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Abstract

The interaction of magnetic fieldline stochasticity with drift islands can lead to Arnold

diffusion of the drift island centers in a toroidal magnetic field. The basicformulas for this

interaction have been derived and the diffusion rate determined. The formalism has been

applied to calculating the parallel diffusion of an electron beam, which is subject both

to magnetic stochasticity and a time varying electric field. It is shown that the resulting

Arnold diffusion can be readily measurable.



I. Introduction

It is well known that a toroidal magnetic field in which the axisymmetry is broken

exhibits magnetic islands with stochastic field Hnes near the island separatrices. This

axisymmetric field-line structure has been analyzed for the cases helical applied currents,1'2

external perturbations of symmetric applied currents3 and internal heHcal plasma currents

arising from instabilities.4'5 It has also been shown that non-axisymmetric electric fields

generate drift islands in the motion of particles that are traveling along magnetic lines of

force.6'7'8 Such electric fields may be either static or time varying, and may arise either

from imposed potentials or from self-consistent potentials, for example, from drift waves.

These drift islands scale with the Larmor radius and therefore, for electrons, are generally

small compared to the magnetic islands. However, they also exhibit stochasticity in the

neighborhood of the separatrices.

If the fields are time-varying, then it has been shown that forces which change the

parallel velocity of the charged particles changes the resonance condition, which is also a

function of the rotational transform i.7,s Since i is a function of radius, the effect is to shift

the center of a drift island with respect to the magnetic surfaces. ColHsional processes

play such a role, and therefore diffuse the resonance centers. This effect strongly enhances

the radial diffusion which then may account for anomalous heat loss observed to occur in

the electron channel. Detailed calculations have been made to describe this anomalous

diffusion.8

In this paper we consider a more subtle process in which the intrinsic stochasticity

near the magnetic island separatrices interacts with the drift resonance to change the
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parallel velocity of the charged particles. This, in turn, leads to the radial shift of the drift

resonance, as described above. The process, including the time dependence, takes place

in three degrees of freedom, and the diffusion in parallel velocity is along a resonance.

This process, known as Arnold diffusion, is exponentially slow in a ratio of characteristic

frequencies.9'10 However, since the frequencies may have similar magnitudes, the diffusion

rate may also be significant.

In our analysis of the diffusion of the resonance center we shall use a formalism de

veloped for mappings with a diffusing parameter.11 This formalism has also been applied

to the diffusion of drift island resonances resulting from colHsional processes that change

the parallel velocity.12 Here the parallel velocity is only indirectly affected by its coupHng

to the radial motion.

In Section II we present the mechanism in a general form that is appHcable to various

types of applied fields. For example, a local time-varying electric potential can be appHed

to the torus, such that the resonances are associated with the Fourier decomposition of

the fields. Alternatively, the electric fields may arise from natural drift wave activity in

a toroidally confined plasma. Similarly, the magnetic islands can arise either from the

natural structure of the confining magnetic field or from resistive instabilities. In Section

III we consider the specific problem of measuring the Arnold diffusion of anelectron beam

probing the structure ofa magnetic island when it is perturbed by an externally excited

time-varying electric field. The vacuum magnetic field is represented by a local shear

and perturbation strength, resulting in amagnetic island. The perturbing electric field is

represented by its appropriate Fourier component. The resulting diffusion of the parallel
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beam velocity is a novel form ofArnold diffusion that canbe measured in a straightforward

manner and can be controUed by the external electric field.

II. "The General Formalism

The magnetic islands are taken to arise from a field line Hamiltonian of the form5'12

H = H0(J) + H1(JA<f>) (1)

where Ho is the Hamiltonian in the absence of toroidal variation

H0(J) =/ c(J)dJ (2)
Jo

with t the rotational transform,

l=^i W (3)
which gives the number of 9 revolutions for each <f> revolution, and J the action or flux

variable

The angles 9 and <j> are the poloidal and toroidal angles, respectively, and r is the radial

distance from the axis to the field Hne. The perturbation H\ can most generally be

expressed in the form

Ji-E^^r6'" E ^»'i(m'"n') (5)
k ° m,n?*0

where e = r0/R is the inverse aspect ratio. The first summation is the expansion of the

toroidicity, and the second double summation is the expansion of the ^-varying perturba

tion with harmonic amplitudes Amn (with A_m,_n = Amn as a reality condition on the

fields).



To be expHcit, we assume that the main island ampHtude is determined from a specific

m, n term on the i = n/m surface, which is resonant at zero order in e. Transforming to

new variables

9 = m9 —n<j>

J = J/m

and expanding J = Jo + A J where i(Jo) = n/m, the perturbed Hamiltonian is then

(AJ)2
dJ J+Jo 2

+ Amncos0 + H.O.T. (6)

where the Amn and A-mt _n terms from (5) have been summed to give the cos9 term

which is in the pendulum form. The central frequency and maximum ampHtude of the

island are obtained from (6) as

A / -A - V/2
ftM= \mJjAmn) (7a)
(j \ 1/2

The higher order terms (H.O.T.) generate the stochastic layer around the island separatrix

and also lead to any distortion of the island shape from that of a pendulum. We will not

calculate either of these effects explicitly.

In this work we ignore the deviation of the drift surfaces from the magnetic surfaces

due to magnetic forces. These deviations are of the order of RtlJt^ with the Larmor

radius ri assumed small compared to other dimensions. The resonant part of the particle

drift due to electric fields is then governed by the equations9'12

— = &„(r)t;y-w (8)



dv\\ e
= —&u(r)$osin0 (9)

dt m

dr
(10)

dr kx_. . ^ dr
_ = _*osm0+-

Mag

We have kept only a single Fourier component of the electrical potential, $ = $0 cos0.

The equations are coupled to the magnetic field line variation through k\\(r) and through

rfHMag* ^ne f°rmer giyes the zero and first order 0-variation, and the latter gives the first

order variation in r due to the magnetic island. We then expand about the resonance

V||fc||(ro)-tt> = 0. (11)

Using the notation

x = r —ro (12)

Au|| = V|, - v||0 (13)

and expanding the magnetic island flux to first order, from (6),

A J = r0ZMag. (14)

Equations (8)-(10) become, to first order,

d0 dk\\
Ht=V^0~dr~X'h l|oAV|1 (15)

dAvn e^ =-fc„„*osine (16)
dx fcj_o , . _ .-£ = ^g-^o sin 0 +a;Mag. (17)

Even in the absence of magnetic field-line stochasticity xMag = Tff |Ma is an explicit

function of time, through (6). We can then construct a time dependent Hamiltonian for
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the drift motion, from (15)-(17), which is a two degree of freedom (2D) dynamical system,

having stochastic layers around the separatrices. However, this stochasticity tends to be

bounded by KAM surfaces and therefore is not of great physical interest. Alternatively, if

we take the initial conditions such that the particle Hes in the stochastic separatrix layer

of the magnetic island, the i?Mag term then has a stochastic component which drives the

Arnold diffusion. It is this situation that we consider here.

In order to analyze the coupled equations, it is convenient to separate the drift vari

ables from the magnetic island variables. To do this, we define a new variable

' —T*j7sAl- (18)
Then, multiplying (16) by ^^ and subtracting (16) from (17), we obtain

y = ^Mag (19)

which gives the uncoupled magnetic variation. Substituting the new variable in (15)

A / dk\\ M k±0 1 f \ A dh\ , x
0=(^HFTbT^ b+*»»JA"»+ ""•-i7y <20>

and (19) remains as before. We now put the equations into the standard form12 by making

the simple changes in variables

_ / dh\ M fcj_0 , \ A , ,

P=v\\o^V (22)

such that the equations (16), (20), and (19) become, respectively,

J=A'sin0 (23)

G = I + P(t) (24)

dk\\
dr

• dk\\
P = ^HoO^T^Mag (25)
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where

Equations (23) and (24) are the pendulum equations with an explicit time dependent drive.

They have been analyzed previously with P a random variable.12 We now generalize for

P the motion in a separatrix layer.

From (23) and (24) we construct the time-dependent Hamiltonian

J2
H = — + P(i)I + K cos0 (27)

The Arnold diffusion is obtained from the explicit time dependence

-^=7P=/t,||0-JxMag (28)

From (6) we obtain the expHcit time dependence

roiMag = Amn sin0(*) (29)

where 8(t) is approximated by the separatrix motion of (6)10

9(t) = 9sx(t) = 4tan-1 [exp(aM*) - *"] (30)

where, from (7a),

A f idt \1/2&M=\rnz—Arnn\ . (31)

Substituting (29) in (28), and writing out J as an explicit function of time in the small

osciUation portion of the drift island space, we have

dH _ . ._ , dk\\ Amr,-fr * /max sm{£lEt +x)v||o -J- -y^ sin 9{t) (32)



To put (32) in the usual form for calculating the Melnikov-Arnold (MA) integral we expand

in sum and difference variables, and keeping the term which contributes to the integral we

obtain

^ =Jmaxt'iio^^icostQos +x+6(a)) (33)

where we have changed the independent variable to s = Umt and Qo = ^e/^m the ratio

of the linearized drift to magnetic island frequencies. Explicit integration with respect to

s gives the MA integral9'10

Aff =Jmax£!!°-^!Li2i sinX r cos(Qo* +*(*))<fc (34)
Um or r0 J.oo

iiB Or r0

Here .4(Qo) is the MA integral

AiQo) =4vQo^£^. (35)
smh(7rQ0)

and x is a phase that is randomized on each half-period of the separatrix motion

1 32
ra« = 7r--In—, (36)

where W\ is the thicknessof the separatrix layer, normalized to the separatrix Hamiltonian,

AH3X - Aff!

Wl = AH3X ' (37)

To calculate A2J, the higher order terms in the magnetic Hamiltonian need to be used,

but they only appear logarithmically in (36). We shall make expHcit calculations in the

next section. The above treatment, of the calculation of AH is described in more detail



in Refs. 9 and 10. The final step in calculating the diffusion coefficient is to square AH

and average over the random phase x •

Dh =«Ag)2>*T (38)
J-ax

Depending on the problem, a final transformation must be made to the variable of interest.

In the next section, we apply the formalism to a practical problem.

III. Arnold Diffusion of an Electron Beam

We consider the problem of measuring the Arnold diffusion of an electron beam, used

to measure magnetic surfaces, when the beam is perturbed by a time-varying electric field.

In the absence of the electric field the beam explores a magnetic structure caused by ex

ternal currents. For example, the helical-toroidal currents of a stellarator or torsatron.1'13

Because of the lack of axisymmetry, magnetic islands are generated which degrade the

edge confinements. The external currents may be trimmed to reduce the size of the edge

islands. The variation of islands with external currents are studiednumerically.13 The ac

tualexperiment can differ significantly from the numerical codes, necessitating theelectron

beam studies of the magnetic islands.

The study of Arnold diffusion is considered to be an ancillary experiment to the

electron beam exploration ofmagnetic islands. The time-varying electric field is externally

applied in order to produce the Arnold diffusion, which can then be measured with the

electron beam source and detector. It is assumed that the variation of external currents

that are used to minimize islands can also be used to obtain islands of the size which

maximizes the diffusion rate.
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From (7), the ampHtude and frequency of the magnetic island are related by

AJm =^ (39)

and using the defining relations J = J/m we have,

AJM =f£ (40)

where dt/dJ is evaluated at the resonance. To compare this to the distance between island

chains, we consider the case of n = 1. The distance between island chains, in action £J, is

then given by

1 * dlSJ
m + 1 m d J

such that

Taking the ratio of (40) to (41) the local gradient of rotational transform cancels and we

obtain

AJ A
— = 2mUM. (42)

Assuming neighboring island chains of approximately equal size, for no overlap of the

stochastic layers that would join the chains, we use the standard rule15

2AJ 2

6 J "3

to obtain from (42),

mflM < 1/6. (43)

We use mCl = 1/6 as the magnetic island frequency for our Arnold diffusion calculation.
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The frequency of the electric oscillation, loe is given

e » * / dh M k±0 ' M , / e , \!/2w« =[Ffc|io*o (%>^r^ +fc||v] 1/2" *"° (w*°) (44)
Scaling this to the rotation frequency U||0/27riJ, we have

1 In

where we have used the approximation V||0 « (^*&) • An approximate maximization

of the rate of Arnold diffusion is to maximize the MA integral (35). Within a small factor

this is done by setting Q0 = He/Hm = 1. Using (43), with &m = ttiUm, we find

•«*-i (46)

For example, if we look for an interaction between the m = 2 and m +1 = 3 island chains,

CLe = 1/24 and with $6 = 1 kV, from (45) we obtain $0 ^ 2 volts. We estimate the drift

island width using the first terms on the right in (15) and (17) to construct a Hamiltonian

X k I $n

h = t +~~^hcos0 =Const <47)

such that, the maximum drift island excursion is

•-2 (-*&)* (48)
Scaling k± ~ l/r0 and dk\\/dr ~ l/ifr0, (48) becomes

**-2(Jlr*ij)1/a (49)
where r*L = V||0/u>l. For drift excursions to overlap neighboring island chains we set

xE = SxM (50)
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where 6xm is estimated from (41) to be

6xm ~ -~ (51)

Continuing the previous example, with R = lm and ro = 10 cm, we substitute (49) and

(51) in (50), and using (45) and (46) we find

r2
r\ ^ ^-rr= = .69cm

1UR

The corresponding B = 110 Gauss.

A final calculation is to determine the rate of diffusion of vj|. From (38), returning to

physical variables, and scaling as previously, we find

„ 1(6x1 1 <Apl">2,ifo ^ (^
^ '0 "M -^a*

We relate 6x, the change in field Hne position, to Axm, the magnetic island size, through

the Hamiltonian, to obtain

6x =
7T (Axm)2
2 r0

with

3 raz

for our characteristic island size, as previously. We rewrite T8X as

T =J- ax —

J-SX 1

Tm Mm

where using (43) UM = l/6m. We evaluate .4^(1) = 2.6. Substituting these quantities

into (52), we find to order unity

(Aup/)2 m6 r
A,D = ; r - —-

13
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To find the diffusion time T£> required to change U||0 by its characteristic value

TD = fA v>T ^ jr-T (54)
(Av||M)2 $0

with m = 2 and Tsx/Tm —4, we find r = 64 in units of electron traversal of the torus.

With $&/#0 = 500 we find td = 32,000rtr., where rtr. = 2irR/v\\0 ~ 0.5/zsec. This time is

still very short compared to any coUisional spreading of the beam on background gas.

IV. Conclusion and Discussion

We have identified a new mechanism for diffusionin a toroidal magnetic field. Stochas

ticity around magnetic islands can interact with the particle motion on ExB drift islands

to diffuse the parallel velocity. This in turn moves the resonant center of the drift island.

The process is a form of Arnold diffusion, in which the stochasticity of one degree of free

dom drives another degree of freedom through a coupling term. If parameters exist or are

chosen such that the oscillation frequencies of the two degrees of freedom are comparable,

then the resulting Melnikov-Arnold integral, which governs the diffusion rate, is of order

unity, and the rate of diffusion can be large. Radial transport, however, is more difficult to

obtain, depending on the existence of chains of magnetic islandswhich can be successively

joined by the drift island oscillations, together with the diffusion of the drift island center

resulting from the diffusion of the parallel velocity.

We found that the diffusion could be measured with an electron beam of the type that

might be used to explore magnetic surfaces. If the magnetic field can be adjusted such

that some region of the flux surface has sets of magnetic islands that are close together,

but not overlapping, then the introduction of a time-varying electric field perturbation

of reasonable magnitude produces diffusion of the parallel beam velocity. Furthermore,
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the parameters could be chosen such that drift islands are comparable to the magnetic

islands. This allows the diffused portion of the beam to be detected in the neighborhood

of a magnetic island different from the one on which the beam is injected. A diffusion time

is found of the order of miUiseconds which, as calculated for a specific set of parameters,

appears to be quite reasonable for doing a time resolved experiment.

Although a number of approximations were made in estimating the specific ampHtudes

and time constants, there is sufficient flexibility that changes of a few factors of two would

not change the overall conclusions. The matching of the magnetic and drift frequencies can

be obtained by varying the strength of the perturbing electric field. The matching of the

magnetic and drift island amplitudes is adjustable with the beam velocity and the toroidal

magnetic field strength. The adjustment of the magnetic island strength depends on the

particular magnetic field configuration under investigation, but usually some relatively low

m-number island chains can be found that satisfy the neighboring island criterion.

The accuracy of the calculations canbe improved, but, as they aremachinedependent,

they shouldbe performed on a specific device on which the experiment is to be performed.

Because of the long-lived character of a beam probe, the value of the Melnikov-Arnold

integral can be considerably smaller (at least a factor of 10) and still have reasonable

diffusion times. This allows for some flexibiHty in choice of parameters and some leeway

in the accuracy of the calculated diffusion time.

Although we have concentrated our attention on the ability to measure the Arnold

diffusion that is externally induced in a torus, it is also possible for the effect to naturally

occur, which may lead to unwanted diffusion. For example, a combination of magnetic
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perturbations and drift waves can lead to diffusion of the parallel electron velocity in a

plasma. Such diffusion can be more rapid than colHsional processes, causing electrons to

drift in and out of banana orbits, or, more dangerously, superbananas. Such a process

might be another source of anomalous electron diffusion. As discussed in the introduction,

the colHsional diffusion of drift island centers has already been studied.7'8'12 The diffusion

of drift island centers due to magnetic stochasticity, which appears on a time scale faster

than collisions, may, in some configurations, be a larger effect.
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