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Preface

This is the third annual edition of the 290W report. This edition includes descriptions of
projects completed during the Spring semester of 1992, in the context of the graduate course
“Special Issues in Semiconductor Manufacturing”. Ten students and two auditors have partici-
pated, and according to the course requirements, these students worked with me on their projects
during the last six weeks of the semester,

The projects described in this report cover a rather wide range of semiconductor manufactur-
ing applications. These include issues in statistical process control (Chapters 1, 2, 3, 4, 7, 10),
experimental design (Chapters 3, 5, 6, 8, 9, 11) automated metrology (Ch. 4, 7, 9, 10), process
modeling (Ch.7, 11) circuit design for manufacturability (Ch. 8), process design for manufactura-
bility (Ch. 11). In the area of experimental design, we present work in classical DOE and in Tagu-
chi methods (Ch. 3, 5, 6, 10) as well as in computer based experiments (Ch. 7, 11).

Each of the presented projects covers at least one novel aspect of semiconductor manufactur-
ing. The first project discusses the creation of a novel multivariate exponentially weighted moving
average scheme suitable both for closed loop control as well as SPC. The second deals with the
application of time series models amenable to real-time control procedures. The next project pre-
sents a novel fractional-factorial based scheme for evolutionary operations. Next, the automation
of in-situ photoresist monitoring scheme is discussed. The fifth presents a Taguchi experiment for
phase shift mask design. The sixth projects deals with the improvement of thin, low temperature
oxides. The seventh discusses issues in the distributions of particulate contamination and in-situ
monitoring of airborne particles. The eighth deals with the creation of computer-based experi-
ments that can be used to enhance the manufacturability of integrated circuits. The ninth project
ties together in-line process measurements to process simulation tools for lithography control and
diagnosis. The tenth project is a study of the scheduling and throughput problems that might be
introduced by the metrology requirements of a run-to-run control system. Finally, the last project
concentrates on a response surface methodology applied towards the design of a robust phase
shift lithography procedure.

It is my hope that these reports will add to our understanding -of semiconductor
manufacturing. My thanks go to the 290W students and auditors whose work made this docu-
ment possible. I am also grateful to the personnel and management of the Berkeley Microfabrica-
tion laboratory for their help with the experimental part of the projects presented here. Finally, I
would like to acknowledge High Yield technologies (for letting us use one of their in-situ particle
monitoring sensors), Gensym (for allowing us to use their G2 software package), and SC Technol-
ogies (for their help in acquiring and installing the SC Inspector monitoring system).

Costas J. Spanos

July, 1992
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A Multivariate Exponentially Weighted Moving
Average Control Scheme

CridYu

The exponentially weighted moving average (EWMA) control scheme can be
designed to detect large or small shifts in the process mean. A multivarite imple-
mentation of this scheme and its design guidelines will be presented. A direct vec-
tor extension of the univariate EWMA was chosen so that both the magnitude and
the direction of the shift in mean can be ascertained. Alarm generation will
depend on a single scalar Hotelling statistic. The in-control and out-of-control
average run lengths (ARL) have been estimated by monte carlo simulation as a
function of the control chart parameters. Multivariate EWMA design guidelines
have been established for specified in-control and out-of-control ARL’s. In gen-
eral, it was found that for comparable multivariate CUSUM and EWMA charts,
their ARL characteristics are almost the same. It is recommended that a Shewhart
chart be used simultaneously with an EWMA chart so that large shifts in the pro-
cess mean can also be detected quickly.

1.0 Introduction

The exponentially weighted moving average (EWMA) control scheme has been gaining popularity in
the manufacturing industry because of certain unique properties. For the purpose of monitoring a process
and generaling control alarms, its properties are between that of the Shewhart and CUSUM control
schemes. That is, an EWMA scheme can be designed so that it would be sensitive to large shifts in the pro-
cess mean like a Shewhart chart, to small shifts like a CUSUM scheme, or some optimum point between
these two extremes. Also, EWMA schemes have a filtering property as they tend to be less sensitive to spo-
radic shifts in the process control data stream. \

In industrial applications, it is often desirable to be able to monitor several process variables at the
same time. Furthermore, these variables may be mutually correlated. Any of the popular control schemes
mentioned above can be used simultaneouly (in parallel) to monitor several process parameters at one
time. However, because the process variables can be correlated, as they are usually on a semiconductor
fabrication process, it is necessary to design and implement multivariate versions of these control schemes
so that several process variables can be monitored in the form of vectors. In this type of implementation, it
is more appropriate to generate control alarms based on a single statistic calculated from the data vectors.
Discussions of multivariate CUSUM and Shewhart control schemes are abundant in the SPC literature.
Their properties are well known and their design guidelines well established and well characterized.

A multivariate EWMA control scheme will be presented in this report. Its average run length (ARL)
values will be presented and design guidlines based on these values will be established. Comparasons of
this EWMA implementation will be made with its CUSUM and Shewhart counterparts.
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2.0 Methodology

2.1 EWMA Formalism

In the univariate EWMA control scheme the statistic

Z, = AY;+ (1-2)Z,_,,(0<A<1) )

is maintained and an alarm is generated if it is above the upper control limit (UCL) or is below the lower
control limit (LCL). The sequentially recorded values, Y;, can be sample values or averages from a sam-
pling plan while A is the weighing factor on past obseryations. If the Y;’s are identically, independently and
normally distributed (IIND) with common variance, 6y, the variance of the control statistic is given by

1= (1-0%
- [

This value converges to the asymptotic value 022 = {NQ2 - N)) 0’y2 for large i's. Therefore, control
limits are expressed by Koz, where K is typically 3. The vector extension of this implementation is
straightforeward. If we simply take the vector variables we have

Z, = MY+ (1-M)Z;_,,(0<As1) )

where Y;’s now are the difference between the vectors of process variables from the vector of targe values.
In most cases, this control scheme will be used to monitor shifts in the process variable means. Then the
vector Y; will contain the sample averages and the scheme will generate alarms if a significant shift in the
vector is detected. Notice that in this scheme, the direction of the shift need not be specified in the chart. In
fact, the statistic Z; can be used to get an idea for the direction of the process shift in n-space. Alarm gener-
ation in this scheme will depend on a single statistic,

o LB @

where I is the covariance matrix determined prior to the control scheme implementation from the process.
This can be recognized as the Hotelling statistic. In this implementation, y is the length of the vector Z;
mapped onto a space where the variance in each vector dimension has b;fn normalized to 1. Analogous to
the univariate case, this length will be reduced by a factor of {A/(2 - M)} because of the asymptotic expo-
nential weighing. Alarms will be generated if y exceeds a certain value h=K which needs to be determined
depending on the requircments of the control chart Graphically, this is equivalent to detecting whether Z;
exceeds the n-dimensional ellipsoid determined by h and Z.

2.2 Average Run Length Calculations

The performance of process control schemes can be determined by its average run length_properties. In
general we design control charts with a certain in-control run length, or a risk, versus a certain out-of-con-
trol run length, or B risk. The optimal control limits are then chosen based on the average run length values.

2.2.1 Markov Chains

ARL values can be calculated analytically by various techniques. For the univariate case, the average
run length distributions have been calculated using the Markov chain approach. This procedure involves
dividing the interval between the upper and lower control limits into t=2m+1 subintervals of width 2d.
With each sample taken, the control statistic makes a transition from state i to state j, not necessarily differ-
ent, with certain probability p;;. The process is considered in control whenever the control statistic is still in
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a transient state and out of control if it exceeds either control limit and is in an absorbing state. The average
run length and the moments of its distribution can then be calculated by well known methods [1]. The ARL
for the continuous transition probilities can be calculated by taking the asymptotic value of ARL as t
approaches infinity.

In the multivariate case then, the transition states need to span all n dimensions of the vector statistic.
As the number of transition states = t", where n is the number of variables in the statistic, the transition
probability matrix becomes unwieldly. However, Croiser [2] showed that for the multivariate CUSUM
scheme, the Markov chain can be implemented not by all the considering the states of the vector statistic,
but by its scalar Hotelling statistic y.

I extend this formalism to the case of the multivariate EWMA scheme. First, E( Z;=AY; + (1-A) Z; ;)
=(1-A) Z;_ for the on target case because we assume Y; to have all elements normally distnbuted around
zero and because for the purpose of calculating transitional probabilities, the value of Zi#, is considered
constant. Since Var(Z;)=({A/(2 - A)}Z, the statistic y follows the chi-square distribution with noncentrality
parameter

(-0 (WA Ziy 7 241 2= MR-V Py, )

Thus, the transition probability matrix greatly reduces in complexity as we only need to take into
account the transitions of a single variable y;. However, for the cases of the off target ARL, the statistics
become complicated. In this case, E(Y;) = u and is no longer 0. The noncentrality parameter then becomes

A-MIE-WNP(Z; 1+ vy 27 Zi g+ w) (6)

and will depend on both u and Z;_,, not a single statistic. Thus the transition probability matrix still needs
to span states in n space.

2.2.2 Monte Carlo Methods

Usually considered a tedious and time consuming procedure, Monte Carlo methods are becoming
increasingly accessible as computing hardware becomes more powerful. For the purposes of ARL calcula-
tion, this altemnative is appealing because the implementation of the simulation will be relatively simple.
Furthermore, Croiser showed [2] that the scalar test statistic for the multivariate CUSUM chart depends
only on the value of the noncentrality parameter defined to be:

d=[uz )2 )]

where u is the shift in the vector of means. Note that this could not be applied to the generation of the tran-
sition probability matrix because the expectation value of Z;_ ; was nonzero for the Markov chain calcula-
tions. However, for the purposes of simulation this fact greatly simplifies the simulation procedure.

Again, because the statistic y; itself already normalizes the vector statistic to the variances in n space,
the simulation can be implemented with no loss of generality if we pick an arbitrary covariance matrix X
whose determinant is 1. For simplicity, the identity matrix is chosen. This reflects the fact that the matrix
=12 has transformed the vector Z into a space where the covariances are 0 and the variances of each of
the vector elements is one. Similarly the variance of each vector element can be set to one for the purpose
of generating random vectors Y;. From the Croiser reference [2), this transformation does not alter the dis-
tribution of the statistic y; because it depends only on d and is invariant under this transformation. Thus,
the ARL distribution will only depend on the parameters A, h (or L), n, and d.

2.3 ARL Simulations

The ARL can be simulated simply by implementing a C program that applies an EWMA control pro-
cedure with given A, K, n, and d. An identity covariance matrix was used and the vectors of observations
were generated by a random number generator following N(0,1) distributions. The simulated shift in the
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Probabllity

mean vector was imple[nented by using a N(u,1) distribution for one of the vector elements. This makes
d=u and we can determine the ARL versus d by simply changing u. We assume a steady state start of the
control chart so that Z, =0. The run is stopped and the run length recorded as soon as y; exceeds h. For con-
sistency I will refer to the value of L instead of h. In all the values I will report, 4 statistical moments
(mean, vg_riaxce, skew, kurtosis) were generated from 1000 iterations. The C program listing is presented
in appendix A.

_ For comparason, some values for the univariate case have been generated and compared against pub-
lished results calculated by numerical integration [3] and presented below:

¢ 0 0.5 1.0 1.5 2.0 25 3.0
simulated | 119.49 | 23.61 7.5 4.1 295 231 1.89
calculated | 124.18 | 23.28 7.52 4.18 2.92 2.29 191
% dif 38y 14 0.27 19 1.02 0.67 1.05

FIGURE 1. Univariate EWMA Comparason of Simulated vs Calculated ARL for A=0.25 L=2.5 (n=1)

In general they agree within a few percent of one another. The ARL estimates from simulation for d=0
are always going to be worse because in this case the run length distribution approximates that of a geo-
metric distribution[4] (fig.2a) and thus its standard deviation is approximately equal to its mean. However,
for cases with some shift in the mean, the estimates are much better. This can be seen in fig. 2b where the
distribution peaks at the mean.

0.04 Y
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™
FIR EWMA (HS=0.5) 8 o0a-
-4
0.624 / 2
Geometric % 02+
-9
0.014 '
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0.00 r r ——— T RN 0.0 T
[ 100 200 300 ° s 10 18 20

Run Length Run Length

FIGURE 2. Multivariate EWMA: (a) Run length distribution for in control EWMA (b) Run length
distribution for out of control EWMA.

3.0 Simulation Results

3.1 ARL Design Curves

Control charts are usually implemented so that they satisfy certain run length requirements. These are
often a specified in-control run length and an out of control run length for a certain shift in the mean. Thus,
for the multivariate EWMA chart it would be helpful to have design curves that allow us to determine the
values of K and A that would be necessary in order to achieve the desired in-control run lengths while sat-
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isfying a run length requirements for a certain shift in the mean which is reflected in the noncentrality
parameter d.

Figures 1-6 in appendix B provide some design guidelines for multivariate EWMA charts. ARL curves
of A=1.0, 0.25, 0.05 versus d are plotted. Figures 1-3 show in-control ARL's of 200 and 4-6 500. The val-
ues of K needed to achieve these constraints was determined iteratively converging to an optimum value
for K given A and the targel ARL. Curves were generated for two, five, and ten variable schemes.

For the same in control ARL (ARL(0)), charts with higher values of A are more sensitive to large shifts
in the process means, or larger values of d. This is because for this case the EWMA chart reduces to a
Shewhart control chart. As A decreases, more of the history of the process in incorporated into the vector
statistic and the behavior of the EWMA approaches that of the CUSUM scheme; the chart becomes more
sensitive to small shifts in the mean. From this a design methodology is apparent. Given ARL(0), a value
of 1 is chosen so that the chart will be most sensitive to an anticipated value of d.

There has been much discussion concemning the performance of the EWMA compared to the CUSUM
procedures. In figures 1-3 in the appendix, I've also plotted the ARL curves for 3 CUSUM schemes (from
ref. 2) with the same in control ARL values. This reveals that the ARL characteristics of the CUSUM
schemes are amost exactly the same as the the EWMA schemes with A=0.05. It is conceivable that with
certain values of A the EWMA could be made to be more sensitive to this particular CUSUM chart. How-
ever, the CUSUM chart also has two design parameters at its disposal, h and k. It could also be adjusted so
that certain optimal values of ARL's are obtained. Thus, by comparing ARL behavior alone it is not clear
which of the two schemes has “superior” performance. This has also been the general conclusion for the
univariate case in the literature.

One often cited disadvantage of EWMA charts is the inertia. Although we often refer to the CUSUM
scheme as an extreme case of the EWMA scheme, this statement is not really true. This is because the
alarm generation procedure for the CUSUM is inherently different from the EWMA scheme, in that the V-
mask procedure used to generate alarms in the CUSUM procedure takes into account the slope of Q; to i,
where Q is the sum. Thus, as soon as the mean shifts, the CUSUM chart will start to respond even if the the
sum was pulled far in the opposite direction. On the other hand, the EWMA scheme only considers the
cumulative weighed sum. Thus, a more accurate statement would be that the EWMA scheme for A
approaching 0 is the CUSUM with k=0. Thus, the EWMA chart would not compare favorably to the
CUSUM chart under worst case conditions where Z had been taken close to the control limit and a shift in
the mean occurs in the opposite direction. It would take the statistic some time to recover to the point of
Z=0. Thus, it is recommended that for EWMA charts with low values of A a Shewhart control chart also be
implemented to safeguard against this phenomenon. However, in general we observe that in order to have
sensitivity to both large and small shifts in the mean, it might be necessary to implement EWMA charts
with difflerent values of A at one time. The combined ARL value will then be approximately (1/ARL; + 1/
ARLy *.

4.0 Conclusions

A multivariate implementation of the EWMA has been developed and its performance analyzed by its
run-length characteristics. This approach is a direct vector extension of the univariate version. Notably, a
vector statistic is maintained so that information about the direction of the shift in mean can be estimated
while a scalar statistic was used to generate alarms. The run lengths were determined by simulation and,
for the univariate case, was found to agree with calculated results in the literature to within 3 percent. ARL
distribution moments were generated from 1000 trials for each data point. Design curves for multivariate
liWMA was generated for on target ARL's of 200 and 500, and show the ARL dependencies on n, L, and

In general, it was found that the ARL characteristics for multivariate CUSUM and comparable multi-
variate EWMA schemes are almost the same. However, because of the difference in the alarm generation
schemes used in each technique, the EWMA may suffer from an inertia problem under worst case condi-
tions. Thus, it is recommended that a Shewhart type chart be implemented to safeguard against this. It is
also recommended that multiple EWMA charts be implemented with different values of A so that both
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large and small shifts in the process can be detected. An example of this is to implement a Shewhart chart
with an EWMA chart

Some additional properties of the EWMA have not yet been explored for the multivariate case. The
fast initial response feature could improve the sensitivity of the chart to certain shifts in the mean. The
forecasting feature of the EWMA can also be implemented in multivariate form for use in adaptive control
schemes.
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Appendix B

Figure 1
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Advanced Empirical Equipment Modeling Using
- ARIMAX Time-Series Transfer Function Models

Hao-Cheng Liu

The goal of this project is to develop advanced empirical equipment models for
semiconductor manufacturing using Auto-Regressive Integrated Moving Average
eXogenous (ARIMAX) Time Series Transfer Functions. By using ARIMAX trans-
fer functions, we are able to model not only the relationship between process out-
puts and inputs, but also time dependencies, if they exist. We have applied this
modeling scheme to the GCA wafer stepper and compared our new model with
that derived using simple regression. The results show that the ARIMAX transfer
function is able to model time dependences that simple regression was unable to
capture.

1.0 Introduction

In the semiconductor manufacturing industry the development of highly accurate equipment models is
critical. These equipment models are used for predictions and simulations, and also in the implementation
of feed-forward and feedback control, malfunction diagnosis, etc.

Traditional equipment models are derived empirically using simple regression analysis [1]. These
equipment models are unsatisfactory because they fail to model any time dependencies in the equipment
behavior. These time dependencies can exist as a result of changes in equipment inputs, process aging,
equipment aging, maintenance events, etc. In order to properly capture these dependencies, we propose
using Auto-Regressive Integrated Moving Average eXogenous variable (ARIMAX) Time Series Transfer
Functions. As we will show below, the ARIMAX transfer functions combine the power of regression anal-
ysis with that of ARIMA time series modeling. \

In section 2, we will first give a brief introduction to ARIMA time series functions and explain its
application to equipment modeling. The details for the implementation of our study will be discussed in
section 3, with the results presented in section 4. We will present our conclusions in section 5 and give
some directions for future work in section 6.

2.0 Methodology

2.1 Background on ARIMA Time Series Transfer Functions

In many forecasting situations, information contained in timed observations of one variable will sys-
tematically influence the time dependent behavior of a dependent variables. The objective is to build a
forecasting model that properly relates the time dependent behavior of several variables, thus capturing the
dynamic characteristics of the system. ARIMAX time series transfer functions are useful in modeling such
dynamic systems in which the output time series depends not only on its own past behavior, but also on the
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input time series as well. An example of such a dynamic system simplified with one input and one output is

shown in Figure 1.

S o Dynamic et
X, ‘°-.,.' o System ,7'
Input . Output

FIGURE 1. Input to and output from a dynamic system [2].

A simple transfer function model with one input X and one output Y can be written as follows:

Y,—SIY‘_I = ese ™ 8’}"_' = O)OX,_,,— mlx‘_b_l T eee ™ (D,x,_b_,-l' 6'

)

The variable b is the dead time, the number of periods it takes before X, starts influencing the depen-

dent variable. If a change in X instantaneously affects ¥, the dead time b is equal to zero. If we define

@(B) = 0y-0,B-...-0B
8(B) =1-8B-...-88
where B is the backward shift operator defined as
BX, = X,_,
we can rewrite Equation 1 as follows:
3(B)Y, = 0(B)X,_,+E,
Rearranging, we obtain

w(B)_

Y X,_p,te

A Y7))
where

1
€= 5By E,

We can rewrite Equation 6 as follows:
Y, =v(B)X,_ ,+e,
where

w(B)

v(B) = 7]

= Vo+V;B+V,B+...

@
©))

@

®

©

)

@®

®
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The weights vy, V,, V,, ... in Equation 9 are called the impulse response weights and a graph of these
weights is called an impulse response function. An example of an impulse response function is given in
Figure 2.

|||3,
o1 2V 4

FIGURE 2. The impulse response function [7].

The error term ¢, in Equations 6, 7, and 8 is not necessarily white noise. However, it might be possible
to represent ¢, with the following univariate ARIMA process [5], assuming that ¢, is statistically indepen-
dent of the explanatory variable X,,

Vée, = :—g—;-a, a0)
or
¢ (B) Ve, = 8(B)a, an
with
¢(B) =1-¢,B-...—¢ B (12)
0(B) =1-0,B-...-68° (13)
where V¢ is the consecutive difference operator used to induce stationarity in the series e;,
v, = (1-B)%X, (4)
and g, is assumed to be white noise. Finally, substituting Equation 10 into Equation 6, we obtain
vey, = %%%)v‘x,_ ot :—E—;%a, (15)

which is a general form of the ARIMA time series transfer function for a simple dynamic system with one
input and one output. This transfer function model is represented in Figure 3. At the top of the figure, we
have the transfer function structure determining the nature of the influence of the explanatory variable on
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the dependent variable. In the lower part, we have the noise model representing a standard univariate
ARIMA process. Finally, these two parts are put together to form the complete transfer function model [7].

w(B)

Explanatory ; O\B)
Vaabie” | TSR | 58
X,
w(B), 8(B), b
Dependent
C\ Variable
7
Noise Univariate _O_(E)_a‘
White Noise Model &(B)
Q, -
&(B), 6(B)

FIGURE 3. The transfer function model [7].

If seasonal patterns exist in our transfer function model, we may use the more general multiplicative
seasonal transfer function model, which for a single explanatory variable is:

_0BIQBY) pou, |, 0(B)O(BY)

vovey, = S EVES P s ma, (16)
with
Q(B%) = QO-Q,BS-Qzézs-...-QLB“ an
V(B%) = 1-V,BS-V,B¥ - .. -V B (18)
e (8% =1-0,8°-0,8%-... - B% (19)
®(B%) = 1-0,B5-0,8¥ - ... - @ B (20)

Notice that if there are also regular numerator parameters, we normalize the transfer function with
0,#1 and Q, = 1.If, however, there are no regular numerator parameters, we assume Q,=1 [7].

Identification tools such as the autocorrelation function, the partial autocorrelation function, and the
cross-correlation function are useful in determining the structure of the ARIMA transfer function model
[S1{7]. Once the structure of the model has been determined, we may use the Yule-Walker Equations [3, 4]
and estimation methods such as least squares estimation and maximum likelihood estimation [5, 6] in order
to determine the coefficients of the transfer function model.
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It is clear that cross correlations can be a helpful tool for checking the dependencies between two time
series. However, when a series, Y or X, is highly autocorrelated, the cross correlation function between the
two time series can be difficult to interpret and it can even be misleading. It is quite possible that two time
series which are not related at all show high spurious correlation if each one of the series is highly autocor-
related. B

In order to obtain valuable identification information from cross correlations, it is recommended to first
filter, or prewhiten, the data before calculating the cross correlations. This prewhitening of the data
amounts to first obtaining the appropriate univariate models for each series involved, and then, at the sec-
ond stage, cross correlating the (residual) white noise series [2,7].

2.2 Use of ARIMAX Transfer Functions in Equipment Modeling

For equipment modeling, we will use ARIMAX transfer functions with multiple inputs. These inputs
may be measurement inputs or controlled inputs as shown in Figure 4. The outputs will be dependent on
not only past values of the outputs themselves, if equipment aging exists, but also on current and past val-
ues of the inputs due to inherent process characteristics and process aging. This method of equipment mod-
eling is particularly useful in feed-forward and feedback control, where the controlled inputs are highly
correlated due to the fact that the control mechanism is constantly trying to bring a particular output mea-
surement to target.

CONTROLLED INPUTS

Asry Arv

\
M —_—> - AQQV
. EQUIPMENT )
A@DU" — I 7A<Pv-

MEASUREMENT INPUTS OUTPUTS

FIGURE 4. Inputs and outputs used in ARIMAX transfer function models.

Furthermore, seasonal transfer function models are useful in modeling seasonal effects that might arise
due to processing of wafers in lots or batches. However, care must be taken in gathering the data used for
empirically derived seasonal transfer function models.
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3.0 Experimental Results from Lithographic Data

Expérimental data from a previous experiment on feedforward control done on the GCA wafer stepper
in the Berkeley Microfabrication Laboratory was used for our study. The experimental datais shown in
Appendix 8.1.

This experimental data was fitted with a simple regression model, an ARIMA univariate time series
model, and an ARIMAX transfer function model using the SAS Statistical Software Package (6]. The
inputs of the models were the input thickness of the wafer, the input reflectance, and the normalized dose.
The output of the models was the change in reflectance in the wafer. Appendix 8.2 contains the SAS code
used for generating the above models.

For simplicity, no interaction terms were considered in our regression model. Furthermore, non-sea-
sonal ARIMA and transfer function models were used. Although our data showed seasonal correlations,
we felt that this seasonal pattern might be misleading due to the fact that our seven batches of wafers were

-not processed continuously in time. However, we are not discounting the possibility that seasonal patterns
might exist in actual continuous processing.

4.0 Results

The resulting models are shown in the SAS output in Appendix 8.3. The forecasts and residuals for the
regression model, the univariate ARIMA model, and the transfer function model are shown in Figures 5, 6,
and 7, respectively.

FORECAST RESIDUAL
Change « tetectance hd f—— meopie ccogr oo
e A o g H :
200 i Ak *{ E;L 100 i!_ :
00- i i Hfr i i
0.00-- ?% “} ; ;" gﬂ *‘; ! :':‘ ; N :
S e
” Vi o - HE J ;
* i N
i is oo i /\ l';. i .;:1' i,
3 7 : i YT T
B Ty % v it o if %’ (\E":.
j oo i1 i ol 1t
; @ s : AR
: o i 18!
%! : i : Vv
38.00- -!'3. . o i\
3] ' s ?
o T o]
s oo o
000 0o ﬂ.m ®0 e ambar om ‘D‘N N‘N ﬂ' ﬂ.ﬂ w0 “‘ 0 haadhinntd

FIGURE 5. Forecasts and residuals for the simple regression model.
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FORECAST RESIDUAL
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FIGURE 6. Forecasts and residuals for the univariate ARIMA time series model.
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FIGURE 7. Forecasts and residﬁals for the ARIMAX transfer function model.

Looking at the results, we see that the regression model predicts the process changes well. Further-
more, the residuals are fairly tight with a variance of approximately 10% of the measured reﬂectance.
However, we see that the residuals are highly autocorrelated. This can be inferred by looking at the auto-
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correlation plot of the residuals for the regression model (See Appendix 8.3). Thus, we conclude that there
are some time dependencies not modeled using our simple regression model.

A simple univariate ARIMA time series model was fitted to the output reflectance chafiges in the
wafers. This model, which depends only on past output changes in reflectance, turned out to be an AR(1)
model (See Appendix 8.3). As a result, we see that this model did not model the process changes well. This
is because we did not consider the relationships between the inputs and the output. However, the residuals
for this model do appear to be identically, independently, normally distributed (IIND), despite having a
large variance of approximately 18% in measured reflectance.

Finally, we fitted our GCA data with an ARIMAX transfer function model. By looking at the forecasts,
we see that this new model models captures the process changes as well as, if not better than the regression
model. Furthermore, the residuals are IIND. And lastly, the variance of the residuals is a low 5% of the
measured reflectance (See Appendix 8.3).

All in all, we see that by combining the power of a regression model with that of a time series model,
we are able to built equipment models that explain the equipment process better than either a regression or
time series model could do separately.

5.0 Conclusions

From our study, we see that although simple regression models model relationships between inputs and
outputs well, they lack the capability of modeling time dependencies that may very well exist in semicon-
ductor manufacturing processes. We therefore conclude that an ARIMAX transfer function model, which
is a combination of a regression and a time series model, provides us with not only better insight into the
process characteristics, but also allows us to model any time dependencies. Such time dependencies can
arise due to changes in the inputs, process aging, equipment aging, maintenance events, etc.

6.0 Future Work

The use of ARIMAX time series transfer functions for equipment modeling should be pursued further
in order to prove their validity and their superiority to traditional regression models. We will explore the
effects of changing input parameters, such as temperature changes in wafer furnaces. Furthermore, we will
look into the process decay during batch runs. These can include decreasing etch rates in etchers and
decreasing deposition rates in deposition equipment.

We will also attempt to apply the use of these transfer function models to feed-forward and feedback
control in order to see if we can obtain superior process characteristics. Furthermore, we will continue to
look into the development of algorithms for the automatic generation of ARIMAX transfer function mod-
els. This will prove to be useful later in applications to feedback control.
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8.0 Appendix

8.1 Experimental Data

TABLE 1. Experimental Data From the GCA Wafer Stepper

OBS | REFL OUT T}-IICK IN REFL IN EXP TIME STD EXP TIME

(n) (percent) (A) (%) (seconds) (seconds)

1 —79.96 12112 41.54 0.77 0.77

2 76.83 12078 39.83 0.77 0.77

3 79.27 12092 39.68 0.77 0.717

4 19.78 12081 40.02 0.77 0.77

5 78.92 12145 41.40 0.77 0.77

6 82.30 12162 42.68 0.77 0.77

7 117.54 12102 45.63 0.77 0.77
W:

9 86.51 11998

10 834.57 12014

11 85.10 11966

12 83.37 11952 X X

13 84.19 11950 . X 0.77 I

14 1 86.83 11944 . X 0.77
1> | 89.49 1 . .

16 89.37 11790

17 88.56 11794

18 88.31 11814

19 89.09 11826

20 88.57 11814

21 87.88 11844

23 68.57 12309

24 617.58 12296

25 7291 12321

26 714.56 12366

27 13.72 12343

28 1245 12283
29 1 %0. T2017

30 87.32 12024
31 87.34 11959

32 30.65 11994

33 87.36 11962

34 38.91 119590

35 9T.80 11962

36 85.55 12365

37 88.37 12424

38 89.70 12465 X . :l

39 84.38 12542 38.36 0.80 0.80

40 82.84 12526 37.01 0.80 0.80 J

41 84.18 12488 36.51 0.80 0.80

42 83.79 12492 36.03 0.80 0.80

33 36.68 TZZ58 . ; R
44 8597 12242 35.87 0.89 080 -
|45 81.98 12298 36.09 0.89 0.30

46 88.39 12357 36.20 090 0.80
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TABLE 1. Experimental Data From the GCA Wafer Stepper

REFL OUT THICK IN REFL IN EXP TIME STD EXP TIME
(n) (percent) (A) (%) (seconds) (seconds)
Vi 88.43 12351 35.91 ~0.90 0.80
438 86.46 12252 35.88 0.89 0.80 |
49 87.93 12243 36.00 0.89 0.80
S50 8149 | 12386 | 37. . R
51 81.29 12386 36.09 0.80 0.80
52 81.27 12385 35.55 0.80 0.80
53 18.15 12340 3408 0.80 0.80
54 81.16 12392 36.43 0.80 0.80
S5 78.14 12383
56 79.54 12390
58 88.29 . .
59 85.37 12364 38.39 0.96 0. 8'0
60 84.68 12406 37.26 0.99 0.80
61 88.75 12419 3723 0.99 0.80
62 90.01 12350
86.66

NOTE: The wafers were processed in batches of seven, and the batches were not processed consecu-
tively in one day. The change in reflectance was used as the output of our models instead of the absolute
reflectance. The normalized dose, which is obtained by dividing the exposure time by the standard expo-
sure time, was used as an input instead of the absolute exposure time.

8.2 SAS Code
/* SPECIFY LIBRARY */
libname mydata ‘c:\hao\arimax’;
/* FIT REGRESSION EQUATION */
proc arima data=mydata.gcad2;
title ‘Simple Regression’;
identify var=dref_out crosscor=(th_in ref_in dose) nlag=6 center;
estimate input=(th_in ref_in dose) plot maxit=30;
forecast out=b1 back=0 lead=0 id=n printall;
run;
/* PLOT REGRESSION FORECASTS */
proc plot data=b1;
title ‘Simple Regression’;
plot dref_out*n="*" forecast*n="F’ 195*n="L’ u95*n="U’ /overlay,
run;
proc gplot data=b1;
title ‘Simple Regression’;
plot dref_out*n forecast*n 195*n u95*n /overlay;
plot residual*n;
symboll i=join;
run;
/* FIT ARIMA MODEL */
proc arima data=mydata.gcad2;
title ‘ARIMA’;
identify var=dref_out nlag=6 center;
estimate p=1 plot maxit=30;
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forecast out=b2 back=0 lead=0 id=n printall;

run;

/* PLOT ARIMA FORECASTS */

proc plot data=b2; -
title ‘ARIMA’;

plot dref_out*n="*" forecast*n="F" 195*n="L" u95*n="U" /overlay;
un;

proc gplot data=b2;

title ‘ARIMA’;

plot dref_out*n forecast*n 195*n u95*n /overlay;

plot residual*n;

symboll i=join;

un;

/* FIT TRANSFER FUNCTION */

proc arima data=mydata.gcad2;

/* IDENTIFY OUTPUT REFLECTANCE WITHOUT PREWHITENTING INPUT */
title “TRANSFER FUNCTION IDENTIFICATION WITHOUT PREWHITENED INPUTS’;
identify var=dref_out crosscor=(th_in ref_in dose) nlag=6 center;

/* PREWHITEN INPUT THICKNESS */

title ‘PREWHITENING OF INPUT THICKNESS’;

identify var=th_in nlag=6 center;

estimate p=1 plot maxit=30;

/* PREWHITEN INPUT REFLECTANCE */

title ‘PREWHITENING OF INPUT REFLECTANCE’;

identify var=ref_in nlag=6 center;

estimate p=1 plot maxit=30;

/* PREWHITEN DOSE */ :

title ‘PREWHITENING OF DOSE’;

identify var=dose nlag=6 center;

estimate p=1 plot maxit=30;

/* IDENTIFY AND FIT TRANSFER FUNCTION MODEL */

title “TRANSFER FUNCTION IDENTIFICATION WITH PREWHITENED INPUTS’;
identify var=dref_out crosscor=(th_in ref_in dose) nlag=6 center;

title “TRANSFER FUNCTION’;

estimate p=1 input=(th_in ref_in dose) plot maxit=30;

forecast out=b3 back=0 lead=0 id=n printall; ¢

run;

/* PLOT TRANSFER FUNCTION FORECASTS */

proc plot data=b3;

title ‘TRANSFER FUNCTION’;

plot dref_out*n="*" forecast*n="F" 195*n="L" u95*n="U’ /overlay;

run;

proc gplot data=b3;

title ‘TRANSFER FUNCTION’;

plot dref_out*n forecast*n 195%n u95*n /overlay;

_plot residual*n;

symboll i=join;

run;
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8.3 SAS Output
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Evolutionary Operation with Fractional Factorials

John Thomson

An evolutionary operation software package for use in any manufacturing envi-
ronment has been written. Simulations have been run using equipment models of
the Eaton photoresist spin-coat & bake station. The effects of changing various
parameters of the simulations have been observed.

1.0 Introduction

Evolutionary operation (EVOP) is a popular process control technique that is useful in optimizing
equipment performance during production. Factorial experiments centered around the current operating
point are constructed and the opcrating point may be adjusted if a favorable effect on the output is likely.
When running the experiment, only small deviations may be introduced to the inputs in order for the pro-
cess capability to remain acceptable. However, if the deviations are made too small, then the effects of the
input variables will be invisible due to the noise of the process.

EVOP attempts to position the operating point at its optimal value even for noisy, dynamic equipment.
Unlike traditional off-line experimental designs, EVOP is applied on a sequential run-by-run basis during
actual production. The goal of this project is to design and implement generic EVOP algorithms for use in
any manufacturing environment.

2.0 Methodology

2.1 Design of Experiments during EVOP

Any EVOP approach uses the common idea of a structured factorial experiment. Still, substantial flex-
ibility exists in the design of the experiment and the actions taken as a result. When performing EVOP, a
decision must be made regarding the magnitude of the deviations introduced to the inputs. If the ideal oper-
ating point is far from the current operating point, then large deviations are useful to shift the inputs as
quickly as possible. This is especially true if the current operating point is at a relatively insensitive loca-
tion of the response surface or if appreciable noise exists, since small input deviations will have negligible
effect. At the other extreme, if the current operating point is at its optimal location and the process is sensi-
tive to the inputs, then the deviations introduced must be small in order for an acceptable capability to be
maintained.

Fractional factorial designs should be used, especially if the number of inputs is larger than 3 or 4. By
using fractional factorials, the important information is often deduced using fewer runs compared to EVOP
using full factorial designs. The danger is that high order fractional designs run the risk of excessive con-
founding of effects which may lead to incorrect conclusions. As a minimum, the resolution of the design
must be at least 111 so that first order effects do not confound with each other. It is important to realize that
resolution III designs are still not immune to first order effects confounding with second order effects. If
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second order effects are considered to be significant, based on operator experience or theoretical founda-
tions, then a higher resolution design should be utilized.

EVOP assumes that a single performance measure is being minimized or maximized. Many applica-
tions strive to bring an output close to a certain target, a task that is usually accomplished with the help of a
cost function. A popular quadratic cost function for a single output is shown in figure 1. For systems with
multiple outputs, the total cost would be the sum of the cost associated with each output.

Figure 1: Quadratic cost function for a single output

Cost A
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2.2 Estimation of Effects

Figure 2 shows a 22 full factorial design which would be used for a system with only two inputs. After
the equipment is run at each of the five locations, a cycle is said to have been completed, and a decision is
made whether or not to change the current operating point. To make this decision, the effects of the inputs
are calculated. A first order effect for an input variable is defined to be the average change in the output
when going from the input’s low value to its high value. For example, referring to figure 2, the effect of
input 1 would be the average of the output at points 3 and 4, minus the average of the output at points 2 and
5. A similar calculation is required for the effect of input 2. (The center point is not used for the effect esti-
mation. It is only used to detcrmine if a minimum or maximum has been reached.)

With R runs per cycle, excluding the center point, the error of the first order effects after n cycles at a
particular factorial location is:

20
exp

Ceffect = gy,

The 95% confidence interval for the estimated effects is 126, , .
this interval, then the effect is considered to be significant.

m

If the estimate of the effect exceeds
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Figure 2: 22 Factorial design with center point

Input 2 4

>
Input 1

The change in mean effect is defined to be the difference in the average response at the factorial loca-
tions of the experiment minus the average response at the center point. For the 2-input case shown in figure
2,itis:

1 - - - = -
CIMeffect = 5 (3, +33+F4+F5-47)) @

The standard deviation of the estimated CIM effect is:

R
CCiMeffect = J Reynoexp @

The CIM effect is used to determine if a minimum or maximum has been reached in the response sur-
face. The significance of the CIM effect is established with the help of the 95% confidence interval which
is 2264, A significantly positive CIM effect indicates that a minimum may have been reached. A
significantly negative CIM effect indicates that a maximum may have been reached. These conclusions are
only valid if no first order effects are significant.

The numbers assigned to the points in figure 2 are not related to the actual order in which the experi-
ment is run. The actual order is randomized in order to keep time effects unconfounded with at least first
order effects for any given cycle.

2.3 Shifting the Experiment

If a first order effect is significant, then the position of the factorial is moved for the next cycle. The
location of the new factorial is dependent upon which effects are significant, whether the effects are posi-
tive or negative, and whether the output is being minimized or maximized. For example, if an effect is sig-
nificantly positive and the output is being minimized, then the input will be decreased for the next cycle.
Each first order effect is examined independently. Note that interaction effects need not be calculated even
if they exist, since the gradient of the response surface can be determined from first order effects alone.

Evolutionary Opcration with Fractional Factorials EE290W §92
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After any given cycle, the center point of the next cycle will be shifted positively, negatively or not at
all, for each input. Thus, for k inputs, there are 3k possible locations for the next cycle as shown in figure 3.
(Locations 1 through 5 are the settings used for the previous cycle.) It is quite possible that no effects will
be significant, resulting in a cycle repeated at the same location.

Figure 3: Possible locations for a center point for the next cycle

Input 2 A
2 6 3
@
9 1
® 7
"
5 8 4
ol
Input 1

Some implementations of EVOP unnecessarily restrict the possible new positions of the center point to
be one of the locations of the previous experiment: positions 1 through 5. Doing this results in a reduced
number of possible new locations, but actually makes the move decisions more complicated. Consider, for
example, that the output is to be minimized, the effect of input 1 is negative and the effect of input 2 is neg-
ligible. We are motivated to increase input 1, implying that positions 3 and 4 are candidates for the next
center point. We must make the choice between 3 and 4 arbitrarily, or wait for the effect of input 2 or the
interaction effect to bccome significant in order to make an intelligent decision. However, waiting for other
effects to become significant will slow the response time of EVOP and therefore is not recommended.

2.4 Estimation of Experimental Error

Testing the significance of the effects requires an estimate of the experimental error. This can be
acquired by using points which are replicated during a repeated cycle. Any time a cycle is repeated, a new
estimate of the experimental error is obtained by taking the difference of the last average at a particular
location and the new value. It can be shown that this difference follows the distribution N(j, ozexpn/(n-l))
where n is the number of cycles run and Geyp is the experimental error. p will be 0 if the process has not
shifted. In general, Oy, is unknown and must be estimated from the differences. There is a total of
2'mPUS1 ] differences which are samples from the above distribution. The sample variance can be used as
an unbiased estimator of czexp"‘ n/(n-1), from which an estimator of ozexp is easily obtained. Simply taking
the square root of this estimator gives a biased estimator of G,,p. An unbiased estimator may be obtained
by dividing by c4 where:
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c, = _2__@ @
4 J;z-lr(n-l)

2
G() = (k-1)!, for integer k. G(1/2) = /I

When repeated cycles are needed using a fractional arrangement, each repetition should use the same
fraction. Different fractions could be used for each cycle, but then new estimates of ¢ could not be made.

It is possible to use the range of the differences to estimate the experimental error. This is computation-
ally simpler, but the computing power evident in modem-day computer integrated manufacturing frame-
works makes this difference unnoticeable. Further, as the number of runs per cycle increases, the relative
efficiency of the range estimator diminishes, so it should only be used in problems with small dimensional-

ity.

Once an estimate of the experimental error is obtained from a repeated cycle, it is combined with the
previous estimate using an exponentially weighted moving average to form the new estimate to be used.
This weighted average is used to signify that recent estimates are more important than older ones.

2.5 Other Issues

In general, if any effect becomes significant after only one cycle at a particular location, then the
experiment is moved for the next cycle and no updated estimate of the noise is obtained. This situation is
called a quick move. There are two instances when a quick move is not allowed. First, since the experimen-
tal error is estimated only through replication, at least two cycles will always be run when EVOP starts in
order for the initial noise estimate to be derived.

The second exception is if too many consecutive quick moves have been performed. If this were to
occur, then the estimate of the error would not be updated and instead would be based only on relatively
old data. Thus, a cycle is inserted to update the estimate. In a dynamic system where the noise level is con-
stantly changing, it is crucial to maintain an accurate estimate of the noise at all times. But even in static
systems where the noise level of the outputs is constant, the sensitivity of the cost function to noise is vari-
able, since it will be dependent on the distance of the outputs to their targets. The addition of noise to out-
puts which are close to their targets will have a small impact on the cost since the cost function is in its flat
region. The addition of noise to outputs which are distant from their targets will have a large impact on the
cost since the cost function is in a steep region. Thus, even for static systems, updated estimates of the error
are necessary.

To ensure that a current estimate of the error is used, a limit has been set on the maximum number of
consecutive quick moves allowed. This heuristic was developed to guard against the situation where the
current estimate of © is smaller than the true 6. Without the heuristic, numerous consecutive quick moves
may occur without having a chance to update o, causing moves may be made as a result of noise only.
Having an overestimate of ¢ is not a problem since it will be more difficult to shift the experiment. Conse-
quently, cycles will be repeated and updated estimates of ¢ will be made.
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3.0 Implementation

The algorithms described above have been implemented in C++ and have been combined with equip-
ment models developed by the Berkeley Computer Aided Manufacturing group. Various parameters of the
experiment are specified by the user. These include:

«énumber of inputs and outputs
«degree of fractionation

erange of the inputs

sthe starting center point for the inputs
sspecifications for the outputs

estep size

The step size specifies the distance between the center point and the factorial points along each input
direction, as a fraction of the range of each input. The other parameters that may be modified are the maxi-
mum number of consecutive quick moves and the forgetting factor used in the exponentially weighted
average calculation for the estimate of the noise. '

Simulated optimization runs were completed on the Eaton photoresist spin and bake station, but any
equipment can be simulated with trivial modification to the code. In addition, small changes are required in
order to run the experiments on the actual equipment instead of using a simulator. The simulations deter-
mine the number of runs required to find the optimum as a function of the step size and whether or not a
full factorial is used. Once the optimum has been found, the effects of continuously changing the recipe on
the cost function have been analyzed.

Generators for the fractional factorials have been taken from page 410 in “Statistics for Experiment-
ers” by Box, Hunter and Hunter.

4.0 Simulated Optimization of the Spin-Coat & Bake Procedure

A few parameters were set somewhat arbitrarily before the simulation began. Specification limits were
set to be 12300 - 12500 A for the output thickness and 37.5 - 42.5% for the output reflectance. Standard
errors of 70 A and 1.5% were added to the thickness and reflectance respectively. The starting center point
for the factorial experiment was 5200 rpm for spin speed, 30 seconds for spin time, 115°C for bake temper-
ature and 90 seconds for bake time. Further, the maximum number of consecutive quick moves was S and
the forgetting factor was 0.5.

The result of using full and half factorials with various step sizes is shown in Table 1.

TABLE 1.

——

Average cost
Runs to reach after optimum is
Type of Factorial optimum reached

Full

Step Size
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TABLE 1.
Average cost
Runs to reach after optimum is
Type of Factorial | Step Size optimum reached
V.Ul 509 u.97/
0.02 252 1.33
0.05 342
.10
As the step size increases, fewer runs are requi e optimum but the average cost after the

optimum is reached is larger. For the given values of the specifications and noise levels, running the system
continuously at its optimum without introducing the deviations required for the factorial experiment results
in an average cost of 0.87. Note that when the step size is small, the average cost is only slightly above the
cost obtained when no deviations are introduced. Thus, such a small step size would have a minimal

impact on the process capability. Using a large step size around the optimum degrades the process capabil-
ity substantially. '

However, a small step size requires a ridiculously large number of runs to reach the optimum. If the
current operating point is far from the optimum, such as when the original optimizations are being done at
start-up or if the equipment response has shifted, large step sizes are desirable. In a system without any
noise, doubling the step size will cut the number of runs required to find the optimum in half. In a system
with noise, doubling the step size will cut the runs required by more than half. Figure 4 shows the cost as a
function of run number for a variety of step sizes. The simulations were done using half fractional designs.

Figure 4
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The average costs around the optimum for a full factorial and half fraction are virtually the same, but
the number of runs to reach the optimum are significantly different, as expected. If the half fraction was
equally effective as the full factorial in determining the direction to move, then both approaches would
take the same number of cycles. This is true when the step size is large since the effects are much larger
than the noise level. But as the step size decreases, the half fraction takes more cycles than the full facto-
rial, but still fewer total runs. In the limiting case where the step size is made arbitrarily small, we would
expect the half fraction to take the same number of runs as the full factorial to find the optimum.

5.0 Conclusion

An EVOP software package has been written and applied to the Eaton photoresist spin and bake sta-
tion. Simulations have been run to verify the operation of the software and also to examine the impact of
fractional factorials and step size.

Clearly, the ideal scenario would be to have a variable step size depending on the current conditions: a
large step size when movement is required, a small step size when the optimum has been found. It is
important to note that even after the optimum is found, the recipe does not become fixed. Instead, EVOP
continues so that adaptations to shifts in the equipment can be made.

There are a couple of enhancements that could be made to decrease the response time of EVOP to
changes in the equipment. For example, if large effects are calculated, then the position of the center point
for the next factorial could be shifted by an amount larger than the step size used within a single factorial.
In addition, if several moves are currently being made in a certain direction, then the step size in that direc-
tion could be increased as well.

When an extra cycle is inserted to update G, the response time will be lengthened. If extra cycles need
to be inserted frequently and the factorial is large, one alternative would be to simply repeat the runs at the

center point to update the estimate instead of repeating the entire factorial. This would reduce the total
number of runs required.

6.0 Acknowledgments

I would like to acknowledge the work of Gary May and Bart Bombay for creating the structure of the
C++ equipment modcls and also of Sovarong Leang for developing the model for the Eaton resist coating
and bake station.

7.0 Appendix

Source code for the program and a description of files are available upon request.
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Use of SPC on a Wafer Track

Jorge M. Noriega-Asturias

Statistical process control is applied to a photoresist dispensing Wafer Track Sys-
tem. Control Charts for the individual photoresist thickness values as well as their
moving range are calculated. The history of the process is also studied for com-
parison purposes. The process range was found to be in control, but the process
average was not. Thus, the control limits calculated are useful for a short term
control of the process only. Recommendations are given for further analysis and
control of the process.

1.0 Introduction

The purpose of this project is to apply Statistical Process Control (SPC) to an Eaton Wafer Processing
system. The Eaton wafer processing system is a spindle/hot plate/cold plate combination used to dispense
photoresist to wafers in an automated manner. Track #1 is for dispensing the KTI 820 photoresist and for
doing the post exposure bake. The hot plate temperature at track #1 is set at 120 °C. Track #2 is for dis-
pensing Olin Hunt I-line photoresist and Shipley 1400-31 photoresist, and the hot plate temperature is set
at 90 °C.

Two types of control charts are used in this project. One of them is the control chart for individuals, in
which every single measurement is plotted. The control chart for individuals is often used in conjunction
with the moving-range chart. The moving range is the absolute value of the difference between consecutive
measurements. This type of chart is used in cases where it is inconvenient or impossible to obtain more
than one measurement per sample, when automated testing and inspection allow measurements of every
unit produced, or when data become available very slowly, and waiting for a larger sample will be imprac-
tical or make the control procedure too slow to react to problems.

The other type of chart used is the X and R chart. This chart is often useful when a new product is being
manufactured by an existing process, for diagnostic purposes when the process is in trouble, or where a set-
up must be evaluated. For this type of chart, a sample of size n is chosen. For each sample both the average
and range are plotted in the control chart. The control limits are a function of the sample size n.

In this project it is desired to control the photoresist thickness dispensed by the Eaton wafer track. The
following sections describe in detail the methodology, implementation, results and conclusion of this
project.

1.1 Methodology

This section describes the approach followed to implement SPC to the Eaton Wafer Track. Data is
obtained, control limits are calculated for the individual thicknesses measurements and moving range
charts, and previous available data for 8 weeks is analyzed.

Use of SPC on a Wafer Track EE290W S92
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The new data is obtained using the “Inspector INS-800-1". The Inspector is an automated thin film
thickness measurement equipment. Through the use of fiber optics and multi-wavelength reflection inter-
ferometry the Inspector makes these measurements in-situ and in quasi real time. The system is based on a
486 PC. It consists of the data station (PC), and the detector/spectrometer module coupled to a fiber optic
cable. The use of fiber optics makes it possible to do in-situ measurements.The computer acquires the data
from the detector/spectrometer module and computes thickness values in approximately 250 milliseconds.
Multi-layer measurements as well as multi-point measurements are also possible.

Once the single measurements are taken, a simple algorithm is developed to calculate the control limits
for the individual units/moving range control charts. Once the data is entered, the algorithm computes the
control limits for the moving range chart. If any moving range exceeds the limits, it is eliminated, and the
algorithm modifies the control limits. This iteration is repeated until all moving ranges conform to the con-
trol limits. The individual unit control limits are calculated once the moving range is stable. The same test/
modify iteration as in the moving range control limits is used.

In addition to taking new data, the history of the thickness values for the previous 8 weeks are ana-
lyzed. The analysis of the history is necessary to evaluate the dispensing of photoresist between relatively
long periods of time. Both the KTI-820 and the I-line photoresists are analyzed. This data was supplied by
the Staff of the Berkeley Microfabrication Laboratory. It was measured by the Nanospec using program
#10. X and R charts are used for the analysis of the thickness values of the wafer center.

1.2 Implementation

The measurement equipment was set up during this project. Eventually, it will be installed perma-
nently over the wafer track, where it will take measurements over the cold plate. For this project, the mea-
surements were taken in the test stand included with the equipment. 20 wafers were used and one
measurement was taken for each wafer. Also, all measurements were taken at the center of the wafer only.

The algorithm was implemented in BASIC, and the code is included in Appendix A. It was applied to
the 20 measurements obtained from the Inspector to get control limits for both the individual units, x, and
moving range, MR, control charts. The control limits are given by:

Moving Range: ‘
UCL =3.267TMR,,, m
LCL = 0.00MR,,., @
Individual units:
UCL = Xgye + 2.659MR A3)
LCL = Xy - 2.659MR;,. @
CL = x40e &)

The history of the thickness values was analyzed using the X and R charts. A sample size n=5 was
used in this analysis. For each sample, the average, X, and the range, R, was calculated. For the 8 samples

the total average, Xy, as well as the range average, R,,,, Was also calculated. The control limits are giv-
ing by:

Range chart:

Use of SPC on a Wafer Track EE290W S92
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UCL = 2.115R,, 6)

LCL =0.00 @)
CL =Ry, ®
X chart:
UCL = X, + 0.577Rgy, )
LCL =X, - 0.57TR e (10)
CcL=X,,. (1)

1.3 Results

Figure 1 and figure 2 show the control charts for the individual units and moving range, respectively,
for the resist thickness values measured by the Inspector. We can see that at the beginning of the resist
coating, the thickness values plot outside the control limits. It is not known when the Wafer Track was last
used, so the cause for that out of control situation was assigned to be the problems associated with the
beginning of a new resist coating process. The algorithm eliminated those points and recalculated both the
moving range and individual units control limits. The final limits are the ones shown in figure 1 and figure
2.

Figure 3 and figure 4 show the control charts for the KTI-820 and I-line photoresists, respectively. For
both resists, the range between samples is seen to vary much less than the X between samples. The process
is not in control, therefore control limits do not make sense for this data. Anyway, the variation of the I-line
resist is less than that of the KTI-820.

1.4 Conclusions

SPC was applied to an Eaton Wafer Track. The purpose was to control and monitor the photoresist
coating done by that Wafer processing system. New measurements were done by the “Inspector INS-800-
17, a personal computer controlled measurement equipment. This equipment has the advantage of allowing
quick, in-situ measurements.

Control limits for the individual units and moving range control charts were calculated by a simple
algorithm implemented in BASIC. The control charts are shown in figure 1 and figure 2. Analysis of the
history of the last 8 weeks showed that even though the range of the process between weeks does not
change noticeably, X does. In the long term the process is not in control, and control limits are meaning-
less.

From the analysis of the results obtained, I recommend that several issues be addressed to fully imple-
ment SPC to the Wafer Track. As the thickness values seem to vary at least from week to week, new con-
trol limits should be calculated every week. The cause for the week to week variations should be
investigated. Those causes are producing a shift in the average of the sample, even though the range seems
to remain in control. If no particular cause is found, autocorrelation functions could be used to model the
time dependance, and control charts could be applied to the residuals.
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FIGURE 1. Control Chart for Individual thickness values
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FIGURE 2. Control chart for moving average of thickness values
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FIGURE 3. Control Chart for KTI-820 photoresist
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FIGURE 4. Control chart for I-line photoresist

N

=
=

—
.-‘H
OWAM
K3
L

=t DI BNNIOND O,

Thickness (A)

SSSSSSSS
s0—0o
oo
o—e
o
--e
o
-

—
(=]
S
(=

A\ 4

Sample

Use of SPC on a Wafer Track EE290W S92



-46-

Appendix A

BASIC code for the algorithm to calculate/modify

contro! limits for individual units and moving average:

10 REM CALC/MODIFY CONTROL LIMITS

FOR INDIV. UNITS/MOVING AVG.

20 CLEAR

30 INPUT “NO. OF WAFERS=";N

40 DIM X(N), MR(N-1)

100 REM READ DATA

110FOR I=1 TON

120 PRINT “THICKNESS(*; I; “)™;

130 INPUT X(1)

140 NEXT I

200 REM CALC. MR, MR-LIMITS

210 PRINT “USING”; N ; “SAMPLES",
220 MRSUM=0

230 FOR I=1 TO N-1

240 MR(N=ABS(X(I)-X(1+1))

250 PRINT “MR(*;I")=":MR(D),

260 MRSUM=MRSUM + MR(I)

270 NEXT1

280 MRAVE=MRSUM / (N-1)

290 MRCL = MRAVE : MRLCL=0

300 MRUCL = 3.267 * MRAVE

400 REM MODIFY MR C-LIMITS IF NECES-

SARY

410 M=N-1

420 A=0

430 FOR I=1 TO N-1

440 IF MR(I)>MRUCL OR MR(I) < MRLCL

THEN

PRINT “MR(*;I;”) IS OUT OF RANGE", :
MRAVE=(MRAVE - MR(I)/M)*M/(M-1) :
M=M-1:

MRCL=MRAVE:

MRUCL = 3.267 * MRAVE :

MR(I)=0:

A=A+1

450 NEXT1

460 PRINT N-1-M; “MR OUT OF RANGE",
470 IF A>0 THEN GOTO 420

S00 REM CALC. XAVE, XUCL AND XLCL
510 XSUM=0

S20FORI=1 TON

530 XSUM = XSUM + X(I)

S40 NEXT1

550 XAVE = XSUM/N

560 XCL=XAVE

570 XUCL = XAVE + 2.6596*MRAVE

580 XLCL = XAVE - 2.6596*MRAVE

600 REM MODIFY X CONTROL LIMITS IF

NECESSARY

610 X=N

620 A=0

630FOR I=1 TON .

640 IF X(I) < XLCL OR X(I) > XUCL THEN
PRINT “X(*; I;™) IS OUT OF RANGE",:
A=A+1

XAVE=(XAVE-X(D)/X)* X/ (X-1):
X=X-1:

XD=0:

XCL=XAVE:

XUCL = XAVE + 2.6596*MRAVE;:

XLCL = XAVE - 2.6596*MRAVE

650 NEXT 1

660 PRINT N-X; “X’S WERE OUT OF RANGE",
700 REM RECALCULATE X(I) IF NECESSARY
710 A=0

720FORI=1TO X

730 IF X(1+A)=0 THEN

A=A+1:

GOTO 730

740 X(D=X{1+A)

750 NEXT1

760 N=X

770 IF A>0 THEN GOTO 200

800 REM PRINT CONTROL LIMITS

810 PRINT “MOVING RANGE CHART:",
820 PRINT “CL=";MRCL,

830 PRINT “UCL=";MRUCL

- 840 PRINT “LCL=";MRLCL,

850 PRINT “INDIVIDUAL THICKNESS

CHART:",

860 PRINT “CL=";XCL,
870 PRINT “UCL=";XUCL,
880 PRINT “LCL=",XLCL,
900 END

Use of SPC on a Wafer Track
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Using Orthogonal Arrays to Optimize a Phase-shift On
Substrate Process

Debra L. Hebert

This report describes a Taguchi-based experiment, as it was applied to optimize a
Phase-Shift On Substrate (POST) lithographic process. In this experiment we
have employed the Lg orthogonal array in order to analyze and optimize the main
effects and to estimate their first order interactions. The experiment was com-
pleted in the Berkeley Microfabrication Laboratory.

1.0 Introduction

Continued miniaturization of semiconductor devices is largely dependent on whether photolitho-
graphic technologies can be developed that will produce features in the deep sub-micron range (0.1 pm -
0.5 um). There have been several advances in photolithography, and some of the more promising tech-
niques for achieving these smaller feature sizes are: phase-shifting optical techniques, shorter wavelength
optical techniques, electron beam direct writing, and x-ray lithography. I have chosen to investigate phase-
shifting techniques because unlike the other technologies, it does not require a new exposure tool. The
phase-shifting effect was first investigated by M.D. Levenson in 1982 at IBM, but it is only recently that
significant efforts have gone into developing this technology. The phase-shift effect is usually achieved
through the use of specially manufactured phase-shift masks, but a group at SHARP corporation of Japan
{1] has developed a technique which uses the photoresist on the wafer to create the phase-shifter.

2.0 Phase-Shift on Substrate (POST) Concepts

The principle behind the POST technique is illustrated in Figure 1, while the basic process sequence is
illustrated in Figure 2. The process can be summarized as follows:

1. Partial exposure of the resist using a conventional mask.
2. Development to remove the exposed part of the resist layer.
3. Flood exposure without a mask using the resist phase-shifter created during the first exposure.

4. A second develop cycle to define the resist pattern occurring at the boundary of the mask pattern
from the first exposure.

The depth, d, of removal necessary to create the phase-shifter is given by the following expression:
d =A2m-1)/2(n-1)

m = natural number (1,2,3,...)

A = exposure wavelength

n = refractive index of the resist
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With the POST process, the project team at SHARP was able to define 0.15 um wide lines with 2 0.5
um pitch using a conventional photo mask with 0.5 um lines and spaces. They used an i-line stepper with a
lens NA of 0.54 to make the first exposure, and an i-line stepper with a lens NA of 0.45 to do the second
exposure. The higher NA gives better resolution, while the lower NA gives better depth of focus.

3.0 Experimental Design

The experiment was designed using orthogonal array matrices from the Robust Design method
founded by Dr. Genichi Taguchi [2). Ordinarily, this method is used only when the chosen control factors
are known not to interact with each other. However, several of the standard arrays can be used to estimate
factor interactions, and Taguchi has designed standard linear graphs and interaction tables (Figure 3.)
which make it easy to determine factor column assignments in order to avoid confounding the main factor
effects with interaction effects. I have chosen to investigate the effects of four control factors at two levels,
and three interaction effects at the same levels (Table I). The orthogonal array which is best suited for this
experiment is the Lg standard orthogonal array (Table II).

4.0 Data Analysis

The critical parameter for achieving the phase-shift effect is the thickness, d, of the resist that is
removed during the first exposure. The goal of this experiment is to optimize the wafer-to-wafer thickness
removal uniformity. The first step in analyzing the data is to calculate the signal-to-noise (S/N) ratio for the
thickness data 7,

N = 10logyo (1%/c?)
where:
u=1252 % Tij
02=1724 £ Z (1;;- w)?

T = measured thickness

i = number of wafers measured

j = measurement sites on the wafer (T, C,F, L, R)

Afier the S/N ratios have been calculated for each of the factors, the results can be plotted to determine
optimum (maximum) values for the S/N (in dB). The relative effect of each factor can be determined by
analysis of variance (ANOVA). ANOVA also gives information about the error variance and prediction
error variance. The interaction cffects can be estimated by determining the average responses for a particu-

lar combination of levels for the factors. The results are plotted to determine the nonparallelism of the fac-
tor effects (Figure 4).

5.0 Experimental Procedure

Five bare silicon wafers were coated for each of the experimental runs (the soft bake will vary accord-
ing to the experimental array). The initial resist thickness was measured at 5 points on the wafer (T, C, F, L,
R) using the nanospec. The wafers were then exposed on the gcaws, baked at the time and temperature
indicated in the experimental array, and then developed using the standard develop cycle. The residual
resist thickness was measured again at five points on the wafer to calculate resist removal thickness d.

Using Orthogonal Arrays 1o Optimize a Phase-shift On Substrate Process EE290W §92
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6.0 Results

Fi ’I‘heé ANOVA results for the experiment are shown in Table III. The interaction effects are plotted in
igure 5. .

7.0 Conclusions

Conditions That Maximize S/N (optimum):

Softbake Temperature ~ 70°C Level 1

Softbake Time 60 secs Level 2

PEB Temperature 110°C Level 2

PEB Time 60 secs Level 2
Major Factor Effect

Softbake time is responsible for 47.63% of the total variation
Interactions Exist

Between Factors A and C (softbake temperature and PEB temperature)

Between Factors B and C (softbake time and PEB temperature)

Further Work

Verify optimum conditions; this can be accomplished by taking SEM photos
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Improving LPCVD Thin Oxide Quality by Using
Robust Design Methodology

Joseph C. King

A designed experiment using a standard orthogonal array was used to improve the
quality of thin LPCVD oxide. Important factors affecting the uniformity of the
film thickness were identified and their levels for obtaining optimal oxide quality
were decided. Verification experiment confirmed the result of the analysis and the
prediction of the model.

1.0 Introduction

Integrated circuit MOS devices usually use thermally-grown thin oxide as the gate dielectrics because
of its high quality and controllability. However, the quality of thermal oxide strongly depends on the sub-
strate, which makes thermal oxide unsuitable in certain cases where high quality substrate is not available,
like thin film transistors built on polycrystalline silicon or amorphous silicon. Oxide grown by low-pres-
sure chemical vapor deposition has been considered as an altemative because its quality is virtually inde-
pendent of that of the substrate. On the other hand, when combined with conventional thermal oxide, CVD
oxide even shows certain superior properties which are not obtainable in thermal oxide[1, 2).

The LPCVD oxide in IC processes is most commonly used as thick (2000-5000A) isolation layers,
therefore, films when medium across-wafer uniformity (10%) and high deposition rate (200A/min) are
desired. However, in thin gate dielectric (50-150A), fast growth rate is not necessary because the deposi-
tion time in very short, but high degree of uniformity is very important since the thickness changes the
threshold voltages of devices, and directly affects the circuit performance.

In this project, we use Taguchi’s orthogonal array to improve the LPCVD process for thin oxide depo-
sition in the Microfabrication Laboratory. Based on the generic recipe of the Tylan 12 LPCVD furnace and
operation condition formally set by Jack Lee[1], we use a designed experiment to optimize the process for
high oxide quality.

2.0 Methodology

A standard L9(34) orthogonal array was used to explore and improve the deposition process. First,
important variables and their levels were decided after a thorough check of the process conditions. Then
the appropriate orthogonal array was chosen and a series of experiment runs with different variables levels
was planned.

After completing all experiment runs and collecting the data, we use analysis of means (ANOM) and
analysis of variance (ANOVA) to find out the important variables and their optimum levels. We can then
build a simple linear modcl based on the analyzed data. This model is used to estimate the result of the pre-
dicted optimal conditions.
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Finally, a verification experiment was run to check the accuracy of the prediction, and to draw some
conclusions about the process under study.

3.0 Implementation

3.1 Furnace

The experiment was run on the Tylan12 furnace, which is a hot wall low pressure CVD tube in the Ber-
keley Microfabrication Laboratory. This furnace-is depicted in Figure 1.

FIGURE 1. Schematics of the LPCVD tube.
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The reaction temperature is maintained by heaters in 3 different zones through feedback control. Gases
used are silane (S;Hy4) and oxygen (O,). Phosphine (PH3) can also be used to dope the S;0, but is not used
in this experiment. The whole process is controlled by a computer after the recipe is loaded and the proper
values of the parameters are set.

3.2 Important Variables and Their Levels

The important factors which can be directly controlled are the deposition temperature and the gas flow
rates. From experience, we know that a low silane/oxygen ratio should be used to obtain controllable and
repeatable deposition rate and good uniformity. The deposition process is very sensitive to the temperature
but only a small range of temperature can be used since too low a temperature will result in poor electrical
properties and these properties are not easily measurable. Although the temperature of different zones can
be specified differently, we usually use the same temperature for all the three zones.

After choosing the temperature, the silane flow rate and the oxygen flow rate as the variables, we found
we can still have another factor to use the 1.9(34) orthogonal array. The next important factor which is usu-
ally believed to have certain effect on the uniformity and deposition rate is the orientation of the wafers in
the fumace (facing the inside of the tube or outside). The final experimental matrix is shown in Table 1.
The levels marked with asterisk (¥) are the formally used operating conditions. Because the factor C (wafer
orientation) can only have two levels (in or out), we repeat the “out” condition and this replication can be
used to obtain an independent estimate of the experimental error.
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Levels
Factor 1 2 3
A:Temperature ( C) 440 450* 460
B: Silane Flow (sccm) 0.5 1* 2
C: Wafer Orientation Facing Out* | Facing Out* Facing In
D: Oxygen Flow (sccm) 70 90* 110

3.3 Experiment Runs

Table 2 shows the experiment runs and their individual settings. The run number is the actual sequence
in which each run is executed to reduce confounding with the aging effect of the tube. In each run, eight
test bare silicon wafers are loaded into the tube and the respective recipe is loaded. The main deposition
time is chosen to be 10 minutes but the whole process takes about two hours, therefore achieving high dep-
osition rate is not very important in this process.

TABLE 2. The experiment runs and results

Column Number and

Factor Assigned Observations

Expt{ Run OX}gen Tezmp Silgne Orignta- Q; Q, Q3
No.| No.| flow(D)| (A) | flow(B)| tion(C)| (dB) (dB) | (dBam)
1|5 1 1 1 1 32.16 20.60 2243
211 1 2 2 2 30.55 20.86 23.73
3] 8 1 3 3 3 27.16 21.87 25.10
4 |13 2 1 2 3 30.34 19.73 22.98
517 2 2 3 1 27.70 20.49 24.35
6 2 2 3 1 2 25.96 18.77 23.04
719 3 1 3 2 28.00 21.33 24.19
816 3 2 1 3 26.76 21.67 22.75
91| 4 3 3 2 1 24.06 19.24 2343

After each run is done, we measure the deposited oxide film thickness using the ellipsometer which is
good for measuring thin layers. Thickness values of the film for five locations are recorded and a total of 40
values are collected in each run.

The observations Q;,Q; and Q indicate the within-wafer uniformity, between-wafer uniformity and
the deposition rate, which are calculated by using the following equations;
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4.0 Results

4.1 Analysis of Data

The result of each experiment shown in Table 2 is analyzed using analysis of mean (ANOM) and anal-
ysis of variance (ANOVA). Tables 3 to 5 show the result of analysis and Figure 2 plots the effect of the four
factors to the within-wafer uniformity, between-wafer uniformity and deposition rate, respectively. Also
shown in Figure 2 are the 2-sigma (95%) confidence levels.

4.1.1 Within-Wafer Uniformity

From Table 3, we can see that the temperature and oxygen flow rate have strong effect on the unifor-
mity within a single wafer. Low temperature and low oxygen flow rates result in high uniformity, while
silane flow rate and wafer orientation are not significant factors.

4.1.2 Between-Wafer Uniformity

The uniformity between wafers shows insignificant dependence on the silane flow rate and the oxygen
flow rate. The noise level can be estimated by looking at the effect of wafer orientation (factor C) since
level 1 and 2 for factor C are essentially the same and any difference should be due to noise.

Improving LPCVD Thin Oxide Quality by Using Robust Design Methodology EE290W S92



-59.

TABLE 3. Average within-wafer uniformity (Q,) by factor levels (dB)

Ave Q; by Level (dB) pegree of Sum of | Mean
Factor 1 2 3 [ reedom Squares| Square| F

A: Temperature 30.17 | 28.34 | 25.73| 2 29.87 | 14.94 |59.75
B: Silane Flow 28.29 | 28.32 | 27.62| 2 0.94 0.47

C: Orientation 27.97 | 28.17 | 28.09 2 0.06 0.03

D: OxygenFlow | 29.96 | 28.00 | 26.27| 2 20.38 | 10.19 |40.75
Error 0 0.00

Total 8 5125 | 6.41

(Error) 4 1.00 0.25

*Overall mean Q; =28.08

TABLE 4. Average between-wafer uniformity (Q2) by factor levels (dB)

Ave Q, by Level (dB) pegree of Sum of | Mean
Factor 1 2 3 reedomSquares| Square| F
A: Temperature 20.55 | 21.01 | 19.96 2 1.65 0.83
B: Silane Flow 2035 [ 19.94 | 21.22| 2 2.57 1.28
C: Orientation 20.11 | 20.31 [ 21.09]| 2 1.60 0.80
D: Oxygen Flow 21.11 | 19.66 | 20.74| 2 3.39 1.69
Error 0 0.00
Total 8 9.21 1.15
(Error) ' 8) 9.21) | (1.15)

*Overall mean Q, = 20.50

4.1.3 Deposition Rate

While reaching a high deposition rate is not a goal of this study, we still monitored the average deposi-
tion rate and found that the silane flow rate is the only important factor. To gain high deposition rate, higher
silane flow rate should be used and that is quite reasonable because the deposition rate is actually limited
by the supply of silicon atoms.
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TABLE S. Average deposition rage by factor levels (dBam)

Ave Q3 by Level(dBam%egree of Sum of | Mean

Factor 1 2 3 [reedomSquares| Square| F

A: Temperature 23.20 | 23.61 | 23.86 2 0.66 0.33

B: Silane Flow 22.74 | 23.38 | 2455 2 5.03 252 [16.01
C: Orientation 23.40 | 23.65 | 23.61 2 | 011 0.05

D: OxygenFlow | 23.75 | 23.46 | 23.46| 2 0.18 0.09

Error 0 0.00

Total 8 5.98 0.75

(Error) 6 0.94 0.16

*Overall mean Q3 = 23.56

4.2 Model Building and Confirmation Runs

We can build a simple linear model based on the analysis above to find out the optimal operating con-
dition and predict the result. The error in the prediction can also be obtained by using the estimated error in
the analysis above. In choosing the optimal operation conditions, we can get highest uniformity by choos-
ing the combination of A,B3D, and still have reasonable deposition rate. Because high deposition rate is
not necessarily, no trade-off has to be made in choosing the conditions.

Confirmation experiment runs were executed twice for the determined optimal operating point (tem-
perature = 440, silane flow rate = 2, oxygen flow rate = 110). The result is within the range of the predic-
tion based on the model. Table 6 summarized the result of the prediction and the confirmation runs.

TABLE 6. The result of the verification runs

Experiment Q; (dB) Q, (dB) | Q3 (dBam)
Experiment 1 32.96 20.98 24.86
Experiment 2 32.58 21.12 24.30
Average 32.77 21.05 24.58
Predicted 32.05 +/- 1.03'20.96 +/- l.85|24.19 +/- 0.82
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FIGURE 2. The plots of the effects.
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5.0 Conclusions

A statistical experimental design using the robust design methodology is applied to thin oxide LPCVD
process. Based on the result of the experiment, we found that the average uniformity within a wafer is
affected by temperature and oxygen flow rate and the average uniformity between wafers in a single run is
affected by the flow rate of silane and oxygen. The orientation of the wafer in the boat is actually not an
important factor. Confirmation runs were done after the analysis and model building, and were consistent
with the model predictions.
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Spatial defect statistics & In-situ monitoring of
contamination

Sean Patrick Cunningham

Airbome particulates in processing equipment can cause catastrophic yield loss in
semiconductor products. A particle defect simulator is developed along with sta-
tistical routines to test the goodness of fit of various hypothesized distributions of
particles on the simulated defect maps. These routines make use of the quadrat
method for analyzing spatial dispersion. The negative binomial distribution is
found to fit simulated data provided quadrat sizes are made small enough. In addi-
tion, a 2%! experiment is presented in which the particle count in a plasma etcher is
measured for different settings of etch rate, gas flow, chamber cleanliness, and
polysilicon type. The results of this experiment are inconclusive, but future exper-
iments are discussed based on the shortcomings of this experiment.

1.0 Introduction

This report presents research in semiconductor yield modeling. Specifically, this report documents two
related efforts to understand catastrophic yield caused by airborne particulates in processing equipment.
While semiconductor processing is performed in a clean environment, there is still potential for particles to
land on wafers and destroy circuits. With advances in cassette containers for wafers such as SMIF boxes
and other efforts to reduce environmental cleanliness, the problem of airborne particles is slowly being
reduced. However, within processing equipment, there is the potential for particles to fall on wafers.
Unlike the randomness of environmental particles, equipment particles may be expected to fall in patterns
which may be thought of as signatures. Paz and Lawson [8] discovered a radial dependence in defect pat-
temns for diffusion in LSI processes, a result which has been replicated frequently. Whether this sort of pat-
temning effect exists for other processing equipment is important to production planners, chip designers,
and process controllers.

Work has been done describing the statistics of dispersion, and much of this originally came from for-
estry and urban operations research applications. The inferential question of what process caused a partic-
ular data set to occur is very important to each of these fields. Section 3 provides background regarding the
origin of some of the common yield models used. These models can be descriptive of the result of a given
process, but they are inadequate for determining the causes. For instance, the yield of a process may be
modeled as a negative binomial random quantity’, but this does not imply the existence of a negative bino-
mial random generator for yield. A given clustering model may be used to describe the result without dis-
closing the cause of that result. In fact, preliminary results discussed in this report show that the negative
binomial model may be used to describe a simulated defect generating process which evolves without
regard 1o the assumptions of that model.

Non-functional chips are observable, but often the defects which cause them are not. However, using a
laser driven particle counter installed on the exhaust vent of a given piece of processing equipment, the

1. The term random quantity is equivalent to the term random variable. The term random quantity is used throughout this report.
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defect process may be better understood. Particle counts are important, and Section 4 documents the result
of an experiment which investigated particle counts; however, the time-series of data may also yield
insight into the defect mechanisms of processing equipment.

Section 5 discusses the work done for this report in the larger context of future research opportunities
in the field of equipment based yield modeling.

2.0 Spatial defect simulator

A spatial defect simulator is developed. Inferential statistical tests are then applied to the simulated
defect maps to determine appropriate distributions to describe the dispersion of particles. The motivation
for developing this simulator is outlined in a brief review of catastrophic yield research.

2.1 Yield models

The clustering of defects on wafers is a well documented phenomenon. Cunningham [3] gives a good
history of yield models as they have evolved from simple, pessimistic Poisson models to more elaborate
models. People leamed that the yield of LSI chips was chronically underestimated by the Poisson model.
This led to a flurry of activity in formulating modified models for defect density and yield prediction.
Many of these involved convolving a Poisson kemel against some other distribution f(A) as shown in equa-
tion (1).

k
Pk = je"‘:—!f(x) d (1)
0

Here P(k) is the probability of having k defects on a die?, where A is the average defect density in par-
ticles per area and f(A) can be thought of as a probability distribution of defect densities from which the
current defect density is chosen. Stapper [11] claims that the wafer to wafer variation of the defect density
accounts for a large share of the non-Poisson behavior of yield; this may be appropriately modeled by (1)

assuming f(A) describes a distribution from which each wafer takes its density.

The role of f(A) is not well defined in the literature. It is used for wafer to wafer variations, lot to lot
variations, and even within wafer variations [8]. With each of these phenomena present, using a single
mixing distribution to describe them all leads to poor understanding of each. More accurate yield predic-
tion requires a more careful separation of which variation owes itself to between lot, between wafer, and
within wafer effects.

Fricdman and Albin (5] recognize the clustering effect at the within wafer level. They publish one of
400 wafer maps which clearly displays the effects of clustering. This clustering phenomenon appears
where a group of adjacent dice fail on one wafer. This phenomenon is thought to be more likely near the
edge of the wafer, possibly owing to handling. The authors use a Neyman Type-A distribution to describe
the number of non-functioning chips in a sample, shown in (2). .

_ AN o ()
P(k) = ;e ﬁe T (2)
I=

This is a compound Poisson process: clusters arrive according to a Poisson process, and each cluster

contains a number of particles distributed as a Poisson unknown quantity.

2. If the existence of one or more defects on a die implied a faulty die, then P(0) is an expression for yield.
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Stapper [10] proposes the negative binomial as another distribution which describes clusferipg ghe-
nomena. The negative binomial distribution may be derived from (1) when f(A) is a Gamma distribution.
The negative binomial is shown in (3). X

F(a+k) (Ao
P(k) = 3)
© = Trm (1+A/70)%**

Here, o is interpreted as a cluster parameter. As o decreases, the degree of clustering increases. The
negative binomial distribution is used extensively in the literature owing to the good empirical fit obtained
through its use. Other clustering distributions are discussed by Rogers [9] which are variants of the Poisson
process. Ferris-Prabhu [4] proposes an empirical modification of the Poisson process, this time adding a
clustering exponent to the Poisson as in (4).

Y(4) = @A @

Here, b indicates an empirically determined parameter which describes the clustering effect. The A,
refers to an existing product die size, and A refers to a new product die size. Ferris-Prabhu notes that, as die
size increases, a larger value of b will account for more clustering, and hence higher yield.

These yield models seek to describe a complex, multi-variate, stochastic phenomenon with simple
parametric models. The result is that these models tend to oversimplify reality. For describing yield it may
be acceptable to use some simple clustering distributions to estimate the effects of die size changes and
future yields. However, for prescribing remedies to improve yield, these models are not adequate. There is
simply not enough causal information in these models.

2.2 Simulator

With this caveat in mind, we developed a wafer cluster simulator based on the center-satellite method
discussed in Meyer and Pradhan [7].

The center-satellite method requiring the specification of four distributions regarding the placement of
defects on a wafer. The generalized distribution describes the number of clusters. The cluster distribution is
a spatial distribution describing where on the wafer the clusters fall. The generalizing distribution
describes the number of defects in a cluster. Finally, the dispersion distribution is a spatial distribution
describing the shape of the cluster. For example, the Neyman Type-A distribution uses the Poisson distri-
bution for both the generalized and generalizing distributions. The cluster and dispersion distributions are
uniform random processes.

Using the S language [1], a cluster simulator has been developed according to this center-satellite
method. Using an algorithm from Stapper [12], clusters are created in 2x2 squares. These clusters are con-
structed point by point by comparing a uniform (0,1) random quantity against the probability density of a
two-dimensional Gaussian distribution at the point. Where the density of the distribution is greater than the
generated random quantity, a defect point is placed. The number of points in the grid mesh may be speci-
fied, and a 100x100 grid has been found 10 be a compromise between resolution of the cluster pattern and
speed of the routine. In addition, after all grid points are placed, each point is perturbed by adding a uni-
form (-0.01, 0.01) random quantity in each of the x- and y-directions.

These symmetrically generated clusters are then stretched and squeezed along the x- and y-axes by
dividing the current x- and y-positions of each of the defect points by uniform (0.2, 2) random quantities.
These resulting clusters have an elliptical shape. Stapper [12] further suggests rotating these clusters in the
plane, but this feature is not yet available here.
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These clusters are then placed on an 8x8 square. The cluster size is smaller than the 8x8 square, so it is
possible to determine where the clustering has occurred. Using a routine similar to the cluster generator,
this 8x8 square can have background noise; this background of defects is created on the square by compar-
ing a uniform (0, 1) random quantity against a prespecified value. This places points according to a bino-
mial process: each point has a prespecified probability becoming a defect. A true Poisson process would
simply place points at random anywhere in the grid without regard to where previous points were gener-
ated. For the background process this is computationally feasible; however, for creating the clusters this
revision in the algorithm dramatically increased running time. The parameters of the model are listed by
distribution in Table 1. One additional controllable parameter is the map size, which has been taken as 8x8
throughout; the choice of cluster squares as one-sixteenth of total are is arbitrary, and this ratio is likely one
of the mgst important parameters of this model. Some examples of plots from this algorithm are shown in
Figure 1°,

Table 1: Control Parameters for the Defect Simulator

Distribution Parameters Default value
Generalized Cluster count Uniform(0,4)
Cluster Cluster centerpoint Uniform((0,8), (0,8))
Generalizing Gaussian distribution constant 0.8
Cluster grid density 100x100
Cluster square size 2x2

Dispersion Gaussian distribution sigma 0.4
x-translation scalar Uniform(0.2, 1)
y-translation scalar Uniform(0.2, 1)

Once the point pattern is mapped the statistical inference of a descriptive distribution may commence.
The quadrat method discussed in Rogers [8] is used. The quadrat method requires the square be partitioned
and the number of points in each partition be summed. A routine has been written to partition the square
into smaller squares and construct a histogram of the defect count against the frequency of each count.

Given a histogram of frequency counts, the empirical results are tested against the hypothesized distri-
bution. This is accomplished using a %2 goodness of fit test. The 2 statistic is shown in (5).

2": [f,- NPy (n)1?

2
X = ,=o_—NP°(') &)

Here, f; refers to the frequency of quadrats with r defects, N is the total number of defects, Py(r) is the
probability of a quadrat containing r defects under the hypothesized distribution, and w+1 is the total num-
ber of frequency points. If the data and the hypothesized distribution are close, the bracketed term may be
considered noise. If we assume this to be normally distributed, the total expression is the sum of squared
normals of mean zero and variance one: this is a 2 statistic. It is compared to the %2 value at significance
level o and w degrees of freedom. If the statistic deviates from the %2 distribution, the data is said to devi-
ate from the hypothesized distribution.

The number of frequency points used, or frequency classes, may not be equal to the number of fre-
quency points. That is, Rogers suggests aggregating frequency points such that each frequency class has at
least five points. However, this reduces the degrees of freedom of the test, and Rogers notes that the empir-

3. The Figures are located at the end of this chapter.
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ical data is most likely to deviate in the tails of the distribution where the frequencies are lowest. Another
pitfall is in the specification of the hypothesized distribution; degrees of freedom can be expended by using
a non-central x2 test which will also estimate the parameters of the hypothesized distribution. To avoid this
second pitfall, moment estimators are used to estimate the parameters of the distributions. These moment
estimators are shown in Table 2. In the Poisson case, the moment estimator is also the maximum likelihood
estimator; for the other cases, finding the maximum likelihood estimator requires an iterative procedure
which uses the moment estimators as a starting point.

Quadrat analysis depends on quadrat areas. Stapper [10] notes that the cluster parameter o of the nega-
tive binomial distribution depends on the chosen area of the quadrat. As quadrat area tends toward zero, the
likelihood of significant clustering decreases. If the quadrat area were small enough, the distribution would
tend toward a binomial process in which the quadrat analysis would detect no clustering. Quadrat analysis
ignores the spatial relationship of the quadrats. Clusters may be spread over more than one quadrat, but the
analysis does not take this into account. Preliminary analysis reveals that as quadrat area decreases, the
parameters of the chosen distribution tend to approach a limit and fit the goodness of fit test.

Table 2: Cluster Distributions and Moment Estimators

Distribution Parameters Estimate Estimate
Poisson A A=m, -
2 m,—m
m 2 1
Neyman Type-A A = ! Q=
y yp , e ,,,1
R . s ))’l2
Negative Binomial Ao A=m, o= 1
my—m,

An example is shown in Figure 2. There are four clusters on the map as well as some background
noise. When the grid is partitioned some clusters are split into more than one quadrat. For this example, the
cluster parameter o. approaches 0.45 as the quadrat area is reduced. Also, the map fits the hypothesized
negative binomial better as the quadrat size decreases.

Quadrat analysis is descriptive of the degree to which a wafer map departs from Poisson statistics.
However, the analysis is not powerful enough to make prescriptions about how to improve processes.
While it is possible to infer a distribution for the data, it may be more difficult to develop a generator which
yields a given distribution consistently based on the negative binomial or other descriptive clustering dis-
tribution.

3.0 In-situ Monitoring Experiment

While work has been done 1o extract defect density from final wafer probe yield, we seek an under-
standing of the defect mechanisms in particular processing equipment. Using a particle counting monitor,
itis possible to gain insight into the particle behavior in one machine.

3.1 Experiment

This experiment was performed on the LAM etching machine in the Berkeley Microfab. A laser-
driven particle counter was attached 1o the exhaust system of the etcher such that particles larger than 0.38
microns tripped the beam and were registered in one of five size bins.
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A factorial experiment was chosen for two reasons. First, the causes of particulate contamination in the
plasma etcher were not clear in advance of the experiment. One purpose of this experiment was to identify
these causes. Second, given our ignorance of defect mechanisms in the plasma etcher, we chose not to rule
out interaction effects. The two-level factorial design considers interactions.

The 23 factorial experiment was performed on the first day, and the results warranted further experi-
mentation. Additional runs were made such that the combined experiment corresponded to a 16 run, 25
design with the day as a blocking variable. The full experimental design is shown in Table 3 in the order of
the runs.:

Table 3: The full experimental design in the order of the runs
Etch Gas  Pre- Wafer

Run Rate Flow clean set Day
1 - + + + +
2 + - - - +
3 + - + + +
4 - - - + +
5 + + + - +
6 + + - - +
7 - - + - +
8 - + - + +
9 + - + - -
10 + + - - -
11 - - + + -
12 - - - - -
13 + + + + -
14 + - - + -
15 - + + - -
16 - + - + -
Table 4:
Factor + setting - setting

Etch Rate 5000 A/minute 3000 A/minute
Gas Flows 150, 200, 20 sccm 100, 50, 10 sccm

Pre-clean Yes No
Wafer set oid New
Day First Second

The etch rate is measured in A/sec. It was assumed to follow the equation of May, et al.[6], which cal-
culated etch rate dependent upon power, pressure, electrode gap, and the three gas flows CCl,, He, and O,.
The pressure for this experiment was maintained at 250 mtorr, and the electrode gap was maintained at 1.5
cm throughout, so the etch rate was essentially a surrogate for the power. The gas flow is measured in stan-
dard cubic centimelers per second; the high gas flow corresponds to 150 sccm of CCl,, 200 sccm of He,
and 20 sccm of O,; the low gas flow corresponds to 100 sccm of CCl,, 50 sccm of He, and 10 sccm of O,.
The pre-clean is an indicator for whether the run follows a standard double cleaning step. The wafer set is
an additional factor necessitated by running the experiment on two sets of wafers. While both sets of
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wafers had surface polysilicon layers of at least 8000 A, each set was grown on a different day. The day
indicates which of the first or second days the experiments were run.

Each experimental run on the first day consisted of five wafers etched for 90 seconds. The particle
counter aggregated time into 15 second intervals; a run began at the start of the first interval following the
first wafer starting into the chamber, and a run ended at the end of the interval during which the fifth wafer
left the chamber. Hence, some non-processing time was included in the monitored window.

The order was partially randomized in that the pre-clean steps were left in alternating order so that the
non-clean steps would have only one previous run before it. According to the technician, the performance
of the etcher was sometimes seen to degrade as early as 8-10 wafers into the process.

3.2 Results

The particle counts were much lower than expected. Based on the documentation received with the
particle counter, particle counts as high as 50 per minute were expected. However, the highest particle
count during any run was seven in a 15 second span. The low counts reduced the effectiveness of time-
series methods for analyzing the data. However, for detecting the relative particle counts for different runs,
the magnitude of the counts was sufficient.

The experimental runs were not all the same length. The data has been normalized in each case to par-
ticle count per 60 time intervals, or 15 minutes. The results are shown in Table 4.

Table 5: Experimental Results

Run Etch  Gas Pre- Wafer Da Particle Number of  Count per
Rate Flow clean set y Count Intervals 15 min.

1 - + + + + 46 58 48

2 + - - - + 73 107 41

3 + - + + + 73 63 70

4 - - - + + 106 58 110

5 + + + - + 80 75 64

6 + + - - + 76 61 75

7 - - + - + 94 62 91

8 - + - + + 88 57 93

9 + - + - - 41 37 66
10 + + - - - 43 37 70
11 - - + + - 35 36 58
12 - - - - - 41 37 66
13 + + + + - 45 36 75
14 + - - + - 60 41 88
15 - + + - - 84 37 136
16 - + - + - 40 36 67
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Plots of the time-series of each of these runs are shown in Figure 3 in the appendix to this report. Time-
series for each day’s experiments are shown in Figure 4. Putting the data into canonical form, the effects of
each of the variables and any interactions may be calculated. This is shown in Table 5.

Table 6: Experimental Analysis of Effects

Etch Gas Pre- Wafer Revised 1-2 3-5
Run Rate Flow clean set Day Count Effect Level Level
4 - - - - + 110 76.13 avg. 12345
14 + - - - - 88 -10.50 1 2345
16 - + - - - 67 4.75 2 1345
8 + + - - + 93 4.50 12 345
11 - - + - - 58 -0.25 3 1245
3 + - + - + 70 -4.00 13 245
1 - + + - + 48 475 23 145
13 + + + - - 75 -1250 45 123
12 - - - + - 66 0.00 4 1245
2 + - - + + 41 -21.25 14 235
6 - + - + + 75 1550 24 135
10 + + - + - 70 -1125 35 124
7 - - + + + 91 2650 34 125
9 + - + + - 66 -1275 25 134
15 - + + + - 136 -3.50 15 234
5 + + + + + 64 -4.25 5 1234
Table 7:
Factor + setting - setting

Etch Rate 5000 A/minute 3000 A/minute
Gas Flows 150, 200, 20 scem 100, 50, 10 sccm

Pre-clean Yes : No
Wafer set Oid New
Day First Second

A normal probability plot of the effects yielded a nearly straight line, suggesting that the effects here
are simply noise. The inconclusiveness of this experiment may be further appreciated by looking at the
results of each day separately, as shown in Tables 6-7.

Table 8: The Results of First Day Experiment

Etch  Gas Pre- Wafer Revised First
Run Rate Flow clean set Count Effect Effect
4 - - - - 110 74.0 avg.
8 + - - + 41 -14.0 E
3 - + - + 75 -8.0 G
1 + + - - 93 31.0 EG
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Table 8: The Results of First Day Experiment

Etch  Gas Pre- Wafer Revised ' First
Run Rate Flow clean set Count Effect Effect
2 - - + + 91 -11.5 P
6 + - + - 70 11.5 EP
7 - + + - 48 -16.5 GP
5 + + + + 64 -12.5 EGP
Table 9: The Results of Second Day Experiment
Etch  Gas Pre- Wafer Revised First
Run Rate Flow clean set Count Effect Effect
4 - - - + 66 78.3 avg.
8 + - - - 88 -7.0 E
3 - + - - 67 17.5 G
1 + + - + 70 -22.0 EG
2 - - + - 58 11.0 P
6 + - + + 66 -19.5 EP
7 - + + + 136 26.0 GP
5 + + + - 75 -12.5 EGP

What is especially noteworthy here is that significant effects from the first day have reversed signs in
the second day. For instance, the interaction of gas flow with etch rate is the most positive effect on first
day, but most negative on second day. No strong statement about the effects of etch rate, gas flow, or pre-
cleaning may be made on the basis of this experiment.

3.3 Discussion

Given the inconclusiveness of this experiment, a discussion of improvements is in order. Foremost, the
three largest effects in this experiment were the two-level interactions between wafer set and the equip-
ment factors. In the future, the wafer set variable should be eliminated by using wafers grown together.

Another improvement would be to run all experiments for the same number of wafers. In addition, it
may be advantageous to collect particle counts only when wafers are being processed in the chamber; the
time-series is noisy enough that the small peaks in particle count during the time intervals when wafers
were being removed from the chamber may be hidden.

Finally, the experimental settings taken from May, er al. [6] were at the limits of the range for which
their model was validated. New experimental runs limiting the range of the factors might be more conclu-
sive; the plasma was not sustained well during some of the low power, low gas flow runs owing to the defi-
cient amount of He. Also, etch uniformity was not considered in this experiment; a new experimental
design should take this into account, since the only factors which might have mattered here depended on
the wafer more than the processing equipment.

To further understand how particle counts relate to the condition of the equipment, the machine was
passively monitored continuously for one month. As it can be sees in this figure (page 74), there is a defi-
nite relationship between maintenance and cleaning events and particle counts. However, particle counts
seem to be controlled by additional, uncharacterized effects, as it is evident from the unexplained count
reduction midway through the monitoring experiment. Clearly, more analysis is needed.
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4.0 Future research

This report outlines two of three parts of an equipment-based approach to yield modeling. The first part
is the analysis and statistical inference of wafer maps. The quadrat method has been discussed and found
inadequate for analysis beyond measuring departures from Poisson statistics. However, work in under-
standing spatial processes has been done, and such methods as nearest-neighbor analysis and random
Markov fields may be fruitful in providing prescriptive inferences [2].

The second part is the analysis of particle counts on specific equipment types. Currently, the LAM
plasma etcher in the Berkeley Microlab has been equipped with a laser sensor. Although the results of the
experiment described here were inconclusive, it may be that future experiments will yield better results. In
addition, sensors could be installed on other pieces of equipment in the Microlab to learn about particulate
contamination from other processes.

The third part is the linking step of empirical wafer mapping. Correlating particle counts to actual
wafer maps for different equipment types could lead to the discovery of processing equipment signatures.
However, wafer mapping is an expensive, time-consuming process, and has thus far been ignored in this
analysis.

Combining these three analyses, a spatial yield model based on equipment characteristics observable
through particle counts may be constructed. For process control purposes, specification limits for accept-
able particle counts may be set for different equipment types and different processes. For production plan-
ning purposes, in-line catastrophic yield predictions based on observable parameters may prove valuable in
deciding whether to continue processing lots through the fab. For wafer probe purposes, knowing the likely
distribution of faulty chips could be useful for optimization of probe pattems.

5.0 Conclusion

This report documents two efforts to understand semiconductor yield issues. A simulator of wafer
defect maps is motivated and developed. Statistical tests are developed to characterize the resulting distri-
bution. An experiment to determine the factors impacting on airbome particle generation is performed for
a plasma etching machine. Future efforts in this area are discussed.
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Using Stochastic Functions for Modeling Computer-
Based Experiments

Zeina Daoud

In this report we present a computer-based experiment used for improving the
manufacturability of integrated circuit designs. This experiment consists of simu-
lating in SPICE the performance of an IC design, while varying several of its
design parameters. Since this is a computer-based (simulated) experiment, it can-
not be analyzed with the classical statistical methods. To cope with this problem
we have employed a stochastic function that has been shown to be suitable for
experiments whose replication errors are spatially correlated throughout the
experimental space.

1.0 Introduction

Optimizing a complex circuit with respect to many design parameters often requires a large number of
computer simulations. Modeling a simulator’s output would allow designers to explore more fully the
design space with fewer computer runs. However, the output of computer-based experiments is determinis-
tically replicated with the same inputs, thus calling for modeling techniques distinct from “traditional” sta-
tistical design of experiments.

Sacks et al [1] suggest modeling that deterministic output as a realization of a stochastic process, to
account for the lack of random independent error in computer-based experiments. For this project, I pro-
pose to explore modeling the output of HSPICE [2] circuit simulator using stochastic functions. The model
is designed using the results of a previously studied Taguchi experiment [3]. The resulting model’s predic-
tions are compared to the actual simulator’s outputs.

Section 2 contains a general description of the methodology and some background on the models used.

In section 3, the details of the implementation are discussed. The results are presented in section 4, as well
as some modifications to the model needed to accommodate a small experiment.

2.0 Methodology

Circuit performances are determined by several controllable and uncontrollable parameters. The
approach followed to model these performances is presented below.

Step 1: Choose a circuit and circuit performances to optimize.
Step 2: Choose variable parameters whose effects on circuit performances we want to explore.

Step 3: Postulate a model for the performances.
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A special family of functions is used to model the output of deterministic computer experiments [1].
The output y(x) of a computer experiment is modeled by Y(x) consisting of a regression term and a sto-
chastic term Z(x).

Y(x) = Zﬁ,.f,-+2(x) (1)

For several reasons discussed in [1] and [4], it has been shown that a constant regression term often
gives a simpler and equally accurate representation of the model. So the model adopted for this project is

Y(x) = B+Z(x) @

where B is a constant and Z(x) is a stochastic term with a mean of zero and a covariance V(x,w) between

Z(x) and Z(w):
V(x,w) = Cov(Z(x),Z(w)) = 6%R (x, W) 3)

R(x,w) is the correlation function defined by:
R(x,w) = [ Jexp (-6,%|x;-w}?) @)

The correlation constants 6 and p are unknowns that will be estimated in step 5.
Step 4: Design and perform the computer experiment, and gather the data.
Step 5: Use the data to fit the model:

Lety = (y1...., ¥n) denote the observed output performances of the experimental runs with n inputs
$1+s Sy It can be shown [1] that the best linear predictor of the performance y(x) at an untried input x is:

y(x) = B+r R (y-P ©)

where I is an n x 1 vector of 1's; R is the correlation matrix R = [RG;, sj)] between inputs of the experi-
ment; r is the correlation between an arbitrary input x and the inputs s of the experiment (r, = [R(X,;)]),
and

B=rrRDTIR Ty ©)
To compute these predicted values, the correlation parameters 8 and p of the correlation matrix must be

estimated. Maximum likelihood is used, assuming that y has a normal distribution (see [1] for details). The
optimization simplifies down to numerically maximizing

—nlog (&%) - log (det (R)) O]
where

a2 1 a, T -1 b

o' = ;(J’-Bl) R™ (y-BD) ®

Step 6: Check the model’s accuracy of prediction on untried inputs. It is worthy to note from the form
of the predicted response 3, that the model’s prediction will match exactly the experimental values used to
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create the model. Therefore, the fit of the model can only be estimated on untried inputs, or points not
included in the original experiment.

These steps describe the general methodology of this problem. The next section describes the details of
the circuit and the experiment used.

3.0 Implementation

In a previous project [3], we have studied an adder bit slice circuit and explored the effects of certain
parameters on its performance, using Taguchi’s Robust Design Method. Partial results of this study are
used for modeling the simulator’s output using a stochastic function.

The set up of the experiment is briefly reviewed here. Since the performance of the ripple-carry adder
is restricted by the speed of the carry-out bit, the performance chosen for optimization is the speed of the
carry-out. The parameters of interest are:

- topology: either a transmission gate adder or a full static adder

- width of the carry input and output buffers: set to 8, 10 or 12 microns for n type transistors and 20, 22
and 24 microns for p type transistors.

- length of the carry output buffers: set to 1.8, 2 or 2.2 microns.

Taguchi’s L;g orthogonal array shown in Appendix I is chosen for the experimental design. Eighteen
simulation runs are performed using HSPICE circuit simulator and measurements are gathered for the per-
formance of interest, at those points in the design space. A listing of the collected data is also shown in
Appendix I.

In the next step, the stochastic model presented in section 2 is postulated as a representation of the
speed of the circuit and the data is used to fit the model. The correlation coefficients 6 and p. as well as ¢
and P are obtained by numerical minimization using the Han-Powell constraint minimization technique.

The performance model obtained is checked at untried input vectors x and compared to the actual sim-
ulator’s output for these given inputs. The inputs chosen, shown in Appendix II, are a set of parameter
combinations not included in the original orthogonal array design.

4.0 Results

Appendix II shows the actual results of HSPICE simulations for a given set of inputs, called the confir-
mation set, used for checking the model’s accuracy. The confirmation set is entirely disjoint from the set of
experimental points, as noted above. The model’s prediction for every point in the confirmation set is com-
pared to the actual circuit simulator result for that given input.

In an initial attempt to model the speed of the adder bit-slice’s carry-out as obtained by HSPICE, the
full model described in section 2 was used. Eight spatial correlation factors are needed to study the varia-
tion of four parameters: four values of 8's and four values of p’s. Han-Powell optimization technique was
used to determine values for 6 and p by solving the problem described by Eq. (7). Table 4 in Appendix Il
shows the optimized values of the spatial correlation factors, starting from initial guesses of 1.0 and 1.1.
Each set of optimized values of 6 and p defines a unique model of the speed of the circuit. As noted above,
the model fits exactly on the experimental points and must be validated on the confirmation set. The mod-
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el’s predictions are tabulated and the graphs of the model’s predictions versus the actual HSPICE results
are shown in Appendix III. The solid line y = x on the graphs represents an ideal model where the predic-
tion would exactly match the actual response. It is clear from the graphs that the model developed is far
from ideal, and the discrepancy between the predictions and the expected results is large. We believe that
the lack of fit of the model is due to the fact that the problem at hand is under-determined. The small exper-
iment used (few data points) may be insufficient to determine eight values of the spatial correlation factors
that define the stochastic model.

Motivated by this speculation, a slight modification to the original stochastic model is made to accom-
modate a smaller experiment. Instead of solving for eight coefficients, let the four values of p constant and
optimize for the values of 6 only. The reason for locking the values of p is that, due to the form of the cor-
relation matrix R, the p coefficients are most sensitive to the difference in the orders of magnitude of the
input parameters. A value of 1.0 is chosen for the p;’s. The values of 0; are still obtained as before by
numerical optimization, with initial guesses of 1.0 or 1.1. The constant values of p’s and the optimized val-
ues of 8 define a stochastic model for the speed. The optimized values of 8 and the modified model’s pre-
dictions for the confirmation set are shown in Appendix IV. The graphs of the predicted versus expected
values of the delay (for the confirmation set) display a noticeable improvement of the model, as the points
lie close to the y = x diagonal. This result confirms the idea that the original problem is under-determined,
and that a way to adapt the method to a small experiment is to reduce the number of unknown spatial cor-
relation factors that must be determined.

5.0 Conclusion

In this report, some background was presented for modeling the output of computer-based experiments
using stochastic functions. Stochastic functions are used to account for the lack of random independent
error in this type of experiments. An application of this technique to circuit optimization was shown. Mod-
eling the output of a circuit simulator allows the designer to explore a larger number of variable parameters
at different levels, using fewer computer runs.

For this stochastic modeling method, the number of unknowns is twice the dimension of the input
space. If a small number of data points are used to fit the model, the model must be altered to avoid an
under-determinate problem. One such modification to the model was discussed that lead to major improve-
ments in the model’s prediction capability.
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7.0 Appendix I

The matrix experiment corresponding to four input parameters, one at two levels and three at three lev-
els utilizes the L,g orthogonal array, shown in the table 2 below. Also presented are the results of HSPICE
circuit simulations for the carry-out delay.

Table 1: Definition of Parameter Levels

factors level 1 level 2 level 3
topology trans. gate full static
width_out Wo W +i Wo +2i
length_out Lo Ly-0.2 Lp-0.2
width_in WO Wo +1 Wo +2i

Table 2: Experiment Matrix and HSPICE Delay Results

trial topology width_out  length_out width_in delay (ns)
1 1 1 1 1 2.366
2 1 1 2 2 2.152
3 1 1 3 3 2.297
4 1 2 1 1 2.203
5 1 2 2 2 1.997
6 1 2 3 3 2.126
7 1 3 1 2 1.992
8 1 3 2 3 1.822
9 1 3 3 1 2.193
10 2 1 1 3 3.296
11 2 1 2 1 3.315
12 2 1 3 2 3.517
13 2 2 1 2 2944
14 2 2 2 3 2.733
15 2 2 3 1 3.226
16 2 3 1 3 2.630
17 2 3 2 1 2.700
18 2 3 3 2 2.838
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8.0 Appendix II

The confirmation set is a set of inputs different from the ones in the experiment matrix, used to check
the accuracy of the model. Table 3 shows the confirmation set and the actual HSPICE results of the delay
as simulated under these conditions.

Table 3: Confirmation Set and HPICE Delay Results

conf. run topology width_out  length_out width_in delay (ns)
19 1 1 1 2 2.261
20 1 1 2 3 2.079
21 1 1 3 2 2.371
22 1 2 1 3 2.024
23 1 2 2 1 2.101
24 1 2 3 2 2.200
25 1 3 1 3 1916
26 1 3 2 1 1.996
27 1 3 3 3 2.007
28 2 1 1 1 3.480
29 2 1 2 3 3.137
30 2 1 3 3 3.453
31 2 2 1 3 2.875
32 2 2 2 2 2.798
33 2 2 3 3 3.017
34 2 3 1 1 2.844
35 2 3 2 2 2.570
36 2 3 3 3 2.762
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9.0 Appendix III

The numerical optimization used to solve for eight correlation coefficient values, depends on initial
guesses for these values. Each set of values defines a unique model whose prediction on the confirmation
set is shown in Table S.

Table 4: Optimized Values of the Correlation Coefficients
initial initial

correlation
. guesses: 1.0 guesses: 1.1
coefficients (Group I) (Group II)
P1 1.00 1.100
P2 0.455 0.252
P3 2.849 2.466
Pa 0.099 0.038
6; 2.574 1.685
6, 0.099 0.095
03 1.338 0.708
64 0.099 0.051

Table 5: Models Predictions on the Confirmation set (in ns)

conf.run  actual delay Group I Group II
19 2.261 2.951 2573
20 2.079 2.401 2.296
21 C2371 1.786 2.003
22 2.024 3.163 2.587
23 2.101 1.110 1.623
24 2.200 1.622 1.904
25 1.916 3.046 2.5334
26 1.996 1.464 1.671
27 2.007 2.267 2.233
28 3.480 3.115 3.059
29 3.137 3.480 3.529
30 3.453 3.757 3.761
31 2.875 2.622 2.627
32 2.798 3.156 3.147
33 3.017 3.221 3.270
34 2.844 2.516 2473
35 2.570 2.735 2.746
36 2.762 3.123 3.133

The same information is displayed graphically in the next two pages: predicted versus expected values
of delay for each group of optimized correlation coefficients, with the y = x diagonal for reference.
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10.0 Appendix IV

The model is altered to accommodate a small experiment. Values of pi’s are set to 1.0 and 6’s are found
by numerical optimization.

Table 6: Optimized Values of ©
initial initial
optimized guesses: 1.0 guesses: 1.1
(GroupIIT)  (Group IV)

01 3.083 3.265
62 0.058 0.029
03 0.347 0.173
04 0.028 0.017

Table 7: Modified Models Predictions on the Confirmation Set (in ns)
conf.run  actualdelay  Group III Group IV

19 2.261 2.263 2.259
20 2.079 2.108 2.102
21 2.371 2.340 2.345
22 2.024 2.041 2.036
23 2.101 2.104 2.105
24 2.200 2.181 2.185
25 1.916 1.927 1.922
26 1.996 2.003 2.008
27 2.007 2.022 2.015
28 3.480 3.448 3.457
29 3.137 3.157 3.154
30 3.453 3.434 3.441
31 2.875 2.865 2.869
32 2.798 - 2815 2.809
33 3.017 3.025 3.022
34 2.844 2.804 2.820
35 2.570 2.590 - 2.576
36 2.762 2.768 2.769

The same information is displayed graphically in the next two pages: predicted versus expected values
of delay for each group of optimized correlation coefficients, with the y = x diagonal for reference.
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Extraction of Bleach Parameters from Peak
Reflectivity Measurements

David M. Newmark

This paper describes the relationship between the peak reflectance measurements
used to characterize positive photoresist, the photoactive compound (PAC) con-
centration and photoresist bleaching parameters which describe physical proper-
ties of the resist. The validity of the model for PAC concentration is explored by
developing an empirical model for the fraction of PAC remaining in the resist as a
function of wafer track settings. Modified photoresist bleaching parameters are
used as inputs to SAMPLE, an optical lithography simulation program, to predict
the output reflectance as a function of input reflectance and thickness. The pre-
dicted output peak reflectance is compared to experimental measurements. The
difference between predicted and measured values is attributed to lack of knowl-
edge regarding the change of absorption of the non-bleachable component of the
photoresist as a function of wavelength.

1.0 Introduction

Theoretical models for resist exposure and development were first introduced by Dill in 1975 [1]. They
provide a convenient way to describe the photoresist exposure and development processes. One problem
with these models is that they require careful extraction of parameters under circumstances which may be
somewhat different from the actual processing conditions of the wafers. In addition, processing conditions
continually drift over time. Thus, it is difficult to use theoretical models to monitor equipment in a manu-
facturing environment.

Therefore, manufacturing engineers tend to rely on &émpirical models obtained using factorial experi-
ments. Although such models are accurate, they offer no insight into the process, and engineers are often
reluctant to accept empirical models based on measurements which do not have a solid theoretical base. In
addition to convincing process engineers of the validity of specific measurements, tieing theoretical model-
ing to measurements made during production has the added benefit of allowing in-situ monitoring of a pro-
cess with theorctical models by coupling manufacturing models to simulation tools.

Several methods have been introduced to monitor photoresist in a manufacturing environment. One
potential technique is to directly measure, using the appropriate wavelengths, the absorbance of the photo-
resist as described by Watts [2]. An altemate technique, which uses peak reflectance to infer absorbance,
was introduced by Ling and Spanos [3]. The problem with these methods is that the relationship between
the absorbance or peak reflectivity measurements and the physical parameters of the resist is not well
understood. The goal of this project is to investigate the relationship of PAC concentration and Dill’s
bleaching parameters to peak reflectance. This relationship will be tested by using a model to predict out-
put reflectance through SAMPLE.

This paper first describes Dill’s positive photoresist bleaching model and the use of peak reflectance as
a means to monitor photoresist. Based on this background information, the link between peak reflectance
and the fraction of PAC remaining in the photoresist after the resist spin-coat and bake process is
explained. This result leads quickly to a method for calculating new bleach parameters. These parameters
can then be used by SAMPLE to predict the post-exposure peak reflectance. Finally, a model for the frac-
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tion of PAC remaining as a function of wafer track parameters is developed along with a comparison
between the output peak reflectance predicted by SAMPLE and experimental output peak reflectance mea-
surements.

2.0 Methodology

2.1 Photoresist Bleaching Model

In 1975, Dill published a classic paper in which he presented a model for photoresist bleaching and
development [1]. This model has been incorporated into a variety of simulators, such as SAMPLE [4] and
PROLITH [5]. The basic model has been extended, for example, to include additional effects such as post-
exposure bake [6].

Dill's model is formed from a physical basis, but the actual parameters of the model are substantially
different from the photochemical constants used by manufacturers of photoresist. The physical basis comes
from the assumed relationship of the parameters in the model to the physical process of absorption of light
by the photoactive inhibitor in which the photoactive compound is destroyed under exposure to light. In
Dill's model, the process is described by three parameters: “A”, an exposure absorption term; “B”, an
exposure-independent term; and “C”, an optical sensitivity term.

Traditionally, the A, B, and C parameters are extracted by measuring the exposure time versus trans-
mittance curve for the resist on a quartz substrate. A typical curve is shown in Fig. 1 for AZ1350J resist. As
discussed by Dill, Equations (1), (2), and (3) are used to find A, B, and C, respectively. T(0) is the trans-
mission at exposure time equal to 0. T(e) is the transmission of the fully bleached resist, and d is the
thickness of the resist. The A, B, and C parameters are wavelength dependent so the transmission versus
exposure time curves must be measured at the exposure wavelength. However, the results obtained for the
model parameters can be used for photoresist of any thickness.

1, [T()
1
B = -ElogT(oo) 2
c A+B  dT(0) G)

T ALTOO) (1-T(0)] d
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Optical Transmittance Curve
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FIGURE 1. Optical transmittance of a 2.2um film of AZ1350J photoresist
as a function of exposure time.

Once the A, B, and C parameters are extracted for a given photoresist, the working equations, (4) and
(5), are used to find the fraction of inhibitor concentration remaining after the exposure:

L1x0) = ~1(x0) [AM (z0) +B] @
M (50 = -1(x0M(x)C )

where M(x,t) is the fraction of inhibitor remaxmng at depth x after exposure time t and /(x,?) is the light
intensity at depth x in the film after exposure time .

2.2 Reflectance as a Means to Monitor Photoresist

For process development, Dill’s model provides an excellent way to characterize new resist processes;
however, for special manufacturing techniques, such as feed-forward control, running quartz wafers to
monitor the photoresist is prohibitively expensive and impractical. Thus, techniques which measure absor-
bance [2] or peak reflectance [3] have been used to monitor the photoresist.

The peak reflectance measurement is particularly useful for several reasons. First, the authors in [3]

assert that it is directly proportional to PAC concentration. They show that peak reflectance is directly pro-
portional to absorbance, and since

o=AM+B : ©6)
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peak reflectance must be proportional to M or the PAC concentration. A and B are material constants of the
resist. Second, due to the interaction of several material properties which depend on wavelength, the peak
reflectance is almost constant from about 380nm to 430nm for KTI 820 resist. The combination of these
properties implies that reflectance is proportional to M for these wavelengths.

Unfortunately, this assertion is not quite accurate since A and B depend on wavelength as illustrated in
Fig. 2. The relationship is further emphasized by rewriting (6)

oa=A)M(x)+B(}r) Q)

In other words, although peak reflectance is almost constant over the measurement wavelengths and
directly proportional to the absorbance, it is not directly proportional to the PAC concentration since A(A)
changes with wavelength. This presents a serious problem, since peak reflectance is, by definition, mea-
sured at wavelengths that shift in order to track thickness variations.

2.3 Calculating the Fraction of PAC Remaining and Dill’s A Parameter

Based on these observations, a method for removing the dependence of A(A) is developed in order to
find a more accurate measure of the fraction of PAC remaining in the photoresist. The key idea behind this
technique is that the fraction of PAC remaining in the resist is a constant regardless of the measurement
wavelength; thus, it is possible to extract a relative measure of the remaining PAC using tabulated values
for A(L) and B(A). From this information, the experimental value for A at the exposure wavelength of
365nm is calculated. /t is important to note at this point that this technique assumes B and C can be mea-
sured at the exposure wavelength and do not vary with resist process parameters. Note that Mack has
already established that both A and B vary with oven prebake temperature and time. However, for most
resist systems, the fraction of the absorption due to A is much greater than that due to B before exposure,
so ignoring variations in B is reasonable for most resists near the nominal exposure wavelength.

The method for calculating A based on input peak reflectance and thickness is illustrated in Fig. 3. In
the first step, the wavelength is varied from 380nm to 430nm to find the wavelength which gives maximum
reflection for the given thickness of photoresist spun on 980A of oxide on silicon. For this calculation, the
index of refraction of the photoresist has no absorption component since maximum (peak) reflection is
mainly determined by the real part of the index. The change in the index of refraction of silicon is accom-
modated by using a table lookup function to find the index for a given wavelength. This calculated reflec-
tion is normalized to the reflection from a bare silicon wafer to mimic the Nanospec reflectance
{neasux}mem. The wavelength for maximum reflection will be referred to as the measurement wave-
ength. \

In the second step, the complex index of refraction is increased until the reflection from the silicon sur-

face is equal to the measured reflection. At this point, we know the index of refraction of the photoresist,
and use

o= — @®

to find the absorbance of the resist at the measurement wavelength. Since Mack has extracted the A and B
parameters from 300nm to 500nm for KTI 820 resist {5] (see Fig. 2), the absorbance at the measurement
wavelength can be extracied. Note that M is by definition equal to 1 before the exposure.

o = AA)f+B () ®

Solve for f5to obtain (10).

4. REFLOP, written by Prof. Oldham, is used for the reflectance calculations.
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o' ~B(A)
= — 10
Physically, f5 represents the fraction of photoactive compound remaining after the resist spin-coat and
bake process. Since the total amount of photoactive compound is constant, the fraction of PAC destroyed
applies regardless of the wavelength. Thus, we can use

A' = A(365nm)f, an

to find A', a new value for A which now incorporates the knowledge about the reflectance of the wafer.
The remaining bleach parameters, B and C, are assumed to be independent of the resist processing condi-
tions, and their value is measured at the exposure wavelength of 365nm.

2.4 Calculating post-exposure Peak Reflectance

To test the theory that reflectance can also be used to monitor the PAC concentration at the output of
the stepper by measuring output reflectance, the extracted A parameter in conjunction with constant values
for B and C are used to model the post-exposure peak reflectance. Fig. 4 illustrates the procedure used to
obtain the post-exposure peak reflectance. Initially, SAMPLE is run using the A parameter derived above
in conjunction with the assumed values for B and C. SAMPLE returns the M(x) matrix which gives the
fraction of PAC remaining in the resist after exposure and post-exposure bake. M(x) is specified at approx-
imately 200 locations, or layers, in the resist. At each layer, the absorbance of the bleached resist is calcu-
lated using the formula

a=AM)fM(x)+B(}) (12)

and the k value for each layer is determined from,

Aa
k= i (13)

The refractive index for the photoresist is then simply,
n=n-ik (14)

where n= 1.68 for KTI 820. The thickness of each layer is constant, and the thickness and refractive index
of each layer provides sufficient information to calculate the peak reflectance from all 200 dielectric layers
on silicon.

2.5 Implementation

A C program has been written to implement the methods outlined above for calculating the fraction of
PAC remaining before exposure, Dill’s A parameter, and the output reflectance. The program essentially
implements the block diagrams shown in Figs. 3 and 4. The initial thickness, reflectance, and dose for an
arbitrary number of wafers are specified in an input file. The program runs REFLOP to calculate the reflec-
tance due to the dielectric stack and SAMPLE to find the M matrix after exposure. The PAC fraction, Dill’s
A parameter, and the output reflectance are written to the standard output after calculations for all wafers
are completed.

3.0 Results

To test the model for the fraction of photoactive compound remaining before exposure, data from a
factorial experiment on the wafer track is used to find the PAC fraction and model it based on the wafer
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track settings. The SAMPLE reflectance model is tested by comparing the post-exposure peak reflectance
predicted by the model with the results of a factorial experiment on the EATON wafer track [7].

3.1 Model for PAC Fraction

The fraction of PAC remaining in the photoresist before exposure can be modeled as a function of the
variables on the wafer track. The data, the model, and the associated residual glots are shown in Appendix
A. Although the terms of the model appear significant at the <1% level, the R for the model is only 0.64.
The residuals appear to be IIND. Since the fit of the model is somewhat questionable, a histogram of the
data is plotted in Fig. 5. It shows that the fraction of PAC remaining is nearly Gaussian. The mean is in the
center of the distribution and 67% of the measurements are located within +- 10 of the mean. This indicates
that the variation in the PAC concentration may be purely random. The histograms for the measured values
of thickness and reflectance are shown for reference in Figs. 6 and 7. These data do not appear to be Gaus-
sian.

In theory, the fraction of PAC remaining should be related to the bake temperature and time, since
Mack has shown theoretically and experimentally that A and B vary logarithmically with these variables
for an oven prebake [6]. Transforming the data by looking at the logarithm or exponential of the PAC frac-
tion does not improve the model. The problem in this case may be that the hot plate bake has a negligible
affect on the photoactive compound concentration. The range of the factorial would have to be expanded to
distinguish this effect from the experimental noise.

3.2 Modeling Post-Exposure Peak Reflectance

Assuming the PAC fraction remaining in the resist is more than just a measure of noise, the output
reflectance predicted by SAMPLE, based on the modified values of Dill’s A parameter, is compared with
experimental reflectance measurements. The residuals plotted versus measurement wavelength and run
number are shown in Fig. 8 and Fig. 9 respectively. For comparison, a plot of the reflectance residuals for a
model in which A, B, and C are constant is shown in Fig. 10 and Fig. 11. Although, the mean square of the
residuals can be minimized by modifying the dose, the variance will still be much greater than the experi-
mental error of the reflectance measurement. The consideration of the residual plots versus wavelength led
to an exploration of the physical cause for the dependence of SAMPLE's prediction error with wavelength.

After reviewing the equations used to calculate the post-exposure peak reflectance, the dependence of
output peak refiectance on A(365nm) and B(A) was examined. A(365nm) affects the output reflectance
through a change in M(x) while M(x) and B(A) affect the output reflectance directly through a change in
the absorbance as shown in Equation (7). More precisely, modifying A(365nm) +-20% from its nominal
value of 1.017 causes a 2% change in the output reflectance. This effect is demonstrated more clearly for
the experimental data in the plot of Fig. 12. The difference in predicted reflectance with A equal to 1.017
and A varying from 0.7 to 1.0 according to Equation (11) is plotted versus run number. The maximum
change in reflection is 2.5%, which confirs that output peak reflectance does not change significantly
with large shifts in the initial concentration of photoactive compound. (This change in A should have a
much larger effect on CD.) On the other hand, B(A) has a significant affect on the output peak reflectance.
For example, if B changes from 0.041 to 0.088 for a given resist thickness and reflectance, the output
refiectance changes by 5%. As long as B(A) is known, the changes are not a problem since tabulated values
for B can be used. Unfortunately, B is not well characterized since the transmission calculated from values
of B used in PROLITH [5] corresponds to the ideal (no absorption) thin film transmission curve as shown
ir;1 Fig. 13. 'I’l;»e)refore, the wavelength dependence on the residuals can be explained by an uncharacterized
change in B(A).

4.0 Conclusion

Peak reflectance is shown to be related to the fraction of photoactive compound present in a resist. The
evaluation of the theoretical relationship has been automated in order to calculate the fraction of PAC
remaining in the photoresist after the resist spin-coat and bake process. Based on the transformation of
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peak reflectance to PAC concentration, a model is derived which relates the spin speed, spin time, bake
temperature, and bake time to the fraction of PAC remaining.

The fraction of PAC remaining is used to calculate a new A parameter for the photoresist which is then
utilized in SAMPLE to predict output reflectance. An analysis of the residuals of the predicted output
reflectance compared to the measured output reflectance led to the discovery that an uncharacterized
change in B(A) could account for about 5% of the difference between measured and predicted values of
output reflectance. In addition to a wavelength dependence, B also probably varies with resist processing.
Furthermore, the relatively subtle change in output reflectance with A suggests that reflectance will catch
process deviations which significantly affect PAC concentration, such as variations in dose and thickness.
The changes due to altered initial resist properties may only be evident after the development of the
exposed photoresist.
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FIGURE 2. (a) Bleachable photoresist constant, A, versus wavelength for KTI 8§20
photoresist. (b) Non-bleachable photoresist constant, B, versus wavelength for KTI
820. Data obtained from PROLITH [5].
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FIGURE 3. Block diagram which illustrates the calculation of the fraction of PAC remain-

ing in resist.
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FIGURE 4. Calculation of output reflectance using SAMPLE.
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Transmission versus Wavelength for Ideal Thin
Film Interference of Photoresist on Quartz and

for B Values of KTI 820
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FIGURE 13. Plot of ideal thin film interference pattern from photoresist on quartz in which the
photoresist has no absorption component. The transmission derived from Mack’s values or B
for KTI 820 are also plotted. The correspondence between these curves indicates that the value
for B is dominated by the thin film interference of photoresist with quartz rather than the actual
absorption constant of the photoresist.
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A G2 Formulation of Queuing Effects due to
Metrology in a Photolithography Workcell

Bart Bombay

The need for the improvement of photolithography workcell capability requires
regular measurements of equipment performance. This report analyses an applica-
tion of Gensym Corporation’s G2 software to simulate wafer measurement sched-
uling problems.

1.0 Introduction

Recent developments in integrated circuit design call for the improvement of the performance of pho-
tolithography workcells. In order to accomplish this improvement, computer aided manufacturing tech-
niques are being applied to the process, and these techniques require regular measurements of equipment
performance. These measurements, however, are subject to the associated costs of additional hardware,
time, and labor. Hence the industry is faced with the problem of implementing these measurements in a
manner which will minimize the cost per unit product produced yet improve product quality. The most
obvious goals are to increase product yield (decrease the fraction nonconforming) and improve product
performance. Because measurements will slow down the manufacturing process, the desired implementa-
tion will attempt to minimize the impact of taking these measurements upon the product throughput, and
thus attempt to maintain a satisfactory production level.

There are several issues which must be addressed in any formulation of this scheme. Specifications
must be determined on how many wafers to measure, which wafers to measure, and how often to measure
them. The types of measurements must be decided upon. The effects on work in progress inventory must
be examined. And finally the production costs must be studied to determine the magnitude of any improve-
ment in marginal cost versus marginal revenue.

\

The Berkeley Computer Aided Manufacturing (BCAM) group was recently presented with the oppor-
tunity 1o study a new software product from Gensym Corporation. The product, G2, is a flexible tool which
uses an object oriented environment to simulate and control various types of systems. Of particular interest
are this product’s extended graphical capabilities which assist an operator in using the system.

For this study, the G2 software was used to simulate a photolithography workcell and to study the
effects of introducing a measurement strategy into the workcell. The feasibility of using G2 as an interface
to a control and monitoring system is also addressed.

2.0 Methodology

The G2 software possesses several appealing features. Among these are its graphics capabilities, its
object oriented environment, its simulation ability, and its general flexibility. In order to introduce custom-
ers to the software, Gensym provides a two day course on the G2 system. This course proved effective in
familiarizing new users with the general use of G2.

Although G2 is very flexible, considerable effort must be expended to program algorithmé into the sys-
tem. Also, the one second clock cycle of G2 is rather restrictive. These limitations prevent the use of G2 to
implement the generalized BCAM control and monitoring system. However, one interesting feature of the
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software is its ability to interface with C programs. This feature leads to the possibility of a more limited
use of G2 as a graphical interface to the BCAM software, which is written primarily in C++. While such an
implementation is attractive, the high cost of G2 precludes such a limited use. For this study a more self-
contained application is chosen, namely a study of the queuing problems associated with introducing regu-
lar measurements into a photolithography workcell.

The design for this study focuses on the construction of a relatively simple model of the photolithogra-
phy workcell timing (see figure on the next page). Wafers are processed by a machine and then placed into
a storage area. From this area, wafers are either taken to an analytical station for measurement and then
transferred to the following storage area, or they are transferred directly to the next storage area. The next
processing station then takes its wafers from that storage area. The decisions about whether or not to mea-
sure any particular wafer are dependent upon production flow and control criteria.

Initial work to design a knowledge base with G2 includes the definition of several object types and
icons, and preliminary connections among instances of these icons. Gensym also supplied a customer sup-
port visit which is effective in assisting users new to the G2 system. With such assistance, a basic design
was implemented. This basic design may then be further refined with the introduction of an enhanced set of
rules, more informative readouts, and more precise timing specifications

3.0 Results

This study compares two distinct algorithms for the scheduling of wafer measurements. These two
methods are henceforth referenced as algorithm A and algorithm B and are described below.

3.1 Wafer Measurement Scheduling Algorithm A

The first method, algorithm A, uses inventory based rules to decide the number of wafers from which
measurements would be taken. Each storage area immediately preceding a processing station has a specific
“low level”. If the wafer count in the storage area falls below this low level, the deficit is immediately
taken from the preceding storage area, and the wafers so taken do not get measured. As long as the count of
the storage areas remains above or at the low level, each wafer will be subjected to measurement as it
passes between storage areas.

Algorithm A proves to be successful in maintaining production levels since it foregoes measurements
whenever the relevant intermediate wafer inventories fall below designated low levels. Because wafers
require queuing before measurement, this formulation does, however, increase the overhead in progress
inventory. Another drawback to this method is the variability of the frequency of measurement; during
sog:zi time periods, many wafers are measured, while during other time periods few or no wafers are mea-
sured. .

3.2 Wafer Measurement Scheduling Algorithm B

The second algorithm for wafer measurement, algorithm B, sets specific goals for the number of
wafers 1o be measured at each step in the process. One out of every four wafers is subjected to measure-
ment as it passes between storage areas. This algorithm is indifferent to the supply levels in the storage
areas.

Algorithm B is successful at providing a steady stream of data, but results in a somewhat reduced pro-
duction level. This method also results in a lower work in progress inventory than the first method,
although still higher than a process without measurements.
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3.3 Results of the Simulations

It should be noted that the simulations fail to give precise information. This deficiency is attributed to
two factors. The first limitation of the system is that it discretizes time into one CPU-second intervals.
Thus if the time were scaled to simulate five minutes of production every second, then the resolution of the
process simulation would be limited to five minutes. The time scale chosen for the simulation is one wafer
processing minute per CPU-second. This time scale yields sufficient resolution for the simulation, while
providing results after a reasonable period of time. (At this scale, the simulation of a 24 hour workday
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requires 24 minutes.) The second limitation of the system results from the structure of the G2 rule system.
Creating complex rule patterns with G2, although undoubtedly possible, is time consuming, particularly
with respect to making structural changes in the flow decision rules. Hence time requirements for the
implementation of the desired simulations exceeded the resources allotted to the project. The project was
therefore somewhat scaled back.

Several topics of interest are ignored in these simulations. An analysis of the profitability of the differ-
ent algorithms is not performed. The simulation of the workcell is idealized. In an actual fabrication facil-
ity, the processing times of the various equipment change with varying conditions, including change of
operators, and random noise. The equipment in an actual workcell also experiences periodic downtime due
to failures and general maintenance. The relative time requirements of the processing steps may also
change with different product lines. In addition, the changing operating conditions in a fabrication facility
may require a dynamically changing measurement scheduling algorithm which can emphasize data collec-
tionb{or issues of interest, while reducing the emphasis on lesser issues. This report does not address these
problems. .

The results of the simulations are strongly dependent on the specific time requirements of the particu-
lar elements in the workcell, especially the time required to take measurements. Since these time require-
ments vary significantly for different technologies, the results of this project should only be interpreted in a
relative manner.

In particular, many of the relevant measurements can now be implemented ‘in situ’ on the wafer track
so that they have no impact on the wafer processing time. In such a case, measurements can easily be made
on all wafers, providing valuable information to an appropriate process control and SPC system. Thus the
only increase in cost comes from the purchase and maintenance of the new measurement equipment.

In the case that measurements are taken off the wafer track, the time for measurement is an important
consideration. Some measurements require more time than others. (For instance in the Berkeley Microfab-
rication Laboratory, a manual critical dimension measurement may require tenfold the time required for a
photoresist thickness measurement.) When faced with such circumstances, a successful scheduling scheme
may reduce the frequency of measurement for those measurements which are time intensive.

For model based control schemes a measurement scheduling algorithm must ensure the maximization
of the number of wafers which are measured at all stations. Thus wafers which were previously measured
receive priority for future measurements in order to facilitate model building. For feed-forward control,
every wafer (or at least samples from every lot) must be measured. For statistical quality control, an
increase in the number of measurements taken will almost always be beneficial. Maximizing the frequency
of measurements in the processing line will expedite the detection and diagnosis of equipment problems.

4.0 Example

Figure 2 displays a screen dump of the G2 formulation of a photolithography workcell.

5.0 Conclusions

The results of this project are highly dependent upon the configuration of the photolithography work-
cell. In general, any increase in measurement frequency is beneficial as long as it does not cause too great
an increase in cost. ‘In situ’ measurements on wafers along the wafer track are extremely desirable, as they
do not cause delays in the processing line.

Drawbacks of in-process measurements:
 Cost of the measurement equipment and its maintenance
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« If asystem is dependent on measurements, measurement equipment failure could cause interruptions in
production. '

+ The time requirements of measurements can slow down production.

» Queuing requirements of measurement scheduling can increase the work in progress inventory.

Advantages of in-process measurements:
 Additional information for problem detection and diagnostic efforts

« Quantitative records of machine performance

+ In-process measurements allow the implementation of a feed-forward control scheme to eliminate the
propagation of disturbances and increase yield.

» Measurement data assists in the development of equipment models for various control and design pur-
poses.

6.0 Future Work

A comprehensive study requires more detailed models of photolithography equipment performance.
The G2 representation of the photolithography cell might be expanded to include interfaces to fabrication
and measurement equipment, as well as interfaces to C code to handle computationally intensive control
and modeling computations. The system would then be able to handle many applications, including sched-
uling, model-based control, statistical quality control, diagnosis, recipe design for equipment operation,
and database operations. In such a case, G2 would serve primarily as a graphical interface to a computer
aided manufacturing system, and C code would provide the remainder of the functionality. This G2 formu-
lation of a computer aided manufacturing system would, however, be limited to operations which require
time discretization at a level no lower than one second intervals, as this is the maximum clock speed of the
G2 system. The G2 representation could also be expanded to include multiple workcells and thereby simu-
late anc:l control an entire production process. Such an implementation would interact well with G2’s object
oriented structure.

From our limited exposure to G2 we were impressed by its capability to produce an effective, animated
pictorial summary of the process. This project also yielded the following suggestions for improving G2's
applicability to integrated circuit manufacturing: '

« G2 lacks the computational power required for advanced control and modeling purposes. The existing
interface with the C programing language has not been tested by the author.

» The current 1-CPU-second system clock is too slow and infiexible.

» G2 is rather unwieldy for new users. Significant training is required before the user-interface of G2 feels
natural, as many of the most common tasks require convoluted menu selections.

 The object-oriented framework can be improved. Currently there are limitations when updating struc-
tures. Specifically, instances must often be deleted and recreated whenever base structures change.
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Sidewall Slope Optimization for Phase Shifted Contact
Cuts

John Helmsen

The goal of this project is to investigate the experimental space of the photoresist
etching step in a contact cut manufacturing process which uses phase shifted
masks. By using the simulation tools SPLAT, BLEACH and ETCH, the phase
shift contact cut process was examined for its effect on the sidewall slope when
four parameters are varied. The parameters are the two mask dimensions, the mis-
alignment from the focal plane and the coherence of the light source. The simula-
tion space is mapped on selected two dimensional surfaces in the four dimensional
space. The first order effects of the parameters are also mapped to localize the
points of minimum variation.

1.0 Introduction

The semiconductor manufacturing industry, in its attempts to achieve minimal feature sizes, has
recently adopted the use of phase shift masks|2][3]. These masks differ from traditional masks by produc-
ing a diffraction pattemn on the surface of the photoresist. Existing optical and exposure equipment may be
used to produce smaller feature sizes. While use of these masks is therefore desirable, the exposure step of
a process must be reexamined to determine its optimal regions of operation and sensitivity to optical
parameters[2].

Due to the excessive cost of conducting of analyzing a process through conducting actual experiments,
it is often instructive to map the parameter space through process simulation. This allows the experimenter
to reduce the number of fabrication runs to describe the process, because the simulation can be used as an
accurate initial guess. Experiments are still necessary, however, to confirm the simulated result because the
simulator may have inaccuracies. !

The specific process of photoresist etching has been chosen for examination, because the SAMPLE-3D
[5)suite of simulators performs this particular simulation task effectively. Three of these simulators were
made to work in conjunction with one another, The first is SPLAT [3], which generates the intensity con-
tour on the surface of the photoresist from the mask and the optical parameters. The intensity contour is
sent to BLEACH (5], which simulates the exposure of the resist and determines the etch rate throughout
the exposed resist layer. Finally, the ETCH (6] program, simulates development of the photoresist during
the etching process.

In Section 2, a full description of the photoresist etching process is given and the inputs and functions
of the simulators are described. Section 3 details how the simulators were employed to simulate the pro-
cess, and the manner in which the results were generated. The data and its analysis is presented in Section
4. Conclusions are presented in Section 5.

Sidewall Slope Optimization for Phase Shified Contact Cuts EE290W §92
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2.0 Photoresist Etching

2.1 The Mask

A phase shift mask structure has been proposed for forming contact cuts [2] and is shown below. This
mask contains two octagonal transparent regions, one centered inside the other. The central region has a
minor diameter of length D.. This region is not phase shified. The outer ring has a minor diameter of
length D,,,.. This region is phase shifted by 180°. The inner region and the outer ring are concentric. The
two mask diameters are two of the parameters in the simulation space. This mask produces a stronger and
thinner central spot than a non-phase shifted mask, provided the phase shift mask is of the proper dimen-
sions. At the surface of the photoresist, the two phase shifted components destructively interfere to create a

D Max

180 degrees

Phase Shift Mask and Dimensions

ring of zero intensity. The interference at the center of the image reacts constructively and creates a central
spot of exceptional magnitude. These are both desirable conditions for exposing photoresist for a contact
cut, because the hole created will be thinner and have steeper sidewalls than a cut created by a normal
mask. The disadvantage is constructive interference again occurs at twice the distance of the dark ring
from the center. This sidelobe, although normally low in‘intensity, may partially develop the resist. It can
interfere with nearby structures, so it is desirable to reduce its intensity when possible.

2.2 Creating the Image

Simulation of the omics is handled by the SPLAT program. It accepts as input a description of the
mask and the dimensions of the area to be imaged. It also requires the following:

Table 1: SPLAT Parameters

Parameter Meaning Value
A Wavelength 435.8 nm
NA Numerical Aperture 0.45
Focus Distance from Focal Plane | Experimental Parameter
c Partial Coherence Experimental Parameter

The wavelength is chosen to be in the g-line regime because a g-line resist is most appropriate for this
experiment. The numerical aperture is a physical parameter based on the lens dimensions and index of

Sidewall Slope Optimization for Phasc Shifted Contact Cuts EE290W S92
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refraction, and was chosen to be 0.45 for consistency. The distance from the focal plane is measured in
um. Sigma represents the partial coherence of the imaging system. It may take values from 0to 1. The
focal distance and the partial coherence are the other two parameters, besides the mask parameters, in the
experimental space. The output of the SPLAT program is a discretized representation of the intensity of the
image as it appears at the surface of the photoresist.

2.3 Exposing the Resist
Table 2: BLEACH Parameters

Parameter Meaning Value
Resist : Photoresist SNR-248
Dose Exposure Dose 100 mJ/cm”
Diftusion - | Heat Diftusion Length | 1 pm
Thickness Thickness of Resist 0.7133 pm

Exposure of the resist is performed by the BLEACH simulator. A surface intensity contour is taken as
input, along with a file that describes the parameters for the photoresist. The resist chosen is the SNR-248
model [1]. This is a g-line acid hardening resist, which is especially useful for phase shift masks, because a
certain threshold of intensity is necessary to expose the resist. The etching of the resist due to the sidelobes
is, therefore, less pronounced. The exposure dose and the resist thickness are held constant for all simu-
lated exposures. The diffusion parameter is included due to the formation of standing waves in the resist.
Because the energy reflects off of the substrate during exposure, alternating layers of high and low etch
rates can form. If the photoresist is etched without a preceding diffusion step, the vertical sides will have a
rippled character. A one-dimensional vertical gaussian diffusion is therefore performed so that the ripples
are removed. BLEACH generates as output a three-dimensional array which contains the etch rates at reg-
ular points in the resist.

2.4 Etching the Resist
Table 3: ETCH Parameters

Parameter Meaning Value
Time Development Time 6 seconds
N Surface Discretization | 20

The three dimensional structures that form when the photoresist is etched, are computed by the ETCH
simulator. It takes as input the three-dimensional etch rate array produced by BLEACH. The surface in
ETCH is represented by a triangular mesh. Its evolution is computed by solving a PDE which is discretized
in space by the parameter N. N is the number of triangles in both the X and Y directions. The PDE is also
discretized in time. The time step is variable and controlled intemally. The limitation on the time step is
that the distance traveled by the surface during one step must be less than 15% of the length of the side of
the original triangles. This 15% condition causes ETCH to give highly accurate results. The photoresist
development time for all simulations is 6 seconds. ETCH produces a list of triangles as its output. This list
is the geometrical representation of the developed surface.

2.5 Sidewall Slope

The sidewall slope was selected as the measurement parameter. Because the intention of a contact cut
processes is to make a small hole with straight sides, this is an accurate indicator of the effectiveness of the
process. The sidewall slope is also easy to derive automatically. This makes it an especially effective mea-
surement of process suitability when the number of simulation results is too large to be analyzed by the
user.

Sidewall Slope Optimization for Phase Shified Contact Cuts EE290W S92
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3.0 Implementation

3.1 Inputs
Table 4: Experimental Parameters
Parameter Meaning Value Step # of Values
D¢ Inner Mask Diameter 0.8 umto 1.6 pm 0.1 pm 9
DMax Outer Mask Diameter - 1.3umto2.61'ym |[0.164um |9
Focus Distance from Focal Plane | -5.0 umto 5.0 um [ 1.0 pum 11
c Partial Coherence » 00Itol 0.1 11

Mapping the entire space was not attempted due to the prohibitive number of simulations which must
be performed. Certain coordinate parallel two dimensional planes were selected for analysis in the four
dimensional simulation space. In each of these cases, two parameters were held constant, while the other
two parameters were varied over their entire range. For any particular variable, the partitioning of the range
is uniform, except when the partial coherence is equal to 0.01. This is done to avoid a divide by zero error
in SPLAT. The following planes were analyzed:

Table 5: Examined Planes

Plane D¢ DMax Focus G
1 Varnies Varies 00m |05
2 Varies Varies 1.0pum | 0.5
3 Varies varies -1.0um | 0.5
4 Varies Varies 0.0 um | 0.01
5 Varies . Varies 00um |0.3
6 Varies varies 00um |04
7 Varies Varies 0.0um |0.6
3 Vanes Varies -1.0um | 0.4
9 1.10 um 2.12 um varnes Vanes
\
3.2 Output

The result of each simulation was analyzed automatically to determine the slope of the contact cut
sidewalls. The slope of the sidewall S, is determined (EQ 1) by the observed diameter of the contact cut
at the middle of the resist D,,,,, the bottom of the resist D,,, and the depth of the resist Rp, -

D,..-D
Sside = _;em ,;“ m
Depih

4.0 Results

The 9 planes that were used as input in Table 5, are plotted in Figures1through 9 respectively using the
CONTOUR program [7).Figures 1 through 9 demonstrate that the mask dimensions that consistently give
large sidewall slopes are D¢ of 1.1 and Dy, of 2.12. Figures 2, 3 and 9 demonstrate that the experimental
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space is symmetric about the focal plane. This effect was expected for this mask configuration [4). The
sidewall slopes increase as the coherence tends towards 0 in figures 4, 5, 6, 7 and 9. The effect of lower
coherency on the sidewall slope is shown directly by the side views in Figures 13, 14 and 15. These figures
are plotted at D¢ of 1.1, Dy, of 2.12 and a Focus of 0. Figures 13, 14 and 15 have coherency of 0.01, 0.5
and 0.9 respectively. These figures also show that sidelobes become more pronounced for lower coherency.
Figures 10 and 11 demonstrate the sensitivity of the experimental space to first order changes in the focus
and coherence respectively. Figure 12 graphs the sensitivity of the space to a change in both the focus and
sigma simultaneously. Examining the plots of Figures 10, 11 and 12, an important point is located. The
change in the slope for D¢ of 1.1 and Dy, of 2.28 is near 0 sensitivity for changes in both focus and sigma
(where focus is about. 0 and sigma is about. 0.5.) The combined effect from a change in both focus and
coherence is also minimal. This spot may be considered the least sensitive to changes in the process.

5.0 Conclusions

A parameter space for a phase shifted contact cut photolithography process has been investigated. The
dimensions of the mask that give the best sidewall slope have been determined. The process space has been
shown to be symmetrical about the focal plane, and the effects of coherence have been investigated. The
most important future work is to confirm these results in the lab. Investigation of the process for other cost
functions besides sidewall steepness may be performed.
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