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Bifurcation Analysis of Chua's Circuit

Leon O. Chua and Luong T. Huynh
University of California, Berkeley

Abstract—By transforming the state equation for Chua's circuit
into a third order scalar differential equation, an explicit solution
isobtained. This explicit solution can be used to make a computer
program to calculate thetrajectory ofthe circuit. Theeigenvalues of
the characteristic equation for each linear region can be categorized
into different patterns. The diagrams of the eigenvalue patterns
are found to belong to two groups. Within each group, the maps
resemble each other qualitatively. Finally, the explicit solution is
applied to trace period doublings up to a high period. The data are
found to agree with the Feigenbaum number.

1 Introduction

In this paper, we will present resultsobtainedon Chua's circuit
by considering the exact solution ofthe differential vector equa
tion representing the circuit. There has been a great number
ofliteratures on this circuit and we will not attempt to repeat
materials that are available elsewhere (see Chronological Bib
liography). Rather, the three separate topics included in this
paper are new materials and we find them worthwhile to be
presented.

Chua's circuit (Figure 1) is a simple piecewise-linear third-
order circuit. The stateequation is given by

dvCl
C,

dt

. dvc3
2~dT

L~dt

= G(vc3 - vCl) -g(vCl)

= G{vCi - Vc3) + IL

= -vCl

where g{vCt) = GbvCl + ±(Ga - Gb)[\vCl + Bp\ - \vCl - Bp\\.
By rescaling thevariables, we can transform thestate equation
into a dimensionless form:

dx
= a(y-x-/(x)) (1)

where

and

/(*) =

dr
dy
dr
rfr

dr

= x -y + z

= -3y

m\x + mo — mi.

rrxox.

rri\x — mo + mj,

y = vcJBp.
mo = Ga/G.
3 = C2/(LG>).

x = vcJBp.
t = tG/C7.
a = C2/C,.

x > 1

-1 <X<1

X<-1.

zsiL/(B,G).
m, = Gb/G.

(2)

(3)

For simplicity, we will be working in the dimensionless form
and using i in placeof r. When m0 < -1 and -1 < mi < 0.
therearethree equilibrium pointsof the form (d.O.—d),

Figure 1: (a) Chua's circuit, and (b) v-i characteristic of the
piecewise linear resistor.

The above system of differential equation can be solved nu
merically using integration methods such as Runge-Kutta or
Forward Euler. In Section 2, we will show that explicit solu
tions can be obtained which can be used to model the trajec
tory of the circuit with higher accuracy and speed. In Section
3, we will use the characteristic equation from Section 2 to in
vestigate the eigenvalues patterns of the equation. In Section
4, we will show howthe explicit equations make it possible to
trace period doublings up to a high period and to verify the
Feigenbaum number using data obtained.

2 Explicit Equations

In this section, we want to show that the Chua's circuit can
be represented by a setof explicit equations. The derivation is
based on thefact thatwithin each linear region ofthenon-linear
resistor, the differential equation representing Chua's ciruit is
linear. We begin by transforming the differential vector equa
tion into a third-order scalar differential equation. From (3),
we have



From (2). (4). and (5),

1.
y = -y

1-y = -y.

1- 1 .

,1- 1 .

(4)

(5)

(6)

(7)

Substituting (4). (6) and (7) into (1) and simplifying, we obtain
a third-order differential equation in z:

~tyW+0i+i) =-fi+a(l +"0(£s+ii+*)+a(l +m)rf
r,31 +(l+Q+am)H(Qm+5)i+Q^(Hm)z+Q^(l+m)(f=0.
where mis equal to m0 or mj. depending on which linear region
is being considered. The characteristic equation is

53 + (1 +q+Qm)s2 +(am +8)s +a£(l + m) = 0.

and can be solved using Cardan's formulas. These formulas
are available in mathematical handbooks and will not be given
here. Let us call the three roots of this characteristic equation
•si.s2- and s3. The solution for z(t) is given by

z(t) = kle'>, + k2et't + k3e»t-d.

From (4),

m = -r

= —^klSie3it --k2s2eS3t --k3s3e'it

and from (6).

*(0 = y + y-z

= —$k*(sl +*+^)e*,e - \k7{s\ +s2 +j3)e* -
-jh(sl +53 +d)e°3t +d.

To solve for *,. k2. and k3. we first notice that the initial
condition (x(0).y(0).*(0)) can be transformed into an equiva
lent initial condition in terms of z and its two derivatives at
r = 0:

*(0) = *(0)
*(0) = -dy(0)
5(0) = -5y(0)

= -&[x{0)-y(0) + z(0)].

From the equation for z{t).

2(0) = kl + k2 + k3-d
i(0) = hs! + k2s2 + k3s3
5(0) = klSl + k2Sl + k3Sl

So that

where

'*! 1

. *3
=

" 1

s

s

1 1 '

1 52 53

2 s7 t71 *2 53 .

-l " ^(0) -f d
5(0)

. 5(0)

= M

Z

. -0[*{O)

(0) + d
-0y(o)
-»(0) + *(0)]

»2»a

M =
(»l-*j)(»l-*3)

(»J-»3)(»2-*l)
_«1»2_

(«l-«2)(*l-»3)
-(«3+«l)

(j2-a3)(j2-«])

(»l-*j)(*l-*3)
1

(»2-*3)(*2-«l)
1

(»3-»l)(*3-*j) (a3-«i)(*3-*j) (*3-«l)(«3-»2) .

With these information available, it is possible to develop
a computer program to find the trajectory of Chua's circuit
usingexplicitequations. The program must keep track of the
current linear region and use the appropriate eigenvalues for
that region. Whenever the trajectory crosses a boundary of
these regions (when x = 1 or x = -1), we use the values of x.
y, and z at crossing, which can be obtained using the bisection
or the Newton-Raphson method, as the initial condition for the
next region.

3 Eigenvalue Patterns

In [8], it has been shown that two members of Chua's cir
cuit family have the same qualitative behaviors if they have
an identical set of eigenvalues in each linear region. It is use
ful therefore to obtain a relationship among a, 0, and m such
that the eigenvalues follow a certain pattern and to tabulate
the possible patterns in the circuit. We will be interested in
the signs and the relative magnitudes of the real components
of the eigenvalues.

3.1 One Real and One Complex Conjugate
Pair of Eigenvalues

Let us denote the eigenvalues by 7,a + ju:, and a —ju.\ The
characteristic equation is thus

53 + (-2a - 7)52 + (a2 + 2<r7 + u2)s + (-a27 - a;27) = 0.

Equating the coefficients of the left hand side term by term
with those of the characteristic equation, we have

1 + a + am = —2a —-)

am+ 3 = a2 + 2a-, + w2
ai?(l + m) = -a2-)-u;2-).

We are interested in the values of the parameters such that
a = 0.7 = 0.7 = a, 7 = -a. and u; = 0. These can be obtained
through algebraic manipulations on the above equations and
are given below. Since these equations only work when there
is a pair of complex conjugate eigenvalues, we disregard the
segments ofthese curves that lie inside theall real eigenvalues
regions. The boundary of the real eigenvalues regions is the
curve u: = 0.

a = 0 : 0 = -am(l + a + am)
7 = 0: a = 0 or £ = 0



7 = a

7 = -a

u; = 0

(1 -r a + am)(am - f (1 + a + am)2)
~ 2a + 2am - 1

3_ (1 -fa -f am)(am + 2(1 + a + ottj)2)
~ 2a + 2am -f 1

{ g-2g»+g^/(l+2y)/(l+m)
"" 2g+2<rn»4-m Qr

^ = _a - a2 _ ff^(! + 2a)/(l+ m)
{ _ g-2<ra-<V(l+2<y)/(l+m)

2er+2<rm+ni

3= -a - a2 +a^/(l +2a)/(l +m) *

3.2 Three Real Eigenvalues

The equation for three real eigenvalues is given by

s3 + (-01~ -)2 - 73>2 + (7H2 + 02-)3 + 737l> + (-7H273) = 0

where 71,72. and 73 are the roots, such that 71 < 72 < 73.
Comparing the last term on the left hand side with that of
the characteristic equation, we see that the condition for one
eigenvalue to be zero is a = 0 or 3 = 0.

3.3 Eigenvalue Pattern Diagrams

The equationsgiven in Subsections 3.1 and 3.2 have been plot
ted on the a. 3 plane for mo = —8/7 and mj = —5/7 in Figure
2. These curves describe the boundaries of regions with the
same eigenvalue pattern. In these diagrams, the patterns are
coded as following:

RCO

CRO

COR

CO~R

OCR

ORC

ROT

ROC

RRRO

RROR

RORR

ORRR

7 < a <0

a< 7 <0

a<0<7, H>b| -£ Ue

a<0<7. |a|<h|

0 < a < 7

0 < 7 < a

7<0<a, |a|>|7| *-| £

7 <0<a. |a|<h| -x-

*>1 < ")2 < 73 < 0 XXX

"il < ";2 < 0 < 73 —)<)< x

-)i < 0 < 72 < 73 X XX

0 < 7i < 72 < 73

The mnemonics is as follow: R stands for a real eigenvalue. C
stands for the real part of the complex conjugate eigenvalues,
and O stands for 0. The letters are arranged in increasing
order and a bar on top is used to denote the one with larger
magnitude when R and C are on opposite sides of O. In the
0 region, m0 is used for m and in P* region, ni] is used. The
pattern combination will be written in the form

(code for 0, code for P±).

It is found that the diagram for m0 = —8/7 also gives a qual
itative picture for all m0 < -1. In other words, all diagrams
for m0 < —1 resemble that of m0 = —8/7 in connections and
positions of curves. Similarly, the diagram for mi = —5/7 also
gives a qualitative picture for all —1 < mi < 0. As a result,
the diagrams can be divided into two groups: m0 < —1 in 0
region and -1 < mi < 1 in P* region.

By varying m0 from -00 to -1 and mi from -1 to 0, we
have tabulated the possible combinations ofeigenvalues for the
circuit. They are given in Table 1.

We would like to note that since the curve for a = 0 does
not exist for m0 < -1, there is no Hopfat 0. Looking at the
diagrams, wesee that Hopf at P* occurs when the eigenvalue
combination varies from (COR, RCO) into {COR. ROC) in the
first quadrant. The parameters for Hopf can be calculated ex
actly using the equation for a = 0 in P± region. In the third
quadrant (a and 3 are both negative), there is another path
for Hopjjat P* across theboundary between (VOR, RCO) and
(COR. ROC), but this region has not been fully investigated
due to time constraint of this writing. In Chua's Circuit, pe
riod bifurcations and chaotic attractors have been found in the
{COR. ROC) region.

4 Period Doublings

We will fix 8 at 16. m0 at -8/7, and mi at -5/7, and calculate
the a's at which period doublings occur. These a's are then
used to verify the Feigenbaum number.

Our method includes finding a periodictrajectory for a given
set of parameters a, 0, mo,and mi and testing for the stability
of the trajectory. Suppose a trajectory &(xo,yo,z0) originat
ing from $° = (x0,yo,2o) has period T, then just before it
loses stability to double in period, two of the three eigenval
ues of the Jacobian (£$T)(*0.».*o) has magnitude unity (two
characteristic exponents are zeroand the third oneis negative).
One magnitude unity eigenvalue is due to the fact that the tra
jectory is periodic. The second one is due to the fact that the
trajectory is almost a saddle-type periodic orbit.

The periodic trajectory was obtained by solvingfor an equi
librium point $° suchthat *T($°) = $°. This was not trivial
and involved much trial and error work. As a result, we will
not give details on this.

The Jacobian matrix (Z?$T)$o of the periodic orbit is ob
tained using the following method. From the equations for
x(t),y(t). and z{t) in Section 2, we see that the trajectory $'
depends linearly on k\.k2, and k3 whichin turn depend linearly
on &10, the initial condition of the current linear region. There
fore. (P$')*io is independentof the initial condition. Knowing
the time t a trajectory spends continuously in a linear region
enables us to calculate the Jacobian for the segment of the tra
jectory that lies in the region. The columns of the matrix are
given by *'(1.0.0). $'(0.1.0). and $'(0.0,1). To calculate the
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Figure 2: Eigenvalue patterns diagrams. Left column: m0 <-1 (0 region).
Right column: -1< »m < 1 (P* region). 1: ORRR, 2: RROR, 3: RRRO.



0

Region

/** Region

TOR COR OCR ORC CRO RCO ROC i?OU RRRO RROR RORR ORRR
COR Y Y Y Y Y Y
COR Y Y Y Y Y Y
OCR

ORC

CRO Y Y Y Y Y Y
RCO Y Y Y Y Y

ROC

ROC

RRRO Y Y Y Y Y Y

RROR Y Y Y Y Y Y

RORR Y

ORRR

Table 1: Possible eigenvalues patterns combinations. Y: yes, blank: no.

overall Jacobian. we start with a 3 x 3 unit matrix and premul-
tiply by the Jacobian for each region until the trajectory has
completed its period. The overall Jacobian can then be used
to solve for the eigenvalues.

The a's at which a periodic trajectory loses stability are
listed in Table 2. The ratios ofsuccessive Aq's agree with the
Feigenbaum number almost upto five digits at period 256. The
bifurcation diagram in Figure3 shows the bifurcation evolution
as a increases.

Onset of Period a at Onset Ratio of Difference
2 8.855726163

4 9.1080893023

8 9.1591511652 4.94230

16 9.16997924215 4.71569

32 9.17229337816 4.67910

64 9.17278877717 4.67126

128 9.172894866343 4.66965

256 9.172917586935 4.66930

Table 2: Period doublings for 0 = 16,m0 = -8/7, and mi =
—5/7. The value in the last column is calculated using the
last three a*s. For example, the first value is equal to (a4 —
Q2)/(qs - a4).

/

8.80 8.90 9.00 9.10

Figure 3: Period doublings as a is increased from period 1.
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