

Copyright © 1992, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

POSTGRES REFERENCE MANUAL

Version 4.2

Edited by

the POSTGRES Group

Memorandum No. UCB/ERL M92-85

27 April 1994

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of Califomia

94720

The POSTGRES Reference Manual
Vefsion4.2

Edited by the POSTGRES Group
Computer Science Div.,Dept. ofEECS

University ofCalifornia at Berkeley

POSTGRES It copjmgfal C 1989,1994 byifae Regents of theUniventty ofCilifomia. Penmssioo toose, copy, modify, dis
tribute this software and iu documeoiaitaa for educational, researdi, and nao-piofit pinpoaca and whlioat fee is hereby gimed,pn>>
vided that the above copyiight nonce appear inall copies and that both that copyright notice and this po-itniaaini^ notice ippfar inwp.
porting docianenutioo, and that thename trftheUtuvenity ofCalifornia notbeosed madvenismg orpidilicity p»t«wwfig to disoifao-
tioo ofthe software without specific, written prior peimission. Peimission to inooipante this software into wntmnrnri pnxfaicu can
beobtained from the Campos Software Office, 295 Evans HaU, Univenity ofCalifornia, Berkeley, Ca.. 94720. The Univeriity ofCal
ifornia makes no representatians about the suitability ofthis software for any purpose. It is provided "as is"without ^rprft or im
plied warranty.

CONTENTS(MANUAL) CONTENTSCMANUAL)

Table of Contents

Section 1 — Introduction 1
Section 2 — UNIX Commands (UNIX) 2

General tiifoEmatton •«»•«—>«••>———www—•»!«« 2
Security 3
Crcatcdb 7
^^rCateUSer "T~TTtTTtti-TTTTtTTTTTtTTT-T'"--~T~-'T''TTtTTTTTTTTTTTf¥TTiTnhifisisssiiimei«nieinnmng»nn«»gn»gnn«>ennnmm>nmmmnntt>—9

Destioyuser ——————13
Icopy 15
Initdb -"""""TTTTttt¥-Mfrfrrt¥^tt^Tt¥-r¥-rTT-rTf-tTTTTTTTTTT¥T¥TT¥Tr¥TTT¥TTttl*gltggtgggggtttigggggggggg»ggggggggggggggggggg—gg——• —— —l——agngg 17
Ipcclean 18
The POSTGRES Tenninal Monitor 19

Pagedoc ——.. 23
PeatM.....M....................«M..........MM....M............MM...MM.............Mn...MM.MM.n..W.MM*MMM.MMM.... 24

PisM.............M................................M...............MMMM....M..MM.MM...MM...M.MMM....M..M. 26
Pmkdir 27
PlTlV 28
The POSTGRES Backend Server 29
The POSTGRES Postmaster 31
Ppwd 34

^
Reuidexdh ..37
Shmemdoc 39

Section 3 — What comes with POSTGRES (BUILT-INS) .. 41
Built-in and System Types 41

List of built-in types 41
Syntax of date and time types 42

Built-in operatois and functions 42
Binary operators 43
Unary operatms 48

Built-in aggregate functions 48
Section 4 — POSTQUELCommands (COMMANDS) 50

General Information.................. 50
Constants 50
Fields and Attributes 52
Operators 53
Expressions 53
Commands 58

Abort 58
Addattr 59
Append 60
Attachas 63
Begin W
Change ACL «... 65
Close 67
Cluster ^
Copy 69
Create 71
Createdb 73
Create Version 74
Define Aggregate 75
Define Functicm ... 77
Define Index 86
Define Operator 90
Define Rule 94
Define Type 97

03/11/94

CONTENTS(MANUAL)

Define View
Delete
Destroy ••••••••••••••
Destroydb...^
End
Extend Index
Fetch
Listen
Load
Meiige
Move
Notify
Purge —
Remove Aggregate
Remove Function.....
Remove Index
Remove Opeistor
Remove Rule
Remove lype
Rename
Replace
Retrieve........
Vacuum

Sections—Libpq
Control and Initialization

Environment Variables
Internal Variables

Query Execution Functions
Portal Functions—.................
Asynchronous Portals and Notification
Mireellaneous Functions

Functions Associated with the COPY Command
LIBPQ lYacing Functions
User Authentication Functions

Sample Programs
Section 6 — Fast Path
Section 7 —Large Objects...—......................

Backend Interface
LIBPQ Interface............
Sample Large Object Programs

Section 8 — System Catalogs
Section 8 — Files

General Information
Backend Interface — BKI
Page Stnicnire
Template

References

•••••••••••••••••••••••••••••••I

03/11/94

CONTENTS(MANUAL)

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
113
116
117
118
119
120
122
126
127
127
127
127
128
130
133
134
134
135
136
137
144
145
146
150
152
157
166
166
167
169
171
172

INlRODUCnON(FOSTGRES) IN1KODUCnON(POSTGRES)

SECTION 1 — INTRODUCTION

OVERVIEW

This documentis the referencemanual for the POSTGRES Hatfthna* management system under develop
mentat the University of Califoiniaat Beikdey. The POSTORES project, led by PiDfcssor Michael Ston»
biaker. has been sponsored by the Defense Advanced Research Projects Agency (DARPA), the Army
ResearchOfiBce (ARC), the NationalScienceFoundation(NSF). and ESL, Inc.

POSTGRES is distributedin sourcecode fonnat and is the propertyof the Regents of the University of Cal-
iftxnia. However, the University wiU grant unlimited commereialization rights for any derived workon
the ccnditiofl that it obtain an educational license to the derived work. For hirther information, consult the-
Beriuley Campos Software Office, 29S Evans Hall, Universttyof Califoniia, Beikeley, CA 94720. Note
that there is no organizationwho can help you with any bugs you may encounter or with any other isob*
lems. In other words, this is unsupported software.

POSTGRES DISTRIBUTION

This reference describes Version 42 of POSTGRES. The POSTGRES software is about 200.000 lines of C

code. Infoimation on obtaining the source code is available fr(»n:

Claire Mosher

Computer Science Division
521 Evans Hall

University ofCalifornia
Bericeley,CA 94720
(510)642-4662

Version 4.2 has been tuned modestly. Hence, on the Wisconsin benchmark, one should expect peifw-
manceabout twice that of the public domain. Universityof CaUfcnnia version of INGRES, a relational pro>
totype from the late 1970s.

As distributed, POSTGRES nms on Digital Equipment Corporation computers based on MIPS R2000 and
R3000 processors (under Ultrix 4.2A and 4.3A), Digital Equqxnem Corporation computers based on
Alpha AXP (DECchip 21064) (Hocessors (under OSF/1 1.3). Sun Mkaosystems computers based on
SPARC processors (under SunOS 4.13), Hewleu-Packard Model 9000 Series 700 and 8(X) computers
based on PA^RISC processors (under HP-UX 9.00 and 9.01), and International Business Machines
RS/6000 computers basedon POWER processors (underADC 333). POSTGRES users haveportedprevi
ous releases of the system to many other aichitecnnes and operating systems, including NcXTSTEP .
Solaris 23, IRDC.Intel System V Release 4, Linux and NetBSD.

POSTGRES DOCUMENTATION

This reference manual describes the functionality of Version 43 and contains notations whereappropriate
to indicate which features are not implemented in Version 4.2. Application developers should note that
this reference contains only the specification for the low-level call-oriented application program interfece,
LIBPQ. A companion volume, the POSTGRES User Manual, contains tumial examples of the ways in
which the system can be extended.

The remainder of this reference manual is structured as follows. In Section 2 (UNIX), we Hisni!cg the
POSTGRES capabilities that are available directly ftom the operating system. Section 3 (BUILT-INS)
describes POSTGRES internal data types, functions, and operators. Section 4 (CX)MMANDS) then
describes POSTQUEL, the language by which a user interacts with a POSTGRES database. Then, Section 5
(LIBP(^ describes a library of low level routines through which a usercan formulate POSTQUEL queries

03/12/94

INTRODUCTKX^CPOSTCIRES) ZNTTODUCnONCPOSTORBS)

fiom aCprogiam and get appropiate lemm infonnatkn iiack to his program. Next. Secdoa 6(FAST
PAIH) cootmuet with a descriptkn <rf a method by which applkatioos nuqr execute functions in POST-
GRES with veiy high petfonnance. Section 7(LARGE OBJECTS) describes the interoalPOSTGRESime^
face for accessing large objects. Section 8(SYSTEM CATALOGS) gives abriefexplanarion ofthe tables
usedintennily byPOSTORES. The reference concludes with Section9(FILES), acollection of file fonnat

fnr file« used by POSTQRES.

ACKNOWLEDGEMENTS
POSTORES has been constnicted by a team ofnndefgcaduate, graduate, and staff programmeis. The con-
tributon (in order) consisted of: Jeff Anton, Paul Aold, James BeU, Jennifier Caetta, Philip
Chang, Jolly Chen, Ron Choi, Matt Dillon. Zclainc Fong, Adam Glass, Jeffiey <3oh, Steven Grady, Seige
Gianik, Maiti Heaist, Joey HeUentein, Michael Hoohama. Chin-heng Hong, Wei HOTg. Anant Jhingian,
Greg Kemnitz, Maioel Kdinacker, Case Laraen, Boris Livshitz, Jeff Meredith, Ginger Ogle, ^had

^ Olson, Neb Olson, Lay-Peng Ong, Carol Raxson, Avi Pfeffer, Spyros Focamianos, Sunita Smawag^ David
Muir Shamoff, MaA Sullivan, CTmanon Thylor, Mate Tbitelbaum, Yongdong Wang, Kristin Wri^t and
Andrew Yu. The HP-UX port is courtesy ofRichaid Thnbull (Univeraity ofLiveroool) and Sebastian Fer
nandez (University of California at Beilceley). The initial ADC pert was perfon^ by Rafael Morales
Gamboa (FIESM Campus Morelos, Cuernavaca). Caii Staelin of H-P Laboratories and Steve Miley of
UCTSB/CRSEO provided the computing resources that enabled us to integrate these ports into the POST-
ORES distribution.

Marc Teitclbaum served as chief programmer for Version 4.2 and was responsible for overall coordinatKMi
of the project

This reference was collectively written by the above imptementation team, assisted by Bob Devine, Jim
Frew, Chandra Ghosh, Claire Mosher andMichael Stonebraker.

LEGAL NOTICES . .

POSIGRES is copyright ©1989, 1994 by the Regents ofthe University ofCalifornia. Permission to use,
copy, modify, and distribute this software and its documentation for educational research, and non-profit
pmp^ and without fee is hereby granted, provided that the above copyright notice appear in aU copies
and that both that copyright notice and tfus permission notice appear in supporting documentato, and that
the name of the University ofCalifornia not be used in advertising or publicity pertaining to distribution of
the software without specific, written prior permission. Permissioo to incorporate thb roftwro into com
mercial pnxlucts can be obtained from the Camfxis Software Office, 295 Evans HaH University of(Wor-
nia. Berkeley, Ca., 94720. The University of California makes no representations about the suitability of
this software for any purpose. Itisprovided "as is' without express orimplied warranty.
UNIX is atrademark of Unix Systems Laboratories. Sun4, SPARC, SunOS and Solaris are tradem^ of
Sun Microsystems, Inc. DEC, DECstation, Alpha AXP and ULTRDC are trademarks of Digital Equipment
COqj- PA-RISC and HP-UX are trademarks of Hewleu-Packard Co. RS/6000, POWER and ADC are
trademarks of International Business Machines Corp. OSF/1 is auademaik of the Open Systems Fou^-
tkxi. NeXTSTEP is a trademark of NeXT Computer, Inc. MIPS and IRDC are trademarks of Silicon
(jfaphics. Inc.

03/12/94

INTRODUCnONCUNK) INIKODUCTIONCUNIX)

SECTION 2 — UNIX COMMANDS (UNIX)

OVERVIEW

This section contains infcnnation on the interaction between POSTGRES andthe operating system. Inpar
ticular, the pages of this section describe the POSTGRES suppon programs that are executable as UNIX
commands.

TERMINOLOGV

In the foUowing documentation, the tenn site may be interacted as the host machineon whichPOSTGRES
is installed. However, since it ispossible to install more than onesetof POSTGRES Hatahaw? ona single
host, this teim more pfccisely denotesany paiticular set of installed POSTGRES binaries and databases.

The POSTGRES super^user is the user named *'postgies'* (usually) who owns the POSTGRES binaries and
database files. As the database super-user, all fuotection mechanisms may be bypassed and any Hata
accessed arbitrarily. In addidon, the POSTGRES super-user is idlowed to execute some suppoit programs
which are generallynot available to all users. Note that the POSTGRES super-user is nor the same as the
UNIXsuper-user, rvot, and should have a non-zero userid.

The database base administrator or DBA, is the person who is responsible for installing POSTGRES to
enforce a security policy for a site. The DBA willadd new users by the method described below, change
the status of user-defined functions fiom untrnsted to trusted as explained in definefitnction(comtiands),
and maintain a set of template databases fos use by createdb(\uux).

Thepostmasteris the process thatacts as a clearing-house for requeststo the POSTGRES system. Firontend.
applications connect to the postmaster, which keeps tracks of any system errors and communication
between the backend (nocesses. The postmaster can take several command-line arguments to tune its
behavior, butsupplying arguments is necessary ooly if you intend to run multiplesitesor a non-default site.
See postmasteriusax) for details.

The POSTGRES backend (..7bin^x)stgres) may be executed directly from the usershellby the POSTGRES
super-user (with the database name as an argument). However, doing this bypasses theshared bufifer pool
and lock table associated with a postmaster/site, so this is not recommended in a multiuser site.

NOTATION

"...r at the front of a file name is used to represent thepath to the POSTGRES super-user's home directory.
Anything in brackets ("I" and is optional. Anything in braces ("{" and"}") can berepeated 0 or more
times. Parentheses ("(** and'T) are used to group boolean expressions. 'T is theboolean operator OR.

USING POSTGRES FROM UNIX

All POSTGRES commands thatare executed directly fiom a UNIX shell are foundin the directory "..Tbin**.
Including this directory in your searchpath will make executingthe commandseasier.

A collection of system catalogs exist at each site. These include a class (**pg_user^ that contains an
instance foreach valid POSTGRES user. The instance specifies a set of POSTGRES imvileges, such as the
ability to act as POSTGRES super-user, theability to create/destroy databases, and theability to update the
system catalogs. A UNIX user caiuiotdo anything with POSTGRES until an apprtyrbif** instanceis installed
in thisclass. Further information on thesystem catalogs is available by ruiming queries rni theappropriate
classes.

USER AUTHENTICATION

Authentication is the process by which the backend server andpostmaster ensure that the userrequesting
access to data is in to who he/she claims to be. All users who invoke POSTGRES arechecked against the
contents of the '^pg.user'* class to ensure that they are authorized to do so. However, verification of the

03/12/94

INlRODUCnONCUNlX) INTOODUCnON(UNIX)

user's actual identity is pafanned in a vaiety ofways.

Froffl the user shell

A backend serverstaited from a user shell notes the user's (real) user-id beforeperfmining a je/iud(3) to
the use^id of user ''postgres". The real user-id is used as the basis for access control checks. No other
authentication is conducted.

From the netvrerk

If the POSTORES system is builtas distributed, accessto the InternetTCP port of theponmoster process is
completely unrestricted. Thatis. any user mayconnea to this pon, spoof thepostmaster^ poseas an autho
rized user and issue any commands desired. However, since this poet is coofigur^le and not normally
advertised in any public files (e.g., /etc/services), some administrators may be satisfied with security-by-
obscurity.

If greater security is desired, POSTGRES andits clients may be modified to usea network authentication
system. Forexample, thepostmaster, monitor andllbpq have already been configured to use either Version
4 or Version S of the Kerberos authentication systemfitom the Massachusetts Institute of Ibchnology. For
more infonnation on using Kerberos with POSTGRES, see the appendix below.

ACCESS CONTROL

POSTGRES provides mechanisms to allow users to limit the access to their data that is provided to other
users.

Database supcrusers

Database super-users (Le., users whohave "pg.user.usesuper" set) silently bypass all of the access controls
described belowwith two exceptions: manualsystemcatalogupdatesare not permittedif the user does not
have **pg_user.usecatupd'* set,anddestiuction ofsystem catalogs (ormodification of their schemas) is never
allowed.

Access control lists

The use of accesscontrol lists to limit reading,writingand setting of rules on classes is coveredin change
ad(commands).

Class removal and schema modification

Commands that destroy or modify the structure of an existing class,suchas addattr, destroy, rename, and
remove index,only operate for the owner of the class. As mentionedabove, these operationsare never per
mitted on system catalogs.

FUNCTIONS AND RULES

Functionsand rules allow useis to insert code into the backend server that other users may execute without
knowing iu Hence, both mechanisms permit users totrojan horse others with relative impunity. The only
real protection istight connol over who can define fimctions (e.g., write torelations with POSTQUEL fields)
andniles. Audittrailsandalerters on **pg_class''. "pg user"and **p£ group'* arealso recommended.

Functions

Functions written in any language except POSTQUEL with '*Dg_procjTOistrusted*' set run inside the back-
end server process with the permissions of the user "postgres" (the backend server runs with its real and
effective user-id set to '̂postgresT- It is possible for users to change the server's imemal data structures
from inside of trusted functions. Hence, amtxig many other things, such functions can circiunvent any sys
tem access controls. This is an inherent problem with trusted functions.

Non-POSTQUEL functions that do not have "pgjHxx:.proistrusted" set run in a sqniate untrusted-function
process spawned by the backend server. Ifcorrectly installed, this process runs with real and effective user-
idset to '̂ nobody" (orsome other user with stricdy limited permissions). It should be noted, however, that

03/12/94 4

INTRODUCnONCUNDO INTRODUCnON(UNIX)

the primaxy purpose of nnuusted fiinctioiis is actnaiiy to simplify debugging of oserdefined fimctions
(since iwggy functions will only crash or oonupc the untnisted-lunctioa pcooes instead of the serverpn^
cess). The current RFC protocolonly works in one direction, so any function that tnake funcdon-inanager
calls (e.g.,access methodcalls) or perfomis other databasefile operationsmost be trusted.

Since untrasied fiinctioiis are a new feature in Versioo 4.2, the define ftmctioa oonunand still defaults lo
makingnew functions trusted. This is a massivesecurity bole that will be removed in a later release,onoe
the (mis)featutes and interflEioe of untnisted functions have stabilized. (An additional access control wiU be
added fOT defining functions, analogous to the access control on defining rules.)

Like other functions that perform daiahase file operations, POSTQUEL fimctions must run in the same
address space as the backend server. The **pgjnoc.proistnistecr field has no effect for POSTQUEL funo>
tions, which always run with the permissions of the user who invoked the backend server. (Otherwise,
users could circumventaccess controls— the "iiobody" user may well be allowed greater access to a par
ticular object than a given user.)

Rules

Like POSTQUEL functions, rules always run with the identity and permissions of the user who invi^cedthe
backend server.

SEE ALSO

postmasierCunix), addattitcominands), appendCcommands), change acKcommands), c(^(commands),
define rule(commands), delete(conunands). destroy(commands), remove index(commands), remove
nile(commands). rename(comniands), rcplace(commands). retrieve(commands), kerberos(l). Idnitfl), ker-
beros(3)

CAVEATS

There are no plans to explicitly support encrypted data inside of POSTGRES (though there is nothing to pre
vent users from encrypting data within user-defined functions). There are no plans to explicitly suppcut
encrypted networkconnections,either, pending a total rewrite of the finmtend/backend protocol.

User names, group names and associated system identifiers (e.g., the contents of **pg.tiser.usesysid**) are
assumed to be unique throughouta database. Unpredictable results may occur if they are not.

User system identifiers are currently UNIX user-ids.

APPENDIX: USING KERBEROS

Availability

The Kerberos authentication system is not distributed with POSTGRES, nor is it available from the Univer

sity of Californiaat Berkeley. Versions of Kerberosare typically availableas optional software from c^)er-
aiing system vendors. In addition, a source code distribution may be obtained through MIT Project Athena
by anonymous FTP from ATHENA-DISTAlTrEDU (18.71.038). (You may wish to obtain the MIT ver
sion even if your vendorprovidesa version,since some vendorports have been deliberatelycrippled or ren
dered non-interoperable with the MIT version.) Users located outside the United States of America and
Canada are warned that distribution of the actual encryption code in Kerberos is restricted by U. S. govern
ment export regulations.

Any additional inquiries should be directed to your vendor or MIT Project Athena ("info-
kerberos@ATHENA.MIT.EDLr). Note that FAQLs (Frequently-Asked Questions Lists) are periodically
posted to the Kerberos mailing list, *'kerberos@ArHENA3OTjEDir (send mail to ''kerbeios-
request@ATHENA.MIT.EDLr to subscribe),and USENETnews group,"comp.pfotocolsJcerberos".

Installation

Installation of Kerberos itself is covered in detail in the Kerberos Installation Notes. Make sure that the

serverkey file (the srvtab or keytab) is somehowreadable by user *'postgres'*.

03/12/94

INraODUCnON(UNIX) INraODUCnONCUNK)

POSTORES and its clientscan be compiiedto use either Venion 4 or VBision S of the MTTitrerhems proto
colsby setting the KRBVERS variable in the file ^Jsrc/Makefile.globel" to theappiDpriate value. Yoacan
also changethe location wherePOSTGRES expects to find the associatedlibraries,header files and its own
server key file.

After compilaticMi is complete. POSTGRES must be registered as a Kerberos service. See the Kerbems
OperationsNotes and related manualpages for more detailson registeringservices.

Operation

After initial installation, POSTGRES should operate in all waysas AnxxtDti Kerberos service. For detaib on
the use ofauthentication, see the manual pages for posonosrerfunix) and monimrfunix).

In the Kerberos Version 5 hoolcs, the following assumptions are made about user and service naming: (1)
user principal names (anames) are assumed to contain the actual UNDC/POSTGRES user name in the first
componenc (2) the POSTGRES service is assumed to be have two components, the service name and a host
name, cancMiicalizedas in Version 4 (i.e., all dtnnain sufiBxesremoved).

user example: £rewOS2K.ORG

user example: aoki/HOST=iniyu.S2K.Berkeley.EDUOS2K.ORG

host example: postgres_dlxns/ucbvaxOS2K.ORG

Supportfor Version 4 will disappearstMneiime after the productionrelease of Version 5 by MIT.

03/12/94

CREAIHDB(UN1X) CREArEDB(ljNlX)

NAME

rfip^^nfh — f|

SYNOPSIS

createdb (-a system] [-h host] [-p poit] [dbname]

DESCRfPTIGN

Createdb creates a new database. The person who executes this comniand becomes the databasr adminis
trator. or DBA, for this database and is the only person, other than the POSTGRES super-user, who can
destroy it.

Createdbis a shell script that invoices the POSTGRES monitor, Hdice, a postmasterprocess must be run
ning on the database server host before createdb is executed. In additioo. the POOPTION and PGREALM
environmentvariables will be passed on to monitor and processed as described in incmftor(unix).

Theoptional argument dbname specifies the name of thedatabase to be created. The name mustbeunique
among all POSTGRES databases. Dbname defimlts to the value of the USER environment variable.

Createdb understands the following command-line options:

•a system

Specifies an authentication system system(see introductioniunix)) to use in coimecting to the post'
master process. The deiault is site-specific.

•h host

Specifies the hostname of the machine on which the postmaster is lurming. Defaults to the name of
the local host, or the value of the PGHOSTenvironment variable (if set).

-ppon

Specifies the Internet TCP port on which the postmaster is listening for coiuiections. E>efaults to
4321, or the value of the PGPORT environment variable (if set).

EXAMPLES

create the demo database

createdb demo

create the demo database using the postmaster on host eden,

port 1234, using the Kerberos authentication system,
createdb -a kerberos ~p 1234 -h eden demo

FILES

SPGDATA/base/dfimrme

The location of the files ctxiesponding to the database dbname,

SEE ALSO

createdb(commands), destroydb(unix), initdb(unix), monitor(unix), post]naster(unix).

DIAGNOSTICS

Erron Failed to connect to backend (bost=xcr, portsxcx)
Createdbcould not attach to the postmaster process on the specified host and pm. If you see this
message, ensure that the postmaster is running on the proper host and that you have specified the
proper port. If your site uses an authentication system, ensure that you have obtained the required
authentication credentials.

01/23/93

CREAIEDB(UNIX) CREA1EDB(UN1X)

user''uMniaiitf" is not in'^gjDMr^
You do nothavea validentry inihe relation**pg_user^ and caonoc do anyiliing with POSTGRES at all:
contact your POSTORES site admioisoatoL

user *<u5€riiaine'* is not allowed to create/destroy databases
Youdo not have pennisskm to create new databases;contaa your POSTGRES site administratoe,

dhnoiiie already eiists
The database already exists.

database creatloa failed on dbname

An internal error occuned in moiufor or the backendserver Ensure that your POSTGRES site admin-
istiator has properiy installed POSTGRES and initialized the site with hu'idh.

01/23/93

CREAIHJSERCUNIX) CREAIEUSER(UN1X)

NAME

createuser—create a POSTQRES user

SYNOPSIS

createuser (-a system] [-b host] [-p port] [useniame]

DESCRIFTIGN

Createuser creates a new POSTGRES user. Onlyusers with**usesuper" set in the**pft user^ class cancreate
new POSTORES users. As shipped, the user "^postgres" can create users.

Createuser is a shell script that invokes monitor. Hence, a postmaster process must be running on the
dafahase senrer host befme createuser is executed. In addition, the PGGPTIGN and POREALM envnoiuneiit
variables willbe passed on to monitor and processed as described in monitor(vmx).

The optional argument luemamespecifies the nameof the POSTORES user to be created. (Theinvoker will
be prompted for a name if none is specified (mi the command line.) This name must be imique among all
POSTGRES users.

Createuser understands the following command-line options:

-a system

Specifies an authentication system system (see introductioniunix)) to use in connecting to the post'
master process. The default is site-specific.

•b host

Specifies thehostname of the machine on which thepostmaster is ruiuiing. Defaults to the name of
the local host, or the valueof the PGHOST environment variable(if set).

-ppon

Specifies the Internet TCP port on which the postmaster is listening fw connections. Defaults to
4321,or the valueof the PGPORT environment variable(if set).

INTERACTIVE QUESTIONS

Once invoked with the above options, createuser will ask a series ofquestions. The new users's login name
(if not given on thecommand line)and user-id mustbespecified. (Note that the POSTGRES user-id mustbe
the same as the user's UNDC user-id.) In addition, you must describe the security capabilities of the new
user. Specifically, you will be asked whether the new user should beable toact asPOSTGRES super-user,
create newdatabasesand updatethe system catalogsmanually.

SEE ALSO

destroyuserfunix). monitor(unix). postmasteifunix).

DIAGNOSTICS

Erron Failed to connect to backend (host=xcx, port=ixx)
Createuser could not attach to the postmaster process on the specified host and port. If you see this
message, ensure that thepostmaster is running on the |Hoper host and that you have specified the
proper port. If your site uses an authentication system, ensure that you have obtained the required
authentication credentials.

user **username** is not in *^g_usci^'
You donothave a valid entry in the relation "pg.user" and cannot doanything with POSTGRES atall:
contact your POSTGRES site administrator.

username cannot create users.

You do not havepermission to createnew users: contactyour POSTGRES siteadministrator.

user *^username"already exists
The user to be added already has an entry in the ''pg.user" class.

01/23/93

CREATEUSERCUNIX) CREAIEUSER(UNDO

database aoccM failed

An intonai error occurred in monitor or the backeod server Ensure that your POSTGRES site admin-
istntor lias properly installed POSTGRES and initialized the site with bi/tdb.

BUGS

POSTGRES iiser-id*s and user namesshould not haveanything to do with the constraintsof UNIX.

01/23/93 10

DESTROYDBCUNIX) DBS1R0YDB(UN1X)

NAME

destfoydb—destroy an existing database

SYNOPSIS

destroydb [-a system] (-h host] [-p poet] [dbname]

DESCRIPTION

D^siroydb destroys an existing database. To execute this command, the user most be the database adminis
trator,or DBA, for this database. The program nins silently; no confiimadon message will be displayed.
After the databaseis destroyed,a UNIX shell prompt will reappear.

Destroydb is a shell script that invokes monitor. Hence, a postmaster process must be running on the
Hflfahacp. scTverhost befoTO destroydb is executed. In addition, the PGOPnON and POREALM envtroninent

variables will be passed on to monitor and processed as described in mon^ritstax).

The optional argument dbname specifies the name of the rfatahacft to be destroyed. All references to the
database are removed, including the directory containing this database and its associated files. Dbname
defaults to the value of the USER environment varud)le.

Destroydb understands the following command-line options:

•a system

Specifies an authentication system system (see introductioniumx)) to use in connecting to the post'
master pnxess. The default is site-specific.

-h host

Specifies the hostname of the machine on which the postmaster is running. De&ults to the name of
the local host, or the value of the PGHOST environment variable (if set).

-pport

Specifies the Internet TCP port on which the postmaster is listening for connections. Defaults to
4321, or the value of the PGPORT environment variable (if set).

EXAMPLES

destroy the demo database

destroydb demo

destroy the demo database using the (postmaster on host eden,

port 1234, using the Kerberos authentication system,
destroydb -a kerberos -p 1234 -h eden demo

FILES

SPGDATA/base/dfinamc

The location of the files corresponding to the database dbname.

SEE ALSO

destroydb(commands), creaiedbfunix), initdb(unix), monitor(unix). postmaster(unix).

DIAGNOSTICS

Erron Failed to connect to backend (hostsxcr, port=xu:)
Destroydb could not attach to the postmaster process on the specified host and pcm. If you see this
message, ensure that the postmaster is running on the proper host and that you have specified the
properport. If your site usesan authentication system, ensure that you have obtained the required
authentication credentials.

01/23/93 11

DESTKOYDBCUNK) DESIROYDBCUNK)

user'^ername" is not in'^gjDscr^
You do DOC have a valid eoiryin liie fdation*^g_user" andcannotdoanything with POSTORES atall;
contact your POSTORES site administrator.

user **username** Is not allowed to create/destroy datahases
You do nothavepemissinn to destroy rialahawt; mntnrt yrmr PnyTRRP-Q ritP nHtninimtw

database <Mbnamc" does not exist

Thedatabase to beremoved doesnothave an entiyin the **pgjdaiabase'* class.

database **dbnami^ is not owned by yon
You are not DBA for the specifieddatabase,

database destroy failed on dhaome
An intenai error oocuixed in monitoror the backend server. Contactyour POSTORES site adminis
trator to ensure that ensure that the files and Hatnhqy entries associated with the database are com

pletely removed.

01/23y93 12

DESTI10YUSER(UNIX) DESinOYUSER(UNlX)

NAME

destroyuser—destroy a POSTGRES user and assodaied databases

SYNOPSIS

destroyuser (•& system] [-h host) [-p poit) [usename]

DESCRIFTIGN

Destroyuser destroys an existing POSTGRES user and the rfatnhaw for which that user is rfatahaw adminis
trator. Only users with "usesuper" set in the "pg_user" class can destroy new POSTGRES users. As
shipped, the user "postgres" can destroy users.

Destroyuser is a shell script that invokes monitor. Hence, a postmaster process must be running on the
datahasft server host before destroyuser is executed. In addition, the PGOPTION and PGREALM enviroo-
mem variableswill be passed on to monitor and processedas described in monitor(mdx).

The optional argument username specifies the name of the POSTGRES user to be destroyed. (Theinvoker
will be prompted for a name if none is specified on the command line.)

Destroyuser understands the followingcoiiunand-line options:

-a system

Specifies an authentication system system (see introduction(wsx)) to use in connecting to the post*
master process. The default is site-specific.

•b host

Specifies the hostnameof the machineon which the postmaster is running. Defiuilts to the name of
the local host, or the value of the PGHOST enviromnent variable (if set).

-pport

Specifies the Internet TCP port on which the postmaster is listening fw coimections. Defaults to
4321. or the value of the PGPORT environment variable (if set).

INTERACTIVE QUESTIONS

Once invoked with the aboveoptions, destroyuser will warn you about the that will be destroyed
in the process and permit you to abort the removal of the user if

SEE ALSO

createuseifunix), monitoi<unix), postmastetftinix).

DIAGNOSTICS

Error: Failed to connect to backend (host=xcx, port=xcr)
Destroyuser could notattach to thepostmaster process on the specified hostandport. If yousee this
message, ensure that the postmaster is running on the proper host and that you have specified the
proper port. If your site usesan authentication system, ensure that you have obtained the requited
authentication credentials.

user *^username" Is not in **pg;_user"
You do not have a valid entryin therelation **pg_user'* andcannotdo anything withPOSTGRES at all;
contact your POSTGRES site administrator.

username cannot delete users.

You do not have permission to delete users: contact your POSTGRES site administrator.

user "username" does not exist

The user to be r^oved does not have an entry in the **pg_user** class.

database access failed

01/23/93 13

DESTSOyUSERdJNIX) DES1110YUSER(UN1X)

^MtnffAbWkdbname failed • odting

delete of nseriueiiuiine was UNSUCCESSFUL

Aninternal errorccctmed in monitor or thebackend server. Contact your POSTORES siteadminis-
tiator to ensure that the files and datahnse entries associated with the user and hia^ier associated
databases are completely removed.

01/23/93 14

ICOPYCUNDO lOOPYCUNIX)

NAME

ioopy- copy files betweenUnixand Inversionfilesystems

SYNOPSIS

icopy direction -d dbname -s smgr
[-R] [-a] C-b host) [-p portnum] [-v] srcfile destfUe

DESCRIPTION

Icopy copies files between the Inversion file system and the UNIX file system. This program is a iibpq
client program, and the Inversion file system is a transaction-protected file system Dsed by the Sequoia 2000
research projea at UC Berkeley. Inversion provides the same file system services provided by the UNIX
£astfile system, but does not suppoit an NFS intaHacc at presenL In order to make it easier to use Inver
sion, a suite of utility programs, including kopy, has been written to manage files.

The user specifies the host and port on which POSTORES is running, and the datahasr and storage manager
to use for file storage. The direction of the copy specifies whether files shoold be copied firom UNIX to
Inversion (in), or firom Inversion to UNIX (our). The user also supplies two file names for the source and
destination of the copy.

ARGUMENTS

The first five arguments listed here are required.

direction The direction of the copy. If the direction is in. then the file is copied firom UNIX into Inver
sion. If the direction is out, then the file is copied out of Inversion to UNIX. The direction
argument afifects the interpretation of the source and destination file names, and may make
some other flags (such as -s) optional (see below). This argument must immediately follow
the program name.

-d dbname

The database to use for file storage. The user should have permission to create objects in
dbname. The database name must be supplied; there is no defiault

~s smgr Use smgr as the storage manager for the file. Storage managers in POSTGRES manage physi
cal devices, so this flag gives the user a way of controlling the device on which his file should
be stored. If the directionof the copy is in. then the suaage manager must be specified. If the
direction of the copy is out. then the sUHage manager flag is optional, and is igiKued if it is
supplied.

The list of availablestorage managersmay be obtained by typing

icopy

with no options; the resultingusage messageincludesa list of storage managerssuppcated.

srcfile The file from which to copy. If directionis in. then this is the name of a file or directoryon the
UNIX file system. If direction is out. then this is the name of a file directory on the Inver
sion file system.

If srcfile is a directory and the-R flag is supplied, thenthe tree rooted at srcfile is copied. It is
an error to specifya direaory to copy without supplying the -R flag.

destfile The file to which to copy. If direction is in. then this is the name oi an Inversion file or direc
tory. If direction is out. thendestfile is the name of a UNIX fileocdirectOTy.

If destfile already exists andis a directory, then srcfile willbe created in the directory destfile.

The following arguments are optional.

03/11/93 15

IOOPY(UNIX) ICOFY(UNIX)

-h host Specifies the hostname of the on which the postmaster is ntnning. Defaults to the
nameof the localhost,or the valueof thePOHOSTeaviroomeot vaziable (if set).

-ppon Specifies theIntenet TCPpoR on which thepos/mosrer is listening forconnections. Defiuilts
to 4321, or the valueof the POPORT environmentvariidile (if set).

"R Copy a directon^ tree recursively. Ratherthancopying a singlefile, the treerootedat is
copied CO a tree rooted at tiestfUe,

"A Copyall files, including those beginning with a dot This flag is usefulonly in conjunction
with-R. NonnallyvrecoisivecopiesofadirBctory nee willnotcopyfiles or (firectories whose
names begin with a doL

-V l\im veibose mode on. Icopy willrepoitits progress as it moves files toor firom Inversion.

EXAMPLES

The command

icopy in -h myhost -p 4321 -d mydb -s d /vmunix /inv_viminix

copies the UNIX file "/vmunix'* to the Inversion file "^nv.vmunix**. The Inversion file is stared in the
database "mydb** by the POSTGRES backend running on machine"myhost" and listening on poetnumber
4321.

The command

icopy out -h myhost -p 4321 -d mydb /inv_vmunix /vmunix.dup

copies it back out again, putting the copy in the UNIX file "/vmunix.dup**.

BUGS

The POSTGRES file systemcodeshouldsupport operations via NFS, so this inogtamactually has no right
to exist.

See introductionilarge objects)for filename and path limitationsimposedby the Inversionfilesystem.

03/11/93 16

INITDBCUNIX) INTTOBdlNlX)

NAME

initdb — initalize the database templatesand primaiy dixtctories

SYNOPSIS

initdb [.v][-dH-n]

DESCRIPTIGN

!nitdbsetsup the initial template databases and is noimally executed as pan of the installation process. The
templatedatabase is cxeated under the diiectory specifiedby the the environmentvariablePCDATA. or to a
defiuilt specifiedat compile^tinie. The templatedatabase is then vacnunied.

Initdb is a shell script that invoices the backend server directly. Hence, it most be executed by the POST>
ORES super-user.

Imtdb understands the following command-line (^)tkMis:

•V Produce verbose output, printing messages stating where the directories are being created, etc.

-d Print debugging output from the backend server. This option generates a tremendous amoum of
information. This option also turns off the finalvacuumingstep.

-n Run in "noclean" mode. By defiuilt. initdb cleans up (recursiveiy unlinks) the data directoryif any
erroroccurs,whichalsoremoves any core files left by the backend server. Thisoptioninhibits any
tidying-up.

FILES

SPGDATA/base

The location of global (shared) classes.

SPGDATA/base/tempiaie1
The location of the template database.

SPGDATA/files/iglobal 1.local (.template1) .bid
Commandfiles used to generate the global and templatedatabases, generatedand installed by the
initial compilation process.

SEE ALSO

createdb(unix). vacuum(commands),bki(files). template(files).

02/14/94 17

IPCXXEANOINIX) IPCXXEAN(UNIX)

NAME

ipcclean—clean up sharedmemofy andsemiqiliores firom abated

SYNOPSIS

ipcclean

DESCRIFTIQN

Ipccleancleans up shared oiemocy and scaiapfaae iq)aoe from abated barkfnds by all
owned byuser'̂ postgres". Onty theDBAshould execute thispcogiani as it can«««» bizaire bchavia (Le..
Clashes) Ifnmduring multi-user execution. This program should beexecuted if messages such assemgct:
Nospaceleft on device areencountered when starting upthepostmaster a thebackend server.

BUGS

If this command is executed while a postmaster is running, the shared memory and semaphores allocated
by thepostmaster will be deleted. This will result in a general fEulure of the bockends servers started by
thatpojonosrer.

Thisscriptis a hack,but in themany years sinceit waswritten, no one hascomeup withan equally effec
tiveand portable solution. Suggestionsareweloome.

01/23/93 18

MONITOR(UNIX) MONnt)R(UNIX)

NAME

monitor—nm the tnteraciive tenninai monitor

SYNOPSIS

monitor (-N1 [-Q] (-T] [-a system] [< query] [-d path]
[•h hostname] [-p pon] [-q] [-t tty.device] [dbname]

DESCRIPTION

The interactive tenninai nKMiitor is a simple firontend to POSTGRES. It one to fonnulate, edit and
review queries before issuing them to POSTORES. If changes must be made, a UNDC editor may be ruiifHl
to edit the query buffer managed by the tenninai monitor. The editor used is determined by the valueof
the EDITOR environmentvariable. If EDITOR is not set, thenvi is used by

Monitor is a fimitend application, like any other. Hence, a postmaster process miBt be running on the
database server hostbefore monitor is executed. In addition, the ccmea postmaster pon number mtiff be
specified as described below.

The optional argument dbname specifies the name of the rfatahaw to be This Hataiwc*. must
already have been created using createdb. Dbname defaults to the value of the USER environment variable.

Monitor understands the following command-line options:

-N Specifies that query results will be dumped to the screen without anyattempt at formatting. This is
useful in conjunctionwith the -c option in shell scripts.

-Q Produces extremely unverfoose output This is useful in conjunction with the -c option in shell
scripts.

•T Specifies that attribute names will notbe printed. This is useful in conjunction with the-c option in
shell scripts.

-a system

Specifies an authentication system system (see introduction(\u^)) to use in connecting to the post'
master process. The default is site-specific.

-c query

Specifies that monitor is to execute one query string, query, and then exit This is useful for shell
scripts, typically in conjunction with the -N and -T options. Examples of shell scripts in the POST-
GRES distribution using monitor •c include createdb, destroydb, createuser, destroyuser, and vac
uum.

-d path

path specifies the path name of the file or ny to which firontend (Le., monitor) debugging messages
areto be wrinen: thedefault is not to generate anydebugging messages.

•b hosuiame

Specifies thehostiuune of the machine on which thepostmaster is running. Defaults to the name of
the local host, or the valueof the PGHOST environmemvariaUe (if set).

-pport

Specifies the Internet TCP port on which the postmaster is listening for connections. Defiuilts to
4321, or the value of the PGPORT environment variable (if set).

-q Specifies that the monitor should do its workquietly. By de&ult, it prints welcome and exit mes
sages and the queries it sends tothe backend. If this option is used, none of this happens.

-t tty_device
tty_device specifies the path name to the file or ttyto which backend (i.e., postgres) debugging mes
sages are to be written: the default is /dev/nuii.

02/12/94 19

MONnX)R(UNIX) MONnORCUNIX)

You may set environmentvanables to avoid typing some of the above optioiis. See the ENVIRONMENT
VARIABLES sectioo below.

MESSAGES AND PROMPTS

Hie tenninal monitorgivesa varietyof messages to keep the user infcnnedof the status of the monitorand
the query buffer.

When the terminal monitor is e3Mcuted.itdisplays the cunent date and time as well as a prompt.

The tenninai monitor displays two kinds of messages:

go The query buffer is empty and the terminal monitor is ready for input. Anything typed will be
added to the buffer.

* This prompt is typedat the beginningof each line when the terminal monitoris waitingfor input

TERMINAL MONITOR COMMANDS

Enter the editor to edit the query buffer.

Ng Submitquery bufferto POSTGRES f(v execution.

Get on-line help.

\i filename
Include the filefilename into the query buffer.

Np Prim the current contentsof the query buffer.

Exit from the tenninal monitor.

V Reset (clear) the query buffer.

\s Escapeto a UNIX subshell. To return to the terminal monitor, type "exit" at the shellprompt

\t Prim the current time.

\wfilename
Store (write) the query buffer to an external filefilename.

W Produce a single backslash at the current location in query buffer.

ENVIRONMENT VARIABLES

You maysetanyof the following environment variables to avoidspecifying command-line options:
hostname: PGHOST

port: PGPORT
uy: POTTY
options: PGOPTION
realm: PGREALM

If PGOPTION is specified, thenthe options it contains are parsedbefcMre any command-line options.

PGREALM onlyapplies if Kerberos authentication is in use. If thisenviroiunent variable is set.POSTGRES
will attempt authentication with servers for this realm and use separate ttcket files to avoid conflicts with
local ticket files. See infroducrion(unix) for additional inf(xniation on Kerberos.

See in/roducrionClibpq) for additional details.

RETURN VALUE

When executed with the -c option, monitor returns 0 to the shell on successful querycompletion. 1 other
wise.

02/12/94 20

MONrrORCUNlX) MONnOR<UNlX)

SEE ALSO

ininxluciionOibpq), cieaiedb(iiiiix), oeateuserCunix), postgies(iiiux).postiiiaster(iinix).

BUGS

Does noc poll for asynchronousnodficaixon events generatedby /i5/eii(coininands) and noo^comtnands).

Escapes (backslash characters) cannoc be commentBdout

02/12/94 21

NEWBKKUNK) NEWBKI(UNIX)

NAME

newbld—change ifaePOSTORESsupeniser in the databaseteaqilate files

SYNOPSIS

newbki usemame

DESCRIPTIGN

Newbki is a script that changesthe UNIX usernameand user ID of the POSTORES superoserin the database
template files.

As packaged. POSTGRES assumes that there exists a usernamed "postgres" on yoursystem withthesame
user ID as on our systems. This will not (in general) be the case. Before trying to create any databases,
you should run newbki to update the template files.

Note that this only updates the files from which the template datahase will be built if you tun the
(mrdh(unix) command. This in turn implies that you will have to runc/eanibdir<unix) to destroy theexist
ing HatnhngftnnH any i»«i<ring ii«rdatnhfliMs —infftlb will iiotruniuiless tfaishasbeen done.

FILES

SPODATA/base

The location of global (shared) classes.

$PGDATA/base/templaiel

The location of the template database.

$PGDATA/files/(globall.locall_templaiel).bki
Command files used to generate the global andtemplate databases, generated andinstalled bythe
initialcompilation process. Theseare theonly files modified by newbki.

SEE ALSO

initdb(cleaidbdir), cieatedb(unix), initdb(unix),bki(files).template(files).

CAVEATS

There isnogood way tochange the POSTGRES user IDafter you have started creating new databases, new'
bid is defitiitely not the recommended way to try to do this. You might think that you can save your
Hatahacpg in flat filcs using copy(commands) and then restore them after initdb has been executed. How
ever, there is the additional problem that the POSTGRES user ID is embedded in the system catalog data
itself.

02/14/94 22

PAOEDOC(UNIX) PAQEDOCCUNEK)

NAME

pagedoc — POSTORES data page editor

SYNOPSIS

pagedoc [-h|b|r] [-d level] [-s stait] [-n count] filename

DESCRIPTIGN

The pagedoc program understands the layout of data on POSTORES data pages and can be used to view
contentsof a relationfilename if it becomes corrupted. Contentsare printed to standardoutput, and proba
ble errors ate flaggedwith four asterisks (*«*•••'*) and a descxipiioo of the problem.

Severallevelsof detail are available. Levelzero printsonly a single summary line per data page in the rela
tion. The summary line includes the number of itemson the page, some allocation information, and what
everadditional detail is appropriate for the relation type being examined. Level one also prints a single
summaryline for each tuple thata|^)eais on each page. The tuple summary includes the tuple's positionon
the page, its length, and some allocation information. Level two (or higher) prints all of the information
printed by level one.and printstuple headers forevery tupleon thepage. The header infonnatioa displayed
depends on thetypeof relation being viewed: eitherHeap'Aiple or index'niple structure entries arepossible.

If the relation's contents are badly damaged, then only level zero is likely to work. Finer levels of detail
assumethat more page sinictuie is correct,and so are moresensitive to comiption.

Pagedoc understands the following command-line options:

•h|b|r The type of the relation, lype Ais heap, b is btree. and r is rtree. The default is A.

•d levei The detail level to use in displaying pages.

•s start Stan at page numbersurt (zero-based)rather than on page zero.

•Q count

Display data for count pages rather than ail of them.

EXAMPLES

Print page andlinepointer summaries and tupleheaders fora btreeindex "pg.typeidind":

pagedoc -b -d2 pg_typeidind

Show the delault (level zero) summary of a heap relation "pg_user":

pagedoc pg^user

SEE ALSO

page(files).

BUGS

Finer levels of detail produce a lot of output

There's no way to skip forward to a page that shows some comiption.

You can only examine contents, you can't actually fix them.

01/23/93 23

PCArOJNIX) PCAIXUNIX)

NAME

peat - catan Invenioo file 10stdottt

SYNOPSIS

peat (-D database] [•!! host] [-P filename]»filename...)

DESCRIPTION

Peat catenatesfilesfirom the Inversion filesystemto standardoutput

ARGUMENTS

filename The name of the Inversion file to copy to standard output Iffilename is **-** (a single dash),
then standard input is copied.

•D database

Specifies the database to use. De&ults to the value of the environment variable DATABASE
(see below).

•H host Specifies the hostname of the machine on which the postmaster is running. DeCEUilts to the
name of the local host or the value of the POHOSTenviroiunent variable (if set).

•Pport Specifies the Internet TCP porton whichthepoinnosrer is listening for connections. Defiuilts
to 4321, (H* the value of the PGPORTenvironment variable (if set).

EXAMPLES

The command

peat /iryfilel - /myfile2

copies thecontents of Inversion file "/myfilel**. standard input and thecontents of Inversion file '̂ Anyfilel**
to standard output

ENVIRONMENT

If no rfataha-^e is givenon the command line, the environmern variable DATABASE is checked. If no envi
ronment variable DATABASE is present the command exits with an enor status.

BUGS

See imroductionilaigt objects) for filenameand path limitations imposed by the Inversionfilesystem.

01/23/93 24

PCDCUNIX) PCDCUNK)

NAME
pod-change directories inanInversion file system

SYNOPSIS

pcd(-D database] [-Hhost] [-Pport] [pathname]

DESCRIFTIGN

Fed updates the current woridng directory environment variable.

ARGUMENTS

pathname The name ofthe directory to change to. Ifno pathname is given, the path is assumed to be T.
•D database

Specifies the rfatjthfwi* to use. Defaults to the value of the environment variable DATABASE
(see below).

•H host Specifies the hostname of the machine on which the postmaster is running. Defaults to the
nameof thelocal host,or the valueof the PGHOST environment variable(if set).

•P port Specifies the Internet TCP port on which the postmaster islistening for connections. Defiuilts
to 4321, or the value of the PGPORT environmentvariable (if set).

ENVIRONMENT

The environment variable PFCWD is checked and updated.

If no database is given on the command line, the environment variable DATABASE ischecked, Ifno envi>
ronmentvariableDATABASE is present,the commandexits with an error status.

BUGS

See introductionOsagc objects) for filename andpath limitations imposed bytheInversion file system.

01/23/93 25

fl-SaJNIX) FLS(UNIX)

NAME

pis- listcontents of theInversioo filesystem

SYNOPSIS

^\A<lsflags>

DESCRIPTION

Pb i^ts directory listings of theInvenion file system. It thesame aignments as theUNIX Iscom
mand.

EXAMPLES

The command

pis -Isga /

prints a long-format listing of all the files in the root directory of Invenion, including size and ownership
information.

ENVIRONMENT

The environment variable DATABASE is checked to determine the name of the datahasr to use to find Inver
sion files. PGHOST and PGPORT mustbe used to specify the hostname of the machine on which thepost
master is running (defaults to thename of thelocal host) andthe Internet TCPpotton which thepostmaster
is listening for connections(defaultsto 4321), respectively.

BUGS

Thedatabase name, port number, and hostname to usefor rfatahgw should be passed on thecom
mand line. Unfortunately, almost all the available option letters arealready usedby is.

See introduction(i3Tge objects) for filename and path limitations imposedby the Inversion filesystem.

01/23/93 26

PMKD1R(UNIX) PMKDIRCUNIX)

NAME

pinkdir - create a new Inversion file system dirsctoiy

SYNOPSIS

pmkdir [-D database] [-H host] [-P pon] path] path... }

DESCRIFTIGN

Pmkdir creates new directories on the Inversion file system. The Inversion file system has a hieraichkal
namespacewith the same rules as that of the Unix filesystem: components in a pathname are separated by
slashes, and an initial slash refers to the root ditectory of the file system.

ARGUMENTS

pathname The name of the directory to create.

•D rffltahiWft

Specifies the database to use. Defaults to the value of the environment variable DATABASE
(see below).

•H host Specifies the hostname of the machine on which the postmaster is ruruiing. Defaults to the
name of the local host, or the value of the PGHOSTenvironment variaUe (if set).

-P pon Specifies the Internet T(ZP pon on which the postmaster is listening for connections. Defaults
to 4321, or the value of the PGPORTenvironment variable (if set).

EXAMPLES

The command

pmkdir /a/b/c/d

creates a new directory "d** as a child of "/a/b/c". "/a/b/c** must already exist.

ENVIRONMENT

If no database is given on the command line, the envircMunent variable DATABASE is checked. If no envi
ronment variable DATABASE is present, the command exits with an emx' status.

The environment variable PFCWD is usedfor thecurrentdirectory if the pathname specified is relative.

BUGS

See introductionOarge objects) for filenameand path limitationsimposed by the Inversionfile system.

01/23/93 27

PMV(UNIX) PMVOJNK)

NAME

pmv - rename an Invenioa file or directory

SYNOPSIS

pmv (-D database) [-H host] (-P poit] oldpath newpath

DESCRIPTION

Pmvchanges thenameof an existingfileor directory 00 the Inveisioo filesystem. In the case thata direc
toryis moved,thechildrenof theoriginaldirectoryremainchildrenof thedirectcxy underits new name.

ARGUMENTS

oldpath The path name of the file Ofdirectory to rename. This must be a fully-qualifiedpath tooted at
T, and the named file or directory must exist

newpath The new pathnamefor the file or directory. Again, this mist be fiilly qualified,and intennedi-
aie components must exist - that is, you cannot move a file to a directory which does not yet
exist

-D database

Specifies the database to use. Defaults to the value of the environment variable DATABASE
(see below).

•H host Specifies the hosmame of the machine on which the postmaster is running. Defaults to the
name of the local host or the value of the PGHOSTenvironment variable (if set).

•P port Specifies the internet TCP port on which the postmaster is listening for coruiections. Defaults
to 4321. or the value of die PGPORT environment variable (if set).

EXAMPLES

The command

pmv c/d b/c/longnaine

renames the Inversion file "d" in directory "c" to "b/c/Iongname".

ENVIRONMENT

If no database is given on the command line, the environment variable DATABASE is checked. If no envi
ronment variable DATABASE is present the command exits with an error status.

The environment variable PFCWD is used for the current directory if the pathname specified is relative.

BUGS

See introductionilarge objects) for filename and path limitations imposed by the Inversion file system.

01/23/93 28

POSTGRES(UNIX) P0STGRES(UN1X)

NAME

postgres—thePOSTGRES backend server

SYNOPSIS

postgres [-B n.boffen] [-E] [-P filedes] [-Q]
[-d debug.level] [-o outpuLfile] [-s] [dbname]

DESCRIPTION

The POSTGRES backend server can be executed directly from the user shelL This should be done only
while debugging by the DBA, and should not be done while ocherPOSTORES backends are being managed
by a postmaster on this set ofdatabases.

The optional argument tibname specifies the name of the Hatahnw m be accessed. Dbname defaults to the
value of the USER environment variable.

The postgres server understandsthe fdlowing command-lineoptions:

•B n.bufiers

If the backend is running under the postmaster^ n_bt^ers is the number of shared-memory buffers
that the postmaster has allocated for the backend server processes that it starts. If the backend is run
ning standalone, this specifies the number of buffers to allocate. This value defaults to 64.

-E Echo aU queries.

-P filedes

filedes specifies the file descripUM* that corresponds to the socket (pott) on which to communicate to
the frontend process. This option is not useful for interactive use.

-Q Specifies **quiet" mode.

-d debug_level
Turns on debugging at the numeric level debugJeveL T\iniing on debugging will cause query parse
trees and query plans to be displayed.

-o output.file
Sends all debugging and error output to output_file. If the backend is running under the postmaster,
error messagesare still sent to the Inxitend processas well as to outputJHe, but debugging output is
sent to the controlling tty of the postmaster (since only one file descriplOT can be sent to an actual
61e).

-s Print time information and other statistics at the end of each query. This is useful for benchmarking
or for use in tuning the number of buffers.

DEPRECATED COMMAND OPTIONS

There are severalotheroptions that may be specified, used mainly for debuggingpurposes. Theseare listed
here only for the use of POSTGRES system developers. Use of any of these options is highly discouraged.
Furthermore, any of these options may disappear or change at any time.

-AnlrfblQnlXn

Tiimson memorymanager tracing; An prints allocations/deallocation events when they occur,Ar
enables silent record-collection, Ab enables both record-collection and event-printing.AQn prints
recorded events each n tuples processed, and AX/i prints recorded events each n transactions pro
cessed.

This option generates a tremendous amount of output.

-C Don't check whether database metadescriptions (i.e., PG.VERSION files) are consistent.

-L Ttims off the locking system.

03/12/94 29

P0STGRES(UN1X) POSTGRESCUNDO

-N Disables useof newiine as a quay delimto

-S thatthetransaction system canrunwith theaMumptifln of sthUe main memory, thereby
avoiding the necessary flushing ofdata and log pages todiskatthe end ofeach tiansactioa system.
This isonly used for peifonnanoecompariscMis for stable vs. oca-stable storage. Do not use this in
othercases, as recovery after a system crash may beimpossible when this option isspecified inthe
absence of stable main memory.

-b Pnahteg generation ofbushy query plan trees (as opposed to left-deep query plans trees). These
query plans are not intended for act^execution; in addition, this flag often causes POSTORES to
run out of memory.

•f Forbids the use of particuiar scan and join methods: s and / disable sequential and index scans
respectively, while n. mand h disable nested-loop, merge and hash jmns respectively. This is
ann<h«»r featurethatmay not necessarily produceexecutableplans.

•p Indicates to the backend server that ithas been started by aposonosrer and make diffeientassump-
tionsabout bufferpoolmanagement,filedescriptors,etc.

•tpa(rserlipl[anner]le[xecutor]
Print timing gtatigrirjc for each query relating to each ofthe major system modules. This option
cannot be used with -s.

SEE ALSO

ipcclean(unix), monitoi(unix), postmasierCunix).

DUGNOSTICS

Of the nigh-infinite number of error messages you may sec when you execute the backend server directly,
the most common will probably be:

scmget:Nospace left on device
Ifyou see this message, you should run the ipcciean command. After dcwg this, try starling posh
gres again. Ifthis still doesn't work, you probably need to configure your kernel fw shared mem
oryandsemaphores as described in theinstallation notes.

03/12/94 30

POSTMASTERCUNDO POSTMASTER(UNIX)

NAME

postmaster—nm the POSTGRES postmaster

SYNOPSIS

postmaster [-B n.buffers] (-D data.dir] [-8] [-a system)
[•b backendjjathname) [-d [debugjevel]] [-n]
[-0 backeiidjoptions] [-p pon] [-s]

DESCRIPTION

The postmaster manages thecommunication between finxiiend and backend processes, aswell asallocating
the sharedbuffer pool and semaphores (on machines without a test-and-set instniction). The postmaster
doesnot itselfinteractwith the userand shouldbe staxted as a background process. Only one posfmatter
should be nm on a machine.

The postmaster understands the followingconunand-line options:

•B n.buffers
njDtffers is the numberof shared-memory buffers for the postmaster to allocateand manage for the
backend server processes that it starts. This value dehmlts to 64.

•D data.dir

Specifies the directory to useas the root of the tree of rfa*ahaci» directories. Thisdirectory uses the
value of the environmentvariable PCDATA. If PCDATA is not set. then the directory used is SPOST-
CRESHOM^data. If neither environment variable is set and this command-line option is not speci
fied, the default directory that was set at compile-time is used.

•S Specifies that the postmaster process should start up in silent mode. That is, it will Hisnjeenrinti*. from
the user's (controlling) tty and start its own process grotip. This should not be used in combination
with debugging options because any messages printed to standard output and standard error are dis
carded.

-a system

Specifies whetheror not to use the authentication systemsystem(see introductioniusux)) for frontend
applications to use in comiecting to the postmaster process. Specify system to enable a system, or
uosystem to disable a system. For example, to permit users to use Kerberos authentication, use -a
kerberos; to denyany unauthenticated connections, use-a nounanth. The is site-specific.

•b backend_pathname

backendjmthname is the full pathname of the POSTGRES backend server executable file that the
postmaster will invoke when it receives a connection from a frontend application. If this option is
not used, then the postmaster tries to find this execut^le file in the directory in which its own
executable is located (this is done by looking at the pathname tuider which the postmaster was
invoked. If no pathname was specified, then the PATH environment variable is searched for an
executable named '^postgres").

-d (debug^level)
Theoptional argument debugjevel determines theamount of debugging output the backend servers
will produce. Ifdebugjevel isone, thepostmaster will trace all connection traffic, and nothing else.
Forlevels two and higher, debugging is turned onin thebackend irocessandthepostmaster displays
more information, including the backend environment and process traffic. Notethatif no file is spec
ified for backend servers to sendtheirdebugging output(e.g.,using the -t optionof monitor or the -o
option ofpostgres) then this output will appear on the controlling ttyof their parentposttnaster.

•n,-s

The -s and -n options control the behavior of thepostmasterwhena backend dies abnormally. Nei
ther option is intended for use in ordinary operation.

02/12/94 31

POSTMASTER(UNlX) POSTMASTER<UNIX)

Tbe ofdinary strategy for this situaiioo is to oocify all other barkends that they must tenniiiateand
then leimtiaiize theshaied memory andsemaphores. Hiis is becanse an enant bacfceod obold have
comipcedsome shared state before tenninating.

If the -1option is supplied, then the postmaster will stop all other backendprocesses by sending the
signal SIOSTOP. but will not cause them to tenninate. This peimits system programmers to collect
core dumps from all backend processes by hand.

If the-n option is supplied,then the posfmosrer does not reinitialize shaied data structures. Aknowl-
edgaUe system programmer can then use the shmemdoc program to examine shared memory and
figfiMphngie f*nt^

-o backendjoptioos
The postgresivtsik) options specified in backendyptions are passed to all backend serverprocesses
started by thispostmaster. If the optionstring containsany spaces, the entire string must be quoted.

-ppon

Specifies the Internet TCP poet on which the postmaster is to listen for connections firom frontend
applications. Defaults to 4321, or the value of the POPORT environment variable (if set). If you
specify a port other than the default port then all frontend applicadon users must specify the same
port (using command-line options or PGPORT) when starting any libpq applicaiicm.including the ter
minal monitor.

WARNINGS

If at all possible, do not use SIGKILL when killing the postmaster. SIGHUP, SIGINT, or SIGTERM (the
default signal for ki7/(l)) should be used instead. Hence, avoid

kill -KILL

or its alternative form

kill -9

as this will preventthepostmaster from freeing the systemresources(e.g.. shared memoryand semaplKMes)
that it holds beforedying. This preventsyou from having to deal with the problem with shmatil) described
below.

EXAMPLES

start postmaster using default values

postmaster fie

This command will start up postmaster on the defrult pon (4321) and will search SPATH to find an
executable file called **postgiesq. This is the simplest and most common way to start the postmaster.

start with specific port and executable name

postmaster -p 1234 -b /usr/postgres/bin/postgres fie

Thisconunandwill start up a postmastercommunicating throughthe poet 1234,and will attempt to use the
backend located at **/usr/|postgies/bin^x)stgrBs'*. In order to connect to this postmasterusing the terminal
monitor, you would need to either specify -p 1234 on the monitorcommand-line or set the environment
variable PGPORT to 1234.

SEE ALSO

ipcs(l), ipcrm(l), ipcclean(unix), monitoifunix), postgres(unix), shmemdoc(unix).

02/12/94 32

POSTMASTHKUNK) roSTMASTER(UNIX)

DUGNOSTICS

semget: No space left on devke
If you see this message, youshouldnm the ipcclean command. After(kwg this, try staiting the
posanasteragain. If thisstill doesn't work, you probably need to configure yourkernelfor shared
memory and semaphores as describedin the installation notes. If you run multipleposnnasrcrson
a single host,or havereduced the sharedmemory and semaphore parameten ftom the deftmlts in
the generickernel, you may have to go back and increasethe shared meitKxy and semaphorescon
figured into your kecneL

StreamSei'verPnrt; cannot bind to port
If you see this message, you should be certain that there is no other postmaster process already
ninning. The easiest way to determine this is by using the command

ps -ax I grep postznaacer

on BSD-based systems (the equivalent syntax is

pa -e i grep postmaat

on System V-like or POSOC-compliant systems such as HP-UX). If you are sure that no other
postmaster processes are running and you still get this error, try specifying a different port using
the -p option. You may also get this error if you terminate the postmaster and immediately restart
it using the same pon; in this case, you must simply wait a few seconds until the operating system
closes the pon before trying again. Finally, you may get this error if you specify a pon number
that your operating system considers to be reserved. For example, many versions of UNIX con
sider pon numbers under 1024 to be "trusted" and only permit the UNIX superuser to access them.

IpcMemoryAttacb: shmatO faOed: Permission denied
A likely explanation is that another user attempted to sian a postmaster process on the same pon
which acquired shared resources and then died. Since POSTURES shared memory keys are based
on the pon number assigned to the postmaster^ such conflicts are likely if there is more than one
installation on a single host. If there are no other postmaster processes currently running (see
above), run ipcclean and try again. If other postmasters are running, you will have to find the
owners of those processes to coordinate the assignment of pon numbers and/or removal of imused
shared memory segments.

02/12/94 33

PPWD(UNIX) PPWD(UNIX)

NAME

Pimd - return Livenkm filesystem woiking directocyname

SYNOPSIS

ppwd

DESCRIPTION

Ppwd writes the absolute pathname of the cuirem woridng directory to the standard output.

Ppwd exits withstanis 0 on success,and >0 if an enor occurs.

ENVIRONMENT

The enviroament variable PFCWD stores the cuncnt InversicQ woridng directory.

SEE ALSO

pod(unix). p^etwd(large.cbjects).

01/23/93 34

PRMdJNDO PRMdJNDO

NAME

pim - removean Inversionfile

SYNOPSIS

prm [-Ddatabase] [-H host] [-P pon] pathname

DESCRIPTION

Prm removes a file stored by the Inversion file system. Directories most be removed using the prmdir
command.

ARGUMENTS

pathname The fiilly-qualified pathname of the file to remove, rootedat

•D database

Specifies the Hamhnw to use. DeCEUilts to the value of the environment variable DATABASE
(see below).

•H host Specifies the hostname of the machine on which the postmaster is running. Defiuilts to the
name of the local host, or the value of the PGHOST environment variable (if set).

-Pport Specifies the Internet TCPpott on which thepos/most^r is listening for connections. Defaults
to 4321. or the value of the PGPORTenvironment variable (if set).

EXAMPLES

The command

prm b/c/d

removes file "d" firom directory "b/c".

ENVIRONMENT

If no Haiahnq* is givenon the command line, the enviroiunent variable DATABASE is checked. If no envi
ronment variable DATABASE is present, the command exits with an error status.

The environment variable PFCWD is used for the currem directory if the pathname specified is relative.

DUGS

It is not possibleto remove files storedon write-oncestorage managers (e.g.. the Sony optical disk jukebox
at Berkeley).

See introductiondarge objects) for filename and path limitations imposed by the Inversion file system.

01/23y93 35

FRMDIRCUNK) PRMDIR(UNIX)

NAME

prmdir-remove an Invenioo diiectory

SYNOPSIS

prmdir (-D database] [-H host] [-P pon] pathname

DESCRIFTIGN

Prmdir removesa directory from the Invenkm file system. The directoiy must be empty. Files in directo
ries may be removed by using the pnn command.

ARGUMENTS

pathname Thefuily-quaiified pathname of thediiectoryto remove, rootedat 7".

•D database

, Specifies the database to use. Defaults to the value of the environment variable DATABASE
(see below).

•H host Specifies the hostname of the machine on which the postmaster is ninning. Defieuilis to the
name of the local host, m the value of the PGHOSTenvironment variable (if set).

-Pport Specifies the Internet TCP porton whichtheposfmoKer is listening for connections. Defiuilts
to 4321. Oft the value of the PGPORT environment variable (if set).

EXAMPLES

The command

prmdir b/c

removes directory "b/c** from the Inversion file system.

ENVIRONMENT

If no Hatahaw is given on thecommand line, the environment variable DATABASE is checked. If no envi
ronment variable DATABASE is present, the command exits with an error stanis.

Theenvironment variablePFCWD is used for the currentdirectory if the pathnameqiecified is relative.

BUGS

It is notpossible to remove files stored on write-once storage managers (e.g., theSony optical diskjukebox
at Berkeley).

See introduction{\2ige objects) for filenameand path limitations imposed by the Inversionfilesystem.

01/23/93 36

REIND£XDB(UNIX) REINDEXDB(UN1X)

NAME

retndexdb- reoonstnict damaged system catalog indices

SYNOPSIS

reindexdb dbname

DESCRIPTION

In nonnal processing mode, POSTGRES requires secondary indices on certain system catalog classes. It is
possible that these indices can be damaged during updates, e.g., if the backend server is killed duringa
query that creates a new class. Once the indices are damaged, it becomes impossible to access the
database. Reindexdb removesthe old indicesand attemptsto leconstma them fiom the base class data.

Before running reindexdb^ make sure that the postmaster process is not rumiing on the dafahasr server host

Reindexdb is a shell script that invokes the backend server directly. Hence, it must be executed by the
POSTGRES super-user.

SEE ALSO

initdb(unix), postmaster(unix).

CAVEATS

Should only be used as a last reson. Many problems are better solved by simply shutting down the post
master process and restarting it

If the base system catalog classes are damaged, reindexdb will generally print a cryptic message and fail.
In this case, there is very little recourse but to reload the data.

02/14/94 37

S2KINIT(UNIX) S2KINIT(UNIX)

NAME

s2kutils—scripts toallow opcraiido witha diflBneni Kcrbcros realm

SYNOPSIS

s2kiiiit

s2ldist

s2kdcstrop

DESCRIPTION

s2kinit^ s2kUst and slkdestrcy are wiappen around the Kerberos programs klistii) and kdestroy(l)
that raiwe them to operais in the realm indicated by the eovirooment variable POREALM. This includes the
use of ticket files distinct from those obtained for use in the local realm.

The PGREALM environment variable is also understood by the authentication code invoked by LIBPQ
applications. Hence, ifPOREALM is set, tickets obtained using s2Afnir are used by moniror and the Inver
sion file system utilities. IfPGREALM isnot set, then the ptograms display the usualAerberos behavior.

SEE ALSO

monitorfUNIX), kerberos(l),kinit(l), klist(l). kdestroy(l)

BUGS

These have almost nothing to do with POSTGRES. They are here as a convenience to Sequoia 2000
researchers whodo not workin theSequoia2000realm exceptto use POSTGRES.

You still have to insert the correctrealm-servermappinginto /etcfkrb.cor^.

01/23/93 38

SHMEMDOCdJNDO SHMEMDOC(UNIX)

NAME

shmemdoc — POSTGRES shared memory editor

SYNOPSIS

shmemdoc (-p poet] [-B nbuffeis]

DESCRIPTION

Theshmemdoc program understands the layout of POSTGRES data in shared memory andcan be used to
examine thesesharedstnictures. This program is intended only for debugging POSTGRES, and should not
be used in normal operation.

When some backend server dies abnormally, the postmaster normaily reinitializes shared memoir and
semaphores and forces all peers of thedeadprocess to exit If postmaster is started with the -n flag, then
shared memory willnotbe reinitialized andshmemdoc canbe usedtoexamine shared stateafterthecrash.

Shmemdocunderstands the following command-line options:

•B nbuffers

The number of buffers usedby the backend. This.value is igfKxed in the presentimplementation of
shmemdoc, but is impcuiant if you choose to change the numberallocated by POSTGRES. In that
case, you're out of luck for now.

-pport

The pon on which the postmaster was listening. This value is used to compute the shared memory
key used by the postmaster when shared memmy was initialized.

A simple conunand interpreter reads usercommands from standard inputand fuintsresultson standard out
put The available commands are:

semstat

Show the status of system semaphores. Status includessemaphore names and values, the process id
of the last process to changeeach semaphore,and a count of processessleepingon each semaphore.

semset n val

Set the value of semaphore number n (with zero being the first semaplKHe named by semstat) to val.
This is really only useful for resetting system state manually after a crash, which is something you
don't really want to do.

bufdescs

Print the contents of the shared buffer descriptor table,

bufdesc n

Print the shared buffer descriptor table entry for buffer n.

buffer n type level
Print the contents of buffer number n in the shared buffer table. The buffer is interpreted as a page
from a type reladon, where type may be heap, btree, or rtree. The level argument controls the
amount of detail presented. Level zero prints only page headers, level one prints page headers and
line pointer tables, and level two (or higher) prints headers, Unepointer tables, and tuples.

linp n which
Print line pointer table entry wiuch of buffer n.

tuple n type which
Print tuple whichof buffer n. The buffer is interpretedas a page from a type relation, where typemay
be heap, btree, or rtree.

02/12/94 39

SHMEMDOC(UNIX) SHMEMDOC(UNIX)

attbaatptr

Set thelogical base address of shared memixy for jAffiemdloc topir. Nonnally, j/uneirKtoe uses the
addicss of eachstnictuie in its ownaddress q>ace when intenHeting commands andprinting results.
If setbase is used, then on input andoutput, addresses are translated so thattheshared memory seg
mentappears to stait at addressptr. This is useful whena debugger is examining a core file pro
duced by POSTORES and you want to use theshared memory addresses thatappear in thecorefile.
Thebaseof sharedmemoiyin POSTGRES is storedin the variable ShmemBase, whichmay beexam
ined by a debugger. Ptr may be exinessed in octal (leading zero),decimal, or hexadecimal (leading
Ox).

shmemstat

Print shared memory layout and allocation statistics,

whatlsprr
Identify thesharedmemory structurepointedat byptr.

help Print a brief command summary.

quit Eidtshmemdoc.

SEE ALSO

ipcciean(unix).

BUGS

All of the sizes, offsets, and values for shared data are hardwired into this program; it shares no code with
theordinary POSTGRES system,so changes to shared memorylayout will requirechanges to this program,
as well. This hasn't been done recently,so as of Version 42 this programdoesn't work correctly for many
structures (most notably the shared memorybufferpool). Use of this commandis highly discouraged.

02/12/94 40

IN7RODUCnON(BUlLT-lNS) INlKODUCnON(BUlLT-lNS)

SECTION 3 — WHAT COMES WITH POSTGRES (BUILT-INS)

DESCRIPTION

This section describes the data types, funcdons and operators available to users in POSTGRES as it is dis
tributed.

BUILT-IN AND SYSTEM TYPES

This section describes both built-in and system data types. Built-in types are requiied for POSTGRES to
nin. System types are installed in every database, but are not strictly required. Built-in types are marked
with asterisks in the table below.

Users may add new types to POSTGRES using the define type command described in this manuaL User-
defined types are not described in this section.

POSTGRES Type
abstime

aclitem

boo!

box

bytea
char

chai2

char4

charS

charl6

cid

filename

int2

int2S

int4

float4

floats

Iseg
cid

oidS

oidcharlfi

oidint2

oidint4

path
point
polygon
regproc

reltime

smgr

text

tid

tinterval

xid

Meaning
absolute date and time

access control list item

boolean

2-dimensional rectangle
variable length array of bytes
character

array of 2 characters
array of 4 characters
array of 8 characters
array of 16 characters
command identifier type
large object filename
two-byte signed integer
array of 8 int2
four-byte signed integer
single-precision floating-point number
double-precision floating-point number
2-dimensional line segment
object identifier type
array of 8 oid
oid and charl6 composed
Oldand ini2 composed
oid and int4 composed
variable-length anay of Iseg
2-dimensional geometric point
2-dimensional polygon
registered procedure
relative date and time

storage manager

variable length array of characters
tuple identifier type
lime interval

transaction identifier type

Required

As a rule, the built-in types are all either (1) internal types, in which case the user should not wmry about

02/18/94 41

lNlRODUCnQN(BUlLr-lNS)]NTRODUCnON(BUET-lNS)

theirexteraaifonnat*or <2) have obvious fonnats. Ibeexoepiiaas to thisnileare thethreetimetypes.

ABSOLUTE TIME

Absolutetime is specifiedusing the following syntax:

Month Day [Hour : Minute : Second] Year (Timezone]

where Month is Jan, Feb. Dec

Day is 1,2, ...,31
Hour is 01,02, ...,24

Minute is 00,01,..., 59

Second is 00,01 59

Year is 1901,1902 2038

Valid are firom Dec 13 20:45:53 1901 GMT to Jan 19 03:14.-04 2038 GMT. As of Version 3.0, times
are no kmger readand written using Greenwich Mean Hme; the input and output routines default to the
local time zone.

The special absolute time values **cuirent'*, '̂ infinity** and **-infinity" arealso provided. **infinity^ specifies
a time later than anyvaUd time, and**-infinity'* specifies a time earlier thananyvalid time, "current'* indi
cates diat the cuirem time should be substituted whenever this value appears in a computation.

The strings "now" and "epoch" can be used tospecify time values. **now" means the current time, and dif
fers from "cunent" in thatthecuirent timeis immediately substituted for it "epoch" means Jan 100:00:00
1970 GMT.

RELATIVE TIME

Relative time is specified with the following syntax:

0 Quantity Unit [Direction)

where Quantity is'1*. *2*....
Unit is "second", "minute", "hour", "day", "week".
"month** (30-days). or "year" (365-days).
or PLURAL of these units.

Direction is "ago**

(Note: Valid relative times are less than or equal to68 years.) Inaddition, the special relative time "Unde
fined RelTime" is provided.

TIME RANGES

Time ranges are specified as:

['abet ime' 'abst ime']

where abstime is a time in theabsolute time format. Special abstime values such as "current", "infinity"
and "-infinity" can be used.

OPERATORS

POSTGRES provides a large number ofbuilt-in operators onsystem types. These operators are declared in
the system catalog **pg_operator". Every entry in '*pgjoperator" includes the objea ID of the procedure
that implements the operator.

Users may invoke operatorsusingthe operatorname, as in

ret:rieve (emp.all) where emp.salary < 40000

I

02/18/94 42

INTOODUCnON(BUILT-INS) INlKODUCnOK(BUILT-lNS)

Alteniatively, usen may call the functions that implenient the operaton dixectiy. In this case, the que^^
above would be expressed as

retrieve (entp.all) where int4It(emp.salary, 40000)

The rest of this section provides a list of the built-in operaiofs and the functions that implement them.
Binary operators are listed first, followed by unary operators.

BINARY OPERATORS

This list was generated firom the POSTGRES system catalogs with the query

retrieve (argtype = tl.typname, o.oprname,

10. typnaxne, p. proname,

1typestl.typname, rtypest2.typnaine)

from p in pgjproc, tO in pg«type, tl in pg_type,
t2 in pg_type, o in pg_operator

where p.prorettype s tO.oid

and RegprocToOid(o.oprcode) = p.oid

and p.pronargs = 2

and o.oprleft = cl.oid

and o.oprright = t2.oid

The list is sorted by the built-in type name of the first operand. The function prototype column gives the
return type, function name, and argument types for the procedure that implements the operator. Note that
thesefunction prototypes are cast in termsof POSTQUEL typesand so are not directlyusableas C function
prototypes.

Tjrpe Operator POSTGRES Function Prototype Operation

abstime 1- bod abstimene(abstime, abstime) inequality
+ abstime timq)l(abstime. reltime) addition

- abstime timemi(abstime, reltime) subtraction

<= bool abstimelefabsnme, abstime) less or equal
<?> bod inintervalCabstime. tinterval) abstime in tinterval?

< bod abstimelKabstime, abstime) less than

= bool abstimeeq(abstime, abstime) equality
>= bod abstimege(abstime, abstime) greater or equal
> bod abstimegi(abstime, abstime) greater than

bool = bod booleq(bool, bool) equality
1= bod boolneCbool. bool) inequality

box &A bod box_overiap(box, box) boxes overlap
&< bod box_overleft(box. box) box A overlaps boot B. but does not

extend to right of box B
&> bod box_oveiTight(box, box) box A overlaps box B. but does not

extend to left of box B

« bool boxjeftfbox, box) A is left of B

<= bod boxJe(box. box) area less or equal
< bool boxJt(box, box) area less than

= bod box_eq(box. box) area equal
>= bool box_ge(box, box) area greater or equal

02/18/94 43

lNIItOOUCnC»4(BUILr-lNS) lN1R0I>UCn(»<(BinLMNS)

» bool box_right(box,box) Ais fight ofB

> bool box_gt(box. box) area greater than

bool box_contaiiied(box. box) A is contained in B

-= bool boxjsameCbox, box) box equality
- bool box_contaiii(box, box) AcootainsB

char 1= bool chameCcbai; char) inequality
* bool charmiil(char, char) mulliplicatioa

+ bool charpUchar, char) addition

— bool channi(char. char) subtraction

/ bool chardiv(char, char) dxvisicn

<= bool chaile(char. char) less or equal

< bool charltCchar, char) less than

= bool chaieq(char, char) equality

>= bool chaige(char,char) greateror equal

> bool chargt(char. char) greater than

ctiai2 != bool chai2ne(char2, chai2) inequality
r bool chai2regexiie(char2, text) A does not match regular expres

sion B (POSTGRES uses the libc
regexp callsfor thisoperation)

<= bool char21e(char2, char2) less or equal

< bool chai21t(char2. chai2) less than

= bool char2eq(chai2, chai2) equality

>= bool char2ge(chai2, char2) greater or equal

> bool chai2gt(chai2, chai2) greater than
- bod chaf2regexeq(chaiZ text) A matches regular expression B

(POSTGRES uses the Ubc regexp
calls for this operation)

char4 {= bod char4ne<char4, chad) inequality
r bod char4regexne(char4, text) A does not match regular expres

sion B (POSTGRES uses the libc
regexp callsfor thisoperation)

<= bod char41e(char4, char4) less or equal

< bod char41t(char4, char4) less than

= bod char4eq(char4, char4) equality

>S3 bod char4ge(char4, char4) greater or equal

> bod char4gt(char4.chax4) greater than
- bool char4regexeq(char4« text) A matches regular expression B

(POSTGRES uses the libc regexp
pgiig for this operation)

charS != bod char8ne(cliar8, charS) inequality
r bool char8regexne(char8, text) A does not match regular expres

sion B (POSTGRES uses the libc
regexp callsfor thisoperation)

<= bod char81e(cliar8, charS) less or equal

< bod char81t(char8, charS) less than

= bod char8eq(char8, charS) equality

>= bod chai8ge(char8, charS) greater or equal

> bod charSgtCcharS, charS) greater than

02/18/94 44

INTOODUCnON(BUILT-INS)

bod char8regexeq(char8, text)

lNTRODUCnON(BUILT>lN5)

A matcbes fegular expressuxi B
(POSTGRES uses the libc legexp
calls for this operatioo)

charl6 fs bod charl6ne(charl6, charl6) inequality
r bod charl6regexne(charl6, text) A does not match regular expies-

sioo B (POSTGRES uses the libc

regexpcalls for this operation)
<= bod charl61e(charl6. charl6) less or equal
< bod charl61t(charl6. charl6) less than

= bod charl6eq(charl6. charl6) equality
>=* bod charl6ge(charl6, charl6) greater or equal
> bod charl6gt(charl6, charl6) greater than

bod charl6regexeq(charl6. text) A matches regular expressioo B
(POSTGRES uses the libc regexp
calls for this operation)

floai4 != bod float4ne(float4, float4) inequality
« float4 float4inui(float4« float4) multiplication
+ float4 float4pl(float4, float4) addition

- float4 floai4ini(floal4* float4) subtraction

/ flOBi4 flaat4div(float4, float4) division

<= bod floQt41e(float4« float4) less or equal

< bod float41t(float4. float4) less than

= bod float4eq(floai4. float4) equality
>3 bod float4ge(floai4. float4) greater or equal
> bod float4gt(flaat4. float4) greater than

floats Is; bod floatSneCfloaiS. floatS) inequality
* floats floatSinul(floatS, floatS) multiplication
+ floats floatSpKfloatS, floaiS) addition

- floats floatSmi(float8, floatS) subtraction

/ floats floatS(iiv(floatS, floatS) division

<= bod floatSle(floatS. floatS) less or equal
< bool floatSIt(floatS. floatS) lessthani

boo! fioatSeq(floatS. floatS) equality
>= bod floatSge(floatS. floatS) greater or equal
> bod float8gt(floatS. floatS) greater than
* floats dpow(floats. floatS) exponentiation

int2 != bod int2ne(int2. int2) inequality
!s int4 int24iie<int2, int4) inequality
% int2 int2inod(int2. int2) modulus

% int4 int24inod(int2. int4) modulus
m int2 int2mul(int2. int2) multiplicatuMi
m int4 int24mul(int2, int4) multiplication
+ int2 int2pl(int2, iiit2) addition

+ int4 int24pl(int2. int4) addition

- int2 int2ini(int2. int2) subtraction

- iiit4 int24ini(int2. im4) subtraction

/ int2 int2div(int2, int2) division

/ int4 int24<iiv(int2. int4) division

<= bod iiit21e(int2, int2) less or equal

02/18/94 45

imRODUCnON(BUILT-lNS) INTKODUCnON(BinLT-INS)

<= int4 ini241e(int2, int4) less or equal
< bool iiii2it(iiit2, int2) less than

< int4 ini241t(int2, int4) less than

• bod ini2eq(int2, ini2) equality
= iiit4 iiii24oq(iiii2, int4) equality
>ai bod ini2ge(int2, int2) greater or equal

im4 ini24ge(int2, int4) greater or equal
> bod ini2gt(int2, int2) greater than
> int4 ini24gt(int2, int4) greater than

mt2 int2inc(int2) increment

im4 I!= bod int4iioiin(int4, charl6) This is the relational **noc in" oper
ator, and is not intended ftn public

!= bod int4ne<int4. im4)
use*

inequality
1= tnt4 int42ne(im4, int2) inequality
% int4 iiii42inod(int4. int2) modulus

% int4 im4ino(l(im4, mt4) modulus

im4 int42inul(int4, int2) multiplication
* int4 int4niiii(int4, int4) multiplication
+ int4 int42pl(int4, int2) addition

+ int4 int4pl(int4, int4) addition

- in(4 int42fni(int4, int2) subtraction

- int4 int4ini(int4, int4) subtraction

/ int4 im42div(int4, int2) division

/ int4 int4div(iiu4, int4) division

<= bod int41e<int4. int4) less (H* equal
<= int4 int42Ie(int4. int2) less or equal
< bod int41t(int4, iitt4) less than

< int4 int421t(int4, int2) less than

=S bod int4eq(im4, int4) equality
- int4 int42eq(int4. mt2) equality
>SS bod int4ge(int4, int4) greater or equal
>= int4 int42ge<int4. int2) greater or equal
> bod int4gt(int4, int4) greater than
> int4 int42U(int4. int2) less than

im4 int4inc(int4) increment

oid !!= bool oidnotin(oid. charlb) This is the relational "not in" oper
ator, and is not intended for public

1= bod oidne(oid. oid)

llSCe

inequality

1= bod oidne(oid, regpnx) inequality
<2= bod oidle(oid, oid) less or equal

< bod oidlt(oi(U oid) less than

= bod oideq(oid, oid) equality
= bod oideq(oid, regproc) equality
>= bool oidge(oid. oid) greater or equal
> bod oidgt(oid, oid) greater than

oidcharl6 != bod oidchari6Re(oidcharl6. oidcharl6) inequality
< bod oidcliari61t(oidcliarl6, ddcharld) less than

02/18/94 46

IN1RODUCnON(BUILT-lNS) lNTK01>UCn0N(BinLT-lNS)

<•- bool oidciiarl61e(okicliarl6. oidciiarl6) lenoreqiial
s bool Oidcliarl6eq(oidcliarl6. oidciiarl6) equality
> bool oidcharl6gt(oidcharl6, oidcbarltf) greater than
>=* bool oidcharl6ge(oidcharl6, oidchari6) greateror equal

oidint2 1= bool oidint2ne(oidmt2, (»dmt2) inequality
< bool oidmt21t(oidint2,oidintl) lea than

<W bool oidint21e(oidiot2, oidmt2) lea or equal
c bool oidint2eq(oidiiu2, oidtntl) equality
> bool oidmt2gt(oidint2, oidiiit2) greater than

bool oidint2ge(oidiiu2, oidini2) greater or equal
oidint4 1- bool oidint4ne(oidim4, oiclint4) inequality

< bool oidint4lt(oidint4, oidint4) lea than
<= bool oidiRt4le(oidint4, oidlnt4) less or equal
= bool oidint4eq(oidim4, oidint4) equality
> bool oi(iint4gt(otdlnt4. oidim4) greater than
>= bool oldint4ge(oidini4, oidim4) greater or equal

point !< bool point.lefKpoim, point) A is left of B
!> bool poim.rightCpoint point) A is right of B
r bool point_above(point, point) AisaboveB
!l bool point_below(point. point) A is below B
=fc= bool point_eq(point, point) equality
—> bool on_pb(point. box) point inside box

bool on_ppath(point, path) point on path
<— int4 pointdistCpoint, point) distanor. between points

polygon && boolpoly_overiap(polygon. polygon) polygons overlap
&< boolpoly_overleft(polygon. polygon) A overlaps B but does not extend to

right of B
&> boolpoly^ovcnightCpolygon, polygon) A overlaps B but does not extend to

leftofB
« boolpolyJeft(poiygon, polygon) A is left of B
» boolpoly_right(polygon, polygon) A is right of B
@ boolpoly_contained(polygon, polygon) A is contained by B
'= boolpoly.same(polygoiupolygon) equality

boolpoly_contain(polygon« polygon) A contains B

reltime j- bool reltimene(reltiine, reltime) inequality
<= bool reltimele(reltime, reltime) lea or equal
< bool reltimelt(reltime, reltime) lea than
=r bool reltimeeq(reltime« reltime) equality
>= bool reltimege(reltime, reltime) greater OT equal
> bool reltimegt<reltime, reltime) greater than

text != bool textne<text, text) inequality
I- bool textregexne<text. text) A does not contain the regular

expression B. POSTGRES uses the
libc regexp interface for this opera-

<= bool textJe(text, text)
US*

lea or equal
< bool textji(text. text) lea than

= bool texteq(text, text) equality

02/18/94 47

INTRODUCTrON(BUILT-INS)

bod (exc^e(ce3ct, text)
bod iexLgt(text, text)
bod textregexeq(text, text)

dntcrval #!» bodintervaUeone(tinteivBi,reltime)
bod intervailenle(tinteivaU reltime)

#< bod intervaUenlKtintervaL leltime)
bod intervalleneqCtinterval, reltiffle)

#>a bodmierval]enge(tintervai,ieltinie)

#> bod intervallengt(tmterval, leltiine)
&& bod intervalov(linteivai, tinterval)
« bod intervalct(tintervai, tintervai)
= bod intervaleq(tintervai, tinterval)
o tinterval inktimerval(abstime, abstime)

iNiKODUcnoNCBumr-iNS)

grester orecjQsl
greater tfasn
A contains the regular expresskm
B. POSTGRES uses the libc regexp
interfacefor this operator.
interval length not equal to leltime.
interval length less or equal reltime
intervallength less than reltime
interval length equal to reltiine
interval length greater or equal rel
time

interval length greater than reltime
intervals overlap
AcontainsB

equality
interval bounded by two abstimes

UNARY OPERATORS

The tables below give right and left unary operators. Left unary operators have the operator precede the
operand:right unaryoperators have the operatoi-follow the operand.

Right Unary Operators

1>l>e Operator POSTGRES Function Prototype Operation

floats % floats dround(floaiS) round to nearest integer

Left Unary Operators

T^pe Operator POSTGRES Functioo Prototype Operation

box @@ point box_center(box) center of box

float4 @ float4 float4abs(floai4) absolute value

floats @ floats floatSabs(floaiS) absdute value

% floats dtrunc(floatS) truncate to integer

1/ floats dsqrtffloatS) square root

11/ floats dcbit(floatS) cube root

1 floats dexp(floatS) exponential fimction

• floats dlogl(floatS) natural logarithm

tinterval abstime intervalstart(tinterval) Stan of interval

AGGREGATE FUNCTIONS

The table below gives theaggr^aie fimciions that arc normally registered in the system catalogs. None of
them are required for POSTGRES to operate.

Name

intlave

int4ave

float4ave

floatSave

Operation
ini2 average
iitt4 average
float4 average

floats average

02/18/94 48

INTRODUCnON(BUET-INS) IN11lODUCnON(BUlLT-]NS)

iiit2siiin

iiu4suin

float4siim

floatSsum

int2inax

mt4max

float4inax

floatSmax

int2inin

int4inin

float4inin

floatSmin

count

iiu2 sum (total)

im4 sum (total)
float4 sum (total)

floats sum (total)

ini2 maximum (high value)
im4 maximum (high value)
float4 maximum (high value)
floats maximum (high value)
uu2 minimum (low value)
int4 minimum (low value)
floai4 minimum (low value)

floats minimum (low value)

any count

SEE ALSO

Forexamples on specifying literals of built-in types, seeposr^ur/fcommands).

BUGS

The lists of types, functions, and operator are accurate only for Version A2, The lists will beincomplete
and contain extraneous entries in future versions of POSTGRES.

Although most of the input and output functions coireponding to the base types (e.g., integers and floating
point numbers) dosome eiTor-checking, none of them areparticularly rigorous about it More importantly,
almost none of the operators and functions (e.g., addition and muldplication) penorm any error<hecking at
all. Consequently, many of the numeric operations will (for example) silently underflow oroverflow.

Some of the input and output functions are not invertible. That is. the result ofanoutput function may lose-
precision when compared to theoriginal input

02/18/94 49

INIRODUCnONCGOMMANDS) INTKODUCnON(CX>MMANI>S)

SECTION 4—POSTQUEL COMMANDS (COMMANDS)

DESCRIPTION

ThefoUowing is a description of thegeneral syntax of POSTQUEL. Individual POSTQUEL statements and
commands are treated separately in the document; thissection describes the syntactic classes from which
theconstimentparts of POSTQUEL statementsare drawn.

Conuncnis

A comment is anarbitrary sequence of chaiacters bounded on the leftby **/*** andon therightby . e.g:

/* This is a comment •/

Names

Names in POSTQUEL are sequences of not mcne than 16 alphanumeric characteis. starting with an al|^
betic character. Underscore ("."O is considered an alphabetic character.

Keywords

Thefollowing identifiers arereserved for useas keywords and maynot be usedotherwise:

abort define is quel

ad delete ISNULL relation

addattr demand key remove

after descending icftouter rename

aggregate destroy light replace

all destroydb listen retrieve

always do load returns

and empty merge rewrite

append end move rightouter

archive execute never rule

arch_store extend new setof

fetch none sort

as forward . nonuils stdln

ascending from not stdout

attacbas function notify store

backward group NOTNULL to

before heavy NULL transaction

begin In on type

binary index once union

by indexable operator unique

cftinction inherits or user

change inputjproc ootput_proc iwing

close instance parallel vacuum

cluster instead pfhnction version

copy intersect portal view

create into postquel where

createdb intotemp priority with

current iportal purge

In addition, all POSTGRES classes have several predefined attributes used by the system,
see the section Fields, below.

For a list of these.

03/12/94 50

INTRODUCnON(COMMANDS) INTOODUCnON(COMMANDS)

ConsteBU

There are six types ofC0/ufaii/5 for nse in POSTQUEL. They are described beiow.

Character Cbnstants

Single character constants may be used in POSTQUEL by sunounding them by single quotes, e.g., 'n*.

String CoBstantf

Strings in POSTQUEL are arbitrary sequences of ASCII characters bounded doublequotes(" *). Upper
case alphabetics within strings are accepted literally. Non-printing characters may be embedded within
strings by piqrending them with a backslash.e.g., 'Nn*. Also, in order to embed quotes within strings, it is
necessary to prefix them with V . The same conventionapplies to V itself. Because of the limitationson
instance sizes, string constants are currently limited to a length of a little less than 8192 bytes. Larger
objects may be created using the POSTGRES Large Objea interface.

Integer Constants

Integer constants in POSTQUEL are collection of ASCII digits with no decimal point Legal values range
from -2147483647 to 42147483647. This will vary depending on the operating system and host machine.

Floating Point Constants

Floating point constants consist an integer part, a decimal point, and a fraction part or scientific notation
of the following format:

{<dig>) .{<dig>) [e (+-} {<dig>)J

Where <dig> is a digit You must include at least one <dig> after the period and after the [4-] if you use
(hose options. An exponent with a missing mantissahas a mantissa of 1 inserted. There may be no extra
characters embedded in the string. Floating constants are taken to be double-precision quantities with a

range ofapproximately -10 '̂ to 10 '̂ and a precision of 17 decimal digits. This will vary depending on the
operating system and host machine.

Constants of POSTGRES User>Dcflncd lypcs

A constant of an arbitrary type can be entered using the notation:

"string"::type-name

In this case the value inside the string is passed to the input conversion routine for the type called type-
name. The result is a constant of the indicated type. The explicit typecast may be omitted if there is no
ambiguityas to the type the constant must be. in which case it is automatically coerced.

Array constants

Array constants are arrays of any POSTGRES type, including other arrays, string constants, etc. The general
format of an airay constant is the following:

• (<vall><delim><val2><delim>)"

Where <deUm> is the delimiter for the type stored in the "pg.type'* class. (For built-in types, this is the
comma character.An example ofan array consmm is

•{(1,2,3),(4,5,6).{7,8.9))"

This constant is a two-dimensional, 3 by 3 array consistingof three sub-anays of integers.

Individual array elements can and should be placed between quotation marks wheneverpossible to avoid
ambiguityproblems with respect to leading whitespace.

03/12/94 51

INTKODUCnQN(COMMANDS) lNTSODUCnQN(COMMANl>S)

Allays of fixed-length types may also be stoced as POSTGRES laxge objects (see /mrodiiciifdiiOaige
objects)). The syntax for an anay constantof this fonn is

•laroo_object (-unix I -invert 1 (-chunk (DEFAULT I acc_pat_file)J•

That is, any anay constant that does not begin and end in curiy braces is assumed to be an Inversionfile
system filename that contains the appropriate anay data. The Invenion file will be oeaied if it does not
alreadyexist The flag "unix" or "inven"is used to indiactethe type of the laige object The default type is
"unix". An anay sttxed in laxge object can be chunkedto optimizeretrievals by using the "-chunk" flag.
The anay can be chunked using a default chunk size (by using the keyword DEFAULT) or by using an
access pattern stored in a native file "acc_patt.file". The access pattern is expected to be in the following
fonnat

<n> <A_11 A_12 .. A_ld P_l> ... <A_nl A^2 .. A_nd P_n>

where n is the number of niples in the access pattern and d is the number of dimensions of the anay. For
each i. <AJ1 A.i2.. AJd> is the dimensionof an access request on the array and PJ is the relative fre
quency of the access.

Fields

Afield is either an attribute of a given class or one of the following:

all

old

tmin

tmeuc

xmin

xmax

cinin

cmax

vtype

As in INGRES, all is a shorthand for all normal attributes in a class, and may be used pn^tably in the target
list of a retrieve statement

Old stands for the unique identifier of an instance which is added by POSTGRES to all instances automati
cally. Gids are not reused and are 32 bit quantities.

Tmin, tmax, xnin, cmin, xmax and cmax stand respectively for the time that the instance was inserted, the
time the instance was deleted, the identity of the inserting transaction, the command identifier within the
transaction, the identityof the deleting transaction and its associated deletingccxnniand. For further inftx-
maiion on these fields consult [STON87]. Times are represented internally as instances of the "abstime"
data type. Transaction identifiers are 32 bit quantities which are assigned sequentially starting at S12.
Command identifiers are 16 bit objects; hence, it is an error to have more than 65535 POSTQUEL com
mands within one transaction.

Attributes

An attribute is a construct of the form:

Instance-variable{.coxnposite^field).field '['number'1'

Instance-variable identifies a particular class and can be thought of as standing for the instances of that

03/12/94 52

INTRODUCnON(CX>MMANDS) INT1«01HJCn0N(CX>MMANDS)

class. An instance variableis eithera class name,a surrogatefor a class defined by means ofa/hom clause,
or the keyword new or cnrRnt New and currentcan only appear in the action ponioa of a rule, while
other instance variables can be used in any POSTQUEL command. CompositeJield is a fieldof of one of
thePOSTGRES composite types indicated in theirfonnatwnicomsnaiids) section, while successive compos
ite fields addressattributes in the class(s) to which the composite fieldevaluates. Lsstiy,fieid is a nonnal
(basetype) field in theclass(8) lastaddressed. lf)Se/d is of typearray,then tbe optional mwifier designator
indicates a specific elemem in the array. If no number is indicated, then all array elements are leturned.

Operaton

Any built-in system, or user-defined operator maybeusedin POSTQUEL. For the listof built-in andsystem
operatcMs consultintrDduction(built-ins). Fora list user-defined operalorsoonsuU yoursystem adminis
trator OT runa query on thepg_q)efatorclass. Parentheses maybe used forarbitrary grouping of operators.

Expressions (ajexpr)
An expression is one of the following:

(ajexpr)

constant

attribute

a_expr binary_operator a_expr

a_expr right_unary_operator

left_unary_operator a_expr

parameter

functional expressions

aggregate expressions

set expressions (nogeneral implementation in Vereion 4.2)
class expression (no general implementation in Version 4J)

We have already discussed constants andattributes. The two kinds of operatm indicate respec
tively binary andleft_unary expressions. Thefollowing sections theremaining

Parametera

A parameter is used to indicate a parameter in a POSTQUEL function. Typically this is in POSTQUEL
function definition statement The form of a parameter is:

' $' number

For example, consider the definition of a function. DEPT. as

define function OEPT

(languages'postquel•, returntype = dept)
arg is (char16) as

retrieve (dept.all) where dept.name = $1

FunctioaaJ Expressioiis

Afunctional expression is the name of a legal POSTQUEL function, followed by itsaiguinent listenclosed
in parentheses, e.g.:

fn-name (a_expr(, a_expr})

Forexample, the following computes the squareroot of an employee salary.

03/12/94 53

lNlRODlXmW(GOMMANDS) IN11U3DUCnON(CX)MMANDS)

sqrt(emp•salary)

Aggr^te EspranioB

An aggregate expression itpreseots a simple aggregate one that oomputesa single value)or an aggre
gate function(Le.,one that computesa set of values). The syntax is the following:

aggregate^naine '(' [unique [using] opr] a_expr
[from from_list]

[where qualification]'}'

Here, aggregatejiame must be a previously defined aggregate. The fromjist indicates the class to be
aggregated over while qualification gives restrictions which must be satisfied by the instances to be aggre
gated. Next, the ajexpr gives the expression to be aggregated, while the unique tag indicates whether all
values should be aggregated or just the unique valuesof ajexpr. IVvo expressions, ajexprI and a_expr2
ait the same if ajexpri opr ajapri evaluatesto tnie.

In the case that all instance variables used in the aggregate expression are defined in thefrom list, a simple
aggregate has been defined. For example, to sum employee salaries whose age is greater than 30. one
would write:

retrieve (total = sum (e.salary from e in emp

where e.age >30))

or

retrieve (total = sum (en^.salary where emp.age > 30})

In eithercase, POSTGRES is instnictedto find the instances in thefromjist whichsatisfy the qualification
and then compute the aggregateof the a_expr indicated.

On the other hand, if there are variables used in the aggregate expression that are not defined in the/rem
Ust,e.g:

avg (emp.salary where emp.age = e.age)

then this aggregate function has a value for each possiblevalue takenon by "e.age'*. For example, the fol
lowing complete query finds the average salary of each possible employee age over 18:

retrieve (e.age, eavg = avg (emp.salary where emp.age = e.age))

from e in emp

where e.age > 18

Aggregate functions are not supponed in Version4.2.

In general, the followingaggregates(i.e.. the expressionwithin the braces) will not work:

Aggregate functions of any kind.

Aggregates containing mcne than one range variable.

Aggregates that refer to range variables that use class inheritance (e.g., "e firom emp*")*

Aggregates containing clausesother thanajexpr and wAere-qualification clauses. (Inother words,
from clauses within aggregates are not supponed.)

03/12/94 54

INlRODUCnONCGOMMANDS) IN7KODUCnm(COMMAjNDS)

In addition, aggregate expressions may only appearwithinthe target list of a query— that is, no aggregate
expression may appear in a query qiwHfiratfinn (or when clause).

Theiefoie, of the three example queries given,only the second is actually supported.

Set Expmrions

Generalized set expressions are not supported In Version 4.2. For information on sets as attributes,see
the manualpages for the creorefcommands), appendicoaanaads) and ntrieve(coamaods) commands.

A set expression definesa collectionof instancesfromsome class and uses the following syntax:

{target_list from froiiL.li8t where qualification)

For example, the set of all employee names over 40 is:

{emp.neune where emp.age > 40}

In addition, it is legal to construct set expressions which have an instance variable which is defined outside
the scope of the expression. For example, the following expression is the set of employees in each depart
ment:

(emp.neune where emp.dept = dept.dname)

Set expressions can be used in class expressions which are defined below.

Class Expressioo

Generalized class expressions are not supported in VersioD 4X For information on classes as attributes,
see the manual pages for the creafe(commands). appendicommasnds) and rem'eve(commands) commands.

A class expression is an expression of the f(»m:

class.constructor binary_class_opeiatOTclass_construaor
unary_ciass_opcralor class.constructor

where binary.class^operator is one of the following:

union union of two classes

intersect intersection of two classes

difference of two classes

» left class contains right class
« right class contains left class
=» right class equals left class

and unary_class_operaior can be:

empty right class is empty

A class constructor is either an instance variable, a class name, the value of a composite field or a set
expression.

An exampleof a query with a class expressionis one to findall the departmentswithno employees:

retrieve (dept.dname)

where empty (emp.name where emp.dept s dept.dname)

03/12/94 55

INTOODUCnON(CX)MMANDS) INTO)DUCnON(CX)MMANDS)

Target.lisl
A ftirggf tflf is a parentheaiZCCL COmilia-fiqMnitwl list of one nrmwe alemfntimach qf y high mpfi
fonn:

[rasult.attneune s] a.expr

Hoc, lesttlcjtfuisiiic is thename of theattiibute to becreated (oran already «t«ting name in the
case of update statements.) If resuit^tttiame is notpresent, then a expr must contain only oneattiibute
name which is assumed to be thename of theresult field. In Version 4.2 A»fntii» naming is only used if
a_expr is an attiibute.

Qoaiiflcation

Aqualification consists ofanynumber ofclauses connected bythelogical operators:

not

and

or

A clause is an that evaluates to a Boolean over a set of instances.

From List

Thefrom list is a comma-separated list offrom expressions.

Eachfrom expression is of the fonn:

instance_variable-l {, instance_variable-2)
in class_reference

where classjeference is of the form

claflB_naine [time^expression] [♦]

The from expression defines one or more instance variables to range over the class indicated in
class_r^erence. Adding a timejexpression will indicate that a historical class is desired. One can
request the instance variable to range over all classes that are beneath the indicated class in the inheiiiance
hierarchy by postpending the designator "***.

Time Ezpresaiou

A time expression is in one of two f(xms:

("date"]

{•date-1', •date-2"]

Thefirst caselequiiesinstances thatare valid at the indicated time. Thesecond caserequires instances that
are valid at some time within the date range specified. If no time exjnession is indicated, the default is
^^now".

In each case, the date is a character string of the form

[MON-FRIl "MMM DD [HH:MM:SS1 YYYV (TimezoneJ

where MMM is the month (Jan - Dec), DDis a legalday numberin the specified month,HH:MM:SS is an
optional time in that day (24-hour clock), and YYYY is the year. If the time of day HH:MM:SS is not

03/12/94 56

INTOODUCnONCCOMMANDS) INTRODUCnON(COMMANDS)

specified, it to midnight at thestaitof the specified day. As of Venioo 3.0, times are no longer
read andwritten nsing Greenwich Mean Hme;theinputandoutput routiDes default to thelocal time zone.

For example,

[•Jan 1 1990-]

["Mar 3 00:00:00 1980", -Mar 3 23:59:59 1981"]

are valid timespecifications.

Note that this syntax is slightly differentthan that used by the time>iange type.

SEE ALSO

append(commands). delete(commands). execute(commands), repiace(commands), reirieve(command8).
monitorCunix).

BUGS

The following constnicts are not available in Version 4.2:
class expressions
set expressions

03A2y94 57

ABOCFCOOMMANDS) ABOKr(CX)MMANDS)

NAME

aboct—aboft the cuiiem transactioa

SYNOPSIS

abort

DESCRIFTIGN

This command aborts thectnxem transaction andcauses all theupdates made by the transaction to bedis
carded

SEE ALSO

begin(ooniniands), end(conunands).

01/23/93 58

ADDATTRCCOMMANDS) ADDAm(OOMMANDS)

NAME

addattr—addauributestoaclass

SYNOPSIS

addattr (atmamel s typel (»attname-i s type-i})
to ciassname (*]

DESCRIFTIGN

The addattr command causes new attributes to be added to an existing class, ciassname. The new
attributes and their types are specified in the same style and with the the same restrictions as in ere*
are<conimands).

In Older to add an attribute to each class in an entire inheritance hierarchy, use the ciassname of the sigter-
class and append a *****. (By default, the attribute will not be added to any of the subclasses.) This should
always be done when adding an attribute to a superclass. If it is not, queries on the inheritance hierarchy
such as

retrieve (s.all) from s in super*

will not work because the subclasses wiUbe missing an attribute found in the superclass.

For efficiency reasons, default values for added attributes are not placed in existing instances of a class.
That is. existing instances will have NULL values in the new attributes. If ikmi-NULL values are desired, a
subsequent repiaceicommsnds) query should be run.

You must own the class in order to change its schema

EXAMPLE

/*

* add the date of hire to the emp class

*/

addattr (hiredate = abstime) to erop

/*

* add a health-care number to all persons

* (including employees, students, ...}

*/

addattr (health_care_id = int4) to person*

SEE ALSO

create(commands), iename(commands). replace(commands).

02A)8y94 59

APPENIXCOMMANDS) APFENIXCOMMANDS)

NAME

append—append tuples to a lelatioa

SYNOPSIS

append classname

(attjexpr*! s expressionl (, att_expr-i = expresskm-i))
[from firomjist] [where qual]

DESCRIFTIGN

Append adds instances that satisfy the qualification, quo/, to classname. Classname must be the name of
an existing class. The taiget list specifies the values of the fields to be appended to c/asjname. Ihatis,
each attjexpr specifies a field(diher an attribute nameor an attribute name plus an atray specification) to
which the corresponding expression should be assigned. The fields in the target list may be listed in any
Older. Fieldsof theresult class whichdo not appearin the targetlist default to NULL. Iftheexpiessioofor
each fieldis notof the conect data type, automatictypecoercion will be attempted.

An anay initialization may take exactly one of the following forms:

/*

* Specify a lower and upper index for each dimension

*/

att_name(llndex-l:ulndex-l]..[llndex-i:ulndex-i] = array_str

/*

* Specify only the upper index for each dimension

* (each lower index defaults to 1)

•/

att_narae(ulndex-l)..(ulndex-i] = array_str

/*

* Use the upper index bounds as specified within array__str

* (each lower index defaults to 1)

*/

att_name = array_3tr

where each llndex or ulndex is an integer constant and array str is an array constant (see introduc-
rion(conunands)).

If the user does not specify any array bounds (as in the third form) then POSTGRES will attempt to deduce
the actual array bounds from the contents ofarray^str.

If the user does specify explicit array bounds (as in the first and second forms) then the array may be initial*
ized pardy or fiilly using a C-Iikesyntax for array initialization. However, the uninitializedarray elements
will contain garbage.

The keyword all can be used when it is desired to append all fields of a class to another class.

If the attribute is a complex type, its contents are specified as a query which will return the tuples in the set.
See the examples below.

Youmust have write or append access to a class in order to append to it, as well as read access on any class
whose values are read in the target list or qualification (see change ac/(coiiunands)).

03/12/94 60

APFENIXCOMMANDS) AFPEND(COMMANDS)

EXAMPLES

/♦

* Make a new employee Jones work for Smith

*t

append en^ (newemp.name, newemp.salary» rogr = 'Smith*,
bdate = 1990 - newemp.age)

where newemp.name = 'Jones*

/*

* Same command using the from list clause

*/

append emp (n.name, n.salary, mgr = 'Smith*,
bdate s 1990 - n.age)

from n in newemp

where n.name = 'Jones'

/*

* Append the newempi class to newemp

*/

append newemp (newemp1.a11)

/*

* Create an empty 3x3 geuneboard for noughts-and-crosses

' (all of these queries create the same board attribute)

*/

append tictactoe (game = 1, board[l:3][1:3] =

append tictactoe (game = 2, board(3][3] =

•{)')

append tictactoe (game = 3, board =

/*

* Create a 3x3 noughts-and-crosses board that is

' completely filled-in

*/

append tictactoe (game = 4, board =

•((X,0,X),{0,X,0},(X,X,X))')

/*

* Create a 3x3 noughts-and-crosses board that has

* only 1 place filled-in
*t

append tictactoe (game = 4, board[3][3] =

•{{),{.X,))')

03/12/94 61

APFEND(COMMANDS) APFEND(COMMANDS)

* Create a tuple containing a large-object array.
* The large object •/large/tictactoe/board* will be
* created if it does not already exist. The flag "-invert"
* indicates that the large object is of type Inversion
* (the default type is Unix).

*/

append tictactoe (board[3][3] =

"/large/tictactoe/board -invert")

/•

• Create a tuple containing a large-object array and "chunk"
• it. The Inversion file "/large/tictactoe/board" must already
• exist. The external file "/etc/acc_patt" holds the access
* pattern used to cluster (chunk) the array elements. A new
* large object is created to hold the chunked array.
* (See •src/doc/papers/arrays/paper.ps" for more information)
*/

append tictactoe (board(3][3] =

"/large/tictactoe/board -chunk /etc/acc_patt")

* Append a tuple with a set attribute "mgr" of type entp. The
* query to produce the manager of "carol" (specified dyn«unically
* here) will be stored as a POSTQUEL function in the system
* catalog "pg_proc" . The object ID of this tuple in "pg^roc"
* will be used in the neune of the procedure, resulting in a
* procedure name of the form "set<OID of the tuple>". Two
* backslashes are needed here to escape the inner quotes when
" entering this query from the monitor.

"/

append emp (name = "carol",

mgr = "retrieve (emp.all)

where emp.neune = WmikeW"")

SEE ALSO

postquel(cofnmands), creaieCcoininands). define type(coiniiiaiids), ieplace(cofiiiiiands), retrieve(conunands)
intnxluction(laige objects).

BUGS

Oncean aixay is created by an append query, its size (in bytes) cannot be changed. This has several impli
cations.

First, there is no longerany notionof a 'Variable-length array." In fKt. since variable-length arrays
were not actually siqjportedin previous versionsof POSTGRES, this is ikx much ofa change.

Second, arrays of variable-length types (e.g., text) cannot be updated. Since the array cannot
grow, replacement of individual arrayelements cannotbesupported in general

03/12/94 62

ATIACHASCCOMMANDS) ATIACHASCOOMMANDS)

NAME

attarhag—reestablish communication using an exising ponai

SYNOPSIS

attachas name

DESCRIFTIGN

This command allows application programs to use a logical name,name, in intecactions with POSTORES.
Suppose theuserof anapplication program specifies a collection of niks thatfetiievB dataandthatthepro-
gram fails for somereason. Then, underoidinarycircumstances, all the rales wouldneedto be reentered
when the program is restored. Alternatively, the attachas command may be used beforedefining the rales
the first time. Then, upon restoring the program, the attachas command will reattach the user to the active
rules.

BUGS

Attachas is not implemented in Version4.2.

01/23/93 63

BEOIN(COMMANDS) BE01N(C0MMANDS)

NAME

begin—begins a mnsaction

SYNOPSIS

begin

DESCRIPTION

ThisCOTunand beginsa usertiansactiaowhichPOSTGRES will guacaniee is senaiizablewith respect to ail
concunentiy executing transactions. POSTGRES uses two-phase locking to peifonn this task. If the trans
action is committed.POSTGRES will ensure that all updates are done or none d them are done. "Hansac-
tkms have the standard ACID (atomic, consistent, isolatable, and durable) propeny.

SEE ALSO

abcn(commands), end(commands).

01/23/93 64

CHANGE ACUCOMMANDS) CHANGEACL(COMMANDS)

NAME

. changeacl—change access control Ust(s)

SYNOPSIS

changeacl (groaplnser] [name]-f(aliiwiR) class-1 {,c]ass-il
changeacl (gronpiiiser) [name]«(atriwiR) class-1 {, class-il
changeacl (gronplnaer] [nanie]s{aliiwlR| class-1 {tClass-i)

DESCRIFTIGN

IntrodactioD

An access control list (ACL) specifies the access modes that are pennitted on a given class for a set ofusen
and groups of users. These modes are:

a - append data to a class
r - read data from a class

w •> write data (append, delete, replace) to a class
R- define niles on a class

Application of ACLs to users

Each entry in an ACL consists of an identifier and a set of pennitted access modes. The identifier may
apply to a single user, a group of users, or all other users. If a user has a personal entry in an ACL, then
only the listed access modes are pennitted. If a user does not have a personal entry but is a member of
some group(s) listed in the ACL. then access is permitted if all of the listed groups of which the user is a
member have the desired access mode. Finally, if a user does not have a personal entry and is not a mem
ber of any listed groups, then the desired access mode is checked against the "other" entry.

Database supeiusers (Le.. users who have pg_user.usesuperset) silently bypass all access controls with one
exception: manual system catalog updates are never permitted if the user does not have pg.user.usecatupd
set This is intended as a convenience (safety net) for careless superusers.

Application of ACLs through time

The access control system always uses the ACLs that are currently valid, ix., time travel is not supported.
This may change if^vhen a more general notion of time-travel is documented.

CHANGING ACLS

In the syntax shown above, name is a user or group identifier. If the user or gitrup keywords are left out.
name is assumed to be a user name. If no name is listed at all. then the ACL entry applies to the "other"
category.

Access modes are added, deleted or explicitly set using exactly one of the -f. - and = mode-change flags.
The access modes themselves are specified using any number of the single-letter mode flags listed above.

Only the owner of a class (or a database superuser) may change an ACL.

By default, classes start without any ACLs. Classes created using the inheritance mechanism do not inherit
ACLs.

EXAMPLES

/*

* Deny any access to "other" to classes "gcindata" and "btdata".

*/

change acl s gcindata, btdata

Grant "dozier" all permissions to "gcindata" and "btdata".

01/23/93 65

CHANGE ACUCOMMANDS) CHANGE ACUCOMMANDS)

change acl user doziersarwR gcmdata, btdata

* Allow group 'sequoia* to read and append data to 'gcindata*.
*/

change acl group sequoia-t-ra gcmdata

/*

* Deny 'frew' the ability to define rules on 'gcmdata'.

•/

change acl frew-R gcmdata

SEE ALSO

iiuroductionCunix), appefuKcommands), copy<coiniiiaiids), delete(oofninflnt1.s)« define nile(cominands),
feplace(coniiiiands),retiieve(coininands).

CAVEATS

The command syntax* pattemed after chmod(l)^ is admittedly somewhat cryptic.

A facility like umaskil) will be added in the future.

User authentication is only conducted if the fiontend process and backend server have been compiled with
the kerderosCS) libraries. See iniroducrionfunix).

Asshipped,the system does not haveany installedACLs.

An access control mode for defining tnisted functions (analogous to the access control on defining rules)
will be added after the (mis)features and interface of untnisted functions hawe stalnlized.

User names, group names and associated system identifiers (e.g., the contents of pg_user.usesysid) are
assumed to be unique throughout a database. Unpredictable results may occur if they are not

Usersystem identifiers, as mentioned in a previous section of the manual, are currently UNIX user-id*s.
This may change at some time in the future.

It is possible for users to change the server's internal data stnicnues firom inside of trusted (Cast path) C
functions. Hence, among many other things, such functions can circumvent any system access controls.
This is an inherent problem with trusted functions.

No POSTQUEL command is provided to clean up ACLs by removing entries (as opposed to removing the
associated permissions). However, the built-in ACL functions provided make most administrative tasks
fairly trivial. Forexample, toremove all ACLreferences to a user"mao" whois about to befired, use:

replace pg_cla8s (relacl = pg_class.relacl - 'maos'::aclitein)

Securityshould be implementedwith a clever query modificationor rule-based scheme.

01/23/93 66

CLOSECCOMMANDS) CLOSE(COMMANDS)

NAME

close—close apodal

SYNOPSIS

close (potai^name]

DESCRIPTION

Close firees thelesooroes associated with a podah portaljuime. Alterthispodalis closed, no subsequent
operations are allowed onit Apodal should be closed when it isno longer needed. Uportaljiame isiM.
specified, thenthe blankpodal is closed.

EXAMPLE

/♦

* close the portal FOO

*/

close FOO

SEE ALSO

fctch(comfnands), move(coininands). retrieve(coininaiids).

01/23/93 67

CLUSTER(CX3MMANDS) CLUSTBUGOMMANDS)

NAME

cluster—give storage clusteringadvice to POSTORES

SYNOPSIS

cluster classname on anname(using operator]

DESCRIPTION

This command instnicts POSTGRES to keep the class specified by cUusname approximately sorted on
attname using thespecified operator todetenniim the sortoider. Theoperator must bea binaiy (qxtatOT
and both c^wrands must be type attname andthe operator must produce a result of type hf>ni^n If no
operator is specified, then **<" is used by defuilt.

Aclass can bereclustered atany time ona different attname andAir with a different opentor.

POSTGRES will try tokeep theheap data structure which stores the of this class approximately in
sorted order. If the user specifies an operator which does notdefine a linear oidering, this command will
produce unpredictable orderings.

Also, if there is no index for the clustering attribute, then this command will have no effect.

EXAMPLE

/*

* cluster employees in salary order
♦/

cluster emp on salary

BUGS

Cluster has no effect in Version 4.2.

01/23)93 68

COPY(CX)MMANDS) COPY(COMKiANDS)

NAME

copy—copy data 10or firom a class from or to a UNIX file.

SYNOPSIS

copy Cblnary] [nooiiUs] classnamc
totflrom ''fiIename''lsttlinlstdout

DESCRIPTION

Copy movesdata between POSTGRES classes and standaid UNIX files. Hie keywofd binary changes the
behavkx'of field fonnaiting. as described below. Classname is the name of an existing class. Fttename is
the UNIX pathname of the file. In place of a filename, the keywords stdin and stdoot can be used so that
input to copy can be written by a UBPQapplication and output from the copy command can be read by a
LIBPQ application. The binary keywordwill forceall data to be stored/read as binaryobjects rather than as.
ASCn text It is somewhat faster than the normal copy command, but is not generally portable, and the
files generatedare somewhat larger,although this factor is highly dependent on the data itself.

You must have read access on any class whose values are read by the copy conunand. and either write or
aiqiendaccess to a class to whichvaluesare beingappendedby the copy corrunand.

FORMAT OF OUTPUT FILES

ASCn COPY FORMAT

When copy is used without the binary keyword, the file generated will have each instance on a line, with
each attribute separated by tabs (\t). Embedded tabs will be proceeded by a backslash character (N). The
attribute values themselves are strings generated by the output function associated with each attribute type.
The output function for a type should not oy to generate the backslash character; this will be handled by
copy itself.

Note that on input to copy, backslashes are considered to be special control characters, and should be dou
bled if you want to embeda backslash, le.. the string will be converted by copy to **12^988**.
The actual format for each instance is

<atirl><tabxattr2x:tab>...<tabx:atimxnewline>

If copy is sending its output to standard outputinstead of a file, it willsend a period (.) followed immedi
ately by a newline. on a line by themselves, when it is done. Similarly, if copy is reading from standard
input, it willexpect a period (.) followed by a newline. as the first twocharacters on a line, to denote end-
of-file. However,copy will terminate (followed by the backend itself) ifa true EOF is encountered.

NULL attributes are handled simply as null strings, that is. consecutive tabs in the input file denote a
NULL attribute.

BINARY COPY FORMAT

In the caseof copy binary, thefirst fourbytesin the file willbe the number of instances in the file. If this
numberis zero, the copy binary command will read until endof file is encountered. Otherwise,it will stop
readingwhen this numberof instanceshas been read. Remainingdata in the file will be ignored.

The format for each instance in the file is as follows. Note that this format must be followed EXACTLY.
Unsigned four-byte integer quantities arecalleduint32 in thebelow description.

uint32 totallength (not including itselO.
uint32 number of null attributes

[uint32 attribute number of first null attribute

uint32 attribute number of nth null attribute).

<data>

ALIGNMENT OF BINARY DATA

01/23/93 »

COPY(CX)MMANDS) COPY(COMMANDS)

On Sim-3*s, 2-byieattributes are alignedon two-byte boundaries, and all largerattributes are aligned on
four-byte boundaiies. Character atnibutes are aligned on single-byie boundaries. On othermachines, all
attributes larger than 1 byteare alignedon four-byte boundaries. Note that variable length attributes are
precededby the attribute's length;arrays are simplycontiguousstreamsof the array element type.

SEE ALSO

q^nd(coinniands). createCamimands), vacuum(oonunands). libpq.

BUGS

Files usedas aiguments to the copy command must reside on or be acoessable to the the database server
machineby being either on local disks or a networisd file system.

Copystopsoperation at the fiirst error. Thisshould not lead to inobleais in the eventof a copy finom, but
the targetrelationwiU, of course,be paitiallymodified in a copy to. The vac«uin(commands) que^r should
be used to clean up after a failed copy.

Because POSTGRES operates out of a dififerent dnectoiy thanthe user's woridng directoryat the rimePOST-
ORES is invoked,the result of allying to a file **foo** (without additional path infoimatioo) may yield unex
pectedresults fOT the naiveuser. In thiscase.'Too** will wind up in SPODATA/foo. In general, the fiillpath
name should be used when specifying files to be copied.

Copy has viituaily no error checking, and a malformed input file will likely cause the backend to crash.
Humans should avoid using copy for input whenever possible.

01/23/93 70

CREATE(CX)MMANDS) CREA1E(CX)MMANDS)

NAME

create—create a new clan

SYNOPSIS

create classname (attname-l = type-1 (• attname-i = cype-i})
[key (attname-l [using operator-l]

I, atoiame-i [using operator-i]))]
[inherits (classname-l (, classname-i))]
[archive s arehive.inode]
[store B **smgrjiame1
[archjBtore b **snigr_iiainel

DESCRIPTION

Create willenter a newclass into the cunent data base. Theclass will be **owned'*by the userissuing the
command. The name of the class is classname and the attributes are as specified in the list of attnames.
The fth attribute is created with the type specifiedby typC'L Each type may be a simple type, a complex
type (set) or an array type.

Each array attribute stcaes arrays that must have the same number of dimensions but may have dififerent
sizes and array index bounds. An array of dimension n is specified by ai^nding n pairs of square laackets:

att^name = type[][J..(1

The optional key clause is used to specify that a field or a collection of fields is unique, if no key clause is
specified. POSTGRES will still give every instance a unique objcct-id (OID). This clause allows other fields
to be additional keys. The using part of the clause allows the user to specify what operator should be used
for the uniqueness test. For example, integers are all unique if **«** is used for the check, but not if **<" is
used instead. If no operaux' is specified. **=:** is used by defiuik. Any qwcified operator must be a btnaiy
operator reniming a boolean. If there is no compatible index to allow the key clause to be rapidly checked,
POSTGRES defaults to not checking rather than performing an exhaustive search on each key update.

The optional inherits clause specifies a collection of class names firom which this class automaticaily inher*
its ail fields. If any inherited field name appears more than once, POSTGRES reports an error. POSTGRES
automatically allows the created class to inherit functions on classes above it in the inheritance hierarchy.
Inheritance of functions is done according to the conventions of the Common Lisp Object System (CLOS).

Each new class classname is automatically created as a type. Therefore, one or more instances from the
class are automatically a type and can be used in addattr(commands) or other create statements. See intro'
ducrion(commands) for a further discussion of this point

The optional store and archjstore keywords may be used to ^wcify a storage manager to use for the new
class. The released vereion of POSTGRES supports only ''magnetic disk^ as a storage manager name: the
research system at Berkeley provides additional stmage managers. Store controls the location of current
data, and arch_store controls the locationof historical data. Archjstore may only be specified if archive
is also specified. Ifeither store or arch_store is not declared, it defaults to "magnetic disk".

The new class is created as a heap with no initial data. A class can have no more tfian 16(X) domains (real
istically, this is limited by the fact that tuple sizes must be less than 8192 bytes), but this limit may be con
figuredlowerat some sites. A class cannot have the same name as a system catalog class.

The archive keyword specifies whether hisumcal datais to besaved or discarded. ArcHjnode may beone
of:

none No historical access is supported.

03/12/94 71

CREAIE(COMMANDS) CREA1E(G0MMANDS)

light Histoiicai access is allowed andoptimized for lightupdate activity.

heavy Historical access is allowed andoptimized for heavyupdate activity.

defiEOilts to''none**. Once the archive status is set, there is no way to change k. For details of
theoptimization, see (STON87].

EXAMPLES

/•

* Create class entp with attributes name, sal and bdate

•/

create einp (name = charlS, salary = floatd, bdate = abstime)

/•

* Create class permemp with pension information that

* inherits all fields of emp

♦/

create permemp (plan = charl6) inherits (emp)

/♦

* Create class foo on magnetic disk and archive historical data

♦/

create foo (bar = int4) archive = heavy

store s "magnetic disk"

/*

* Create class tictactoe to store noughts-and-crosses

* boards as a 2-dimensional array

•/

create tictactoe (game = int4, board s char(][])

/•

• Create a class newemp with a set attribute "manager". A

.* set (complex) attribute may be of the same type as the
• relation being defined (as here) or of a different complex

* type. The type must exist in the "pg«.type" catalog or be
* the one currently being defined.

♦/

create newemp (name = text, manager = newemp)

SEE ALSO

destroy(cominands).

BUGS

Thekey clauseis not implemented in Version 4.2.

(Optional specifications (i.e., inherits, archive and store) must besupplied in the order given above, if they
are supplied at all.

03/12/94 72

CREAIEDB(CX)MMANDS) CREArBDB(CX>MMANDS)

NAME

cxcatedb—create a new database

SYNOPSIS

createdb dbname

DESCRIFTIQN

Createdb creates a new POSTGRES database. The creator becomes the administrator of the new database.

SEE ALSO

createdb(unix), destfoydb(cofninands),destioydb(unix), initdb(tinix).

BUGS

This command should NOT be executed interactively. The craaredlKunix)script should be used instead.

01/23/93 73

CRE^ VERS1QN(C0MMANDS) CREATE VERSION(COMMANDS)

NAME

createvenion—coosmiaaveRioaclass

SYNOPSIS

ovate venkn classnamel firomclassnaine2 Qabsdme)]

DESCRfPnON

Hiiscoromaiid creates a venionclassclassnamel wtiich is related to its paxcot class, classnamel. Initially,
classnamelhas the samecmitents as classnamel. As updates to classnamel occur,however, the cootentof
classnamel diverges from classnamel. On the otherhand,any updates to classnamel showtransparently
through to classnamel^ unless theinstance in question hasalready beenupdated in classnamel.

If the optional abstime clause is specified, then the version is consmicted relative to a snapshot of clasS'
namel as of the time specified.

POSTGRES uses the query rewrite rule system to ensure that classnamel is differentially encoded relative to
classnamel. Moreover, classnamel is automaiicaliy constructed to have the same indexes as classnamel.
It is legal to cascade versions arbitrarily, so a tree of versions can ultimately result The algorithms that
control versions are explained in (ONG90].

EXAMPLE

/•

* create a version foobar from a snapshot of

* barfoo as of January 17, 1990

*/

create version foobar from barfoo ('Jan 17 1990"]

SEE ALSO

define view(comniands). inerge(conimands), postquel(comfnands).

BUGS

Snapshots (i.e.. the optional abstime clause) are not implemented in Version4.2.

01/23/93 74

DEFINE AGGREOAIE(OOMMANDS) DEFINE AOGREOAIEOCOMMANDS)

NAME

defineaggregate—define a newaggregate

SYNOPSIS

define aggregate agg-name [as]
([sftmcl s state-transition-fiinction-1

, baaetype e data-type
, stypel s sfunc1-return-type]

[»8ftmc2 s siate-transition-fiinction-2
, stypel s sfiinc2-retiim-type]

[, finalfkinc c final-function)

[, initcondl s initial-condition-1]
initcondl s initial-condition-l])

DESCRIPTION

An aggregate function can use up to three functions, two state transition functions. XI and X2:
Xl(intemal-staiel. next-data_iiem) —> next-intemal-staiel

X2(intemal-siatel) —> next-intemal-statel
and a final calculation function, F;

F(intemal-statel, intemal-siaiel) —> aggregate-value
These functions are required to have the following propenies:

The arguments to state-transition-function-1 must be (stypel,basetype). and its return value must
be stypel.

Theargumentand returnvalueof state-transition-function-2 mustbe stypel.

The arguments to the final-calculation-fimction must be (stypel,stype2). and its return value must
be a POSTGRES base type(not necessarily the same as basetype.

The final-calculation-functionshould be specified if and only if both state-transition functions are
specified.

Note that it is possible to specify aggregate functions that have vaiying combinations of state and final
functions. For example, the "count** aggregate requires sfbncl (an incrementing function) but not sfuncl
or finalfunc. whereas the "sum** aggregate requires sfUncl (an addition function) but not sfuncl or final-
func and the "average** aggregate requires both of the above state functions as well as a finalfunc (a divi
sion function) to produce its answer. In any case, at least one state functicMi must be defined, and any
sfuncl must have a conesponding initcondl.

Aggregates also require two initial conditions, one fra" each transition function. These are specified and
stored in the database as fields of type text.

EXAMPLE

This avg aggregate consists of two state transition fiuictions. a addition function and a incrementing func
tion. These modify the internal state of the aggregate through a running sum and and the number of values
seen so far. It accepts a new employeesalary, increments the count, and adds the new salary to produce the
next state. The state transition functions must be passed axitct initialization values. The final calculation
then divides the sum by the count to produce the final answer.

♦ Define an aggregate for int4 average

*/

define aggregate avg (sfuncl = intdadd, basetype s int4,
stypel = int4, sfuncl = int4inc, stypel = int4,

finalfunc = int4div, initcondl = 'O', initcondl = "0")

01/23/93 75

DEFINE AGGREGArE(CX)MMANDS) DEFINE AGGREGAIE(COMMANDS)

SEE ALSO

define fiinctk»(coiiiniaiids), xemoveaggiegate(coinniands).

01/23/93 76

DEFINE FUNCnON((X)MMANDS) DEFINE FUNCnm(COMMANDS)

NAME

define fiinctkm---define a Dew fiinctioii

SYNOPSIS

define fnnetioa fiinction.name (
laBgoage n (VI "postquel"},
retorntTpe c type-r

[, iseMJiable)
[,tnistedB{Trr)]
[, peraUIjq>n s "costlyf!*)**]
[f perbjtejcpa » "coetiyf!*)"]
[, onliB_ratio c peicentage]
[ybjtejicts percentageJ
)

argis([type-l {,type-nn)
as {"/rull/path/to/objectfile" I "list-of-postquel-queries")

DESCRIPTION

With this command, a POSTGRES user can register a function with POSTGRES. Subsequently, this user is
treated as the owner of the function.

When defining a function with aiguments, the input data types, typc'l, type-I,..., /ypr-n, and the return data
type, type-r must be specified, along with the language, which may be "c" or *'postquel". (The arg is
clause may be left out if the function has no aiguments, or alternatively the argument list may be left
empty.) The input types may be base or complex types, or any. Any indicates that the function accepts
argumentsof any type,or takes an invalid POSTQUEL type suchas (char *). The output type may be speci
fied as a base type, complex type, setof <type>, or any. The setofmodifier indicales that the function will
return a set of items, rather than a single item. The as clause of the command is treated differently for C
and POSTQUEL functions, as explained below.

C FUNCTIONS

Functions written in C can be defined to POSTGRES, which will dynamically load them into its address
space. The loading happens either using /ood(commands) or automatically the first time the function is
necessary for execution. Repeated execution of a function will cause negligible addidonal overhead, as the
function will remain in a main memory cache.

The iscachable flag indicates to the system that the return valueof the function can be associaiively cached.

The trusted flag specifies that the function can run inside the POSTGRES server's address space with the
user-id of the POSTGRES super-user. If this flag is not specified, the function will be run in a separate pro
cess.

The percall_cpu, perbytejcpu, outio_ratio, and byte__pct flags are provided for C functions to give a
rough estimateof the function's running time, allowingthe query(^)timizerto postponeapplying expensive
functions used in a query's where clause. The percall^cpu flag captures the overhead of the fiuiction's
invocation (regardless of input size), while the perbytejcpu flag captures the sensitivity of the function's
running time to the size of its inputs. The magnitude of these two parametersis determined by the number
of exclamation points appearing after the word costly: specifically, each exclamation point can be thought
of as another order of magnitude in cost, i.e..

cost -

The default value for percall^cpu and perbytCjCpu is 0. Examples of reasonable cost values may be
found in the system catalog "pgjHoc"; most simple functions on base types have costs of0.

03/12/94 77

DEFINEFUNCnON(COMMANDS) DEFINEFUNCnON(CX>MMANI>S)

Hie outinjatio is provided fcs fiinctioiis which letum vaiiaUe-leogth types, such as text or bytea. It
should be set to the size of the fiinctiaa's outputas a pffrpffmage of the size of the iiqiot For caampie, a
function which compresses itsoperands by2 should have outin^ratki• SO. Thede&ult value is 100.

The bytejict flag shouldbe set to the pereeniage of the bytesof the arguments that actually need to be
examined in older to compute the function. This flag is particularly useful for functions which generally
take a large objectas an argutnent, butonlyexamine a fixed pcnion of theobject The value
is 100.

WrWiig C Fnnctioiis

Thebodyof a C functicMi following as shouldbe the FULL PATHof the objectcode (.o file) for the fimc-
tion, bracketed by quotation mailcs. (POSTGRES will not compilea fiinctioo automaiically — it mint be
compiled before it is used in a define function command.)

C functions with base type arguments can be written in a straightforward fitsfaion. The C equivalents of
built-in POSTGRES types are accessible in a C file if

.../src/backend/utils/builtlns.h

is includedas a header file. This can be achievedby having

#inciude <uCils/builtins.h>

at the topof theC source file andbycompiling allC files with thefollowing include options:

-I.../src/backend

-I... /src/backend/port/<porCnaine>

-I.../src/backend/obj

before any "x" programs in the cc command line, e.g.:

cc -I.../src/backend \

-I.../src/backend/port/<portn«uno> \

-I.../src/backend/obj \

-c prognaine.c

where is the path to the installed POSTGRES source treeand **<portname>" is the name of the port for
which the source tree has been built

The convention for passing arguments to and from the user's C futictions is to use pass-by-value for data
types thatare 32 bits (4 bytes) or smaller, and pass-by-reference for Hata types that require more than 32
bits.

The following table gives the C type required for parameters in the C functions that will be loaded into
POSTGRES. The "Defined In" column gives the actual header file (in the

.../src/backend

directory) that the equivalent C type is defined. However, if you include **utils(builtinsJi'', these files will
automatically be included.

03/12/94 78

DEFINE FUNCnmCGOMMANDS) DEFINE FUNCnONCCOMMANDS)

Equlvakot C IVpct Ibr POOTGRES lypct
Boflt-Io Type CTyp% Defined In

abstime AbsoluteHme otilaABabstimeJi
bool bool tmp/bJi
box (BOX*) utiis/geoKleclsJi
bytea (bytea*) tmp^postgresJi
char char N/A
charlfi Charl6 or (charl6 *) tmp^ostgreaJi
cid CID tmp/jpostgrcsJi
int2 int2 tmp^xntgresJi
int28 (int28*) tmp^xwgrcsJi
int4 im4 tinp/i>ostgres.h
floet4 float32(n'(float4*) tmp/cJi or tmp^postgresJi
floats float64 or (floats *) tmp/cJior imp^x)stgies.h
Iseg (LSEG*) tmp/geo-decls.h
Old oid tmp^jpostgresJi
oidS (OidS*) tnqVjpostgresJi
path (PATH*) utils/geo-decls.h
point (POINT*) utila/geo-decls.h
legproc regproc or REGPRCX? uiip^x)stgies.h
reltime RelativeTime utila/habstimeJi
text (text*) tiiqV)postgres.h
tid ItemPointer storage^temptrJi
tinterval Hmelnterval utila/inabstimeJi
uint2 uintl6 tmp/cJi
uint4 uint32 tmp/cJi
xid (XID*) tinp/postgres.h

Complex arguments toC functions arcpassed into theC function asa special C type, TUPLE, defined in

.../src/libpq/libpq-fe.h.

Given a variable t of this type, theC function may extract attributes from the fiinctioo Mgng the functioo
call:

GetAttributeByNaine(t, "fieldname", &isnull)

where isnuU is a pointer to a bool, which the function sets to true if the field is null The result of this fiinc-
ti(M) should be cast appropriately as shown in the examples below.

Compiling Dynamically«LoadcdC F^nctiaiis
Different operating systems require different procedures forcompiling C source so thatPOSTGRES can
load them dynamically. This section discusses the required compilerand options on system.

Under Ultrix, all object files that POSTGRES is expected to load djmamically must be compiled using
IbiiUcc with the "-G 0** option turned on. The object file name in the or giw^iLf end in **.0**.

Under HP-UX, DEC DSF/l, ADC andSunOS 4, all object files must be turned intosharedlibraries using
the operatingsystem's native object file loader, id(\).

Under HP-UX, an object file must becompiled using the native HP-UX C compiler, /bin/cc, with both the
"-i-z'' and "-t-u" flags turned on. The first flag turns the object file into '>>sidon-independem code" (PIQ;

03/12/94 79

DEFINE FUNCnONCCOMMANDS) DEFINE FUNCnON(COMMANDS)

the second flag removes some alignment restrictions that the PA-RISC architecture nonnaUyenfanes. The
object file must then be tuned into a shared library using the HP-UX loader, fbin/ld. The commaixl lines to
compile a C source file. *Toox'*. look like:

cc <other flags> -c £00.c

Id <other flag8> -b -o £00.si £00.0

The objea file name in the as clause should end in **.sl**.

An extra step is required under versions of HP-UX prior to 9.00. If the POSTGRES header file

txnp/c.h

is not included in the source file, then the fdlowing line must also be added at the top ofevery source file:

#pragina HP^IGN HPUX_NATURAL_S500

However, this line must not appear in piogiams compiled under HP-UX 9.00 <xlater.

UnderDEC OSF/1. an object file must be compiledand then turned into a shared library using the OSF/1
loader, Ibinlld. In this case, the command lines look like:

cc <other £lags> -c £00.c

Id <other £lags> -shared -expect_unresolved -o £00.so foo.o

The object file name in the as clause should end in **.50**.

Under SunOS 4. an object file must be compiled and then nuned into a shared library using the SunOS 4
loader, Ibinlld. The command lines look like:

cc <other £laga> -PIC -c foo.c

Id <other £lags> -de -dp -Bdyneunic -o £00.so £00.0

The object file name in the as clause should end in ".so**.

Under ADC, object files are compiled normally but building the shared library requires a couple of steps.
First, create the object file:

cc <other flags> -c foo.c

Youmust then create a symbol "exports" file for the object file:

mkldexport foo.o 'pwd' > foo.exp

Finally,you can create the shared library:

Id <other flag3> -H512 -T512 -o £00.so -e _nostart \
-bl:.../lib/postgres.exp -bE;foo.exp £00.0 \

-Im -Ic 2>/dev/null

Youshould look at the POSTGRES User Manual for an explanation of this procedure.

03/12/94 80

DEFINE FUNCn(W(COMMANDS) DEFINE FUNCTICX^COOMMANDS)

POSTQUEL FUNCTIONS

POSlt^JEL Iimctiofis execute anarbitrary listof POSTQUEL queries, returning thelesuUs of thelastquery
in the list POSTQUEL fimcticns in general returnsets.-If theirieiiimtype is not qncified as a then
an arbitrary elementof the last query's result will be returned. The expensive functioa parameters pct^
call_€pn« peibytejcpot ootin_ratio» and bytej>ct are not used for POSTQUEL functkms; their costs are
determined dynamically by the query optimizer.

The bodyof a POSTQUEL functionfoUowing as should be a list of queries separatedby wfaitespace charac
ters and bracketed withinquotation marks. Note that quotationmarks used in the queriesmust be escaped,
by preceding them with two backslashes (ie.

Arguments to the POSTQUEL functionmay be referenced in the queries using a Sn syntax: SI refers to the
first argument. 52 to the seocmd, and so on. If an argument is complex, then a **dot'* notation may be used
to access attributes of the aigumem (e.g. ''Sl.emp'O. or to invokefunctions via a nested-dot syntax.

EXAMPLES: C Fiincttons

The followingcommand defines a C function, overpaid, of two basetype arguments.

define function overpaid

(language = "C, returntype = bool)

arg is (floats, int4)

as "/usr/postgres/src/adt/overpaid.o'

The C file "overpaidx" might look something like:

#include <utils/builtins.h>

bool overpaid(salary, age)

floats *salary;

int4 age;

{
if (*salary > 200000.00)

return(TRUE);

if ((age < 30) && (^salary > 100000.00))

return(TRUE);

return(FALSE);

)

The overpaid function can be used in a query. e.g:

retrieve (EMP.name)

where overpaid(EMP.salary, EMP.age)

One can also write this as a function of a single argument of type EMP:

define function overpaid_2

{l«uiguage = " c • , returntype = bool)

arg is (EMP)

as "/usr/postgres/src/adt/overpaid_2.o'

The following query is now accepted:

03/12/94 81

DEFINE FUNCnm(COMMANDS) DEFINE FUNCIIONCCOMMANDS)

retrieve (EMP*n2une) where overpaid_2(EMP)

In thiscase, in the bodyof theoven>aid.2 functioa, thefieldsin theEMP lecoid mostbe extracted. TheC
file"oveqnidJZx" mightlooksomething like:

#include <utils/builtin8.h>

#include <tnip/libpq->fe.h>

bool overpaid_2(t)

TUPLE t;

(

floats ^salary;
int4 age;

bool salnull, agenull;

salary = (floats *)GetAttributeByName(t, "salary",

Ccsalnull) ;
age = (int4)GetAttributeByNaine(t, "age", Sagenull);
if (Isalnull && ^salary > 200000.00)

return(TRUE);

if (iagenull && {age<30) && (*saiary > 100000.00))
return(TRUE);

return(FALSE)

)

EXAMPLES: POSTQUEL Fuoctkms

To illustrate a simple POSTQUEL function, consider the following, which might be used to debit a bank
account

define function TPl

(language = "postquel", returntype = int4)
arg is (int4, floats)

as "replace BANK (balance = BANK.balance - $2)

where BANK.accountno = $1

retrieve(X = 1)"

A user could execute this function to debit account 17by Si(X).(X) as follows:

retrieve (x = TP1(17,100.0))

The following more interesting examples take a single argument of type EMP. andretrieve multiple results:

define function hobbies

(language = "postquel", returntype = setof HOBBIES)
arg is (EMP)

as "retrieve (HOBBIES.all)

where Sl.naune = HOBBIES.person"

define function children

(leuiguage = "postquel", returntype = setof KIDS)

03/12/94 82

DEFINE FUNCnON(COMMANDS) DEFINE FUNCnON(CX)MMANDS)

arg is (EMP)

as "retrieve (KIDS.all)

where $l.naiQe = KIDS.dad

or $l.naine s KIDS.rooin"

Hien the followingquery retrievesovequudemployees,their hobbies,and theirchildren:

retrieve (nainesnaiae (EMP), hobbysneune (hobbies (EMP)),

kidsname(children(EMP)))

where overpaid_2(EMP)

Note that attributes can be projected usingfunction syntax(e.g. name(EMP)), as well as the tcaditicoal dot
syntax (e.g. EMPjiame).

An equivalentexinession of the ineviousquery is:

retrieve (EMP.neune, hobbysEMP.hobbies.name,

kidsEMP.ChiIdren.name)

where overpaid_2(EMP)

This "nested dot" notation for functionscan be used to cascade fiincticiisofsingle aigumeias. Nbtethatthe
functionafter a dot must haveonly one argument,of the type returnedby the functionbefore the dot

POSTGRESflattens the target list of the queriesabove. That is, it fuoduces the cross-productof the hobbies
and the children of the employees. For example, given the schema:

create BANK (accountno = int4, balemce = floats)

append BANK (accountno s 17,
balance s "10000.00*::float8)

create EMP (name = charl6, salary = floats,

dept = charl6, age = int4)

create HOBBIES (name s char16, person = charl6)

create KIDS (name = charl6, dad = charl6, mom = charlS)

append EMP (name & "joey*, salary s *100000.01*::floats,

dept s "toy*, age s 24)

append EMP (neune s *jeff*, salary s *100000.01*::floatS,

dept s *shoe*, age a 23)

append EMP (name a *wei*, salary a *100000*::floatS,

dept a "tv", age a 30)

append EMP (name a *mike*, salary a *500000*::floatS,
dept a *appliances", age a 30)

append HOBBIES (name a *biking", person a *jeff*)
append HOBBIES (name = *jaimning*, person a *joey*)
append HOBBIES (name = *basketball*, person = *wei*)

append HOBBIES (name a *swimming*, person a *mike*)
append HOBBIES (name a *philately*, person a *mike*)
append KIDS (name = *matthew*, dad = *mike*,

mom a *teresa*)

append KIDS (name a *calvin*, dad a "mike*,
mom a *teresa*)

The query above returns

03/12/94 83

DEFINE FUNCnON(CX)MMANDS) DEFINE FUNCnON(COMMANDS)

name hobby kid

jeff biking (null)

joey jamming (null)

mike swimming matthew

mike philately matthew

mike swimming calvin

mike philately calvin

Notethatflattening preserves thename andhobby fields even when the*1dd*' field isnuIL

SEEALSO

infoniiation(unix), loadCcommands), remove function(commands).

NOTES

Expensive Functions

Hie percalljcpuandperfoyte.cpa flags can take integers surrounded byquotes instead of the**costly{!*}**
syntax described above. Thisallows a finer grainof distinction between fimctioa costs,but is not encour
aged since such distinctionsare difficultto estimateaccurately.

Name Space Conflicts

Ntoe than tmefimction may bedefined with thesame name, as long as diearguments they takearediffo'-
rat In oflira words, function names can be overloaded. A fiinctxm may also have the same name as an
attribute. In the case that there is an ambiguity between a function on a complex type and an attribotB of
the complextype,the attributewiU alwaysbe used.

RESTRICTIONS

Hie name of the C function must be a legal C fimctioa name, and the name the function in C code must
be exactly the sameas die nameusedin definefimction. Hirae is a subtleimplicatioo of this restricdon:
while the dynamicloadingroutines in most qierating systemsare nKHe dian hai^ to allow you to load any
numbra of shared lilmiries that contain conflicting (idratkally-named) fimctioo names, tfaqr may In &ct
botch the load in interestingways. For example, if you define a dynamically-loaded function that happens
to have the same name as a fimction buiUinto POSTGRES. the DEC OSF/1 dynamic loader causes POST-
GRES to call the function within itself rather than allowing POSTGRES to call your fimction. Hence, if you
want your fimction to be used oa different architectures, we reonnmend that you do not overioadC func
tion names.

Hiere is a clever trick to get around the problemjust described. Since there is no problem overioading
POSTQUEL fimctions. you can define a set of C fimctions with differentnames and then define a set of
identically-named POSTQUEL fimction wrappers that take the appcqaiate argument types and call the
matching C fimctimi.

anycannotbe givenas an argument to a POSTQUEL fimction.

BUGS

The iscachable flagdoes not do anythingin Version 42.

Untrustedfunctionscannot make any functioncalls using access methodsor built-infimctionsthat have not
been loaded into the untnisted-fimction process.

Untrustedfimctionsmust be explicitlydesignatedas such in a sqsrate query.e.g.:

replace pg_proc (proistrusted s "f"::bool)
where pg_proc.proname = "itynewfunction"

03/12/94 84

DEFINE FUNCnON(COMMANDS) DEFINEFUNCnON(COMMANDS)

C functions cannot return a set of values.

03/12/94 85

DEFINE INDEX(CX)MMANDS) DEFINE INDEX(COMMANDS)

NAME

define index — construct a secondary index

SYNOPSIS

define [archive] index index-name
on classname using am-name
(attname typejclass)
[where qual]

define [archive] index index-name
on classname using am-name
(funcname(attname-1 {,attname-i})typejclass)

DESCRIFTIGN

This command constructs an index called index-name. If the archive k^rwrnd is absent, die classname
class is indexed. When archive is {xesoit, an index is created on the archive class associated with the
classname class.

Am-noffie is the name of the access method which is used for the index.

In thefirst syntax shown above, thekey field for the ind» is specified as anattribute name andanassoci
ated operator c/ass. Anoperator class is used tospecify the operators tobeused fora particalar index. For
example, a btree index on four-byte integers would usetheint4_ops class; this c^iaator class includes com
parison functionsfor four-byteintegers.

If a qual is given, theindex will bea partialindext which will index only those instances in classname for
which the pedicate ^ledfied by qual is true. Note that the predicate nuqr oidyrefer to attributes of the
indexed class, classname. POSTGRES nu^ use a partial index as an access padi only for queries that
include a restriction thatimplies that thepredicate is true. Forexample, if the index predicate is

emp.age < 30

then the index can be used for a query with the restriction

where emp.age <25

but not f(n a query with the restricdon

where emp.age < 40

and so fOTth. Although putial indexes cannot be used to satisfy as wide a range of queriesas ccnnplete
indexes, dieycan be constructed m(He quickly and extended incrementally (seeeiaend/mtoc(cominands)).

In die secondsyntax shown above, an index can be defined on the resultd a usor-defined faacdonfunc
name apilied to one or moteattributes of a single class. Thesefunctional indices are primarily useful in
two situations. First, functional indices can be used to simulate muld-key indices. That is, the user can
define a new base type (a simplecombination of, say,**oid'' and **int2") and the associated functions and
operators on this new typesuchthat the access method can use it Oncethis hasbeendone,the standard
techniques for interfacing new types to access methods (described in the POSTGRES user manual) can be
applied. Second, functional indices canbe usedto obtain fiist access to databased on pieratorsthatwould
normally require some tiansf(Hination to be relied to the base data. Fdr sample, say you have an
attribute in class"myclass" called''pt** thatconsists of a 2D pointtype. Now, supiose thatyou would like
to index this attribute but you only have indexoperatorclassesfor 2D polygon types. You can definean
index on the point attribute using a function that you write (call it **pointjtojxdygon") and yourexisting

03/12/94 86

DEFINE INDEX(COMMANDS) DEFINE INDEX(COMMANDS)

polygon operatOT class; after that, queries using existing polygon operatois that reference
"point_to_polygon(niyclass.pt)'' on one sitte will use the preconqmted polygons stored In the functional
index instead of computing a polyg(» fn* eachand every instance in **myclass** aid thai comparing it to the
value on the other side of the (^rator. Obviously, the decision to build a ftmctional index represents a
tradeoff between space (for the index) and execution time.

POSTGRES Version 42 provides btree, rtree and hash access methods for secondary indices. The btree
accessmethod is an implemoitation of the Lehman-Yao high-concuiraicy btrees. The rtreeaccessmediod
imptements standard rtieesusing Guttman's quadratic splitalgmithm. Thehash access method is an imple
mentation of Litwin*s liroar hashing. We moition the algcffithms used solely to indicate that all of diese
access methods are fully dynamic and do not have to be optimized periodically (as is the case with, for
example, static hash access methods).

The opoatOTclasses defined on btrees are

int2_ops char2_ops oidint2.ops
int4_ops char4_ops oidint4_ops
int24_ops char8_pps oidcharl6_ops

int42_ops charl6_ops

float4_ops oid_ops

float8_ops text_ops

char_ops erisstime.ops

Theint24j)psoperatOT class is useful forconstructing indices onint2data, and doing ccxiqiarismis again^
int4 data in query qualifications. Similarly, int42j)ps suppmt indices on int4data thatis to be compared
against int2 data in queries.

Theoperatm* classes oidini2_pps^ oid»nt4j)ps, andoidcharI6_ops rquesent theuseoffiuKUonal indices to
simulate multi-key indices.

The POSTGRES queryoptimizer willconsider usingbtree indicesin a scan whenever an indexed attribute is
involvedin a comparison usingone of

<<= = >=>

The operatorclassesdefined on rtreesare

box^ops

bigbox_ops

poly_ops

Bothboxclassessuppmtindiceson the **box** datatype in POSTGRES. The difference between themis that
bigboxjjps scales box coordinates down, to avoid floating point exceptions torn doing multiplication,
addition,and subtraction on very large floating-point coordinates. If the field on which your rectangleslie
is about 20,000 units square or larger, you should use bigbox_ops. Thepolyj>ps operator class supports
rtree indices on "pdygon" data.

The POSTGRES query qitimizer will consider using an rtree index whenever an indexed attribute is
involved in a ctMnparison usingone of

« St< &> » 0 "ss &&

Theoperator classes defined on thehashaccess method are

03/12/94 87

DEFINE INDEX(COMMANDS) DEFINE INDEX(CX)MMANDS)

char.ops int2_ops
char2_ops int4.ops
char4.ops float4_ops
char8_ops float8_ops
charl6_ops oit^ops
text_op8

Hie POSTORES queiy optiiiuzer willconsider using a hash index whenever anindexed attribute is involved
in a comparisonusing the

operator.

EXAMPLES

/*

* Create a btree index on the entp class using the age attribute.

*/

define index einpindex on emp using btree (age int4_ops)

/*

* Create a btree index on en^loyee name.

*/

define index en^neune

on emp using btree (name charl6_ops)

/*

* Create an rtree index on the bounding rectauigle of cities.

*/

define index cityrect

on city using rtree (boundbox box_ops)

I*

* Create a rtree index on a point attribute such that we

* can efficiently use box operators on the result of the

* conversion function. Such a qualification might look

* like 'where point2box(points.pointloc) = boxes.box*.
*/

define index pointloc
on points using rtree (point2box(location) box^ops)

/♦

* Create a partial btree index on employee salaries for
* employees over age 50

*/

define index enpsal

on emp using btree (salary int4_ops) where enp.age > 49

03/12/94 88

DEFINE]NDEX(COMMANDS) DEFINE 1NDEX(C0MMANDS)

Note:if the partial-index jnedicaterefers to an attribute of a discrete-valued type(suchas integers), it
is slightly preferable to express theinedicate as, e.g.,"emp^ige > 49" ratherthanas "empjige >» 50",
because eventhough both indexes would, in theory, be equally usable, POSTORES would onlybe able
to use a partial index with the former inedicate in the eventof a query that had the exact restriction
"emp,age>49".

BUGS

Archive indices are not siqqiortBd in Version 4.2.

There should be an access method designer's guide.

Indices mayonlybe defined ona single key. Thiscanbe hacked around bydefining qteclaltypes andusing
the POSTGRES sujqmrt for indices on functional valuesofattributes.

The only kindof partialindexpredicates POSTGRES Version 4.2 understands are thosemadeup of boolean
combinations of simple clauses of the fram

ATTR OP CONST

where ATTR is a single attribute of the indexed class, and OP is an operator in a btree operator class
defined on tte typesof ATTR and (X>NST. If someother form of predicate is specified, Vasion 4.2 will
never use the resulting partial index.

03/12/94 89

DEFINE OFERArOR(CX>MMANDS) DEFINE (M*ERArOR(CX)MMANDS)

NAME

define operator—define a new user opeiator

SYNOPSIS

define operator opeiator.name
([aiiglstype-1]
[,arg2 = QT»-2]
, procedure = func_name
[, precedence = number]
[, associativity s (lefl | right | none | any)]
lacommutator = comjop]
[, negator s neg_cp]
[, restrict s ies_proc]
[, hashes]
[yjoin=join_|noc]
[, sort=sorjopl {, scH'jop2}]

)

DESCRIFnON

Thiscommand ^fines a newuseropeiat(H',opera/or_iu»Re. Theuserwhodefines an qieratorbecomes its
owner.

The operatorjutme is a sequence of 19 to sixteen punctuation characters. The following characters are
valid for single-character operator names:

If the operate name is more than one character long, it may consist of any combinationof the above char
acters or the following additional characters:

!$: + -*/<> =

At least one of ewgl and arg2 must be defined. Fot binary operauns, bodi should be defined. For right
unaryoperators, only argl shouldbe defined, whilefor left unaryoperates onlyarg2 shouldbe defined.

The nameof the operator, operatorjiame^ can be composed of symbols only. Also, tivefimcjuimeproce
dure must have been ineviously defined'using define>Wicridn(conimands) and must have one or two argu
ments. The typesof the arguments fOT the operatorand the type of the answerare as defined by the func
tion. Precedence refers to the order that multiple instances of the same q)erator are evaluated. Then^U
severalfieldsare primarily for the use (tf thequery optimizer.

The associativity value is used to indicate how an exiaessioncontaining this qieratcv shouldbe evaluated
when {accedence and e3q>licit grouinng are insufiQcient to jaoducea cmnplete caderof evaluatioa. Lefl and
right indicatethat expressions containing the Cfpeaxot are to be evaluated from left to rightoxftom right to
left, respectively. Ntmemeansthat it is an error fcadiisqperatca to be usedwidiout explicitgroiq>ing when
there is ambiguity. And any, the defiault, indicates that the (^timizermi^ choose to equate an ex|aession
which contains tto operator aifoitiaiily.

The commutatca operator is {aesent so that POSTGRES can reverse the (ader of the (qieiands if it wishes.
For example,the operator area-less-than, »>, wouldhavea commutator operator, area-greater-than, <«.
Supix)se that an operator, area-equal, =, exists,as wellas an area not equal, !=. Hence, the queryopti
mizer could freely convert:

•0,0,1,1":;box >» MYBOXES.description
I

03/12/94 90

DEFINEOPERATORCCOMMANDS) DEFINE OPERArOR(COMMANDS)

to

MYBOXES.description «< "0,0,1,1*::box

Hiis allows theexecuticMi code to always use die latter r^HosentatitMi and simplifies thequeqr optimizer
somewhat.

The negatoroperator allows the query q)timizer to convert

not MraoXES.description === "0,0,1,1*::box

to

MYBOXES.description i== *0,0,1,1*::box

If a commutator opeiattx' name is supplied, POSTGRES searches forit in thecatalog. If it is found and it
does not yet have a commuiatCMT itself, then the o(Mnmutator*s mtry is updated to have thecurrent (new)
(q)erator as its commutatcK. This sqiplies to the negattx, as well.

This is to allow thedefiniticMi of two operators that arethecommutators (X dien^atos d each other. The
first operator should bedefined without a commutatOT ornegator (as appropriate). When the second opera
toris defined, name thefirst as diecommutatorcttn^atm^. Thefirst willbe updated as a sideeffect

The next two qiecificadmis are(ncsent tosuppmt the query t^nimizer in peifonning jmns. POSTGRES can
tdways evaluate a join (i^., |xocessing a clause with two tiqile variaUes aqnoated by an operator that
returns a boolean) byiterative substitution [W0NG7Q. Inadditkm, POSTGRES is idaunmg onimplnnent-
ing a hflgh-jnin alg(uithm along the lines of [SHAP86]; however, it must know whedier this strategy is
applicable. Forexample, ahash-join algmithm is usable fOT a clause oftheform:

MYBOXES.description === MYB0XES2.description

but not for a clause of the form:

MYBOXES.description «< MYB0XES2.description.

The hashes flag gives the needed infmmation tothe query optimizer conconing whetho'ahash join strat
egyis usable for theopoaior inquestion.

Similarly, the two sort operators indicate tothe query optimizer whether meige-soit isa usable join strategy
and what opcassas should beused tosort the two qierand classes. For die bb clause above, the optimizer
must scat both relations using the operator, <«. On the other hand, meige-sort is not usable with the
clause:

MYBOXES.description «< MYB0XES2.description

If other joinstrategies arefound tobepractical, POSTGRES will change theoptimizer andrun-time system
to use them andwill require additional qiecification when anoperator is defined. Fortunately, theresearch
community invents new join strategies infirequrady, and the added geniality ofuser-defined join strategies
was not felt to be worth the complexity involved.

The last two pieces of the specification are]nesent so the queiy optimizer can estimate result sizes. If a
clause of the f«m:

03/12/94 91

DEFINE OFERArOR(CX)MMANDS) DEFINE Ca>ERAIOR(COMMANDS)

MYBOXES.descript ion «< "0,0,1,1*::box

is ineseitt in the qualification, then P05TGRES may have to estimate the fraction of the instances in
MYBOXES that satisfy the clause. The fiinction lesjnoc must be a legistned functkm (meaning it is
already defined using d^mefunctionioommaiids)) which accepts oneatgument of theconectdatatype and
returns a floating pointnumber. Thequery optimizer simply callsthisfimctkm, passing theparameter

•0,0,1,1*

and multiidies the result bythe relation size togetthe desired e3q)ected number d instances.

Similarly, when theqpeiands ofdieqpeiatcx bodi contain instance varlaUes, diequery (^Mimizer must esti
mate thesize of theresulting join. Hie function join_proc will return another floating pcnnt number which
will be multiidied by the cardinalities of the two classes involved to cmnpute diedesired eaqiected result
size.

The difference between the functkm

ray_procedure_l (MYBOXES.description, *0,0,1,1*::box)

MYBOXES.descript ion === *0,0,1,1*::box

is that POSTGRES attempts to(^itimize (^lerators and can decide touse an index torestrict the search space
when operators are involved. Howew, there is noattempt to(qidmize funcdoos, and they ateperfonned
bybrute fnce. Moreover, fiuictions can have any number of arguments while operators are restricted to
one or two.

EXAMPLE

/*

* The following command defines a new operator,
* area-equality, for the BOX data type.
*/

define operator === (

argl = box,

arg2 s box,

procedure = area_ec[ual_procedure,
precedence = 30,

associativity = left,
commutator = ===,

negator = !ss,

restrict = area_restrictionj>rocedure,
hashes,

join .= area-join-procedure,
sort = <«, «<)

SEE ALSO

define functk>n(commands), remove opeiatorCcommands).

03/12/94 92

DEFINE OP£RATOR(COMMANDS) DEFINEOPERATORCCOMMANDS)

BUGS

Qperatcx' namescannotbe composedof alphabeticcharacters in Version 4.2.

Operatorprecedoice is not implementedin Version 4.2.

If an operator is defined before Itscommuting tq^erator hasbeendefined (a casespecifically warned against
above), a dummy q)eiat(H' with invalid fidds willbe placedin thesystemcatalogs. This mayinterfere with
the definitionof later qKtatras.

03/12/94 93

DEFINE RULE(CX)MMANI>S) J3mNE R!ULE(CX)MMANDS)

NAME

define rule—define anew rale

SYNOPSIS

define [Instance Irewrite] mie rate^name
[as exception to rale.name_2]
is on event

to object [[from clause] where clause]
do [instead]
[actionInothingI[actions...]]

DESCRlPnON

Definerule is usedto define a newrale. Thereare two implementations of the rales system,one basedon
query rewrite and the other based on instance-level processing. In general, the instance-level systemis
more efficientif there are manyrales on a singleclass, each covering a smaU subsetd the instances. The
rewritesystemis moreefficient if largeso^ rales are beingdefined. The usercan optionallychoosewhich
rule ^stem to use by specifying rewrite or instance in the command. If the userdoes not ^wcify which
systemto use, POSTGRES ddaults to usingthe instance-level system. In the hng run POSTGRES willauto
maticallydecide which rules system to use and the possibilityof user selectionwill be removed.

Here, event is one ofretrieve^replace ^delete or append. Object is either
aclassname

or

class.column

The from clause, the where clause, and the action are respectively ncxmalPOSTQUEL fmn clauses, where
clauses and collectionsof POSTQUEL commands with the followingchange:

new or current can appear instead of an instance variable whenever an instance
variable is permissibte in POSTQUEL.

The semantics of a rule is that at the time an individual instance is accessed, tqxlated, inserted or deleted,
there is a current instance (fm* retrieves, replaces and deletes) and a new instance (for replaces and
sq^nds). If dieeventspecified in the on clauseand theccxidition specified in diewhoe clauseare truefor
the current instance, then the action part of the rule is executed. First, however, values from fidds in the
current instance and/m the new instance are substituted fon

currentattribute-name

new.attribute-name

The action part of die rule executes widi same commandand transaction idoitifier as the user cranmand
that caused activation.

A note of caution about POSTQUEL rules is in Older. If the same class name or instance variableiqipearsin
the event, where clause and the action parts of a rule, th^ are all considered different tiqde variables.
More accurately,new and current are the only tuple variables that are shared betweoi these clauses. For
example, the fdlowing tworales havethesamesemantics:

on replace to EMP.salary where EMP.neune = "Joe*
do replace EMP (...) where ...

on replace to EMP-1.salary where EMP-2.na2ne = *Joe*
do replace EMP-3 (...) where ...

Each rule can have the optional tag instead, ^thout this tag action will be performed in additXHi to the
user command when die event in the condition part of the rule occurs. Altematdy, the action part wiUbe
dcHie instead of the user command. In diis later case, the action can be the keywoid nothing.

01/23/93 94

DEFINE RULE(COMMANDS) DEFINE RULE(C»MMANDS)

When choosing between therewrite and instance rulesystonsfora particular rules^licatitHi, remember
that in the rewrite system current refers toa relation andsome qualifierwhereas in theinstance system it
refers to an instance (tuple).

It is very imptmant to note that the rewrite rule system will ndtfaer detect nor process dicular rules. Fcv
example, diough each of the fdlowing two rule definitions are accepted by POSTORES, the retrieve com
mand will cause POSTGRES to crash:

/*

* Example of a circular rewrite rule combination.
*/

define rewrite rule bad_rule_combination_l is
on retrieve to EMP

do instead retrieve to TOYEMP

define rewrite rule bad_rule_combination_2 is
on retrieve to TOYEMP

do instead retrieve to EMP

/*

* This attempt to retrieve from EMP will cause POSTGRES to crash.
*/

retrieve (EMP.all)

You must have rule definition access toaclass inord^todefine anileonit (see change ac/(commands).

EXAMPLES

/*
* Make Sam get the same salary adjustment as Joe

*/
define rule exeuxiple_l is

on replace to EMP.salary where current.naune = •Joe"
do replace EMP (salary = new.salary)

where EMP.name = "Sam"

Atthe time Joe lecdves a salaiy adjustment, the event will becmne tnie and Joe*s cuneot instance and pro
posed new instance are available to the execution routines. Hence, his new salaiy issubstituted into the
action part ofthe rule which issubsequently executed. This iHt^wgates Joe*s salary ot toSam.

/*

* Make Bill get Joe's salary when it is accessed
*/

define rule example_2 is
on retrieve to EMP.salary

where current.name = "Bill"

do instead

retrieve (EMP.salary) where EMP.name = "Joe"

/*

* Deny Joe access to the salary of en^loyees in the shoe

01/23/93 95

DEFINE RULE(CX)MMANDS) DEFINE RULE(COMMANDS)

* department, (pg^userneune() returns the name of the current user)
*/

define rule exaii^le_3 is
on retrieve to EMP.salary

where current.dept = "shoe"

and pg_usemame() = "Joe"
do instead nothing

* Create a view of the en^loyees working in the toy depeurtment
*/

create TOYEMP(name = charl6, salary = int4)

define rule exeui^le_4 is
on retrieve to TOYEMP

do instead retrieve (EMP.name, EMP.salary)

where EMP.dept = "toy"

* All new employees must make 5,000 or less
*/

define rule example_5 is
on append to EMP where new.salary > 5000
•do replace new(salary = 5000)

SEE ALSO

postqueKcommands), remove nile(cominands), define view(commands).

BUGS

Excq>tions are not implemented in Version 4.2.

Theobject in a POSTQUEL rulecannot beanairayreference andcannot have paiametBfs.

Aside from the**oi<r field, system attributes cannot bereferenced anywhere ina rule. Among other things,
this iiteans that fiinctions of instances (e.g., **foo(emp)** where **emp*' is a dass) cannotbe calledanywhere
in a rule.

The where clause cannot have a from clause.

Only one POSTQUEL command can be specified in the action part ot a tiq)le rule andit can onfy be a
replacef append^ retrieve or delete command.

Therewrite rulesystnn doessuppmt multiple action rules as longas event is notretrieve.

Thequery rewrite rulesystem now supports most rulesemantics, andclosely parallds thetiq>le system. It
also attempts toavoid oddsemantics byrunning instead rules beftne iKXi>instead rules.

Both rulesystems store ^ ruletextandquery plans as textattributes. This implies thatcreation of rules
may fiiil if the rule (dus its various internal refxesentations exceed smne value that is on the mder of one
page (8KB).

01/23/93 96

DEFINE TYPE (COMMANDS) DEFINE TYPE(COMMANDS)

NAME

define type—define a newbase data type

SYNOPSIS

define type typename (interaalleiigth »(number Ivariable)*
[extenudlenglfa s (number Ivariable),]
input = input^fiinction,
output s output_funciion
[, element=typename]
[, delimiter » <charactef>]
[, default = "string"]
[, send s sendLfiinction]
[, receive=leceive.function]
[, passedbyvalue])

DESCRIPTION

Define type allows the user to register a new user data type with POSTGRES fOT use in the cunent data
base. Theuser who defines a type becomes its own». Typename is thename of thenew Qpeandmust be
uniquewithinthe typesdefined fOT thisdatabase.

Define type lequires the registration of two functions (using define fiotctionicomoajids)) before defining
the type. The rqnesentation ofa new base type is determined byinputJunction^ which converts the type's
»tema] representation toan internal representation usable by the (q)erators andfunctkms defined for the
type. Naturally, outputJunction poforms the reverse transformation. Both the input and ouqnit functions
mustbe declaredto takeone or twoarguments of type**any*'.

New base data types can be fixed Iragth, in which case intemallengfli is a positive integer, or variable
length, inwhich case POSTGRES assumes that the new type has the same foimat asthe POSTGRES-supplied
data type, "text". To indicate that a type is variable-length, set intemalleng;th to variable. The external
representation is similarly specified usmg theextemaiiength keyword.

To indicate that a type is an array and to indicate that a type has array elements, indicate dieQrpe of the'
array element using the element keyword. For example, todefine anarray oi4 byte integers ("int4"), spec
ify

element s int4

Toindicate thedelimiter to be used onarrays of thistype, delimitercanbe set to a specific character. The
default delimiter is the comma CO character.

Adefaultvalue is optionally available incase a user wants some specific bitpattern to mean "datanotlue-
senL"

The optional functions sendJunction and receiveJunction areused when theai^licatioo program request
ing POSTGRES services resides ona different machine. In this case, themachine onwhich POSTGRES runs
may use a different format fcv the data type than used on the remote machine. Inthis case itisai^iopriate
to convert data itemsto a standard form whensendingfitom the serverto die clientandconverting fiomthe
standard format to the machine qiecific format when thesaver receives the datafiom theclient If these
functions arenot specified, then it is assumed that the internal format of thetype is accqitable onall rele
vantmachine architectures. For example, single characters do not haveto be converted if passed fiom a
Sun-4 to a DECstation,but manyotha types do.

The optional passedbyvalue flag indicates that cqierators and functions which use this data type should be
passed an argument by value rathathan by reference. Note that only types whose internal rqxesentadtHi is
at mostfourbytes maybepassed by value.

01/23/93 97

DEFINE TYPE(COMMANDS) DEFINE TYPE(COMMANDS)

For new base types, a usercan define operatiHS, functions and aggregates using tbe appmpnai& fiidlities
desoibed in tiiis seciioo.

ARRAY TYPES

l\vo generalized built-in functions, array^in and anay^out, existfor qukk creation of variable-length
array types. These functionsoperate on aiiays ofany existingPOSTGRES type.

LARGE OBJECT TYPES

A **regular^ POSTGRES typecan onlybe 8192bytesin length. If youneeda largertype youmustcreatea
LargeObject type. The interfiice for these types is discussed at lengthin Section7, the largeobject inter-
fitce. The length of all largeobjecttypesis alwaysvariable,meaning the intemallength for largeobjectsis
always -1.

EXAMPLES

/*

* This command creates the box data type and then uses the
* type in a class definition

*/

define type box (intemallength = 8,
input = iry_procedure_l, output = my_procedure_2)

create MYBOXES (id = int4, description = box)

/*

* This command creates a variable length array type with
* integer elements.

*/

define type intdarray
(input s array_in, output = array_out,
intemallength s variable, element s int4)

create MYARRAYS (id = int4, numbers = int4array)

/*

* This command creates a large object type emd uses it in
* a class definition.

*/

define type bigobj
(input = lo_filein, output = lo_fileout,

intemallength s variable)

create BIG_OBJS (id s int4, obj = bigobj)

RESTRICTIONS

Typenames cannot begin with the underscore character(**_**) and can only be IS charactershmg. This is
because POSTGRES silently creates an array type for each base type with a name consisting of the base
type's name prepended with an undersctne.

01/23/93 98

DEFINE TYPE (COMMANDS) DEFINE TYPE (COMMANDS)

SEEALSO

define fiinction(conunands), define operatorCconunands), remove Qrpe(c(Mnmands), introducticm(laise
objects).

01/23/93 99

DEFINE V1EW(C0MMANDS) DEFINE V1EW((X>MMANDS)

NAME

define view—oonstnictaviitualclass

SYNOPSIS

define view view_name
([dom_naine_l s] exinesskm^l

{f[dom.nameJ =] expiessionj})
[fromfiromjist]
[wheiequal]

DESCRfPnON

Defineview will definea viewof a class. This viewis not physically inaffiria1i?aBd; insteadthe nde system
is usedto support view inocessing as in [STON90]. Specifically, a query rewrite retrieve rule is automati
cally generated to sujqxjrt retrieve operations on views. Then, the usercan add as manyupdaterotesas te
wishes to ^lecify the jnocessing of update opoations to views. See [STON90] for a detailed discussion of
this point

EXAMPLE

* define a view consisting of toy department eit^loyees

♦/

define view toyemp (e.name)

from e in emp

where e.dept = "toy"

* Specify deletion semantics for toyen^

*/

define rewrite rule exeunplel is
on delete to toyemp

then do instead delete emp where emp.OID s current.OID

SEE ALSO

create(commands), define rule(commands), postquel(ccHnmands).

01/23/93 ICQ

DELETE(COMMANDS) DELETE(CX)MMANDS)

NAME

delete—delete instances fiom a class

SYNOPSIS

delete instance_variable [from firom_list] [where qual]

DESCRIPTION

Delete lemoves instances which satisfy the qualification, quo/, firom die class specified by
instancejMriable. /ns/ance_vBnflWe isddier aclass name oravariable asagnedbyIfthe qual
ification is absent, theeffect is to delete all instances in theclass. Theresultis a valid, butempQr class.

You musthave writeaccess to dieclassin orderto modify it, as wdl as readaccess to anyclasswhose val
uesare readin the qualification (seechange ac/(commands).

EXAMPLE

/*

* Remove all en^loyees who make over $30,000
*/

delete eiiq> where emp.sal > 30000

/♦

* Clear the hobbies class

*/

delete hobbies

SEE ALSO

destroy(commands).

01/23/93 iOl

DESTOOY(COMMANDS) DESTROY(COMMANDS)

NAME

destn^—destroy existingclasses

SYNOPSIS

destroy classname-1 (, classname-i)

DESCRIPTION

Destroy removes classes from thedatabase. Only itsowner may destn^ a class. A classmay be emptied
of instances* but not destroyed,by usingde/ete(oommands).

Ifaclassbeingdestrpyedhassecondaiyindices on it, then they willberemoved first Hie removal ofjusta
secondary index will not affect the indexed class.

This command may be used to destrc^ a version class which is not a parent d some other versitMi.
Destroying a classwhich is a parrot of a verskMi class is disallowed. Instead, me/ge(oommands) should be
used. Moreover, destrc^g a class whosefields are inherited by otherclasses is similarly disallowed. An
inheritance hierarchy mustbe destroyedfirom leaf levelto root level

The destruction of classes is not reversable. Thus, a destroyed class will not be recoveredif a transaction
which destroys thisclass fiuls to commit In addition, historical access to instances in a destroyed class is
not possible.

EXAMPLE

/*

* Destroy the enp class

*/

destroy emp

* Destroy the emp and parts classes

♦/

destroy emp, parts

SEE ALSO

deIete(cominands), merge(commands), remove index(cominands).

02/14/94 102

DESTROYDB(COMMANDS) DESTROYDB(COMMANDS)

NAME

destroydb — destroy an existing database

SYNOPSIS

destroydb dlmame

DESCRIPTION

Destroydb removes the catalog entries for an existing database and deletes diedirectmy oxitaining the
Hata Itcan only beexecuted bythedatabase administrate' (see creoredbCcommands) fordetails).

SEE ALSO

createdb(commands)« destroydb(unix).

BUGS

This quey should NOT beocecuted interactively. The des/roydb(unix) script should beused instead.

01/23/93 103

ENEKCOMMANDS) END(CX)MMAN1>S)

NAME

end—commit the cunent transaction

SYNOPSIS

end

DESCRIPTION

This commands commits the current transaction. AU changes made by the transaction becomevisible to
others and are guaranteed to be durable ifa crash occurs.

SEE ALSO

abort(commands), b^in(commands).

01/23/93 104

EXTEND INDEX(COMMANDS) EXTEND INDEX(CX)MMANDS)

NAME

extend index—extend a partial seoxidaiy index

SYNOPSIS

extend index index-name[where qual]

DESCRIPTION

This commandextoids the existingpartial in^ called index-name.

If a qual is given, the ind» willbe extended to cover all instances that satisfy die predicate ^ecified by
qual (inaddition to theinstances theindex already covers). If noqual is given, the index willbe extended
tobea complete index. Note thatthepredicate may onlyrtfer toattributes of tte class onvdiich thespeci
fiedpartial index was defined(see d^ne f/idcc(oommands)).

EXAMPLE

/*

* Extend a peortial index on employee salaries to include
* all employees over 40

♦/

extend index empsal where emp.age >39

SEE ALSO

define index(commands), remove index(comniands).

02/13/94 105

FETOKCOMMANDS) FETCH(COMMANDS)

NAME

fetch—fetchinstance(s) from a poftal

SYNOPSIS

fetch [(forward ibackward)] [(number Iall)] [hipcntaLhame]

DESCRIPTION

Fetch allows a user to retrieve instances from a portal named portaljuane. The number of instances
retrieved is specified bynumber. If the number instances remaining in the portal is less than number,
then only those available are fetched. Substituting diekeyword all in place of a number will cause all
lemaiiiing instances in theptutal to be retrieved. Instances may be firtched in bothforward andbadcward
directkms. Thedefruih direction is^nvoni.

Updating datain a pmal is not suj^iocted by POSTGRES, because mq^g portal updates back to base
, classes is impossible in general as with view updates. Ouisequently, users must issue eiqilicit replace com

mands to update data.

Portals may cuily be used inside of transaction Uocks marked by begf>f(c(Hnmands) and e/id(c(Mnmands)
because thedatathattheystcue spans multiple userqueries.

EXAMPLE

/*

* set up and use a portal

*/

begin \g

retrieve portal myportal (pg_user.all) \g
fetch 2 in niyportal \g
fetch all in nyportal \g
close niyportal \g

end \g

/*

* Fetch all the instances available in the portal FOO
*/

fetch all in FOO

/*

* Fetch 5 instemces backward in the portal FOO
*/

fetch backward 5 in FOO

SEE ALSO

begin(commands), end(commands), close(commands), move(commands), retiieve(conunands).

BUGS

Currendy, the smallest transaction inPOSTGRES isa single POSTQUEL command. It should bepossible for
asingle fetch to be a transaction.

01/23/93 106

LISTEN(COMMANDS) LISTEN(COMMANDS)

NAME

listen—listen for notification on a relation

SYNOPSIS

listen class.name

DESCRIFTIGN

listen is used to registo* the cmrent backend as a listener on therelation classjiame. When theconunand
notify classjume iscalled ddierfipcmi within a rate at the query level, the fomtoid triplications coire-
sptxtding tothe listening back^ids arenotified. When the badcoid process exits, diisr^istiation iscleared.

This event notificatitM) is perftmned through the UBPQ protocol and frontend air>ltcatira interfEice. The
{qr>lication program must ^licitly poU a UBPQ global variable, PQAsyncNot^Waitingt fflid call the rou
tine PQnotifies inorder tofind outthename oftheclass to which a given notificatkNi coneqiKXids. If diis
code is notincluded in thea]r>lication, theevent notification will bequeued andnevo'be[Rocessed.

SEE ALSO

define raIe(commands), notify(commands), ieirieve(commands), libpq.

BUGS

Thoeisnoway toun-Bsten except todrop the connection (Le., restart die backend server).

The monitorifum) conunanddoes not poll ftu* asynchronousevents.

03/12/94 107

LOAD(COMMANDS) LOAD(COMMANDS)

NAME

load—dynamically loadanobject file

SYNOPSIS

load "filename"

DESCRIPTION

Load loads an object (or ".o") file intoPOSTGRES's address space. Once a file is loaded, all functions in
thatfilecanbe accessed. Thisfunction is usedin siqjpoit of ADT*s.

If a file is notloaded using theloadcommand, thefile will be loaded automatically thefirst time thefunc
tion is called byPOSTURES. Loadcanalso beused toreload anobject file if it hasbeen edited andrecom
piled. Only objects created fiomClanguage files aresui^x)ftBd at this time.

EXAMPLE

/*

* Load the file /usr/postgres/demo/circle.o
*/

load "/usr/postgres/demo/circle.o"

CAVEATS

Functions in loaded object files should not call fiuictkMis inother object files loaded through the loadcom
mand,meaning, f<v examine, that all functions in file A shouldcall each other, fiinctitms in die standardor
math litoaries, (H" in POSTURES itself. They shouldnot call functitxis defined in a different loadedfile B.
This is because if B is reloaded, thePOSTURES loader is not"smart" enough torelocate diefails fiom the
functions inAinto thenew address space ofB. IfBisnotreloaded, however, there will notbeapioblem.

OnDECstations, you must use /bin/cc with the**-G 0"optkm when compiling object files tobe loaded.

Note that if you are prating POSTURES to a new platfram, the load commandwill have to wrak in rader to
support ADTs.

01/23/93 108

MERGE(OOMMANDS) MERGE(COMMANDS)

NAME

meige—merge two classes

SYNOPSIS

merge classnamel into classnaine2

DESCRIPTION

Merge will combine a version class, classnamel, with its parent, classname2. If classname2 is a base
class, then this operation merges a differently encoded offset, classnamel, into its parent On the other
hand, if classname2 is also a version, then this operation combines two (fifferentially encoded offsets
togetherintoa singleone. In eithercaseanychildtenof classnamel becomechikbeo of classname2,

A version class may not be merged into its parent class when the parent class is also the parent of another
version class.

However,merging in the reverse direction is allowed. Specifically,merging the psent classnamel, with a
ver^n, classname2, causes classname2 to becmne disassociated from its parmt As a side effect, class
namel will be destroyed if is not the parent of some other,version class.

EXAMPLE

/♦

* Combine office class and employee class

*/

merge office into employee

SEE ALSO

create version(commands), destroyCcommands).

BUGS

Merge is not implemented in Version A2.

02/12/94 109

MOVE(CX)MMANDS) MOVE(COMNiANDS)

NAME

move—move the pointer in a iXHtal

SYNOPSIS

move [(forward Ibackward)]
[(number Iafl i to (number i lecofdLqual))]
[inportaLname]

DESCRIPTION

Moveallowsa userto movethe instancepointer withinthe pmtal namedporttdjiame* Eachpodal has an
instance pointer, which points to the previous instance to be fetched. It atwa^ points to before the first
instancewhen the portal is firstcreated. Thepointercanbe movedjb/ward or tedbvoni. Itcmbemoved
to an absolute position or over a certain distance. An absoluteposition may be specifiedby using to; dis
tance is q>ecified by a number. Recordjputi is a qualification without instance variables, aggregates, exset
expressions whichcan be evaluated completely on a singleinstance in theportal

EXAMPLE

I*

* Move backwards 5 instances in the portal FOO

*/

move backward 5 in FOQ

/*

* Move to the 6th instance in the portal FOO

*/

move to 6 in FOO

SEE ALSO

close(commands), fetch(commands), retrieve(commands).

BUGS

Move is not implemented in Versi(m A2. The pcntal pdnter may be moved using/;/ch(coimnands) and
ignming its return values.

02/12/94 110

NOTIFY(COMMANDS) NOTIFYCCOMMANDS)

NAME

notify— signalall firontends and backends listeningon aclass

SYNOPSIS

notify class_iuune

DESCRIPTION

notify is used toawaken alltackends and ctxisequently allfrontends that have executed listenicomaaands)
on ctassjiame. This can be used either within an instance-level rule aspart of the action body orfrom a
normal query. When used fimn within a normal query, this can bethought ofas interprocess communka-
tion(IPC). When used from witfiin a rule, this can bethought ofasanaleiter mechanism.

Notice that the mere fret that a notify has been executed does not imply anything in particular about the.
state of the class (e.g., that it has been updated), nor does the notificatimi jaotocol transmit any useful infor
mation otherdian theclass name. Therefore, all notifydoesis indicate thatsomebackend wishes its peers
toexamine classjtame insome ai^licatkm-qtecific way.

This event notificatimi is performed dnough the UBPQ protocol and fionteiKi qiplkation interfioe. The
sq>plication program must explicitly poll a UBPQ global variable, PQAsyncNot^Waitingt and call the rou
tine PQmtifies inorder tofind out the name of the class towhich a given notification coneqxmds. If this
code isnotincluded intheapplication, the event notification will bequeued andnever beinocessed.

SEE ALSO

definerule(commands), listen(commands), libpq.

03/14/94 111

PURGE(CX)MMANDS) PURGE(CX)MMANDS)

NAME

puige—discard historical data

SYNOPSIS

pui^e classiame [before abstime][after rdtiiiie]

DESCRIPTION

Poige allowsa uso' to specifydie historical retention properties of aclass. If the datespecified Isan {Abso
lute time such as **Jan 1 1987**, POSTGRfS willdiscard tuides whose validity eiqdied befixe the indicated
time. Pui^e withno b^ore clause is equivalent to '"purge befixenow**. Untilqiecified witha purgecom
mand, instancepreservationde&ults to Torever**.

The user nu^ purgea class at any time as long as the purgedate neverdecreases. POSTGRES willenforce
this restriction,silently.

Note that the purge commanddoes not do anythingexceptset a parameterfor systemoperation. Use vac-
uu/n(commands) to enftxce thisparameter.

EXAMPLE

/*

* Always discard data in the EMP class

* prior to January 1, 1989
♦/

purge EMP before "Jan 1 1989"

/*

* Retain only the current data in EMP

*/

purge EMP

SEE ALSO

vacuum(commands).

BUGS AND CAVEATS

Error messagesare quite unhelpful. A complaintabout "inccMisistHit times** followed 1^ sevoal nine-digit
numbersindicatesan att^pt to "back up** a purge date on a relation.

You cannot purge certain system catalogs (namely, "pg.class**, "pgjattribute**, "pgjun**,and "pgjamop'*)
due to circularities in the system catalog code.

Thisdefinition of the purge corrunand is reallyonly usefulfx non-archived relatkms, since tuples will not
be discarded from archive relations (they are never vacuumed).

02/08/94 112

REMOVE AGGREGATE(COMMANDS) REMOVE AGGREGAIE(CX)MMANDS)

NAME

lemove aggregate—remove the definitionof an aggregate

SYNOPSIS

remove aggregate aggname

DESCRIPnON

Remove aggr^te will remove aU referaice toanexisting aggregate d^nition. Tb execute fins command
the cunent user must be filethe owner of the aggregate.

EXAMPLE

r

* Remove the average aggregate

*/

remove aggregate avg

SEE ALSO

defineaggregaie(commands).

01/23/93 113

REMOVE FUNCnON(COMMANDS) REMOVE FUNCnON(COMMANDS)

NAME

remove function—remove a user-defined C functkui

SYNOPSIS

removefkinctionfuiictioq_name([f7pe-l {*type-n)])

DESCRIPnON

Remove ftiiictioii wHl remove r^erences to an existing C fimctioo. Tb execute diis command the user
mustbe the ownerof the function. The iiqxitargumenttypesto the function mustbe specified, as only the
function with thegivennameandargument typeswillbe removed.

EXAMPLE

/*

* this command removes the square root function

*/

remove function sqrt(int4)

SEE ALSO

define function(commands).

BUGS

No checks are made to ensure that types, operators or access mediods that rely oa the functionhave hcea
removed first

03/12/94 114

REMOVE INDEX(COMMANDS) REMOVE INDEX(CX>MMANDS)

NAME

remove index—lerooves an index fnxn POSTGRES

SYNOPSIS

remove index index^name

DESCRIPTION

Thiscommand drc^ anexisting index from the POSTGRES system. Toexecute thiscommand youmust be
the owner of the index.

EXAMPLE

/*

* this commeuid will remove the "en^_index" index

*/

remove index en^.index

SEE ALSO

define index(commands).

03/12/94 115

REMOVE OPERArOR(CX)MMANDS) REMOVE OPERArOR(COMMANDS)

NAME

remove operator—remove an operatm from the system

SYNOPSIS

remove operator opr.desc

DESCRIFTIQN

Ihis command drops an existing operator from the database, lb execute this command you must be the
owner of the operator.

Oprjiesc is the name of the operatm to be removed followed by a parenthesized list of the qwrand types
for the cqierator. Ihe left or right type of a left or right unary operator, respectively, may be specified as
none.

It is the user's responsibility to remove any access methods, operator classes,etc. that rely on the deleted
operator.

EXAMPLE

/*

* Remove power operator a'^n for int4

*/

remove operator " (int4, int4)

/*

* Remove left unary operator !a for booleans

*l

remove operator ! (none, bool)

* Remove right unary factorial operator al for int4

*/

remove operator ! (int4, none)

/*

* Remove right unary factorial operator a! for int4
* (default is right unary)

*/

remove operator i (int4)

SEE ALSO

define operat(H(commands).

02/01/94 116

REMOVE RULE(COMMANDS) REMOVE RULE(CX)MMANDS)

NAME

remove rule - removes a current rule from POSTGRES

SYNOPSIS

remove [instance I rewrite] rule rule_name

DESCRIPTION

This cOTimand drops the rule named nile_name frnn the ^Kcified POSTGRES rule system. POSTGRES
will immediately cease enf(»cing itand wiU puige itsdefinition firerni the system catalogs.

EXAMPLE

/*

* This exeunple drops the rewrite rule exainple_l
*/

remove rewrite rule example_l

SEE ALSO

define rule(commands), remove view(cominands).

BUGS

Once a rule isdropped, access tohisttxical infixmatkMi therule has written may dist^Jpear.

01/23/93 117

REMOVE TYPE(COMMANDS) REMOVE TYPE(CX)MMANDS)

NAME

remove type—remove a user-defined typefromthesystem catalogs

SYNOPSIS

remove type typename

DESCRIFTIGN

Hiis command removes a user type from the system catalogs. Only the owner ofatype can remove it

It is the user's reqxmsibility to remove aity opeiatois, functions, aggr^ates, access m^bods, sub-types,
classes, etc. that use a deleted type.

EXAMPLE

/•

* remove the box type

*/

remove type box

SEE ALSO

intioduction(commands), define type(commands), remove (q)eratoi(commands).

BUGS

It is Stillpossible to remove built-in types.

01/23/93 118

RENAME(COMMANDS) RENAME(COMMANDS)

NAME

rename—rename a class or an attribute in a class

SYNOPSIS

rename classnamel to classname2

rename attnamel in classname [*] to attname2

DESCRIPTION

The rename command causes the nameof a class or attributeto changewithoutchanging any of the data
contained in the affected class. Thus, the class or attribute will lemain of the same type and size after this
command is executed.

In Older to rename an attribute in each class in an entire inheritance hieiaichy, use the classname of the
superclass and stipenda ***". (By default, the attribute will not be renamedin any of the subdasses.) This
should always be done when changing an attribute namein a superclass. If it is tKM. queries on the inheri
tance hierarchy such as

retrieve (s.all) from s in super*

will not work because die subclasseswill be (in effect) missingan attribute found in die superclass.

You must own the class being modified in (nder to rename it (x part of its schema. Renaming any part of
the schema of a syston catalog is not permitted.

EXAMPLE

/*

* change the emp class to personnel

*/

rename emp to personnel

BUGS

/*

* change the sports attribute to hobbies

*/

rename sports in emp to hobbies

/*

* make a change to 2ui inherited attribute

*/

rename last_name in person* to family_name

Execution of historical queriesusing classesand attributes whose names have changedwill produceinow-
rect results in many situations.

R^iaming of types, operates, rules, etc.. should also be siq^xsted.

02/08/94 119

REE^J^(COMMANDS) REPLACE(CX)MMANDS)

NAME

replace—rq)lace valuesofattributes in a class

SYNOPSIS

replace instanoe.variable (att_nanie-l = expressioo>l
{, att.name-i = expression-!))

[fhwifromjist]
[wfaerequal]

DESCRIFTION

Replace changes thevalues of theattributes specified in targetJist forall instances which satisfy theqoali-
ficatkxu qual. Onlytheattributes to be modified needappearin targetJist,

Anay references use the samesyntaxfoundin rnrieveCcommands). That is, eithersinglesnsy elements, a
range ofanay elements or the entire array may be r^daced with a single query.

Youmust have write access to the class in oder to modify it, as well as read access to any class whose val
ues are mentioned in the target list or qualification(see change ac/(commands).

EXAMPLES

/*

* Give all enployees who work £or Smith a 10% raise

*/

replace en^(sal =1.1 * emp.sal)

where en^.mgr = "Smith"

/*

* Replace the middle element o£ a 3x3

* noughts-and-crosses board with an O.

*l

replace tictactoe (board[2][2] = "O")

where tictactoe.game = 1

* Replace the entire middle row of a 3x3

* noughts-and-crosses board with Os.

.

replace tictactoe (board[2:2][1:3] = "(0,0,0)")

where tictactoe.geune = 2

/*

* Replace the entire 3x3 noughts-and-crosses

* board from geune 2 with that of game 4

*/

replace tictactoe (board = ttt.board)
frmo ttt in tictactoe

where tictactoe.game = 2 and
ttt.g2une = 4

06/13/93 120

REPLAGE(COMMANDS) REPLAaB(CX)MMANDS)

SEEALSO

postquel(cofnmaiids)» create(c(Hnmands), re|>lace(comiiiands), ietrieve(c(xniDiands).

(W13/93 121

RETRIEVECCOMMANDS) RETWEVE(COMMANDS)

NAME

retrieve—retrieve instances firom aclass

SYNOPSIS

retrieve

[Onto classname [areliive_mode] I
portal pcHiaLnameI
ipcrtal ixxtal_name)]

[unique]
([attr.name-1 =] oquession-l (, [atir_name-i s] oquession-i))
[fhunfiomjist]
[vrherequal]
[sort by attr.name-l [usingoperator]

{, attr_name-j [usingopeiaUH-])]

DESCRIPTIGN

Retrieve will get all instances which satisfy the qualification, qua/, compute the value of eachelement in
the taiget list, and either (1) return them to an aj^cation program through one of two different kinds of
portals or (2) store them in a new class.

If classname is specified,the result ofthe query will be stmed in a newclass with the indicatedname. If an
archive specification, archivejnode of lights heavy, or noneis not specifed, thenit defiuihs to lightarchiv
ing. (This defiuiltmay be changed at a site by the DBA). The current user will be the owner of the new
class. The class will have attribute names as specifiedin the taiget list A class with this name owned by
the user must not already must The keywmd aD can be used when it is desired to retrieve aO fields of a
class.

If no result classnameis specified, then the result of the query will be available on the specified ptntal and
will not be saved. If no portalnameis specified, the blankportal is used by defiuilt For a portalspecified
with the ipcrtal keyword, retrievepasses data to an application withoutconversion to externalformat Fc^
a pcmal specified widi the portal kqrwoid, retrieve passesdata to an application after firstccmverting it to
the external iqnesentation. For the blank pcntal, all data is converted to external format Duplicate
instances are not ranoved whmi die result is di^layed through a pmal unless the qptional uniqae tag is
appended, in whichcase the instances in the targetlist are sortedacccnding to the sort clauseandduplicates
are removed before being returned.

Instances retrievedinto a portal may be fetched in subsequmit queriesby using the fetch command. Since
the results of a retrieve portal span queries, retrieve portal may only be mcecuted inside of a b^n/end
transaction block. Attempts to use named petals outside of a transactkm block will result in a warning
message fipom the parser, and the query will be discarded.

Tire sort clauseallowsa user to specifythat he wishesthe instances sortedaccording to the corresponding
operator. This operatormustbe a Innary one returning a boolean. Multple sort fieldsare allowed and are
applied firom left to right

The taiget list specifies the fields to be retrieved. Eachattrjutme specifies the desiredattribute or pmtion
of an array attribute. Thus, each attrjiame takes the form

class__naine. att_name

or, if the user only desires part ofan array,

/*

* Specify a lower and upper index for each dimension

* (i.e., clip a range of array elements)

03/13/94 122

REnUEVE(COMMANDS) REnUEVE(COMMANDS)

*/

class_neune.att_naine[llndex-l:ulndex-l].. [llndex->i:ulndex-i]

/*

* Specify an exact array element

*/

class_name.att_name[ulndex-l]..[ulndex-i]

where each Undexor ulndex is an integer constant

When youretrieve an attribute which is of a ocnnplex type, diebehavior of dieqrstem dqpends on whether
youused"nested dots" to[Roject outattributes of thecomplex typeor not Seetheexamples below.

Youmust haveread access to a class to read its values(see change ac/(cominands).

EXAMPLES

/*

* Find all employees who make more than their manager
*/

retrieve (e.name)

from e, m in emp

where e.mgr = m.neune

and e.sal > m.sal

/*

* Retrieve all fields for those employees who make

* more than the average salary

♦/

retrieve into avgsal(ave = floatSave (emp.sal}) \g

retrieve (e.all)

from e in emp

where e.sal > avgsal.ave \g

/*

* Retrieve all employee names in sorted order

*/

retrieve unique (enp.name)
sort by neune using <

I*

* Retrieve all enployee names that were valid on 1/7/85
* in sorted order

*/

retrieve (e. nzune)

from e in emp["January 7 1985"]

sort by name using <

03A3/94 123

REnUEVE(COMMANl>S) RETRIEVE(CX)MMANDS)

/♦

* Constxoict a new class, raise, containing 1.1

* times all en^loyee's salaries
*/

retrieve into raise (salary s l.l * emp.salary)

/♦

* Do a retrieve into a portal

*/

begin \g

retrieve portal myportal (pg_user.all) \g
fetch 2 in myportal \g
fetch all in myportal \g

close myportal \g

end \g

/*

* Retrieve em entire 3x3 array that represents

* a particular noughts-and-crosses board.
* This retrieves a 3x3 array of char.

*!

retrieve (tictactoe.board)

where tictactoe.geune = 2

/♦

* Retrieve the middle row of a 3x3 array that
* represents a noughts-and-crosses board.
* This retrieves a 1x3 array of char.

*/

retrieve (tictactoe.board[2:2][1:3])

where tictactoe.game = 2

/*

* Retrieve the middle element of a 3x3 array that

* represents a noughts-emd-crosses board.

* This retrieves a single char.

*!

retrieve (tictactoe.board[2][2])

where tictactoe.geune = 2

/*

* Retrieve all attributes of a class "newen^" that

* contains two attributes, "name" and a complex type

* "memager" which is of type "newemp". Since each
* complex attribute represents a procedure recorded

03/13/94 124

R£IiaEVE(COMMANDS) REI1UEVE(C0MMANDS)

* in "pg^proc", the system will return the object IDs
* of each procedure. In this exzunple, P0ST6RES will
* return tuples of the form ("carol", 34562),

* ("sunita", 45662), and so on. The "manager" field
* is represented as an object ID.
*l

retrieve (newenp. name, newemp.mauiager)

/*

* In order to see the attributes of a complex type, they
* must be explicitly projected. The following query will
* return tuples of the form

* ("carol", "mike", 23434), ("sunita", "mike", 23434)

♦/

retrieve (newemp.name, newemp.manager.name,

newemp .manager .meuiager)

SEEALSO

ai^>eiid(comiiiands), close(cominands), create(o»n]nands), fetch(conuiiaiids), postqueKcommands),
repIaceCcommands).

BUGS

Retrieve into does not delete duplicates.

Archivejnode is not implemented in V(»sion 4.2.

If the backend clashes in the course of executing a retrieve into, the class file will remain <m di^. It can
be safely removed by the database DBA, but a subsequent retrieve into to the same name will fiul with a
ayptic error message about "BlockExtend".

Retrieve iportal returns data in an architecture dependent ftmnat, namely that of the server on which the
backend is running. A standard data fonnat, such as XDR, should be adopted.

Aggr^ate functions can only appear in the taiget list

03/13/94 125

VACUUM((X)MMANDS) VACUUM(CX>MMANDS)

NAME

vacuum—vacuum a database

SYNOPSIS

vacuum

DESCRIPTION

Vacuum is thePOSTGRES vacuum cleano: It opens eveiy class m Ae database, moves deleted leccxds to
thearchive foi archived rdations, cleans outrecoids foun aborted transactions, andupdates in the
system catalogs. Thestatistics maintained include thenumber oi tuples andnumber oi pages stored in all
classes. Running vacuum periodically will increase POSJORES*sq)eed inprocessing userqueries.

Tte (^n database is theone that is vacuumed. Ibis is a newPOSTQUEL oommand in Vetsion 42; earlier
versions of POSTGRES hada sqmate program for vacuuming databases. That program hasbeen replaced
by thevacuumCunix) shellscript

We reamimend thatluoductkm datatases be vacuumed nightly, inordertokeepstatistics rdativdy curroit
The vacuum query may be executed at any time, however. In particular, after copying a large into
POSTGRES deleting a large number of records, it may bea goodideatoissuea vacuumquery. Thiswill
update thesystem catalogs with theresults of all recent changes, andallow thePOSTGRES query optimizer
to makebetterchoicesin jdanning userqueries.

SEE ALSO

vacuum(unix).

01/23/93 126

INTRODUCnONOJBPQ) INTRODUCnONOJBPQ)

SECTIONS —LffiPQ

DESCRIPTION

LIBPQ is theiHogiaininer*s intei&ce to POSTORES. UBPQ is a setof litoaiyfoutines which allow qoeiies
to passto thePOSTGRES bactendandinstances to leturn through an IFCchannel.

Ihis version oi the docommtation is based (mi the C liteuy. Three diort programs are listedat die midof
thissection asexamples ofUBPQ pfogramming (though notnecessarily of good programming).

Thereare several examples of UBPQ implications in the following directcvies:

./src/regress/demo

./src/regress/regress

./src/regress/video

./src/bin/monitor

./src/bin/fsutils

CONTROL AND INITIALIZATION

Environment Variables

The fd^owing mivironmmit variables can be used tosetup deCault values foran enviroommit andto avoid
hard-coding datalKise namesinto an implication]HOgiam:

PGHOST sets the ddieuilt server name.

PGDATABASE sets the default POSTGRES database name.

PGPORT sets the defaultcommunication port with the POSTGRES backend.

PGTTY setsthefile or ttyonwhich debugging messages from thebackend server aredisplayed.

PGREALM sets the Kerberos realm to use with POSTGRES, if it is different frcun the local realm. If
PGREALM is set, POSTGRES applications will attempt authentication with servers fOT
diisrealm andusesqiarateticket files toavoid ccmflicts with localtidom files. Thisenvi
ronment variable is mily used if Kerberos authenticatioo is miabled; see introduc-
ifi>n(unix) for additional infmmation on Kerberos,

Internal Variables

The following internal variaUes of UBPQ can be accessed by the programmer

char *PQhost;

char *PC^rt = NULL;

char *PQtty;

char *PQoption;

char *PQdatabase;

/* the server on which POSTGRES

backend is running. */

/* The communication port with the
POSTGRES backend. */

/* The tty on the PQhost backend on

which backend messages are

displayed. */

/* Optional arguements to the backend */

/* backend database to access */

03/12/94 127

lNlRODUCnON(UBFQ)

int PQportset = 0;

int PQxactid = 0;

int PQtracep =0;

INIKODUCnONCLIBPQ)

/* 1 if communication with

backend is established */

/* Transaction ID of the current

treuisaction •/

/* 1 to print out front-end

debugging messages */

int PQAsyncNotifyWaiting = 0; /* 1 if one or more asynchronous
notifications have been

triggered */

char PQerrormsg[]; /* null-delimited string containing the

error message (usually from the backend)

when the execution of a query or function
fails */

QUERY EXECUTION FUNCTIONS

The following routines ctxitrol die execution ofqueries fircun aC piogiani.

PQsetdb Make the specified database the airrpjit Hatahaw and reaef lymmimiftflrinn iising PQrfsef
(see below).

void PQsetdb(dbneune)

char *dbneune;

PQdb Returns the name of the POSTGRES database being accessed, orNULL if nodatabase is
open. Only (Hie database canbeaccessed at a time. Ibe database name is a string lim
ited to 16 characters.

char *PQdb()

PQreset Reset the communication port with the backend in case of errms. This function will
close theIPG socket ccMinection to thebackend thereby naiiging thenext PQexec nail to
ask for a new one finom thepostmaster. When die noiioes the socket was closed
it will exit, and when thepostmaster is asked f(v the new connection it will start a new
backend.

void PQreset()

PQfinlsh Close (XMnmunication pOTts with the backentL Terminates ctHiimunicatkMis and frees up
the memcxytakoi up by die UBPQ buffen

void PQfinishO

PQfta Send a function call to the POSTGRES backend. Provides access to the POSTGRES fast
path facility, a trapdoor into the system internals. See ^ FASTPATH section of the
manual

0Vl2m 128

INTRODUCnON(UBPQ) INTOODUCnON(LBPQ)

Hiefittd argument is the object identifier of the function to be executed, resultJen and
restUtJfttfqiecify the ^spected size (in bytes) d the function return value and a buffer in
which to load die return value. The actual size of die returned value will be loaded into
dieqiaoe pointed to actualjesultjen if it isa valid pdnter. resultjypediOQld beset
to 1 if the return type is an integer and 2 in aU other cases, args and nargs specify a
pointer to a PQAigBlockstructure(see

.. ./src/backend/tn^/libpq.h

formore details) andthenumber ofarguments, respectively.

PQfh returns a string containing diecharacter "G" when a return-value hasbeen loaded
into resultos if the function renimed nodiing. PQfh returns a NULL pointer
andloadsPQerrormsg if anyestat (fatal<x iKXhfatal) occurs.

PQfh returns anerror if resultJ}ttfisnot large enough tocontain the returned value.

char *PQfn(fnid, result.buf, result_lGn,
actual_result__len,

result_type, args, nargs)
int fnid;

int *result_huf;

int result_len;

int *actual_result_len;

int result_type;
PQArgBlock *args;

int nargs;

PQexec Submitaquery toPOSTGRES. Returns a status indicatororanenormessage.

If the query returns data (e.g.,/e/cA), PQexec returns a string consisting of the character
foUowed by thenameoS theportal buffer.

If the query does not return any instances, as m the case with update queries, PQexec
will return a string consisting of the character X** followed by the command tag (e.g.,
•XTtEPLACE**).

If a **copy from stdin** or **ccrpy to stdout** query is executed (see co/^commands) for
mrae details).win return thestrings "DCOPY" and-BCX)PY", respectively.

A string beginning with the character **r indicates that the server has finished soiding
theresdts of a multi-query command (e.g., hasfinished processing an asynchronous pm*-
tal command).

If a non-fiital emH* occurred during the execution of the query, PQexec willr^um (ftn*
histtHical reasons) the character and loadan errormessage intoPQerrormsg. If a
frtal error occurred (Le., the backend crashed), PQexec returns the character and
loads an errcvmessagewsoPQerrormsg.

char *PQexec(query)

char *query;

pQFlushl The frontend/backend protocol has a serious flaw inthat the queries executed when using
and Fgexec cancauseseveral queryreqxMises to comeback to the fronteod. Fcu

03/12/94 129

INTRODUCnONCUBPQ) INT»ODUCnON(UBPQ)

escample, during the definition ofa view, the server actually executes several queries on
itsown to modify the system catalogs. Unfiortunately, the implementation of this was
botched and these queries leturo status messages to the fionteod of their own. If the
frontend application only reads one re^onseandthen goes onto execute more queries,
these extra reqxMises sit in themessage queue andthefitontend will readthese leftovers
insteadof readingthe responses firom its latestqueries.

If you aren'tcompletely positive that a calltoPQexec won'tdosomething nKue conq)li-
catedthana simple retrieve^ you should probably wrap it in a kx^ that{uocesses
and reqxmses in the usual way,but also perfonns

result = PQexec(• •); /♦ dunniy query */
•i-fdummies_sent;

after receiving each goodprotocol result When thefirstcharacter of a PQexec resultis
T, you know you haverecdved die last result and have startedreceiving reqionses to
your dummy queries, lb get rid of the T protocol rehouses that are nowstuffed into
yourmessage bufifo*, callPQFtushI withdie numb^ of dummyqueriesyou sent

This is hcurendously complicatedand should be fixed. Nfeanvriiile, you shouldlook at

.../src/bin/monitor/monitor.c

to see an example of a ixogram that handles this problem coirecdy.

int PQFlushI(i_count)

int i_count;

PORTAL FUNCTIONS

A portal is a POSTGRES bufferfiom whichinstances can be fetched. Each portal has a string name (cur-
rendy limited to 16 bytes). A portal is initializedby submittinga retrievestatementusing the PQexecfunc-
turn, for example:

retrieve portal £00 (EMP.all)

The jnogrammo' can dien movedata fiom the pcutalinto UBPQby executinga/efcfi statement,e.g:

fetch 10 in foo

fetch all in foo

If no pmtal nameis ^lecified in a query, the defeultportalnameis the stringlilank", knownas die blank
portal. All qualifying instances in a blank pcntal are fetched immediately, withoutdie need fra the pro
grammer to issue a separate/etch command.

Data fetched from a portal into UBPQ is movedinto a portal buffer. Pratal namesare maiqied to portal
buffersthroughan internaltable. Each instancein a portalbufferhas an indexnumberlocatingits position
in the buffer. In addition, each field in an instance has a name (attribute name) and a field index (attribute
number).

A single retrievecommandcan return mult^le types of instances. This can hajqien if a POSTGRES func
tion is executed in the evaluation of a query or if the query returns multiple instance types fitom an

03/12/94 130

INTRODUCnONOiBPQ) JNTRODUCnCWdJBPQ)

inheritance hierarchy. Consequently, the instances in a portal arcsetup in groups. Instances in the same
grouparc guaranteed to havetherameinstance ftHmat

Fmtals thatarc associated with mmnal usercommands arc called synchroiioiis. In this case,the aiq>lica-
tkm im)gram isexpected toissue a rctrieval fcdlowed byoneor morc fetch commands. Ibe functkms that
follow can nowbe usedto manipulate datain theportal.

PQnportals Return the number of open portals. If ridejr is not 0, then only letum the number of
asynchrtmous portals.

int PQnportals(rule^p)

int rule_p;

PQpnames Return ^ pcHtal names. If rulej) is not0, then only return thenames ofasynchrcMious
portals. The caller is rcqxxisiUe for allocating snfficent storage f(V
pnamsJheiuimberofiuimsKimieidcanbedetermined^thacsSUo PQnpor-
talsO<EachportalnameisatmostPortalNameLengdi characters
..T^/backend/tmp/libpqJi).

void PQpnames (pneunes, rule_p)
char **pnames;

int rule^p;

PQparray Return thepcutal buffer given a portal name, pnome.

PortalBuffer ♦PQparray(pneune)

char ♦pname;

PQclear Free storageclaimed by portalpname.

void PQclear(pname)

char ♦pname;

PQntuples Return the numbo' ofinstances (tuples) ina pcutal bufferporro/.

int PQntuples(portal)
PortalBuffer ♦portal;

PQngroaps Return the number ofinstance groups ina portal bufferpoita/.

int PQngroups(portal)
PortalBuffer ♦portal

kmg (see

FQntuplesGraup
Return the number of instances in an instance group groupJndexassoriafed witha por-
tal bufferportal.

int PQntuplesGroup(portal, group_index)
PortalBuffer ♦portal;

03/12/94 131

INTRODUCnONOLIBPQ) INTRODUCnON(LIBPQ)

int group_index;

PQnfieldsGroap Return the number of fields (attributes) for the instances (tiQ>les) in instance groiq>
groupjndex associated withportalbufferporco/.

int PQnfiieldsGroup (portal« group_index)
PortalBuffer ^portal;

int group_index;

PQftaameGixmp Return the field (attribute) namefor the instances (tuples) in instance groiq) groupjndex
(associated withpntal bufferportal) andthe field'wdsxfteldjtwnber,

char *PQ£naiReGroup(portal, group_index, £ield^uinber)
PortalBuffer *portal;

int group_index;
int f ield_nuznber;

PQfhumberGroup
Return the field index (attribute number) given die instance group groupjndex (associ
ated withportalbufferportal) and thefield(attribute) namefieldjuune,

int PQfnumberGroup(portal, group_index, field^name)
PortalBuffer *portal;

int group_index;

char *field_neune;

PQgetgroup Returns the index of the instance group (associated with portal bufferportal) that con
tainsa particularinstancetupleJndex,

int PQgetgroup(portal, tuple_index)
PortalBuffer *portal;

int tuple_index;

PQnfieUs Returns the number of fields (attributes) in an instance tupleJndex contained in portal
bufferpom?/.

int PQnfields(portal, tuple_index)
PortalBuffer *portal;

int tuple.index;

PQfhumber Returns the field index (attribute number) of a given field name fieldjtame within an
instancettq>leJndex containedin portalbufferportal,

int PQfnumber(portal, tuple_index, fielcLname)
PortalBuffer *portal;

int tuple_index;

char *field^name;

03/12/94 132

INTRODUCnONOJBPQ) INTRODUCnON(UBPQ)

PQftaame Returns the name of a field (attribute)fieldjutmberof instance tupleJttdex contained in
pcxtalbufiferportal,

char *PQfneuQe(portal, tuple_index, fielcL-Ouniber)
PortalBuffer *portal;

int tuple_index;
int field^niunber;

PQfltype Retums the type of a field (attribute) fieldjutmber of instance tupleJndex contained in
pmtal bufferporra/. Thetype returned is aninternal coding ofa type.

int PQf type (portal, tuple_index, f ield^ntunber)
PortalBuffer *portal;

int tuple.index;
int field.nuinber;

PQsametype Rehims 1if two instances tupleJndexl and tupleJmiejt2t both contained inportal buffer
portal^havethesamefield (attribute) types.

int PQsiunetype (portal, tuple^indexl, tuple.index2)
PortalBuffer ♦portal;

int tuple_indexl;
int tuple_index2;

PQgetvalue Returns a field (attribute) value.

char ♦PQgetvalue(portal, tuple_index, fieldjnuinber)
PortalBuffer ♦portal;

int tuple_index;
int fieldLniunber;

PQgetleiigth Return the length ofa field (attribute) value inbytes. Ifthe field isa smicr vsr/ena, the
length returned here does notinclude the size field ofthe varieoa, te., it is4bytes less.

char ♦PQgetlength(portal, tuple.index, field-hxunber)
PortalBuffer ♦portal;

int tuple_index;
int field_jiiunber;

If the portal isblank, or the pcrtal was specified with the portal keyword, all values are letumed asnull-
delimited strings. It is the iROgtammer*s reqxmsibility toconvert them tothe conect type. If the portal is
specified with the iportal keyword, all values are returned inan architecture-dependent internal (binary)
format, namely, the fcumat generated by the input fimction specified through define typeicmsmtds).
Again, it is theprogrammer's tesponsilality toconvert thedatato thecorrect type.

ASYNCHRONOUS PORTALS AND NOTinCATION

Asynchronous pmtals —query results ofrules —are implemented using two mechanisms: relations and
notification. The query result is transferred through a rdation. The notification is done with special
POSTXJUEL commands andthefitontend/backend fuotoccd.

03/12/94 133

lNlRODUCnON(UBPQ) INTRODUCnONCLIBPQ)

TIm first step inusing asynclmHKMis portals is tolisten(coninands) on a given class name. Tbe fact a
process is listening ondie class is Shared with allbadoend saversninning (m a database; wfaoi one sets oS
the rule, it signals itspeers. The backend server associated with the listoiing fiKmteod process thai sends
its client an IPC message, which the frontend ^ocess must explicitly catch by polling tte vaiidile
PQAsyncNot^. When this variable is non-zero, thefioniend process must first issue a null (empty) queqr,
i.e.,

PQexec(• •);

Hien the fiontend should checkthe variable, PQAsyncNotifyWaiting, Whenthis variable is non-zero, the
frontend can retrieve the notification data hdd using PQSotifies. Tbe frontoid must call PQffot^s in
order to find out whichclasses the data correqxmds to (Le.,which notification eventshavebeen set
These events must then be individually cleared by calling PQPemoveNot^ on each element of the list
returned by PQNotifies.

Notice that the asynchronousluitification jnocess does not itself transfer any data, but only a class name.
Hence the frontend and backend must come to agreement on the class to be used to pass any data prior to
notification and data transfer (obviously, since the frontendmust ^lecify this tablenamein the cotrespond-
ing tisten command).

Hie second sample[uogram givesan exampleof the use of asynchronous portals in whichtbe frontendpro
gram retrieves the entire contents of the result class each time it is notified.

PQNotifies Return the list of relations on which notification has occurred.

PQNotifyList *PQNotifies()

PQRemoveNotify
Remove die notificatira from the list of unhandled notifications.

PQNotifyList *PQReinoveNotify(pqNotify)
PQNotifyList *pqNotify;

FUNCTIONS ASSOCIATED WITH THE COPY COMMAND

Hie copy command in POSTGRES has tptions to read frmn or write to the network connectimi used by
LIBPQ. Therefore, functions are necessary to access this netwcnk connection directly so rpplicatioos may
take full advantageof this capability.

For more informationabout the copycommand,see copy(commands).

PQgetline Reads a newline-terminated line of characters(transmitted by the backendserver)into a
bufferstring of size length. Uk6fgets{3), this routinecopies up to length-l characters
into string. It is like grr5(3), however, in that it converts the terminatiiig newline into a
nullchartttter;

PQgetline returns EOF at EOF, 0 if the oitire line has been read, and 1 ff the buffer is
fiiU but the terminatingnewline has not yet been read.

Noticethat the application mustchedc to see if a newline consistsof the singlechsacter
which indicates that the backendserver has finished sending the results of die copy

ccnnmand. Hierefme, if the application ever eipects to receive lines tiiat are more tiian
length'l characters long, the application must be sure to check the rOum value of
PQgetline very carefully.

03/1^/94 134

INTRODUCnONOJBPQ) INTRODUCnONOJBPQ)

The code in

... /src/bin/inonitor/monitor .c

containsroutines that conectiy handle the fHotocol.

PQgetline(string, length)
char ♦string;

int length

PQputUne Sradsa null-tenninated stringto thebadcend server.

The {plication must ogdicitly send the single diaiacter **7 to indicate todie badcend
that it has finished sending its data.

PQputline(string)
char ♦string;

PQendcopy Syncs with the badcend. This function waits until the badcend has finished processing
the cc^y. It should either be issued when the last string has been sent to die badcend
using PQputiine or when the last string has been received from the badcend using
PGgetline. It must beissued or the badcend may get **out of sync** with die fiootmid:
Upon letum from this function, the badcend isready toreceive thenext query.

Thereturn value is 0 on successful completion, nonzero otherwise.

int PQendcopy0

As an example:

PQexecCcreate too (asintd, bscharl6, d=float8)*);
PQexecCcopy fee from stdin*);
PQputiine(•3<TAB>hello world<TAB>4.5\n');
PQputiine(• 4<TAB>goodl:ye world<TAB>7.ll\n") ;

PQputiine(•.\n");
PQendcopy();

LIBPQ TRACINGFUNCTIONS
PQfrace Enable tracing. The routine sets the PQtracep variable lo 1 which causes debug mes

sages to be printed. You should note that tte messages wiU be printed to stdoot by
de&ult. If youwould likedifferent behavicv youmust set thevariable

FILE ♦debug_port

to the iqipnqiriatestream.

void PQtraceO

03/12/94 135

INTRODUCnONCLBPQ) INTRODUCnON(UBPQ)

PQuntrace Disable tracing started by PQtrace.

void PQuntrace0

USER AUTHENTICAnON FUNCTIONS

If theuser has generated the q)|BiqRiate authoitication credentials (e.g^ obtaining Kerberos tidcets). the
firontend/backmd authenticati<Mi jnocess is handled by PQexec without any further intervention. Thefol
lowing routines may becalled by UBPQ iHogtams to taite thebehavitv theauthenticalioa process.

fejsetautlmame Returns a pointer to static space containing whatever name the user hasauthenticated.
Useof thisroutine in place of callstogetenv(3!) or getpwmd{3) byaiq[dicaii<xis is highly
recommended, as it is entirelypossible that the authenticated user nameis not the same
as value of the USER environment variable or the user's entry in /etclpasswd. Ibis
becomes an important issue if theusername is being used as a vahie in a database inter
action (e.g., using the user name as the default database name, as is done by mom-
ror(unix).

char *fe__getauthnaine()

fe.setautlisvc Specifies thatUBPQ should useauthentication service name rather than its compiled-in
default. This value is typically taken from a Cfmunanddineswitch.

void fe_setauth9vc(name)

char *name;

BUGS

The query buffer is 8192 bytes long, and queriesover that lengthwillbe silently truncated.

03/12/94 136

INTRODUCnONCLBPQ) INTOODUCnON(LIBPQ)

SAMPLE PROGRAM 1

/*

* testlibpq.c —
* Test the C version of LIBPQ, the POSTGRES frontend library.

*/

#include <stdio.h>

#include "tmp/libpq.h"

main ()

{

int i, j, k, g, n, in, t;
PortalBuffer *p;

char pnaines [MAXPORTALS] [portal_naine_length];

/* Specify the database to access. */
PQsetdb ("pic^deino");

/* Start a transaction block for eportal */
PQexec ("begin");

/* Fetch instances from the EMP class. */

PQexec ("retrieve portal eportal (EMP.all)");
PQexec ("fetch all in eportal");

/* Examine all the instances fetched. */

p = PQparray ("eportal");
g = PQngroups (p);

t = 0;

for (k = 0; k < g; k++) {

printf ("VnA new instance group:\n");
n = PQntuplesGroup (p, k);

m = PQnfieldsGroup (p, k);

/* Print out the attribute names. */

for (i = 0; i < m; i++)

printf ("%-15s", PQfnameGroup (p, k, i));
printf ("\n");

/* Print out the instances. */

for (i s 0; i < n; i++) {

for (j s 0; j < m; j++)
printf(•%-15s", PQgetvalue(p, t+i, j));

printf ("\n");

)
t += n;

)

/* Close the portal. */

PQexec ("close eportal");

03/12/94 137

INTRODUCnON(UBPQ) INTODDUCnON(LIBPQ)

/* End the transaction block */

PQexec("end");

/* Try out some other functions. */

/* Print out the number of portals. */
printf ("XnNumber of portals open: td.Xn",

PQnportals ());

I* If any tuples are returned by rules, print out
* the portal name. */

if (PQnportals (1)) {
printf ('Tuples are returned by rules. \n');

PQpnames (pnames, 1);

for (i = 0; i < MAXPORTALS; i++)

if (pnames[i] 1= NULL)

printf ('portal used by rules: %s\n', pneuaes[i]);

)

/• finish execution. */

PQfinish ();

03/12/94 138

INTRODUCnON(UBPQ) INTRODUCnON(LIBPQ)

SAMPLE PROGRAM 2

Testing of asynchronous notification interface.

Do the following at the monitor:

* create testl (i = int4) \g

* create testla (is int4) \g

* define rule rl is on append to testl do
[append testla (i s new.i)

notify testla] \g

Then start up this process.

* append testl (i = 10) \g

The value i = 10 should be printed by this process.

#include <tmp/sii[^lelists .h>
#include <tmp/libpq.h>

#include <tmp/postgres.h>

extern int PQAsyncNotifyWaiting;

void mainO {

PQNotifyList *1;

PortalBuffer *portalBuf;

char *res;

int ngroups, tupno, grpno, ntups, nflds;

PQsetdb(getenv("USER"));

PQexecClisten testla');

while (1) {

res = PQexec(" ');

if (*res !s 'I') {

printf('Unexpected result from a null query —> %s', res);
PQfinish();

exit(1);

)

if (PQAsyncNotifyWaiting) (
PQAsyncNotifyWaiting = 0;
for (1 = PQnotifiesO ; 1 != NULL ; 1 = PQnotifies()) {
PQremoveNotify (1);

printfCAsync. notification on relation %s, our backend pid is %d\n'.

03/12/94 139

INTRODUCnONOJBPQ) INTKODUCnON(UBPQ)

l'->relneune, l->be_pid);
res = PQexec("retrieve (testla.1)•);

if (*res != 'P') {

fprintf (stderr, "%s\nno portal", -f-i-res);
PQfinishO ;

exit(1);

)

portalBuf s PQparray (-t-i-res);

ngroups s PQngroups(portalBuf);

for (gxpno = 0 ; grpno < ngroups ; grpno-t-f) {

ntups s PQntuplesGroup(portalBuf, grpno);
nflds = PQnfieldsGroup(portalBuf, grpno);

if (nflds != 1) (

fprintf(stderr, "expected 1 attributes, got %d\n", nflds);
PQfinishO;

exit(1);

)

for (tupno = 0 ; tupno < ntups ; tupno-f-t-) (
printf("i = %s\n", PQgetvalue(portalBuf, tupno, 0));

)

)

}
PQfinishO;

exit(0);

}
sleep(1);

)

}

03/12/94 140

INTRODUCnONCUBPQ) INTOODUCnONOLIBPQ)

SAMPLE PROGRAM 3

Test program for the binary portal interface.

Create a test database and do the following at the monitor:

* create testl (i = int4, d = float4, p = polygon)\g
* append testl (i = 1, d = 3.567,

p = •(3,0,4.0,1.0,2.0)•::polygon)\g

* append testl (i = 2, d = 89.05,
p = •(4.0,3.0,2.0,1.0)rpolygon)\g

adding as many tuples as desired.

Start up this program. Hie contents of class "testl" should be
printed, e.g.:

tuple 0: got

i=(4 bytes) 1,

d=(4 bytes) 3.567000,

p=(72 l^tes) 2 points,
boundboxs(hi=:3.000000,4.000000 / lo^l.000000,2.000000)

tuple 1: got

i=(4 bytes) 2,

d::(4 bytes) 89.05000,

p=(72 l^tes) 2 points,
boundbox=(hi=4.000000,3.000000 / los2.000000,1.000000)

#include "tmp/simplelists.h"
#include "tmp/libpq.h"

#include "utils/geo-decls.h"

void mainO

{

PortalBuffer *portalbuf;

char *res;

int ngroups, tupno, grpno, ntups, nflds;

PQsetdb("test"); /* change this to your datedsase neune */

PQexec("begin");

res = (char *) PQexec("retrieve iportal junk (testl.all)");

if (*res == 'E') {

fprintf(stderr,"\nError: %s\n",++res);

goto exit^error;

)
res s (char •) PQexec(•fetch all in junk");

if (♦res != 'P') {
fprintf(stderr,"\nError: no portal\n');
goto exit_error;

03/12/94 141

INTOODUCnON(LIBPQ) INlRDDUCnON(LBPQ)

}

/* get tuples in relation */

portalbuf = PQparray (-t-i-res);
ngroups =s PQngroups (portalbuf);

for (grpno = 0; grpno < ngroups; grpno-i-i-) {
ntups s PQntuplesGroup(portalbuf, grpno);
if ((nfIds s PQnfieldsGroup(portalbuf, grpno)) i= 3) {

fprintf(stderr, "XnError: ejected 3 attributes, got %d\n", nflds);
goto exit_error;

)

for (tupno = 0; tupno < ntups; tupno-»-»-) {
int *ival; /* 4 bytes */
float *fval; /* 4 bytes */
unsigned plen;

POLYGON *pval;

ival = (int *) PQgetvalue(portalbuf, tupno, 0);
fval = (float *) PQgetvalue(portalbuf, tupno, 1);

plen = PQgetlength(portalbuf, tupno, 2);
if (!(pval = (POLYGON *) palloc(plen + sizeof(long)))) (

fprintf(stderr, "XnError: palloc returned zero l^tesXn");
goto exit_error;

}

pval->size = plen + sizeof(long);
bcopy(PQgetvalue(portalbuf, tupno, 2), (char *) &pval->npt3, plen);
printf ("tuple %d: gotXnX

Xt i=(%d l^tes) %d,XnX

Xt d=(%d bytes) %f,XnX

Xt p=(%d bytes) %d points,XnX

XtXt boundboxs(hi=%f,%f / lo=%f,%f)Xn",

tupno,

PQgetlength(portalbuf, tupno, 0),

*ival,

PQgetlength(portalbuf, tupno, 1),

*fval,

PQgetlength(portalbuf, tupno, 2),

pval->npts,

pval->boundbox.xh,

pval->boundbox.yh,

pval->boundbox.xl,
pval->boundbox.yl);

)

)

PQexec("end");

PQfinishO ;

exit(0);

exit_error:

PQexec("end");

PQfinishO ;

exit(1);

03/12/94 142

INTRODUCnON(LBPQ) INTRODUCnON(UBPQ)

03/12/94 143

INlKODUCnONOPASTPATH) INm)DUCnON(E^TPArH)

SECTION 6 — FAST PATH

SYNOPSIS

retrieve (retval = fuiiction([ai:g {,aig }]))

DESCRIPTION

POSTORES allowsany valid POSTGRES function to be called in this way. Pnor implenientations of fast
path allowed user functions to be called directly. For now* the abovesyntax shouldbe used, with aigu-
mentscast into the appropriate types. By executing the abovetypeof query, controltian8fiBSCoiiq>]etdy to
the user function; any user fiuic^ can access any POSTGRES function or any global vaiiaUe in the POST-

' GRES address space.

There are six levelsat which calls can be performed:

1) Trafficcop level
If a function wants to execute a POSTGRES command andpassa stringrqxesentatimi, this levelis
iqjpropriate.

2) Parser
A function can accessthe POSTGRES parser,passinga stringand gettingapaise tree in return.

3) Query optimizer
A function can call the query optimizer, passing it a parse tree and obtaining a query plan in
return,

4) Executes

A function can call the executorand pass it a query plan to be executed.

5) Access methods

A function can directly call the access methods if it wishes.

6) Function manager
A fiinctitm can call other fimctitMis using this levri.

Documentation of layers 1-6 will appearat somefuture time. Meanwhile, histpath usersmustconsultthe
source code for function names and arguments at each levri.

It should be noted that users who are concemed with ultimate petftmnance can bypass the query language
completely and directlycall functions that in turn interact with the access methods. On the other hand, a
userc^ implement a new query language by coding a function withan internal parserthat thencalls the
POSTGRES optimizer and executor. Complete flexibility to use the pieces of POSTGRES as a tool kit is
therebyprovided. 993/08/23 09:03:16aold Exp $

01/23/93 144

INTRODUCnON(MRGE OBJECTS) INTRODUCTION(LAROE OBJECTS)

SECTION 7 — LARGE OBJECTS

DESCRIPTION

In POSTGRES, data vtdues are stared intuples and individual iu|^ cannot q>an data pages. Since the size
ofadata page is8192 bytes» the upper limit on the size ofadata value isrelatively low. lb siqipoft the stm'-
age of laiger atomic values, POSTGRES luovides a laige object inter&ce. This inter&oe provides file-
oriented access to user data that has been declared to be a huge type.

POSTGRES stq)ports three standard implementatioiis of large objects: as files external to POSTGRES, as
UNIX files managed by POSTGRES, and asdata stored within the POSTGRES database. These implementa
tion allow users to trade-off between access speed, recoverability andsecurity. Thechdcetrf implementa
tion is specified when the large object is created orli^isteied"with POSTGRES. hi allcases, die large
object becomes associated with a {Kith name within a file system name tpaoe managed byPOSTGRES (see
below).

Applications which can tolerate lost data may store large objects as conventioaal files which are &st to
access, but cannot be recovered in the case of system crashes. For an>lications requiring stricter data
integrity, die transaction-fHOtected large object implemoitatkm is available. This secdtm describes each
implementation and the programmatic and query language interfaces toPOSTGRES large object data.

The POSTGRES large object interface is modeled after the UNIX file system interfEce, with analogues of
open(Z\ read{2), wr//e(2), lseek(2), etc. User functions call these routiiies toretrieve only the data ofinter
estfrom a large object For example, ifa large object type called mugshot existed that stored photographs
of £Eu:es, then a function called beardcould be declared on mugshot data. Betvd could look at die lower
third ofa photogrtqih, and determine the coka* of the beard that sqipeared thoe, if aiQr. The radre large
object value need not bebuffered, or even examined, by the beard funcdon. Asmentioned above, POST
GRES supports functicHial indices oa large object data. In this otample, the results of the beard function
couldbe storedin a B-tree index to laovidefastsearches forpeople withred beards.

UNIX FILES AS LARGE OBJECT ADTS

The simplest large object interface siqiplied with POSTGRES is also the least robust. It does notsupport
transaction {notectum, crash recovery, or time traveL On the odi^ hand, it can be used on existing data
files (such asword-processor files) that must beaccessed simultaneoudy bythedatabase system and exist
ing {qiplication imigrams.

POSTGRES hastwo ways of handling UNIX files that store large objects. These correspond to tbo External
and Unixlarge inject interfaces.

The simplest way tocreate a large object is toregister the external file containing thelarge object with the
POSTGRES database. This leaves the actual file as-is, outside of the POSTGRES data directory,and allows
otherUNIX users to access it without going through POSTGRES. The file is, in general, onlyprotected by
the standard UNIX permissions mechanism. In the case of a system crash, or if the file is removed or
deleted, POSTGRES provides no recovery mechanism.

In the second iqiprooch, the user registers the large object in the POSTGRES database andcofnes the speci
fied file into the POSTGRES databasedirectory structure. Copying the file takes time, so this is not as fast
as theExternal large object creation process. Furthermore, likeExternal large objects, UNIX large objects
arenotrecovmable. However, placingthe large objea files in the POSTGRES data area gives them the secu
rity of POSTGRES data files.

External large objects iHovide POSTGRES users with the ability to share large objects between POSTGRES
and other systems. The files can be read and written by other UNIX users, and POSTGRES can be made
aware of the large object very quickly. However, because of thesecurity implications of theExternal large

03/18/94 145

lNTRODUCnON(LARGE OBJECTS) INTRODUCnON(LARGE OBJECTS)

objects apiHoach, the facility isnot provided bydefeuilt lb enable Extranal laige objects, refer tothe POST-
ORES release notes.

INVERSION LARGE OBJECTS

In contrast to UNIX files as laige objects, theInversion laiseobject implementation biedcs large objects iq>
into **chun]cs** and stores thechunks in tuples in thedatabase. A B-tiee index guarantees fast searches Iot
the c(»rect chunk numberwhendoing randomaccess reads and writes.

Only programs that use thePOSTGRES data manager can read and write Inversion large objects. Inversion
largeobjectsare slower thanstoring largeobjects as UNIX files, andtbeyrequire morespace.

LARGE OBJECT INTERFACES

The fiicilities POSTGRES provides to access large objects, both in thebadcend aspartofuser-defined fimc-
tkms or the firont end as partof an aiqrlicaticMi using theUBPQ interface, aredescribed below. As POST
GRES has evolved a newer set offiin^ons providing amcne coherent intmface have replaced an older set
The most recent ajqaoach wiU bedescribed firstandthe histcuical informatkm included at thevery end fOT

LARGE OBJECTS: BACKEND INTERFACE

Hiissection (tescribes how large objects may beaccessed from dynamically-loaded C functkms.

Creating NewLarge Objects
The routine

int LOcreat(path, mode, objtype)

char *path;

int mode;

int objtype;

creates a new large object

The pathname is a slash-separated listof components, and must bea unique [Mtthname in the POSTGRES
large object namespace. There isa virtual root directory CD inwhich objects may beplaced.

The objtype parameter can be (me ofInversion, UNIX at External, These are symbolic constants defined in

.../include/catalog/pg_lobj.h

The inta|uetation of the mode argument depends (m the objtype selected. (Note that die External is
conditionally compiled into the backend. Please refer to the Release Notes for inf(mnation onenabling
External large (ibjects andtothe indroduction of this section fcv a discussion onExternal large (dijects.)

Fbr UNIX large objects, the mode is the mode used toprotect the file onthe UNIX file system. On creation,
the fileis open for reading and writing.

ForExternal large objects, mode specifies the desired access permissions. If the file exists, the file permis
sions on theexternal file are compared to therequested mode; both theuserwho is currently connected to
the backend server and the "postgres** user must have the i^jprppriate permisskms. Unfike crear(2), an
existing external file is not truncated.

For Inversion large objects, mode isa bitmask describing several different attributes ofthe new object The
symbolic ccmstants listedherearedefined in

.../include/tmp/libpq-fs.h

03/18/94 146

INTRODUCnONCLARGE OBJECTS) INTRODUCnON(LARGE OBJECTS)

the access type (lead, write« or bodi) isccxitiolled byOR*ing togeiher tfie bitsINVJREAD andINV_WRrrE.
Ifthe laige objeashould beaichived —that is,ifhistorical verskxis ofit should bemoved periodically toa
q)ecialaichiveielation—then the 1NV_ARCH1VE bit should be set The low-ofder sixteen bits ofmasJkaie
the storage manager number onwhich the large object riiould reside. In the distributed verskm of POST-
ORES, onty the magnetic Hkir stnagemanager is supported. For users nmning POSTORES atUC Berieeley,
additional smage managers are available. For sites other dian Berkeley, these bits riioold always bezero.
At Berkel^, storage manager zero is magnetic dirit, suxagt manage one isa Soiqr (^Micai dirit juk^x,
and storage manager two is main memory.

The commands below open two large objects for writing and reading. The Invasion large object is not
archived, and is located on magnetic disk:

uni3(;_fd = LOcreat(•/iny_unix_obj", 0600, Unix);

iny_fd = LOcreat ("/rny_inv_obj •,
INVJREAD1INV_WRITE, Inversion);

Opening Large Objects
Large objects r^stered into the Hatahsja* by the LOcreat call descrOied above, orpj^pen call described
belowmaybe openedby calling the routine

int LOopen(path, mode)
char *path;

int mode;

where thepath argument ^lecifies the large object*s padmame, and isdie same asdie padmame used tocre
ate the object The mode argument is interineted bythe two implementatioDS differendy. ForUNIX large
objects, values should be chosen from the set of mode bits passed to the open system call; that is,
G.CREAT, O^RDGNLY, OJVRONLY, 0_RDWR, andClTRUNC. Ftw liiversioa large objects, only thebits
1NV_READ and INV.WRITE haveany meaning.

To open the two large objects created inthe last example, aprogrammer would issue the commands

imix-fd = LOopen (• /iny_unix_obj •, 0_RDWR);

inv_fd = LOopen("/nty_inv_obj•, INV_READIINV_MRITE);

If a large object is opened before it has been created, then a new large object is created using the UNIX
implementadon, and thenewobjectis opened.

Seeking on Large Objects

The command

int

LOlseekCfd, offset, whence)

int fd;

int offset;

int whence;

moves the current location pointer for a large objea to the specified position. The/d parameter is the file
desoqitorreturned by either LOcreat at LOopen. Offset is thebyte (^set in the large object to which to
seek.

03/18/94 147

lNTR0DUCnON(LARGE OBJECTS) INTRODUCnONCLARGE OBJECTS)

Because UNIX large objects aresimply UNIX files, they may have lioles** likeanyotherUNIX file. That is,
a laogiammayseekwellpasttheend theobject and write bytes. Xntervoiing blocks willnot be created
andleading them willreturn zero-filled Mocks. Inversioa largeobjects do notsupport holes.

The following cocte seeksto bytelocation100000 of theexample largebttjects:

uni;^9tatus = LOlseektiinis^fd, 100000, I^^SET);

inv_status = LOlseek(inv_fd, 100000, L_SET);

On error, LOlseek returns a value less than zero. On success, the new ofiEset is returned.

Writiiig to Large Objects

Oncea largeobjea has beencreated, it maybe filled by calling

int

LOwrite(fd, wbuf)

int £d;

struct varlena *wbuf;

Here,)iJ is the file descriptor returned by LOcreat or LOopen^ and describes the data to write. The
varlena structure in POSTGRES consists of four bytes in which the length of the datum is stored, followed
by the data itself. The loigth stned in the length field includes the four bytes occqned by the length field
itself.

For example, to write 1024 bytes ofzeroes to the sample large objects:

struct varlena *vl;

vl s (stxruct varlena *) palloc(1028);

VARSIZE(vl) = 1028;

bzero(VARDATA(vl), 1024);

nwrite_unix = LOwrite(unix_£d, vl);

nwrite_inv =s LOwrite(inv__fd, vl);

LOwrite reuims the number of bytes actually written, or a negative number on ertot For Inverskm large
objects, the entire write is guaranteed to succeed at fail. That is, if the number of bytes written is non-
negative, then it equals VARSIZE{v\).

The VARSIZE and VARDATA macros are declared in the file

.../include/tmp/postgres.h

Reading from Large Objects

Data may be read from large objects by calling the routine

struct varlena *

LOread(£d, len)

int £d;

int len;

03/18/94 148

INTRODUCnON(LARGE OBJECTS) INTOODUCnON(LARGE OBJECTS)

This routine r^urns the byte count actually read and die data ina variena stnicture. Forexample,

struct variena *uni3^vl, *inv_vl;

int nread_ux, nread_inv;

char *data_ux, *data_inv;

unix_vl = L0read(uni3^£d, 100);

nreadjux = VARSIZE(unix^vl);

data__ux s VARDATA(unix_vl);

inv_vl = LOread(inv_fd, 100);

nread_inv = VARSIZE(inv_vl);

data^inv = VARDATA(inv_vl);

Thereturned vadmia structures havebeenallocated bydie POSTGRES memory managerpa/toc,andmaybe
/j^eed whentheyare no longerneeded.

Clodiig a Laige Object

Oncea large(^ject is no longerneeded, it maybe closedby calling

int

LOclose(£d)

int £d;

where^ is thefile descr^tcH* returned byLOopen ox LOcreat. Onsuccess, LOclose returns zero. A n^-
ative return value indicates an error.

FOrexample,

if (LOclose(unix^fd) < 0)

/* error */

if (LOclose(inv_fd) < 0)

/* error */

Dlrecl(H7 Operatioiis

The routine

int

LOnkdir(path, node)

char *path;

int node;

creates directories in die POSTGRES virtual file system but does not create any physical directories. Natu
rally,

int

LOmdir (path)

char *path;

removes directories in the POSTGRES virtual file system. Both routines returnzero or negative values on

03/18/94 149

INinODUCnONCLARGE OBJECTS) lNlRODUCnON(LARGE OBJECTS)

successand feilme,lespeciivdy.

Remorlng Large Objects

Theroutine toremove laigeobjects w(xks differently fn*' thedifferent large object types. Acidlto

int

LOunlink(path)

char *path;

willalways remove thespecified path from the POSTGRES virtual filesystem. However, it willontyunlink
the underiying data file in the case (ffaUNIX large object Neither External nor Inversion large object files
areactuallyremoved by thiscaU. LOunlink returnszero(msuccess,negative valuesoo frilure.

LARGE OBJECTS: UBPQ INTERFACE

Largeobjects may also be accessedfrom databaseclientprograms that link the UBPQlibrary. This library
provides a set of routines thatsupportqiening, reading, writing, closing, and seeking on largeobjects. The
interface is similar to that provided via the backend, but rather than using variena structures,a man con
ventionalUNIX-style bufferschemeis used.

Ihis section describes the UBPQ interface in detail.

Creating a Large Object

The routine
%

int

p_croat(path, mode, objtype)

char *path;

int mode;

int objtype;

creates a new large object Ihe path argument specifiesa large-objea system pathname.

Ihe objtype parameter can be <xie ofInversion^ Unix or External^ whidi are symbolic constants defined in

.../include/catalog/pg_lobj.h

The interpretationof the modeandfiles argumentsdepends on the objtype selected.

For UNIX files, mode is the mode used to protect the file mi the UNIX file system. On creatioo, die file is
opea for reading and writing. The path name is an internalconvention relative to the specificdatabaseand
the actual files ate stored in the directmy of the database itself.

Fbr External large objects, modespecifies the desired access permissions. If the file exists, the filepermis
sions on the external file are compared to the requested mode; both the user who is currently connected to
the backend server and the "postgres" user must have the iqqxrqviate permissions. Unlike crear(2), an
existingexternal file is not truncated.

Fbr Inversion largeobjects,modeis a bitmap describing severaldifferentattributes of the newobject The
symbolic ccmstantslisted here are defined in

.. ./include/t:mp/libpq-£s.h

The access type (read,write,ot both) is cmitrolled by OR*ing togetha thebits 1NV_READ and INV.WRITE.
If the largeobjectshouldbe archived—that is, if historical versionsof it shouldbe movedperiodkaltytoa
specialarchiverelation— thoitheINV.ARCHIVEbit^uldbesm. The low-mderaxteoilnts of maskare

03/18/94 ISO

INTRODUCnONCLARGE OBJECTS) INTOODUCnON(LARGE OBJECTS)

the stOTage manage number on which the large object should reside. For sites other thmBericel^, these
bits should always bezero. At Berkeley, stmage manager zero ismagnetic disk, storage manager (me isa
S(my optical didtjuk^x,andstorage manager twois main memory.

The ccmimands below c^n large objects of die two types ftH* writing and leadmg. The Invmston large
(>bject is notarchived, andis located (m magnetic disk:

unix^fd = p_creat(•/iny_unix_obj•, 0600, Unix);

inv^fd = p_creat (•/iBy_inv_ob j ",
INV_READIINVJWRITE, Inversion);

Openingan ExistingLarge Object
Toc^n an existing largeobject,call

int

p__open (path, mode)
char *path;

int mode;

The path argument specifies the large object pathname fin- the object to open. The mode bits control
whether the object isopened finreading, writing, orboth. Fbr UNIX large objects, the appropriate flags are
O.CREAT, 0_RD0NLY, 0_WR0NLY, 0_RDWR, and OJTRUNC. Fw Inversion large objects, only
INV_READ and INV_WRITE are recognized.

Ifa large object iscqmned before it iscreated, it iscreated bydefiuilt using the UNIX file implementation.

Writing Data to a Large Object
The routine

int

p_write(fd, buf, len)
int fd;

char *buf;

int len;

writes len bytes firom btf to large object/d. The fd argument must hatve been returned by a prevkms
pjreat otp_ppen.

The number ofbytes actually written isreturned. Inthe event ofanerror, thereturn value isnegative.

Seeking on a Large Object
Tbchange thecurrent read or write location ona large object, call

int

p_lseek(£d, o££set, vdience)
int £d;

int o££set;

int whence;

Thisroutine moves thecurrent location pointerfor thelargeobjectdescribed by>dto the newlocation qiec-

ified byoffset, 'Pot this release ofPOSTGRES, only L.SET isa legal value for whence.

03/18/94 151

lNlRODUCnON(MRCE OBJECTS) INTRODUCnON(LARGE OBJECTS)

Ckwinga Large Object

A laige object may be dosed by calling

int

p_close(£d)

int £d;

wheie/d is a laige object descriptor letumed bypj:reat cap_open. Onsuccess^p_chse letums zero. On
etiOT, the return vali» is negative.

Directtwy Operatioiis

The routines

int

p_jnkdir (path, ntode)
char *path;

int mode;

and

int

p_rmdir (path)
char *path;

areanalogous toLOmkdir andLOrmdir in that they only modify thePOSTGRES file qrston namespace and
return zero or negativevalueson success or fiuluie, respectively.

Removing Large Objects

The

int

p_unlink(path)

char *path;

routine removes the specified pathfirom the POSTGRES file system namespace and,if thepathconesponds
to a UNIX largeobject, removes the underlying file. The files that stme othff largeobject types are not
removed by thiscall, pjmlink returns zeroor n^ative values onsuccess or mnu;re^ectively.

SAMPLE LARGE OBJECT PROGRAMS

The POSTGRES large object implementation serves as the basis for a file systmn (the *Tnversion file sys
tem**) built on topof thedatamanager. This file system provides time travel, transaction juotectkMi, and
fost crashrecovery toclients ofmdinary file system services. It uses tiieInversimi large objectimplementar
tion to provide these services.

Theprograms thatcomprise theInversion file system areincluded in thePOSTGRES source distribution, in
the directory

.../src/bin/£sutils

These directories ctHitain a set of programs fw man^ulating files and directmies. These jHOgrams are
iKised on the BeriEeley SoftwareDistributimi NET-2 release.

These programs are useful in man^ulating Inversicm files, but theyalsoserve as examples of how to code

03/18/94 152

INTRODUCnON(LARGE OBJECTS) INTO0DUCTI0N(1ARGE OBJECTS)

lai^e object accesses inLIBPQ. Ail the programs are LIBPQ clients, and all use die inter&ces diat have
been described in this section.

Interested readers should refer to die files in the direct(Hy

.../src/bin/fsutils

fOT ui'depth examples ofthe use large objects. Below, amrae toseexanqile ispiDvided. This code frag
ment creates a new large object managed bybiversicm, fills itwith data from a UNIX file, and closes it

03/18/94 153

INTRODUCnONCLARGE OBJECTS) INTRODUCTION(LARGE OBJECTS)

#include "tmp/c.h'
#include •tn^/libpq-fe.h"
#include "tmp/libpq-fs.h"
#include "catalog/pg_lobj.h"

#de£ine MYBUFSIZ 1024

mainO

int inv_fd;

int £d;

char *qry_result;
char buf[MYBUFSIZ];

int nbytes;
int tmp;

PQsetdb("nydatabase");

/* large object accesses must be */
/* transaction-protected */

qry_result = PQexec("begin");

if (*qry_result == 'E') /* error */

exit (1);

/* open the UNIX file */

fd = open{"/ray_unix_file"» 0_RD0NLY, 0666);

if (fd < 0) /* error */

exit (1);

/* create the Inversion file */

inv_fd = p_creat("/inv_file", INV_WRITE, Inversion);

if (inv_fd < 0) /* error */

exit (1);

/* copy the UNIX file to the Inversion */

/* large object */

while ((nbytes s read(fd, buf, MYBUFSIZ)) > 0)

{

tmp = p_write(inv_fd, buf, nbytes);
if (tn^ < nbytes) /* error */

exit (1);

)

(void) close(fd);

(void) close(inv_fd);

/* commit the transaction */

qry_result = PQexec("end");

if (*qry_result == 'E') /* error */

03/18/94 154

INTRODUCnON(LARGE OBJECTS) INTRODUCnON(LARGE OBJECTS)

exit (1);

here, success */

exit (0);

BUGS

Shoiildn*t have to distinguish between Inversion and UNIX laige objects when you cqien anexisting laige
object The system knows which impl^entatkxi was used. The flags aigument should be the same in
these two cases.

All laige objectfilenames(paths)are limitedto 256 characters.

In the Inversion file system, file name ctMnpcHients (the sectkms of the path preceding, following or in
between "D axe limited to 16characters each. Themaximum path length is still256characters.

Theunlink routines do notalways rmove dieunderlying datafiles because they do not implement refer-
race counts.

THE loJIeinO and Io_fiteout0 INTERFACE
AsPOSTGRES hasevdved, thebackend large object interface described above hasrq>laced aneariierback-
rad laige object interface. The laevious interface required users tostore internal laige object descriptras in
their attributes; this wmked, but required users to call internal POSTGRES routiiies directly in ofdra to
access their Hata The interface documented above is clearer and mme ctmsistent, so die interfiace about to
be described is deprecated anddocumented onlyforhistorical reasons.

The fiuictions lojilein and lojtleout convert betwera UNIX filenames and inteinal laige object desciqxors.
These functions are POSTGRES registered functions, meaning th^ can be used direcdy in POSTQUEL
quraies as well as from dynamically-loaded C functicms.

The routine

LargeObject *lo_filein(filename)
char *fileneune;

associates a new UNIX file storing large object datawith thedatabase system. This routine stores thefile
name in a abstract data structure suitable Ux inclusion as an attribute ofa tuple.

The converse routine,

char *lo_fileout(object)
LargeObject ♦object;

returns the UNIX fitenameassociatedwith a large object

If you aredefining a simple large object ADT, these functions can be used as your *input** and**oulput**
functions (seed^ne type (commands)). A suitable declaration would be

define type LargeObject (internallength ss variable,
input = lo_filein, output s lo.fileout)

The file stming the large object must be accessible on the machine on which POSTGRES is running. The
data is notcopied intothedatabase system, so if thefile is laterremoved, it is unrecoverable.

The datain large objects imported in this manner are only accesible fiom the POSTGRES backend using

03/18/94 155

INlRODUCnON(LARGE OBJECTS) INTBODUCTION(LARGE OBJECTS)

dynamically-loaded functions. Howevo; the internal large object descriptors cannot be used with the
LOopen backend inler&ce. Instead, these descriptcHS can only beused by mfltnng direct caUs toa set of
undocumented routines within thePOSTGRES storage managei; Furthermoie, it becomes the user*s respon
sibility tomake calls tothe ccRiect set ofroutines fcv UNIX ox Inversioa large objects.

SEE ALSO

introduction(commands), define fiinction(commands), d^ne type(commands), load(commands).

03/18/94 156

INTRODUCnON(SYSTEM CATALOGS) INTOODUCnON(SYSTEM CAIALOGS)

SECTION 8 — SYSTEM CATALOGS

DESCRIPTION

Thus far wehave many to the system catalogs and their lolein thePOSTGRES exteosibiliQr
architecture but have managed toavdda systematic specification of their layout and contents. Inthis sec
tion welisteach of theattributes of thesystem catalogs anddefine tfieir meanings.

CLASSmrPE SYSTEM CATALOGS

Thesecatalogs frnmthe cme of theexiensilHlity system:

name shared/local description

pgjaggr^ate local aggregatefunctirms
pg_am local access methods

pgjamop local qroaims usable with ^recific access methods
pgjamproc local IHocedures usedwithspecific accessmediods
pgjattribute local class attributes

pgjclass local classes

pgjndex local seccHidaty indices
pgjnherits local class inheritance hiuarchy
pg.language local procedure implementation languages
pgjopclass local r^reratOT classes

pgjoperat(R local query language operators

pg proc local IROceduies (functions)
pg_type local datatypes

ENTITIES

These catalogs dealwith identification of entities known throughout thesite:

name shared/local

pgjdatabase shared
pg_group shared
pg_user shared

RULE SYSTEM CATALOGS

name shared/local

pgjistener local
pg_prs2plans local
pg_prs2rule local
pg_prs2stub local
pg^rewrite local

description
current databases

user groups

valid users

description
IROcesses waitingon alerters
instance system procedures
instance system rules
instancesystem "stubs**
rewrite syst^ infonnation

LARGE OBJECT CATALOGS

These catalogs arespecific to theInversion file system andlargeobjects in genual:

name shared/local description
pg_lobj local description ofa large object
pg_naming local Inversion name space mapping
pgjplattu local jukd)ox platter inventcHy
pg plmap local jukeboxplattu extentmap

INTERNAL CATALOGS

These catalogs are internal classes thatate notstored as normal heaps and cannot be accessed through nor
malmeans (attempting to do socauses an ertOT).

03/13/94 157

INTOODUCnON(SYSTEM CATALCXjS) INTRODUCnON(SYSTEM CAIALOGS)

name shared/local desaiptkm
PS.log shared tiansactkmcmnmii/hboftlQg
pgjnagic shared magic cmistant
pgjime shared commit^aboft dmes
pgjvariable shared qrecial variable values

There are several other classes defined with "pg ** names. Aside fimn fiiose that end in 'ind*' (secondary
indices), these areallobsolete orotherwise deprecated.

CXASSmrPE SYSTEM CATALOGS

Ibe following catalogs relate todieclass/type system.

/*

* aggregates
*

* see DEFINE

* /

AGGREGATE for an explanation of tremsition functions
/

pg_aggregate

charl6 aggname /* aggregate name (e.g., "count") */
old aggovmer /* usesysid of creator */
regproc aggtransfnl /* first tremsition function */

regproc aggtr2msfn2 /* second transition function */

regproc aggfinalfn /* final function */
old aggbasetype /* type of data on which aggregate

operates */
old aggtranstypel I* type returned by aggtremsfnl */
old aggtranstype2 /* type returned by aggtremsfn2 */
oid aggfinaltype /* type returned aggfinalfn */
text agginitvall /* external format of initial

(starting) value of aggtremsfnl */
text agginitval2 /* external format of initial

(starting) value of aggtransfn2 */

pg_ain

char16 eunname /* access method neune */

oid aroowner /* usesysid of creator */
char ainkind /* - deprecated */

/* originally:
hshashed

osordered

ssspecial */
int2 eunstrategies /* total NUMBER of strategies by which

we cem traverse/search this AM */

int2 eunsupport /* total NUMBER of support functions
that this AM uses */

regproc iungettuple /* "next valid tuple" function */
regproc euninsert /* "insert this tuple" fimction */
regproc eundelete /* "delete this tuple" function */
regproc amgetattr I* - deprecated */
regproc eunsetlock /* - deprecated */
regproc amsettid /* - deprecated */

03/13/W 158

INTRODUCnON(SYSTEM CATALOGS)

regproc

regproc

regproc

regproc

regproc

regproc

regproc

regproc

regproc

regproc

regproc

pg_amop

oid

oid

oid

int2

regproc

regproc

pg_amproc

oid

oid

oid

int2

pg_class

char16

oid

oid

int4

int4

abstime

reltime

bool

amfreetuple

anbeginscan

ainrescan

eunendscan

amnarlqpos

amrestrpos

amopen

eunclose

anbuild

euncreate

amdestroy

amopid

amopclaid

amopopr

amopstrategy

euQopselect

amopnpages

amid

amopclaid

amproc

amprocnvun

relname

relowner

relam /* access

relpages
reltuples

relexpires

relpreserved

relhasindex

I*

!*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

INTOODUCnON(SYS1EMCAIALOGS)

- deprecated */
•start new scan" function */

•restart this scan" function */

•end this scan" function */

•mark current scan position"

function */

•restore marked scan position"

function */

- deprecated */
- deprecated */
•build new index" function */

- deprecated */
- deprecated */

access method with which this

operator be used */

operator class with which this
operator can be used */

the operator */

traversal/search strategy ninnber
to which this operator applies */
function to calculate the operator
selectivity */

function to calculate the number of

pages that will be examined */

access method with idiich this

procedure is associated */

operator class with which this

operator can be used */

the procedure */
support function number to which

this operator applies */

/* class name */

/* usesysid of o%mer •/

method */

/* # of 8KB pages */

of instances */

time after %diich instances are

deleted from non-archival storage */
timespan after which instances are
deleted from non-archival storage */
does the class have a secondary

/*

/*

03/13/94 159

INTRODUCnON(SYSTEM CATALOGS)

bool

cheu:

char

int2

int2

int28

oidS

aclitem

pg.attribute

oid

char16

oid

oid

int4

oid

int2

int2

int2

bool

bool

oid

int4

int4

bool

PS—inherits

oid

oid

int4

oid

relisshared

relkind

relarch

relnatts

relsmgr

relkey

relkeyop

relacl[l]

attrelid

attneune

atttypid

attdefrel

attnvals

atttyparg

attlen

attnum

attbound

attbyval

attcanindex

attproc

attnelems

attcacheoff

attisset

inhrel

inhparent

inhseqno

indexrelid

03/13/94

/*

/*

/*

/*

/*

/*

/*

!*

I*

/*

/*

/*

/*

/*

/*

/*

/*

/♦

/*

]Nm)DUCn(»l(SYSTEMCAIALOGS)

index? * I

is the class shared or local? *i

type of relation:

isindex

rarelation (heap)

saspecial
uatmcatalogued (ten^rary) *l
archive mode:

haheavy

lalight

nanone */

ctirrent # of non-system

attributes */

storage manager:

Oamagnetic disk
lasony WORM jukebox

2aiQain memory */
- unused */

- unused */

access control lists */

class containing this attribute */

attribute name */

attribute type */
- deprecated */

- deprecated */

- deprecated */

attribute length, in bytes

-lavariable */

attribute number

>Oauser attribute

<0=system attribute */

- deprecated */

type passed by value? */

- deprecated */

- deprecated */

of array dimensions */

cached offset into tuple */
is attribute set-valued? */

/* child class */

/* parent class */

/* - deprecated */

/* oid of secondary index class */

160

INTRODUCnON(SYSTEM CATALOGS)

oid

oid

int28

oidS

bool

bool

text

pg_type

charl6

oid

int2

int2

bool

char

bool

char

oid

oid

regproc

regproc

regproc

regproc

text

pg—operator

charl€

oid

int2

char

bool

bool

oid

oid

indrelid

indproc

indkey

indclass

indisclustered

indisarchived

indpred

typname

typowner

typlen

typprtlen

typbyval

typtype

typisdefined

typdelim
typrelid

typelem

typinput

typoutput

typreceive

typsend

typdefault

oprname

oprowner

oprprec

oprkind

oprisleft

oprcanhash
oprleft

oprright

03A3/94

/*

/*

/*

/*

/*

/♦

/*

/*

/*

/*

/*

/*

/*

/*

I*

i*

/*

INTRODUCnONCSYSTCM CATALOGS)

oid of indexed heap class */

function to coitqpute index key from
attribute(s) in heap

Osnot a functional index */

attribute numbers of key

attribute(s) */

opclass of each key */
is the index clustered?

- unused */

is the index archival?

- unused */

query plan for partial index
predicate */

type name */

usesysid of owner */
length in internal form

-l=variable-length •/

length in external form * f

type passed by value? */
kind of type:

cscatalog (ccm^site)
bsbase *t

defined or still a shell? */

delimiter for array external form * I
class (if con^site) */

type of each array element */

external-internal conversion

function */

internal-external conversion

function */

client-server conversion function

server-client conversion function

default value */

*/

*/

/*

/*

/♦

I*

operator name */

usesysid of owner */

- deprecated */

kind of operator:
bsbinary
Isleft unary

rsright unary */
is operator left/right associative? */
is operator used)le for hashjoin? */
left operand type */
right operand type */

/*

/*

/*

/*

161

INlRODUCnON(SYSTEM CATALOGS)

old

oid

old

oid

oid

regproc

regproc

regproc

P9—opclass

char16

pg_proc

char16

oid

oid

bool

bool

bool

int2

bool

oid

oidS

int4

int4

int4

int4

text

bytea

pg_l2mguage
char16

text

oprresult

oprcom

oprnegate

oprlsortop

oprrsortop

oprcode

oprrest

oprjoin

opcname

proname

proowner

prolemg

proisinh
proistrusted

proiscachable

pronargs

proretset

prorettype

proargtypes

probyte_pct

properl^te__cpu

propercall_cpu

prooutin_ratio

prosrc

probin

lanname

lemconpiler

I*

f*

/*

/*

/*

/*

/*

INTO)DUCnON(SYSTEM CATALOGS)

result type */

commutator operator */
negator operator */
sort operator for left operand */
sort operator for right operand */
function implementing this operator
function to calculate operator

restriction selectivity */

function to calculate operator

join selectivity */

/* operator class neune */

/*

/*

/*

/♦

/*

/*

/*

I*

I*

/*

/*

/*

function neune */

usesysid of ovmer */
fiinction implementation language */
- deprecated */

run in server or untrusted function

process? */

can the function return values be

cached? */

of arguments */

does the function return a set?

- unused */

return type */

argument types */

% of argument size (in bytes) that
needs to be examined in order to

conpute the fiinction */
sensitivity of the function's
running time to the size of its
inputs */

overhead of the fiinction's

invocation (regardless of input

size) */

size of the function's output as a

percentage of the size of the input */
function definition (postquel only) */
path to object file (C only) */

/* language name */

/* - deprecated */

03/13/94 162

INTRODUCnON(SYSTEM CATALOGS)

ENTITIES

pg_database

char16 datname

old datdba

text datpath

pg_group

char16

int2

int2

pg_user

char16

int2

bool

bool

bool

bool

RULE SYSTEM CATALOGS

pg_listener

char16

int4

int4

pg_prs2rule

char16

char

oid

int2

floats

floats

text

pg_prs2plans

oid

gronaroe

grosysid

grolist[1]

useneune

usesysid

usecreatedb

usetrace

usesuper

usecatupd

relnzune

listenerpid

notification

prs2neune

prs2eventtype

prs2eventrel

prs2eventattr

necessary

sufficient

prs2text

prs2ruleid

03/13/94

INTRODUCrnON(SYSTEM CATALOGS)

/* datalMise name */
/* usesysid of database administrator *l

/* directory of database xmder
$PGDATA ♦/

f* group name */
group's UNIX group id */

f* list of usesysids of group members */

/* user's neune */

/* user's UNIX user id */

/* c<m user create dateJMses? */

/* can user set trace flags? */
/* can user be POSTGRES superuser?

/* can user update catalogs? */

/*

/*

/*

/*

/*

/*

/*

class for which asynchronous

notification is desired */

process id of server corresponding
to a frontend program waiting for

asynchronous notification */

whether an event notification for

this process id still pending */

rule name */

rule event type:

Rsretrieve

Usupdate (replace)

Asappend

Dsdelete */

class to which event applies *i
attribute to which event applies
- deprecated */

- deprecated */

text of original rule definition

/* prs2rule instance for vdiich this

163

INTRODUCnONCSYSTEM CATALOGS) IN11tODUCnON(SYSlEM CMALOGS)

int2

text

pg_prs2stub

oid

bool

int4

stub

pg_rewrite

char16

char

oid

int2

bool

text

text

prs2pl2Lnno

prs2code

prs2relid

prs2islast

prs2no

prs2stub

ruleneune

ev_type

ev_class

ev_attr

is.instead

ev_qual

action

plan is used *l

/* plan ninnber (one rule may invoke

multiple plans) */

/* external representation of the pleui */

/* class to which this rule applies */

/* is this the last stub fragment? */

/* stub fragment number */

/* stub fragment */

/*

/*

/*

/♦

/♦

/*

rule name */

event type;

RETRIEVE, REPLACE, APPEND, DELETE

codes are parser-dependent (1?) */

class to which this rule applies */
attribute to which this rule applies
is this an "instead" rule? */

qualification with which to modify

(rewrite) the plan that triggered this
rule */

parse tree of action */

LARGE OBJECT CATALOGS

pg-iobj

oid ourid /* 'ourid' from pg_naroing that

identifies this object in the

Inversion file system neunespace */
objtype /* storage type code:

Oslnversion

l=Unix

2=External

3=Jaquith */
object_descripto/* opaque object-handle structure */

int4

bytea

pg^neuning

char16

oid

oid

pg_platter

filename

ourid

parentid

03/13/94

/*

/*

filenemte component */
random oid used to identify this
instance in other instances (can't

use the actual oid for obscure

reasons */

pg_jiaming instance of parent
Inversion file system directory */

164

INTTlODUCnON(SYSTEM CATALCXjS)

char16

int4

pg_j>lmap

plname

plstart

oid plid

oid pldbid

oid plrelid

int4 plblkno

int4 ploffset

int4 plextentsz

03/13/94

INTRODUCnON(SYSTEMCATALOGS)

/* platter name */
/* the highest OCCUPIED extent */

platter (in pg_platter) on which
this extent (o£ blocks) resides */

datedMise o£ the class to which this

extent (of blocks) belongs */
class to which this extend (of

blocks) belongs */
starting block number within the
class */

offset within the platter at which

this extent begins */
length of this extent * I

165

INFORMAnON(FE£S) INPORMAnON(FILES)

SECTIONS—FILES

OVERVIEW

This section describes some ofthe imporiant files used byPOSTGRES.

NOTATION

**..7^ atthe fircmt offile names lepiesents the path tothe postgies user*s txmie directofy. Anydiing insquare
brackets CT* and **D is optional Anything in braces ("{" and can be rq)eated 0 or mom times.
Parentheses andare used togroup boolean egq^essicos. | isthe boolean qKrator OR.

BUGS

The descriptirxisof

.../data/PG_VERSION,

.../data/base/*/PG_VERSION,

thetemporary sortfiles, andthedatabase debugging trace files areabsent

01/23/93 166

BKI(FILES) BKI(FILES)

NAME

..ysrc/backend/obj/{local4bdb).Ud—template scripts

DESCRIPTION

Backend Interface (BKI) files arescrl^ that describe the oontoits of theinitial POSTORES database. This
rtatahasft is ctxistTucted (hiring system installation, bythe initdb command Initdb executes thePOSTGRES
backend with a ^lecial setofflags, diat cause it toconsume the BKI scri^ and bootstrq> a database.

These files are autcMnatically generated fimn system header files during installation. Th^rare notintended
fOT use byhumans, and you donot need tounderstand their contents inmder touse POSTORES. These files
are copied to

.../files/{globall,locall_;aaC).bki

during system installation.

All new user databases winbe created by cc^iying die template database that POSTGRES ccmstructs from
the BKI files. Thus, a simple way tocustomize the template database is toletdiePOSTGRES initialization
scr^ create it fcH* you, andthen toruntheterminal monittH' tomake thedumges youwant

The POSTGRES backend inteiiBets BKI files as described below. This description winbe easier to under
standif the example in **..yfiles/globdl.ldd** is at hand.

Commands are composed of a command name foUowed by space separated argumoits. Arguments to a
command which begin with a **$** aretreated speciahy. If **$$** arethefirst twocharacters, dieo thefirst
is ignored and the argument is then processed normally. If the is fofiowed byt^iace, then it is treated as
a NULL value. Otherwise, the characters fofiowing the are interpreted as the nameof a macro causing
theargument toberqilaced with themacio*s value. It isanemx'Ux thismacro tobeund^ned.

Macros are defined using

define macro niacro_name = macro_value

and are undefined using

undefine macro macro^neune

and redefinedusing the same syntax as define.

Listsof general ctunmands and macrocommands fcdlow.

GENERAL COMMANDS

open classname
Open dieclass calledclassnamefcH* finther manipulation.

dose [classname]
Closetheopenclasscalledclassname. It is anerrorif classname is not already cqiened. If noc/ors-
nameis givm, then thecurrently c^ien class is closed.

print
Print the currently open class.

insert [oidsoid.value] (valuel value2...)
Insert a new instance to the open class using valuel^ valuel, etc., for its attribute values and
oid_value fm its OID. If oidjmlue is not **0**, then this value will be used as theinstance's object
identifier. Otherwise, it is an error.

01/23/93 167

BK1(F1LES) BKIOrlLES)

insert (valuel value2...)
As above, but the system generates a unique objectidenttfien

create classname (namel s typel, name2s Iype2,...)
Create a class named classitame with the^tributes given inparentheses.

open (namel a lypel, name2s type2,...) as classname
Open a class named classname for writing but do not record its existence in the system catalogs.
CHiis is primarily to aid in boocstrtqjping.)

destroy classname
Destn^ the class named classname.

define Index indexniame on class-name nsingamname
(opclass attr Ifonctiondattr}))
Create an index named iitdec^Rome on theclassnamed cto/uzme using theoffuuime access method.
Thefields to index arecalled namely name2, etc., andtheoperator collections tousearecotfecffon_7,
collecHon_2^ etc., respectively.

MACRO COMMANDS

definefunction macrojiame as rettype function_name (args)
Define a function inoto^rpe fora functum named macrojiame which hasitsvalue of Qqie rettype
computed from theexecution/iincrioRjiome withthearguments args declared in a C-like manner.

define macro macro_name from file filename

Definea macronamedinacnamrwhichhas its valuereadfromthefilecalledji/emnne.

EXAMPLE

The following set of commands will create the *t^opclass** class containing the intj)ps coUectkm as
object 421, print out the class, and then close it

create pg_opclass (opcnaine=charl6)

open pg.opclass

insert oids421 (int_ops)
print

close pg_opclass

SEE ALSO

initdb<unix), createdb(unix),createdb(c(Nnmands), template(files).

01/23/93 168

PAGECFILES) PAGE(F1LES)

NAME

page structure — POSTGRES database file defiault page fonnat

DESCRIPTION

This section provides an overview of the page fcnmat used by POSTGRES classes. User-d^ned access
methods need not use this page fonnat

In the following exifianation, a byte is assumed to contain8 bits, hi additimi, the tenn item r^as to data
which is stmed in POSTGRES classes.

Diagram 1 showshowpagesin both ntumalPOSTGRES classesand POSTGRES indexclasses(e.g.,a B-tiee
index) are structured.

PageHeaderData ItemldData

Unallocated Space

ItemContiDuationData

itemPointerData

, ,

1 1

• filler •
1 1

itemData...

ItemData 2

'ItemData 2'

Special Space

Diagram 1: Sample Page Layout

The first 8 bytes of each page consistsof a page header (PageHeaderData). Within the header, the first
three 2-byte integer fields, lower^ upper, and special, leiuesent byte ttf^ts to the start of unallocated
space, to the end of unallocatedspace, and to the start of **special space.** Special space is ai^km at the
end of the page which is allocated at page initializationtime and which contains informationspecificto an
access method. The last 2 bytes of the page header, opaque, encode the page siase and information on the
internal firagmentation of the page. Page size is stored in each page because firames In the bnfifer pool may
be subdividedinto equal sized pages on a firame by firame basis within a class. The internal firagmentation
infcMmatimi is used to aid in determining when page reoiganizaticxi should occur.

Following the page header are item idoitifiers (ItemldData). New item identifiersare finom the
first four bytes of unallocated space. Because an item identifier is never moved until it is fiteed. Its index
may be used to indicate the locationof an item on a page. In fact, every pdnter to an item (ItemPointcr)
created by POSTGRES consists of a firame number and an index of an item identifier An item identifier
contains a byte-ofif^ to the start of an item, its length in bytes, and a set of attribute bits which afifect its
interpretation.

Theitems, themselves, arestored in space allocated backwards firom theendof unallocated space. Usually,

01/23/93 169

PAGE(FILES) PAGE(FE£S)

the itons aie not inteipieied. However when the item is too long tobeplaced mi a single page or when
fragmentatimi of the item isdesiied, the item isdivided and each piece is handi^ asdistinct items in the
following manner. The fifst through the next to last piece are placed in item continuatkm structme
(ItemCmitinualXMiData). This structure cmitains itemPointerData i^iich points to die next piece and the
piece itself. Hie lastpiece ishandled normally.

FILES

BUGS

.Jdata/,..

Location of shared (global) datffbase files.

..ydata/base/...
Location of local files.

The page fmiiatmay change in the future toprovide more efficient access tolarge objects.

This sectimi contains insufficient detail tobeofany assistance in writing a new access method.

01/23/93 170

TEMPLAIE(FILES) TEMPLArE(FILES)

NAME

..ydata/files/gk)ball.bki—glolKQ database template

..ydata/files^ocall_XXX.bki—local database template

..ydata/files/templatel/*—de&iilt database template

DESCRIPTION

Hiese files contain scr^ which direct the construction of databases. Note that the **globall.Ud** and
*1emplatel_local.bki** files are installed automatically when thePOSTGRES super-user nins initdb. These
files are copied from

.../src/backend/obj/{dbdb,local}.bki

The databases which are generated by the template scripts are normal databases. Consequently, you can
use theterminal monitor or some other fipontend ona template to simplify thecustomizaticHi taak
That is,diere isnoneed toe]q)ress everything about your desired inirifll AataKww using a BKI rempiaK*
script, because thedatabase statecanbe tuned interactiyely.

The system catalogs consist of classes of two types: global oxl local. There is onecopy of each global
class that isshared among alldatabases ata site. Local classes, onthe other hand, arenot accessible except
fipCHn their own database.

The file

.../data/files/global1.bki

specifies theprocess used in thecreation of global (shared) classes bycreatedb. Similatly, die

.../files/locall_XXX.bki

files specify the process used in the creation of local (unshared) catalog classes for the **XXX** template
database. "XXX" may be any string of 16cr'fewer printable characters. If no template is ^edfied in a
createdb ccunmand,then the tonplale in

.../files/locall^templatel.bki

is used.

The .bid files aregenerated firom C source code byaninscrutable setof AWK scripts.

BUGS

POSTGRES Version 4.2doesnotpermitusers to have separate template

SEE ALSO

Ud(files), initdb(unix), createdb(unix).

01/23/93 171

REFERENCES(MANUAL)
REFERENCES(MANUAL)

references

j^j,,g,,^^orteriag«ctoiicalfqjOTts» see the installation notes that accompany the POSTORES rfisiri^Tllon
[ONG90]

[ROWE87]

[SHAP86]

[STON87]

[STON90]

[WONG76]

Ong. L. and Goh, J., "A Unified ftamewoik for \feisico Modeling Using ftoductiDn
System,- Electronics Reseazcb Laboiatoiy. Univeraty ofCalifornia.

BcitelQr.ERL Memo M90/33. April 1990.
L ami StondHaker. M.. "The POSTGRES Data Model,- ftoc. 1987 VLDB Con

ference, Bnghton, England, Sept. 1987.

" Database Systems with Laige Main Memories,- ACM-luua, aqpt 1986.

Ston^raker. M. "The POSTGRES Stmage System,- Ptoc. 1987 VLDB Conference,
Bnghton,England, Sept1987.

Stond^r, h^t al., "On Rules, Procedures, Caching and Views in Database Sys-

n!mi^9^ ACM-SIGMOD Conference on Management of Data. Atlantic City.
Wong. E., -Decomposition: AStrategy for Query Processing,- ACM-TODS, Sept 1976.

03/10/94 17'>

	Copyright notice1992
	ERL-92-85

