Copyright © 1992, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

POSTGRES REFERENCE MANUAL

Version 4.2

Edited by

the POSTGRES Group

Memorandum No. UCB/ERL M92-85
27 April 1994

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California
94720

The POSTGRES Reference Manual

Version 4.2

Edited by the POSTGRES Group
Computer Science Div., Dept. of EECS
University of California at Berkeley

POSTORES 11 copynight © 1989, 1994 by the Regents of the Univensity of Califonia. Permission to use, copy, modify, and dis-
uibuethissoﬂwmandiudowmmfwedm:ﬁmm.mdnm-pmﬁ:pnpuandwithxﬂfeeitbaabygmlcd.pm-
videdthnu:abovecopyﬁghnodeemindlcopiamdmnbahmnmpyﬂglnmwmhmtimndewhq’-
posting documentation, and that the name of the Univerity of Califomia not be used in advertising or publicity pertaining to distribu-
ticn of the software without specific, written prior permission. Permission to incorporate this software into commercial products can
be obtained from the Campus Software Office, 295 Evans Hall, University of California, Berkeley, Ca., 94720. The University of Cal-
iforia makes no representations about the suitsbility of this software for any purpose. It is provided “as is” without express or im-
plied warranty.

CONTENTS(MANUAL) CONTENTS(MANUAL)

Table of Contents
Section 1 — Introduction 1
Section 2 — UNIX Commands (UNIX) 2
General Information 2
Security 3
Createdb 7
Createuser 9
Destroydb 11
13
Icopy 15
Initdb 17
Ipcclean 18
The POSTGRES Terminal Monitor 19
Newbki 2
Pagedoc 23
Pcat 4
Pcd 28
Pis 26
Pmkdir 27
Pmv 28
The POSTGRES Backend Server 29
The POSTGRES Postmaster 31
Ppwd 7
Prm s
Prmdir 36
Reindexdb 37
Shmemdoc 39
Section 3 — What comes with POSTGRES (BUILT-INS) 41
Built-in and System Types 41
List of built-in types 41
Syntax of date and time types 42
Built-in operators and functions 42
Binary operators 43
Unary operators 48
Built-in aggregate functions 48
Section 4 — POSTQUEL Commands (COMMANDS) 50
General Information 50
Constants 50
Fields and Attributes 52
Operators 53
Expressions 53
Commands 58
Abort 58
Addaur 59
Append 60
Attachas 63
Begin 64
Change ACL 6$
Close 67
Cluster 68
Copy 69
Create 71
Createdb 73
Create Version 74
Define Aggregate 75
Define Function 77
Define Index 86
Define Operator 90
Define Rule 94
Define Type 97

-,

03/1154

CONTENTS(MANUAL) CONTENTS(MANUAL)
Define View 100

Delete 101

Destroy 102

Destroydb 103

End 104

Extend Index 108

Fetch 106

Listen 107

Load 108

Merge 109

Move 110

Notify 111

Purge 112

Remove Aggregate 113

Remove Function 114

. Remove Rule 117
Remove Type 118

Rename 119

Replace 120

Retrieve 122

Vacuum 126

Section § — Li 127
Control and Initialization 127
Environment Variables 127

Internal Variables 127

Query Execution Functions 128
Portal Functions 130
Asynchronous Portals and Notification 133
Misceilaneous Functions 134
Functions Associated with the COPY Command 134

LIBPQ Tracing Functions 135

User Authentication Functions 136

Sample Programs 137
Section 6 — Fast Path 144
Section 7 — Large Objects 145
Backend Interface 146
LIBPQ Interface 150
Sample Large Object Programs 152
Section 8 — System Catalogs 157
Section 8 — Files 166
General Information 166
Backend Interface — BKI 167

Page Structure 169
Template 171
References 172

03/11/54

«

INTRODUCTION(POSTGRES) INTRODUCTION(POSTGRES)

SECTION 1 — INTRODUCTION

OVERVIEW
This document is the reference manual for the POSTGRES database management system under develop-
ment at the University of California at Berkeley. The POSTGRES project, led by Professor Michael Stone-
braker, has been sponsored by the Defense Advanced Research Projects Agency (DARPA), the Army
Research Office (ARO), the National Science Foundation (NSF), and ESL, Inc.

POSTGRES is distributed in source code fonmat and is the property of the Regents of the University of Cal-
ifomia. However, the University will grant unlimited commercialization rights for any derived work on
the condition that it obtain an educational license to the derived work. For further information, consult the:
Berkeley Campus Software Office, 295 Evans Hall, University of California, Berkeley, CA 94720. Note
that there is no organization who can help you with any bugs you may encounter or with any other prob-
lems. In other words, this is unsupported software.

POSTGRES DISTRIBUTION
This reference describes Version 4.2 of POSTGRES. The POSTGRES software is about 200,000 lines of C

code. Information on obtaining the source code is available from:

Claire Mosher

Computer Science Division
521 Evans Hall

University of California
Berkeley, CA 94720

(510) 6424662

Version 4.2 has been tuned modestly. Hence, on the Wisconsin benchmark, one should expect perfor-
mance about twice that of the public domain, University of California version of INGRES, a relational pro-
totype from the late 1970s.

As distributed, POSTGRES runs on Digital Equipment Corporation computers based on MIPS R2000 and
R3000 processors (under Ultrix 4.2A and 4.3A), Digital Equipment Carporation computers based on
Alpha AXP (DECchip 21064) processors (under OSF/1 1.3), Sun Microsystems computers based on
SPARC processors (under SunOS 4.1.3), Hewlett-Packard Model 9000 Series 700 and 800 computers
based on PA-RISC processors (under HP-UX 9.00 and 9.01), and Intemnational Business Machines
RS/6000 computers based on POWER processors (under AIX 3.2.5). POSTGRES users have ported previ-
ous releases of the system to many other architectures and operating systems, including NeXTSTEP ,
Solaris 2.2, IRIX, Intel System V Release 4, Linux and NetBSD.

POSTGRES DOCUMENTATION
This reference manual describes the functionality of Version 4.2 and contains notations where appropriate
to indicate which features are not implemented in Version 4.2. Application developers should note that
this reference contains only the specification for the low-level call-oriented application program interface,
LIBPQ. A companion volume, the POSTGRES User Manual, contains tutorial examples of the ways in

which the system can be extended.

The remainder of this reference manual is structured as follows. In Section 2 (UNIX), we discuss the
POSTGRES capabilities that are available directly from the operating system. Section 3 (BUILT-INS)
describes POSTGRES internal data types, functions, and operators. Section 4 (COMMANDS) then
describes POSTQUEL, the language by which a user interacts with 2 POSTGRES database. Then, Section §
(LIBPQ) describes a library of low level routines through which a user can formulate POSTQUEL queries

03/1294 1

INTRODUCTION(POSTGRES) INTRODUCTION(POSTGRES)

from a C program and get appropriate return information back to his program. Next, Section 6 (FAST
Pmmmm.mmaamwwmmmmmmmm-
GRES with very high performance. Section 7 (LARGE OBJECTS) describes the intemnal POSTGRES inter-
face for accessing large objects. Section 8 (SYSTEM CATALOGS) gives a brief explanation of the tables
used internally by POSTGRES. The reference concludes with Section 9 (FILES), a collection of file format
descriptions for files used by POSTGRES.

ACKNOWLEDGEMENTS
POSTGRES has been constructed by a team of undergraduate, graduate, and staff programmers. The con-
uim(mamwm)mwwmmmmxmwxmmm
Chang, Jolly Chen, Ron Choi, Maz Dillon, Zelaine Fong, Adam Glass, Jeffrey Goh, Steven Grady, Serge
Granik, Marti Hearst, Joey Hellerstein, Michael Hirohama, Chin-heng Hong, Wei Hong, Anant Jhingran,
. Greg Kemnitz, Marcel Komacker, Case Larsen, Boris Livshitz, Jeff Meredith, Ginger Ogle, Michael
Olson, Nels Olson, Lay-Peng Ong, Carol Paxson, Avi Pfeffer, Spyros Potamianos, Sunita Sarawagi, David
Muir Sharnoff, Mark Sullivan, Cimarron Taylor, Marc Teitelbaum, Yongdong Wang, Kristin Wright and
Andrew Yu. The HP-UX port is courtesy of Richard Tumbull (University of Liverpool) and Sebastian Fer-
nandez (University of California at Berkeley). The initial AIX port was performed by Rafael Morales
Gamboa (ITESM Campus Morelos, Cuemavaca). Carl Staclin of H-P Laboratories and Steve Miley of
UCSB/CRSEO provided the computing resources that enabled us to integrate these ports into the POST-
GRES distribution.
Marc Teitelbaum served as chief programmer for Version 4.2 and was responsible for overall coordination
of the project.
This reference was collectively written by the above implementation team, assisted by Bob Devine, Jim
Frew, Chandra Ghosh, Claire Mosher and Michael Stonebraker.

LEGAL NOTICES
POSTGRES is copyright © 1989, 1994 by the Regents of the University of California. Permission to use,

copy, modify, and distribute this software and its documentation for educational, research, and non-profit
pmmmmdwi&wtfeeishaebygmwdpmvidedhm&eabowwpyﬁ@mﬁwamhaﬂwpks
anddmwhﬂmeopyﬁgmnoﬁeeandmispcnnissimnodwwmsmﬁngdmnwlaﬁon.anddm
the name of the University of California not be used in advertising or publicity pertaining to distribution of
the software without specific, written prior permission. Permission to incorporate this software into com-
mercial products can be obtained from the Campus Software Office, 295 Evans Hall, University of Califor-
nia, Berkeley, Ca., 94720. The University of California makes no representations about the suitability of
this software for any purpose. It is provided “as is” without express or implied warranty.

UNIX is a trademark of Unix Systems Laboratorics. Sund, SPARC, SunOS and Solaris are trademarks of
Sun Microsystems, Inc. DEC, DECstation, Alpha AXP and ULTRIX are trademarks of Digital Equipment
Corp. PA-RISC and HP-UX are trademarks of Hewleu-Packard Co. RS/6000, POWER and AIX are
trademarks of Intemational Business Machines Corp. OSF/1 is a trademark of the Open Systems Founda-
tion. NeXTSTEP is a trademark of NeXT Computer, Inc. MIPS and IRIX are trademarks of Silicon

03/12/94 2

[

INTRODUCTION(UNIX) INTRODUCTION(UNIX)

SECTION 2 — UNIX COMMANDS (UNIX)

OVERVIEW
This section contains information on the interaction between POSTGRES and the operating system. In par-
ticular, the pages of this section describe the POSTGRES support programs that are executable as UNIX
commands.

TERMINOLOGY
In the following documentation, the term site may be interpreted as the host machine on which POSTGRES
is installed. However, since it is possible to install more than one set of POSTGRES databases on a single
host, this term more precisely denotes any particular set of installed POSTGRES binaries and databases.

The POSTGRES super-user is the user named “postgres” (usually) who owns the POSTGRES binaries and
database files. As the database super-user, all protection mechanisms may be bypassed and any data
accessed arbitrarily. In addition, the POSTGRES super-user is allowed to execute some support programs
which are generally not available to all users. Note that the POSTGRES super-user is nor the same as the
UNIX super-user. root, and should have a non-zero userid.

The database base adminisirator oc DBA, is the person who is responsible for installing POSTGRES to
enforce a security policy for a site. The DBA will add new users by the method described below, change
the status of user-defined functions from untrusted to trusted as explained in define function(commands),
and maintain a set of template databases for use by createdb(unix).

The postmaster is the process that acts as a clearing-house for requests to the POSTGRES system. Frontend .
applications connect to the postmaster, which keeps tracks of any system errors and communication
between the backend processes. The postmaster can take scveral command-line arguments to tune its
behavior. but supplying arguments is necessary oanly if you intend to run multiple sites or a non-default site.
See posimaster(unix) for details.

The POSTGRES backend (../bin/postgres) may be executed directly from the user shell by the POSTGRES
super-user (with the database name as an argument). However, doing this bypasses the shared buffer pool
and lock table associated with a postmaster/site, so this is not recommended in a multiuser site.

NOTATION
*.../” at the front of a file name is used to represent the path to the POSTGRES super-user's home directory.

Anything in brackets (“[” and “|") is optional. Anything in braces (“{" and *}~) can be repeated 0 or more
times. Parentheses (“(" and *)”) are used to group boolean expressions. “I” is the boolean operator OR .

USING POSTGRES FROM UNIX
All POSTGRES commands that are executed directly from a UNIX shell are found in the directory *“../bin".

Including this directory in your search path will make executing the commands easier.

A collection of system catalogs exist at each site. These include a class (“pg_user”™) that contains an
instance for each valid POSTGRES user. The instance specifies a set of POSTGRES privileges, such as the
ability to act as POSTGRES super-usez, the ability to create/destroy databases, and the ability to update the
system catalogs. A UNIX user cannot do anything with POSTGRES until an appropriate instance is installed
in this class. Further information on the system catalogs is available by running queries on the appropriate
classes.

USER AUTHENTICATION
Authenticarion is the process by which the backend server and postmaster ensure that the user requesting

access to data is in fact who he/she claims to be. All users who invoke POSTGRES are checked against the
contents of the “pg_user” class to ensurc that they are authorized to do so. However, verification of the

03/12/94 3

INTRODUCI'ION(UNDO INTRODUCTION(UNIX)

user’s actual identity is performed in a variety of ways.
From the user shell

A backend server started from a user shell notes the user’s (real) user-id before performing a seruid(3) to
the user-id of user “postgres”. The real user-id is used as the basis for access control checks. No other
autheatication is conducted.

From the network

If the POSTGRES system is built as distributed, access to the Intemet TCP port of the postmaster process is
completely unresricted. That is, any user may connect to this post, spoof the postmaster, pose as an autho-
rized user and issue any commands desired. However, since this port is configurable and not normally
advertised in any public files (e.g., /etc/services), some administrators may be satisfied with security-by-
obscurity.

a If greater security is desired, POSTGRES and its clieats may be modified to use a network authentication
system. For example, the postmaster, monitor and libpq have aiready been configured to use either Version
4 or Version § of the Kerberos authentication system from the Massachuseus Institute of Technology. For
more information on using Kerberos with POSTGRES, sce the appendix below.

ACCESS CONTROL
POSTGRES provides mechanisms to allow users to limit the access to their data that is provided to other

users.

Database superusers

Database super-users (i.e., users who have “pg_user.usesuper” set) silently bypass all of the access controls
described below with two exceptions: manual system catalog updates are not permitted if the user does not
have “pg_user.usecatupd™ set, and destruction of system catalogs (or modification of their schemas) is never
allowed.

Access control lists

The use of access control lists to limit reading, writing and setting of rules on classes is covered in change
acl(commands).

Class removal and schema modification

Commands that destroy or modify the structure of an existing class, such as addatir, destroy, rename, and
remove index, only operate for the owner of the class. As mentioned above, these operations are never pet-
mitted on system catalogs.
FUNCTIONS AND RULES

Functions and rules allow users to insert code into the backend server that other users may execute without
knowing it. Hence, both mechanisms permit users to trojan horse others with relative impunity. The only
real protection is tight control over who can define functions (e.g., write to relations with POSTQUEL fields)
and rules. Audit trails and alerters on “pg_class”, “pg_user” and “pg_group” are also recommended.

Functions

Functions written in any language except POSTQUEL with “pg_proc.proistrusted” set run inside the back-
end server process with the permissions of the user “postgres” (the backend server runs with its real and
effective user-id set to *“postgres”™). It is possible for users to change the server’s internal data structures
from inside of trusted functions. Hence., among many other things, such functions can circumvent any sys-
tem access controls. This is an inherent problem with trusted functions.

Non-POSTQUEL functions that do not have “pg_proc.proistrusted” set run in a scparate unirusted-function
process spawned by the backend server. If correctly installed, this process runs with real and effective user-
id set to “nobody” (or some other user with strictly limited permissions). It should be noted, however, that

03/12/94 4

(o]

\a

INTRODUCTION(UNIX) INTRODUCTION(UNIX)

the primary purpose of untrusted functions is actually to simplify debugging of user-defined functions
(since buggy functions will only crash or corrupt the untrusted-function process instead of the server pro-
cess). The current RPC protocol only works in one direction, so any function that make function-manager
calls (e.g., access method calls) or performs other database file operations must be trusted.

Since untrusted functions are a new feawre in Version 4.2, the define function command still defaults to
making new functions trusted. This is a massive security hole that will be removed in a later release, once
the (mis)features and interface of untrusted functions have stabilized. (An additional access control will be
added for defining functions, analogous to the access control on defining rules.)

Like other functions that perform database file operations, POSTQUEL functions must run in the same
address space as the backend server. The “pg_proc.proistrusted” field has no effect for POSTQUEL func--
tions, which always run with the permissions of the user who invoked the backend server. (Otherwise,
users could circumvent access controls — the “nobody™ user may well be allowed greater access to a par--
ticular object than a given user.)

Rules

Like POSTQUEL functions, rules always run with the identity and permissions of the user who invoked the
backend server.

SEE ALSO
postmaster(unix), addatr(commands), append(commands), change aci(commands), copy(commands),
define rule(commands), delete(commands), destroy(commands), remove index(commands), remove.
rule(commands). rename(commands), replace(commands), retrieve(commands), kerberos(1), kinit(1), ker-

beros(3)

CAVEATS
There are no plans to explicitly support encrypted data inside of POSTGRES (though there is nothing to pre-
vent users from encrypting data within user-defined functions). There are no plans to explicitly support
encrypted network connections. either, pending a total rewrite of the frontend/backend protocol.

User names, group names and associated system identifiers (e.g., the contents of “pg_user.usesysid™) are
assumed to be unique throughout a database. Unpredictable results may occur if they are not.

User system identifiers are currently UNIX user-ids.

APPENDIX: USING KERBEROS
Availability
The Kerberos authentication system is not distributed with POSTGRES., nor is it available from the Univer-
sity of California at Berkeley. Versions of Kerberos are typically available as optional software from oper-
ating system vendors. In addition, a source code distribution may be obtained through MIT Project Athena
by anonymous FTP from ATHENA-DISTMIT.EDU (18.71.0.38). (You may wish to obtain the MIT ver-
sion even if your vendor provides a version, since some vendor ports have been deliberately crippled or ren-
dered non-interoperable with the MIT version.) Users located outside the United States of America and
Canada are warned that distribution of the actual encryption code in Kerberos is restricted by U. S. govemn-
ment export regulations.
Any additional inquiries should be directed to your vendor or MIT Project Athena (“info-
kerberos@ ATHENA MIT.EDU™). Note that FAQLs (Frequenty-Asked Questions Lists) are periodically
posted to the Kerberos mailing list, *kerberos@ ATHENA.MITEDU” (send mail to ‘“kerberos-
request@ ATHENA .MIT.EDU™ 10 subscribe), and USENET news group, *“comp.protocols.kerberos”.

Installation

Installation of Kerberos itself is covered in detail in the Kerberos Installation Notes. Make sure that the
server key file (the srviab or keytab) is somehow readable by user “postgres”.

03/12/94 5

INTRODUCTION(UNIX) INTRODUCTION(UNIX)

POSTGRES and its clients can be compiled to use cither Version 4 or Version 5 of the MIT Kerberos proto-
cols by setting the KRBVERS variable in the file “../src/Makefile.globel” to the appropriate value.” You can
also change the location where POSTGRES expects to find the associated libraries, header files and its own
server key file,

After compilation is complete, POSTGRES must be registered as a Kerberos service. See the Kerberos
Operations Notes and related manual pages for more details on registering services.

Operation

After initial installation, POSTGRES should operate in all ways as a normal Kerberos service. For details on
the use of authentication, see the manual pages for postmaster(unix) and monitor (unix).

In the Kerberos Version 5 hooks, the following assumptions are made about user and service naming: (1)
user principal names (anames) are assumed to contain the actual UNIX/POSTGRES user name in the first
component; (2) the POSTGRES service is assumed to be have two components, the service name and a host-
name, canonicalized as in Version 4 (i.e., all domain suffixes removed).

user example: frewd@S2K.ORG
user example: aoki/HOST=miyu.S2K.Berkeley.EDUGS2K.ORG
host example: postgres_dbms/ucbvax@S2K.ORG

Support for Version 4 will disappear sometime after the production release of Version 5 by MIT.

03/12/954 6

1]

CREATEDB(UNIX) CREATEDB(UNIX)

NAME
createdb — create a database

SYNOPSIS
cresatedb [-a system] [-h bost] [-p port] [dbname]

DESCRIPTION
Createdb creates a new database. The person who executes this command becomes the database adminis-
trator, or DBA, for this database and is the only person, other than the POSTGRES super-user, who can
destroy it.

Createdb is a shell script that invokes the POSTGRES monitor. Heace, a postmaster process must be run-
ning on the database server host before createdb is executed. In addition, the PGOPTION and PGREALM
environment variables wiil be passed on to monitor and processed as described in monitor(unix).

The optional argument dbname specifies the name of the database to be created. The name must be unique
among all POSTGRES databases. Dbname defaults to the value of the USER environment variable,

Createdb understands the following command-line options:

-a system
Specifies an authentication system system (see introduction(unix)) to use in connecting to the post-
master process. The default is site-specific.

-h host
Specifies the hostname of the machine on which the postmasrer is running. Defaults to the name of
the local host, or the value of the PGHOST environment variable (if set).

-p pont
Specifies the Intemnet TCP port on which the posimasier is listening for connections. Defaults to
4321, or the value of the PGPORT environment variable (if set).

EXAMPLES
create the demo database
createdb demo

create the demo database using the postmaster on host eden,
port 1234, using the Kerberos authentication system.
createdb -a kerberos -p 1234 -h eden demo

FILES
SPGDATA /base/dbname
The location of the files corresponding (o the database dbname.

SEE ALSO
createdb(commands), destroydb(unix), initdb(unix), monitor(unix), postmaster(unix).

DIAGNOSTICS
Error: Failed to connect to backend (bost=xxx, port=xxx)
Createdb could not attach to the postmaster process on the specified host and port. If you see this
message, ensure that the postmaster is running on the proper host and that you have specified the
proper port. If your site uses an authentication system. ensure that you have obtained the required
authentication credentials.

0172393 7

CREATEDB(UNIX) CREATEDB(UNIX)

user “username” is not in “pg_user”
You do not have a valid entry in the relation “pg_user” and cannot do anything with POSTGRES at all;

user “username” is not allowed to create/destroy databases

You do not have permission to create new databases; contact your POSTGRES site administrator.
dbname already exists

The database aiready exists.

database creation fatled on dbname
An intemal error occurred in monitor or the backend server. Ensure that your POSTGRES site admin-
istrator has properly installed POSTGRES and initialized the site with initdb.

012393 8

L]

CREATEUSER(UNIX) CREATEUSER(UNIX)

NAME
createuser — create a POSTGRES user

SYNOPSIS
createuser [-a system) (-b host] [-p port] [username)

DESCRIPTION
Createuser creates a new POSTGRES user. Only users with “usesuper” set in the “pg_user” class can create

new POSTGRES users. As shipped. the user “postgres™ can create users.

Createuser is a shell script that invokes monitor. Hence. a postmaster process must be running on the
database server host before createuser is executed. In addition, the PGOPTION and PGREALM environment
variables will be passed on to monitor and processed as described in monitor(unix).

The optional argument username specifies the name of the POSTGRES user to be created. (The invoker will
be prompted for a name if none is specified on the command line.) This name must be unique among all
POSTGRES users.

Createuser understands the following command-line options:

-a system
Specifies an authentication system system (see introduction(unix)) to use in connecting (o the post-
master process. The default is site-specific.

-h host
Specifies the hostname of the machine on which the postmaster is running. Defaults o the name of
the local host, or the value of the PGHOST environment variable (if set).

p pont
Specifies the Internet TCP port on which the postmaster is listening for connections. Defaults to
4321, or the value of the PGPORT environment variable (if set).

INTERACTIVE QUESTIONS
Once invoked with the above options, creareuser will ask a series of questions. The new users’s login name
(if not given on the command line) and user-id must be specified. (Note that the POSTGRES user-id must be
the same as the user's UNIX user-id.) In addition, you must describe the security capabilities of the new
user. Specifically, you will be asked whether the new user should be able to act as POSTGRES super-user,
create new databases and update the system catalogs manually.

SEE ALSO
destroyuser(unix), monitor(unix), postmaster(unix).

DIAGNOSTICS
Error: Failed to connect to backend (host=xxx, port=xxx)
Createuser could not attach to the posrmaster process on the specified host and port. If you see this
message, ensure that the posimaster is running on the proper host and that you have specified the
proper port. If your site uses an authentication system, ensure that you have obtained the required
authentication credentials.

user ‘“username” is not in “pg_user”
You do not have a valid entry in the relation “pg_user” and cannot do anything with POSTGRES at all;
contact your POSTGRES site administrator.

username cannot create users.
You do not have permission to create new users: contact your POSTGRES site administrator.

user “username” already exists
The user to be added already has an entry in the “pg_user” class.

012393 9

CREATEUSER(UNIX) CREATEUSER(UNIX)

database access failed
An intemal error occurred in monitor or the backend sexrver. Ensure that your POSTGRES site admin-
istrator has properly installed POSTGRES and initialized the site with initdb.

BUGS
POSTGRES user-id’s and user names should not have anything to do with the constraints of UNIX.

012393 10

]

DESTROYDB(UNIX) DESTROYDB(UNIX)

NAME
destroydb — destroy an existing database

SYNOPSIS
destroydb [-a system] {-h host] [-p port) (dbname])

DESCRIPTION
Destroydb destroys an existing database. To execute this command, the user must be the database adminis-
trator, or DBA, for this database. The program runs silently; no confirmation message will be displayed.
After the database is destroyed, a UNIX shell prompt will reappear.

Destroydb is a shell script that invokes monitor. Hence, a posimaster process must be running on the
database server host before desrroydb is executed. In addition, the PGOPTION and PGREALM environment
variables will be passed on to monitor and processed as described in monitor(unix).

The optional argument dbname specifies the name of the database to be destroyed. All references to the
database are removed, including the directory containing this database and its associated files. Dbname
defaults to the value of the USER environment variable.

Destroydb understands the following command-line options:

-a system
Specifies an authentication system system (see introduction(unix)) to use in connecting to the posr-
master process. The default is site-specific.

-h host
Specifies the hostname of the machine on which the posmmaster is running. Defaults to the name of
the local host, or the value of the PGHOST environment variable (if set).

-p port
Specifies the Internet TCP port on which the postmaster is listening for connections. Defaults to
4321, or the value of the PGPORT environment variable (if set).

EXAMPLES
destroy the demo database

destroydb demo

destroy the demo database using the postmaster on host eden,
port 1234, using the Kerberos authentication system.
destroydb -a kerberos -p 1234 -h eden demo

FILES
SPGDATAbase/dbname
The location of the files comresponding to the database dbname.

SEE ALSO
destroydb(commands), createdb(unix), initdb(unix), monitor(unix). postmaster(unix).

DIAGNOSTICS
Error: Failed to connect to backend (host=xxx, port=xxx)
Destroydb could not attach to the postmaster process on the specified host and port. If you see this
message, ensure that the postmaster is running on the proper host and that you have specified the
proper port. If your site uses an authentication system, ensure that you have obtained the required
authentication credentials.

012393 11

DESTROYDB(UNIX) DESTROYDB(UNIX)

user “username” Is not in “pg_user”
You do not have a valid entry in the relation “pg_user” and cannot do anything with POSTGRES at ail;

contact your POSTGRES site administrator.

user “username” Is not aliowed to create/destroy databases
You do not have permission to destroy databases; contact your POSTGRES site administrator.

database “dbname” does not exist
The database to be removed does not have an entry in the “pg_database” class,

database “dbname” is not owned by you
You are not DBA for the specified database.

database destroy failed on dbname
An intemal exror occurred in monitor or the backend server. Contact your POSTGRES site adminis-
trator to ensure that ensure that the files and database entries associated with the database are com-

pletely removed.

0172393 12

[}

DESTROYUSER(UNIX) DESTROYUSER(UNIX)

NAME
destroyuser — destroy a POSTGRES user and associated databases

SYNOPSIS
destroyuser {-a system] (-h host) [-p port] (username}

DESCRIPTION
Destroyuser destroys an existing POSTGRES user and the databases for which that user is database adminis-
trator. Only users with “usesuper” set in the “pg_user” class can destroy new POSTGRES users. As
shipped, the user *‘postgres”™ can destroy users.
Destroyuser is a shell script that invokes monitor. Hence, a postmaster process must be running on the
database server host before destroyuser is executed. In addition, the PGOPTION and PGREALM eaviron-
ment variables will be passed on to monitor and processed as described in monitor (unix).

The optional argument username specifies the name of the POSTGRES user 0 be destroyed. (The invoker
will be prompted for a name if none is specified on the command line.)

Destroyuser understands the following command-line options:

-a system
Specifies an authentication system system (see infroduction(unix)) to use in connecting to the post-
master process. The default is site-specific.

-h host
Specifies the hostname of the machine on which the postmaster is running. Defaults to the name of
the local host, or the value of the PGHOST environment variable (if set).

-p pont
Specifies the Internet TCP port on which the postmaster is listening for connections. Defaults to
4321, or the value of the PGPORT environment variable (if set).

INTERACTIVE QUESTIONS
Once invoked with the above options, destroyuser will wam you about the databases that will be destroyed
in the process and permit you to abort the removal of the user if desired.

SEE ALSO
createuser(unix), monitor(unix), postmasten(unix).

DIAGNOSTICS
Error: Failed to connect to backend (host=xxx, port=xxrx)
Destroyuser could not attach to the postmaster process on the specified host and port. If you see this
message, ensure that the postmaster is running on the proper host and that you have specified the
proper port. If your site uses an authentication system, ensure that you have obtained the required
authentication credentials,

user “‘username” is not in “‘pg_user”
You do not have a valid entry in the relation “pg_user” and cannot do anything with POSTGRES at all;
contact your POSTGRES site administrator.

username cannot delete users.
You do not have permission to delete users; contact your POSTGRES site administrator.

user “username”’ does not exist
The user to be removed does not have an entry in the *pg_user” class.

database access failed

0172393 13

DESTROYUSER(UNIX) DESTROYUSER(UNIX)

destroydb on dbname failed - exiting

delete of user username was UNSUCCESSFUL
An internal error occurred in monitor or the backend server. Contact your POSTGRES site adminis-
trator to ensure that the files and database entries associated with the user and his/her associated
databases are completely removed.

01/23/93 14

ICOPY(UNIX)

NAME

ICOPY(UNIX)

icopy - copy files between Unix and Inversion file systems

SYNOPSIS

icopy direction —d dbname -8 smgr
(-R] [~a] (~h host] (~p portnum] [-v] srcfile destfile

DESCRIPTION

Icopy copies files between the Inversion file system and the UNIX file system. This program is a libpg
client program, and the Inversion file system is a transaction-protected file system used by the Sequoia 2000
research project at UC Berkeley. Inversion provides the same file system services provided by the UNIX
fast file system, but does not support an NFS interface at present. In order to make it easier to use Inver-
sion, a suite of utility programs, including icopy, has been written to manage files.

The user specifies the host and port on which POSTGRES is running, and the database and storage manager

to use for file storage. The direction of the copy specifies whether files should be copied from UNIX to
Inversion (in), or from Inversion to UNIX (owr). The user also supplies two file names for the source and

destination of the copy.

ARGUMENTS

The first five arguments listed here are required.

direction

-d dbname

-s smgr

srchile

destfile

The direction of the copy. If the direction is in, then the file is copied from UNIX into Inver-
sion. If the direction is out, then the file is copied out of Inversion to UNIX. The direction
argument affects the interpretation of the source and destination file names, and may make
some other flags (such as —s) optional (see helow). This argument must immediately follow

the program name.

The database to use for file storage. The user should have permission to create objects in
dbname. The database name must be supplied; there is no default.

Use smgr as the storage manager for the file. Storage managers in POSTGRES manage physi-
cal devices, so this flag gives the user a way of controlling the device on which his file should
be stored. If the direction of the copy is in, then the storage manager must be specified. If the
direction of the copy is owr, then the storage manager flag is optional. and is ignored if it is
supplied.

The list of available storage managers may be obtained by typing

icopy

with no options: the resulting usage message includes a list of storage managers supported.

The file from which to copy. If direction is in, then this is the name of a file or directory on the
UNIX file system. If direction is out, then this is the name of a file or directory on the Inver-
sion file system.

If srcfile is a directory and the —R flag is supplied, then the tree rooted at srcfile is copied. It is
an error to specify a directory 10 copy without supplying the ~R flag.

The file to which to copy. If direction is in, then this is the name of an Inversion file or direc-
tory. If direction is ow, then destfile is the name of a UNIX file or directory.

If destfile already exists and is a directory, then srcfile will be created in the directory destfile.

The following arguments are optional.

03/1193 15

ICOPY(UNIX) ICOPY(UNIX)

-hhost Specifies the hostname of the machine on which the postmaster is running. Ddan!tnolhe
name of the local host, or the value of the PGHOST environment variable (if set).

-pport Specifies the Internet TCP port on which the postmaster is listening for connections. Defauits
t0 4321, or the value of the PGPORT eavironment variable (if set).

-R Copy a directory tree recursively. Rather than copying a single file, the tree rooted at srcfile is
copied (o a tree rooted at destfile.

-a Copy all files, including those beginning with a dot. This flag is useful only in conjunction
with -R. Normally, recursive copies of a directory tree will not copy files or directories whose
names begin with a dot.

-V Tum verbose mode on. Icopy will report its progress as it moves files to or from Inversion.

EXAMPLES
The command

BUGS

icopy in -h myhost -p 4321 -d mydb -s d /vmunix /inv_vmunix

copies the UNIX file “/vmunix” to the Inversion file “/inv_vmunix”. The Inversion file is stored in the
database “mydb” by the POSTGRES backend running on machine “myhost” and listening on port number

4321.

The command

icopy out -h myhost -p 4321 -d mydb /inv_vmunix /vmunix.dup

copies it back out again, putting the copy in the UNIX file “/vmunix.dup”.

The POSTGRES file system code should support operations via NFS, so this program actually has no right

10 exist.

See introduction(large objects) for filename and path limitations imposed by the Inversion file system.

03/1193 16

v

INITDB(UNIX) INITDB(UNIX)

NAME

initdb — initalize the database templates and primary directories
SYNOPSIS

initdb (-v]{-d]([-n)

DESCRIPTION

Initdb sets up the initial template databases and is normally executed as part of the installation process. The

template database is created under the directory specified by the the environment variable PGDATA . or 10 a

default specified at compile-time. The template database is then vacuumed.

Initdb is a shell script that invokes the backend server directly. Hence, it must be executed by the POST-

GRES super-user.

Initdb understands the following command-line options:

-v Produce verbose output, printing messages stating where the directories are being created, etc.

-d Print debugging output from the backend server. This option generates a tremendous amount of
information. This option also turns off the final vacuuming step.

-n Run in *noclean™ mode. By default. initdb cleans up (recursively unlinks) the data directory if any
error occurs. which also removes any core files left by the backend server. This option inhibits any
tidying-up.

SPGDATA/base
The location of global (shared) classes.

SPGDATA/basc/template !
The location of the template database.

SPGDATA/files/{ globall.local I_template 1 } .bki
Command files used to gencrate the global and template databases, generated and installed by the
initial compilation process.
SEE ALSO
createdb(unix), vacuum(commands), bki(files), template(files).

02/14/94 17

IPCCLEAN(UNIX) IPCCLEAN(UNIX)

NAME
ipcclean — clean up shared memory and semaphores from aborted backends

SYNOPSIS
ipcclean

DESCRIPTION
Ipcclean cleans up shared memory and semaphore space from aborted backends by deleting all instances
owned by user “postigres”. Only the DBA should execute this program as it can cause bizame behavior (i.c.,
crashes) if run during multi-user execution. This program should be executed if messages such as semget:
No space left on device are encountered when starting up the postmaster or the backend server.

BUGS
If this command is executed while a posrmaster is running, the shared memory and semaphores allocated
by the postmaster will be deleted. This will result in a general failure of the backends servers started by
that postmaster.
This script is a hack, but in the many years since it was written, no one has come up with an equally effec-
tive and portable solution. Suggestions are welcome.

01/23/93 18

s

()

MONITOR(UNIX) MONITOR(UNIX)

NAME

monitor — run the interactive terminal monitor

SYNOPSIS

monitor (<N } [-Q] [-T] [-a system] {-c query] [-d path]
(-b hostname}] [-p port] {-q] [-¢ tty_device] {dbname]

DESCRIPTION

The interactive terminal monitor is a simpie frontend to POSTGRES. It enables one to formuliate, edit and
review queries before issuing them to POSTGRES. If changes must be made, a UNIX editor may be called
10 edit the query buffer managed by the terminal monitor. The editor used is determined by the value of
the EDITOR environment variable. If EDITOR is not set, then vi is used by default.

Monitor is a frontend application, like any other. Hence, a postmaster process must be running on the
database server host before monitor is executed. In addition, the correct postmaster port number must be
specified as described below.

The optional argument dbname specifies the name of the database to be accessed. This database must
already have been created using createdb. Dbname defaults o the value of the USER environment variable.

Monitor understands the following command-line options:

-N Specifies that query results will be dumped to the screen without any attempt at formatting. This is
useful in conjunction with the -c option in shell scripts.

-Q Produces extremely unverbose output. This is useful in conjunction with the - option in shell

scripts.

-T Specifies that auribute names will not be printed. This is useful in conjunction with the -c option in
shell scripts.

-a system

Specifies an authentication system system (see introduction(unix)) to use in connecting to the post-
master process. The default is site-specific.

-¢ query
Specifies that monitor is 10 execute one query string, query, and then exit. This is useful for shell
scripts, typically in conjunction with the -N and -T options. Examples of shell scripts in the POST-
GRES distribution using monitor -c include createdb, destroydb, createuser, destroyuser, and vac-
uum.

-d path
path specifies the path name of the file or nty to which frontend (ie., monitor) debugging messages
are 10 be written; the default is not to generate any debugging messages.

-h hostname
Specifies the hostname of the machine on which the postmaster is running. Defaults to the name of

the local host, or the value of the PGHOST environment variable (if set).

-p port
Specifies the Internet TCP port on which the postmaster is listening for connections. Defaults to

4321, or the value of the PGPORT environment variable (if set).

-q Specifies that the monitor should do its work quicdy. By default, it prints welcome and exit mes-
sages and the queries it sends to the backend. If this option is used, none of this happens.

-t tty_device
1ty_device specifies the path name to the file or tty to which backend (i.e., posrgres) debugging mes-
sages are to be written; the default is /dev/null.

02/1254 19

MONITOR(UNIX) MONITOR(UNIX)

You may set environment variables to avoid typing some of the above options. See the ENVIRONMENT
VARIABLES section below.)

MESSAGES AND PROMPTS
The terminal monitor gives a variety of messages to keep the user informed of the status of the monitor and
the query buffer.

When the terminal monitor is executed, it displays the current date and time as well as a prompt.

The terminal monitor displays two kinds of messages:

go The query buffer is empty and the terminal monitor is ready for input. Anything typed will be
added to the buffer.

. This prompt is typed at the beginning of each line when the terminal monitor is waiting for input.

TERMINAL MONITOR COMMANDS
e Enter the editor to edit the query buffer.

8 Submit query buffer to POSTGRES for execution.
\h Get on-line help.

\i filename
Include the file filename into the query buffer.

A\ Print the current contents of the query buffer.

\q Exit from the terminal monitor.

\'s Reset (clear) the query buffer.

\s Escape t0 a UNIX subshell. To return to the terminal monitor. type “exit” at the shell prompt.
\t Print the current time.

\w filename

Store (write) the query buffer to an external file filename.
W\ Produce a single backslash at the current location in query buffer.

ENVIRONMENT VARIABLES
You may set any of the following environment variables to avoid specifying command-line options:
hostname: PGHOST
port PGPORT
wy: PGTTY
options: PGOPTION
realm: PGREALM

If PGOPTION is specified. then the options it contains are parsed before any command-line options.

PGREALM only applies if Kerberos authentication is in use. If this environment variable is set, POSTGRES
will attempt authentication with servers for this realm and use separate ticket files to avoid conflicts with
local ticket files. See introduction(unix) for additional information on Kerberos.

See introduction(libpq) for additional details.

RETURN VALUE
When executed with the -¢ option, monitor returns O to the shell on successful query completion, 1 other-

wise.

02/12/94 20

(X

te

MONITOR(UNIX) MONITOR(UNIX)

SEE ALSO
introduction(libpq), createdb(unix), createuser(unix), posigres(unix), postmastes(unix).
BUGS
Does not poll for asynchronous notification events generated by /isren(commands) and nodfy(commands).

Escapes (backsiash characters) cannot be commented out.

02/12/94 21

NEWBKI(UNIX) NEWBKI(UNIX)

NAME

newbki — change the POSTGRES superuser in the database tempiate files

SYNOPSIS

newbki usemame

DESCRIPTION

Newbki is a script that changes the UNIX user name and user ID of the POSTGRES superuser in the database
template files.

As packaged, POSTGRES assumes that there exists a user named “postgres” on your system with the same
user ID as on our systems. This will not (in general) be the case. Before trying to create any databases,
you should run newbkd to update the template files.

Note that this only updates the files from which the template database will be built if you run the
initdb(unix) command. This in turn implies that you will have to run cleardbdir(unix) to destroy the exist-
ing template database and any existing user databases — initdb will not run unless this has been done.

SPGDATA/base
The location of global (shared) classes.

SPGDATA /base/templatel
The location of the template database.

SPGDATA/files/(globall.locall_templatel | .bki
Command files used to generate the global and template databases, generated and installed by the
initial compilation process. These are the only files modified by newbki.

SEE ALSO

initdb(cleardbdir), createdb(unix), initdb(unix), bki(files), template(files).

CAVEATS

There is no good way to change the POSTGRES user ID after you have started creating new databases. new-
bki is definitely not the recommended way to try to do this. You might think that you can save your
databases in flat files using copy(commands) and then restore them after initdb has been executed. How-
ever, there is the additional problem that the POSTGRES user ID is embedded in the system catalog data

itself.

02/14/94 22

(1]

[

PAGEDOC(UNIX) PAGEDOC(UNIX)

NAME

pagedoc — POSTGRES data page editor

SYNOPSIS

pagedoc [-hibjr] {-d level] [-5 start] (-n count] filename

DESCRIPTION

The pagedoc program understands the layout of data on POSTGRES data pages and can be used to view
contents of a relation filename if it becomes corrupted. Contents are printed to standard output, and proba-
ble errors are flagged with four asterisks (“****™) and a description of the problem.

Several levels of detail are available. Level zero prints only a single summary line per data page in the rela-
tion. The summary line includes the number of items on the page, some allocation information, and what-
ever additional detail is appropriate for the relation type being examined. Level one also prints a single
summary line for each tuple that appears on each page. The wple summary includes the tuple’s position on
the page, its length, and some allocation information. Level two (or higher) prints all of the information
printed by level one, and prints tuple headers for every tuple on the page. The header information displayed
depends on the type of relation being viewed: either HeapTuple or IndexTuple structure entries are possible,
If the relation’s contents are badly damaged, then only level zero is likely to work. Finer levels of detail
assume that more page structure is correct, and so are more seasitive to corruption.

Pagedoc understands the following command-line options:

-h|bjr The type of the relation. Type 4 is heap, b is btree, and r is riree. The default is A.
-d level The detail level to use in displaying pages.

-sstart Start at page number start (zero-based) rather than on page zero.

-0 count
Display data for count pages rather than all of them.

EXAMPLES

Print page and line pointer summaries and tuple headers for a btree index “pg_typeidind™:
pagedoc -b -d2 pg_typeidind
Show the default (level zero) summary of a heap relation “pg_user™

pagedoc pg_user

SEE ALSO

BUGS

page(files).

Finer levels of detail produce a lot of output.
There's no way to skip forward to a page that shows some corruption.
You can only examine contents, you can’t actually fix them.

01/2393 23

PCAT(UNIX) PCAT(UNIX)

NAME
peat — cat an Inversion file to stdout

SYNOPSIS
peat (<D database] (-H host] (-P por) filename {, filename ... }

DESCRIPTION
Peat catenates files from the Inversion file system to standard output.

ARGUMENTS

filename The name of the Inversion file to copy to standard output. If filename is “~" (a single dash),
then standard input is copied.

-D database
Specifies the database to use. Defaults to the value of the environment variable DATABASE
(see below).

-Hhost Specifies the hostname of the machine on which the postmaster is running. Defauits to the
name of the local host, or the value of the PGHOST eavironment variable (if set).

-P port Specifies the Internet TCP port on which the posrmaster is listening for connections. Defaults
to 4321, or the value of the PGPORT environment varigble (if set).

EXAMPLES
The command

pcat /myfilel - /myfile2

copies the contents of Inversion file “/myfilel”, standard input, and the contents of Inversion file “/myfile2”
to standard output.

ENVIRONMENT
If no database is given on the command line, the environment variable DATABASE is checked. If no eavi-

ronment variable DATABASE is present, the command exits with an error stams,

BUGS
See introduction(large objects) for filename and path limitations imposed by the Inversion file system.

012393 A

L

PCD(UNIX) PCD(UNIX)

NAME
ped ~ change directories in an Inversion file system
SYNOPSIS
ped [-D database] [-H host) [-P port] [pathname)
DESCRIPTION
Ped updates the current working directory environment variable.
ARGUMENTS
pathname The name of the directory to change to. If no pathname is given, the path is assumed to be “/".

-D database
Specifies the database to use. Defaults to the value of the environment variable DATABASE

(see below).

-Hhost Specifies the hostname of the machine on which the postmaster is running. Defauits to the
name of the local host. or the value of the PGHOST environment variable (if set).

-P port Specifies the Internet TCP port on which the postmaster is listening for connections. Defaults
t0 4321, or the value of the PGPORT environment variable (if set).

ENVIRONMENT
The environment variable PECWD is checked and updated.

If no database is given on the command line, the environment variable DATABASE is checked. If no envi-
ronment variable DATABASE is present, the command exits with an error stans.

BUGS
See introduction(large objects) for filename and path limitations imposed by the Inversion file system.

0172393 25

PLS(UNIX) PLS(UNIX)

NAME

pls - list contents of the Inversion file system
SYNOPSIS

pis<isflags >

DESCRIPTION
Pis prints directory listings of the Inversion file system. It takes the same arguments as the UNIX s com-
mand.

EXAMPLES
The command

¢

pls -lsga /

prints a long-format listing of all the files in the root directory of Inversion, including size and ownership

information. '
ENVIRONMENT

The environment variable DATABASE is checked to determine the name of the database to use to find Inver-

sion files. PGHOST and PGPORT must be used to specify the hostname of the machine on which the post-

master is running (defaults to the name of the iocal host) and the Intemnet TCP port on which the postmaster

is listening for connections (defauits to 4321), respectively.

BUGS
The database name, port number, and host name to use for database accesses should be passed on the com-
mand line. Unfortunately, almost all the available option letters are already used by Is.

See introduction(large objects) for filename and path limitations imposed by the Inversion file system.

>

0172393 26

PMKDIR(UNIX) PMKDIR(UNIX)

NAME
pmkdir - create a new Inversion file system directory

SYNOPSIS
pmkdir {-D datsbase] [-H host] (-P port] path { path ...)

DESCRIPTION
Pmkdir creates new directories on the Inversion file system. The Inversion file system has a hierarchical
namespace with the same rules as that of the Unix filesystem: components in a pathname are separated by
slashes, and an initial slash refers to the root directory of the file system.

ARGUMENTS
pathname The name of the directory to create.

-D database
Specifies the database to use. Defauits to the value of the environment variable DATABASE

(see below).

-Hhost Specifies the hostname of the machine on which the postmaster is running. Defaults to the
name of the local host, or the value of the PGHOST environment variable (if set).

-P pont Specifies the Internet TCP port on which the postmaster is listening for connections. Defaults
t0 4321, or the value of the PGPORT environment variable (if set).

EXAMPLES
The command

prmkdir /a/b/c/d

creates a new directory “d” as a child of “/a/b/c™. “/a/b/c” must already exist.

ENVIRONMENT
If no database is given on the command line, the environment variable DATABASE is checked. If no envi-
ronment variable DATABASE is present, the command exits with an error status.

The environment variable PFCWD is used for the current directory if the pathname specified is relative.

BUGS
See introduction(large objects) for filename and path limitations imposed by the Inversion file system.

01/2393 27

PMV(UNIX) PMV(UNIX)

NAME
‘pmv - rename an Inversion file or directory
SYNOPSIS
pav (-D database] [-H host] [-P port) oldpath newpaih

DESCRIPTION
Pmv changes the name of an existing file or directory on the Inversion file system. In the case that a direc-
tory is moved, the children of the original directory remain children of the directory under its new name,
ARGUMENTS
oldpath The path name of the file or directory to rename. This must be a fully-qualified path rooted at
“f*, and the named file or directory must exist.
newpath The new pathname for the file or directory. Again, this must be fully qualified, and intermedi-
ate components must exist ~ that is, you cannot move a file to a directory which does not yet
exist.
-D database
Specifies the database to use. Defaults to the value of the environment variable DATABASE
(see below).
-H host Specifies the hostname of the machine on which the postmaster is running. Defaults to the
name of the local host, or the value of the PGHOST environment variable (if set).

-P port Specifies the Internet TCP port on which the posimaster is listening for connections. Defaults
10 4321, or the value of the PGPORT environment variable (if set).

EXAMPLES
The command

pmv c/d b/c/longname

renames the Inversion file “d” in directory “c” to “b/c/longname™.

ENVIRONMENT
If no database is given on the command line, the environment variable DATABASE is checked. If no envi-

ronment variable DATABASE is present, the command exits with an error status.
The environment variable PFCWD is used for the current directory if the pathname specified is relative.

BUGS
See introduction(large objects) for filename and path limitations imposed by the Inversion file system.

01/2393 28

fe.

v

POSTGRES(UNIX) POSTGRES(UNIX)

NAME
postgres — the POSTGRES backend server

SYNOPSIS
postgres (-B n_buffers] [-E] {-P filedes] [-Q]
[-d debug_level] {-o output_file] [-s) (dbname]
DESCRIPTION
The POSTGRES backend server can be executed directly from the user shell. This should be done only
while debugging by the DBA, and should not be done while other POSTGRES backends are being managed
by a posimasier on this set of databases.

The optional argument dbname specifies the name of the database to be accessed. Dbname defauits to the
value of the USER environment variable.

The posigres server understands the following command-line options:

-B n_buffers
If the backend is running under the postmaster, n_buffers is the number of shared-memory buffers

that the postmaster has allocated for the backend server processes that it starts. If the backend is run-
ning standalone, this specifies the number of buffers to allocate. This value defaults to 64.

-E Echo all queries.

-P filedes
filedes specifies the file descriptor that corresponds to the socket (port) on which to communicate to
the frontend process. This option is not useful for interactive use.

-Q Specifies “quiet” mode.

-d debug_level
Tums on debugging at the numeric level debug_level. Tuming on debugging will cause query parse
trees and query plans 1o be displayed.

-o output_file
Sends all debugging and error output to outpur_file. If the backend is running under the postmaster,
error messages are still sent to the frontend process as well as to ourpur_file, but debugging output is
sent to the controlling tty of the postmaster (since only one file descriptor can be sent to an actual
file).

-s Print ime information and other statistics at the end of each query. This is useful for benchmarking
or for use in tuning the number of buffers.

DEPRECATED COMMAND OPTIONS
There are several other options that may be specified, used mainly for debugging purposes. These are listed
here only for the use of POSTGRES system developers. Use of any of these options is highly discouraged.
Furthermore, any of these options may disappear or change at any time.

-AnlriblQnlXn
Turns on memory manager tracing; An prints allocations/deallocation events when they occur, Ar
enables silent record-collection, Ab enables both record-collection and event-printing, AQn prints
recorded events each n tuples processed, and AXn prints recorded events each n transactions pro-

cessed.
This option generates a tremendous amount of output.

-C Don’t check whether database metadescriptions (i.e., PG_VERSION files) are consistent.
-L Tumns off the locking system.

03/12/94 29

POSTGRES(UNIX) POSTGRES(UNIX)

N Disables use of newline as a query delimiter.

S Indicates that the transaction system can run with the assumption of stable main memory, thereby
avoiding the necessary flushing of data and log pages to disk at the end of each transaction system.
This is only used for performance comparisons for stable vs. non-stable storage. Do not use this in
other cases, as recovery after a system crash may be impossible when this option is specified in the
absence of stable main memory.

b Enables generation of bushy query plan trees (as opposed to left-deep query plans trees). These
quplansamnotinmdedforacmalexecuﬁonzinaddiﬁon.lhisﬂagoftencausul’oswkﬂs to
run out of memory.

f Forbids the use of particular scan and join methods: s and { disable sequential and index scans
respectively, while n, m and h disable nested-loop, merge and hash joins respectively. This is
another feature that may not necessarily produce executable plans.

-p Indicates to the backend server that it has been started by a postmaster and make different assump-
tions about buffer pool management, file descriptors, etc.

-tpa{rser}ipl[anner]le[xecutor)

Print timing statistics for each query relating 10 each of the major system modules. This option
cannot be used with -s.

SEE ALSO
ipcclean(unix), monitor(unix), postmaster(unix).

DIAGNOSTICS
Of the nigh-infinite number of error messages you may see when you execute the backend server direcuy,
the most common will probably be:

semget: No space left on device
If you see this message, you should run the ipcclean command. After doing this, try starting post-
gres again. If this still doesn’t work, you probably need to configure your kemel for shared mem-
ory and semaphores as described in the installation notes.

03/12/94 30

.

POSTMASTER(UNIX) POSTMASTER(UNIX)

NAME

postmaster — run the POSTGRES postmaster

SYNOPSIS

postmaster [-B n_buffers] (-D data_dir} [-S] [-a system]
[-b backend_pathname) (-d (debug_level]] [-n)
[-o backend_options] [-p port] [-5]

DESCRIPTION

The postmaster manages the communication between frontend and backend processes, as well as allocating
the shared buffer pool and semaphores (on machines without a test-and-set instruction). The postmaster
does not itself interact with the user and should be started as a background process. Only one postmaster
should be run on a machine.

The postmaster understands the following command-line options:

-B n_buffers
n_buffers is the number of shared-memory buffers for the postmaster 10 allocate and manage for the
backend server processes that it starts, This value defaults to 64.

-D data_dir
Specifies the directory to use as the root of the tree of database directories. This directory uses the
value of the environment variable PGDATA. If PGDATA is not set, then the directory used is SPOST-
GRESHOME/data. If neither environment variable is set and this command-line option is not speci-
fied, the default directory that was set at compile-time is used.

-S Specifies that the postmaster process should start up in silent mode. That s, it will disassociate from
the user’s (controlling) tty and start its own process group. This should not be used in combination
with debugging options because any messages printed to standard output and standard error are dis-
carded.

-a system
Specifies whether or not to use the authentication system system (see introduction(unix)) for frontend
applications to use in connecting to the postmaster process. Specify system o enable a system, or
nosystem to disable a system. For example, to permit users to use Kerberos authentication, use -a
kerberos; to deny any unauthenticated connections, use -a noanauth . The default is site-specific.

-b backend_pathname
backend_pathname is the full pathname of the POSTGRES backend server executable file that the

posimaster will invoke when it receives a connection from a frontend application. If this option is
not used, then the postmaster tries w find this executable file in the directory in which its own
executable is located (this is done by looking at the pathname under which the postmaster was
invoked. If no pathname was specified, then the PATH environment variable is searched for an
executable named “postgres™).
-d [debug_level}

The optional argument debug_level determines the amount of debugging output the backend servers
will produce. If debug_level is one, the postmaster will trace all connection traffic, and nothing else.
For levels two and higher, debugging is nurned on in the backend process and the postmaster displays
more information, including the backend environment and process traffic. Note that if no file is spec-
ified for backend servers to send their debugging output (e.g., using the -t option of monitor or the -0
option of posigres) then this output will appear on the controlling tty of their parent postmaster.

-m, -§
The -5 and -n options control the behavior of the postmaster when a backend dies abnormally. Nei-
ther option is intended for use in ordinary operation.

02/1294 3

POSTMASTER(UNIX) POSTMASTER(UNIX)

The ordinary strategy for this situation is to notify all other backends that they must terminate and
then reinitialize the shared memory and semaphores. This is because an errant backend could have
corrupted some shared state before terminating.
If the -s option is supplied. then the postmaster will stop all other backend processes by sending the
signal SIGSTOP , but will not cause them to terminate. This permits system programmers to collect
core dumps from all backend processes by hand.
If the -n option is supplied, then the postmaster does not reinitialize shared data structures. A knowl-
cdgable system programmer can then use the shmemdoc program to examine shared memory and
semaphore state,

-0 backend_options
The postgres(unix) options specified in backend_options are passed to all backend server processes
started by this postmaster. If the option string contains any spaces, the entire string must be quoted.

-ppont
Specifies the Intemet TCP port on which the posrmaster is to listen for connections from frontend
applications. Defaults to 4321, or the value of the PGPORT environment variable (if set). If you
specify a port other than the default port then all frontend application users must specify the same
port (using command-line options or PGPORT) when starting any libpq application, including the ter-
minal monitor.

WARNINGS
If at all possible, do not use SIGKILL when killing the postmaster. SIGHUP. SIGINT, or SIGTERM (the
defanlt signal for kill(1)) should be used instead. Hence, avoid

kill -KILL
or its alternative form
kill -9

as this will prevent the postmaster from freeing the system resources (e.g., shared memory and semaphores)
that it holds before dying. This prevents you from having to deal with the problem with shmar(2) described
below.
EXAMPLES
start postmaster using default values
postmaster &

This command will start up postmaster on the default port (4321) and will search SPATH to find an
exccutable file called “postgresq. This is the simplest and most common way to start the postmaster.

start with specific port and executable name
postmaster -p 1234 -b /usr/postgres/bin/postgres &

This command will start up a postmaster communicating through the port 1234, and will attempt to use the
backend located at “/usr/postgres/bin/postgres”. In order to connect to this postmaster using the terminal
monitor, you would need to either specify -p 1234 on the monitor command-line or set the environment

variable PGPORT to 1234.

SEE ALSO
ipes(1), ipcrm(1), ipcclean(unix), monitor(unix), postgres(unix), shmemdoc(unix).

02/12/94 32

POSTMASTER(UNIX) POSTMASTER(UNIX)

DIAGNOSTICS

semget: No space left on device
If you see this message, you should run the ipcciean command. After doing this, try starting the
postmaster again. If this still doesn’t work, you probably need to configure your kemel for shared
memory and semaphores as described in the installation notes. If you run muitiple postmasters on
a single host, or have reduced the shared memory and semaphore parameters from the defanits in
the generic kemel, you may have to go back and increase the shared memory and semaphores con-
figured into your kernel.

StreamServerPort: caunot bind to port
If you see this message, you should be certain that there is no other postmaster process already
running. The easiest way to determine this is by using the command]

p8s -ax | grep postmaster
on BSD-based systems (the equivalent syntax is
ps -e | grep postmast

on System V-like or POSIX-compliant systems such as HP-UX). If you are sure that no other
postmaster processes are running and you still get this error, try specifying a different port using
the -p option. You may also get this error if you terminate the postmaster and immediately restart
it using the same port; in this case, you must simply wait a few seconds until the operating system
closes the port before trying again. Finally, you may get this error if you specify a port number
that your operating system considers to be reserved. For example, many versions of UNIX con-
sider port numbers under 1024 to be “trusted” and only permit the UNIX superuser to access them.

IpcMemoryAttach: shmat() failed: Permission denied

A likely explanation is that another user attempted to start a postmasser process on the same port
which acquired shared resources and then died. Since POSTGRES shared memory keys are based
on the port number assigned to the postmaster. such conflicts are likely if there is more than one
installation on a single host. If there are no other postmasier processes currently running (see
above), run ipcclean and try again. If other postmasters are running, you will have to find the
owners of those processes to coordinate the assignment of port numbers and/or removal of unused
shared memory segments.

02/12/94 33

PPWD(UNIX)

NAME

ppwd - retum Inversion file system working directory name
SYNOPSIS

ppwd

DESCRIPTION
Ppwd writes the absolute pathname of the current working directory to the standard output.

Ppwd exits with status 0 on success, and >0 if an exror occurs.
ENVIRONMENT

The environment variable PECWD stores the current Inversion working directory.
SEE ALSO

ped(unix), p_getwd(large_objects).

01/23/93

PPWD(UNIX)

PRM(UNIX) PRM(UNIX)

NAME
prm - remove an Inversion file

SYNOPSIS
prm (-D database) (-H host] (-P port) pathname

DESCRIPTION
Prm removes a file stored by the Inversion file system. Directories must be removed using the prmdir

command.

ARGUMENTS
pathname The fully-qualified pathname of the file to remove, rooted at */".

-D database
Specifies the database to use. Defaults to the value of the environment variable DATABASE

(see below).

-Hhost Specifies the hostname of the machine on which the postmaster is running. Defaults to the
name of the local host, or the value of the PGHOST environment variable (if set).

-P pont Specifies the Intemet TCP port on which the postmaster is listening for connections. Defaults
10 4321, or the value of the PGPORT environment variable (if set).

EXAMPLES
The command

prm b/c/d

removes file “d” from directory “b/c”.

ENVIRONMENT
If no database is given on the command line, the environment variable DATABASE is checked. If no envi-

ronment variable DATABASE is present, the command exits with an error status.
The environment variable PFCWD is used for the current directory if the pathname specified is relative.

BUGS
It is not possible to remove files stored on write-once storage managers (e.g., the Sony optical disk jukebox

at Berkeley).
See introduction(large objects) for filename and path limitations imposed by the Inversion file system.

01/23/93 35

PRMDIR(UNIX) PRMDIR(UNIX)

NAME
prmdir - remove an Inversion directory
SYNOPSIS
prmdir [-D database] (-H host] (-P port] pathname

DESCRIPTION
Prmdir removes a directory from the Inversion file system. The directory must be empty. Files in directo-
ries may be removed by using the prm command.

ARGUMENTS
pathname The fully-qualified pathname of the directory to remove, rooted at “/”.

-D database
Specifies the database to use. Defauits to the value of the environment variable DATABASE

(see below).

-Hhost Specifies the hostmame of the machine on which the postmaster is running. Defaults to the
name of the local host, or the value of the PGHOST environment variable (if set).

-P port Specifies the Internet TCP port on which the posimaster is listening for connections. Défaults
10 4321, or the value of the PGPORT environment variable (if set).

EXAMPLES
The command

prmdir b/c

removes directory “b/c” from the Inversion file system,

ENVIRONMENT
If no database is given on the command line, the environment variable DATABASE is checked. If no envi-

ronment variable DATABASE is present, the command exits with an error status.
The environment variable PRCWD is used for the current directory if the pathname specified is relative.

BUGS
It is not possible to remove files stored on write-once storage managers (¢.8., the Sony optical disk jukebox

at Berkeley).
See introduction(large objects) for filename and path limitations imposed by the Inversion file system.

01/23/93 36

REINDEXDB(UNIX) REINDEXDB(UNIX)

NAME
reindexdb - reconstruct damaged system catalog indices

SYNOPSIS
reindexdb dbname

DESCRIPTION
In normal processing mode, POSTGRES requires secondary indices on certain system catalog classes. It is
possible that these indices can be damaged during updates, ¢.g., if the backend server is killed during a
query that creates a new class. Once the indices are damaged, it becomes impossible to access the
database. Reindexdb removes the old indices and attempts to reconstruct them from the base class data,
Before running reindexdb, make sure that the postmaster process is not running on the database server host.
Reindexdb is a shell script that invokes the backend server directly. Hence, it must be executed by the
POSTGRES super-user.

SEE ALSO
initdb(unix), postmaster(unix).

CAVEATS

Should only be used as a last resort. Many problems are better solved by simply shutting down the post-
master process and restarting it.

If the base system catalog classes are damaged, reindexdb will generally print a cryptic message and fail.
In this case, there is very little recourse but to reload the data.

02/14/94 37

S2KINIT(UNIX) S2KINIT(UNIX)

NAME

s2kutils — scripts (o allow operation with a different Kerberos realm
SYNOPSIS

s2kinit

s2klist

s2kdestroy

DESCRIPTION
s2kinit, s2klist and s2kdestroy are wrappers around the Kerberos programs kinit(1), klist(1) and kdestroy(1)
that cause them to operate in the realm indicated by the environment variable PGREALM. This includes the
use of ticket files distinct from those obtained for use in the local realm.

The PGREALM environment variable is also understood by the authentication code invoked by LIBPQ
) applications. Hence, if PGREALM is set, tickets obtained using s2kinit are used by monitor and the Inver-
sion file system utilities. If PGREALM is not set, then the programs display the usual Kerberos behavior.

SEE ALSO
monitor(UNIX), kerberos(1), kinit(1), klist(1), kdestroy(1)

BUGS
These have almost nothing to do with POSTGRES. They are here as a convenience 10 Sequoia 2000
researchers who do not work in the Sequoia 2000 realm except to use¢ POSTGRES.

You still have to insert the correct realm-server mapping into /etc/krb.conf .

012393 38

SHMEMDOC(UNIX) SHMEMDOC(UNIX)

NAME

shmemdoc — POSTGRES shared memory editor
SYNOPSIS

shmemdoc (-p port] [-B nbuffers)
DESCRIPTION

The shmemdoc program understands the layout of POSTGRES data in shared memory and can be used to
examine these shared structures. This program is intended only for debugging POSTGRES, and should not
be used in normal operation.

When some backend server dies abnormally, the postmaster normally reinitializes shared memory and
semaphores and forces all peers of the dead process to exit. If postmaster is started with the -n flag, then
shared memory will not be reinitialized and shmemdoc can be used to examine shared state after the crash.

Shmemdoc understands the following command-line options:

-B nbuffers
The number of buffers used by the backend. This.value is ignored in the present implementation of
shmemdoc, but is important if you choose to change the number allocated by POSTGRES. In that
case, you're out of luck for now.

-p pont
The port on which the postmaster was listening. This value is used to compute the shared memory
key used by the postmaster when shared memory was initialized.

A simple command interpreter reads user commands from standard input and prints resuits on standard out-
put. The available commands are:

semstat
Show the status of system semaphores. Status includes semaphore names and values, the process id

of the last process to change each semaphore, and a count of processes sleeping on each semaphore.

semset n val
Set the value of semaphore number n (with zero being the first semaphore named by semstat) to val.
This is really only useful for resetting system state manually after a crash, which is something you
don’t really want to do.

bufdescs
Print the contents of the shared buffer descriptor table.

bufdesc n
Print the shared buffer descriptor table entry for buffer n.

buffer n rype level
Print the contents of buffer number n in the shared buffer table. The buffer is interpreted as a page
from a rype relation, where rype may be heap, biree, or riree. The level argument controls the
amount of detail presented. Level zero prints only page headers, level one prints page headers and
line pointer tables, and level two (or higher) prints headers, line pointer tables, and tupies.

linp n which
Print line pointer table entry which of buffer n.

tuple n rvpe which
Print tuple which of buffer n. The buffer is interpreted as a page from a rype relation, where rype may

be heap, biree, or riree.

02/12/94 39

SHMEMDOC(UNIX) SHMEMDOC(UNIX)

setbase pr

Set the logical base address of shared memoary for shmemdoc to prr. Normally, shmemdoc uses the
address of each structure in its own address space when interpreting commands and printing results.
If setbase is used, then on input and output, addresses are transiated so that the shared memory seg-
ment appears o start at address prr. This is useful whea a debugger is examining a core file pro-
duced by POSTGRES and you want to use the shared memory addresses that appear in the core file.
The base of shared memory in POSTGRES is stored in the variable ShmemBase, which may be exam-
ined by a debugger. Ptr may be expressed in octal (leading zero), decimal, or hexadecimal (leading
0x).

shmemstat

Print shared memory layout and allocation statistics.
whatls ptr

Identify the shared memory structure pointed at by prr.
help Print a brief command summary.
quit Exit shmemdoc.

SEE ALSO
ipcclean(unix).

BUGS
All of the sizes, offsets, and values for shared data are hardwired into this program; it shares no code with
the ordinary POSTGRES system, so changes to shared memory layout will require changes to this program,
as well. This hasn’t been done recently, so as of Version 4.2 this program doesn’t work correctly for many
structures (most notably the shared memory buffer pool). Use of this command is highly discouraged.

02/12/94 40

INTRODUCTION(BUILT-INS) INTRODUCTION(BULLT-INS)

SECTION 3 — WHAT COMES WITH POSTGRES (BUILT-INS) .

DESCRIPTION
This section describes the data types, functions and operators available to users in POSTGRES as it is dis-
tributed.

BUILT-IN AND SYSTEM TYPES
This section describes both built-in and system data types. Built-in types are required for POSTGRES to
run. System types are installed in every database, but are not strictly required. Built-in types are marked
with asterisks in the table below.
Users may add new types to POSTGRES using the define rype command described in this manual. User-
defined types are not described in this section.

POSTGRES Type Meaning Required
abstime absolute date and time .
aclitem access control list item .
bool boolean .
box 2-dimensional rectangle

bytea variable length array of bytes .
char character .
char2 array of 2 characters .
chard4 array of 4 characters .
char8 array of 8 characters .
charl6 array of 16 characters .
cid command identifier type .
filename large object filename .
int2 two-byte signed integer b
int28 array of 8 int2 .
intd4 four-byte signed integer .
float4 single-precision floating-point number .
float8 double-precision floating-point number .
Iseg 2-dimensional line segment

oid object identifier type .
0id8 array of 8 oid .
oidcharl6 oid and char16 composed .
oidin2 oid and in2 composed .
oidint4 oid and int4 composed .
path variable-length array of Iseg

point 2-dimensional geometric point

polygon 2-dimensional polygon

regproc registered procedure .
reltime relative date and time .
smgr storage manager .
text variable length array of characters .
tid tuple identifier type .
tinterval time interval .
xid transaction identifier type *

As a rule, the built-in types are all either (1) intemal types, in which case the user should not worry about

02/18/94 41

INTRODUCTION(BUILT-INS) INTRODUCTION(BUILT-INS)

their external format, oc (2) have obvious formats. The exceptions to this rule are the three time types.

ABSOLUTE TIME
Absolute time is specified using the following syntax:

Month Day [Hour : Minute : Second] Year [Timezone]

where Month is Jan, Feb, ..., Dec

Dayis 1,2,..,31

Houris 01, 02, ..., 24

Minute is 00, 01, ..., 59

Second is 00, 01, ..., 59

Year is 1901, 1902, ..., 2038
Valid dates are from Dec 13 20:45:53 1901 GMT to Jan 19 03:14:04 2038 GMT. As of Version 3.0, times
are no longer read and written using Greenwich Mean Time; the input and output routines default to the
local time zone.
The special absolute time values “current”, “infinity” and “-infinity” are also provided. “infinity” specifies
a time later than any valid time, and “-infinity” specifies a time earlier than any valid time. “current” indi-
cates that the current time should be substituted whenever this value appears in a computation.
The strings “now” and “epoch” can be used to specify time values. “now” means the current time, and dif-
fers from “current” in that the current time is immediately substituted for it. “epoch”™ means Jan 1 00:00:00
1970 GMT.

RELATIVE TIME
Relative time is specified with the following syntax:
@ Quantity Unit (Direction])
where Quantity is '1°, '2°, ...
Unit 'B bimom"’ C‘minuw"‘ llhollr"' llmyl" ‘lwﬂl"
“month” (30-days), or *‘year” (365-days),
or PLURAL of these units.
Direction is “ago”
(Note: Valid relative times are less than or equal to 68 years.) In addition, the special relative time “Unde-
fined RelTime" is provided.
TIME RANGES
Time ranges are specified as:

['abstime’ ’‘abstime’]

where abstime is a time in the absolute time format. Special abstime values such as “current”, “infinity”
and “-infinity” can be used.

OPERATORS
POSTGRES provides a large number of built-in operators on system types. These operators are declared in
the system catalog “pg_operator”. Every entry in “pg_operator” includes the object ID of the procedure
that implements the operator.

Users may invoke operators using the operator name, as in

retrieve (emp.all) where emp.salary < 40000

02/18/94 42

INTRODUCTION(BUILT-INS)

INTRODUCTION(BUILT-INS)

Alternatively, users may call the functions that implement the operators directly. In this case, the query

above would be expressed as

retrieve (emp.all) where intdlt(emp.salary, 40000)

The rest of this section provides a list of the built-in operators and the functions that implement them.

Binary operators are listed first, followed by unary operators.
BINARY OPERATORS

This list was generated from the POSTGRES system catalogs with the query

retrieve (argtype = tl.typname, o.oprname,

t0.typname, p.proname,

ltype=tl.typname, rtypest2.typname)

from p in pg_proc, t0 in pg_type, tl in pg_type,

t2 in pg_type, o in pg_operator
where p.prorettype = t0.oid

and RegprocToOid(o.oprcode) = p.oid

and p.pronargs = 2
and o.oprleft = tl.oid
and o.oprright = t2.o0id

The list is sorted by the built-in type name of the first operand. The function prototype column gives the
return type, function name, and argument types for the procedure that implements the operator. Note that
these function prototypes are cast in terms of POSTQUEL types and so are not directly usable as C function

prototypes.
Type Operator POSTGRES Function Prototype Operation
abstime != bool abstimene(abstime, abstime) inequality
+ abstime timepl(abstime, reltime) addition
- abstime timemi(abstime, reltime) subtraction
<= bool abstimele(abstime, abstime) less or equal
<> bool ininterval(abstime, tinterval) abstime in tinterval?
< bool abstimelt(abstime, abstime) less than
= bool abstimeeq(abstime, abstime) equality
>= bool abstimege(abstime, abstime) greater or equal
> bool abstimegt(abstime, abstime) greater than
bool = bool booleq(bool, bool) equality
= bool boolne(bool., bool) inequality
box && bool box_overiap(box, box) boxes overlap
&< bool box_overiefi(box. box) box A overiaps box B, but does not
extend to right of box B
&> bool box_overright(box, box) box A overlaps box B. but does not
extend to left of box B
<< bool box_left(box, box) Aisleftof B
= bootl box_le(box. box) area less or equal
< bool box_lt(box, box) area less than
= bool box_eq(box, box) area equal
>= bool box_ge(box, box) area greater or equal

02/18/94

43

INTRODUCTION(BUILT-INS) INTRODUCTION(BUILT-INS)
>> bool box_right(box, box) Aisrightof B
> bool box_gt(box, box) area greater than
@ bool box_contained(box, box) A is contained in B
= bool box_same(box, box) box equality
- bool box_contain(box, box) A contains B
char I= bool chame(char, char) inequality
. bool charmul(char, char) multiplication
+ bool charpl(char, char) addition
- bool charmi(char, char) subtraction
/ bool chardiv(char, char) division
<= bool charie(char, char) less or equal
< bool charlt(char, char) less than
= bool chareq(char, char) equality
>= bool charge(char, char) greater or equal
> bool chargt(char, char) greater than
char2 I= bool char2ne(char2, char2) inequality
- bool char2regexne(char2, text) A does not maich regular cxpres-
sion B (POSTGRES uses the libc
regexp calls for this operation)
<= bool char2le(char2, char2) less or equal
< bool char2it(char2, char2) less than
= bool char2eq(char2, char2) equality
>= bool char2ge(char2, char2) greater or equal
> bool char2gt(char2, char2) greater than
- bool char2regexeq(char2, text) A matches regular expression B
(POSTGRES uses the libc regexp
calis for this operation)
char4 I= bool chardne(char4, chard) inequality
1= bool chardregexne(char4, text) A does not match regular expres-
sion B (POSTGRES uses the libc
regexp calls for this operation)
<= bool chardle(chard, char4) less or equal
< boot chardli(char4, chard) less than
= bool chardeq(char4, char4) equality
>= bool chardge(chard, chard) greater or equal
> bool chardgt(chard, chard) greater than
- bool chardregexeq(char4, text) A matches regular expression B
(POSTGRES uses the libc regexp
calls for this operation)
char8 = bool char8ne(char8, char8) inequality

bool char8regexne(char8, text)

bool char8le(char8, char8)
bool char8li(char8, char8)

bool char8eq(char8, char8)
bool char8ge(char8, char8)
bool char8gt(char8, char8)

02/18/94

A does not match regular expres-
sion B (POSTGRES uses the libc
regexp calls for this operation)

less or equal

less than

equality

greater or equal

greater than

(e

INTRODUCTION(BUILT-INS) INTRODUCTION(BUILT-INS)
- bool char8regexeq(char8, text) A matches regular expression B
(POSTGRES uses the libc regexp
calls for this operation)
charl6 I= bool char16ne(char16, char16) inequality
- bool charl6regexne(charl6, text) A does not match regular expres-
sion B (POSTGRES uses the libc
regexp calls for this operation)
<= bool charl6le(charl6, charl6) less or equal
< bool charl6lt(charl6, charl6) less than
= bool charl6eq(charl6, charl6) equality
>a bool charl6ge(chari6. charl6) greater or equal
> booi chari6gt(char16, charl6) greater than
- bool charl6regexeq(charl6, text) A matches regular expression B
(POSTGRES uses the libc regexp
calls for this operation)
floatd I= bool floatdne(floatd, floatd) inequality
g float4 floatdmui(floatd, floatd) multiplication
+ floatd floatdpl(floatd, floatd) addition
- floatd floatdmi(floatd, floatd) subtraction
/ float4 floarddiv(floard, floatd) division
<= bool floatdle(floatd, floatd) less or equal
< bool floatdifloatd, floatd) less than
= bool floatdeq(floatd, floatd) equality
>z bool floatdge(fload, flcatd) greater or equal
> bool floatdgi(float4, floatd) greater than
floa8 = bool float8ne(floal8, float8) inequality
. float8 float8mul(float8, float8) maltiplication
+ floa18 float8pl(float8, float8) addition
- float8 float8mi(float8, float8) subtraction
/ float8 float8div(float8, float8) division
<= bool float8le(float8, float8) less or equal
< bool float8It(float8, float8) less thanl
= bool float8eq(float8, float8) equality
>= bool flcat8ge(float8, float8) greater or equal
> bool float8gi(float8, float8) greater than
* float8 dpow(float8, foat8) exponentiation
in2 I= bool in2ne(int2, in2) inequality
= int4 in24ne(int2, intd) inequality
% int2 in2mod(int2, int2) modulus
% int4 in24mod(int2, int4) modulus
. in2 in2mul(int2, in2) multiplication
. int4 in24mul(int2, int4) multiplication
+ int2 in2pl(int2, int2) addition
+ int4 in24pl(int2, intd) addition
- int2 in2mi(int2, int2) subtraction
- int4 in24mi(int2, int4) subtraction
/ int2 in2div(int2, int2) division
/ int4 int24div(int2, int4) division
<= bool in2le(int2, int2) less or equal

02/1894

45

INTRODUCTION(BUILT-INS) INTRODUCTION(BUILT-INS)
<= intd4 in24le(int2, intd) less or equal
< bool in®2l(ine2, int2) less than
< int4 in24l(int2, intd) less than
= bool in2eq(in2, in2) equality
= int4 in4eq(int2, intd) equality
> bool in2ge(in2, in2) greater or equal
>a int4 in24ge(int2, int4) greater or equal
> bool in2gt(int2, in2) greater than
> int4 in24gt(inr2, int4) greater than
int2 inQinc(int2) increment
intd = bool intdnotin(int4, charl6) This is the relational *“not in"* oper-
ator, and is not intended for public
use.
1= bool int4ne(intd, intd) inequality
1= int4 int42ne(int4, int2) inequality
% int4 intd2mod(intd, int2) modulus
% int4 intdmod(intd, int4) modulus
. int4 intd2muli(int4, int2) multiplication
. int4 intdmul(int4, int4) multiplication
+ int4 intd42pl(int4, int2) addition
+ int4 intdpl(intd, int4) addition
- int4 int42mi(int4, in2) subtraction
- int4 int4mi(intd, int4) subtraction
/ int4 int42div(int4, int2) division
/ int4 intddiv(int4, int4) division
<= bool intdle(int4, int4) less or equal
<= intd int42le(intd, int2) less or equal
< bool intdhi(intd, intd) less than
< int4 int421t(intd, int2) less than
= bool intdeq(intd, intd) equality
= int4 int42eq(int4, in12) equality
>= bool intdge(intd4, int4) greater or equal
>= int4 int42ge(int4, in12) greater or equal
> bool intdgt(intd, int4) greater than
> int4 int421t(int4, int2) less than
int4 intdinc(int4) increment
oid N= bool oidnotin(cid, charl6) This is the relational “not in”" oper-
ator, and is not intended for public
use.
= bool oidne(oid, oid) inequality
I= bool oidne(oid, regproc) inequality
<= bool oidle(oid, oid) less or equal
< bool oidit(oid, oid) less than
= bool oideq(oid, oid) equality
= bool oideq(oid, regproc) equality
>= bool oidge(oid. oid) greater or equal
> bool oidgt(oid, oid) greater than
oidcharl6 != bool oidcharl6ne(oidcharl6, oidcharl6) inequality
bool oidchar16lt(oidcharl6, oidcharl6) less than

02/18/94

INTRODUCTION(BUILT-INS) INTRODUCTION(BUILT-INS)
<= bool oidchar16le(oidchar 16, oidcharl6) less or equal
=. bool oidchari6eq(oidcharil6, cidchari6) equality
> bool oidchar 16gt(oidchar16, oidcharl6) greater than
> bool oidchar 16ge(oidcharl6, oidcharl6) greater or equal
oidint2 I= bool oidin2ne(oidint2, oidint2) inequality
< bool oidint21t(oidint2, oidint2) less than
<= bool oidint2le{oidint2, oidint2) less or equal
= booal oidint2eq(oidint2, cidint2) equality
> bool oidint2gt(oidint2, oidint2) greater than
P bool oidint2ge(oidint2, cidint2) greater or equal
oidint4 I= bool oidint4ne(oidint4, oidintd) inequality
< bool oidintdlt(oidint4, oidint4) less than
<= bool oidintdle(oidint4, oidint4) less or equal
= bool oidintdeq(oidintd, oidint4) equality
> bool oidintdgt(oidint4, oidintd) greater than
>= bool oidintdge(oidint4, oidint4) greater or equal
point < bool point_left(point, point) Aisleftof B
> bool point_right(point. point) Aisrightof B
I bool point_above(point, point) Aisabove B
Y bool point_below(point, point) Aiisbelow B
= bool point_eq(point, point) equality
> bool on_pb(point, box) point inside box
- bool on_ppath(point, path) point on path
Coesd> int4 pointdist(point, point) distance between points
polygon && bool poly_overiap(polygon, polygon) polygons overiap
&< bool poly_overieft(polygon. polygon) A overlaps B but does not extend to
right of B
&> bool poly_overright(polygon, polygon) A overiaps B but does not extend to
leftof B
<< bool poly_left(potygon, polygon) Aisleftof B
>> bool poly_right(polygon, polygon) Aisrightof B
bool poly_contained(polygon, polygon) A is contained by B
= bool poly_same(polygon, polygon) equality
- bool poly_contain(polygon, polygon) A contains B
reltime = bool reltimene(reltime, reltime) inequality
<= bool reltimele(reltime, reitime) less or equal
< bool reltimelt(reltime, reltime) less than
= bool reltimeeq(reltime, reltime) equality
>= bool reltimege(reltime, reltime) greater or equal
> boot reltimegt(reltime, reltime) greater than
text 1= bool textme(text, text) inequality
- bool textregexne(text, text) A does not contain the regular
expression B. POSTGRES uses the
libc regexp interface for this opera-
tor.
<= bool text_le(text, text) less or equal
< bool text_lt(text, text) less than
= bool texteq(text, text) equality
02/18/94 47

INTRODUCTION(BUILT-INS) INTRODUCTION(BUILT-INS)
e bool text_ge(text, text) greater or equal
> bool text_gt(text, text) greater than
< bool textregexeq(text, text) A contains the regular expression
B. POSTGRES uses the libc regexp
interface for this operator.
tinterval #l= bool intervalleane(tinterval, reltime) interval length not equal to reltime.
#om bool intervailenle(tinterval, reltime) interval length less or equal reltime
#< bool intervallenlt(tinterval, reltime) interval length less than reltime
#= bool intervalleneq(tinterval, reltime) interval length equal to reltime
= bool intervallenge(tinterval, reitime) interval length greater or equal rel-
time
o bool intervallengt(tinterval, reltime) interval length greater than reitime
&& bool intervalov(tinterval, tinterval) intervals overlap
<< bool intervalct(tinterval, tinterval) A contains B
= bool intervaleq(tinterval, tinterval) equality
< tinterval mktintervai(abstime, abstime) interval bounded by two abstimes
UNARY OPERATORS

The tables below give right and left unary operators. Left unary operators have the operator precede the

operand: right unary operators have the operator follow the operand.

Right Unary Operators
Type Operator POSTGRES Function Prototype Operation
float8 % float8 dround(float8) round to nearest integer
Left Unary Operators
Type Operator POSTGRES Function Prototype Operation
box @@ point box_center(box) center of box
float4 @ float4 floatdabs(float4) absolute value
float8 @ floats float8abs(floal8) absolute value
% Aoat8 dtrunc(float8) truncate to integer
v float8 dsqrt(float8) square root
W float8 dcbri(float8) cube root
: float8 dexp(floai8) exponential function
: float8 dlogl(float8) natural logarithm
tinterval | abstime intervalstariy(tinterval) start of interval
AGGREGATE FUNCTIONS

The table below gives the aggregate functions that are normally registered in the system catalogs. None of
them are required for POSTGRES (0 operate.

Name
int2ave
intdave
floatdave
float8ave

Operation
int2 average
int4 average
float4 average
float8 average

02/18/94

48

INTRODUCTION(BUILT-INS) INTRODUCTION(BUILT-INS)

in2sum int2 sum (total)
int4sum int4 sum (total)
float4sum float4 sum (total)
float8sum float8 sum (total)
int2max int2 maximum (high value)
int4max int4 maximum (high value)
floatdmax floatd maximum (high value)
float8max float8 maximum (high value)
in2min int2 minimum (low vaiue)
intdémin - int4 minimum (low value)
float4min float4 minimum (low value)
float8min float8 minimum (low value)
count any count

SEE ALSO

For examples on specifying literals of built-in types, see postquel(commands).

BUGS
The lists of types, functions. and operators are accurate only for Version 4.2. The lists will be incomplete
and contain extraneous entries in future versions of POSTGRES.
Although most of the input and output functions correponding to the base types (e.g., integers and floating
point numbers) do some error-checking, none of them are particularly rigorous about it. More importantly,
almost none of the operators and functions (e.g., addition and multiplication) pertorm any errorchecking at
all. Consequently, many of the numeric operations will (for example) silently underflow or overflow.
Some of the input and output functions are not invertible. That is, the resuit of an output function may lose:
precision when compared to the original input.

02/1894 49

INTRODUCTION(COMMANDS) lN'lRODUCHON(CbMMANDS)

SECTION 4 — POSTQUEL COMMANDS (COMMANDS)

DESCRIPTION
The following is a description of the general syntax of POSTQUEL. Individual POSTQUEL statements and
commands are treated separately in the document; this section describes the syntactic classes from which
the constituent parts of POSTQUEL statements are drawn.

Comments
A commen is an arbitrary sequence of characters bounded on the left by “/*” and on the right by “*/”, e.g:

/* This is a comment */

Names
Names in POSTQUEL are sequences of not more than 16 alphanumeric characters, starting with an alpha-
betic character. Underscore (“_") is considered an alphabetic character.

Keywords

The following identifiers are reserved for use as keywords and may not be used otherwise:
abort define is quel
ad delete ISNULL relation
addattr demand key remove
after descending leftouter rename
aggregate destroy light replace
aill destroydb listen retrieve
always do load returns
and empty merge rewrite
append end move rightouter
archive execute never rule
arch_store extend new setof
arg fetch none sort
as forward . nonulls stdin
ascending from not stdout
attachas function notify store
backward group NOTNULL to
before heavy NULL transaction
begin in on type
binary index once union
by indexable operator unique
cfunction inherits or user
change input_proc output_proc using
close instance parallel vacuum
cluster instead pfunction version
copy intersect portal view
create into postquel where
createdb intotemp priority with
current iportal purge

In addition, all POSTGRES classes have several predefined attributes used by the system. For a list of these,

see the section Fields, below.

03/1294 50

INTRODUCTION(COMMANDS) INTRODUCTION(COMMANDS)

Constants
There are six types of constants for use in POSTQUEL. They are described below.

Character Constants
Single character constants may be used in POSTQUEL by surrounding them by single quotes, e.g., ‘n’.
String Constants
Strings in POSTQUEL are arbitrary sequences of ASCII characters bounded by double quotes (" ¥). Upper
case alphabetics within strings are accepted literally. Non-printing characters may be embedded within
strings by prepending them with a backslash, e.g., “\n*. Also, in order to embed quotes within strings, it is
necessary to prefix them with \' . The same convention applies to \’ itself. Because of the limitations on
instance sizes, string constants are currently limited to a length of a little less than 8192 bytes. Larger
objects may be created using the POSTGRES Large Object interface.
Integer Constants
Integer constants in POSTQUEL are collection of ASCII digits with no decimal point. Legal values range
from —2147483647 to +2147483647. This will vary depending on the operating system and host machine.
Floating Point Constants
Floating point constants consist of an integer part, a decimal point, and a fraction part or scientific notation
of the following format: .

{(<dig>} .(<dig>) [e [+-] (<dig>}]

Where <dig> is a digit. You must include at least one <dig> after the period and afier the [+] if you use
those options. An exponent with a missing mantissa has a mantissa of 1 inserted. There may be no extra
characters embedded in the string. Floating constants are taken to be double-precision quantities with a
range of approximately ~10°® to 10°® and a precision of 17 decimal digits. This will vary depending on the
operating system and host machine.

Constants of POSTGRES User-Defined Types
A constant of an arbitrary type can be entered using the notation:

*gtring® ::type-name

In this case the value inside the string is passed to the input conversion routine for the type called type-
name. The result is a constant of the indicated type. The explicit typecast may be omitted if there is no
ambiguity as (o the type the constant must be, in which case it is automatically coerced.

Array counstants
Array constants are arrays of any POSTGRES type, including other arrays, string constants, ctc. The general

format of an array constant is the following:

(<vall><delim><val2><delim>)

Where <delim> is the delimiter for the type stored in the “pg_type” class. (For built-in types, this is the
comma character, “,”.) An example of an array constant is

°((1,2,3}).(4,5,6),(7,8,9)}"

This constant is a two-dimensional, 3 by 3 array consisting of three sub-arrays of integers.

Individual array elements can and should be placed between quotation marks whenever possible to avoid
ambiguity problems with respect to leading white space.

03/1294 51

INTRODUCTION(COMMANDS) INTRODUCTION(COMMANDS)

Amays of fixed-length types may also be stored as POSTGRES large objects (see tnnvducuon(lmge
objects)). The syntax for an array constant of this form is

*large_object [-unix | -invert] [-chunk (DEFAULT ! acc_pat_file)])"

That is, any array constant that does not begin and end in curly braces is assumed to be an Inversion file
system filename that contains the appropriate array data, The Inversion file will be created if it does not
already exist. The flag "unix" or "invert" is used to indiacte the type of the large object. The default type is
"unix". An array stored in large object can be chunked to optimize retrievals by using the "chunk” flag.
The array can be chunked using a default chunk size (by using the keyword DEFAULT) or by using an
access pattern stored in a native file "acc_pant_file". The access pattern is expected to be in the following
format.

<n> <A_11 A_12 .. A_1d P_1> ... <A_nl A_n2 .. A_nd P_n>

where n is the number of tuples in the access pattern and d is the number of dimensions of the array. For
each i, <A_il A_i2 .. A_id> is the dimension of an access request on the amray and P_ usthelclanvefxe-
quency of the access.

Flelds
A field is either an atribute of a given class or one of the following:

all
oid
tmin
tmax
xmin
xmax
cmin
cmax
vtype

As in INGRES, all is a shorthand for all normal attributes in a class, and may be used profitably in the target
list of a retricve statement.

Oid stands for the unique identifier of an instance which is added by POSTGRES (o all instances automati-
cally. Oids are not reused and are 32 bit quantities.

Tmin, imax, xmin, cmin, xmax and cmax stand respectively for the time that the instance was inserted, the
time the instance was deleted, the identity of the inserting transaction, the command identifier within the
transaction, the identity of the deleting transaction and its associated deleting command. For further infor-
mation on these fields consuit (STON87]. Times are represented intemally as instances of the *“abstime”
data type. Transaction identifiers are 32 bit quantities which are assigned sequentially starting at 512.
Command identifiers are 16 bit objects; hence, it is an emor t0 have more than 65535 POSTQUEL com-
mands within one transaction.

Attributes
An artribute is a construct of the form:

Instance-variable{.composite_field).field ‘[’number’)}’

Instance-variable identifies a particular class and can be thought of as standing for the instances of that

03/12/94 52

INTRODUCTION(COMMANDS) INTRODUCTION(COMMANDS)

class. An instance variable is either a class name, a surrogate for a class defined by means of a from clause,
or the keyword new or current. New and current can only appear in the action portion of a rule, while
other instance variables can be used in any POSTQUEL command. Composite_field is a field of of one of
the POSTGRES composite types indicated in the information(commands) section, while successive compos-
ite fields address attributes in the class(s) to which the composite field evaluates. Lastly, field is a normal
(base type) field in the class(s) last addressed. If field is of type array, then the optional number designator
indicates a specific element in the array. If no number is indicated, then all array elements are retumed.

Operators
Any built-in system, or user-defined operator may be used in POSTQUEL. For the list of built-in and system
operators consult introduction(built-ins). For a list of user-defined operators consult your system adminis-
trator Of run a query on the pg_operator class. Parentheses may be used for arbitrary grouping of operators.

Expressions (a_expr)
An expression is one of the following:

(a_expr)

constant

attribute

a_expr binary_operator a_expr

a_expr right_unary_operator

left_unary_operator a_expr

parameter

functional expressions

aggregate expressions

set expressions (nogeneral implementation in Version 4.2)
class expression (nogeneral implementation in Version 4.2)

We have already discussed constants and attributes. The two kinds of operator expressions indicate respec-
tively binary and left_unary expressions. The following sections discuss the remaining options.

Parameters
A parameter is used (o indicate a parameter in a POSTQUEL function. Typically this is used in POSTQUEL
function definition statement. The form of a parameter is:
‘$’ number
For example, consider the definition of a function, DEPT, as
define function DEPT
(language="postquel®, returntype = dept)

arg is (charlé6) as
retrieve (dept.all) where dept.name = $1

Functional Expressions
A functional expression is the name of a legal POSTQUEL function, followed by its argument list enclosed
in parentheses, e.g.:
fn-name (a_expr{ , a_expr})

For example, the following computes the square root of an empioyee salary.

03/1294 53

INTRODUCTION(COMMANDS) INTRODUCTION(COMMANDS)

sqrt (emp.saizary)

Aggregate Expression
An aggregate expression represents a simple aggregate (i.e., one that computes a single value) or an aggre-
gate function (i.c., one that computes a set of values). The syntax is the following:

aggregate_name ‘(‘ [unique {using] opr) a_expr
(from from_list)
[where qualification}’)’

Here, aggregate_name must be a previously defined aggregate. The from_list indicates the class to be
aggregated over while qualification gives restrictions which must be satisfied by the instances to be aggre-
gated. Next, the a_expr gives the expression to be aggregated, while the unique tag indicates whether all
values should be aggregated or just the unique values of a_expr. Two expressions, a_exprl and a_expr2
are the same if a_expri opr a_expr2 evaluates to true.

In the case that all instance variables used in the aggregate expression are defined in the from list, a simple
aggregate has been defined. For exampie, to sum empioyee salaries whose age is greater than 30, one
would write:

retrieve (total = sum (e.salary from e in emp
where e.age > 30))

retrieve (total sum (emp.salary where emp.age > 30})

]

In either case, POSTGRES is instructed to find the instances in the from_list which satisfy the qualification
and then compute the aggregate of the a_expr indicated.

On the other hand, if there are variables used in the aggregate expression that are not defined in the from
list, e.g8:

avg (emp.salary where emp.age = e.age)

then this aggregate function has a value for each possible value taken on by *“e.age”. For example, the fol-
lowing complete query finds the average salary of each possible employee age over 18:

retrieve (e.age, eavg = avg (emp.salary where emp.age = e.age})
from e in emp
where e.age > 18

Aggregate functions are not supported in Version 4.2.

In general, the following aggregates (i.e.. the expression within the braces) will not work:
Aggregate functions of any kind.
Aggregates containing more than one range variable.
Aggregates that refer to range variables that use class inheritance (e.g., “e from emp*”).

Aggregates containing clauses other than a_expr and where-qualification clauses. (In other words,
from clauses within aggregates are not supported.)

03/12/94 54

INTRODUCTION(COMMANDS) INTRODUCTION(COMMANDS)

In addition, aggregate expressions may only appear within the target list of a query — that is, no aggregate
expression may appear in a query qualification (or where clause).
Therefore, of the three example queries given, only the second is actually supported.

Set Expressions
Generalized set expressions are not supported in Version 4.2. For information on sets as attributes, see

the manual pages for the creare(commands), append(commands) and retrieve(commands) commands.
A set expression defines a collection of instances from some class and uses the following syntax:

{target_list from from_list where qualification)
For example, the set of all employee names over 40 is:
{emp.name where emp.age > 40}

In addition, it is legal to construct set expressions which have an instance varigble which is defined outside
the scope of the expression. For example, the following expression is the set of employees in each depart-
ment:

{emp.name where emp.dept = dept.dname}

Set expressions can be used in class expressions which are defined below.

Class Expression
Generalized class expressions are not supported in Version 4.2. For information on classes as attributes,
see the manual pages for the create(commands), append(commands) and retrieve(commands) commands.

A class expression is an expression of the form:

class_constructor binary_class_operator class_constructor
unary_class_operator class_constructor

where binary_class_operator is one of the following:

union union of two classes

intersect intersection of two classes

- difference of two classes

>> left class contains right class

<< right class contains left class

== right class equals left class
and unary_class_operator can be:

empty right class is empty
A class_constructor is cither an instance variable, a class name, the value of a composite field or a set
expression.

An example of a query with a class expression is one to find all the departments with no employees:

retrieve (dept.dname)
where empty (emp.name where emp.dept = dept.dname)

03/12/94 55

INTRODUCTION(COMMANDS) INTRODUCTION(COMMANDS)

Target_list
A target list is a parenthesized, comma-separated list of one or more elements, each of which must be of the
form:

(result_attname =] a_expr

Here, result_atname is the name of the attribute to be created (or an aiready existing attribute name in the
case of update statements.) If result_artname is not present, then a_expr must contain only one attribute
name which is assumed to be the name of the result field. In Version 4.2 default naming is only used if
a_expr is an attribute.

Quatlification
A qualification consists of any number of clauses connected by the logical operators:

not
and
or

A clause is an a_expr that evaluates to a Boolean over a set of instances.

From List
The from list is a comma-separated list of from expressions.

Each from expression is of the form:

instance_variable-1 (, instance_variable-2)
in class_reference

where class_reference is of the form
class_name (time_expression] [*])

The from expression defines one or more instance variables to range over the class indicated in
class_reference. Adding a time_expression will indicate that a historical class is desired. One can aiso
request the instance variable to range over all classes that are beneath the indicated class in the inheritance
hierarchy by postpending the designator “**".

Time Expressions
A time expression is in one of two forms:

(*date*])
(*date-1", *“date-2")

The first case requires instances that are valid at the indicated time. The second case requires instances that
are valid at some tme within the date range specified. If no time expression is indicated, the default is

”

“now”.
In each case, the date is a character string of the form

[MON-FRI} °"MMM DD (HH:MM:SS] YYYY® [Timezone)

where MMM is the month (Jan - Dec), DD is a legal day number in the specified month, HH:MM:SS is an
optional time in that day (24-hour clock), and YYYY is the year. If the time of day HH:MM:SS is not

03/12/94 56

INTRODUCTION(COMMANDS) INTRODUCTION(COMMANDS)

specified, it defaults to midnight at the start of the specified day. As of Version 3.0, times are no longer
read and written using Greenwich Mean Time; the input and output routines default to the local time zone.

For example,

[*Jan 1 1950°)
{*Mar 3 00:00:00 1980*, °"Mar 3 23:59:59 1981°)

are valid time specifications.
Note that this syntax is slightly different than that used by the time-range type.

SEE ALSO
append(commands), delete(commands), execute(commands), replace(commands), retrieve(commands),

monitor(unix).
BUGS
The following consuucts are not available in Version 4.2:
class expressions
set expressions

03/1294 57

ABORT(OCOMMANDS) ABORT(COMMANDS)

NAME
abort — abort the current transaction

SYNOPSIS
abort

DESCRIPTION
This command aborts the current transaction and causes all the updates made by the transaction to be dis-

carded.

SEE ALSO
begin(commands), end(commands).

012393 58

ADDATTR(COMMANDS) ADDATTR(COMMANDS)

NAME
addattr — add attributes to a class

SYNOPSIS
addattr (atmamel = typel {, attname-i = type-i})
to classname {*]

DESCRIPTION

The addattr command causes ncw auributes to be added to an existing class, classname. The new
attributes and their types are specified in the same style and with the the same restrictions as in cre-
ate(commands).

In order to add an attribute to each class in an entire inheritance hierarchy, use the classname of the super-
class and append a “*~. (By default, the anribute will not be added to any of the subclasses,) This should
always be done when adding an artribute to a superclass. If it is not, queries on the inheritance hierarchy
such as

retrieve (s.all) from s in super*

will not work because the subclasses will be missing an attribute found in the superclass.

For efficiency reasons, default values for added attributes are not placed in existing instances of a class.
That is. existing instances will have NULL values in the new antributes. 1f non-NULL values are desired. a
subsequent repiace(commands) query should be run.

You must own the class in order to change its schema.

EXAMPLE
/t
* add the date of hire to the emp class
*/
addattr (hiredate = abstime) to emp

/t

* add a health-care number to all persons
* (including employees, students, ...)

*/

addattr (health_care_id = intd) to person*

SEE ALSO
create(commands), rename(commands), repiace(commands).

02/08/94 59

APPEND(COMMANDS) APPEND(COMMANDS)

NAME
append — append tuples to a relation

SYNOPSIS
append classname
(at_expr-1 = expressionl {, att_expr-i = expression-i})
[from from_list) [where quai }

DESCRIPTION
Append adds instances that satisfy the qualification, qual, to classname. Classname must be the name of
an existing class. The target list specifies the values of the fields to be appended to classname. That is,
cach an_expr specifies a field (cither an antribute name or an atribute name plus an array specification) to
which the corresponding expression should be assigned. The fields in the target list may be listed in any
order. Ficlds of the resuit class which do not appear in the target list defauit to NULL. If the expression for
each field is not of the correct data type, automatic type coercion will be attempted.

An array initialization may take exactly one of the following forms:

/t
- * Specify a lower and upper index for each dimension
*/
att_name(lIndex-l:ulndex-1]..[lIndex-i:ulndex-i] = array_str
/t

* Specify only the upper index for each dimension
* (each lower index defaults to 1)
*/

att_name(ulndex-1)..[ulndex-i] = array_str

/Q

* Use the upper index bounds as specified within array_str
* (each lower index defaults to 1)

*/
att_name = array_str

where each l/ndex or ulndex is an integer constant and arrgy_sr is an array constant (see infroduc-
tion(commands)).

If the user does not specify any array bounds (as in the third form) then POSTGRES will atempt to deduce
the actual array bounds from the contents of array_str.

If the user does specify explicit array bounds (as in the first and second forms) then the array may be initial-
ized paruy or fully using a C-like syntax for array initialization. However, the uninitialized array elements

will contain garbage.

The keyword all can be used when it is desired to append all fields of a class to another class.

If the attribute is a complex type, its contents are specified as a query which will return the tuples in the set.
See the examples below.

You must have write or append access 10 a class in order to append to it, as well as read access on any class
whose values are read in the target list or qualification (see change ac/(commands)).

03/12/94 60

APPEND(COMMANDS) APPEND(COMMANDS)

EXAMPLES
/t
* Make a new employee Jones work for Smith
*/
append emp (newemp.name, newemp.salary, mgr = °*Smith°®,
bdate = 1990 - newemp.age)
where newemp.name = °®Jones"®

/Q
* Same command using the from list clause
*/
append emp (n.name, n.salary, mgr = *Smith°,
bdate = 1990 - n.age)
from n in newemp
where n.name = *Jones*

/'
* Append the newempl class to newemp
*/

append newemp (newempl.all)

/'
* Create an empty 3x3 gameboard for noughts-and-crosses
* (all of these queries create the same board attribute)
*/

append tictactoe (game = 1, board(1:3][1:3] =
.((l.‘.I'Il)'()’(l.'nﬂ)}l)

append tictactoe (game = 2, board(3][3] =
(")

append tictactoe (game = 3, board =
(G0 0"

/'
* Create a 3x3 noughts-and-crosses board that is
* completely filled-in
*/

append tictactoe (game = 4, board =
*((X,0,X),(0,X,0},(X,X,X})")

/*
* Create a 3x3 noughts-and-crosses board that has
* only 1 place filled-in
*/
append tictactoe (game = 4, board(3)(3] =
(. {,%X,})*)

03/12/94 61

APPEND(COMMANDS) APPEND(COMMANDS)

/'

Create a tuple containing a large-object array.

The large object °/large/tictactoe/board® will be
created if it does not already exist. The flag *-invert®
indicates that the large object is of type Inversion
{the default type is Unix).

* % % » 2

*/
append tictactoe (board3 =
*/large/tictactoe/board -invert®)

/Q

Create a tuple containing a large-object array and °®chunk®
it. The Inversion file °“/large/tictactoe/board® must already
exist. The external file °®/etc/acc_patt® holds the access
pattern used to cluster {(chunk) the array elements. A new
large object is created to hold the chunked array.

{See °"src/doc/papers/arrays/paper.ps® for more information)

* % % % »

»

*/
append tictactoe (board{3]([3] =
*/large/tictactoe/board -chunk /etc/acc_patt®)

/'
* Append a tuple with a set attribute "mgr® of type emp. The
* query to produce the manager of °®carol® (specified dynamically
* here) will be stored as a POSTQUEL function in the system
* catalog °pg_proc®. The object ID of this tuple in °pg_proc*®
* will be used in the name of the procedure, resulting in a
* procedure name of the form ®"set<OID of the tuple>*. Two
* backslashes are needed here to escape the inner quotes when
* entering this query from the monitor.
*/
append emp (name = ®carol®,
mgr = "retrieve (emp.all)
where emp.name = \\"mike*"°*)

SEE ALSO
postquel(commands), cmlg(conunands). define type(commands), replace(commands), retricve(commands)
introduction(large objects).

BUGS

Once an array is created by an append query, its size (in bytes) cannot be changed. This has several impli-
cations.
First, there is no longer any notion of a “variable-length array.” In fact, since variable-length arrays
were not actually supported in previous versions of POSTGRES, this is not much of a change.

Second, arrays of variable-length types (e.g., text) cannot be updated. Since the array cannot
grow, replacement of individual array elements cannot be supported in general.

03/1294 62

ATTACHAS(COMMANDS) ATTACHAS(COMMANDS)

NAME
attachas — reestablish communication using an exising portal

SYNOPSIS
attachas name

DESCRIPTION
This command allows application programs to use a logical name, name, in interactions with POSTGRES,
Suppose the user of an application program specifies a collection of rules that retrieve data and that the pro-
gram fails for some reason. Then, under ordinary circumstances, all the rules would need to be reeatered
when the program is restored. Alternatively, the attachas command may be used before defining the rules
the first time. Then, upon restoring the program, the attachas command will reattach the user to the active
rules.

BUGS
Attachas is not implemented in Version 4.2.

012393 63

BEGIN(COMMANDS) BEGIN(COMMANDS)

NAME
begin — begins a transaction

SYNOPSIS
begin

DESCRIPTION
This command begins a user transaction which POSTGRES will guarantee is serializable with respect to all
concurrently executing transactions. POSTGRES uses two-phase locking to perform this task, If the trans-
action is committed, POSTGRES will ensure that all updates are done or none of them are done. Transac-
tions have the standard ACID (atomic, consistent, isolatable, and durable) property.

SEE ALSO
abort(commands), end(commands).

01/23/93 64

CHANGE ACL(COMMANDS) CHANGE ACL(COMMANDS)

NAME
. change acl — change access controt list(s)

SYNOPSIS
change acl (groupiuser] (name}+ {alriwiR) class-1 {, class-i}
change acl [groupiuser] [name]-(alriwiR} class-1 {, class-i}
change acl (groupluser] [name]={alriwiR} class-1 {, class-i}

DESCRIPTION
Introduction

An access control list (ACL) specifies the access modes that are permitted on a given class for a set of users
and groups of users. These modes are;

a - append data to a class

r - read data from a class

w - write data (append, delete, replace) to a class

R - define rules on a class

Application of ACLs to users

Each entry in an ACL consists of an identifier and a set of permitted access modes. The identifier may
apply to a single user, a group of users, or all other users. If a user has a personal entry in an ACL, then
only the listed access modes are permitted. If a user does not have a personal entry but is a member of
some group(s) listed in the ACL. then access is permitted if all of the listed groups of which the user is a
member have the desired access mode. Finally, if a user does not have a personal entry and is not a mem-
ber of any listed groups, then the desired access mode is checked against the "other” entry.

Database superusers (i.c.. users who have pg_user.usesuper set) silently bypass all access controls with one
exception: manual system catalog updates are never permitted if the user does not have pg_user.usecaupd
set. This is intended as a convenience (safety net) for careless superusers.

Application of ACLs through time
The access control system always uses the ACLs that are currently valid, i.c., time travel is not supported.
This may change if/when a more general notion of time-travel is documented.

CHANGING ACLS
In the syntax shown above, name is a user or group identifier. If the user or group keywornds are left out,
name is assumed to be a user name. If no name is listed at all, then the ACL entry applies to the "other”

category.
Access modes are added. deleted or explicitly set using exactly one of the +, - and = mode-change flags.
The access modes themselves are specified using any number of the single-letter mode flags listed above.
Only the owner of a class (or a database superuser) may change an ACL.

By default, classes start without any ACLs. Classes created using the inheritance mechanism do not inherit

ACLs.
EXAMPLES
/t
* Deny any access to °®other® to classes °*gcmdata® and °"btdatac®.
*/

change acl = gcmdata, btdata

/*
* Grant "dozier® all permissions to "gcmdata® and °"btdata“.

0172393 65

CHANGE ACL(COMMANDS) CHANGE ACL(COMMANDS)

*/
change acl user dozier=arwR gcmdata, btdata

/t

* Allow group °"sequoia® to read and append data to "gcmdata“.
*/
change acl group sequoia+ra gcmdata

/*

* Deny °*frew® the ability to define rules on °"gcmdata“.
*/
change acl frew-R gcmdata

SEE ALSO
introduction(unix), append(commands), copy(commands), delete(commands), define rule(commands),

replace(commands), retrieve(commands).

CAVEATS
The command syntax, pattemed after chmod(1), is admittedly somewhat cryptic.

A facility like umask(2) will be added in the future.

User authentication is only conducted if the frontend process and backend server have been compiled with
the kerberos(5) librarics. See introduction(unix).

As shipped, the system does not have any installed ACLs.

An access control mode for defining trusted functions (analogous to the access control on defining rules)
will be added after the (mis)features and interface of untrusted functions have stabilized.

User names, group names and associated system identifiers (e.g., the contents of pg_user.usesysid) are
assumed to be unique throughout a database. Unpredictable results may occur if they are not.

User system identifiers, as mentioned in a previous section of the manual, are currently UNIX user-id's.
This may change at some time in the future.

It is possible for users to change the server’s internal data structures from inside of trusted (fast path) C
functions. Hence, among many other things, such functions can circumvent any system access controls.
This is an inherent problem with trusted functions.

No POSTQUEL command is provided to clean up ACLs by removing entries (as opposed to removing the
associated permissions). However, the built-in ACL functions provided make most administrative tasks
fairly trivial. For example, to remove all ACL references to a user "mao” who is about to be fired, use:

replace pg_class (relacl = pg_class.relacl - *"mao="::aclitem)

Security should be implemented with a clever query modification or rule-based scheme.

01/23/93 66

CLOSE(COMMANDS) CLOSE(COMMANDS)

NAME
close — close a portal

SYNOPSIS
close { portal_name]

DESCRIPTION
Close frees the resources associated with a portal, portal_name. After this portal is closed, no subsequent
operations are allowed on it A portal should be closed when it is no longer needed. If porzal_name is not
specified, then the blank portal is closed.

EXAMPLE
/t
* close the portal FOO
*/
close FOO

SEE ALSO
fetch(commands), move(commands), retrieve(commands).

012393 67

CLUSTER(COMMANDS) CLUSTER(COMMANDS)

NAME
cluster — give storage clustering advice to POSTGRES

SYNOPSIS
cluster classname on attname (using operator }

DESCRIPTION
This command instructs POSTGRES to keep the class specified by classname approximately sorted on
anname using the specified operator to determine the sort order. The operator must be a binary operator
and both operands must be of type armame and the operator must produce a result of type boolean. If no
operator is specified, then “<” is used by default.
A class can be reclustered at any time on a different artrame andfor with a different operator.

POSTGRES will try to keep the heap data structure which stores the instances of this class approximately in
sorted order. If the user specifies an operator which does not define a linear ordering, this command will
produce unpredictable orderings.

Also, if there is no index for the clustering attribute, then this command will have no effect.

EXAMPLE
/*
* cluster employees in salary order
*/
cluster emp on salary

BUGS
Cluster has no effect in Version 4.2.

012393 68

COPY(COMMANDS) COPY(COMMANDS)

NAME

copy — copy data to or from a class from or to a UNIX file,

SYNOPSIS

copy (binary] [nonulls] classname
toifrom "filename"Istdinistdout

DESCRIPTION

Copy moves data between POSTGRES classes and standard UNIX files. The keyword binary changes the
behavior of field formatting, as described below. Classname is the name of an existing class. Filename is
the UNIX pathname of the file. In place of a filename, the keywords stdin and stdout can be used so that
input to copy can be written by a LIBPQ application and output from the copy command can be read by a
LIBPQ application. The binary keyword will force all data to be stored/read as binary objects rather than as.
ASCII text. It is somewhat faster than the normal copy command, but is not generaily portable, and the
files generated are somewhat larger, although this factor is highly dependent on the data itself.

You must have read access on any class whose values are read by the copy command, and either write or
append access to a class to which values are being appended by the copy command.

FORMAT OF OUTPUT FILES

ASCII COPY FORMAT

When copy is used without the binary keyword, the file generated will have each instance on a line, with
each attribute separated by tabs (). Embedded tabs will be preceeded by a backslash character (\). The
attribute values themselves are strings generated by the output function associated with each attribute type.
The output function for a type should not try to generate the backslash character; this will be handled by
copy itself.
Note that on input to copy, backslashes are considered to be special control characters. and should be dou-
bled if you want to embed a backslash, i.e., the string “12\19\88" will be converted by copy to “12\1988".
The actual format for each instance is

<attr1><tab><attr2><tab>...<tab><atm><newline>
If copy is sending its output to standard output instead of a file, it will send a period (.) followed immedi-
ately by a newline, on a line by themselves, when it is done. Similarly, if copy is reading from standard
input, it will expect a period (.) followed by a newline, as the first two characters on a line, to denote end-
of-file. However, copy will terminate (followed by the backend itself) if a true EOF is encountered.

NULL auributes are handled simply as null strings, that is, consecutive tabs in the input file denote a
NULL auribute.
BINARY COPY FORMAT

In the case of copy binary, the first four bytes in the file will be the number of instances in the file. If this
number is zero, the copy binary command will read until end of file is encountered. Otherwise, it will stop
reading when this number of instances has been read. Remaining data in the file will be ignored.
The format for each instance in the file is as follows, Note that this format must be followed EXACTLY.
Unsigned four-byte integer quantities are called uint32 in the below description.

uint32 totallength (not including itself),

uint32 number of null attributes

[uint32 attribute number of first null attribute

uint32 attribute number of nth null attribute],
<data>

ALIGNMENT OF BINARY DATA

01/23/93 69

COPY(COMMANDS) COPY(COMMANDS)

On Sun-3's, 2-byte auributes are aligned on two-byte boundaries, and all larger auributes are aligned on
four-byte boundaries. Character amributes are aligned on single-byte boundaries. On other machines, all
anributes larger than 1 byte are aligned on four-byte boundaries. Note that variable length attributes are
preceded by the attribute’s length; arrays are simply contiguous streams of the array element type.

SEE ALSO

BUGS

append(commands), create(commands), vacuum(commands), libpq.

Files used as arguments to the copy command must reside on or be accessable to the the database server
machine by being either on local disks or a networked file system.

' Copy stops operation at the first error. This should not lead to problems in the event of a copy from, but

the target relation will, of course, be partially modified in a copy to. The vacuum(commands) query should
be used to clean up after a failed copy.

Because POSTGRES operates out of a different directory than the user’s working directory at the time POST-
GRES is invoked, the resuit of copying to a file “foo” (without additional path information) may yield unex-
pected results for the naive user. In this case, “foo” will wind up in SPGDATA/foo. In general, the full path-
name should be used when specifying files to be copied.

Copy has virtually no error checking, and a malformed input file will likely cause the backend to crash.
Humans should avoid using copy for input whenever possible.

012393 70

CREATE(COMMANDS) CREATE(COMMANDS)

NAME
create — create a new class

SYNOPSIS
create classname (attname-1 = type-1 {, attname-i = type-i})
(key (attname-1 {using operator-1]
{, anname-i (using operator-i}})]
[inkerits (classname-1 {, classname-i})]
[archive = archive_mode]
[store = “smgr_name”)
[arch_store = “smgr_name™]
DESCRIPTION
Create will enter a new class into the current data base. The class will be “owned” by the user issuing the
command. The name of the class is classname and the attributes are as specified in the list of attnames.
The ith attribute is created with the type specified by fype-i. Each type may be a simple type, a complex
type (set) or an array type.
Each array attribute stores arrays that must have the same number of dimensions but may have different
sizes and amay index bounds. An array of dimension a is specified by appending n pairs of square brackets:

att_name = type(][)..(]

The optional key clause is used to specify that a field or a collection of fields is unique. If no key clause is
specified. POSTGRES will still give every instance a unique object-id (OID). This clause allows other fields
to be additional keys. The using part of the clause allows the user to specify what operator should be used
for the uniqueness test. For example, integers are all unique if “=" is used for the check, but not if *“<” is
used instead. If no operator is specified, “=" is used by defauit. Any specified operator must be a binary
operator remning a boolean. If there is no compatible index to allow the key clause to be rapidly checked,
POSTGRES defaults to not checking rather than performing an exhaustive search on each key update,

The optional inherits clause specifies a collection of class names from which this class automatically inher-
its all fields. If any inherited field name appears more than once, POSTGRES reports an error. POSTGRES
automatically allows the created class to inherit functions on classes above it in the inheritance hierarchy.
Inheritance of functions is done according to the conventions of the Common Lisp Object System (CLOS).
Each ncw class classname is automatically created as a type. Therefore, one or more instances from the
class are automatically a type and can be used in addattr(commands) or other create statements. See infro-
duction(commands) for a further discussion of this point.

The optional store and arch_store keywords may be used to specify a storage manager to use for the new
class. The released version of POSTGRES supports only “magnetic disk™ as a storage manager name; the
research system at Berkeley provides additional storage managers. Store controls the location of current
data, and arch_store controls the location of historical data. Arch_store may only be specified if archive
is also specified. If either store or arch_store is not declared, it defaults to “magnetic disk”.

The new class is created as a heap with no initial data. A class can have no more than 1600 domains (real-
istically, this is limited by the fact that wpie sizes must be less than 8192 bytes), but this limit may be con-
figured lower at some sites. A class cannot have the same name as a system catalog class.

The archive keyword specifies whether historical data is to be saved or discarded. Arch_mode may be one
of:

none No historical access is supported.

03/12/94 71

CREATE(COMMANDS) CREATE(COMMANDS)

light

Historical access is allowed and optimized for light update activity.

heavy Historical access is ailowed and optimized for heavy update activity.
Arch_mode defaults to “none”. Once the archive status is set, there is no way to change it. For details of
the optimization, see [STONB7].

EXAMPLES

SEE ALSO

/t
* Create class emp with attributes name, sal and bdate
*/
create emp (name = charl6, salary = floatd, bdate = abstime)

/t
* Create class permemp with pension information that
* jinherits all fields of emp
*/

create permemp (plan = charl6) inherits (emp)

/'
* Create class foo on magnetic disk and archive historical data
*/
create foo (bar = int4) archive = heavy
store = °"magnetic disk®

/'
* Create class tictactoe to store noughts-and-crosses
* boards as a 2-dimensional array
*/

create tictactoce (game = intd4, board = char(](]))

/'
* Create a class newemp with a set attribute "manager®. A
* get (complex) attribute may be of the same type as the
* relation being defined (as here) or of a different complex
* type. The type must exist in the *"pg_type®" catalog or be
* the one currently being defined.
*/

create newemp (name = text, manager = newemp)

destroy(commands).

BUGS

The key clause is not implemented in Version 4.2.

Optional specifications (i.e., inherits, archive and store) must be supplied in the order given above, if they
are supplied at all.

03/12/94 72

"

CREATEDB(COMMANDS) CREATEDB(COMMANDS)

NAME
crestedb — create a new database

SYNOPSIS
createdb dbname

DESCRIPTION
Createdb creates a new POSTCRES database. The creator becomes the administrator of the new database,

SEE ALSO
createdb(unix), destroydb(commands), destroydb(unix), initdb(unix).

BUGS
This command should NOT be executed interactively. The crearedb(unix) script should be used instead.

012393 73

CREATE VERSION(COMMANDS) CREATE VERSION(COMMANDS)

NAME
create version — construct a version class
SYNOPSIS
create version classnamel from classname2 {[abstime]]

DESCRIPTION
This command creates a version class classnamel which is related to its parent class, classname2. Initially,

classnamel has the same contents as classname2. As updates 10 classnamel occur, however, the content of
classnamel diverges from classname2. On the other hand, any updates to classname2 show transparently
through to classname!,, uniess the instance in question has aiready been updated in classnamel.

If the optional abstime clause is specified, then the version is constructed relative to a snapshot of class-
" name2 as of the time specified.

POSTGRES uses the query rewrite rule system to ensure that classname! is differentially encoded relative to

classname2. Moreover, classnamel is automatically constructed to have the same indexes as classname?2.

It is legal to cascade versions arbitrarily, so a tree of versions can ultimately resuit. The algorithms that

control versions are explained in (ONG90].

EXAMPLE
/t
* create a version foobar from a snapshot of
* barfoo as of January 17, 1990
*/
create version foobar from barfoo [*Jan 17 1990")

SEE ALSO
define view(commands), merge(commands), postquel(commands).

BUGS
Snapshots (i.e.. the optional abstime clause) are not implemented in Version 4.2.

0172393 74

DEFINE AGGREGATE(COMMANDS) DEFINE AGGREGATE(COMMANDS)

NAME
define aggregate — define a new aggregate

SYNOPSIS
define aggregate agg-name (as]
([sfuncl = state-transition-function-1

» basetype = data-type
. stypel = sfuncl-retum-type]
[, sfunc2 = state-transition-function-2
, stype2 = sfunc2-retum-type]
(, Gnalfunc = final-function)
[, initcondl = initial-condition-1)
(, initcond2 = initial-condition-2])

DESCRIPTION
An aggregate function can use up to three functions. two state rransition functions, X1 and X2:

X1(internal-state 1, next-data_item) —> next-internal-state 1
X2(intemal-state2) —--> next-internal-state2

and a final calculation funcdon, F:
F(internai-state1, internal-state2) -—> aggregate-value

These functions are required to have the following properties:

The arguments (o state-transition-function-1 must be (stypel,basetype), and its return value must
be stypel.
The argument and retum value of state-transition-function-2 must be stype2.

The arguments to the final-calculation-function must be (stypel,stype2), and its retum value must
be a POSTGRES base type (not necessarily the same as basetype.

The final-calculation-function should be specified if and only if both state-transition functions are

specified.
Note that it is possible to specify aggregate functions that have varying combinations of state and final
functions. For example, the *“count™ aggregate requires sfunc2 (an incrementing function) but not sfuncl
or finalfunc, whereas the *“sum” aggregate requires sfuncl (an addition function) but not sfunc2 or final-
func and the “average™ aggregate requires both of the above state functions as well as a finalfunc (a divi-
sion function) to produce its answer. In any case. at least one state function must be defined, and any
sfunc2 must have a comresponding initcond2.

Aggregates also require two initial conditions, one for each transition function. These are specified and
stored in the database as fields of type texs.

EXAMPLE
This avg aggregate consists of two state transition functions, a addition function and a incrementing func-
tion. These modify the intemnal state of the aggregate through a nmning sum and and the number of values
seen so far. It accepts a new employee salary, increments the count, and adds the new salary to produce the
next state. The state transition functions must be passed correct initialization values. The final calculation
then divides the sum by the count to produce the final answer.

/'

* Define an aggregate for intd average

*/

define aggregate avg (sfuncl = intdadd, basetype = int4,
stypel = intd4, sfunc2 = intdinc, stype2 = int4,
finalfunc = intddiv, initcondl = *®0°®, initcond2 = "0°)

01/2393 75

DEFINE AGGREGATE(COMMANDS)

SEE ALSO
define function(commands), remove aggregate(commands).

0172353

DEFINE AGGREGATE(COMMANDS)

76

17

DEFINE FUNCTION(COMMANDS) DEFINE FUNCTION(COMMANDS)

NAME

define function — define a new function

SYNOPSIS

define function function_name (

langusge = {"c” | "postquel”},
returntype = type-r
[, Iscachable]
(,trusted = {"t" | "f"}]
(percall_cpu = "costiy{!*}"]
[, perbyte_cpu = "costly(!*)"]
(,outin_ratio = percentage)
[, byte_pct= percentage)
)

argis ([type-1 {,type-n}])

as {"/full/path/to/objectfile” | "list-of-postquel-queries”}

DESCRIPTION

With this command, a POSTGRES user can register a function with POSTGRES. Subsequently, this user is
treated as the owner of the function.

When defining a function with arguments, the input data types, rype-/, type-2, ..., type-n, and the retumn data
type. rype-r must be specified, along with the language, which may be “c” or “posiquel”. (The arg is
clause may be left out if the function has no arguments, or alternatively the argument list may be left
empty.) The input types may be base or complex types, or any. Any indicates that the function accepts
arguments of any type, or tekes an invalid POSTQUEL type such as (char *). The output type may be speci-
fied as a base type, complex type, setof <type>, or any. The setof modifier indicates that the function will
return a set of items, rather than a single item. The as clause of the command is treated differently for C
and POSTQUEL functions, as explained below.

C FUNCTIONS

Functions written in C can be defined to POSTGRES, which will dynamically load them into its address
space. The loading happens either using /oad(commands) or automatically the first time the function is
necessary for execution. Repeated execution of a function will cause negligible additional overhead, as the
function will remain in a main memory cache.

The iscachable flag indicates to the system that the return value of the function can be associatively cached.

The trusted flag specifies that the function can run inside the POSTGRES server's address space with the
user-id of the POSTGRES super-user. If this flag is not specified, the function will be run in a separate pro-
cess.

The percall_cpu, perbyte_cpu, outin_ratio, and byte_pct flags are provided for C functions to give a
rough estimate of the function’s running time, allowing the query optimizer to postpone applying expensive
functions used in a query’s where clause. The percall_cpu flag captures the overhead of the function’s
invocation (regardless of input size), while the perbyte_cpu flag captures the sensitivity of the function’s
running time to the size of its inputs. The magnitude of these two parameters is determined by the number
of exclamation points appearing after the word costly: specifically, each exclamation point can be thought
of as another order of magnitude in cost, i.e.,

cost = 1 onumber—of -exclamation-~-points

The default value for percall_cpu and perbyte_cpu is 0. Examples of reasonable cost values may be
found in the system catalog ‘‘pg_proc™; most simple functions on base types have costs of 0.

03/12/94 7

DEFINE FUNCTION(COMMANDS) DEFINE FUNCTION(COMMANDS)

The outin_ratio is provided for functions which return variable-leagth types, such as trext or byrea. It
should be set to the size of the function’s output as a percentage of the size of the input. For example, a
function which compresses its operands by 2 should have outin_ratio = 50. The defanit value is 100.
The byte_pct flag should be set to the percentage of the bytes of the arguments that actually need to be
examined in order to compute the function. This flag is particularly useful for functions which generally
take a large object as an argument, but only examine a smail fixed portion of the object. The default vaive
is 100.

Writing C Functions
The body of a C function following as should be the FULL PATH of the object code (.o file) for the func-
tion, bracketed by quotation marks. (POSTGRES will not compile a function automatically — it must be
compiled before it is used in a define function command.)
C functions with base type arguments can be written in a straightforward fashion. The C equivaleats of
built-in POSTGRES types are accessible in a C file if

.../src/backend/utils/builtins.h
is included as a header file. This can be achieved by having
#include <utils/builtins.h>
at the top of the C source file and by compiling all C files with the following include options:

-I.../src/backend
-I.../src/backend/port/<portname>
-I.../src/backend/obj

before any *.c” programs in the cc command line, e.g.:

ce -I.../src/backend \
-I.../src/backend/port/<portname> \
-I.../src/backend/obj \
-C progname.c

where *..." is the path to the installed POSTGRES source tree and “<portname>" is the name of the port for
which the source tree has been buiit.

The convention for passing arguments to and from the user’s C functions is to use pass-by-value for data
types that are 32 bits (4 bytes) or smaller, and pass-by-reference for data types that require more than 32
bits.

The following table gives the C type required for parameters in the C functions that will be loaded into
POSTGRES. The “Defined In” column gives the actual header file (in the

. +./8rc/backend

directory) that the equivalent C type is defined. However, if you include “utils/builtins.h”, these files will
automatically be included.

03/12/94 78

1Y

DEFINE FUNCTION(COMMANDS) DEFINE FUNCTION(COMMANDS)

Equivalent C Types for Bufit-In POSTGRES Types

Bullt-In Type C Type Defined In
abstime AbsoluteTime utils/nabstime.h
bool bool tmp/c.h

box (BOX*) utilg/geo-decis.h
bytea (bytea *) tmp/postgres.h
char char N/A

charl6 Charl6or (chari6*) wmp/postgres.h
cid CID tmp/posigres.h
in2 int2 tmp/postgres.h
in28 (int28 *) tmp/postgres.h
intd4 int4 tmp/postgres.h
floatd float32 or (floatd *) tmp/c.h or tmp/postgres.h
float8 float64 or (float8 *) tmp/c.h or tmp/postgres.h
Iseg (LSEG*) tmp/geo-decls.h
oid oid tmp/postgres.h
oid8 (0id8 *) tmp/postgres.h
path (PATH *) utils/geo-decls.h
point (POINT *) utile/geo-decls.h
regproc regproc or REGPROC tmp/postgres.h
reltime RelativeTime utils/nabstime.h
text (text *) tmp/postgres.h
tid ItemPointer storage/itemptr.h
tinterval Time!nterval utils/nabstime.h
uin2 uint16 tmp/c.h

uintd uint32 tmp/c.h

xid (XID *) tmp/postgres.h

Complex arguments to C functions are passed into the C function as a special C type, TUPLE, defined in
.../src/libpg/libpg-fe.h.

Given a variable ¢ of this type, the C function may extract artributes from the function using the function
call:

GetAttributeByName(t, *"fieldname®, &isnull)

where isnull is a pointer 10 a bool, which the function sets to rrue if the ficld is null. The result of this func-
tion should be cast appropriately as shown in the examples below.

Compiling Dynamically-Loaded C Functions
Different operating systems require different procedures for compiling C source files so that POSTGRES can
load them dynamically. This section discusses the required compiler and loader options on each system.

Under Ultrix, all object files that POSTGRES is expected to load dynamically must be compiled using
Ibin/cc with the “-G 0" option tumed on. The object file name in the as clause should end in “.0".

Under HP-UX, DEC OSF/1, AIX and SunOS 4, all object files must be tumned into shared libraries using
the operating system's native object file loader, ld(1).

Under HP-UX, an object file must be compiled using the native HP-UX C compiler, /bin/cc, with both the
“+z” and “+u” flags tumed on. The first flag turns the object file into “position-independent code™ (PIC);

.

03/1294 9

DEFINE FUNCTION(COMMANDS) DEFINE FUNCTION(COMMANDS)

the second flag removes some alignment restrictions that the PA-RISC architecture normally enforces. The
object file must then be turned into a shared library using the HP-UX loader, /binfid. The command lines to
compile a C source file, “fooc”, look like:

cc <other flags> +z +u -c foo.c
1d <other flags> -b -o foo.sl foo.o

The object file name in the as clause should end in “.s1”,
An extra step is required under versions of HP-UX prior t0 9.00. If the POSTGRES header file

tmp/c.h
is not included in the source file, then the following line must also be added at the top of every source file:
#pragma HP_ALIGN HPUX_NATURAL_SS00

However, this line must not appear in programs compiled under HP-UX 9.00 or later.

Under DEC OSF/1, an object file must be compiled and then tumed into a shared library using the OSF/1
loader, /bin/id. In this case, the command lines look like:

cc <other flags> -c foo.c
1d <other flags> -shared -expect_unresolved '*’ -o foo.so foo.o

The object file name in the as clause should end in “.s0”.

Under SunOS 4, an object file must be compiled and then tmed into a shared library using the SunOS 4
loader, /bin/ld. The command lines look like:

cc <other flags> -PIC -c foo.c
1d <other flags> -dc -dp -Bdynamic -o foo.so foo.o

The object file name in the as clause should end in “.s0”,

Under AIX, object files are compiled normally but building the shared library requires a couple of steps.
First, create the object file:

cc <other flags> -c foo.c
You must then create a symbol “exports” file for the object file:
mkldexport foo.o ‘pwd’ > foo.exp
Finally, you can create the shared library:
1d <other flags> -H512 -T512 -o foo.so -e _nostart \
-bI:.../lib/postgres.exp -bE:foo.exp foo.o \

-1lm -lc 2>/dev/null

You should look at the POSTGRES User Manual for an explanation of this procedure.

03/12/94 80

(3

DEFINE FUNCTION(COMMANDS) DEFINE FUNCTION(COMMANDS)

POSTQUEL FUNCTIONS .
POSTQUEL functions execute an arbitrary list of POSTQUEL queries, retuming the results of the last query
in the list. POSTQUEL functions in general return sets. * If their retumtype is not specified as a sezof , then
an arbitrary element of the last query’s result will be retumed. The expensive function parameters pers
call_cpu, perbyte_cpu, outin_ratio, and byte_pct are not used for POSTQUEL functions; their costs are
determined dynamically by the query optimizer.

The body of a POSTQUEL function following as should be a list of queries separated by whitespace charac-
ters and bracketed within quotation marks. Note that quotation marks used in the queries must be escaped,
by preceding them with two backslashes (i.e. \").

Arguments to the POSTQUEL function may be referenced in the queries using a $Sn syntax: $1 refers to the
first argument, $2 to the second, and so on. If an argument is complex, then a “dot™ notation may be used
to access attributes of the argument (e.g. “$1.emp”), or to invoke functions via a nested-dot syntax.

EXAMPLES: C Functions
The following command defines a C function, overpaid, of two basetype arguments.

define function overpaid
{language = °"c®, returntype = bool)
arg is (float8, intd)
as *®/usr/postgres/src/adt/overpaid.o*

The C file "overpaid.c” might look something like:
#include <utils/builtins.h>

bool overpaid(salary, age)
float8 *salary;
intd age;

if (*salary > 200000.00)
return (TRUE) ;

if ((age < 30) && (*salary > 100000.00))
return(TRUE) ;

return (FALSE) ;

)]
The overpaid function can be used in a query, e.g:

retrieve (EMP.name)
where overpaid(EMP.salary, EMP.age)

One can also write this as a function of a single argument of type EMP:
define function overpaid_2
(language = °"c*, returntype = bool)

arg is (EMP)
as */usr/postgres/src/adt/overpaid_2.o"

The following query is now accepted:

03/1294 81

DEFINE FUNCTION(COMMANDS) DEFINE FUNCTION(COMMANDS)

retrieve (EMP.name) where overpaid_2 (EMP)

In this case, in the body of the overpaid_2 function, the fields in the EMP record must be extracted. The C
file "overpaid_2.c" might look something like:

#include <utils/builtins.h>
#include <tmp/libpg-fe.h>

bool overpaid_2(t)
TUPLE t:
(
float8 *salary:
intd age;
bool salnull, agenull;

salary = (float8 *)GetAttributeByName(t, °®salary®,

&salnull);
age = (intd)GetAttributeByName(t, ®age®, &agenull);
if (!salnull && *salary > 200000.00)

return(TRUE) ;

if (!agenull && (age<30) && (*salary > 100000.00))
return (TRUE) ;
return (FALSE)

EXAMPLES: POSTQUEL Functions
To illustrate a simple POSTQUEL function, consider the following, which might be used to debit a bank

account:

define function TP1
(language = °“postquel®, returntype = intd)
arg is (int4, float8)
as "replace BANK (balance = BANK.balance - $2)
where BANK.accountno = $1
retrieve(x = 1)*

A user could execute this function to debit account 17 by $100.00 as follows:
retrieve (x = TP1(17,100.0))

The following more interesting examples take a single argument of type EMP, and retrieve multiple results:

define function hobbies
{language = ®"postquel”®, returntype = setof HOBBIES)

arg is (EMP)
as "retrieve (HOBBIES.all)
where Sl.name = HOBBIES.person®

define function children
(language = "postquel®, returntype = setof KIDS)

03/12/94 82

DEFINE FUNCTION(COMMANDS)

arg is (EMP)

as

*retrieve (XKIDS.all)
where $1.name = KIDS.dad
or $l.name = KIDS.mom"

Then the following query retricves overpaid employees, their hobbies, and their children:

retrieve (name=name(EMP), hobby=name (hobbies (EMP)),

kid=name (children (EMP)))

where overpaid_2 (EMP)

DEFINE FUNCTION(COMMANDS)

Note that attributes can be projected using function syntax (e.g. name(EMP)), as well as the traditional dot
syntax (e.g. EMP.name).

An equivalent expression of the previous query is:

retrieve (EMP.name, hobby=EMP.hobbies.name,

kid=EMP.children.name)

where overpaid_2 (EMP)

This "pested dot" notation for functions can be used to cascade functions of single arguments. Note that the

function after a dot must have only one argument, of the type returned by the function before the dot.

POSTGRES flattens the target list of the queries above. That is, it produces the cross-product of the hobbies
and the children of the employees. For example, given the schema:

create
append

create

create
create
append

append
append
append

append
append
append
append

append
append

append

BANK (accountno = intd, balance = f£loat8)
BANK (accountno = 17,
balance = *10000.00"::£float8)
EMP (name = charlé, salary = float8,
dept = charlé, age = intd)
HOBBIES (name = charlé, person = charlé)
KIDS (name = charlé, dad = charlé, mom = charlé)
EMP (name *joey®, salary = ®*100000.01°::float8,
dept "toy", age = 24)
EMP (name *jeff®, salary = "100000.01"::£float8,
dept *shoe®, age = 23)
EMP (name *wei®", salary = *"100000*::float8,
dept *tv", age = 30)
EMP (name "mike®, salary = *500000"::float8,
dept *appliances®, age = 30)
HOBBIES (name *biking®, person = ®*jeff")
HOBBIES (name *jamming®, person = "joey")
HOBBIES (name *basketball®, person = *wei®)
HOBBIES (name *swimming®, person = °®mike®)
HOBBIES (name *philately*®, person = "mike®)
KIDS (name = "matthew"”, dad = "mike",
mom = "teresa®)
RIDS (name = "calvin®, dad = °mike",
mom = "teresa*®)

a0 0 nun0n

naannn

The query above returns

03/12/94

83

DEFINE FUNCTION(COMMANDS) DEFINE FUNCTION(COMMANDS)

name hobby kid

jeff biking (null)

joey jamming (null)

mike swimming matthew
mike philately matthew
mike swimming calvin

mike philately calvin

Note that flattening preserves the name and hobby fields even when the “kid” field is null.

SEE ALSO

NOTES

information(unix), load(commands), remove function(commands).

Expeasive Functions

The percall_cpu and perbyte_cpu flags can take integers surrounded by quotes instead of the "costly{!*}"
syntax described above. This allows a finer grain of distinction between function costs, but is not encour-
aged since such distinctions are difficult to estimate accurately.

Name Space Conflicts

More than one function may be defined with the same name, as long as the arguments they take are differ-
ent. In other words, function names can be overloaded. A function may also have the same name as an
attribute. In the case that there is an ambiguity between a function on a complex type and an attribute of
the complex type, the attribute will always be used.

RESTRICTIONS

BUGS

The name of the C function must be a legal C function name, and the name of the function in C code must
be exactly the same as the name used in define function. There is a subtle implication of this restriction:
while the dynamic loading routines in most operating systems are more than happy to allow you to load any
number of shared libraries that contain conflicting (identically-named) function names, they may in fact
botch the load in interesting ways. For example, if you define a dynamically-loaded function that happens
to have the same name as a function built into POSTGRES, the DEC OSF/1 dynamic loader causes POST-
GRES to call the function within itself rather than allowing POSTGRES to call your function. Hence, if you
want your function to be used on different architectures, we recommend that you do not overload C func-
tion names.

There is a clever trick to get around the problem just described. Since there is no problem overloading
POSTQUEL functions, you can define a set of C functions with different names and then define a set of
identically-named POSTQUEL function wrappers that take the appropriate argument types and call the
matching C function.

any cannot be given as an argument to a POSTQUEL function.

The iscachable flag does not do anything in Version 4.2.

Untrusted functions cannot make any function calls using access methods or built-in functions that have not
been loaded into the untrusted-function process.

Untrusted functions must be explicitly designated as such in a separate query, e.8.:

replace pg_proc (proistrusted = *f£*::bool)
where pg_proc.proname = *mynewfunction®

03/1294 84

AL

' DEFINE FUNCTION(COMMANDS)

C functions cannot return a set of values.

03/12/94

DEFINE FUNCTION(COMMANDS)

85

DEFINE INDEX(COMMANDS) DEFINE INDEX(COMMANDS)

NAME

define index — construct a secondary index

SYNOPSIS

define [archive] index index-name
on classname using am-name
(attname type_class)
[where qual]

define [archive] index index-name
on classname using am-name
(funcname (attname~1 { , attname~i }) type_class)

DESCRIPTION

This command constructs an index called index-name. If the archive keyword is absent, the classname
class is indexed. When archive is present, an index is created on the archive class associated with the
classname class.

Am-name is the name of the access method which is used for the index.

In the first syntax shown above, the key field for the index is specified as an attribute name and an associ-
ated operator class. An operator class is used to specify the operators to be used for a particular index. For
example, a btree index on four-byte integers would use the int4_ops class; this operator class includes com-
parison functions for four-byte integers.

If a qual is given, the index will be a partial index, which will index only those instances in classname for
which the predicate specified by qual is true. Note that the predicate may only refer to attributes of the
indexed class, classname. POSTGRES may use a partial index as an access path only for queries that
include a restriction that implies that the predicate is true. For example, if the index predicate is

emp.age < 30

then the index can be used for a query with the restriction
where emp.age < 25

but not for a query with the restriction
where emp.age < 40

and so forth, Although partial indexes cannot be used to satisfy as wide a range of queries as complete
indexes, they can be constructed more quickly and extended incrementally (see extend index(commands)).

In the second syntax shown above, an index can be defined on the result of a user-defined function func-
name applied to one or more attributes of a single class. These functional indices are primarily useful in
two situations. First, functional indices can be used to simulate multi-key indices. That is, the user can
define a new base type (a simple combination of, say, “oid” and “int2”) and the associated functions and
operators on this new type such that the access method can use it. Once this has been done, the standard
techniques for interfacing new types to access methods (described in the POSTGRES user manual) can be
applied. Second, functional indices can be used to obtain fast access to data based on operators that would
normally require some transformation to be applied to the base data. For example, say you have an
attribute in class “myclass” called “pt” that consists of a 2D point type. Now, suppose that you would like
to index this attribute but you only have index operator classes for 2D polygon types. You can define an
index on the point attribute using a function that you write (call it “point_to_polygon™) and your existing

03/12/94 86

[}

DEFINE INDEX(COMMANDS) DEFINE INDEX(COMMANDS)

polygon operator class; after that, queries using existing polygon operators that reference
“point_to_polygon(myclass.pt)” on one side will use the precomputed polygons stored in the functional
index instead of computing a polygon for each and every instance in “myclass” and then comparing it to the
value on the other side of the operator. Obviously, the decision to build a functional index represents a
tradeoff between space (for the index) and execution time.

POSTGRES Version 4.2 provides biree, rtree and hash access methods for secondary indices. The btree
access method is an implementation of the Lehman-Yao high-concurrency btrees. The rtree access method
implements standard rtrees using Guttman’s quadratic split algorithm. The hash access method is an imple-
mentation of Litwin’s linear hashing. We mention the algorithms used solely to indicate that all of these
access methods are fully dynamic and do not have to be optimized periodically (as is the case with, for
example, static hash access methods).

The operator classes defined on btrees are

int2_ops char2_ops o0idint2_ops
int4_ops char4_ops oidintd_ops
int24_ops char8_ops oidcharlé_ops
int42_ops charlé_ops

floatd_ops oid_ops

float8_ops text_ops

char_ops abstime_ops

The int24_ops operator class is useful for constructing indices on int2 data, and doing comparisons against
int4 data in query qualifications. Similarly, int42_ops support indices on int4 data that is to be compared
against int2 data in queries. "
The operator classes oidint2_ops, oidint4_ops, and oidchar16_ops represent the use of functional indices to
simulate multi-key indices.

The POSTGRES query optimizer will consider using btree indices in a scan whenever an indexed attribute is
involved in a comparison using one of

< <= = >= >

‘The operator classes defined on rtrees are

box_ops
bigbox_ops
poly_ops

Both box classes support indices on the “box” datatype in POSTGRES. The difference between them is that
bighox_ops scales box coordinates down, to avoid floating point exceptions from doing multiplication,
addition, and subtraction on very large floating-point coordinates. If the field on which your rectangles lic
is about 20,000 units square or larger, you should use bigbox_ops. The poly_ops operator class supports
rtree indices on “polygon” data.

The POSTGRES query optimizer will consider using an rtree index whenever an indexed attribute is
involved in a comparison using one of

<< &< &> >> @ ~ &&

meopaatorclassgsdeﬁnedmmehashaccessmemodm

03/12/94 87

DEFINE INDEX(COMMANDS) DEFINE INDEX(COMMANDS)

char_ops int2_ops
char2_ops intd_ops
chard_ops floatd_ops
char8_ops float8_ops
charlé_ops oid_ops
text_ops

The POSTGRES query optimizer will consider using a hash index whenever an indexed attribute is involved
in a comparison using the

i3

operator,
EXAMPLES
/t
* Create a btree index on the emp class using the age attribute.
*/
define index empindex on emp using btree (age intd_ops)

/t
* Create a btree index on employee name.
*/
define index empname
on emp using btree (name charlé_ops)

/t
* Create an rtree index on the bounding rectangle of cities.
*/
define index cityrect
on city using rtree (boundbox box_ops)

* Create a rtree index on a point attribute such that we
* can efficiently use box operators on the result of the
* conversion function. Such a qualification might look N
* like "where point2box(points.pointloc) = boxes.box*®.
*/
define index pointloc
on points using rtree (point2box(location) box_ops)

/t
* Create a partial btree index on employee salaries for
* employees over age S0
*/
define index empsal
on emp using btree (salary intd_ops) where emp.age > 49

03/1294 88

DEFINE INDEX(COMMANDS) , DEFINE INDEX(COMMANDS)

BUGS

Note: if the partial-index predicate refers to an attribute of a discrete-valued type (such as integers), it
is slightly preferable to express the predicate as, e.g., "emp.age > 49" rather than as "emp.age >= 50",
because even though both indexes would, in theory, be equally usable, POSTGRES would only be able
10 use a partial index with the former predicate in the event of a query that had the exact restriction
“emp.age > 49",

Archive indices are not supported in Version 4.2,
There should be an access method designer’s guide.

Indices may only be defined on a single key. This can be hacked around by defining special types and using
the POSTGRES support for indices on functional values of attributes.

‘The only kind of partial index predicates POSTGRES Version 4.2 understands are those made up of boolean
combinations of simple clauses of the form

ATTR OP CONST
where ATTR is a single attribute of the indexed class, and OP is an operator in a btree operator class

defined on the types of ATTR and CONST. If some other form of predicate is specified, Version 4.2 will
never use the resulting partial index.

03/1294 89

.DEFINE OPERATOR(COMMANDS) DEFINE OPERATOR(COMMANDS)

NAME

define operator — define a new user operator

SYNOPSIS

define operator operator_name
([argl = type-1]
[,arg2 =type-2]
» procedure = func_name
[, precedence = number]
[, associativity = (left | right | none | any)]
[, commautator = com_op]
[, negator = neg_op]
[, restrict = res_proc]
[, hashes]
[, join = join_proc]
[, sort = sor_opl {, sor_op2 }
)

DESCRIPTION

-

This command defines a new user operator, operator_name. The user who defines an operator becomes its
owner.

The operator_name is a sequence of up to sixteen punctuation characters. The following characters are
valid for single-character operator names:

T1e#%"&?

If the operator hame is more than one character long, it may consist of any combination of the above char-
acters or the following additional characters:

|$2+-*/<>=

At least one of argl and arg2 must be defined. For binary operators, both should be defined. For right
unary operators, only arg/ should be defined, while for left unary operators only arg2 should be defined.

The name of the operator, operator_name, can be composed of symbols only. Also, the func_name proce-
dure must have been previously defined-using define function(commands) and must have one or two argu-
ments. The types of the arguments for the operator and the type of the answer are as defined by the func-
tion. Precedence refers to the order that multiple instances of the same operator are evaluated. The next
several fields are primarily for the use of the query optimizer.

The associativity value is used to indicate how an expression containing this operator should be evaluated
when precedence and explicit grouping are insufficient to produce a complete order of evaluation. Left and
right indicate that expressions containing the operator are to be evaluated from left to right or from right to
left, respectively. None means that it is an error for this operator to be used without explicit grouping when
there is ambiguity. And any, the default, indicates that the optimizer may choose to evaluate an expression
which contains this operator arbitrarily.

The commutator operator is present so that POSTGRES can reverse the order of the operands if it wishes.
For example, the operator area-less-than, >>>, would have a commutator operator, area-greater-than, <<<.
Suppose that an operator, area-equal, ==, exists, as well as an area not equal, !==. Hence, the query opti-
mizer could freely convert:

“0,0,1,1"::box >>> MYBOXES.description

03/12/94 90

DEFINE OPERATOR(COMMANDS) DEFINE OPERATOR(COMMANDS)

MYBOXES.description <<< "0,0,1,1"::box

This allows the execution code to always use the latter representation and simplifies the query optimizer
somewhat.

The negator operator allows the query optimizer to convert

not MYBOXES.description === *0,0,1,1"::box

MYBOXES.description !== "0,0,1,1"::box

If a commutator operator name is supplied, POSTGRES searches for it in the catalog. If it is found and it
does not yet have a commutator itself, then the commutator’s entry is updated to have the current (new)
operator as its commutator. This applies to the negator, as well.

This is to allow the definition of two operators that are the commutators or the negators of each other. The
first operator should be defined without a commutator or negator (as appropriate). When the second opera-
tor is defined, name the first as the commutator or negator. The first will be updated as a side effect.

The next two specifications are present to support the query optimizer in performing joins, POSTGRES can
always evaluate a join (i.e., processing a clanse with two tuple variables separated by an operator that
returns a boolean) by iterative substitution [WONG76). In addition, POSTGRES is planning on implement-
ing a hash-join algorithm along the lines of [SHAP86]; however, it must know whether this strategy is
applicable. For example, a hash-join algorithm is usable for a clause of the form: :

MYBOXES .description === MYBOXES2.description
but not for a clause of the form:
MYBOXES .description <<< MYBOXES2.description.

The hashes flag gives the needed information to the query optimizer concerning whether a hash join strat-
egy is usable for the operator in question.

Similarly, the two sort operators indicate to the query optimizer whether merge-sort is a usable join strategy
and what operators should be used to sort the two operand classes. For the === clause above, the optimizer

must sort both relations using the operator, <<<. On the other hand, merge-sort is not usable with the
clause:

MYBOXES .description <<< MYBOXES2.description

If other join strategies are found to be practical, POSTGRES will change the optimizer and run-time system
to use them and will require additional specification when an operator is defined. Fortunately, the research
community invents new join strategies infrequently, and the added generality of user-defined join strategies
was not felt to be worth the complexity involved.

The last two pieces of the specification are present so the query optimizer can estimate result sizes. If a
clause of the form:

03/12/94 : 91

DEFINE OPERATOR(COMMANDS) DEFINE OPERATOR(COMMANDS)

MYBOXES.description <<< "0,0,1,1"::box

is present in the qualification, then POSTGRES may have to estimate the fraction of the instances in
MYBOXES that satisfy the clause. The function res_proc must be a registered function (meaning it is
already defined using define function(commands)) which accepts one argument of the correct data type and
returns a floating point rumber. The query optimizer simply calls this function, passing the parameter

*0,0,1,1"

and multiplies the result by the relation size to get the desired expected number of instances.

Similarly, when the operands of the operator both contain instance variables, the query optimizer must esti-
mate the size of the resulting join. The function join_proc will return another floating point number which
will be multiplied by the cardinalities of the two classes involved to compute the desired expected result
m.

The difference between the function
my_procedure_1 (MYBOXES.description, *0,0,1,1%::box)

and the operator

MYBOXES.description === °0,0,1,1"::box

is that POSTGRES attempts to optimize operators and can decide to use an index to restrict the search space
when operators are involved. However, there is no attempt to optimize functions, and they are performed
by brute force. Moreover, functions can have any number of arguments while operators are restricted to
one or two.

EXAMPLE
/*
* The following command defines a new operator,
* area-equality, for the BOX data type.

*/
define operator === (
argl = box,
arg2 = box,

procedure = area_equal_procedure,
precedence = 30,
associativity = left,

commutator = ===,

negator = l!==,

restrict = area_restriction_procedure,
hashes,

join = area-join-procedure,

s80rt = <<<, <<<)

SEE ALSO
define function(commands), remove operator(commands).

03/12/94)

. DEFINE OPERATOR(COMMANDS) DEFINE OPERATOR(COMMANDS)

BUGS
Operator names cannot be composed of alphabetic characters in Version 4.2.

Operator precedence is not implemented in Version 4.2.

If an operator is defined before its commuting operator has been defined (a case specifically warned against
above), a dummy operator with invalid fields will be placed in the system catalogs. This may interfere with
the definition of later operators.

03/12/94 93

DEFINE RULE(COMMANDS) DEFINE RULE(COMMANDS)

NAME ,
define rule — define a new rule

SYNOPSIS
define [instance | rewrite] rule rule_name
[as exception to rule_name_2]
isonevent
to object [[from clause] where clause]
do [instead]
[action | nothing | [actions...]]

DESCRIPTION

Define rule is used to define a new rule. There are two implementations of the rules system, one based on
query rewrite and the other based on instance-level processing. In general, the instance-level system is
more efficient if there are many rules on a single class, each covering a small subset of the instances. The
rewrite system is more efficient if large scope rules are being defined. The user can optionally choose which
rule system to use by specifying rewrite or instance in the command. If the user does not specify which
system to use, POSTGRES defaults to using the instance-level system. In the long run POSTGRES will auto-
matically decide which rules system to use and the possibility of user selection will be removed.

Here, event is one of retrieve, replace, delete ot append. Object is either:
aclass name
or
class.column
The from clause, the where clause, and the action are respectively normal POSTQUEL from clauses, where
clauses and collections of POSTQUEL commands with the following change:

new or current can appear instead of an instance variable whenever an instance
variable is permissible in POSTQUEL.
The semantics of a rule is that at the time an individual instance is accessed, updated, inserted or deleted,
there is a current instance (for retrieves, replaces and deletes) and a mew instance (for replaces and
appends). If the event specified in the on clause and the condition specified in the where clause are true for
the current instance, then the action part of the rule is executed. First, however, values from ficlds in the
current instance and/or the new instance are substituted for:
current.attribute-name
new.attribute-name
The action part of the rule executes with same command and transaction identifier as the user command
that caused activation.
A note of caution about POSTQUEL rules is in order. If the same class name or instance variable appears in
the event, where clause and the action parts of a rule, they are all considered different tuple variables.
More accurately, new and current are the only tuple variables that are shared between these clauses. For
example, the following two rules have the same semantics:

on replace to EMP.salary where EMP.name = "Joe®
do replace EMP (...) where ...

on replace to EMP-l.salary where EMP-2.name = "Joe"®
do replace EMP-3 (...) where ...

Each rule can have the optional tag instead. Without this tag action will be performed in addition to the
user command when the event in the condition part of the rule occurs. Altemately, the action part will be
done instead of the user command. In this later case, the action can be the keyword nothing.

0172393 : 94

DEFINE RULE(COMMANDS) DEFINE RULE(COMMANDS)

When choosing between the rewrite and instance rule systems for a particular rule application, remember
that in the rewrite system current refers to a relation and some qualifiers whereas in the instance system it
refers to an instance (tuple). '

It is very important to note that the rewrite rule system will neither detect nor process circular rules. For
example, though each of the following two rule definitions are accepted by POSTGRES, the retrieve com-
mand will cause POSTGRES to crash:

/*
* Example of a circular rewrite rule combination.
*/
define rewrite rule bad_rule_combination_1l is
on retrieve to EMP
do instead retrieve to TOYEMP

define rewrite rule bad_rule_combination_2 is
on retrieve to TOYEMP
do instead retrieve to EMP

/*
* This attempt to retrieve from EMP will cause POSTGRES to crash.
*/

retrieve (EMP.all)

You must have rule definition access to a class in order to define a rule on it (see change acl(commands).

EXAMPLES
/*
s
* Make Sam get the same salary adjustment as Joe
*/
define rule example_l is
on replace to EMP.salary where current.name = “Joe*
do replace EMP (salary = new.salary)
where EMP.name = “Sam®

AtthetimeJoereceivesasalmyadjus&nem,meevmtwﬂlbecormu'neandloe’scmrentilstanceandpm-
posed new instance are available to the execution routines. Hence, his new salary is substituted into the
action part of the rule which is subsequently executed. This propagates Joe’s salary on to Sam.

/9
* Make Bill get Joe’s salary when it is accessed
*/
define rule example_2 is

on retrieve to EMP.salary

where current.name = "Bill"
do instead
retrieve (EMP.salary) where EMP.name = "Joe*

/*
* Deny Joe access to the salary of employees in the shoe

01/23/93 95

DEFINE RULE(COMMANDS) DEFINE RULE(COMMANDS)

* department. (pg_username() returns the name of the current user)
*/
define rule example_3 is
on retrieve to EMP.salary
where current.dept = "shoe*
and pg_username() = *Joe"
do instead nothing

/ *

* Create a view of the employees working in the toy department.
*/
create TOYEMP(name = charlé, salary = intd)

define rule example_4 is
on retrieve to TOYEMP
do instead retrieve (EMP.name, EMP.salary)
where EMP.dept = "toy"*

/*
* All new employees must make 5,000 or less
*/
define rule example_S is
on append to EMP where new.salary > 5000
‘do replace new(salary = 5000)

SEE ALSO

BUGS

postquel(commands), remove rule(commands), define view(commands).

Exceptions are not implemented in Version 4.2.
The object in a POSTQUEL rule cannot be an amray reference and cannot have parameters.

Aside from the “0id” field, system attributes cannot be referenced anywhere in a rule. Among other things,
this means that functions of instances (e.g., “foo(emp)” where “emp” is a class) cannot be called anywhere
in arule.

The where clause cannot have a from clause.

Only one POSTQUEL command can be specified in the action part of a tple rule and it can only be a
replace, append, retrieve ot delete command.

The rewrite rule system does support multiple action rules as long as event is not retrieve.

The query rewrite rule system now supports most rule semantics, and closely parallels the tuple system. It
also attempts to avoid odd semantics by running instead rules before non-instead rules.

Both rule systems store the rule text and query plans as text attributes. This implies that creation of rules
may fail if the rule plus its various internal representations exceed some value that is on the order of one
page (8KB).

0172393 96

DEFINE TYPE (COMMANDS) DEFINE TYPE (COMMANDS)

NAME
define type — define a new base data type

SYNOPSIS
define type typename (internallength = (number | variable),
[externallength = (number | variable),]
input = input_function,
output = output_function
[, element = typename}
[, delimiter = <character>]
[, default = "string” }
[, send = send_function]
[, receive = receive_function]
[, passedbyvalue])
DESCRIPTION
Define type allows the user to register a new user data type with POSTGRES for use in the current data
base. The user who defines a type becomes its owner. Typename is the name of the new type and must be
unique within the types defined for this database.

Define type requires the registration of two functions (using define function(commands)) before defining
the type. The representation of a new base type is determined by input_function, which converts the type’s
external representation to an internal representation usable by the operators and functions defined for the
type. Naturally, output_function performs the reverse transformation. Both the input and output functions
must be declared to take one or two arguments of type “any”.

New base data types can be fixed length, in which case internallength is a positive integer, or variable
length, in which case POSTGRES assumes that the new type has the same format as the POSTGRES-supplied
data type, “text”. To indicate that a type is variable-length, set internallength to variable. The external
representation is similarly specified using the externallength keyword.

To indicate that a type is an array and to indicate that a type has array elements, indicate the type of the*
array element using the element keyword. For example, to define an array of 4 byte integers (“int4”), spec-
ify

element = int4

To indicate the delimiter to be used on arrays of this type, delimiter can be set to a specific character. The
default delimiter is the comma (*,”) character.

A default value is optionally available in case a user wants some specific bit pattern to mean “data not pre-
sent.”

The optional functions send_function and receive_function are used when the application program request-
ing POSTGRES services resides on a different machine. In this case, the machine on which POSTGRES runs
may use a different format for the data type than used on the remote machine. In this case it is appropriate
to convert data items to a standard form when sending from the server to the client and converting from the
standard format to the machine specific format when the server receives the data from the client. If these
functions are not specified, then it is assumed that the internal format of the type is acceptable on all rele-
vant machine architectures. For example, single characters do not have to be converted if passed from a
Sun-4 to a DECstation, but many other types do.

The optional passedbyvalue flag indicates that operators and functions which use this data type should be
passed an argument by value rather than by reference. Note that only types whose internal representation is
at most four bytes may be passed by value.

01/23/93 97

DEFINE TYPE (COMMANDS) DEFINE TYPE (COMMANDS)

For new base types, a user can define operators, functions and aggregates using the appropriate facilities
described in this section. '

ARRAY TYPES
Two generalized built-in functions, array_in and array_out, exist for quick creation of variable-length
array types. These functions operate on arrays of any existing POSTGRES type.

LARGE OBJECT TYPES
A “regular” POSTGRES type can only be 8192 bytes in length. If you need a larger type you must create a
Large Object type. The interface for these types is discussed at length in Section 7, the large object inter-
face. The length of all large object types is always variable, meaning the internallength for large objects is
always -1.

EXAMPLES
/*
* This command creates the box data type and then uses the
* type in a class definition
*/
define type box (internallength = 8,
input = my_procedure_1l, output = my_procedure_2)

create MYBOXES (id = int4, description = box)

/*
* This command creates a variable length array type with
* integer elements.
*/
define type intdarray
(input = array_in, output = array_out,
internallength = variable, element = intd4)

create MYARRAYS (id = int4, numbers = intd4array)

/t
* This command creates a large object type and uses it in
* a class definition.
*/
define type bigobj
(input = lo_filein, output = lo_fileout,
internallength = variable)

create BIG_OBJS (id = int4, obj = bigobj)

RESTRICTIONS
Type names cannot begin with the underscore character (*_") and can only be 15 characters long. This is
because POSTGRES silently creates an array type for each base type with a name consisting of the base
type’s name prepended with an underscore.

01,2393 98

DEFINE TYPE (COMMANDS) DEFINE TYPE (COMMANDS)

SEE ALSO
define function(commands), define operator(commands), remove type(commands), introduction(large
obijects).

012393 9

DEFINE VIEW(COMMANDS) DEFINE VIEW(COMMANDS)

NAME
define view — construct a virtual class

SYNOPSIS
define view view_name
([dom_name_1 =] expression_1
{, [dom_name_i =] expression_i})
[from from_list]
[where qual]

DESCRIPTION
Define view will define a view of a class. This view is not physically materialized; instead the rule system
is used to support view processing as in [STON90]. Specifically, a query rewrite retrieve rule is antomati- -
cally generated to support retrieve operations on views. Then, the user can add as many update rules as he
wishes to specify the processing of update operations to views. See [STON90] for a detailed discussion of
this point.
EXAMPLE
/*
* define a view consisting of toy department employees
*/
define view toyemp (e.name)
from e in emp
where e.dept = "toy*"

/*
* Specify deletion semantics for toyemp
*/
define rewrite rule examplel is
on delete to toyemp
then do instead delete emp where emp.0ID = current.OID

SEE ALSO
create(commands), define rule(commands), postquel(commands).

01/2393 100

DELETE(COMMANDS) . DELETE(COMMANDS)

NAME
delete — delete instances from a class

SYNOPSIS
delete instance_variable [from from_list] [where qual]

DESCRIPTION
Delete removes instances which satisfy the qualification, qual, from the class specified by
instance_variable. Instance_variable is either a class name or a variable assigned by from_list. If the qual-
ification is absent, the effect is to delete all instances in the class. The result is a valid, but empty class.

You must have write access to the class in order to modify it, as well as read access t0 any class whose val-
ues are read in‘the qualification (see change acl(commands).
EXAMPLE
/*
* Remove all employees who make over $30,000
*/
delete emp where emp.sal > 30000

/*

* Clear the hobbies class
*/
delete hobbies

SEE ALSO
destroy(commands).

01,2393 101

DESTROY(COMMANDS) DESTROY(COMMANDS)

NAME

destroy — destroy existing classes
SYNOPSIS

destroy classname-1 (, classname-i }

DESCRIPTION
Destroy removes classes from the data base. Only its owner may destroy a class. A class may be emptied
of instances, but not destroyed, by using delete(commands).

If a class being destroyed has secondary indices on it, then they will be removed first. ‘Ihetemovalofjusta
secondary index will not affect the indexed class.

This command may be used to destroy a version class which is not a parent of some other version.
Destroying a class which is a parent of a version class is disallowed. Instead, merge(commands) should be
used. Moreover, destroying a class whose fields are inherited by other classes is similarly disallowed. An
inheritance hierarchy must be destroyed from leaf level to root level.

The destruction of classes is not reversable. Thus, a destroyed class will not be recovered if a transaction
which destroys this class fails to commit. In addition, historical access to instances in a destroyed class is
not possible.
EXAMPLE
/*
* Destroy the emp class
*/
destroy emp

/*

* Destroy the emp and parts classes
*/

destroy emp, parts

SEE ALSO
delete(commands), merge(commands), remove index(commands).

02/14/54 ‘ 102

DESTROYDB(COMMANDS) DESTROYDB(COMMANDS)

NAME
destroydb — destroy an existing database

SYNOPSIS
destroydb dbname

DESCRIPTION
Destroydb removes the catalog entries for an existing database and deletes the directory containing the
data. It can only be executed by the database administrator (see createdb(commands) for details).

SEE ALSO
createdb(commands), destroydb(unix).

BUGS
This query should NOT be executed interactively. The destroydb(unix) script should be used instead.

01/23/93 ' 103

END(COMMANDS) END(COMMANDS)

NAME
end — commit the current transaction

SYNOPSIS
end
DESCRIPTION

This commands commits the current transaction. All changes made by the transaction become visible to
others and are guaranteed to be durable if a crash occurs.

SEE ALSO
abort(commands), begin(commands).

01/23/93 104

EXTEND INDEX(COMMANDS) EXTEND INDEX(COMMANDS)

NAME

extend index — extend a partial secondary index
SYNOPSIS

extend index index-name [where qual)

DESCRIPTION
This command extends the existing partial index called index-name.

If a qual is given, the index will be extended to cover all instances that satisfy the predicate specified by
qual (in addition to the instances the index already covers). If no qual is given, the index will be extended
to be a complete index. Note that the predicate may only refer to attributes of the class on which the speci-
fied partial index was defined (see define index(commands)).

EXAMPLE
/t
* Extend a partial index on employee salaries to include
* all employees over 40
*/
extend index empsal where emp.age > 39
SEE ALSO

define index(commands), remove index(commands).

02/13/94 105

FETCH(COMMANDS) FETCH(COMMANDS)

NAME
fetch — fetch instance(s) from a portal
SYNOPSIS
fetch [(forward ! backward)] [(number | all) } [in portal_name]

DESCRIPTION

Fetch allows a user to retrieve instances from a portal named portal_name. The number of instances
retrieved is specified by number. If the number of instances remaining in the portal is less than number,
then only those available are feiched. Substituting the keyword all in place of a number will canse all
remaining instances in the portal to be retrieved. Instances may be fetched in both forward and backward
directions. The defanlt direction is forward.

Updating data in a portal is not supported by POSTGRES, because mapping portal updates back to base
‘ classes is impossible in general as with view updates. Consequently, users must issue explicit replace com-

mands to update data.

Portals may only be used inside of transaction blocks marked by begin(commands) and end(commands)
because the data that they store spans multiple user queries.

EXAMPLE

e

/*
* set up and use a portal
*/
begin \g
retrieve portal myportal (pg_user.all) \g
fetch 2 in myportal \g
fetch all in myportal \g
close myportal \g
end \g

/*

* Fetch all the instances available in the portal FOO
*/

fetch all in FOO

/t
* Fetch 5 instances backward in the portal FOO
*/

fetch backward 5 in FOO

SEE ALSO
begin(commands), end(commands), close(commands), move(commands), retrieve(commands).

BUGS
Currently, the smallest transaction in POSTGRES is a single POSTQUEL command. It should be possible for
a single fetch to be a transaction.

012393 - 106

LISTEN(COMMANDS) LISTEN(COMMANDS)

NAME

listen — listen for notification on a relation
SYNOPSIS

listen class_name

DESCRIPTION
listen is used to register the current backend as a listener on the relation class_name. When the command
notify class_name is called either from within a rule or at the query level, the frontend applications cosre-
sponding to the listening backends are notified. When the backend process exits, this registration is cleared.
This event notification is performed through the LIBPQ protocol and frontend application interface, The
application program must explicitly poll a LIBPQ global variable, PQAsyncNotifyWaiting, and call the rou-
tine PQnotifies in order to find out the name of the class to which a given notification corresponds. If this
code is not included in the application, the event notification will be queued and never be processed. :

SEE ALSO
define rule(commands), notify(commands), mkvde). libpg.

BUGS
There is no way to un-listen except to drop the connection (i.e., restart the backend server).

The monitor(unix) command does not poll for asynchronous events.

03/12/94 107

LOAD(COMMANDS) LOAD(COMMANDS)

NAME
load — dynamically load an object file

SYNOPSIS
load "filename”

DESCRIPTION
Load loads an object (or ".0") file into POSTGRES’s address space. Once a file is loaded, all functions in
that file can be accessed. This function is used in support of ADT"s.

If a file is not loaded using the load command, the file will be loaded automatically the first time the func-
tion is called by POSTGRES. Load can also be used to reload an object file if it has been edited and recom-
piled. Only objects created from C language files are supported at this time.

EXAMPLE
/ *
* Load the file /usr/postgres/demo/circle.o
*/
load */usr/postgres/demo/circle.o*

CAVEATS
Functions in loaded object files should not call functions in other object files loaded through the load com-
mand, meaning, for example, that all functions in file A should call each other, functions in the standard or
math libraries, or in POSTGRES itself. They should not call functions defined in a different loaded file B.
This is because if B is reloaded, the POSTGRES loader is not "smart” enough to relocate the calls from the
functions in A into the new address space of B. If B is not reloaded, however, there will not be a problem.

On DECstations, you must use /bin/cc with the “-G 0” option when compiling object files to be loaded.

Note that if you are porting POSTGRES to a new platform, the load command will have to work in order to
support ADTs.

0172393 108

(v

MERGE(COMMANDS) MERGE(COMMANDS)

NAME
merge — merge two classes

SYNOPSIS
merge classnamel into classname2

DESCRIPTION
Merge will combine a version class, classnamel, with its parent, classname2. If classname2 is a base
class, then this operation merges a differently encoded offset, classnamel, into its parent. On the other
hand, if classname2 is also a version, then this operation combines two differentially encoded offsets
together into a single one. In either case any children of classname! become children of classname2.

A version class may not be merged into its parent class when the parent class is also the parent of another
version class.

However, merging in the reverse direction is allowed. Specifically, merging the parent, classnamel, with a
version, classname2, causes classname2 to become disassociated from its parent. As a side effect, class-
namel will be destroyed if is not the parent of some other. version class.

EXAMPLE
/t
* Combine office class and employee class
*/
merge office into employee
- SEE ALSO
create version(commands), destroy(commands). .
 BUGS

Merge is not implemented in Version 4.2.

02/12/94 109

MOVE(COMMANDS) MOVE(COMMANDS)

NAME
move — move the pointer in a portal

SYNOPSIS
move [(forward | backward)]
[(number | all | to (number | record_qual))]
[in portal_pame]
DESCRIPTION
Move allows a user to move the instance pointer within the portal named portal_name. Each portal has an
instance pointer, which points to the previous instance to be fetched. It always points to before the first
instance when the portal is first created. The pointer can be moved forward or backward. It can be moved
to an absolute position or over a certain distance. An absolute position may be specified by using to; dis-
tance is specified by a number. Record_qual is a qualification without instance variables, aggregates, or set
expressions which can be evaluated completely on a single instance in the portal.
EXAMPLE
/t
* Move backwards 5 instances in the portal FOO
*/
move backward 5 in FOO

/ *

* Move to the 6th instance in the portal FO0O
*/

move to 6 in FOO

SEE ALSO
close(commands), fetch(commands), retrieve(commands).

BUGS
Move is not implemented in Version 4.2. The portal pointer may be moved using fetch(commands) and
ignoring its return values.

02/12/94 110

NOTIFY(COMMANDS) . NOTIFY(COMMANDS)

NAME
notify — signal all frontends and backends listening on a class

SYNOPSIS
notify class_name

DESCRIPTION
notify is used to awaken all backends and consequently all frontends that have executed listen(commands)
on class_name. This can be used either within an instance-level rule as part of the action body or from a
normal query. When used from within a normal query, this can be thought of as interprocess communica-
tion (IPC). When used from within a rule, this can be thought of as an alerter mechanism.

Notice that the mere fact that a notify has been executed does not imply anything in particular about the.
state of the class (e.g., that it has been updated), nor does the notification protocol transmit any useful infor-
mation other than the class name. Therefore, all notify does is indicate that some backend wishes its peers
to examine class_name in some application-specific way.
This event notification is performed through the LIBPQ protocol and frontend application interface. The
application program must explicitly poll a LIBPQ global variable, PQAsyncNotifyWaiting, and call the rou-
tine PQnotifies in order to find out the name of the class to which a given notification corresponds. If this
code is not included in the application, the event notification will be queued and never be processed.

SEE ALSO
define rule(commands), listen{commands), libpq.

03/14/94 111

PURGE(COMMANDS) PURGE(COMMANDS)

NAME
purge — discard historical data

SYNOPSIS
purge classname [before abstime] [after reltime]

DESCRIPTION
Purge allows a user to specify the historical retention properties of a class. If the date specified is an abso-
lute time such as “Jan 1 1987", POSTGRES will discard tuples whose validity expired before the indicated
time. Purge with no before clause is equivalent to “purge before now”. Until specified with a purge com-
mand, instance preservation defaults to “forever”.
The user may purge a class at any time as long as the purge date never decreases. POSTGRES will enforce
this restriction, silently.
Note that the purge command does not do anything except set a parameter for system operation. Use vac-
uum(commands) to enforce this parameter.
EXAMPLE
/ﬁ
* Always discard data in the EMP class
* prior to January 1, 1989
*/
purge EMP before "Jan 1 1989*

/*

* Retain only the current data in EMP
*/

purge EMP

SEE ALSO
vacuum(commands).

BUGS AND CAVEATS
Error messages are quite unhelpful. A complaint about “inconsistent times” followed by several nine-digit
numbers indicates an attempt to “back up” a purge date on a relation.
‘You cannot purge certain system catalogs (namely, “pg_class”, “pg_attribute”, “pg_am”, and “pg_amop”)
due to circularities in the system catalog code.
This definition of the purge command is really only useful for non-archived relations, since tuples will not
be discarded from archive relations (they are never vacuumed).

02/08/94 112

(7]

REMOVE AGGREGATE(COMMANDS) REMOVE AGGREGATE(COMMANDS)

NAME
remove aggregate — remove the definition of an aggregate

SYNOPSIS
remove aggregate aggname
DESCRIPTION
Remove aggmgatewillmnuvealltefemcetoanemsungaggmgatedeﬁmnon To execute this command
the current user must be the the owner of the aggregate.
EXAMPLE
/ *
* Remove the average aggregate
*/
remove aggregate avg

SEE ALSO
define aggregate(commands).

01/23/93 113

REMOVE FUNCTION(COMMANDS) REMOVE FUNCTION(COMMANDS)

NAME
remove function — remove a user-defined C function

SYNOPSIS
remove function function_name ([type-1 {,type-n}])
DESCRIPTION
Remove function will remove references to an existing C function. To execute this command the user
must be the owner of the function. The input argument types to the function must be specified, as only the
function with the given name and argument types will be removed.
EXAMPLE
/*
* this command removes the square root function
*/
remove function sqrt(intd)

SEE ALSO
define function(commands).

BUGS

No checks are made to ensure that types, operators or access methods that rely on the function have been
removed first,

03/12/94 114

At

"REMOVE INDEX(COMMANDS) REMOVE INDEX(COMMANDS)

NAME
remove index — removes an index from POSTGRES

SYNOPSIS
remove index index_name

DESCRIPTION
This command drops an existing index from the POSTGRES system. To execute this command you must be
the owner of the index.
EXAMPLE
/ *
* this command will remove the "emp_index" index
*/
remove index emp_index

SEE ALSO
define index(commands).

03/1294 ' 115

REMOVE OPERATOR(COMMANDS) REMOVE OPERATOR(COMMANDS)

NAME
remove operator ~— remove an operator from the system

SYNOPSIS
remove operator opr_desc

DESCRIPTION

: This command drops an existing operator from the database. To execute this command you must be the
owner of the operator.
Opr_desc is the name of the operator to be removed followed by a parenthesized list of the operand types
for the operator. The left or right type of a left or right unary operator, respectively, may be specified as

none,
It is the user’s responsibility to remove any access methods, operator classes, etc. that rely on the deleted
operator.
EXAMPLE
/i
* Remove power operator a"n for int4
*/
remove operator - (int4, int4)
/*
* Remove left unary operator !a for booleans
*/
remove operator ! (none, bool)
/t
* Remove right unary factorial operator a! for intd
*/
remove operator ! (int4, none)
/*
* Remove right unary factorial operator a! for int4
* (default is right unary)
*/
remove operator ! (int4)
SEE ALSO
define operator(commands).

020194 116

REMOVE RULE(COMMANDS) REMOVE RULE(COMMANDS)

NAME
remove rule — removes a current rule from POSTGRES

SYNOPSIS
remove [instance | rewrite] rule rule_name

DESCRIPTION
This command drops the rule named rule_name from the specified POSTGRES rule system. POSTGRES
will immediately cease enforcing it and will purge its definition from the system catalogs.
EXAMPLE
/*
* This example drops the rewrite rule example_l
*/
remove rewrite rule example_l

SEE ALSO
define rule{(commands), remove view(commands).

BUGS
Once a rule is dropped, access to historical information the rule has written may disappear.

01,2393 117

REMOVE TYPE(COMMANDS) REMOVE TYPE(COMMANDS)

NAME
remove type — remove a user-defined type from the system catalogs
SYNOPSIS
remove type typename
DESCRIPTION
This command removes a user type from the system catalogs. Only the owner of a type can remove it.

ltk&eum’srwpmﬁﬁﬁymmwmm.ﬁncﬁm,agpega&&mmub&.mbm
classes, etc. that use a deleted type.

EXAMPLE
/ *
- * remove the box type
*/
remove type box

SEE ALSO
introduction(commands), define type(commands), remove operator(commands).
BUGS

5

It is still possible to remove built-in types.

01,2393 : 118

RENAME(COMMANDS) RENAME(COMMANDS)

NAME .

rename — rename a class or an attribute in a class
SYNOPSIS

rename classnamel to classname2

rename attnamel in classname [*] to attname2

DESCRIPTION

The rename command causes the name of a class or attribute to change without changing any of the data
contained in the affected class. Thus, the class or attribute will remain of the same type and size after this
command is executed.

In order to rename an attribute in each class in an entire inheritance hierarchy, use the classname of the
superclass and append a “*”, (By default, the attribute will not be renamed in any of the subclasses.) This
should always be done when changing an attribute name in a superclass. If it is not, queries on the inheri-
tance hierarchy such as

retrieve (s.all) from s in super*

will not work because the subclasses will be (in effect) missing an attribute found in the superclass.

You must own the class being modified in order to rename it or part of its schema. Renaming any part of
the schema of a system catalog is not permitted.

EXAMPLE
/*
* change the emp class to personnel
*/
rename emp to personnel
/*
* change the sports attribute to hobbies
*/
rename sports in emp to hobbies
/ *
* make a change to an inherited attribute
*/
rename last_name in person* to family_name
BUGS

Execution of historical queries using classes and attributes whose names have changed will produce incor-
rect results in many situations.

Renaming of types, operators, rules, etc., should also be supported.

02/08/94 119

REPLACE(COMMANDS) REPLACE(COMMANDS)

NAME

replace — replace values of attributes in a class

SYNOPSIS

replace instance_variable (ait_name-1 = expression-1

{, at_name-i = expression-i })

[from from_list]
[where qual]
DESCRIPTION

Replace changes the values of the attributes specified in rarges_list for all instances which satisfy the quali-
fication, qual. Only the attributes to be modified need appear in targer_list.
Array references use the same syntax found in retrieve(commands). That is, either single array elements, a:
range of array elements or the entire array may be replaced with a single query.
You must have write access to the class in order to modify it, as well as read access to any class whose val-
ues are mentioned in the target list or qualification (see change acl(commands).

EXAMPLES

/t
* Give all employees who work for Smith a 10% raise
*/ ’
replace emp(sal = 1.1 * emp.sal)
where emp.mgr = *Smith"

/t
* Replace the middle element of a 3x3
* noughts-and-crosses board with an O.
*/
replace tictactoe (board{2])([2] = "O")
where tictactoe.game = 1

/*
* Replace the entire middle row of a 3x3
* noughts-and-crosses board with Os.
*/
replace tictactoe (board(2:2])[{1:3] = *{0,0,0}")
where tictactoe.game = 2

/*
* Replace the entire 3x3 noughts-and-crosses
* board from game 2 with that of game 4
*/
replace tictactoe (board = ttt.board)
frmo ttt in tictactoe
where tictactoe.game = 2 and
ttt.game = 4

06/13/93 120

REPLACE(COMMANDS) REPLACE(COMMANDS)

SEE ALSO
postquel(commands), create(commands), replace(commands), retrieve(commands).

06/13/93 121

RETRIEVE(COMMANDS) RETRIEVE(COMMANDS)

NAME

retrieve — retrieve instances from a class

SYNOPSIS

retrieve

[(into classname [archive_mode] |

portal portal_name |

iportal portal_name)]
[unique]
([attr_name-1 =) expression-1 {, [attr_name-i =] expression-i})
[from from_list]
[where qual]
[sort by attr_name~1 [using operator]

{ , attr_name-j [using operator] }]

DESCRIPTION

Retrieve will get all instances which satisfy the qualification, qual, compute the value of each element in
the target list, and either (1) return them to an application program through one of two different kinds of
portals or (2) store them in a new class.

If classname is specified, the result of the query will be stored in a new class with the indicated name. If an
archive specification, archive_mode of light, heavy, or none is not specifed, then it defaults to light archiv-
ing. (This default may be changed at a site by the DBA). The current user will be the owner of the new
class. The class will have attribute names as specified in the target list. A class with this name owned by
the user must not already exist. The keyword all can be used when it is desired to retrieve all fields of a
class,

If no result classname is specified, then the result of the query will be available on the specified portal and
will not be saved. If no portal name is specified, the blank portal is used by default. For a portal specified
with the iportal keyword, retrieve passes data to an application without conversion to external format. For
a portal specified with the portal keyword, retrieve passes data to an application after first converting it to
the external representation. For the blank portal, all data is converted to external format. Duplicate
instances are not removed when the result is displayed through a portal unless the optional unique tag is
appended, in which case the instances in the target list are sorted according to the sort clause and duplicates
are removed before being returned.

Instances retrieved into a portal may be fetched in subsequent queries by using the fetch command. Since
the results of a retrieve portal span queries, retrieve portal may only be executed inside of a begin/end
transaction block. Attempts to use named portals outside of a transaction block will result in a wamning
message from the parser, and the query will be discarded.

The sort clause allows a user to specify that he wishes the instances sorted according to the corresponding
operator. This operator must be a binary one returning a boolean. Multiple sort fields are allowed and are
applied from left to right.

The target list specifies the ficlds to be retrieved. Each attr_name specifies the desired attribute or portion
of an array attribute, Thus, each aftr_name takes the form

class_name.att_name
or, if the user only desires part of an array,
/ *

* Specify a lower and upper index for each dimension
* (i.e., clip a range of array elements)

03/1394 122

RETRIEVE(COMMANDS) RETRIEVE(COMMANDS)

*/
class_name.att_name[lIndex-1:ulndex-1]..[lIndex-i:ulndex-i]

/*

* Specify an exact array element

*/
class_name.att_name[uIndex-1]..[uIndex-i}

where each l/ndex or ulndex is an integer constant.

When you retrieve an attribute which is of a complex type, the behavior of the system depends on whether
you used "nested dots” to project out attributes of the complex type or not. See the examples below.

You must have read access to a class to read its values (see change acl(commands).

EXAMPLES
/*
* Find all employees who make more than their manager
*/
retrieve (e.name)
from e, m in emp
where e.mgr = m.name
and e.sal > m.sal

/*
* Retrieve all fields for those employees who make
* more than the average salary :
*/ a
retrieve into avgsal(ave = float8ave (emp.sal}) \g <

retrieve (e.all)
from e in emp
where e.sal > avgsal.ave \g

/‘l
* Retrieve all employee names in sorted order
*/
retrieve unique (emp.name)
sort by name using <

/t
* Retrieve all employee names that were valid on 1/7/85
* in sorted order
*/
retrieve (e.name)
from e in emp["January 7 1985°]
sort by name using <

03/13/94 123

RETRIEVE(COMMANDS) RETRIEVE(COMMANDS)

/*
* Construct a new class, raise, containing 1.1
* times all employee'’s salaries
*/

retrieve into raise (salary = 1.1 * emp.salary)

/t
* Do a retrieve into a portal
*/
begin \g
retrieve portal myportal (pg_user.all) \g
fetch 2 in myportal \g
fetch all in myportal \g
close myportal \g
end \g

/*
* Retrieve an entire 3x3 array that represents
* a particular noughts-and-crosses board.
* This retrieves a 3x3 array of char.
*/
retrieve (tictactoe.board)
where tictactoe.game = 2

/*
* Retrieve the middle row of a 3x3 array that
* represents a noughts-and-crosses board.
* This retrieves a 1x3 array of char.
*/
retrieve (tictactoe.board[2:2]([1:3])
where tictactoe.game = 2

/*
* Retrieve the middle element of a 3x3 array that
* represents a noughts-and-crosses board.
* This retrieves a single char.
*/
retrieve (tictactoe.board(2](2])
where tictactoe.game = 2

Retrieve all attributes of a class “"newemp® that
contains two attributes, "name® and a complex type
*manager® which is of type "newemp®. Since each
complex attribute represents a procedure recorded

* % * »

03/13/94 124

RETRIEVE(COMMANDS) RETRIEVE(COMMANDS)

in *pg_proc®, the system will return the object IDs
of each procedure. In this example, POSTGRES will
return tuples of the form (“carol®, 34562),
("sunita”, 45662), and so on. The "manager® field
is represented as an object ID.

* % % * %

*/
retrieve (newemp.name, newemp.manager)

/*
* In order to see the attributes of a complex type, they
* must be explicitly projected. The following query will
* return tuples of the form
* ("carol®, ®"mike®, 23434), (*sunita*, °*mike®, 23434)
*/
retrieve (newemp.name, newemp.manager.name,
newemp .manager .manager)

SEE ALSO

BUGS

append(commands), close(commands), create(commands), fetch(commands), postquel{commands),
replace(commands).

Retrieve into does not delete duplicates.
Archive_mode is not implemented in Version 4.2.

If the backend crashes in the course of executing a retrieve into, the class file will remain on disk. It can
be safely removed by the database DBA, but a subsequent retrieve into to the same name will fail with a
cryptic error message about "BlockExtend”.

Retrieve jportal returns data in an architecture dependent format, namely that of the server on which the
backend is running. A standard data format, such as XDR, should be adopted.

Aggregate functions can only appear in the target list.

03/13/94 125

VACUUM(COMMANDS) VACUUM(COMMANDS)

NAME
vacuum — vacuum a database

SYNOPSIS
vacuum

DESCRIPTION
Vacuum is the POSTGRES vacuum cleaner. It opens every class in the database, moves deleted records to
the archive for archived relations, cleans out records from aborted transactions, and updates statistics in the
system catalogs. The statistics maintained include the number of tuples and number of pages stored in all
classes. Running vacuum periodically will increase POSTGRES’s speed in processing user queries.
The open database is the one that is vacuumed. This is a new POSTQUEL command in Version 4.2; earfier
versions of POSTGRES had a separate program for vacuuming databases. That program has been replaced
by the vacuum(unix) shell script.
We recommend that production databases be vacuumed nightly, in order to keep statistics relatively current.
The vacuum query may be executed at any time, however. In particular, after copying a large class into
POSTGRES or deleting a large number of records, it may be a good idea to issue a vacuum query. This will
update the system catalogs with the results of all recent changes, and allow the POSTGRES query optimizer
to make better choices in planning user queries.

SEE ALSO
vacuum(unix).

01/2393 126

\f

(w

INTRODUCTION(LIBPQ) INTRODUCTION(LIBPQ)

SECTION § — LIBPQ

DESCRIPTION
LIBPQ is the programmer’s interface to POSTGRES. LIBPQ is a set of library routines which allow queries
to pass to the POSTGRES backend and instances to return through an IPC channel.

This version of the documentation is based on the C library. Three short programs are listed at the end of
this section as examples of LIBPQ programming (though not necessarily of good programming).

There are several examples of LIBPQ applications in the following directories:

.../src/regress/demo
.../8rc/regress/regress
.../src/regress/video
.../src/bin/monitor
.../src/bin/fsutils

CONTROL AND INITIALIZATION
Environment Variables

The following environment variables can be used to set up default values for an environment and to avoid
hard-coding database names into an application program:

PGHOST sets the default server name.

PGDATABASE sets the default POSTGRES database name.

PGPORT sets the default communication port with the POSTGRES backend.

PGTTY sets the file or tty on which debugging messages from the backend server are displayed.

PGREALM sets the Kerberos realm to use with POSTGRES, if it is different from the local realm. If
PGREALM is set, POSTGRES applications will attempt authentication with servers for
this realm and use separate ticket files to avoid conflicts with local ticket files. This envi-
ronment variable is only used if Kerberos authentication is enabled; see infroduc-
tion(unix) for additional information on Kerberos.

Internal Variables
The following intemal variables of LIBPQ can be accessed by the programmer:

char *PQhost; /* the server on which POSTGRES
backend is running. */

char *PQport = NULL; /* The communication port with the
POSTGRES backend. */

char *PQtty; /* The tty on the PQhost backend on
which backend messages are
displayed. */

char *PQoption; /* Optional arguements to the backend */

char *PQdatabase; /* backend database to access */

03/12/94 ' 127

INTRODUCTION(LIBPQ) INTRODUCTION(LIBPQ)

int PQportset = 0; /* 1 if communication with

int

int

int

char

POxactid

PQtracep

backend is established */

0; /* Transaction ID of the current
transaction */

1]

0; /* 1 to print out front-end
debugging messages */

POAsyncNotifyWaiting = 0; /* 1 if one or more asynchronous

notifications have been
triggered */

PQerrormsg(]; /* null-delimited string containing the

error message (usually from the backend)
when the execution of a query or function
fails */

QUERY EXECUTION FUNCTIONS
The following routines control the execution of queries from a C program.

PQsetdb

PQdb

PQreset

PQfn

Make the specified database the current database and reset communication using PQreset
(see below).

void PQsetdb(dbname)
char *dbname;

Returns the name of the POSTGRES database being accessed, or NULL if no database is
open. Only one database can be accessed at a time. The database name is a string Lim-
ited to 16 characters.

char *PQdb()

Reset the communication port with the backend in case of errors. This function will
close the IPC socket connection to the backend thereby causing the next PQexec call to
ask for a new one from the postmaster. When the backend notices the socket was closed
it will exit, and when the posmmaster is asked for the new connection it will start a new
backend.

void PQreset()

Close communication ports with the backend. Terminates communications and frees up
the memory taken up by the LIBPQ buffer.

void PQfinish()

Send a function call to the POSTGRES backend. Provides access to the POSTGRES fast
path facility, a trapdoor into the system internals. See the FAST PATH section of the
manual.

03/1294 128

INTRODUCTION(LIBPQ) INTRODUCTION(LIBPQ)

PQexec

PQFlushl

The fnid argument is the object identifier of the function to be executed. result_len and
result_buf specify the expected size (in bytes) of the function return value and a buffer in
which to load the return value. The actual size of the retumed value will be loaded into
the space pointed to by actual_result_len if it is a valid pointer. result_type should be set
to 1 if the return type is an integer and 2 in all other cases. args and nargs specify a
pointer to a PQArgBlock structure (sce

.. ./8rc/backend/tmp/libpg.h

for more details) and the number of arguments, respectively.

PQfn retuns a string containing the character “G” when a return-value has been loaded
into result_buf , or “V™ if the function returned nothing. PQfin returns a NULL pointer
and loads PQerrormsg if any error (fatal or non-fatal) occurs.

PQfn retuns an error if result_buf is not large enough to contain the retuned value.

char *POfn(fnid, result_buf, result_len,
actual_result_len,
result_type, args, nargs)
int £nid;
int *result_buf;
int result_len;
int *actual_result_len;
int result_type;
PQArgBlock *args;
int nargs;

Submit a query to POSTGRES. Retumns a status indicator or an error message.

If the query retums data (e.g., ferch), PQexec returns a string consisting of the charactek
“P” followed by the name of the portal buffer.

If the query does not return any instances, as in the case with update queries, PQexec
will return a string consisting of the character “C™ followed by the command tag (e.g.,
“CREPLACE").

If a “copy from stdin™ or “copy to stdout™ query is executed (see copy(commands) for
more details), PQexec will return the strings “DCOPY™ and “BCOPY™, respectively.

A string beginning with the character “T” indicates that the server has finished sending
the results of a multi-query command (e.g., has finished processing an asynchronous por-
tal command).

If a non-fatal error occurred during the execution of the query, PQexec will return (for
historical reasons) the character “R” and load an error message into PQerrormsg. X a
fatal error occurred (i.e., the backend crashed), PQexec returns the character “E” and
Joads an error message into PQerrormsg.

char *PQexec(query)
char *query;

The frontend/backend protocol has a serious flaw in that the queries executed when using
PQfn and PQexec can cause several query responses to come back to the frontend. For

03/12/94 129

INTRODUCTION(LIBPQ) INTRODUCTION(LIBPQ)

example, during the definition of a view, the server actually executes several queries on
its own to modify the system catalogs. Unfortunately, the implementation of this was
botched and these queries retum status messages to the frontend of their own. If the
frontend application only reads one response and then goes on to execute more queries,
these extra responses sit in the message queue and the frontend will read these lefiovers
instead of reading the responses from its latest queries.

If you aren’t completely positive that a call to PQexec won't do something more compli-
cated than a simple retrieve, you should probably wrap it in a loop that processes “P”
and “C” responses in the usual way, but also performs

result = PQexec(® *); /* dummy query */
++dummies_sent;

after receiving each good protocol result. When the first character of a PQexec result is
“I”, you know you have received the last result and have started receiving responses to
your dummy queries. To get rid of the “I” protocol responses that are now stuffed into
your message buffer, call PQFlushl with the number of dummy queries you sent.

This is homrendously complicated and should be fixed. Meanwhile, you should look at
.../src/bin/monitor/monitor.c
to see an example of a program that handles this problem correctly.

int PQFlushI(i_count)
int i_count;

PORTAL FUNCTIONS
A portal is a POSTGRES buffer from which instances can be fetched. Each portal has a string name (cur-
rently limited to 16 bytes). A portal is initialized by submitting a retrieve statement using the PQexec func-
tion, for example:

retrieve portal foo (EMP.all)

The programmer can then move data from the portal into LIBPQ by executing a fetch statement, e.g:
fetch 10 in foo
fetch all in foo

If no portal name is specified in a query, the default portal name is the string “blank”, known as the blank
portal. All qualifying instances in a blank portal are fetched immediately, without the need for the pro-
grammer to issue a separate fetch command.

Data fetched from a portal into LIBPQ is moved into a portal buffer. Portal names are mapped to portal
buffers through an internal table. Each instance in a portal buffer has an index number locating its position
in the buffer. In addition, each field in an instance has a name (attribute name) and a field index (attribute
number).

A single refrieve command can return multiple types of instances. This can happen if a POSTGRES func-
tion is executed in the evaluation of a query or if the query returns multiple instance types from an

03/1294 130

INTRODUCTION(LIBPQ) INTRODUCTION(LIBPQ)

inheritance hierarchy. Comequemly,mems:ancesmapomlaresetupmgrwps. Instances in the same
group are guaranteed to have the same instance format.

Portals that are associated with normal user commands are called synchronous. In this case, the applica-
tion program is expected to issue a retrieval followed by one or more fetch commands. The functions that
follow can now be used to manipulate data in the portal.

PQnportals

PQpnames

PQclear

PQntuples

PQngroups

PQntuplesGroup

Retumn the number of open portals. If rule_p is not 0, then only retum the number of
asynchronous portals.

int POnportals(rule_p)
int rule_p;

Return all portal names. If rule_p is not 0, then only return the names of asynchronous
portals, The caller is responsible for allocating sufficent storage for
pnames.Thenumberofnamesteturnedcanbedetermined withacallo PQnpor-
tals(.EachportalnameisatmostPortalNameLength characters long (see
«fsrc/backend/tmp/libpg.h).

void PQpnames (pnames, rule_p)

char **pnames;
int rule_p:;

Return the portal buffer given a portal name, pname.

PortalBuffer *PQparray(pname)
char *pname;

Free storage claimed by portal prame.

void PQclear (pname)
char *pname;

Return the number of instances (tuples) in a portal buffer porzal.

int POntuples(portal)
PortalBuffer *portal;

Return the number of instance groups in a portal buffer portal.

int PQngroups (portal)
PortalBuffer *portal

Rennnmenumﬁerdmminaninswmmgmm_indaamcimdwhhap@
tal buffer portal.

int PQOntuplesGroup(portal, group_index)
PortalBuffer *portal;

03/1294 131

INTRODUCTION(LIBPQ) INTRODUCTION(LIBPQ)

int group_index;

PQnfieldsGroup Return the number of fields (attributes) for the instances (tuples) in instance group
group_index associated with portal buffer porzal.

int PQnfieldsGroup(portal, group_index)
PortalBuffer *portal;
int group_index;

PQfMmameGroup Retum the field (attribute) name for the instances (tuples) in instance group group_index
(associated with portal buffer portal) and the field index field_number.

char *PQfnameGroup (portal, group_index, field_number)
PortalBuffer *portal;
int group_index;
int field_number;

PQfumberGroup .
Return the field index (attribute number) given the instance group group_index (associ-
ated with portal buffer porral) and the field (attribute) name field_name.

int PQfnumberGroup(portal, group_index, field_name)
PortalBuffer *portal;
int group_index;
char *field_name;

PQgetgroup Retumns the index of the instance group (associated with portal buffer portal) that con-
tains a particular instance tuple_index.

int PQgetgroup(portal, tuple_index)
PortalBuffer *portal;
int tuple_index;

PQnfields Retumns the number of fields (attributes) in an instance suple_index contained in postal
buffer portal. ~

int PQnfields(portal, tuple_index)
PortalBuffer *portal;
int tuple_index;

PQfoumber Retumns the field index (attribute number) of a given field name field_name within an
instance tuple_index contained in portal buffer porzal.

int PQfnumber (portal, tuple_index, field_name)
PortalBuffer *portal;
int tuple_index;
char *field_name;

03/12/94 132

INTRODUCTION(LIBPQ) INTRODUCTION(LIBPQ)

PQfname

PQftype

PQsametype

PQgetvalue

PQgetlength

Returns the name of a field (attribute) field_number of instance tuple_index contained in
portal buffer portal.

char *PQfname (portal, tuple_index, field_number)
PortalBuffer *portal;
int tuple_index;
int field_number;

Retumns the type of a field (attribute) field_number of instance tuple_index contained in
portal buffer portal. The type returned is an internal coding of a type.

int PQftype (portal, tuple_index, field_number)
PortalBuffer *portal;
int tuple_index;
int field_number;

Returns 1 if two instances tuple_index] and tuple_index2, both contained in portal buffer
portal, have the same field (attribute) types.

int PQsametype(portal, tuple_indexl, tuple_index2)
PortalBuffer *portal;
int tuple_indexl;
int tuple_index2;

Returns a field (attribute) value.

char *PQgetvalue(portal, tuple_index, field_number)
PortalBuffer *portal;
int tuple_index;
int field number;

Return the length of a field (attribute) value in bytes. If the field is a struct varlena, the
length returned here does not include the size field of the varlena, i.e., it is 4 bytes less.

char *PQgetlength(portal, tuple_index, field_number)
PortalBuffer *portal;
int tuple_index;
int field_number:;

If the portal is blank, or the portal was specified with the portal keyword, all values are returned s null-
delimited strings. It is the programmer’s responsibility to convert them to the correct type. If the portal is
spedﬁedwiﬁﬂwimr&lbywmdaﬂvﬂmmmmndhmmhﬂwm-&pm&mmm(bM)
format, namely, the format generated by the input function specified through define type(commands).
Again, it is the programmer’s responsibility to convert the data to the correct type.

ASYNCHRONOUS PORTALS AND NOTIFICATION
Asynchronous portals — query results of rules — are implemented using two mechanisms: relations and
notification. The query result is transferred through a relation. The notification is done with special
POSTQUEL commands and the frontend/backend protocol.

03/12/94 133

INTRODUCTION(LIBPQ) INTRODUCTION(LIBPQ)

The first step in using asynchronous portals is to listen(commands) on a given class name. The fact that a
process is listening on the class is shared with all backend servers running on a database; when one sets off
the rule, it signals its peers. The backend server associated with the listening frontend process then seads
its client an IPC message, which the frontend process must explicitly catch by polling the variable
PQAsyncNotify. When this variable is non-zero, the frontend process must first issue a null (empty) query,
ie.,

PQexec(® *);

Then the frontend should check the variable, PQAsyncNotifyWaiting. When this variable is non-zero, the
frontend can retrieve the notification data held using PQNotifies. The frontend must call PQNotifies in
: order to find out which classes the data comesponds to (i.e., which notification events have been set off).
v These events must then be individually cleared by calling PQRemoveNotify on each element of the list
returned by PQNotifies.
Notice that the asynchronous notification process does not itself transfer any data, but only a class name.
Hence the frontend and backend must come to agreement on the class to be used to pass any data prior to
notification and data transfer (obviously, since the frontend must specify this table name in the correspond-
ing listen command).

The second sample program gives an example of the use of asynchronous portals in which the frontend pro-
gram retrieves the entire contents of the result class each time it is notified.

PQNotifies Return the list of relations on which notification has occurred.

PONotifyList *PQNotifies()

PQRemoveNotify
Remove the notification from the list of unhandled notifications.

PQNotifyList *PQRemoveNotify (pgNotify)
PONotifyList *pgNotify;

FUNCTIONS ASSOCIATED WITH THE COPY COMMAND
The copy command in POSTGRES has options to read from or write to the network connection used by
LIBPQ. Therefore, functions are necessary to access this network connection directly so applications may
take full advantage of this capability.

For more information about the copy command, see copy(commands).

PQgetline Reads a newline-terminated line of characters (transmitted by the backend server) into a
buffer string of size length. Like fgets(3), this routine copies up to length-1 characters
into string. It is like gets(3), however, in that it converts the terminating newline into a
null character.

PQgetline returns EOF at EOF, O if the entire line has been read, and 1 if the buffer is
full but the terminating newline has not yet been read.

Notice that the application must check to see if a new line consists of the single character
“.”, which indicates that the backend server has finished sending the results of the copy
command. Therefore, if the application ever expects to receive lines that are more than
length-1 characters long, the application must be sure to check the return value of
PQgetline very carefully.

03/12/94 134

INTRODUCTION(LIBPQ) INTRODUCTION(LIBPQ)

PQendcopy

The code in
.../8rc/bin/monitor/monitor.c
contains routines that correctly handle the copy protocol.

PQgetline(string, length)
char *string;
int length

Sends a null-terminated string to the backend server.

The application must explicitly send the single character “.” to indicate to the backend
that it has finished sending its data.

PQputline(string)
char *string;

Syncs with the backend. This function waits until the backend has finished processing
the copy. It should either be issued when the last string has been sent to the backend
using PQputline or when the last string has been received from the backend using
PGgetline. 1t must be issued or the backend may get “out of sync” with the frontend.
Upon return from this function, the backend is ready to receive the next query.

The return value is 0 on successful completion, nonzero otherwise.
int PQendcopy ()
As an example:

PQexec ("create foo (a=intd4, b=charlé, d=float8)®);
PQexec(®*copy foo from stdin®);
PQputline("3<TAB>hello world<TAB>4.5\n");
PQputline("4<TAB>goodbye world<TAB>7.11\n");
Poputline(".\n*");

PQendcopy () ;

LIBPQ TRACING FUNCTIONS

PQtrace

Enable tracing. The routine sets the PQtracep variable to 1 which canses debug mes-
sages to be printed. You should note that the messages will be printed to stdout by
default. If you would like different behavior you must set the variable

FILE *debug_port
to the appropriate stream.

void PQtrace()

03/12/94 135

INTRODUCTION(LIBPQ) INTRODUCTION(LIBPQ)

PQuntrace Disable tracing started by PQtrace.

void PQuntrace()

USER AUTHENTICATION FUNCTIONS
If the user has generated the appropriate authentication credentials (e.g., obtaining Kerberos tickets), the
frontend/backend authentication process is handled by PQexec without any further intervention. The fol-
lowing routines may be called by LIBPQ programs to tailor the behavior of the authentication process.

fe_getauthname Returns a pointer to static space containing whatever name the user has anthenticated.
Use of this routine in place of calls to getenv(3) or getpwuid(3) by applications is highly
recommended, as it is entirely possible that the authenticated user name is not the same
as value of the USER environment variable or the user’s entry in /etc/passwd. This
becomes an important issue if the user name is being used as a value in a database inter-
action (e.g., using the user name as the default database name, as is done by moni-
tor(unix).

char *fe_getauthname()

fe_setauthsve Specifies that LIBPQ should use authentication service name rather than its compiled-in
default. This value is typically taken from a command-line switch.

void fe_setauthsvc (name)
char *name;

BUGS
The query buffer is 8192 bytes long, and queries over that length will be silently truncated.

03/12/94 136

INTRODUCTION(LIBPQ) INTRODUCTION(LIBPQ)

SAMPLE PROGRAM 1

/*
* testlibpg.c -

Test the C version of LIBPQ, the POSTGRES frontend library.

#include <stdio.h>
#include "tmp/libpg.h"

main ()

{

int i, 3, k, g, n, m, t;
PortalBuffer *p;
char pnames [MAXPORTALS] [portal_name_length];

/* Specify the database to access. */
POsetdb ("pic_demo");

/* Start a transaction block for eportal */
PQexec ("begin");

/* Fetch instances from the EMP class. */
PQexec ("retrieve portal eportal (EMP.all)");
PQexec ("fetch all in eportal®);

/* Examine all the instances fetched. */

p = PQparray ("eportal®);
g = PQOngroups (p);
t =0;

for (k = 0; k < g; k++) |
printf (*\nA new instance group:\n®);
n = PQOntuplesGroup (p, k):
m = POnfieldsGroup (p, k):

/* Print out the attribute names. */
for (i = 0; i < m; i++)

printf ("%$-15s°®, POfnameGroup (p, k, i)):
printf (*\n");

/* Print out the instances. */
for (i = 0; i < n; i++) (
for (§j = 0; 3 < m; J++)
printf(°*%$-15s*, PQgetvalue(p, t+i, j));
printf (°\n®);

}
t += n;
)

/* Close the portal. */
PQexec (®"close eportal®};

03/1294 137

INTRODUCTION(LIBPQ) INTRODUCTION(LIBPQ)

/* End the transaction block */
PQexec("end®) ;

/* Try out some other functions. */

/* Print out the number of portals. */
printf (*\nNumber of portals open: %d.\n",
PQnportals ()):

/* If any tuples are returned by rules, print out

* the portal name. */
if (POnportals (1)) {

printf (*Tuples are returned by rules. \n');

PQpnames (pnames, 1);

for (i = 0; i < MAXPORTALS; i++)

if (pnames[i] != NULL)
printf (°portal used by rules: %s\n®", pnames([i]):;

)

/* £inish execution. */
PRfinish ();

03/12/94 138

"

INTRODUCTION(LIBPQ)

SAMPLE PROGRAM 2

/*
Testing of asynchronous notification interface.

Do the following at the monitor:

* create testl (i = int4) \g
* create testla (i = intd) \g

*

*

*

*

*

*

*

* * define rule rl is on append to testl do
* [append testla (i = new.i)

* notify testla) \g
*

*

*

*

*

*

*

*

Then start up this process.
* append testl (i = 10) \g
The value i = 10 should be printed by this process.
*/

#include <tmp/simplelists.h>
#include <tmp/libpg.h>
#include <tmp/postgres.h>

extern int PQAsyncNotifyWaiting;

void main() (
PONotifyList *1;
PortalBuffer *portalBuf;
char *res;
int ngroups, tupno, grpno, ntups, nflds;

POsetdb(getenv("USER"));
PQexec(*listen testla®);

while (1) {

res = PQexec(® ");

if (*res != 'I') {
printf (*Unexpected result from a null query --> %s*, res);
PQfinish();
exit(1l);

)

if (PQAsyncNotifyWaiting) (
PQAsyncNotifyWaiting = 0;
for (1 = PQnotifies() ; 1 != NULL ; 1 = POnotifies()) (
POremoveNotify(1l);

printf("Async. notification on relation %s, our backend pid is %d\n*,

03/1294

INTRODUCTION(LIBPQ)

INTRODUCTION(LIBPQ) INTRODUCTION(LIBPQ)

l->relname, l->be_pid);
res = PQexec("retrieve (testla.i)");

if (*res != 'P’) {
fprintf (stderr, °®"$s\nno portal®, ++res);
PQfinish();
exit(1);

)

portalBuf = PQparray(++res);
ngroups = PQngroups (portalBuf);
for (grpno = 0 ; grpno < ngroups ; grpno++)
ntups = PQntuplesGroup (portalBuf, grpno);
nflds = POnfieldsGroup(portalBuf, grpno);
if (nflds != 1) {
fprintf (stderr, "expected 1 attributes, got %d\n*, nflds);
PQfinish();
exit(1);
}
for (tupno = 0 ; tupno < ntups ; tupno++) {
printf("i = $s\n", PQgetvalue(portalBuf, tupno, 0)):
}
H
}
PQfinish();
exit(0);
)
sleep(l);
)
)

03/1294 140

INTRODUCTION(LIBPQ) INTRODUCTION(LIBPQ)

SAMPLE PROGRAM 3
/*

*

Test program for the binary portal interface.
Create a test database and do the following at the monitor:

* create testl (i int4, 4 = floatd4, p = polygon)\g

* append testl (i 1, 4 = 3.567,
p="(3.0,4.0,1.0,2.0)"::polygon)\g

* append testl (i = 2, d = 89.05,
p="(4.0,3.0,2.0,1.0)"::polygon)\g

adding as many tuples as desired.

* % % % 4 * + % % B ¥ *

Start up this program. The contents of class *testl® should be
printed, e.g.:

tuple 0: got
i=(4 bytes) 1, .
d=(4 bytes) 3.567000,
p=(72 bytes) 2 points,
boundbox={hi=3.000000,4.000000 / 10=1.000000,2.000000)
tuple 1: got
i=(4 bytes) 2,
d=(4 bytes) 89.05000,
p=(72 bytes) 2 points,
boundbox=(hi=4.000000,3.000000 / 1l0=2.000000,1.000000)

*/
#include °*tmp/simplelists.h*
#include *"tmp/libpg.h*
#include "utils/geo-decls.h*

void main{()
(.
PortalBuffer *portalbuf;
char *res;
int ngroups, tupno, grpno, ntups, nflds;

PQsetdb("test®); /* change this to your database name */
PQexec(*begin®);
res = (char *) PQexec("retrieve iportal junk (testl.all)");
if (*res == 'E’) (
fprintf (stderr, *\nError: %s\n®,++res);
goto exit_error;
}
res = (char *) PQexec(®"fetch all in junk®");
if (*res != 'P’) {
fprintf (stderr, *\nError: no portal\n®);
goto exit_error;

03/1294 141

INTRODUCTION(LIBPQ) INTRODUCTION(LIBPQ)

}

/* get tuples in relation */
portalbuf = PQparray(++res);
ngroups = PQOngroups (portalbuf);
for (grpno = 0; grpno < ngroups; grpno++) (
ntups = PQOntuplesGroup(portalbuf, grpno);
if ((nflds = PQnfieldsGroup(portalbuf, grpno)) != 3) {

for

fprintf (stderr, °®\nError: expected 3 attributes, got $d\n®", nflds);
goto exit_error;

(tupno = 0; tupno < ntups; tupno++) {
int *ival; /* 4 bytes */
float *fval; /* 4 bytes */

unsigned plen;

POLYGON *pval;

ival (int *) PQgetvalue(portalbuf, tupno, 0);
fval (float *) PQgetvalue(portalbuf, tupno, 1);
plen = PQgetlength(portalbuf, tupno, 2);
if (!(pval = (POLYGON *) palloc(plen + sizeof(long)))) (
fprintf (stderr, "\nError: palloc returned zero bytes\n®);
goto exit_error;
}
pval->size = plen + sizeof(long);
becopy (PQgetvalue (portalbuf, tupno, 2), (char *) &pval->npts, plen);
printf ("tuple %d: got\n\

\t i=(%d bytes) %d,\n\

\t d=(%d bytes) %£,\n\

\t p=(%d bytes) %d points, \n\

\t\t boundbox=(hi=%f,3$f / lo=%£f,%f)\n",

)
)

tupno,

PQgetlength(portalbuf, tupno, 0),
*ival,

PQgetlength(portalbuf, tupno, 1),
*fval,

PQgetlength(portalbuf, tupno, 2),
pval->npts,

pval->boundbox.xh,
pval->boundbox.yh,
pval->boundbox.xl,
pval->boundbox.yl) ;

PQexec("end") ;
POfinish();
exit(0);
exit_exrror:
PQexec("end") ;
PQfinish();
exit(1l);

03/12/94 : 142

1]

INTRODUCTION(LIBPQ)

03/1294

INTRODUCTION(LIBPQ)

143

INTRODUCTION(FAST PATH) INTRODUCTION(FAST PATH)

SECTION 6 — FAST PATH

SYNOPSIS
retrieve (retval = function([arg {, arg } 1))

DESCRIPTION
POSTGRES allows any valid POSTGRES function to be called in this way. Prior implementations of fast
path allowed user functions to be called directly. For now, the above syntax should be used, with argu-
ments cast into the appropriate types. By executing the above type of query, control transfers completely to
ﬂleuserﬁmcuon.anyuserﬁnmncanmanyPOSTGRBsﬁmcuonuanyglobalvanablemﬂwPOST-

i GRES address space.
There are six levels at which calls can be performed:
1) Traffic cop level
If a function wants to execute a POSTGRES command and pass a string representation, this level is
2) Parser

A function can access the POSTGRES parser, passing a string and getting a parse tree in return.
3) Query optimizer
A function can call the query optimizer, passing it a parse tree and obtaining a query plan in
return,
4) Executor
A function can call the executor and pass it a query plan to be executed.
5 Access methods
A function can directly call the access methods if it wishes.
6) Function manager
A function can call other functions using this level.

Documentation of layers 1-6 will appear at some future time, Meanwhile, fast path users must consult the
source code for function names and arguments at each level.

It should be noted that users who are concerned with ultimate performance can bypass the query language
completely and directly call functions that in turn interact with the access methods. On the other hand, a
user can implement a new query language by coding a function with an internal parser that then calls the
POSTGRES optimizer and executor. Complete flexibility to use the pieces of POSTGRES as a tool kit is
thereby provided. 993/08/23 09:03:16 aoki Exp $

01,2393 144

INTRODUCTION(LARGE OBJECTS) INTRODUCTION(LARGE OBJECTS)

SECTION 7 — LARGE OBJECTS

DESCRIPTION
In POSTGRES, data values are stored in tuples and individual tples cannot span data pages. Since the size
of a data page is 8192 bytes, the upper limit on the size of a data value is relatively low. To support the stor-
age of larger atomic values, POSTGRES provides a large object interface. This interface provides file-
oriented access to user data that has been declared to be a large type.

POSTGRES supports three standard implementations of large objects: as files extemal to POSTGRES, as
UNIX files managed by POSTGRES, and as data stored within the POSTGRES database. These implementa-
tion allow users to trade-off between access speed, recoverability and security. The choice of implementa-
tion is specified when the large object is created or “registered” with POSTGRES. In all cases, the large
object becomes associated with a path name within a file system name space managed by POSTGRES (see
below).

Applications which can tolerate lost data may store large objects as conventional files which are fast to
access, but cannot be recovered in the case of system crashes. For applications requiring stricter data
integrity, the transaction-protected large object implementation is available, This section describes each
implementation and the programmatic and query language interfaces to POSTGRES large object data.

The POSTGRES large object interface is modeled after the UNIX file system interface, with analogues of
open(2), read(2), write(2), Iseek(2), etc. User functions call these routines to retrieve only the data of inter-
est from a large object. For example, if a large object type called mugshot existed that stored photographs
of faces, then a function called beard could be declared on mugshot data. Beard could look at the lower
third of a photograph, and determine the color of the beard that appeared there, if any. The entire large
object value need not be buffered, or even examined, by the beard function. As mentioned above, POST-
GRES supports functional indices on large object data. In this example, the results of the beard function
could be stored in a B-tree index to provide fast searches for people with red beards.

UNIX FILES AS LARGE OBJECT ADTS
The simplest large object interface supplied with POSTGRES is also the least robust. It does not support
transaction protection, crash recovery, or time travel. On the other hand, it can be used on existing data
files (such as word-processor files) that must be accessed simultaneously by the database system and exist-
ing application programs. _
POSTGRES has two ways of handling UNIX files that store large objects. These correspond to the External
and Unix large object interfaces.
The simplest way to create a large object is to register the external file containing the large object with the
POSTGRES database. This leaves the actual file as-is, outside of the POSTGRES data directory, and allows
other UNIX users to access it without going through POSTGRES. The file is, in general, only protected by
the standard UNIX permissions mechanism. In the case of a system crash, or if the file is removed or
deleted, POSTGRES provides no recovery mechanism.

In the second approach, the user registers the large object in the POSTGRES database and copies the speci-
fied file into the POSTGRES database directory structure. Copying the file takes time, so this is not as fast
as the External large object creation process. Furthermore, like External large objects, UNIX large objects
are not recoverable. However, placing the large object files in the POSTGRES data area gives them the secu-
rity of POSTGRES data files.

External large objects provide POSTGRES users with the ability to share large objects between POSTGRES
and other systems. The files can be read and written by other UNIX users, and POSTGRES can be made
aware of the large object very quickly. However, because of the security implications of the External large

03/18/94 145

INTRODUCTION(LARGE OBJECTS) INTRODUCTION(LARGE OBJECTS)

objects approach, the facility is not provided by default. To enable External large objects, refer to the POST-
GRES release notes. '

INVERSION LARGE OBJECTS
In contrast to UNIX files as large objects, the Inversion large object implementation breaks large objects up
into “chunks” and stores the chunks in tuples in the database. A B-tree index guarantees fast searches for
the correct chunk number when doing random access reads and writes.

Only programs that use the POSTGRES data manager can read and write Inversion large objects. Inversion
large objects are slower than storing large objects as UNIX files, and they require more space.

LARGE OBJECT INTERFACES
' The facilities POSTGRES provides to access large objects, both in the backend as part of user-defined func-
tions or the front end as part of an application using the LIBPQ interface, are described below. As POST-
GRES has evolved a newer set of functions providing a more coherent interface have replaced an older set.
The most recent approach will be described first, and the historical information included at the very end for
completeness.

LARGE OBJECTS: BACKEND INTERFACE
Thksecﬁmmcﬁbeshowlmgeobjeqsmybemmd&mdynamkaﬂy-loadedcmmﬁom.

Creating New Large Objects
The routine

int LOcreat(path, mode, objtype)
char *path;
int mode;
int objtype;

creates a new large object.

The pathname is a slash-separated list of components, and must be a unique pathname in the POSTGRES
large object namespace. There is a virtual root directory (“/”) in which objects may be placed.

The objtype parameter can be one of Inversion, UNIX ot External. These are symbolic constants defined in
.../include/catalog/pg_lobj.h

The interpretation of the mode argument depends on the objrype selected. (Note that the External type is
conditionally compiled into the backend. Please refer to the Release Notes for information on enabling
External large objects and to the indroduction of this section for a discussion on External large objects.)

For UNIX large objects, the mode is the mode used to protect the file on the UNIX file system. On creation,
the file is open for reading and writing.

For External large objects, mode specifies the desired access permissions. If the file exists, the file permis-
sions on the external file are compared to the requested mode; both the user who is currently connected to
the backend server and the “postgres” user must have the appropriate permissions. Unlike creat(2), an
existing external file is not truncated.

For Inversion large objects, mode is a bitmask describing several different attributes of the new object. The
symbolic constants listed here are defined in

«+./include/tmp/libpg-fs.h

03/18/94 146

‘e

INTRODUCTION(LARGE OBJECTS) INTRODUCTION(LARGE OBJECTS)

the access type (read, write, or both) is controlled by OR’ing together the bits INV_READ and INV_WRITE.
If the large object should be archived — that is, if historical versions of it should be moved periodically to a
special archive relation — then the INV_ARCHIVE bit should be set. The low-order sixteen bits of mask are
the storage manager number on which the large object should reside. In the distributed version of POST-
GRES, only the magnetic disk storage manager is supported. For users running POSTGRES at UC Berkeley,
additional storage managers are available. For sites other than Berkeley, these bits should always be zero.
At Berkeley, storage manager zero is magnetic disk, storage manager one is a Sony optical disk jukebox,
and storage manager two is main memory.

The commands below open two large objects for writing and reading. The Inversion large object is not
archived, and is located on magnetic disk:

unix_fd = LOcreat (*/my_unix_obj®, 0600, Unix);

inv_fd = LOcreat(®/my_inv_obj*,
INV_READ|INV_WRITE, Inversion);

Opening Large Objects
Large objects registered into the database by the LOcreat call described above, or p_open call described

below may be opened by calling the routine

int LOopen(path, mode)
char *path;
int mode;

where the path argument specifies the large object’s pathname, and is the same as the pathname used to cre-
ate the object. The mode argument is interpreted by the two implementations differently. For UNIX large
objects, values should be chosen from the set of mode bits passed to the open system call; that is,
O_CREAT, O_RDONLY, O_WRONLY, O_RDWR, and O_TRUNC. For Inversion large objects, only the bits
INV_READ and INV_WRITE have any meaning.

To open the two large objects created in the last example, a programmer would issue the commands
unix_£4 = LOopen("/my_unix_obj*, O_RDWR);
inv_fd = LOopen(*/my_inv_obj*, INV_READ|INV_WRITE):;
If a large object is opened before it has been created, then a new large object is created using the UNIX
implementation, and the new object is opened.

Seeking on Large Objects
The command

int
LOlseek (fd, offset, whence)
int f4;

int offset;
int whence;

moves the current location pointer for a large object to the specified position. The fd parameter is the file
descriptor returned by either LOcreat or LOopen. Offset is the byte offset in the large object to which to
seek.

03/1894 147

INTRODUCTION(LARGE OBJECTS) INTRODUCTION(LARGE OBJECTS)

Because UNIX large objects are simply UNIX files, they may have “holes” like any other UNIX file. That is,
a program may seek well past the end of the object and write bytes. Intervening blocks will not be created
and reading them will return zero-filled blocks. Inversion large objects do not support holes.

The following code seeks to byte location 100000 of the example large objects:
unix_status = LOlseek(unix_£d4, 100000, L_SET);
inv_status = LOlseek(inv_£d, 100000, L_SET);

On error, LOIseek retumns a value less than zero. On success, the new offset is retumed.

Writing to Large Objects
Once a large object has been created, it may be filled by calling

int
LOowrite(£fd, wbuf)
int £4;
struct varlena *wbuf;

Here, fd is the file descriptor retuned by LOcreat or LOopen, and wbuf describes the data to write. The
varlena structure in POSTGRES consists of four bytes in which the length of the datum is stored, followed
by the data itself. The length stored in the length field includes the four bytes occupied by the length field
itself,

For example, to write 1024 bytes of zeroes to the sample large objects:
struct varlena *vl;
vl = (struct varlena *) palloc(1028);
VARSIZE(vl) = 1028;
bzero(VARDATA(v1), 1024);
nwrite_unix = LOwrite(unix_£d4d, vl);
nwrite_inv = LOwrite(inv_£fd, vl);
LOwrite returns the number of bytes actually written, or a negative number on error. For Inversion large

objects, the entire write is guaranteed to succeed or fail, That is, if the number of bytes written is non-
negative, then it equals VARSIZE (v1).

The VARSIZE and VARDATA macros are declared in the file

.../include/tmp/postgres.h

Reading from Large Objects
Data may be read from large objects by calling the routine

struct varlena *
LOread(£fd, 1len)
int f4;
int len;

03/1894 148

INTRODUCTION(LARGE OBJECTS) INTRODUCTION(LARGE OBJECTS)

‘This routine returns the byte count actually read and the data in a varlena structure. For example,

struct varlena *unix_vl, *inv_vl;
int nread_ux, nread_inv;
char *data_ux, *data_inv;

unix_vl = LOread(unix_£d4, 100);
nread_ux = VARSIZE(unix_vl);
data_ux = VARDATA(unix_vl);

inv_vl = LOread(inv_£d4, 100);
nread_inv = VARSIZE(inv_vl);
data_inv = VARDATA(inv_vl);

The returned varlena structures have been allocated by the POSTGRES memory manager palloc, and may be
pfreed when they are no longer needed.

Closing a Large Object
Once a large object is no longer needed, it may be closed by calling

int
LOclose(£d)
int £4;

where fd is the file descriptor returned by LOopen or LOcreat. On success, LOclose returns zefo. A neg-
ative return value indicates an error.
For example,

if (LOclose(unix_£d4) < 0)
/* erroxr */

if (LOclose(inv_£d) < 0)
/* error */

Directory Operations
The routine

int
LOmkdir (path, mode)

char *path;
int mode;

creates directories in the POSTGRES virtual file system but does not create any physical directories. Natu-
rally,

int
LOrmdir (path)
char *path;

removes directories in the POSTGRES virtual file system. Both routines return zero or negative values on

03/18/94 149

INTRODUCTION(LARGE OBJECTS) INTRODUCTION(LARGE OBJECTS)

success and failure, respectively.

Removing Large Objects

The routine to remove large objects works differently for the different large object types. A call to

int
Lounlink(path)
char *path;

will always remove the specified path from the POSTGRES virtual file system. However, it will only unlink
the underlying data file in the case of a UNIX large object. Neither External nor Inversion large object files
are actually removed by this call. LOunlink returns zero on success, negative values on failure.

LARGE OBJECTS: LIBPQ INTERFACE

Large objects may also be accessed from database client programs that link the LIBPQ library. This library
provides a set of routines that support opening, reading, writing, closing, and seeking on large objects. The
interface is similar to that provided via the backend, but rather than using variena structures, a more con-
ventional UNIX-style buffer scheme is used.

This section describes the LIBPQ interface in detail.

Creating a Large Object

V-

The routine

int

p_creat (path, mode, objtype)
char *path;
int mode;
int objtype;

creates a new large object. The path argument specifies a large-object system pathname.
The objtype parameter can be one of Inversion, Unix or External, which are symbolic constants defined in

. +./include/catalog/pg_lobj.h

The interpretation of the mode and files arguments depends on the objtype selected.

For UNIX files, mode is the mode used to protect the file on the UNIX file system. On creation, the file is
open for reading and writing. The path name is an intemnal convention relative to the specific database and
the actual files are stored in the directory of the database itself.

For External large objects, mode specifies the desired access permissions. If the file exists, the file permis-
sions on the external file are compared to the requested mode; both the user who is currently connected to
the backend server and the “postgres” user must have the appropriate permissions. Unlike creat(2), an
existing extemnal file is not truncated.

For Inversion large objects, mode is a bitmask describing several different attributes of the new object. The
symbolic constants listed here are defined in

.../include/tmp/libpq-£fs.h

The access type (read, write, or both) is controlled by OR’ing together the bits INV_READ and INV_WRITE.
If the large object should be archived — that is, if historical versions of it should be moved periodically to a
special archive relation — then the INV_ARCHIVE bit should be set. The low-order sixteen bits of mask are

03/18/94 150

INTRODUCTION(LARGE OBJECTS) INTRODUCTION(LARGE OBJECTS)

the storage manager number on which the large object should reside. For sites other than Berkeley, these
bits should always be zero. At Berkeley, storage manager zero is magnetic disk, storage manager one is a
Sony optical disk jukebox, and storage manager two is main memory.

The commands below open large objects of the two types for writing and reading. The Inversion large
object is not archived, and is located on magnetic disk:

unix_fd = p_creat("/my_unix_obj®", 0600, Unix):;

inv_£fd = p_creat("/my_inv_obj*,
INV_READ|INV_WRITE, Inversion);

Opening an Existing Large Object
To open an existing large object, call

int

p_open{path, mode)
char *path;
int mode;

The path argument specifies the large object pathname for the object to open. The mode bits control
whether the object is opened for reading, writing, or both. For UNIX large objects, the appropriate flags are
O_CREAT, O_RDONLY, O_WRONLY, O_RDWR, and O_TRUNC. For Inversion large objects, only
INV_READ and INV_WRITE are recognized.

If a large object is opened before it is created, it is created by default using the UNIX file implementation.

Writing Data to a Large Object
The routine

int

p_write(£fd, buf, 1len)
int f£4;
char *buf;
int len;

writes len bytes from buf to large object fd. The fd argument must have been returned by a previous
p_creat ot p_open.

The number of bytes actually written is returned. In the event of an error, the return value is negative.

Seeking on a Large Object
To change the current read or write location on a large object, call

int

p_lseek(£fd, offset, whence)
int f£4;
int offset;
int whence;

This routine moves the current location pointer for the large object described by fd to the new location spec-
ified by offset. For this release of POSTGRES, only L_SET is a legal value for whence.

03/18/94 : 151

INTRODUCTION(LARGE OBJECTS) INTRODUCTION(LARGE OBJECTS)

Closing & Large Object
A large object may be closed by calling

int
P_close(£d)
int £4;

where fd is a large object descriptor returned by p_creat or p_open. On success, p_close returns zero. On
error, the return value is negative.

Directory Operations
The routines

int

p_mkdir(path, mode)
char *path;
int mode;

and

int
p_rmdir (path)
char *path;

are analogous to LOmkdir and LOrmdir in that they only modify the POSTGRES file system namespace and
return zero or negative values on success or failure, respectively.

Removing Large Objects
The

int
p_unlink(path)
char *path;

routine removes the specified path from the POSTGRES file system namespace and, if the path corresponds
tc a UNIX large object, removes the underlying file. The files that store other large object types are not
removed by this call. p_unlink returns zero or negative values on success of error, respectively.

SAMPLE LARGE OBJECT PROGRAMS
The POSTGRES large object implementation serves as the basis for a file system (the “Inversion file sys-
tem”) built on top of the data manager. This file system provides time travel, transaction protection, and
fast crash recovery to clients of ordinary file system services. It uses the Inversion large object implementa-
tion to provide these services.
The programs that comprise the Inversion file system are included in the POSTGRES source distribution, in
the directory

.../8rc/bin/fsutils

These directories contain a set of programs for manipulating files and directories. These programs are
based on the Berkeley Software Distribution NET-2 release.

These programs are useful in manipulating Inversion files, but they also serve as examples of how to code

03/18/94 152

INTRODUCTION(LARGE OBJECTS) INTRODUCTION(LARGE OBJECTS)

large object accesses in LIBPQ. All of the programs are LIBPQ clients, and all use the interfaces that have
been described in this section.
Interested readers should refer to the files in the directory

.../8re/bin/fsutils

for in-depth examples of the use of large objects. Below, a more terse example is provided. This code frag-
ment creates a new large object managed by Inversion, fills it with data from a UNIX file, and closes it.

03/18/94 153

INTRODUCTION(LARGE OBJECTS) INTRODUCTION(LARGE OBJECTS)

#include "tmp/c.h®

#include "tmp/libpg-fe.h"
#include *“tmp/libpg-fs.h"®
#include °*catalog/pg_lobj.h*

#define MYBUFSIZ 1024

main()
int inv_€£4;
int £4;
char *qry_result;
char buf [MYBUFSIZ]:;
int nbytes;
int tmp;

PQsetdb("mydatabase*);

/* large object accesses must be */
/* transaction-protected */
gry_result = PQexec(®begin");

if (*qry_result == ‘E’') /* error */
exit (1);

/* open the UNIX file */
fd = open("/my_unix_file®, O_RDONLY, 0666);
if (£4 < 0) /* error */

exit (1);

/* create the Inversion file */
inv_£fd = p_creat(*/inv_file®, INV_WRITE, Inversion);
if (inv_fd < 0) /* error */

exit (1);

/* copy the UNIX file to the Inversion */

/* large object */
while ((nbytes = read(fd, buf, MYBUFSIZ)) > 0)
{
tmp = p_write(inv_£d, buf, nbytes);
if (tmp < nbytes) /* error */
exit (1);

}

(void) close(£d);
(void) close(inv_£4);

/* commit the transaction */
qry_result = PQexec(®end");

if (*gry_result == ‘E’) /* error */

03/18/94 : 154

INTRODUCTION(LARGE OBJECTS) INTRODUCTION(LARGE OBJECTS)

BUGS

exit (1);

/* by here, success */
exit (0);

Shouldn't have to distinguish between Inversion and UNIX large objects when you open an existing large
object. The system knows which implementation was used. The flags argument should be the same in
these two cases.

All large object file names (paths) are limited to 256 characters.

In the Inversion file system, file name components (the sections of the path preceding, following or in
between */™) are limited to 16 characters each. The maximum path length is still 256 characters.

The unlink routines do not always remove the underlying data files because they do not implement refer-
ence counts.

THE lo_filein() and lo_Bleout(INTERFACE

As POSTGRES has evolved, the backend large object interface described above has replaced an earlier back-
end large object interface. The previous interface required users to store intemal large object descriptors in
their autributes; this worked, but required users to call intemal POSTGRES routines directly in order to
access their data. The interface documented above is clearer and more consistent, so the interface about to
be described is deprecated and documented only for historical reasons.

The functions lo_filein and lo_fileout convert between UNIX filenames and internal large object descriptors.
These functions are POSTGRES registered functions, meaning they can be used directly in POSTQUEL
queries as well as from dynamically-loaded C functions.

The routine

LargeObject *lo_filein(filename)
char *filename;

associates a new UNIX file storing large object data with the database system. This routine stores the file-
name in a abstract data structure suitable for inclusion as an attribute of a tuple.
The converse routine,

char *lo_fileout (object)

LargeObject *object;

returns the UNIX filename associated with a large object.
Ifyouaredeﬁrﬁngasimplelmgeobjectmlheseﬁmctionscanbeusedasyom'“inpm"md“omput"
functions (see define rype (commands)). A suitable declaration would be

define type LargeObject (internallength = variable,
input = lo_filein, output = lo_fileout)

The file storing the large object must be accessible on the machine on which POSTGRES is running. The

data is not copied into the database system, so if the file is later removed, it is unrecoverable.
The data in large objects imported in this manner are only accesible from the POSTGRES backend using

03/1894 155

. INTRODUCTION(LARGE OBJECTS) INTRODUCTION(LARGE OBJECTS)

dynamically-loaded functions. However, the intemal large object descriptors cannot be used with the
LOopen backend interface. Instead, these descriptors can only be used by making direct calls to a set of
undocumented routines within the POSTGRES storage manager. Furthermore, it becomes the user’s respon-
sibility to make calls to the correct set of routines for UNIX or Inversion large objects.

SEE ALSO
introduction(commands), define function(commands), define type(commands), load(commands).

03/18/94 156

INTRODUCTION(SYSTEM CATALOGS) INTRODUCTION(SYSTEM CATALOGS)

SECTION 8 — SYSTEM CATALOGS

DESCRIPTION
Thus far we have made many allusions to the system catalogs and their role in the POSTGRES extensibility
architecture but have managed to avoid a systematic specification of their layout and contents. In this sec-
tion we list each of the astributes of the system catalogs and define their meanings.

CLASS/TYPE SYSTEM CATALOGS
These catalogs form the core of the extensibility system:
pname shared/local description
pg_aggregate local aggregate functions
pg_am local access methods
pg_amop local operators usable with specific access methods
pg_amproc local procedures used with specific access methods
pg_attribute local class attributes
pg_class local classes
pg_index local . secondary indices
pg_inherits local class inheritance hierarchy
pg_language local procedure implementation languages
pg_opclass local operator classes
pg_operator local query language operators
pg_proc local procedures (functions)
pg_type local data types
ENTITIES
These catalogs deal with identification of entities known throughout the site:
name shared/local description
pg_database shared current databases
pg_group shared user groups
pg_user shared valid users
RULE SYSTEM CATALOGS
name shared/local description
pg_listener local processes waiting on alerters
pg_prs2plans local instance system procedures
pg_prs2rule local instance system rules
PE_prs2stub local instance system “stubs”
pg_rewrite local rewrite system information
LARGE OBJECT CATALOGS
These catalogs are specific to the Inversion file system and large objects in general:
name shared/local description
pg_lobj local description of a large object
pg_namin, local Inversion name space mapping
pg_platter local jukebox platter inventory
pg_pimap local jukebox platter extent map
INTERNAL CATALOGS

These catalogs are intemal classes that are not stored as normal heaps and cannot be accessed through nor-
mal means (attempting to do SO causes an efror).

03/13/954 157

* INTRODUCTION(SYSTEM CATALOGS) INTRODUCTION(SYSTEM CATALOGS)

name shared/local description

pg_log shared transaction commit/abort log
pg_magic shared magic constant

pg_time shared commit/abort times
pg_variable shared special variable values

There are several other classes defined with “pg_" names. Aside from those that end in “ind” (secondary
indices), these are all obsolete or otherwise deprecated.

CLASS/TYPE SYSTEM CATALOGS
The following catalogs relate to the class/type system.
/*
* aggregates
*
* see DEFINE AGGREGATE for an explanation of transition functions
*/
pg_aggregate
charlé aggname /* aggregate name (e.g., "count®) */
oid aggowner /* usesysid of creator */
regproc aggtransfnl /* first transition function */
regproc aggtransfn2 /* second transition function */
regproc aggfinalfn /* final function */
oid aggbasetype /* type of data on which aggregate
operates */
oid aggtranstypel /* type returned by aggtransfnl */
oid aggtranstype2 /* type returned by aggtransfn2 */
oid aggfinaltype /* type returned by aggfinalfn */
text agginitvall /* external format of initial
(starting) value of aggtransfnl */
text agginitval2 /* external format of initial
(starting) value of aggtransfn2 */
pg.am
charlé amname /* access method name */
oid amowner /* usesysid of creator */
char amkind /* - deprecated */
/* originally:
h=hashed
o=ordered
=special */
int2 amstrategies /* total NUMBER of strategies by which
we can traverse/search this AM */
int2 amsupport /* total NUMBER of support functions
that this AM uses */
regproc amgettuple /* "next valid tuple® function */
regproc aminsert /* *"insert this tuple® function */
regproc amdelete /* "delete this tuple" function */
regproc amgetattr /* - deprecated */
regproc amsetlock /* - deprecated */
regproc amsettid /* - deprecated */

03/13/94 158

[

INTRODUCTION(SYSTEM CATALOGS) INTRODUCTION(SYSTEM CATALOGS)

regproc amfreetuple /* - deprecated */

regproc ambeginscan /* *"start new scan®" function */

regproc amrescan /* *restart this scan® function */

regproc amendscan /* ®"end this scan®* function */

regproc ammarkpos /* *mark current scan position®
function */

regproc amrestrpos /* ®"restore marked scan position®
function */

regproc amopen /* - deprecated */

regproc amclose /* - deprecated */

regproc ambuild /* "build new index®" function */

regproc amcreate /* - deprecated */

regproc amdestroy /* - deprecated */

pPg..amop

oid amopid /* access method with which this
operator be used */

oid amopclaid /* operator class with which this

‘ operator can be used */

oid amopopr /* the operator */

int2 amopstrategy /* traversal/search strategy number
to which this operator applies */

regproc amopselect /* function to calculate the operator
selectivity */

regproc amopnpages /* function to calculate the number of

pages that will be examined */

pg._amproc
oid amid /* access method with which this
procedure is associated */
oid amopclaid /* operator class with which this
operator can be used */
oid amproc /* the procedure */
int2 amprocnum /* support function number to which
this operator applies */
pg_class
charlé relname /* class name */
oid relowner : /* usesysid of owner */
oid relam /* access method */
intd relpages /* # of 8KB pages */
int4 reltuples /* # of instances */
abstime relexpires /* time after which instances are
deleted from non-archival storage */
reltime relpreserved /* timespan after which instances are
deleted from non-archival storage */
bool relhasindex /* does the class have a secondary

03/13/94 159

INTRODUCTION(SYSTEM CATALOGS)

bool relisshared
char relkind
char relarch
int2 relnatts
int2 relsmgr
int28 relkey
oids relkeyop
aclitem relacl(1l]
pg.attribute
oid attrelid
charlé attname
oid atttypid
oid attdefrel
int4 attnvals
oid atttyparg
int2 attlen
int2 attnum
int2 attbound
bool attbyval
bool attcanindex
oid attproc
int4 attnelems
intd attcacheoff
bool attisset
pg_inherits
oid inhrel
oid inhparent
int4 inhsegno
oid indexrelid

03/1354

/*
/*

/*

/*

/*

/ﬁ
/*
/*

/*
/*
/t
/*
/t
/*
/*

/Q

/*
/*
/'
/*
/*
/*
/*

/t
/*
/*

/*

INTRODUCTION(SYSTEM CATALOGS)

index? */

is the class shared or local? */
type of relation:

i=index

r=relation (heap)

s=special

u=uncatalogued (temporary) */
archive mode:

h=heavy

1=1ight

n=none */

current # of non-system -
attributes */

storage manager:

O=magnetic disk

l1=sony WORM jukebox

2=pain memory */

- unused */

- unused */

access control lists */

class containing this attribute */
attribute name */

attribute type */

- deprecated */

- deprecated */

- deprecated */

attribute length, in bytes
-l=variable */

attribute number

>0=user attribute
<0=system attribute */

- deprecated */

type passed by value? */

- deprecated */

- deprecated */

of array dimensions */
cached offset into tuple */
is attribute set-valued? */

child class */
parent class */
- deprecated */

oid of secondary index class */

160

 INTRODUCTION(SYSTEM CATALOGS) ' INTRODUCTION(SYSTEM CATALOGS)

oid indrelid /* oid of indexed heap class */

oid indproc /* function to compute index key from
attribute(s) in heap
O0=not a functional index */

int28 indkey /* attribute numbers of key
attribute(s) */

oids indclass /* opclass of each key */

bool indisclustered /* is the index clustered?
- unused */

bool indisarchived /* is the index archival?
- unused */

text indpred /* query plan for partial index

predicate */

pg_type
charlé typname /* type name */
oid typowner /* usesysid of owner */
int2 typlen /* length in internal form
~l=variable-length */
int2 typprtlen /* length in external form */
bool typbyval /* type passed by value? */
char typtype /* kind of type: :
c=catalog (composite)
b=base */
bool typisdefined /* defined or still a shell? */
char typdelim /* delimiter for array external form */
oid typrelid /* class (if composite) */
oid typelem /* type of each array element */
regproc typinput /* external-internal conversion
function */
regproc typoutput /* internal-external conversion
function */
regproc typreceive /* client-server conversion function */
regproc typsend /* server-client conversion function */
text typdefault /* default value */
pg_operator
charlé oprname /* operator name */
oid oprowner /* usesysid of owner */
int2 oprprec /* - deprecated */
char oprkind /* kind of operator:
b=binary
l=left unary
r=right unary */
bool oprisleft /* is operator left/right associative? */
bool oprcanhash /* is operator usable for hashjoin? */
oid oprleft /* left operand type */
oid oprright . /* right operand type */

03/13/94 161

oid
oid
oid
oid
oid
regproc
regproc

regproc

pg_opclass
charlé

pg_proc
charlé

oid
oid
bool
bool

bool

int2
bool

oid

oids
int4

intd

int4

intd

text

bytea

pg_language
charlé
text

INTRODUCTION(SYSTEM CATALOGS)

oprresult
oprcom
oprnegate
oprlsortop
oprrsortop
oprcode
oprrest

oprjoin

opcname

proname
proowner
prolang
proisinh
proistrusted

proiscachable

pronargs
proretset

prorettype

proargtypes
probyte_pct

properbyte_cpu

propercall_cpu

prooutin_ratio

prosrc
probin

lanname
lancompiler

03/13/94

/*
/*
/i
/t
/t
/i
/*

/*

/*

/t
/*
/*
/*
/*

/t

/*
/t

/ﬁ

/'
/t

/i

/*

/*

/*
/*

/t
/*

INTRODUCTION(SYSTEM CATALOGS)

result type */

commutator operator */

negator operator */

sort operator for left operand */

sort operator for right operand */
function implementing this operator */
function to calculate operator
restriction selectivity */

function to calculate operator

join selectivity */

operator class name */

function name */

usesysid of owner */

function implementation language */
- deprecated */

run in server or untrusted function
process? */

can the function return values be
cached? */

of arguments */

does the function return a set?

- unused */

return type */

argument types */

% of argument size (in bytes) that
needs to be examined in order to
compute the function */

gensitivity of the function’s
running time to the size of its
inputs */

overhead of the function’s
invocation (regardless of input
size) */

size of the function’s output as a
percentage of the size of the input */
function definition (postquel only) */
path to object file (C only) */

language name */
- deprecated */

162

INTRODUCTION(SYSTEM CATALOGS)

ENTITIES
pg_database
charlé
oid
text

pg_group
charlé

int2
int2

pg_user
charlé
int2
bool
bool
bool
bool

RULE SYSTEM CATALOGS
pg_listener
charlé

int4

int4

pg_prsirule
charleé
char

oid
int2
floats8
float8
text

pg_prs2plans
oid

datname
datdba
datpath

groname
grosysid
grolist([1)

usename
usesysid
usecreatedb
usetrace
usesuper
usecatupd

relname

listenerpid

notification

prs2name

prs2eventtype

prs2eventrel

prs2eventattr

necessary
sufficient
prs2text

prs2ruleid

/*
/*
/*

/’
/*
/*

/*
/t
/*
/*
/'
/'

/t

/*

/*

/*
/*

/t
/*
/Q
/*
/*

/t

INTRODUCTION(SYSTEM CATALOGS)

database name */

usesysid of database administrator */
directory of database under

$PGDATA */

group name */
group’s UNIX group id */
list of usesysids of group members */

user’s name */

user’s UNIX user id */

can user create databases? */

can user set trace flags? */

can user be POSTGRES superuser? */
can user update catalogs? */

class for which asynchronous
notification is desired */

process id of server corresponding
to a frontend program waiting for
asynchronous notification */
whether an event notification for
this process id still pending */

rule name */

rule event type:

R=retrieve

U=update (replace)

A=append

D=delete */

class to which event applies */
attribute to which event applies */
- deprecated */

- deprecated */

text of original rule definition */

prs2rule instance for which this

163

INTRODUCTION(SYSTEM CATALOGS)

int2

text

pg_prs2stub

oid

bool
intd4
stub

pg_rewrite
charlé
char

oid

int2
bool
text

text

LARGE OBJECT CATALOGS

pg_lobj
oid

int4

bytea

pg_naming
charlé
oid

oid

pg_platter

prs2planno

prs2code

prs2relid
prs2islast
prs2no
prs2stub

rulename
ev_type

ev_class
ev_attr
is_instead
ev_qual

action

ourid

objtype

/*

/*

/’.
/t
/t
/t

/*
/*

/*
/*
/*
/*

/*

/*

/*

INTRODUCTION(SYSTEM CATALOGS)

plan is used */

plan number (one rule may invoke
multiple plans) */

external representation of the plan */

class to which this rule applies */
is this the last stub fragment? */
stub fragment number */

stub fragment */

rule name */

event type:

RETRIEVE, REPLACE, APPEND, DELETE
codes are parser-dependent (!?) */
class to which this rule applies */
attribute to which this rule applies */
is this an "instead®" rule? */
qualification with which to modify
(rewrite) the plan that triggered this
rule */

parse tree of action */

‘ourid’ from pg_naming that
identifies this object in the
Inversion file system namespace */
storage type code:

O=Inversion

1=Unix

2=External

3=Jaquith */

object_descripto/* opaque object-handle structure */

filename
ourid

parentid

/*
/*

/*

03/13/94

filename component */

random oid used to identify this
instance in other instances (can‘t
use the actual oid for obscure
reasons */

pg_naming instance of parent
Inversion file system directory */

164

‘e

INTRODUCTION(SYSTEM CATALOGS)

charlé
int4

pg_plmap

oid

oid

oid

intd

int4

int4

Plname
plstart

plid
pldbid
plrelid
plblkno
ploffset

plextentsz

03/13/94

/*
/t

/*

/Q

/*

/*

/t

/‘t

INTRODUCTION(SYSTEM CATALOGS)

platter name */
the highest OCCUPIED extent */

platter (in pg_platter) on which
this extent (of blocks) resides */
database of the class to which this
extent (of blocks) belongs */
class to which this extend (of
blocks) belongs */

starting block number within the
class */

offset within the platter at which
this extent begins */

length of this extent */

165

INFORMATION(FILES) INFORMATION(FILES)

SECTION 8 — FILES
OVERVIEW
This section describes some of the important files used by POSTGRES.
NOTATION

“..” at the front of file names represents the path to the postgres user’s home directory. Anything in square
brackets (“{” and “I") is optional. Anything in braces (“{” and “}") can be repeated 0 or more times.
Parentheses (“(” and)) are used to group boolean expressions. | is the boolean operator OR.

BUGS ,
The descriptions of

.../data/PG_VERSION,
.../data/base/*/PG_VERSION,

the temporary sort files, and the database debugging trace files are absent.

01/23/93 ' 166

BKI(FILES) BKI(FILES)

NAME
..Jsrcfoackend/obj/{local dbdb} bki — template scripts

DESCRIPTION
Backend Interface (BKI) files are scripts that describe the contents of the initial POSTGRES database. This
database is constructed during system installation, by the initdb command. Initdb executes the POSTGRES
backend with a special set of flags, that cause it to consume the BKI scripts and bootstrap a database.

These files are antomatically generated from system header files during installation. They are not intended
for use by humans, and you do not need to understand their contents in order to use POSTGRES. These files
are copied to

.../files/{globall, locall_XXX}.bki

during system installation.

All new user databases will be created by copying the template database that POSTGRES constructs from
the BKI files. Thus, a simple way to customize the template database is to let the POSTGRES initialization
script create it for you, and then to run the terminal monitor to make the changes you want.

The POSTGRES backend interprets BKI files as described below. This description will be easier to under-
stand if the example in “.. /files/global1.bki” is at hand.

Commands are composed of a command name followed by space separated arguments. Arguments to a
command which begin with a “3” are treated specially. If “S$” are the first two characters, then the first “$”
is ignored and the argument is then processed normally. If the “$” is followed by space, then it is treated as
a NULL value. Otherwise, the characters following the “$™ are interpreted as the name of a macro causing
the argument to be replaced with the macro’s valuve. It is an exror for this macro to be undefined.

Macros are defined using

define macro macro_name = macro_value
and are undefined using

undefine macro macro_name

and redefined using the same syntax as define.
Lists of general commands and macro commands follow.

GENERAL COMMANDS
open classname
Open the class called classname for further manipulation.

close [classname]
Close the open class called classname. It is an error if classname is not already opened. If no class-
name is given, then the currently open class is closed.

print
Print the currently open class.

insert [oid=0id_value] (valuel value2 ...)
Insert a new instance to the open class using valuel, value2, etc., for its attribute values and
oid_value for its OID. If oid_value is not “0”, then this value will be used as the instance’s object
identifier. Otherwise, it is an error.

01,2393 167

BKI(FILES) BKI(FILES)

insert (valuel value2...)
As above, but the system generates a unique object identifier.

create classname (namel = typel, name2 = type2, ...)
Create a class named classname with the attributes given in parentheses.

open (namel = typel, name2 = type2,...) as classname
Open a class named classname for writing but do not record its existence in the system catalogs.
(This is primarily to aid in bootstrapping.)

destroy classname
Destroy the class named classname. N

define index index-name on class-name using amname
| (opclass att | function({attr}))
’ Create an index named index_name on the class named classname using the amname access method.
The fields to index are called namel, name2, etc., and the operator collections to use are collection_1,
collection_2, etc., respectively. ‘

MACRO COMMANDS
define function macro_name as rettype function_name (args)
Define a function prototype for a function named macro_name which has its value of type rettype
computed from the execution function_name with the arguments args declared in a C-like manner.

define macro macro_name from file filename
Define a macro named macname which has its value read from the file called filename.
EXAMPLE
_The following set of commands will create the “pg_opclass” class containing the int_ops collection as
object 421, print out the class, and then close it.

create pg_opclass (opcname=charlé§)
open pg_opclass

insert o0id=421 (int_ops)

print

close pg_opclass

SEE ALSO
initdb(unix), createdb(unix), createdb(commands), template(files).

01,2393 168

PAGE(FILES) PAGE(FILES)

NAME
page structure — POSTGRES database file default page format

DESCRIPTION
This section provides an overview of the page format used by POSTGRES classes. User-defined access
methods need not use this page format.

In the following explanation, a byte is assumed to contain 8 bits. In addition, the term item refers to data
which is stored in POSTGRES classes.

Diagram 1 shows how pages in both normal POSTGRES classes and POSTGRES index classes (e.g., a B-tree

index) are structured.
PageHeaderData ItemidData
@ eco-verereretterionstterirccctsassncestaotasssrererisasentreteey G @ eccccccrincnicacciiiionies > afffecencccctccencsccctaisone -
I | !
]]]
]]]
H H H
Unallocated Space
ItemContinuationData
g S P P P [
]]
itemPointerData X filler : itemData...
.................. decccecee
“ItemData 2"
“ltemData 1"
Special Space
Diagram 1: Sample Page Layout

The first 8 bytes of each page consists of a page header (PageHeaderData). Within the header, the first
three 2-byte integer fields, lower, upper, and special, represent byte offsets to the start of unallocated
space, to the end of unallocated space, and to the start of “special space.” Special space is a region at the
end of the page which is allocated at page initialization time and which contains information specific to an
access method. The last 2 bytes of the page header, opaque, encode the page size and information on the
internal fragmentation of the page. Page size is stored in each page because frames in the buffer pool may
be subdivided into equal sized pages on a frame by frame basis within a class. The internal fragmentation
information is used to aid in determining when page reorganization should occur.

Following the page header are item identifiers (ItemIdData). New item identifiers are allocated from the
first four bytes of unallocated space. Because an item identifier is never moved until it is freed, its index
may be used to indicate the location of an item on a page. In fact, every pointer to an item (ItemPointer)
created by POSTGRES consists of a frame number and an index of an item identifier. An item identifier
contains a byte-offset to the start of an item, its length in bytes, and a set of attribute bits which affect its
interpretation.

The items, themselves, are stored in space allocated backwards from the end of unallocated space. Usually,

01/23/93 169

PAGE(FILES) PAGE(FILES)

"~ BUGS

the items are not interpreted. However when the item is too long to be placed on a single page or when
fragmentation of the item is desired, the item is divided and each piece is handled as distinct items in the
following manner. The first through the next to last piece are placed in an item continuation structure
(ItemContinuationData). This structure contains itemPointerData which points to the next piece and the
piece itself. The last piece is handled normally.

~Jdata/...
Location of shared (global) database files.

.J/data/base/...
Location of local database files.

The page format may change in the future to provide more efficient access to large objects.
This section contains insufficient detail to be of any assistance in writing a new access method.

0172393 170

TEMPLATE(FILES) TEMPLATE(FILES)

NAME
..Jdata/files/global 1.bki — global database template
..Jdata/files/locall_XXX.bki — local database template
..Jdata/files/template]/* — default database template

DESCRIPTION
These files contain scripts which direct the construction of databases. Note that the “globall.bki” and
“templatel_local.bki” files are installed automatically when the POSTGRES super-user runs initdb. These
files are copied from

+ + «/8xc/backend/obj/ (dbdb, local) .bki

The databases which are generated by the template scripts are normal databases. Consequently, you can
use the terminal monitor or some other frontend on a template database to simplify the customization task.
That is, there is no need to express everything about your desired initial database state using a BKI template
script, because the database state can be tuned interactively.

The system catalogs consist of classes of two types: global and local. There is one copy of each global
class that is shared among all databases at a site. Local classes, on the other hand, are not accessible except
from their own database.

The file
.../data/files/globall.bki
specifies the process used in the creation of global (shared) classes by createdb. Similarly, the
.../files/locall_XXX.bki
files specify the process used in the creation of local (unshared) catalog classes for the “XXX™ template
database. “XXX” may be any string of 16 or fewer printable characters. If no template is specified in a
createdb command, then the template in
.../files/locall_templatel.bki
is used.
The .bki files are generated from C source code by an inscrutable set of AWK scripts.

BUGS
POSTGRES Version 4.2 does not permit users to have separate template databases.

SEE ALSO
bki(files), initdb(unix), createdb(unix).

01/23/93 17

REFERENCES(MANUAL) REFERENCES(MANUAL)

REFERENCES

Thefollowingtechnicalwponsmmfenedtoinmisdocumem. For information on ordering technical
repm.seetheinstallaﬁmnowsﬂmwcmnpanymemsmkﬁsdisﬁmmm

[ONG90]

[ROWES7]

[SHAP86]

[STONB87]

[STON90]

[WONG?76)

Ong, L. and Goh, J., “A Unified Framework for Version Modeling Using Production
Rules in a Database System,” Electronics Research Laboratory, University of California,
Berkeley, ERL Memo M90/33, April 1990,

Rowe, L. and Stwnebraker, M., “The POSTGRES Data Model,” Proc. 1987 VLDB Con-
ference, Brighton, England, Sept. 1987.

Shapiro, L., “Join Processing in Database Systems with Large Main Memories,” ACM-
TODS, Sept. 1986.

Stonebraker, M., “The POSTGRES Storage System,” Proc. 1987 VLDB Conference,
Brighton, England, Sept. 1987.

Stonebraker, M. et. al., “On Rules, Procedures, Caching and Views in Database Sys-

tems,” Proc. 1990 ACM-SIGMOD Conference on Management of Data, Atlantic City,
NJ., June 1990,

Wong, E., “Decomposition; A Strategy for Query Processing,” ACM-TODS, Sept. 1976.

03/10/94 179

	Copyright notice1992
	ERL-92-85

