system.
Creating complex rule patterns with G2, although undoubtedly possible, is time consuming, particularly
with respect to making structural changes in the flow decision rules. Hence time requirements for the
implementation of the desired simulations exceeded the resources allotted to the project. The project was
therefore somewhat scaled back.

Several topics of interest areignored in these simulations. An analysisof the profitability of the differ
ent algorithms is not performed.The simulationof the workcell is idealized. In an actual fabrication facil
ity, the processing times of the various equipment change with varying conditions, including change of
operators, and random noise. The equipment in an actual workcell alsoexperiences periodicdowntime due
to failures and general maintenance. The relative time requirements of the processing steps may also
change with different product lines. In addition, the changingoperating conditions in a fabrication facility
may require a dynamically changingmeasurement schedulingalgorithm which can emphasize datacollec
tion for issues of interest, while reducing the emphasison lesser issues. This reportdoes not address these
problems.

The results of the simulations are strongly dependenton the specific time requirements of the particu
lar elements in the workcell, especially the time required to take measurements. Since these time require
ments vary significantly for different technologies, the results of this project should only be interpreted in a
relative manner.

In particular, many of the relevant measurements can now be implemented 'in situ* on the wafer track
so that they have no impact on the wafer processing time. In such a case, measurements can easily be made
on all wafers, providing valuable information to an appropriate process control and SPC system. Thus the
only increase in cost comes from the purchase and maintenance of the new measurement equipment.

In the case that measurements are taken off the wafer track, the time for measurement is an important
consideration. Some measurements require more time than others. (For instance in the Berkeley Microfab-
rication Laboratory, a manual critical dimension measurement may require tenfold the time required for a
photoresist thickness measurement.) When faced with such circumstances, a successful scheduling scheme
may reduce the frequency of measurement for those measurements which are time intensive.

For model based control schemes a measurement scheduling algorithm must ensure the maximization
of the number of wafers which are measured at all stations. Thus wafers which were previously measured
receive priority for future measurements in order to facilitate model building. For feed-forward control,
every wafer (or at least samples from every lot) must be measured. For statistical quality control, an
increasein the number of measurements taken will almost alwaysbe beneficial.Maximizing the frequency
of measurements in the processingline will expedite the detection and diagnosisof equipment problems.

4.0 Example

Figure 2 displays a screen dump of the G2 formulation of a photolithography workcell.

5.0 Conclusions

The results of this project are highly dependent upon the configuration of the photolithography work-
cell. In general, any increase in measurement frequency is beneficial as long as it does not cause too great
an increase in cost. 'In situ' measurements on wafers along the wafer track areextremely desirable, as they
do not cause delays in the processing line.

Drawbacks of in-process measurements:

• Cost of the measurement equipment and its maintenance
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If a system is dependent on measurements, measurement equipment failure could cause interruptions in
production.

The time requirements ofmeasurements can slow down production.

Queuing requirements of measurement scheduling can increasethe work in progress inventory.

Advantages of in-process measurements:

Additional information for problem detection and diagnosticefforts

Quantitative records ofmachine performance

In-process measurements allow the implementation of a feed-forward control scheme to eliminate the
propagation of disturbances and increase yield.

Measurement data assists in the development of equipment models for various control and design pur
poses.

6.0 Future Work

A comprehensive study requires more detailed models of photolithography equipment performance.
The G2 representation of the photolithography cell might be expanded to include interfaces to fabrication
and measurement equipment, as well as interfaces to C code to handle computationally intensive control
andmodeling computations. The system would then be ableto handlemany applications, including sched
uling, model-based control, statistical quality control, diagnosis, recipe design for equipment operation,
and database operations. In such a case, G2 would serve primarily as a graphical interface to a computer
aided manufacturing system, and C code would provide the remainder of the functionality. This G2 formu
lation of a computer aided manufacturing system would, however, be limited to operations which require
time discretization at a level no lower than one second intervals, as this is the maximum clock speed of the
G2 system.The G2 representation could also be expanded to include multipleworkceUs and therebysimu
lateand control anentire production process. Suchanimplementation would interact well with G2's object
oriented structure.

From ourlimited exposureto G2 we wereimpressed by its capability to produce aneffective, animated
pictorial summary of the process. This project also yielded the following suggestions for improving G2's
applicability to integrated circuit manufacturing: *

• G2 lacks the computational powerrequired for advanced control and modeling purposes. The existing
interface with the C programing language hasnot been tested by the author.

• The current 1-CPU-second system clock is too slow andinflexible.

• G2 is rather unwieldy fornew users. Significant training is required before the user-interface ofG2 feels
natural, asmany of the most common tasks require convolutedmenu selections.

• The object-oriented framework can be improved. Currently there are limitations when updating struc
tures. Specifically, instances must often be deleted and recreated wheneverbase structures change.
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Sidewall Slope Optimization for Phase Shifted Contact
Cuts

John Helmsen

The goal of this project is to investigate theexperimental space of thephotoresist
etching step in a contact cut manufacturing process which uses phase shifted
masks. By using the simulation tools SPLAT, BLEACH and ETCH, the phase
shift contact cut process was examined for its effect on the sidewall slope when
fourparameters arevaried. The parameters are the twomaskdimensions, themis
alignment from the focal plane and the coherence of the light source. The simula
tion space is mapped on selected twodimensional surfaces in the four dimensional
space. The first order effects of the parameters are also mapped to localize the
points of minimum variation.

1.0 Introduction

The semiconductor manufacturing industry, in its attempts to achieve minimal feature sizes, has
recently adopted the use ofphase shift masks[2][3J. These masks differ from traditional masks by produc
ing adiffraction pattern on the surface ofthe photoresist. Existing optical and exposure equipment may be
used to produce smaller feature sizes. While use of these masks is therefore desirable, the exposure step of
a process must be reexamined to determine its optimal regions of operation and sensitivity to optical
parameters[2], J v

Due to the excessive cost of conducting of analyzing aprocess through conducting actual experiments,
it is often instructive to map the parameter space through process simulation. This allows the experimenter
to reduce the number of fabrication runs todescribe the process, because the simulation can beused asan
accurate initial guess. Experiments are still necessary, however, toconfirm the simulated result because the
simulator may have inaccuracies. K

r., T^ sPe(?ific process ofphotoresist etching has been chosen for examination, because the SAMPLE-3D
I5jsuite of simulators performs this particular simulation task effectively. Three of these simulators were
made to work mconjunction with one another. The first is SPLAT [3], which generates the intensity con
tour on the surface of the photoresist from the mask and the optical parameters. The intensity contour is
sent to BLEACH [5], which simulates the exposure of the resist and determines the etch rate throughout
the exposed resist layer. Finally, the ETCH [6] program, simulates development ofthe photoresist during
the etching process. b

In Section 2, afull description ofthe photoresist etching process is given and the inputs and functions
of the simulators are described. Section 3details how the simulators were employed to simulate the pro
cess, and the manner in which the results were generated. The data and its analysis ispresented in Section
4. Conclusions are presented in Section 5.
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2.0 Photoresist Etching

2.1 The Mask

A phase shift mask structure has been proposed for forming contact cuts [2] and is shown below. This
mask contains two octagonal transparent regions, one centered inside the other. The central region has a
minor diameter of length Dc. This region is not phase shifted. The outer ring has a minor diameter of
length DMax. This region is phase shifted by 180°. The inner region and the outer ring are concentric.The
two mask diameters are two of the parameters in the simulationspace. This mask produces a stronger and
thinnercentral spot than a non-phase shifted mask, provided the phaseshift mask is of the properdimen
sions.At the surfaceof the photoresist, the two phaseshifted components destructively interfere to createa

D,

v 0degreesy

DMax

180 degrees

Phase Shift Mask and Dimensions

ring of zero intensity. The interferenceat the centerof the image reactsconstructivelyand creates a central
spot of exceptional magnitude. These are both desirable conditions for exposing photoresist for a contact
cut, because the hole created will be thinner and have steeper sidewalls than a cut created by a normal
mask. The disadvantage is constructive interference again occurs at twice the distance of the dark ring
from the center. This sidelobe,although normally low inMntensity, may partially develop the resist It can
interfere with nearby structures, so it is desirable to reduce its intensity when possible.

2.2 Creating the Image

Simulation of the optics is handled by the SPLAT program. It accepts as input a description of the
mask and the dimensions of the area to be imaged. It also requires the following:

Table 1: SPLAT Parameters

Parameter Meaning Value

X Wavelength 435.8 nm

NA Numerical Aperture 0.45

Focus Distance from Focal Plane Experimental Parameter
O Partial Coherence Experimental Parameter

The wavelength is chosen to be in the g-line regime because a g-line resist is most appropriate for this
experiment. The numerical aperture is a physical parameter based on the lens dimensions and index of
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refraction, and was chosen to be 0.45 for consistency. The distance from the focal plane is measured in
jim. Sigma represents the partial coherence of the imaging system. It may take values from 0 to 1. The
focal distance and the partial coherence are the other two parameters, besides the mask parameters, in the
experimental space. The output of the SPLAT program isa discretized representation of the intensity ofthe
image as it appears at the surface of the photoresist.

2.3 Exposing the Resist

Table 2: BLEACH Parameters

Parameter Meaning Value

Resist Photoresist SNR-248

Dose Exposure Dose 100 mJ/cm2
Diffusion Heat Diffusion Length 1 nm

Thickness Thickness of Resist 0.7133 urn

Exposure of the resist is performed by the BLEACH simulator. A surface intensity contour is taken as
input, along with a file that describes the parameters for the photoresist. The resist chosen is the SNR-248
model [1]. This is a g-line acid hardening resist, which is especially useful for phase shift masks, because a
certain threshold of intensity is necessary to expose the resist.The etching of the resist due to the sidelobes
is, therefore, less pronounced. The exposure dose and the resist thickness are held constant for all simu
lated exposures. The diffusion parameter is included due to the formation of standing waves in the resist.
Because the energy reflects off of the substrate during exposure, alternating layers of high and low etch
rates can form. If the photoresist is etched without a precedingdiffusionstep, the vertical sides will have a
rippled character. A one-dimensional vertical gaussian diffusion is therefore performed so that the ripples
are removed. BLEACH generates as output a three-dimensional array which contains the etch rates at reg
ular points in the resist.

2.4 Etching the Resist

Table 3: ETCH Parameters

Parameter Meaning Value

Time Development Time 6 seconds

N Surface Discretization 20

The three dimensional structures that form when the photoresistis etched, are computed by the ETCH
simulator. It takes as input the three-dimensional etch rate array produced by BLEACH. The surface in
ETCHis represented by a triangularmesh. Its evolution is computed by solvinga PDE whichis discretized
in space by the parameter N. N is the numberof triangles in both the X and Y directions. The PDE is also
discretized in lime. The time step is variable and controlled internally. The limitation on the time step is
that the distance traveled by the surface during one step must be less than 15% of the length of the side of
the original triangles. This 15% condition causes ETCH to give highly accurate results. The photoresist
developmenttime for all simulations is 6 seconds. ETCH producesa list of triangles as its output. This list
is the geometrical representation of the developed surface.

2.5 Sidewall Slope

The sidewall slope was selected as the measurement parameter. Because the intention of a contact cut
processes is to make a small hole with straight sides, this is an accurate indicator of the effectiveness of the
process. The sidewall slope is also easy to derive automatically.This makes it an especially effective mea
surement of process suitability when the number of simulation results is too large to be analyzed by the
user.

Sidewall Slope Optimization for PhaseShifted ContactCuts EE290W S92
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Table 4: Experimental Parameters

Parameter Meaning Value Step # of Values

1>C Inner Mask Diameter 0.8 jim to 1.6 urn 0.1 nm 9

DMax Outer Mask Diameter 1.3 jim to 2.61- nm 0.164 urn 9
Focus Distance from Focal Plane -5.0 jim to 5.0 nm 1.0 urn 11

a Partial Coherence 0.01 to 1 0.1 11

Mapping the entire space was not attempted due to the prohibitive number of simulations whichmust
be performed. Certain coordinate parallel two dimensional planes were selected for analysis in the four
dimensional simulation space. In each of thesecases, two parameters were held constant, while the other
two parameters were varied over their entire range. For any particular variable, the partitioning of the range
is uniform, except when the partial coherence is equal to 0.01. This is done to avoid a divide by zero error
in SPLAT. The following planes were analyzed:

Table 5: Examined Planes

Plane DC DMax Focus o

1 Varies Varies 0.0 Mm 0.5
2 Varies Varies 1.0 nm 0.5
3 Varies Varies -1.0 nm 0.5
4 Varies Varies 0.0 nm 0.01

5 Varies Varies 0.0 nm 0.3
6 Varies Varies 0.0 nm 0.4
7 Varies Varies 0.0 nm 0.6

8 Varies Varies -1.0 nm 0.4
y 1.10 nm 2.12 nm Varies Varies

3.2 Output

The result of each simulation was analyzed automatically to determine the slope of the contact cut
sidewalls. The slope of the sidewall SSide is determined (EQ 1) by theobserved diameter of the contact cut
at the middle of the resist DMid, the bottom ofthe resist DBo, and the depth of the resist RDgplh.

$Side ~
^Mid~^Boi

RdW2
(1)

4.0 Results

The 9 planes thatwereusedasinput in Table 5, are plotted in Figures1through 9 respectively usingthe
CONTOUR program [7].Figures 1 through 9 demonstrate that themask dimensions that consistently give
large sidewall slopes are Dc of 1.1 and DMax of 2.12. Figures 2,3 and 9 demonstrate that theexperimental
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space is symmetric about the focal plane. This effect was expected for this mask configuration [4]. The
sidewall slopes increase as the coherence tends towards 0 in figures 4, 5, 6, 7 and 9. The effect of lower
coherency on the sidewall slope is shown directly by the side views in Figures 13,14 and 15. These figures
are plotted at Dc of 1.1, DMax of 2.12 and a Focus of 0. Figures 13,14 and 15 have coherency of 0.01,0.5
and0.9 respectively. These figures also show that sidelobes become more pronounced for lower coherency.
Figures 10 and 11 demonstrate the sensitivity of the experimental space to first order changes in the focus
and coherence respectively. Figure 12 graphs the sensitivity of the space to a change in both the focus and
sigma simultaneously. Examining the plots of Figures 10, 11 and 12, an important point is located. The
change in the slope for Dc of 1.1 andDMax of 2.28 is near0 sensitivity forchangesin both focus andsigma
(where focus is about. 0 and sigma is about. 0.5.) The combined effect from a change in both focus and
coherence is also minimal. This spot may be considered the least sensitive to changes in the process.

5.0 Conclusions

A parameter space for a phase shifted contactcut photolithography processhas been investigated.The
dimensions of the mask that give the best sidewall slopehavebeendetermined. The process spacehasbeen
shown to be symmetrical about the focal plane, and the effects of coherence have been investigated. The
most important future work is to confirm these results in the lab. Investigation of the process for othercost
functions besides sidewall steepnessmay be performed.
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FIGURE 1.

Focus =0, Sigma =0.5

FIGURE 2.

Focus = 1, Sigma = 0.5

FIGURE 3.

Focus = -1, Sigma = 0.5
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FIGURE 5.

1.6

1.4

£ 1.2

-113

Focus = 0, Sigma = 0.01

Focus = 0, Sigma = 0.3

Tn
_.-••* •••^^Z. ••-^____-_-^-' ->^.

•••• ^ * '1^* •••• 2^>^T^" »> ^
/^^"^s^-..-•^^""...^^—— Wt^

•^^••••••^^ SK~"^^Mr/(
••*" v*""^ •*•' S ••"""".y*— •- "*^ .-**"' i i :l:tt[i(*V^ .i

'•••'' / >/<'/ ;^^^ ,
/ v^~" \ •Y^SasSgiy' | :

\ ( ( ( ( ( / x X*55&T§^'~~S~*
"•^§5xn^on ^^T^v/U'/'i'l ."•""'

• '"SSff* Tf.r..•••I'ir.'j '̂vX' [ ^
»:^^y -J ?

MINIMUM

0

MAXIMUM

7.7

0.8
1.3 1.63 1.96

Dmax

2.28 2.61

FIGURE 6.

1.6

1.4

Q 1.2

Focus = 0, Sigma = 0J

<y ^P^^^^P^^

^V^^^^^^^^^^r\fflff/"

MINIMUM

0

MAXIMUM

79

0.8
1.3 1.63 1.%

Dmax

228 2.61

Sidewall Slope Optimization for PhaseShifted ContactCuts EE290W S92



114

FIGURE 7.

Focus = 0, Sigma = 0.6

FIGURE 8.

Focus = -1, Sigma = 0.4

FIGURE 9.

Dc = 1.1, Dmax = 2.12
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FIGURE10.

Focus = (0) - (1), Sigma = 0.5

FIGURE 11.

Focus = 0, Sigma = (0.5) - (0.6)

FIGURE 12.

Focus = (0) - (-1), Sigma = (0.5) - (0.4)
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FIGURE 13.

FIGURE 14.

FIGURE 15.
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