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Abstract

This report will address some issues on rule-based incremental control like: is it possible for a
given class of systems to find a rule-based incremental controller that stabilizes these systems? Is
it possible to find a rule-based incremental controller that tracks any reference trajectory? These
two questions are particularly interesting in robotics: for instance if some method can generate
a trajectory [Luz92b], it is necessary to be able to control the given robot in order to follow that
trajectory.

We did not focus only on these two questions, but they build the core of the first chapter,
and the search for an affirmative answer has given us new insights on the mechanisms of rule-
based incremental control. This has led us to reconsider the current definition of rule-based

incremental control; in [Luz92b], we have discussed the use of artificial intelligence techniques
in order to learn rule-based incremental controllers for a given process, but the learnability has
not been proved yet, although experimental results seem to confirm it. A theoretical frame has

been developed in order to try to confirm or infirm the learnability [MLZ92, Mar92] (Eric Martin
is currently finishing his PhD on the subject [Mar92]) and one of our aims has been to find an
adequate definition of rule-based incremental control, which encompasses the current definition
(we do not want to lose the benefit of the results we have already proved!), and which can be
used in that theoretical frame. The second and the third chapters are the result of that search
for a new definition of rule-based incremental control; they only give a temptative answer and
much work has still to be done.

The general form of rule-based incremental control has been discussed in [Luz91]; other
references andresults can be found in [Luz92b]. Letusonly recall that the control laws considered
have the following form: Uk+i = Uk + efcA where €* (called the sign) is an integer between -m
and +m, and A (called the increment) is any non null positive real. A rule-based incremental
controller is a finite set of rules: if some test on the state at time k then add ejtA to the current
input. Usually, the test in the if-part consists in computing some function of the state and
comparing it with given values, in other words the value of e* is computed by a step-function
applied on an eventually nonlinear function of the state. Actually this definition yields state
rule-based incremental controllers, and by replacing in the rules the word state by output, we
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could define output rule-based incremental controllers, which are used for instance in the learning
program Candide [Luz92b].

We would like to make a few remarks at this point.

The word rule-based should not confuse the reader: we are not dealing here with expert
systems for instance. Of course we are dealing with rules, but that is not the key-point of our

approach; much more important is the fact that the input at time k will not be chosen arbitrarily,
but will be deduced from the previous input by adding (or subtracting, or more generally, by
applying) a given amount of a fixed increment. The rules are only a convenient way in the final
stage of the computation of that amount. This had to be made precise, as the term rule-based
is often used without discernment: without being too sarcastic, we could imagine a rule like "if
the system is controllable, then find a control law", this would be rule-based control too! The

crucial point when usingrules is to define precisely the language used when one writes rules, and
although it seems trivial, it is not always observed...

Another remark is: although we areusing rules and basically, the action on the input between
two successive time steps could be interpretated as "add some large increment" or "subtract a
small increment", we are not using fuzzy control either.

The definition of a rule-based incremental controller makes the next remark void, but we

would rather appear as insisting too much than be misunderstood (and misjudged...): the
coefficient e* is the result of the comparison of a nonlinear function of the state or the output
with given values; it is not obtained by mere discretization of the output space or the state space.

We have always been guided by one principle: only claim as true that which can be theoret

ically proved, and use experimental results only as a guide for further proofs, not as a show-off.
We hope this report keeps to this principle.



Chapter 1

Rule-based incremental control:

chaos, stability, tracking

In the first section, we will study a particular rule-based incremental controller when applied in
a feedback loop to a linear system; we will then observe the distribution of the different com

ponents of the state vector, which seems to point at chaotic behavior. When the state vector

spaceis 1-dimensional, we will study more precisely the relationship between the evolution of the

state vector, the initial state and the state matrix in order to understand the underlying mecha
nisms [Luz92a], The next sections will be dedicated to other rule-based incremental controllers,
used to stabilize first time-invariant linear systems, and then time-varying linear systems. This
will lead ultimately to a rule-based incremental controller used for trajectory tracking for a class
of nonlinear systems.

1.1 Rule-based incremental control leading to chaotic behavior

1.1.1 A state-feedback rule-based incremental controller

Proposition 1 For a controllable linear single input system (Xk+i = AXk + Buk), a given
desired trajectory (x[ %&* and asequence of inputs (uL^HeN yielding this trajectory (x\*\ =
AXk + Bu\ ) such that (u\ - u\ix )i6N is bounded, then, for any positive real e, there exists
a rule-based incremental controller tracking the trajectory with an error smaller than e.

Proof: First let us introduce some notations: any real number x can be written x = [x] + {x}
p

where [x] 6 Zand {x} €] - 1, l[l. For positive x, let x= £ d,10* be adecimal expansion ofx,

1Our definition differs from the usual integer and fractional part for negative reals
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-l

where the digits d{ are integers in [0,9]; we shall take for {a:} the real number ^2 djlO* and [x]
t'=—oo

p

will be the integer ^ djlO*; for negative x, we take respectively: {x} = -{—x} and [x] = —[—x]

(for instance [1.2] ="l, {1.2} =0.2 and [-2.5] =-2, {-2.5} =-0.5).
As the system is controllable, it has a canonical controllable form (see for instance [Oga87]

or appendix):

Xk+i = AXk + Buk

Let us define Vk and Uk by (A is anon null positive real and obviously X^ ' corresponds to X^ •
expressed in the new coordinates):

Vk = rg^fc-ffl)W^]A +STA{jtk _^ _u[d)
uk = -BTA(Xk-Xid))-ru(jf) + vk

We notice that \vk\ < A. A straightforward computation yields:

Xk+i - Xi% = J(Xk - Xid)) +Bvk

where J is a n x n Jordan matrix. We conclude that for any k:

II **+"-**+» II = II E?=i J^Svtti ||
< (E?=i II J"-' II) II B || A

Take A such that (£?=i || J"~' ||) || f> || A < e and the error on the trajectory is smaller than e.

Let us now verify that (y.k) is an incremental control law:

Uk = Ufc_i +

(-BJA{Xk - XJ*>) +,P +vk) +(BTA(Xk.1 - X&) - «£, - »*_,)
The two last terms of the right part of the previous equality are, by construction, multiples of
A. Furthermore:

\uk - u*-i| < l4d) - «£!il +M +k-i|+1| bta || (|| xk - xid) || + \\Xk-i - X& ||)

which is uniformly bounded in k. There exists thus an integer m such that for all &, there exists
an integer e* with |€*| <m verifying Uk = Ufc_i +efcA.^The corresponding rule-based controller
is obvious to write: compute [-^A(Xk-Jc^)+u[d^ _pflT;i(*i,-i-xgj-H»g1 j^^ ^ ^ ^^
to some integer p (bounded by a constant as we saw previously) and add then pA to w^-i. •

Remark: the assumption of boundedness for the difference of two successive reference

inputs is not too restrictive, as in practice reference signals are usually bounded and thus
their variation between two time steps is bounded too.
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Figure 1.1: Tracking a 1-dimensional reference signal

Anillustration ofthis proposition can beseen onfigure 1.1, where a reference signal consisting
in steps, ramps and second-degree polynomials is tracked.

Let us look more closely at the previous proposition when u[d^ = 0 and A"£d) = 0. We can
then state that for all e, there exists a state feedback rule-based incremental controller such that

for the controlled system we have: 3Af,Vfc, || Xk \\< M.

V.- \"
• ~ A*

Sill

Figure 1.2: 1 and 2-dimensional systems in closed loop

Figure 1.2 represents the state vector for 1-dimensional and 2-dimensional systems as a func
tion of time. We see the values of the state vector are spread respectively inside a strip and
inside a square. For the 2-dimensional case, two different values of A have been chosen, and the
figure shows clearly that the error is proportional to A.
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Looking at the form of the state feedback incremental law, it is obvious that as soon as some

Xk is null, the state vector is null for any k' > k. We will now try to find a condition such that

there exists some k with Xk = 0. Rewriting the incremental control law, we have:

r BTAXk,Kuk = [ £—]A
rBTAXk,Avk = {—^—}A

The expression —BTAXk equals ]£?=i an+i_jA"£\ The state vector can be rewritten as:

/ Vk-n

Xk =

\ Vfc-l

This shows that a necessary condition for Xk = 0 is the array of equalities Vk-i = 0 for

1 < i < n. But then Xk-n+i = J%Xk-n and all the equalities Vk-i = 0 can be rewritten

as 5Zi=n-t+i a2n-t-i+i-^jt_n = ftA, where qi is some integer in Z. Every such equality is in fact
in Rn (seen as an affine space) the equation of a family of parallel affine hyperplanes (the corre
sponding direction in the vector space is given by the equation £?=n-t+i a,2n-i-j+iXk2n = 0),
and the condition Xk = 0 reduces to: the pointwith coordinates Xk_n must be on oneofthe ver
tices of the previously defined lattice (the intersection ofthesen infinite families ofhyperplanes)2.

The previous paragraph only tells us how to choose a state vector such that it goes to 0 after
at most n steps; it would be interesting to have a general condition on Xq such that Xk = 0 for

k > n, but for multi-dimensional vectors, this cannot be written in an easy way. However for
1-dimensional systems, there are very simple conditions, as we will see in the next section (the
1-dimensional case is much easier to write down, as Xk and Vk can then be identified).

1.1.2 Distribution of the state vector

Figure 1.3 is another illustration of the 2-dimensional case; values of (ai,a2) are from left to
right: (-1.045, -1.0032), (-1.03, -1.01), (-1.2, -1.2), (-2.48, -1.2), (-10, -12) and the initial
state has been chosen small. A quick look at this figure shows that the values taken by the state
vector inside the square do not seem to be distributed in the same way.

The aim of this section is to see how this distribution behaves when A and Xq vary. In order
to simplify the equations, we will consider the 1-dimensional case and the system is - trivially,
as B is then a scalar and has to be non null - under its canonical controllable form. Furthermore

we assume that the scalar state matrix (written now a) and the initial state (xq) are positive.

Actually, as soon as k > n, Xk-n cannot be chosen arbitrarily as its norm is bounded, and only a finite part
of the lattice is admissible
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We have:

~^
;3T

* %* q

K { ^i^,- SI
1 *» '•*

Figure 1.3: Other 2-dimensional systems in closed loop

axk + uk
x-axk

A
]A

The recurrent equation can be rewritten as:

Zfc+l , Xk,

"a~ ={a A}
Without any loss ofgenerality, we can thus assume that A = 1 (the sequence (§=•) has the same
distribution as the sequence (a:*)). For k > 1 we have obviously Xk < 1; we can then assume
x0 < 1 (as the distribution of the sequence (xk) does not change if we skip the first element of
the sequence). Let us write g* for [-axk]; it follows from our definition of the integral part, that
\q.k\ < [a] - 1. The recurrent expression of the state vector is:

Rewritten as:

xk+i = qk + axk = ak+lx0 + qk + agfc_i + •••+ a^^o

Xq
(-%)

+
, (-gfc-l) , (-gib) ,

a aK ' ak+l r afc+1

this expression is similar to an expansion of x0 in base a that begins with (-go) •••(—<flfe) and
where xk+i is the number whose fractional part is the remainder ofthe expansion; in other words,
xk+i is obtained by shifting the expansion of z0 to the left and losing the k+ 1 leading digits.

It is then obvious that xk+i is null for some k if and only if this expansion in base a is finite.

This cannot occur for all (x0,a) as can be seen if one takes z0 € Q and a transcendental.

l
•Xk+l

Remark: if a is not a natural number, the existence and unicity of the expansion in base
a of any real number in [0,1[ do not hold any longer: if the digits used in the expansion
are in {0, •••, [a] - 1}, the whole interval [0,1[ is not covered by such expansions, and if
the digits are in {0, •••, [a]}, some expansions are outside [0,1[. However we may consider
the "expansion" we encountered as canonical, as it is similar to the usual expansion in a
natural base. Such expansions have been studied intensively; among the main results:
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- the map: x •-»• {ax} is ergodic (any Lebesgue measurable subset of [0,1] invariant by

this map with non null Lebesgue measure has necessarily measure 1) [Ren57, Par60]

- the set of all fractional expansions F = {]C2^i a,a*} where all a,- are integers in
{di,..., dk] has similarity dimension logkj loga [Edg90]

- concerning the existence of periodicity in the expansion, only sufficient conditions are

known [Bla89] (other known facts and open questions can be found in this reference).

As Xk+i can be deduced from xk by shifting the expansion in base a of xk by i steps to the

left (and losing of course the leading digits), the existence of a cycle in the distribution of the

state vector is equivalent to the existence of periodicity in the expansion in base a of Xk\ the last

remark shows that even for a 1-dimensional system, the existence of cycles in the distribution of

the state vector is an open question: in fact, almost nothing is known in the general case when

a € R(some fractional and somecomplex values ofa have been studied in [Knu81, Edg90] because
of their relations to fractal sets: for instance the set of all fractional expansions F associated

to a = —1 + i and d\ — 0, di = 1 yields a fractal made of two adjacent Heighway dragons;

furthermore as every complex number can be represented in this number system, the whole

plane is covered with countably many such dragons which can be shown to overlap only in their

boundaries; other fractal sets exist for instance for a = -2 and d\ —0, d\ = \,d$ = u, d* = J1
where u = e2tff/3). Even for a priori very simple cases, such as a = 2, there are lots of open
questions: in absence of any theoretical result, some try to find some pattern in the distribution

of the orbit of ir (i.e. the sequence xn+i = {2xn} with xq = w) or e with help of computers; even
equidistribution has not been proved or refuted yet. Although nothing is known in the general
case if one picks some real and tries to understand the distribution of its orbit, there are some
intermediate results:

• [Fra63] let p(X) be a polynomial with real coefficients. Suppose that for some x0, the
sequence (a;n+1 = {p{xn)}) for n > 0is equidistributed3 in [0,1[. Then either p(X) = X+a
with a € R\ Q or p(X) = NX + $ with N € Z\ {0,1, -1} and B€ R

• [Fra63] the previous result is only a necessary condition of equidistribution: a sequence
(£n+i = {Nxn}) may fail to be equidistributed even if xo is transcendental. In fact,
take the Liouville number x0 = £2Li N~uX which is known to be transcendental, then
xn < N~x + N~2 + JV~3 < 1 and the sequence (also known as Multiply sequence) cannot
be thus equidistributed in [0,1[

In the next proposition, we will study the case a = 2 (but all results can be extended to any
integer value of a) and instead of considering the orbit of a particular real and trying to see

(xn) is equidistributed or uniformly distributed modulo 1 if for all o,b in [0, If, where o < 6, we have

lhn 2^ '[<*.*>[(2«») = b—o, where l(0pj,[ is the characteristic function ofthe interval [o, b[
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whether it is dense or whatever, we will consider the set of all reals which have a dense orbit,
and its complement and look for their respective properties.

Let D : [0,1] -• [0,1] with D(x) = 2x mod 1 and consider the following set:

B = {x € [0,1] | the orbit of x under D is not dense}

Let us denote Bcits complement. Of course, B is the set of all x0such that the sequence ({2nar0})
is not dense in [0,1].

Proposition 2 For integer values of a, we have the following results:

J. B is uncountable

2. Bc is uncountable

3. B and Bc are dense in [0,1]

4. B has Lebesgue measure 0 (and of course Bc has Lebesgue measure I)

5. B and Bc are second category

Proof:

B is uncountable.

Since every rational number is eventually periodic, its orbit visits but a finite number of

points in ]0,1[ and hence cannot be dense. But there are other points which do not have a dense
orbit: let S be the set of all nonperiodic strings of O's and l's not having 11 as a substring; then
no point on the orbit of x € S can be close to the number 0.11 and hence S is included in B\
a similar argument holds for $[6162 ••-6*], the set of all nonperiodic strings of O's and l's not
having 6162- •-bk as a substring (S is actually 5[11]). B is hence obviously uncountable.

Bc is uncountable.

Let x = 0.0 1 00 01 10 11 000 001 010 011 100 101 110 111 ..., in other words x
contains every finite sequence of O's and l's; then the orbit of x visits every neighborhood in
]0,1[ infinitely often and is therefore dense; the same holds of course for any x which has all finite
binary sequences as substrings in its binary representation arranged in any order; conversely, if
the orbit of x is dense in ]0,1[, then some point in its orbit must be arbitrarily close to any
0.6x62"-bk (any finite binary expansion in ]0,1[) and hence this point must begin its binary
expansion with the same string of O's and l's; hence x contains any finite string of O's and l's.
Bc is characterized by this property and is hence uncountable.

B and Bc are dense in [0.1].
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Let us introduce Hi and J?2 defined from [0,1] into [0,1] with Hi(x) = x/2 mod 1 and
#2(2:) = (1 + x)/2 mod 1. It is obvious that B and Be are preserved by D, Hi and iJV ^ we
look at the effect of any of these three maps on the binary expansion of some x, we see that

D shifts the expansion to the left and loses the leading digit, H\ shifts the expansion to the

right (therefore inserts a 0 between the comma and the binary expansion of x) and H2 inserts
a 1 between the comma and the binary expansion of x. By applying a finite number of times

alternatively these three maps, it is obvious that starting from x we can obtain any number with

a binary expansion which starts with some 6162 ••*6fc and goes on with the binary expansion of

x. As. we have noticed that B and Bc are preserved by a finite application of these maps, we

conclude easily that B and Bc are dense in [0,1].

B has Lebesgue measure 0.

Let 5 be a finite string of O's and l's. We will show that the set of x which have a finite binary

expansion, where s does not appear, has measure 0. Suppose s has length n. The number of

possible binary strings of length nN in which s does not appear is at most (2n —1)^, since there
are in each block of length n only 2n —1 strings different from s (the number of such possible

strings is smaller because we do not consider overlapping possibilities of s between the different

blocks). Thus the measure of the set of x such that s does not appear within the first nN bits

is smaller than (2n - l)^/2njV = (1 - 2~n)N. As N goes to infinity, this number goes to 0,
as 1 —2~n < 1. The set of all 3 which have a binary expansion in which s does not appear is

contained in all these sets, whose measure becomes arbitrarily small, so it itself has measure zero.

As there are countably many strings s and the union of a countable collection of sets of measure

zero has measure zero, and as Bc is the set of all a: which have a binary expansion that contains

all finite strings, we conclude that B has measure 0. Of course, Bc has Lebesgue measure 1.

B and Bc are second category.

This follows from the fact that they are dense in [0,1], hence the interior of their closure is

not empty. B is another example of a set which has measure zero and is not first category, thus

non important in a measure sense, but still important in a topological sense [HY61].

These results can be proved in the same way- for other integer values of a, mutatis mutandis.

As key points of some of the previous proofs include unicity of the expansion in base a of any

real number in [0,1] and periodicity of the expansion for a well-known class of real numbers, and
these questions are either false or unsettled for any real a, the previous results on B and Bc are

not necessarily true for non integer a. D

These different results show that if we consider a 1-dimensional system controlled by the

incremental control law we defined at the beginning of this chapter, the distribution of the

values taken by the state vector (inside the interval depending on the choice of A) depends on
the initial state and for arbitrarily close initial states, the behavior will be radically different
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(loss of density, loss of equidistribution, ...). Some generalizations to higher dimensional cases
can be found in [KN74] where references are given concerning the study of the map: x •-»• {Ax}
which is ergodic with respect to Lebesgue measure if and only if A is a non singular matrix and
none of its eigenvalues is a root of unity.

As we have seen, the study of the distribution of the state vector of our feedback system leads

to many number theoretic open questions, in spite of the apparent simplicity of the problem.

If we refer to the study we could make in the easiest cases and to the experiments performed,

we see that this distribution varies drastically for different initial states, and although the state
vector is kept inside well-known boundaries, the behavior of the controlled system is chaotic.

Remark: in [FC90, FC91b, FC91a], the structure of a single-loop E -.A modulator,

consisting of a quantizer and a discrete-time integrator in a feedback loop with constant

input is analyzed; this system is described by:

xn+i = pxn+ g(u - sign(xn))

where the input u is constant and the output is sign(xn). This equation is very similar

to the equation we just studied in the 1-dimensional case; limit cycles for the output have

been searched for and the characteristic of input versus average output has been described.

Instead of considering only sign(xn), these papers consider also Q(xn), which corresponds
physically to the case when the number of quantization levels is changed (Q is a step
function between —1 and +1). The interesting part is that this study points at fractal
behaviors, which has kind of familiarity with our study.

1.2 Another way to stabilize a linear time-invariant system

The preceding discussion discussed a rule-based incremental controller which stabilized a discrete

linear time-invariant system; the only drawback is that this controller involves the canonical

controllable form. In this section, we will give another controller which does not make use of

that canonical form for the system. The rule-based incremental controller is inspired from [Kle74,
KP75] (the first paper deals with non singular state matrices, while the second extends the result
to any state matrix), and the proof will follow very closely these two papers.

Let us consider the system: Xk+i = AXk + Buk, with a single input, a n-dimensional state

space (it can be Rn or Cn; we will write in all cases AT for the adjoint of A), and let us assume
this system is completely controllable. With the same previous definitions of [x] and {x} for any
real scalar x, we define the control law:

BT(AT)n(f2AiBBT(AT)T1An+1Xk
uk = [ *=2 ]A (1.1)
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This expression is well defined, as the system is completely controllable (if we define Wm =

12iLoAtBBT(AT)t for any to, it is obvious that Wm is positive semi-definite for any m; it can
be shown that complete controllability implies Wn-i is invertible, hence positive definite and as

a consequence the same holds for Wm for all m > n —1). As in the previous section, we define
Vfcby:

uk =vk - BT(AT)n(JTAiBBT(AT)i)-1An+1Xk
t=0

It is obvious that uk takes only values which are multiples of A and vk is smaller in norm than

A. Actually Uk is the sum of Vk and of the control law introduced in [Kle74, KP75], where it
has been shown that it stabilizes any discrete linear time-invariant system. We will first recall

this proof and then, making use of this result, we will proof the following proposition.

Proposition 3 Let Xk+i = AXk + Buk be a discrete linear time-invariant single input system
and let us assume this system is completely controllable. Then the control 1.1 can be rewritten

as a rule-based incremental controller and stabilizes the system.

Proof: The proof consists in two parts; the first part follows [Kle74, KP75], while the second

part deals with the fact that we are using incremental control laws.

• Part 1

Using the control law 1.1, we have: Xk+i = "AXk + Bvk, where:

A=A- BBT(AT)n($2 A{BB" [AT)i)-1An+l
t'=0

Let p be the algebraic multiplicity of the zero eigenvalue of the matrix A. There exists a similarity
transformation S which transforms A into A with:

A=S-*AS-(* ° )
where Aq is a nonsingular (n - p) x (n - p) matrix and Ai is a p x p matrix with only zero
eigenvalues (hence A\ = 0 for all' i > p). Taking B = S~lB and A = S^AS, we have obviously:

B =

A = A-BBT(AT)n{Y,AiBBT(AT)i)-1An+1
t=0

The column vectors Bo and Bi are respectively (n - p) x 1 and p x 1. As we are dealing with
a controllable single-input system, the subsystems (Ai,Bi) and (Ao,B0) are controllable single-
input systems too, with respectively p and n-p dimensional state spaces (this comes from the
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fact that (B, AB, •••,An~1B) is a basis for the n-dimensional state space, and this space can be
decomposed into Nq@Nx, where N\ is spanned by the eigenvectors ofAcorresponding to the zero
eigenvalue, and No is spanned by theeigenvectors ofAcorresponding to non zero eigenvalues; it
is then obvious that (B0, Aq,B0i - -, A^'*-1B0) is abasis for N0 and {Bi,Ai,Bi,'",A{~lBi)
is a basis for Ni). There exists thus a similarity transformation Si (see appendix) such that:

Sr'AiSi =

/ 0 1 0 ••• 0 \
0 0 1 ••• 0

0 0 0 ... 1

^ 0 0 0 ••• 0 J

srlBi =

/o\
0

0

The similarity matrix S' defined as:

S' =
In-p 0

0 Si

transforms the statematrix Ainto a diagonal matrix with blocks AJ, and A[ where A[ is a Jordan
matrix, and B is transformed into B'Q and B[ where B[ has null entries except for the last entry
which is 1. For sake ofsimplicity, let us write Aq, Au Bq and Bi instead of Aq, A[, B'Q and B[\
in other words let us assumethe similarity transformation S had already done the whole job and
Si was thus reduced to the identity Ip.

If p = n, we have A = Ai, since A = Ax and An+1 = 0; thus A is a stable matrix. In this
case, proceed directly to part 2 for the end of the proof.

Assume p < n. By direct computation we have:

YJAiBBT{AT)i =
t=0

/ n p-1 \

"£AoiB0B0T(AoT)i £VBo£iT(AiT)'
t=0 t=0
p-1 p-1

^Ax'iWtV)'' ^Ai'BiBSiASy
\ t=0 t=0 /

Recognizing that A\Bi is a column vector with all null entries but the p —i entry which equals
1, the following identities can be established:

t=0

J2 4BoBZ(AZy - (£ AiB0Bl(Aly)Ct4SiBoT(40T)') =£ AiB0B0T(40T)i
t=0 t=0 t=0 t=p
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Using these identities, we have:

(£A'BBT(AT)i)-1 =
t=0

1(EAhBoBKAjy)-1 •••
t=p

V ... ... )

From the fact that A\ = 0 for all i > p, we have finally:

A =
1Ao-5o50T(A0rr(^A0J?oJ?oT(^)T1^o+l 0^

«=p

The first block matrix can berewritten as: Ao - BoB^A^ )"-*>(£?'£ ^^^(Aj)*)""^?"^1.
In order to show that this (n —p) x (n - p) matrix is stable, it is sufficient to show that for any

nonsingular (n x n) matrices A, the corresponding matrix A is stable, independently of n (in

fact, this first block matrix can be interpreted as Ao, where Ao is a (n —p) x (n —p) matrix,
hence the sufficiency).

Let us now assume A is a (n x n) invertible matrix. We have:

A = A-BBT(AT)nW-1An+1 = A'n-1(A-An+1BBT(AT)nW-1)An+1

This can be rewritten as A~n'lAAn+l\ as A is invertible, the matrix A is thus similar to A. Let
us study this new matrix more closely:

AWnA-Wn =

AWnAT - 2An+1££T(An+1)T +An+1BBT(An)TW^lAnBBT(An+l)T - Wn

But we have: AWnAT = An+1BBT(An+1)T + Wn- BBT, hence:

AWnA-Wn = -An+1[BBT - BBT(An)TW^AnBBT](An+1)T - BBT = -Qx - BBT

The first term Qi thus defined can be rewritten as: 4

Qi =An+1B(I - BT(An)T{AnBBT(An)T +Wn^)-1AnB)BT(An+1)top

Using the following matrix identity:

/ - YT(ZYT +X)~lZ =(/ +YTX-1Z)~1

we have:

Qi = An+1B(I + BT(An)TW-l1AnB)-1BT(An+1)T
In fact this part ofthe proof with A invertible holds for higher dimensional control vectors, i.e. B can be a

(n x r) matrix, ifthe system has r inputs; in the next expression, the identity matrix is a (r x r) matrix, and in
thecase ofour single-input system, it is obviously a scalar, but we kept the matrix notation on purpose
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AsWn-\ls positive definite, BT(An)TW~*l AnB is positive semi-definite; the same holds then for
(I+BT(An)TW~\AnB)~l, hence Qi is positive semi-definite too. We conclude that AWnA-Wn
is negative semi-definite. Let X be an eigenvector of AT corresponding to the eigenvalue A; we
have then:

XTAWnATX - XTWnX = (|A|2 - l)XTWnX

All eigenvalues of AT have thus modulus smaller or equal to 1, because of the negative semi-
definite character of AWnAT —Wn and since Wn is positive definite. Let us assume one of these
eigenvalues has modulus equal to 1; then we have for some X, the corresponding eigenvector:

XTQiX + XTBBTX = 0

This implies XTQiX = 0, because both Qi and BBT are positive semi-definite. Instead of X,
we could have considered (AT) X for any i; this implies that A"TA*Qi(AT) X —0 for all i. As
we have seen that Qi can be rewritten as An+1BVBT(An+1)T, this implies that XTA{An+lB is
zero for all i. We have then:

XT(An+1B\AAn+1B\--\An-1An+1B) = 0

But we have: A*An+1B = An+1(A- BBT(An)TW^1An+1)iB, so the previous expression trans
forms into:

XTAn+1(B\---\(A-BBT(An)TW-1An+1)n-1B) = 0

But, as for any C, the controllability of the system Xk+i = AXk + Buk is equivalent to the con

trollability of the system Xk+i = (A + BC)Xk + Buk (see appendix), this expression contradicts

the controllability assumption of our initial system. Hence no eigenvalues of AT have modulus
equal to 1, and this matrix is stable; the same holds then for A, and as A is similar to A, we

conclude that A is stable.

• Part 2

The system controlled by the control law 1.1 can be described as: Xk+i = AXk + Bvk, where

A has been shown to be stable, whether A is invertible or not. We have obviously:

Xk+i =Ak+1X0 + Bvk +ABvk-i + ♦ ••+AhBv0

As B is bounded and Vi, |v;| < A, we have:

H^+iBiiAir'ii^oii +iiBiiAEii^ir
t=0

As || A ||< 1, we conclude that for all k, Xk is bounded, and more precisely:

3M > 0,3*0 € N,Vife > fc0,|| Xk \\< MA
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As in 1.1 all terms are uniformly bounded in k (for all k, \\ Xk \\ < max(Xo, •••, X*0, MA)), and
as this control law takes only values which are multiples of A, there exists some to such that we

have: Uk = c^A, with |cjk| < to. It is obvious then to write a rule-based controller yielding this

control law (do as in a former section where another law was studied). O

Remark: as is discussed in [Kle74], the previous law could be modified slightly in or

der to tackle some optimization problems; we could have considered for instance uk =

—[ "-1—t^-n fc]A, where R is some positive definite matrix, related to the cost
functional of the optimization problem. For systems with multiple inputs, the proposition
holds for A invertible; if A is not invertible, in various special cases, the proposition holds

still, or a slightly modified version of the control law can be found [Kle74, KP75].

1.3 From linear time-invariant to linear time-varying systems

We will now consider discrete linear time-varying systems: Xk+i = AkXk + BkUk, where Xk is

the n-dimensional state, and A* and Bk are time-varying matrices. Notice that there may be

several inputs: Uk is not restricted to scalar values. Let us take the following convention: Uk
stands for the whole input vector, while Uk stands forany component of that vector (no subscripts
to indicate which component, as we only need to distinguish the whole vector from any of its

components); this holds for all other vectors trivially related to Uk (e.g. UJf\uk\Vk). We will
proceed as in the preceding sections: in order to find an incremental law U^, we will look for

some general5 control law Ujf^ and take u^ = [^-]A, where Ais a non zero positive real; like
previously we can define Vk = U$ - UJfK This allows us. to rewrite Xk+i = AXk +BU^ as
Xk+i = AXk + BUJf' + BVk', ifwe have some stability result for the system controlled in closed
loop by the general control law Ujf\ we can deduce stability results for the incremental control
law Ul*' by applying adequate theorems on perturbed difference equations (which are given in
appendix). In a first step we will give some results with general control laws, and in a second
step, we will give the incremental versions of these results.

1.3.1 General control laws

Many general control laws stabilizing linear time^varying systems have been given in literature,
and we will only recall a few. The first one extends the method used in [Kle74, KP75] for
stabilizing discrete linear time-invariant systems, described in the preceding section. In [KP78],
the following proposition is stated.

This is really an awkward notation, but will help us to avoid confusion; we want to state clearly when we deal
with incremental control laws and when we do not
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Let us consider a completely uniformly controllable and observable linear time-varying dis
crete system Xk+i = AkXk+BkUk, yk = CkXk,where y^ is the output vector. Complete uniform
controllability of the pair (Ak, Bk) implies the existence of a fixed integer lc such that, for all k
and for some positive scalars (0:1,0:2):

«i/< 53 A{k,i+\)BiBjAT(k,i+l)<a2I
i=k

where A(k, j) = YLi~j ^f« The integer l0 is similarly defined using the complete uniform observ
ability of the pair (Ak, Cjt).

Proposition 4 Let u[9) = -R^BjPj^1Ml+NAkXk, where Nis an integer, Rk is apositive
definite matrix, and the double indexed matrix P is defined implicitly by Pjj = 0 and:

Pij = a-^+lM-1)7-

^t-i-Rt^.1J?1_1

where D{ is some matrix, and Qi = DjD{. Then:
1) Assume that Rk and Qk satisfy a3I < Rk < a4I and 0 < Qk < a$I for positive scalars

(0:3,0:4, a6) and for all k. Under the conditions that the pair (Ak,Bk) is uniformly completely
controllable and Ck is bounded such that || C \\< a7for allk, the linear system with this feedback
control is uniformly asymptotically stable when the horizon length N is chosen to satisfy lc + 1 <
N < 00

2) Assume that Rk and Qk satisfy a37 < Rk < a4I and a57 <Qk < a6I for positive scalars
(0:3,0:4, as, «6) and for allk. Under the conditions that the pair (Ak, Bk) is uniformly completely
controllable and the pair (Ak, Ck) is uniformly completely observable, the linear system with this
feedback control is uniformly asymptotically stable when the horizon length N is chosen to satisfy
1 + max (lc, l0) < N < 00

The proof of this proposition uses the adjoint system; a further assumption is made: namely,
the state matrix of the closed loop system (in the time-invariant case, it was A) is assumed
invertible, in order to define the adjoint system. The proof involves finding lower and upper
bounds for the double indexed matrix P. The matrices Qk and Rk can be interpreted as cost
matrices, associated to the optimization problem: J = E,^"1 vlQiW + ujRiUi. For further
discussion, refer to [KP78].

The next general control law, presented in [Che78, Che79], makes the zero-solution of the
closed-loop system uniformly exponentially stable at arate at least \i (i.e. 3/x > 1,3M > Q,Vk0 e
N, V* > kQ, Vsfco, || xk \\<\\ xko || M/o-fc).
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Let us consider a discrete linear time-varying system, and assume that Ak is invertible for all

k. For k > ko > 0 and v > 1, define:

C(*0,fc) = {A£Bk<>\A£A£+lBlt0+l\..-\A£A£+l...A?Bk)

S{ko,k) = C{k0,k)C(k0,k)T=1E(Al1-AJl)BjB](Al1--A-l)T

S„(*o,*) = 'L^k''h)(^1--Af)BjBJ(A^---A-1)T

We have then the following proposition.

Proposition 5 Assume that there exists I € N \ {0} such that:

1) the rank of C(k, k + l - 1) is n for all k

2) 3sm, 3sm,SM > sm > 0 such that: 0 < smI < S(k,k+l) < smI for all k

Then, for any v > 1, the linear time-varying state-feedback general control law:

U{k9) =-^(Afc1)1^*, k+J)"1**

is such that the zero solution of the closed-loop system:

Xk+i = Akll-A^BkB^A^yS^k + iy^Xk

is uniformly exponentially stable at a rate at least v.

Proof: Let us rewrite the closed-loop system as: Xk+i —AkXk-, where:

AM = Aft- AFBkBKAfySyfak + iy^Xk

It is easy to see that if the zero solution of the i/-scaled system £k+i = vAk£k, with u > 1, is

uniformly exponentially stable at a rate \l > 1, then the zero solution of the system Xk+i = ~Ak~Xk
is uniformly exponentially stable at a rate at least i/p. Let us define a real-valued function6 V
by: V(k,£) = £TSu(k, k+ l)"1^. From the second assumption in the proposition, we have:

0 < u~4lsml < S„(k, k+ l)< sMI

and of course:

0 < s^l < Su(k, k+ I)-1 < u4ls^I

6Actually this function isa Lyapunov function and will beshown tobenegative definite, hence uniform stability
of the zero solution [LT88].
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By straightforward computation, we compute the difference of the function V along the solutions
of the scaled system:

AVX*,&) = V(k + l,tk+i)-V(k,{k)

= (Jl(v7Z)TSv(k + 1, k+1+ l)-l(vAZ) - Su(k, k+1)-1]^

Using the definition of Ak and the identity:

AkSu(k, k+ l)Aj = BkBkT + v~*Sv(k + 1, k+ /)

we have:

(vTk)JSv(k + l, *+ l + l)-\vTk)

= v-*Sv(k,k + l)-lAllSv(k + \,k + l)Sv(k + \,k+\ + l)-1
Sv(k + 1, * + /)(A^1)T5U(A:, *+ Z)-1

As we have: Sv(k+1, k+1 + /) > S„(fc +1, A: + /) > 0, wehave obviously: S„(k +1, k+1 + /)_1 <
Su(k +l,k + I)'1, and the previous equality becomes:

(v~A~k)TSv(k + 1, k+ 1+ /rVAit)

< i/-65„(*, A: + /)-1AJ15„(ib +1,*+/)(A*1)1^*, *+Z)"1

< iT2^*, k+ l^A^lBkBj +i/-4^^ +1, it +l)](A^)T Sv(k, k+I)-1
= i/-25„(M + Z)-1

The last inequality holds because BkBk is positive semi-definite and the last equality is a con
sequence of the identity given previously. Hence we have:

AV(*,eO < (""2 - i)£s„(k,k + iy% < -(i - „-J)»il ||& ||2

which is negative definite7. We have then:

V(*,&) " i/^1

This yields for all k > k0 > 0 and all ^:

V(* +l,&+i) < [1 - (1 - v-2)sms$v-Al]V(k,Zk)

and finally:

ii &h<ii &ii "2,y^[i - (i - «'-2K^i«'-"](k-t»)/2
V 5m

The convergence rate of the closed-loop system is then at least v[l - (1 - t/2)smslfU~4l]m"1^2
which is obviously greater than v. D

If the {/-scaled system had not been used, wewould only have obtained 0 as an upper bound, and the function
would only have been negative semi-definite
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Remark: further discussion can be found in [Che78, Che79], for instance on robustness of
closed-loop stability (an issue we did not study at all in this report).

1.3.2 Incremental control laws

Starting from the general control laws UJf' studied in the previous section, we define the corre

sponding incremental control laws U^ by: u^ = [^-]A. We define vk = uy—uy = -{^-}A;
the linear time-varying system controlled by such an incremental control law verifies then:

Xk+i = AkXk + BkUJf' + BkVk and can be seen as a perturbation of Xk+i = AkXk + Bku[g\
As a consequence of the previous section, we have two possible definitions for Vk'-

Rk1BkPk+hk+1+NAkXk
vk = { }A

m_ rBjjA^S^k +ir'Xk
vk - { - }A

It is obvious that in both cases, for Xk = 0, we have Vk = 0; furthermore, Vk takes its values in

the ball8 of radius A. As for all real x and ?/, we have: \{xy}\ < \x\\y\, we have in both cases:
II BkVk ||< Mk || Xk ||, where Mk is a positive real that does not depend on Xk but only on the
different matrices which define the system (A,-, B{, Ct, D{, R{ for all i). Under the hypotheses
used in the previous section to prove the stability of the corresponding general control laws, we
have the following proposition.

Proposition 6 Assuming the hypotheses ofpropositions 4 or 5, depending on which incremental
control law is used, we have:

V WYdiM&Mi < °°, then the controlled system is uniformly asymptotically stable.

2) If there exists some L > 0 sufficiently small such that: Vk,Mk < L, then the controlled
system is exponentially asymptotically stable.

3) If there exists some L > 0 such that: V&, Mk < L, then the controlled system is totally
stable.

4) If there exists some 0 < L < 1 such that: Vk, Mk < L, then the controlled system is
practically stable.

We consider the following norm: the norm of a vector is the sura of the absolute values of its components
divided by the dimension of the vector space
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Proof: The proof uses results on difference equations given in the appendix. We notice first

that both general control laws when applied to the system yield uniform asymptotic stability
(uniform exponential stability implies uniform asymptotic stability).

1) Use proposition 12.

2) Use proposition 13. As was stated in the proof of proposition 4, the matrix P can be
shown to be upper bounded, and in proposition 5, the matrix Su is upper bounded too; hence
the new assumption on the existence of L needs only further constraints on Ak and Bk, which
can then be stated easily.

3) As in both cases Vk depends additively on Xk, the existence of L implies that proposition 14
can be applied.

4) For Xk = 0, we have obviously Vk bounded; furthermore the existence of L implies as in
the previous case that proposition 15 can be applied. •

Remark: the additional assumptions in the previous proposition imply that the Uk are
uniformly bounded in k and a rule-based incremental controller can then be written, in the
way described in a previous section, that yields the previous incremental control laws. The
previous proposition uses the rather brute-force inequality: \{xy}\ < \xy\, and any finer
inequality would of course yield propositions with a wider scope.

1.4 Nonlinear systems and trajectory tracking

This section is the discrete-time counterpart to [WTS+92] with the additional constraint that
our control laws cannot be chosen freely, we have to keep to rule-based incremental controllers.

We will consider nonlinear systems with the state equation: Xk+i = f(Xk)+g(Xk)Uk, where
Xk are the n-dimensional states, Uk the p-dimensional inputs, and / and g are two differentiable
functions modeling respectively the drift and the nonholonomy of the system. This class of
system covers many models used in robotics [RM91, TLM+92, WTS+92, Luz92b]. Given a
desired trajectory (i.e. a sequence xl ') and nominal inputs (a sequence UJ^ yielding this
trajectory), we will compute first the linearization of the system around this desired trajectory,
obtaining a linear time-varying system; using the results of the previous section, we will then be
able to control the nonlinear system with rule-based incremental controllers.

Proposition 7 Given anonlinear system Xk+i = f(Xk)+g(Xk)Uk, adesirable trajectory (x[d))
and nominal inputs (U\ ), under some assumptions on the linearization of this system given in
proposition 6, there exist rule-based incremental controllers which exponentially asymptotically
stabilize the nonlinear system to the desired trajectory.
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Proof: Let us define the error signal Ek and the error input Ik as:

Ek = Xk-Xid)
Ik = Vk-U[d)

We solve for the dynamics of these error signals using the Taylor expansions:

Ek+1 = f(Xk) - f(xid)) + [g{Xk) - g{X^)]Uk +g(xid))[Uk - tf>]
= %(X^)(Xk-X^) +̂ (xi\xk-X^W^ +Ik) +9(X^)Ik +Rk

We define then Ak and Bk as:

Bk = 9{4d))
The error signal satisfies then:

Ek+i =AkEk +BkIk +j£(xl*>)EkIk +Rk
As we have been using the Taylor expansion, Rk = o(|| Ek ||). Let us take for Ik one of

the incremental control laws described previously; we have then: Ekh —0(|| Ek ||2) and the
equation for the error signal becomes:

Ek+i = AkEk + Bkh + R'k (1.2)

where iE^ = o(|| Ek ||). We know that under the assumptions 1) or 2) on Ak and Bk given
in proposition 6, any of the two incremental control laws taken for Ik stabilizes uniformly the

system: £*+i = AkEk + Bkh- As R'k = o(|| Ek ||), we can use proposition 13, hence the
system 1.2 can be exponentially asymptotically stabilized.

Using the remark at the end of the previous section, we conclude that there exist rule-

based incremental controllers (yielding any of the two previous incremental control laws), which
exponentially asymptotically stabilize the nonlinear system around the desired trajectory. •

Remark: in [WTS+92], applications are given in the continuous case, which show that
the corresponding control laws are not too difficult to compute; three systems are studied,

namely a system whose control Lie algebra is the Heisenberg algebra with two generators, a
simple nonholonomic mobile robot Hilare with two parallel wheels, and a front-wheel drive

car (control of this last system with rule-based incremental controllers has been studied
in [Luz92b]).
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1.5 Concluding remarks

In this chapter, we have been looking for stability and tracking results, when using rule-based
incremental controllers on different classes of systems. Starting with time-invariant linear sys
tems, we finished with a large class of nonlinear systems; it turns out that theory confirms what
experiments had hinted at [FKB+85, FL89, Fou90], namely rule-based incremental control, in
spite of its apparent simplicity, has a broad scope of applications.

Looking back at previous research shows how much the theoretical results have gained in scope
and depth: in [Luz91] only linear time-invariant systems were considered and the propositions
stated that for any given time interval, there existed an incremental control law that could bring
the statevector at the endof that time interval arbitrarily close to the origin; but during the time
interval, the only thing that was guaranteed was that the state vector was uniformly bounded by
an affine function (i.e. the state trajectory remained in a cone depending only on the system).
Although this incremental control law could be constructed, the various €t- were found backwards
in time: given the time interval [0, k], first ejt was constructed, then ejt-i and so on. Such a
construction could not allow to find a rule-based incremental controller, as the rules depended
explicitly on the length of the time interval, and to compute the first coefficient €i, you already
needed all the other coefficients, so you had to compute the whole control law just to start!

The propositions of the current chaptergive an explicit construction of rule-based incremental

controllers, where each coefficient €k depends on the state Xk- We have actually been studying
state rule-based incremental controllers and further work could focus on output rule-based incre
mental controllers, where the coefficient e* would this time depend on the output yk (and the
previous outputs). We do not think such a study would change radically the propositions, but
would only give additional constraints related to the observability of the system. However this
will have to be done, in order to characterize only in terms of inputs and outputs the class of
systems controllable by rule-based incremental controllers.

The study of the chaoticbehavior of the 1-dimensional linear time-invariant system controlled
by a state feedback rule-based incremental controller shows that it will not be easy to have a

smooth behavior of the system: although stability or tracking with arbitrarily small error are
guaranteed, the system chatters with various and almost unpredictable frequency. This is of

course one of the inherent drawbacks of discrete control, but it has to be noticed (actually, due
to relaxation delays, this chattering is very often damped in real-world applications, but it still
exists theoretically).

As we have already said, no robustness issues have been discussed here and this will of course

have to be done, in order to confirm experimental results.



Chapter 2

Other possible formulations of

rule-based incremental control

In this chapter, we present different formulations of rule-based incremental control that are an

alternative to the algebraic definition of incremental control used for instance in the previous
chapter. There will be no propositions in this chapter related to the behavior of a system con
trolled by such controllers as, till now, we have focussed our attention only on the algebraic
definition which seemed so easier to exploit. This chapter should be seen as a transition between
the analysis of controlled systems, as developed in the previous chapter and former papers or re
ports, and the search for aunified theory ofrule-based incremental control and machine learning,
as presented in the next chapter.

2.1 Operator based formulation

Instead of considering the input at time k as the sumof the input at time A:—1 andthe product of
the increment by a uniformly bounded integer, we can consider the input at time k as the result
of some operator which acts on the input at time k-1 and on the increment. This formulation

has been presented in [FL89, Fou90, LZ90, Luz91].
We define an operator-based incremental law as:

•2 = «2-i ©M
4 = «l-i©*«*

ul = A

u\ is the command vector at time k, u\ its increment, and uJJ the nth-order increment. All these

27
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increments are taken in the same space as the input vector. The operators ®k are taken in a

finite set of operators, and A is a positive real constant.

These operators satisfy the following rewriting rules (x, y,z are taken in the set where the upk
are defined):

1. (x ©* y) & z = x&y ©J" z

2. There exists an internal law on the finite set of operators ©* called • which is associative

and commutative

3. x ©' (y ©•* z) = x ©* y ©*•©•> z

4. x ©* y& z = x ©J' z ©* y

The first and the third rule are only rewriting rules, they do not authorize reasonings like : as

0* = ©*•©', let us apply the third rule to the expression x ©* y ©* z.
By induction, it is obvious to show:

{< = «Li ®* "it1! ••• ©i»®i+i...»ej-2 <:i ©i.®i+i....®rl A

The rewriting rules have been chosen in orderto allow some recombining of terms in complex

expressions with parentheses; of course one could forget these additional rules, and only consider

the operators ©^ as some elements of an eventually infinite family, but it would not be very

practical. One could certainly take advantage of somemore structure on the input space and on

the controlled system, as in [Sai81]; some work could perhaps be done in this direction.

This operator-based formulation is a direct generalization of the algebraic definition: just
take x+ eky as definition for x©£ y (if i > 1) and x+ e°ky +e^A' as definition of x ©J y, and
the rewriting rules are satisfied, as the 4 are in {-1,0,1}, and e* is in {-m,--.,+m}. This
algebraic definition, used in [Luz91] to define the (n, m) incremental control laws - n refers to the
maximum order of the increment and m to the maximum absolute value of e^ - is more general
than the algebraic definition used for instance in chapter one.

Actually in the first applications like the laser cutting robot [FKB+85, ZFG84], only (1,0)
incremental control laws were used. Such a crude definition of rule-based incremental control

has been shown to be insufficient [Luz91] (linear time-invariant systems could not be stabilized if
their state matrix had a norm greater than 3) and experimentally a need for a better definition
had been felt too [FL89]. This led to (n, 0) incremental control laws. Although it has been shown
in [Luz91] that a stable linear time-invariant system controlled by a (n, 0) incremental control
law could follow all reference signals k * k* for i < n, no result on stabilization could easily be
proved.



2.2. DISTANCE BASED FORMULATION 29

This can be better understood when one goes from the recurrent definition of uk to the
explicit form of Uk depending on the initial conditions:

«* = «.+E<s,«i+-+EE... E <?„<..-or1+
»*0=1 »0=1 »1=1 l"n_2Ssl

EE - E <<-G?A
»0=1»I=1 »n-I=l

which can be rewritten when u\ —•••= uj"1 = 0 as:

«* =«o +EE-E «U-Ci*
«0=1*1=1 «n-l=l

The coefficient ofA is a complex function of k; when all ej are equal to 1, its value is CJ+fc_j,
but it can be observed that all values between -CJf+fc-1 and CJ+fc-1 are not taken, when the
€xj vary inside {-1,0,1}. Although it is possible to infer different recurrent descriptions of the
set of all values taken by this coefficient when k varies, we could not find an explicit description
depending only on k. The ideawas then to introduce the (n, m) incremental control laws, where
an additional term ^k A' was added to the recurrent definition of uk, which overcame the previous
difficulties. As all theoretical results on stabilization or reference signal tracking have only used
(0, m) incremental control laws (i.e. used only this new additional term), and as such a definition
models the intuitive idea of incremental control, we think that (0, m) incremental control laws
are the algebraic definition we have been really looking for. The only objection could be that in
such adefinition, the coefficient of the increment is uniformly bounded in A:, whereas inthe (n, m)
definition, there was no such limitation; but neither in theoretical proofs, nor in experimental
investigations, there has ever been made use of that feature.

2.2 Distance based formulation

Instead of considering operators on the input space, we can consider metrics on this space, and
choose the input at time k such that the distance between this input and the input at time k - 1
is the product of an increment by a uniformly positive integer. Actually, such a formulation tells
us that the input at time k will be on a sphere with center the input at time k - 1; it would
be nice to have some more information on the location on this sphere: typically, we would like
to have an order on successive inputs, so as to be able to say whether the input increases or
decreases. This will lead us to consider functions instead of distances, but as the underlying idea
is to keep two successive inputs inside some ball, we call that formulation distance-based.

According to the previous remarks, Uk and u^-i are related by:

f(uk,Uk-l) = €jfcA
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where, as usual, €* is a uniformly bounded integer and A a positive real. In [Fou90], some
particular values of / have been proposed, although no further study has been undertaken, like:

f(a, b) = (a + b)/(l —ab). Of course, if we take f(x, y) = x —y, we have the usual algebraic
definition of incremental control laws. Without adding further constraints on /, it is almost

impossible to achieve anything with such a definition. The question is then, of course, how to

choose these constraints? The remainder of this section will be dedicated to the consequences of

one constraint which seemed "natural" to us.

Let us consider a linear scalar controllable system Xk+i = axk + Uk\ we will look for all

continuous / such that: /(xjt+i,x^) = af(xk,Xk-i) + f(uk,Uk-i)\ in other words, in the same

way as / reduces the study of the inputs to the study of the increments €*, we would like / to

reduce the study of the state vector to the study of a "state increment" that satisfies further a

linear equation. We present all these developments in the scalar case, as it is much easier and

we do not need to bother about the dimension problems.

Such a function / is defined by the next equation:

Vxi,i2,a:3, f(xi-ax2,x2-ax3) = f(xx,x2)- af(x2,x3) (2.1)

If we make particular choices for (31,22,2:3), we can derive the following identities (when no
further restriction is given, x and y are any real):

/(0,0) = 0

f(x - ay, 0) = f(x, y) - af(y, y/a)

f(x-a,l) = f(x,l)-af(l,0)

f(ax, x) = /(0, x-ay) + af(x, y)

/(0, x) = f(ax, x) - af(x, 0) = /(0, x - a)+ af(x, 1)- af(x, 0)

f(a2x,ax) = af(ax,x)

Let us consider g(x, y) = f(x, y)-\x-p.y, where A= /(l, 0) and \i = af(\, 0)- f(a, 1). Then
g satisfies obviously the same identities as /. Furthermore, g(l, 0)= 0,hence g(x-a, 1) = g(x,1).
We have:

g(x-a,y) = g(x-a-ay,0) +ag(y,y/a)

= g(x -ay,l)- ag(l, 0) + ag(y, y/a)

= g(x-ay + a,l) + ag(y,y/a)

= 9(x,y)
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Thus g(x-a,Q) = g(x,0), but we had g(x - a,0) = g(x,l) - ag(l,l/a) and 0 = ^(0,1) =
g(a, 1)= ag(l, 1/a); all this implies g(x, 0)= g(x, 1).

9(x,y-rl) = -^(ax,a:) g(Q,x-ay-a)

= -g(ax, x) - -$(0, a; - ay)+ g(x - ay,1)- p(x - ay,0)

= g(x,y)

g(x + l,y) = -flf(aa:-|-a,i + l)--y(0,a:+l-oy)

= -g(ax + a, x) $(0, x - ay)
a a

= g(x,y)

Let us assume a is not an integer, then we have just shown that gy : x «-»• g(x, y) has 1 and a as
periods; as gy is continuous, we conclude that for each y, gy is constant. In particular, we have
then g(x,0) = g(y,0) = g(0,0).

g(x,y-\-a) = g(x - ay- a2,0) + ag(y + a, 1+ y/a)

= g(x-ay,0) + ag(y,y/a)

- 9(z,y)

We have just shown that, if a is not an integer, gx : y •-• (jr(a:, y) has 1 and a as periods; as gx is

continuous, we conclude that for each x, gx is constant. In particular, g(0,x) = g(Q, y) = g(Q, 0).

As g(0,0) = 0, all this proves that g is null everywhere.

If a in an integer, then a is a period of gx and gy, as 1 is a period. As, obviously, —a is a

period too, we can further assume a is a positive integer. Let us consider any rational number

in [0,1[ and its expansion in base a: ££i PiO>~x, where pi are positive integers in {0, •••, a- 1}.
Then:

N N

g^^Pi"-*) = a~Ng^T,Pi) =0(°'°) =°
t=i t=i

We have:
N N N N

g(a^pid-i,^pia-i) = a~Ng(a^2pi,^2pi) =g(0,0) =0
t=i t=i t=i »=i

By continuity of g, we have then g(0,x) = 0 and g(ax,x) = 0 for any real x in [0,1[, and

more generally, as 1 is a period for both gx and gy, for any real x\ as furthermore g(ax,x) =
g(0, x —ay) + ag(x, y), we conclude that g is null on R2.

We have proved that the continuous functions / that verify 2.1 have the following form:

f(x, y)= Xx-r fly, where A and p. are arbitrary.
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This form generalizes the usual form: f(x,y) = x - y. Using the explicit form of / in the
equation Xk+i = axk + Uk, we have:

«•* = fE^x^'+tx)*"0
k+l-i _ /-ENfc+l-t

(¥)'Xi+1 =^ +̂ ^_(:*r)+Ag,-_zi
A study similar to the one in [Luz91] can then be performed, and the results are qualitatively
the same.

All this shows that the constraint we chose does not yield a very satisfactory generalization.

We have tried other functions /, but the recurrent equations look very quickly like the garden

of Sleeping Beauty's castle, and we did not find yet the charming Prince ...



Chapter 3

A look into abstract systems theory

We have been looking at the different approaches in abstract systems theory, in order to find
a general frame in which we could express rule-based control with enough generality, so as to
be able to infer then connections with other formalisms like in [MLZ92, Mar92], where learning
paradigms in process control are discussed.

We will first present some approaches we found in literature and will then concentrate on

a particular approach which is much more developed and has already given non trivial results.
With help of this formalism, we will then try to describe rule-based incremental control and give
hints for further developments.

3.1 A tour through literature

Our aim is not to justify abstract systems theory or even to give a precise definition of it. Let us
just say that we looked for a theory which could be used to describe very large classes of systems
and behaviors - we do noteven try at this point to define these concepts - without using specific
equations, but rather by giving some array of axioms which formalize rather "naturally" usual
concepts. It appears in literature that the word systems theory is used very widely and covers
manytopics which were ofnouse to us; focusing on abstract systems theory and on formal theories
of general systems, the topics covered were more or less what we wanted. We will describe in

this section some approaches we did not use directly, although the concepts introduced are of
course almost the same as the concepts we will use, but their formalization did not suit well to
our task.

In [KH69, Orc72], the theory relies on the existence of five fundamental traits which are

shared by all systems; the last reference introduces a sixth fundamental definition for time-
varying systems and proposes an application to a cellular automaton. Let us summarize these

fundamental characteristics: a given phenomenon under investigation is known via measure

33
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values of some quantities associated to the phenomenon. These measures are made at a given

space-time resolution level. Once the quantities have been chosen and a resolution level assigned

to each, values are measured starting at a reference time; the variation in time of these values

in the activity of the system. If the system is observed during a sufficient time, three types of

behavior may be observed: permanent behavior, which is the real behavior of the system, the

absolute relation satisfied over the entire time interval, relatively permanent behavior, which is

the relative relation consistent with the data, and temporary local behavior, which corresponds

to a relation satisfied only during some time interval. After study of the different behaviors,

it should be possible to have an idea of the structure of the system: a universe of discourse

is given, the collection of all elements of the system, and the coupling of two elements is the

set of all common external quantities; corresponding to the different behaviors, there are real

and hypothetic couplings. The structure of universe of discourse and couplings is the set of all

elements or behaviors and their couplings or compositions. Finally, the state of a system is the

set of instantaneous values of all quantities, and the state-transition structure is the set of all

states and transitions between these states.

The main five traits are thus: quantity and resolution level, activity, permanent behavior,

universe of discourse and coupling structure and state transition structure. In [Orc72], these

traits may be considered as changing during time (indexed by a new time space), in order to

describe time-varying systems, and a system is then defined by a trajectory in fundamental

nonfundamental time-space!

In [Wym72], a set of input functions is first defined; this set is invariant by translation,
as an input function should not depend on the arbitrary origin of the time scale, and it must

be invariant by segmentation: if / and g are two input functions, the function defined at t as

being f(t) if t is negative and as g(t) if / is positive, must be an input function. This last

condition allows us to experiment on a system: if an experiment is to begin at time 0 and

an input function is then to be generated, the total input history composed of the history up
to time 0 and the history from time 0, must be a legitimate input function. Once we have

this set of admissible input functions, a system is defined as an assemblage (S, P, F, M, T,
<r) where 5 is a set of states, P a set of inputs, F a set of admissible input functions defined

from R into P, M a set of functions (behaviors) defined from S into S, which contains the
identity, T a set of time steps (r C R, 0 € T) and a a function from FxT onto M that satisfies
additional constraints (<r(f,0) = Ids; o(f,ti+t2) = a(f^tl,t2)oa(f,ti) where f^T(t) = f(t+r);
f\[o,r[ = g\[o,r[ =^ &(fiT) = 0"(0, t))> namely initial state consistency, composition property and
causality, in order to rule out anticipatory systems. Starting from this definition, "recipes"
(sic) are given to account for concepts as coupling, subsystems and components, and systems
classification considerations, with definition of system homomorphisms. The main objective
in [Wym72] is not to give a rigorous mathematical formulation but rather to present a frame
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which can "represent any engineering phenomenon of interest"(sic).

It is obvious that one of the most immediate fields of application of topology in a theory
of general systems relies on an adequate definition of proximity (of systems, trajectories, or be
haviors), in order to address problems of stability, or optimality. Some work has been done in
this direction, as we will see in the next sections. In [Cor72], a "natural topology" is introduced
within the framework of [Wym72]; actually, the introduction of the topology concerns the ad
missibility of input functions: the method of generating admissible input functions suggests the
introduction of the admissible set operator, which satisfies generalized closure conditions (not the
well-known Kuratowsky closure conditions), as developed in [Ham72], and the introduction of a
generalized topological structure, namely an Appert space. Although a natural topological exten
sion is thus presented (with new definitions of continuity, connectedness, convergence [Ham72]),
no other properties, more closely related to general systems, seem to have been explored since.

In order to conclude this brief review of general systems theory in literature, let us give some
additional references: in [Win71], time processes and time processors, contracting andexpanding
processes are defined, and the book ends with the definition of a state space; finally, [MMT70] is
dedicated to hierarchical and multilevel systems.

3.2 A formal theory of general systems

A constructive specification of an input-output system can be done in two ways: either by

considering the systems objects as functions of time and defining a system by restricting the

domains of these functions and adding some analytical properties, or by considering these objects
as sets andintroducing additional algebraic structure. The first approach is developed in [Mes72,
MT75, MT85] and the second approach in [Sai81]. Actually it is rather nonsense to erect a solid
wall between these two approaches: all the algebraic developments in [Sai81], although very

appealing, are actually guided by a translation into algebraic terms of the state equation of

a linear time-invariant system, and the only non trivial result is the internal model principle,
which states that under some - rather strong - assumptions, an internal model of the exosystem

is present in the controller of a regulator (in other words, the dynamical action of the controller

includes a copy in some sense of the dynamical action of the exosystem). This explains why a

mixed approach is usedin [MT85] too, which starts from the same concepts asin [MT75] but uses
intensively category theory and other algebraic concepts. As our aim is to use this formalism

in order to define rule-based control and eventually lay a bridge between systems theory and

learning theory, and as this report is only a first step, some definitions given may seem useless,

and some may be lacking. The given references will fill the gaps, and we hope we can achieve

our goal, if not in this report then at least in a rather short time.

A generalsystem 5 is a relation on nonempty sets: S C x^jVi, where x denotes the cartesian
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product and J is the index set. A component set Vi is referred to as a system object. Let Ix C I
and Iy C / be a partition of I; the set .X" = Xj€jxVi is termed the input object, while Y = xt€/yVi
is termed the output object. The system S C X x Y is referred to as an input-output system.

X = V(S) is the domain of S and Y = 7l(S) is the range.

Given a general system 5, let C be an arbitrary set and R a partial function defined from

C x X in y, such that: (x, y) € S =>- (3c)[i2(c, x) = y]. Then C is a y/o&a/ state object, its
elements are global states, and R is a global response function for 5. This function provides

a way to express the output as a function of the input even when the system is not initially

functional. It can be shown that every system has a total global response function. However if

further requirements are imposed either on C or on R, it is not guaranteed any longer that R is
total.

Let A and B be arbitrary sets, T a time set (i.e. a linearly ordered set), AT and BT the set
of all maps on T into A and B respectively, X C AT and Y C BT, then a general time system
S is a relation on X and Y. The elements of X and Y are a6strtict time functions; for a: 6 X,

its value at <is denoted by x(t) (the same notation holds for y of course). Let us introduce now
the following notational convention for time segments:

Tt = {r \r>t} t* = {*• |r <t] Tt? = {r\t<r<f]
Tw =Ttt, U{?} Tt = TtU {t}

Corresponding to various time segments, the restriction of x € AT will be defined as follows: xt =

x\Tt> x* =3|T«» xtt' =x\Tttn xtt' = x\tu,i x* =xff' The following restrictions of X are defined:
Xt = {xt | xt = x\Tt,x € A"}; A"* and Xu> are defined in a similar way; X(t) = {x(f) | x € A}.
The following convention is used: x« = 0 and A« = {0}.

Based on the restriction operation, another operation is defined: the concatenation. Let
x€ AT and a* € AT; for any <we define xby: f(r) =x(r) ifr <*and x(t) = xm(r) if r >*. i
is represented by i = a:*.^^ and is called the concatenation of xt and arj".

A time system is input complete if and only if:

{
(V*)(V**)(V« € T)(i,i" € U(5) =*• i*.i(" € P(S))
(Vt)({*(t) | * € X) = A)

Every time system is now assumed input-complete unless explicitly stated otherwise.
The restrictions of a time system S are defined in reference to the restrictions of inputs and

outputs: for instance St is the set of all (xt,yt) for which (x,y) € S. The other restrictions St
and Stf are defined in a similar way. For a time system, the global state object and the global
response function are called initial state object and initial response function, and denoted by CQ
and pQ. The state object at t, denoted by Ct, is an initial state object for the restriction St; the
function pt defined from Ct x Xt into Yt such that: (xt, yt) € St <* (3c)[pt(c, xt) = yt] is referred
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to as the response function at t. A family pof response functions for a *iven system is a response
family for S, while C, the set of all Ct for t € T, is a family of state objects.

Let 5 be a time system, 5 C X x Y, and pt an arbitrary function defined from Ct x Xt into
Yt. The function pt is termed consistent with S if and only if it is a response function at t for S.
A family of arbitrary functions p is consistent with a time system S if and only if p is a response
family for S.

A time system S C X xY has a predynamical representation if and only if there exist two
families of mappings: p = {/><: Ct x Xt -+ yt} and ? = {<£«' : Ct x Xw -• Ct<} for r7 > t, such
that:

(i) p is a response family consistent with S

(ii) the functions <£«' in the family <? satisfy: (for all *,t/,r" in T such that t <*' <r")

(a) pt(ct, xt)\Tt, = Pt'(<l>tt'(ct,xtt')ixt') where xt = x«'.av

(/5) </>ff'(ct,a;«0 = <t>t"t'(<f>tt"(ct,xtt")ixt"t') where ««' = xtt».xt»t>

(l)<f>tt(ct,xtt) = ct

<j>tt' is the state-transition function on r«/, while <j> is referred to as the state-transition family.

Condition (a) represents the consistency property ofthestate-transition family with the given
response family, while ((3) represents the state-transition composition property; if the response
family is reduced (i.e. pt(ct,xt) = pt(ct,xt) implies ct = ct), then condition (/?) is implied by (a).
If there exists a set C such that Ct = C for every t € T, the pair (p, ~$) is termed a dynamical
representation, and C is called a state spacefor S.

It can be shown that every system S has a predynamical representation. Given a predynamical
representation (p, <j>), if one takes for C the union of all Ct, and selects for each t a fixed element

cj from Ct, and defines p't and <j>'n, by: pft(c,xt) = pt(c,xt) if c € Ct, pi(c,xt) = pt(c;,xt) if not,
and ^rt'(c'*«') = &t'(c> *«') if c € Ct, $t'(c' £«') = <f>tt'(cu xn») if not, then it can be shown that
(p\ ft) is a dynamical representation with C as state space.

Other functions can be defined, like the output-generating function (defined from Ct x Xtt'
into y(*0), the output function (defined from Ct x X(t) into Y(t)) and the state-generating
function (defined from Xi x Yt into Ct); the set of all functions for t € T of any type is a family
of the corresponding functions. The existence of such families is related to certain conditions

which can can be interpreted as causality concepts (nonanticipation and past-determinacy). We
will not go into more details, but this could be useful in further research.

Other concepts, like minimal representation, stability, controllability, can be developed in
this frame. The problem of uniqueness of representation up to an isomorphism can be addressed
too.
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3.3 Intelligent control and abstract systems theory

In [MLZ92, Mar92] the following problem is discussed: let us consider some generic family of
controllers and let a system S be, which will be controlledby one of the controllersof that family.

The only two assumptions of the family of controllers are that it is recursively enumerable (i.e.
it is the range of a partial recursive function, or informally: there is a "standard" algorithm that
can enumerate all these controllers) and any controller has a finite number of ways to act on

the inputs of a system (that does not mean that the input takes only a finite number of values,

it only means that the action which a controller can perform at any time is chosen in a finite

predefined set of actions). Of course the family of rule-based incremental controllers satisfies

these assumptions (this is also true for the generalizations discussed in chapter two), because

any such controller has only a finite number of rules, and therefore two different controllers can

be ordered by lexicographical order; but fuzzy controllers (see [Luz92b] for some references on
the topic) or other so-called intelligent controllers can be considered too.

At any time k, one action ek - chosen among the allowed finite actions - will be performed;

a sequence (ci, • ••, e*) represents then the whole input history of a system, starting from some

initial conditions and evolving during a finite time; such sequences will be called evolutions. The

set of all evolutions is denoted by €. Actually for sake of simplicity, ek is assumed to take only

2 values, but that does not change anything on a formal point of view.

The interesting issue is that some evolutions are acceptable while some are not, because

there are additional constraints on the behavior of the system, like stability, or seeking to fulfill
a particular goal.

This has led to the two following definitions: set of rules and set of constraints. The first

definition characterizes the set of evolutions a controller can produce when applied to a particular
system (with this definition there is no need for a further formalization of the notion of a con

troller), while the second definition characterizes the unsatisfactory evolutions. More formally,
wewrite xQy (respectively x C y) if x is an initial (respectively a proper initial) segment of y,
and we consider a recursive coding of the set of all evolutions upon N, i.e. to any evolution will
be associated an integer in a constructive way, and sets of integers will be considered instead of
sets of evolutions1.

A set of rules is a recursively enumerable set R of elements of S such that: (Vx € R)(Vy €
S)(x Q y => y € R). A set of rules is total if every evolution can be extended: (Vz € R)(3y €
R)(x c y).

A set of constraints is a recursively enumerable set R of elements of £ such that:

i) (V* € C)(Vy € S)(x Qy=>yeC)

ii) (V* € £)[(Vy € S)(x Cy=>y£C)=>x£C]

Recursivity theory appears thus as the "natural" tool todescribe and classify sets ofevolutions via this coding
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All these definitions formalize intuitive features: a set of rules is a set of evolutions generated
by a controller, hence every sub-evolution of an evolution should possibly be generated by that

controller too; concerning the set of constraints, condition i) rules out forbidden evolutions (once

you are "out", you will not be allowed back "in"!) and condition ii) rules out catastrophic evolu

tions (if an evolution cannot be extended so asto avoid C, that evolution is already doomed...).
Furthermore both sets have a tree-like structure (with possibly infinite depth); hence one of the
evolutions in such a set will sometimes be referred to as a path. It should be noticed that R and

C are not always disjoint; when they are, R is called coherent.

The learning problem is then to find some way to be able to generate only the acceptable

evolutions, or at least to find a controller that maximizes the number of its evolutions in C and

minimizes the number of its evolutions in C; this is formalized in [Mar92] and we do not need
to know more of it at this point.

What interests us here is for instance to characterize the class of systems for which a given

set of evolutions is acceptable; this is the inverse problem of chapter one, where we were looking

for evolutions that were acceptable for a given class of systems. Another interesting issue would
be to characterize the set of evolutions such that a rule-based incremental controller can generate
these and only these evolutions.

It has been noted that R and C are not always disjoint; this means that a controller can

generate "bad" evolutions. The question is then: are there always "good" evolutions and can
they be generated by some controller?

Let C be a set of constraints distinct of N. Then C is infinite and contains an infinite path;
but if this path is not recursive, it cannot be produced by a controller. If any infinite path in' C

is not recursive, then no coherent set of rules is total, and the system can only be controlled on

a finite horizon: every mechanical controller must fail at a given time. More precisely, we have

to distinguish between two cases: either every coherent set of rules is finite, or there exists an

infinite one. In the first case, any controller can control the system only on a bounded horizon

(the maximal length of the evolution that controller allows), but however large the horizon may
be, a controller exists; in the second case, there exists a controller which can control the system

only on a finite horizon, but this horizon can be of any length. If we want to push away the
horizon, we have to change the controller in the first case, not in the second (this does not mean
that we can control up to some time t and then go on with another controller, it means that

there is another controller that could have controlled the system up to a time t! > t). In [Mar92]
different set of constraints are built that illustrate this informal talk, in other words:

• there exists a set of constraints C, C ^ N, such that every set of rules which is coherent
relative to C is finite;

• there exists a set of constraints C, C ^ N, such that there exists a set of rules which
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is infinite and coherent relative to C, and such that every set of rules which is coherent

relative to C is not total.

These two results may seem weird in regard to the results of chapter one; the key point is that

we considered stability or reference tracking in that chapter, but there exist much more complex

control goals for which only control on finite horizons may be possible. One interesting question

is then to find a set of constraints that verifies either of the two previous results and corresponds

actually to the forbidden evolutions of a system: it is the problem of the physical realizability of

such sets of constraints, the search of a model for the formal theory of [Mar92]. Trying to find

a model within the systems controlled by rule-based incremental controllers is our aim, as that

would imply this type of control works and can be learned, at least within a well-known class of

systems.

No definitive answer will be given to all these questions in this report, although we think we

have the means to provide an answer with the help of abstract formal theory. We have for now

only a partial answer concerning the problem of characterizing "good" and "bad" evolutions; the

next result can be related to the notion of coherent sets of rules. We will use the notations of

the previous section introducing a formal theory of general systems.

Let us consider a time system ScXsxYsCXxY and let C be its initial state object

and p be its initial response function (p is defined from C xXs into Ys such that: (x, y) € S &
(3c)[y = p(c,x)]). Let us define now consistency and completeness in reference to Y and two
subsets of y, R C Y and W C Y. The subset R consists of all desirable outputs while W is the
subset of "undesirable" outputs (forbidden or unacceptable outputs for instance).

The system is W-consistent if and only if: (R n Ys) fl W = 0
The system is W-complete if and only if: (R n Ys) UW = Y
We would like to characterize these concepts differently; this will be done by using a function

g called in [MT85] a generalized Goedel function, because of the self-referencing character of its
use in the next proof; g is an injective map from C into X. Two other definitions will be useful.

To every state c 6 C, there will correspond a set of inputs Xc for which p produces desirable
outputs: Xc = {x | p(c,x) € R}. Let now X' be an arbitrary subset of inputs, X' C X; then X'
is acceptable if and only if there exists c€C such that X' = Xc. Finally, let us define Cd'W and
Xd>w by:

ceCd>w &p(c,g(c))£W
Xd>w = g(Cd>w)

The funny notation comes from the fact that Cd'w can be seen as the set of all states whose
diagonalization2 is in W.

We can now state the following proposition.

{

'This terminology is taken from [MT85] because ofthe similarity with the well-known Goedel's proof.
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Proposition 8 Given p : C XXs —Ys and R,W CY. The system is either W-inconsistent
or W-incomplete whenever Xd'w is an acceptable set.

Proof: As Xd'w is acceptable, there exists c* eC such that:

x€Xd>w<*p(cm,x)€Rr\Ys

In particular, for g(cm), we have:

g(c*) € Xd>w * p(c\g(c*)) € Rf)Ys

By definition of X**w (i.e. g(cm) € Xd>w <s> p(c',g(cm)) € W), it follows that:

P(C,g(c*)) €W# p(c\g(c*)) e RDYS

Denote by y' the output of the system such that y* = p(c", g(c')); it follows then that either
y" e (R n Ys) fl W, i.e. the system is ^-inconsistent, or y* € (R C\ Ys) UW, i.e. the system is
W-incomplete. D

Remark: the roles played by the inputs and the states in the previous definitions can be

exchanged, and one can define Cx, C, Xd*w and Cd>w with g :X -• C. The proposition
becomes then: if Cd,w is an acceptable set, the system is either W-inconsistent or W-
incomplete.



Appendix A

Some useful results on linear control

A.l Canonical form for a discrete linear time-invariant con

trollable system

Let us consider a controllable discrete linear time-invariant system, given by its state equation:
Xk+i = AXk -r Buk, where the state vector is n-dimensional. We introduce the matrices M, W
andT:

/ <*n-l an_2 '"0.1 1 \
fln-2 fln-3 '•• 1 0

M = (B\AB\--\An~lB)\ W =

ai

V i

••0 0

•• 0 0 ]

; T= MW

The elements of matrix W are the coefficients of the characteristic polynomial of A (x(A)(z)
= zn + aizn~l H \- an-iz + ^n)- The matrix M is full rank because of the controllability
assumption: hence T is obviously invertible and we define:

A = T'lAT,B = T~lB,Xk = T'lXk

The controllable form is then:

Afc+i = AXk + Buk =

/ 0
0

0

1

0

0

fln-l
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0

1

0

-fln-2

0 \
0

-ai J

Xk +

0

0

Uk
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A.2 Controllability under linear feedback

Let us consider a discrete linear time-invariant system Xk+i = AXk+ BUk, which we will call
system (A, B), where the state space is n-dimensional and the control vector is r-dimensional (B
is now a (n x r) matrix). Let C be any matrix (r x n) matrix, and let us consider the system
Xk+i = (A + BC)Xk + BUk, i.e. system (A + BC, B). We will prove in this section the following
proposition:

Proposition 9 Controllability of (A + BC,B) =• controllability of (A,B).

Proof: Let us define, for sake of simplicity, Y(i) recursively by:

{
y(o) = b

Y(i) = (Y(i- 1)\A'B)

The matrix Y(n —1) is the matrix M encountered in the previous section, which must be full

rank for a controllable system. Actually, controllability for a (A,B) system can be alternatively
expressed as: Vi > 0, vTY(i) = 0 => v = 0, which can be restated as: Vi > 0, vTAiB = 0 =$>
v = 0.

Let us now assume (A + BC, B) is controllable. We want to show that (A, B) is then
controllable. Assume then: Vi,vTAiB = 0. If we compute vT(A+ BCJB, we notice that we
obtain a sum of matrix products which all start with some A*B, where 0 < j < i. This sum is
then zero with the assumption, and as (A + BC,B) is assumed controllable, this implies that
v = 0; hence the controllability for (A, B) follows.

As the previous proof is valid for any C, it shows that ((A + BC) + B(-C), B) controllable
implies ((A + BC), B) controllable. •



Appendix B

Difference equations

The following results are all taken from [LT88] and so are all notations. We will denote by B(y,6)
the open ball having center at y and radius 6; if y = 0, we shall use the notation Bs.

B.l Several stability concepts

Let y0 € Ba and / : Rs -• R5 be a bounded function in Ba. The solution y(n,n0,y0) of the
difference equation:

' yn+i = /(n,y„)
{ (B.l)

yno = yo

will remain in Ba for all n0 > n such that f(n,yn) € Ba. The points y € Ra which satisfy
/(w,y) = y for all n are called fixed points of B.l. For simplicity, we will suppose that there
is now a fixed point at the origin (this can always be achieved by an appropriate coordinate
change).

The solution y = 0 of B.l is said to be:

1. stable if given € > 0, there is a 6(e, no) such that for any yo € Bs, the solution yn remains
in Bs

2. uniformly stable if it is stable and 6 can be chosen independently of no

3. attractive if there is 6(no) > 0 such that for yo € Bs, one has lim yn = 0
n-*oo

4. uniformly attractive if it is attractive and 6 can be chosen independently of no

5. asymptotically stable if it is stable and attractive

6. uniformly asymptotically stable if it is uniformly stable and uniformly attractive

45
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7. exponentially stable if there exists 6 > 0, a > 0, n €]0,1[ such that if yo € Bs, then || yn ||<

a || y0 || rf-"*

8. Ip-stable if it is stable and moreover for some p> 0, £Ji„0 II y(j, ^o, yo) ||< oo

9. uniformly Ip-stable if the previous summation converges uniformly with respect to no

These different stability notions are not equivalent: obviously any uniform property implies the

property; asymptotic stability implies stability; /p-stability implies asymptotic stability, but not

the converse; exponential stability implies /p-stability.

B.2 Stability of perturbed equations

Let us now consider the linear case:

yn+i = A(n)yn y^ = y0 (B.2)

n-l

where A(n) is a (s x s) matrix. The fundamental matrix $(n, no) is by definition JJ A(i). We
t=no

have then the following propositions.

Proposition 10 The solution y = 0 of B.2 is uniformly stable if there exists M > 0 such that
for n > uq:

\\*(n,n0)\\<M

Proof: The sufficiency follows from the fact that yn = $(n, n0)yo, for we have:

||yn||<||$(n,no)||||yn||<M||y0||

and hence: || yn ||< €, if || y0 ||< eM~l.
To prove necessity, if there is uniform stability, then || $(n,n0)yo ||< 1 for || y0 ||< 6. Taking

*o = yo/ || yo ||, we have then: sup^u^ || $(n,n0)a;o || is bounded, which means that the norm
of the fundamental matrix is bounded. D

Proposition 11 The solution y = 0 ofB.2 is uniformly asymptotically stable if there exist two
positive numbers a and n, with n < 1 such that:

\\$(n,nQ)\\<ann-no

Proof: The proof ofsufficiency is direct like in the previous proposition. The necessity follows by
considering that if there is uniform asymptotic stability, then fixing e > 0, there exists 6 > 0 and
N (depending only on e) such that for y0 € Bs and for n >n0 +N, we have: || $(n, n0)y0 ||< e.
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As before, it is then easy to seethat || $(n, n0) ||< rf,where this time rf can be chosen arbitrarily
small, and this holds foranyno because ofthe uniform property. Moreover, as uniform asymptotic
stability implies uniform stability, the previous proposition tells that || $(n, n0) || is bounded by
a positive number a' for all n > n0. We then have for n € [no + mN, no + (m+ 1)N]:

II *(n,n0) || < || *(n,no + mtf) |||| $(n0 + mN,no + (m- 1)N) || ... || $(n0+ tf,no) ||
< a'n,m = a'rf-^ifir)^*1)1* < an"-"*

with n = n'ff and a = a'rf~l. U

As a result of this proposition, for linear systems, uniform asymptotic stability is equiv
alent to exponential asymptotic stability.

The next propositions deal with perturbed linear equations. We consider:

yn+1 = A(n)yn + f(n, yn) (B.3)

where A(n) is a (s x s) matrix and / is defined for n>nQ and yn € Ba and takes values in Ba
and f(n, 0) = 0. This equation can be seen as a perturbation of:

x„+i = A(n)xn (B.4)

and the question arises whether the properties of B.4 are preserved for B.3, when / is small in
the sense to be specified.

Proposition 12 Assume that:

\\f(n,yn)\\<gn\\yn\\

where gn are positive and £JJLno 9n < co. Then if the zero solution ofB.4 is uniformly stable (or
uniformly asymptotically stable), then the zero solution of B.3 is uniformly stable (or uniformly
asymptotically stable).

Proof: As we have: yn.= ^(n,n-\-0)yo +^ZQ $Ki+ l)/t?,2/j), using proposition 10, we have:

II yn \\< M|| y01| +M £ gj II y; II

which implies, by Gronwall inequality:

II yn ||< M || y0 || exp (M £ 9j)
i=no

from which follows the proof for the case of uniform stability.
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In the case of uniform asymptotic stability, it follows that for n > N, || $(n,no) ||< c, for
every e > 0, and the previous inequality can be written:

oo

II yn \\< €exp (M J2 gj)
j=no

from which follows limn yn = 0. D

Proposition 13 Assume that:

ll/(n,»n)||<i||»n||

where L > 0 is sufficiently small, and the zero solution of B.4 is uniformly asymptotically stable.

Then the zero solution of B.3 is exponentially asymptotically stable.

Proof: By using the proposition 11, we have:

3#>0,3w€]0,l[ ||$(n,n0)||<ff77n-n<>

We have then, using the assumption of the proposition:

n-l

II !/n || <Hr,"-"' || y0 || ^LH^ £ n~j \\ Vi
;=n0

Introducing the new variable: pn = n~n || yn ||, we have:

n-l

Pn < Hr}-n° || y0 || +LHn-1 J] Pj
j=n0

which implies, by Gronwall inequality:

n-l

Pn < Hn-"* || y0 || J] C1 +^Hri'1) =Hr,-^ \\ y0 \\ (1 +LHtj-1)^^
j=no

Hence, || yn ||< H \\ y0 || (n + LH)n~n°, and if n + LH < 1 (hence the assumption on L in the
proposition), the conclusion follows. D

We will conclude this appendix on difference equations with two other notions of stability.
Let us consider the equations:

yn+i = f(n,yn) + R(n,yn) (B.5)

yn+i = f(n,yn) (B.6)

where R is a bounded Lipschitz function in Ba and jR(n,0) = 0. We shall consider B.5 as a
perturbation of equation B.6.
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The zero solution of B.6 is said to be totally stable (or stable with respect to permanent
perturbations) if for every e > 0, there exist two positive numbers 61 and 62 such that every
solution of B.5 lies in Bc for n > no provided that:

{II yo \\< h
II R(ni yn) ||< 62 for yn € Bt, n > n0

The other concept of stability is of practical stability. In this case, we no longer require that
R(n,Q) = 0, so that B.5 does not have the fixed point at the origin, but we assume || R(n,0) \\
is bounded for all n. The solution y = 0 of B.6 is said to be practically stable if there exists a
neighborhood A of the origin and iV > n0 such that for n > N, the solution of B.5 remains in A.

We have the following proposition, which we give without proof (see [LT88] for more details).

Proposition 14 Suppose that the zero solution of B.6 is uniformly asymptotically stable and
moreover, for y', y" € Ba:

\\f(n,y')-f(n,y")\\<L\\y'-y"\\

where L > 0. Then it is totally stable.

Actually proposition 14, as given here, is a weaker form of the proposition to be found
in [LT88], where the assumption is: || f(n, y') - f(n, y") \\< Lr \\ y' - y" || for y', y" € Br C Ba,
i.e. the Lipschitz coefficient depends on the ball where it is defined. But the proof given in the
reference uses the fact that for any e > 0, eLc can be taken arbitrarily small, which does not
seem correct. However the proof is correct for our weaker proposition.

The next proposition deals with practical stability.

Proposition 15 Suppose that the zero solution of B.6 is uniformly asymptotically stable and
moreover that in a set D C R the following conditions are satisfied:

(1) There exists 0 < L < 1 such that: \\ f(n,y) - f(n, y') \\< L \\ y - y' \\

(2)\\R(n,y)\\<6

Then the origin is practically stable for B.6.

Proof: Let yn and yn be the solution of B.5 and B.6 respectively. Set mn =|| yn - yn ||; then by
hypothesis: mn+i < Lmn + 6 from which it follows:

II y« - yn ||< Ln II y0 - y0 || +6 £ V =Ln || y0 - yo || + *
1 - L

As L < 1, this last expression is obviously bounded and as y„ isuniformly asymptotically stable,
there exists N such that the solution ofB.5 remains in the ball B(0, tj^t +1) for n > N. D
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