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Abstract

Chaos has been widely reported and studied in Chua's circuit family, which is

characterized by a 21 parameter family of odd-symmetric piecewise-linear vector fields

in R3. In this tutorial paper, we shall prove that, up to a topological equivalence,
all the dynamics of this family are subsumed within that of a single circuit : Chua 's
canonical circuit. We provide explicit formulas of the parameters of Chua's canonical

circuit leading to a behavior qualitatively identical to that of any system belonging to

Chua's circuit family. These formulas are then used to construct, in an almost trivial

way, a gallery of (quasi-periodic and strange) attractors belonging to Chua's circuit
family. A user-friendly program is available to allow a better understanding of the
evolution of the dynamics as a function of the parameters of the canonical circuit, and
to follow the trajectory in the eigenspaces.

1 Introduction

In this paper, we shall focus on a class of particularly simple three-dimensional chaotic
systems : Chua's circuit family. This class of dynamical systems , henceforth denoted by
C, is characterized by a three-region, continuous, piecewise-linear vector field F with odd

symmetry i.e. F(—x) = —F(x) whereweassumethat there is no plane or line parallel to the
boundary planes B+ and B_ which is invariant under the action of F in the middle region
(by continuity, this properties will also hold true for the outer regions). Since, as we shall



see, the origin is an equilibrium point, this last assumption is equivallent to assuming that

the eigenspaces * through the origin are not parallel to the boundary plane. As shown in

Fig.l, the Jacobian matrices of the vector field f in the innner region Do, and in the outer

regions D\ and P_i, are denoted by M0 and Mi, respectively, b is a vector of R3, which

ensures the continuity of F on the boundary planes B+ and £?_. We shall denote by //i,//2

and fi3 the eigenvalues of M0, and by V\, v2 and 7/3 the eigenvalues of Mi. In order to avoid

complex numbers, we shall introduce the following notation:

Pi = Hi + A*2 + 1*3 qi = V\ + v<i + vz

p2 = ^1/^2+^2/^3 + ^3^1 <72 = V\V* + Z'2"3 + ^3^1

P3 = Hi 1^2̂ 3 <?3 = ^1^2 ^3

Region D+ f(X) =M1X +b

Region DQ f (X) =MX • K0

::':':':::::::::::::v:::::-:: ' J .: :::::::::::::::v:::::v:

Region D. f (X) = M1X -b

(1

Figure 1: A three-region piecewise-linear system

The fact that the elements of C can be considered as three affine systems, each of which

having a well-known solution, glued together simplifies the theoretical study of these systems.

These properties allow an in-depth study of the dynamics in C. In particular, it has made it

possible to give a rigorous proof of chaos in Chua's circuit [1]; an element of C [2] [3] shown

in Fig.2(a) and known as the simpliest autonomous circuit which exhibits chaos.

From a physical point of view, the circuits which belong to C are very simply built.

They only have one nonlinear element : a Chua's diode [4], a five-region piecewise linear

nonlinear resistor whose i-v characteristic is given in Fig.2(b). Note that from a physical

'eigenvector or eigenplane



(a) (b)

Figure 2: (a) Chua's circuit (b) characteristic of Chua's diode

point of view, in a real circuit, the two outer segments with a positive slope 7712 are always

present, otherwise the system could gain an infinite amount of energy which is physically

impossible. However, these two segments do not play any interesting role in the chaotic

dynamics. When a three-region system is simulated (without these outer segments), the
trajectory might diverge, due to an improper choice of parameters or initial conditions. In

this paper, we shall only include the inner segments of slope ra0 and the two outer ones of

slopes mi as shown in Fig.3.

Chua's diode
characteristic

Figure 3: Three-region characteristic of Chua diode



The possibility of a simple and robust realization of the elements of C is certainly an

advantage for their study. This is all the more interesting since, as we shall see in this paper,

there exists a single circuit which is imbued with all the complicated dynamics of C. We

shall introduce this circuit, Chua's canonical circuit [5], and its state equations from which
we shall first derive a dimensionless form. Then we shall give values of the parameters of

Chua's canonical circuit, as well as those of its dimensionless form (after a time rescaling),

correponding to any eigenvalue pattern 2

(/*;*/) = (nuH2,Hz\vi,V2,v?i) or (p;q) = (pi,P2,P3j0i, 92,9a) (2)

If, as proven in section 6, two elements of C having the same eigenvalues exhibit the same

behavior, all the complicated dynamics of C are subsumed within that of Chua's canonical

circuit or its associated dimensionless form.

In section 3 we shall illustrate the properties of Chua's canonical circuit with some ex

amples. We shall determine the parameters of Chua's canonical circuits and of its associated

dimensionless form leading to some well-known attractors belonging to C.

In section 4, we shall systematically determine them for all the attractors found so far

in C. For each attractor, we shall give the Lyapunov dimension, the eigenvalue pattern, the

parameters of Chua's canonical circuit and of its dimensionless form, and a phase portrait.

In section 5 we shall present some basic concepts relative to the dynamics of C. In this

tutorial paper, written for the non-specialist, this section can be considered as both a short

introduction to chaotic dynamics and a simple answer to questions that might araise in the

reading of the four first sections. In the same spirit, we wait for the end of this paper to

prove that two elements of C having the same eigenvalues (/*, u) exhibit the same dynamics.

This is the basis of this paper and will be assumed in the five first sections.

2 Chua's canonical circuit

2.1 The circuit and its equations

Our aim in this section is to provide a circuit to realize any prescribed eigenvalue pattern

associated with a vector field belonging to C. First of all, since the system is of the third

order, the circuit must have three-dynamic elements. In addition, since our objective is

2Note that (^;u) isobtained from (p; q) with (1). Conversely, fn (resp. i/,) are the roots ofthepolynomial
: fi3 —pifi2 + j?2A* ~~ P3 = 0 (resp. v3 —q\v2 + q%v —q$ = 0) . We shall assume without any loss ofgenerality
that fi\ (resp. v{) is real.



a three region symmetric piecewise-linear continuous vector field, we can allow only one

nonlinear resistor, the Chua's diode , whose v-i characteristic shown in Fig.4 is odd-symmetric

3-segment piecewise linear. All other elements must be linear.

In an autonomous linear RC circuit which has two elements, there is only one natural

frequency v = 1 / RC. Therefore, to produce a prescribed natural frequency R or C can

be assigned an arbitrary value ( e.g., let C=l ) and then the value of the other parameters
can be calculated. In other words, to synthesize a circuit having n arbitrarily prescribed

eigenvalues, at least (n + 1) circuit parameters are necessary.
If we are given 6 eigenvalues, then we need at least 7 parameters. We already have 3

dynamic elements and 2 slopes for the nonlinear resistor; therefore, 2 more linear resistors

are the minimum requirement. The chosen circuit is shown in Fig.3, its state equations,

henceforth denoted by Sc are :

where

dt

dt

= £[-/(«i) +*s]

f(v) =Gbv +i(G. - G,)(| v+Br | - |v- Bp |)
is the v-i characteristic of the Chua's diode shown in Fig.3.

L
A/W

R

V
C2

G
C2

V.
C1 C1

Figure 4: Chua's canonical circuit

(3)

(4)



We can transform the state equation Ec into a dimensionless form by defining

x = vi/Bp y = v2/Bp z = Ri3/Bp
t = t/Rd m0 = RGa m1 = RGb
a = dRG/C2 0 = C1/C2 1 = C1R2/L

The corresponding dimensionless state equation is given by :

where

X =

y =

z =

-ay + ftz

~l{x + y + z)

1
f(x) = mix + -(m0 - mi)(| x + \\-\x-\\)

(5)

(6)

(7)

Note that in (6), x = ^ and also that thoughout the paper we shall assume that Bp = 1
which does not affect the dynamics 3 . The system (6) has a qualitatively identical behavior
to that obtained from (3), provided that RC\ > 0. If RC\ < 0, an attractor in (3) becomes
a "repeller" in (6) because the dimensionless time r < 0 when t > 0. We operate a negative

time rescaling in (5). In this case, we can still use (6) to obtain an attractor of (3) , by merely

integrating (6) backwards in time. This is equivalent to integrating the following alternate
dimensionless equation in forward time:

x = f(x) - z
y = a —fiz

z = 7(0; -f y -f z)
(8)

where the parameters a, /? and 7 and the function / are the same as in (6). Equations (6)

and (8) can be combined into a single equation :

x =

V =

z =

9(-f(x) + z)
6(-ay + 0z)

6(-l(x + y + z))
(9)

where 6 = 1 if RC\ > 0 and 0 = —1 if RC\ < 0. Equations (9), henceforth denoted by Ej are
known as the Chua's canonical equations. Observe that we only have five dimensionless pa

rameters a, /?,7, m0 and mi, compared to the twenty one parameters required to completely

define an element of C, as shown in Fig.l.

3ifBp ^ 1, we would divide xy y and z by Bp to find the solution of Ec



Let us first assume, as it will be proven in section 6, that the qualitative behavior of C
is determined by its six eigenvalues : ^1,^2,^3,1/1, v2 and 1/3. As we shall see, in the outer

regions, for all the eaxamples presented in this paper, we shall always find one real and two
complex conjugate eigenvalues that can be denoted by :

"l = 7i vi = °i + J wi ^3 = 0i - jui (10)

Since we are only interested in preserving the qualitative behavior of the system, we can

assume for convenience that W\ = 1 so that only five parameters need to be matched by

those of Erf. This assumption is equi valient to a change in the time scale and hence involves

no loss of generality. Note that if the eigenvalues in the outer regions were all real, we could

impose to one eigenvalue, for example v\, to have a norm equal to 1 and proceed as above.

2.2 Explicit formulas for calculating the parameters of Chua's

canonical circuit

Given any prescribed set of eigenvalues, [5] gives the explicit formulas for calculating the

circuit parameters Ci,C2,L,R,G,Ga and Gb of the Chua's canonical circuit shown in Fig.

As mentioned before, among the seven parameters, we can assign an arbitrary value to any

one of them. In [5] C\ = 1. The other circuit parameters are :

where

Q = _p + V2Z32.

Gb = -Oi + **=^
b ^ ^ PI-91

L = p2+(£2^22._p1>\ (ZLZ32.)-E2=32.
n \Pi~i\ J \Pl-11 J Pi-11

R=-L (B2=v- + k)
\pi-9i /

k = -L P3 +
Ga(p3 - qs)
Ci{pi-qi)m

Observe that the parameters cannot be found whenever the numerator in one the equa

tions (11) is equal to zero. This is the case when :

Pi = qi

or

(11)

(12)

(13)



ft+ iL^.ft «I» _»I»=0 (14)

(15)
kpi -qi )

Each of these three equations (13)-(15) represents a 5-dimensional hyper-surface in the

six-dimensional space (pi,...?3). The eigenvalue patterns that cannot be be reached from

Chua's canonical circuit belong to one the three hyper-surfaces, and therefore constitute a

set of measure zero, we shall denote it by 5C. Given an eigenvalue pattern (p;q), we can

always perturb it in order to obtain :

(Pi + &Pi, Pi + f>P2, Pz + &Pz\ qi + Squ 92 + Sq2>92 + Sq2) (16)

where Spi and Sqi are arbitrarily small, so that the resulting eigenvalue pattern (16) does not

belong to Sc and hence can be generated by Chua's canonical circuit. If Spi and Sqi are chosen

sufficiently small, which is always possible since Sc is a zero-measure set, it follows that by

the continuity property of ODE with respect to parameters, that the qualitive behavior of

the system will be preserved. We will illustrate this with examples in section 3.

2.3 Explicit formulas for calculating the parameters of Chua's

canonical equations

Our aim is now to obtain the parameters of Chua's canonical equations as a function of the

eigenvalues. Consider an eigenvalue pattern (/*, v) and its corresponding circuit parameters
obtained with (11). From these circuit parameters we can determine the dimensionless

parameters with (5), assuming in the process of finding the parametersandthe time rescaling,

we do not encounter any numerator equal to zero, i.e. : C2 ^ 0, L ^ 0 and RC\ ^ 0. Ci is
fixed at C\ = 1, and from (11), it is obvious that L, and C2 cannot be equal to zero, but we

can have R = 0. As (13)-(15), R = 0 represents a hyperplane that is a zero-measure set; by

slightly perturbating the eigenvalues we can find an eigenvalue pattern leading to the same

qualitative behavior and R ^ 0. We shall denote by Sd the zero-measure set of eigenvalues

for which we cannot find the dimensionless parameters, note that Sd C {SC\J{R = 0}}.
Alsonote that (except for \R\ = 1, which is a zero-measure set), when we find dimensionless
parameters coresponding to (/z, z/), this does not mean that the eigenvalues of E^ are (/z; v),
but that there exists a system Ec, that has the eigenvalues (/*, 1/) and whose dynamics is
equivalent to that of Ej (up to a positive time rescaling). Therefore Ej has the same
qualitative behavior as any element of C having the eigenvalues (/w, 1/).

8



In order to obtain directly the parameters of Chua's canonical equations as a function

of the eigenvalues, we can substitute (11) into (5). Another possibility consists of directly
deriving these formulas from (9) as it is done in appendix A. In this appendix, we use Chua's
canonical equations as an example, to show how to determine the parameters of a system as

a function of the eigenvalues 4. Fortunately, in both cases, substitution of (11) into (5) and
direct derivation, we find the same result :

Q _ ?3~P3
H {q\-p\)K2

m0 = (~Pl
™i = (~<?i
0 = sgn(K2K3)

K,K*

{K2?

where:

*2 =P2-^ +^te+Pl)
K = 22=32. _ 4l

91-Pi *2

The zero-mesure set for which the parameters of Chua's canonical circuit cannot be

determined is :

(19)pi = q\

or

qz-pz . P2-q2 P2-q2 , _ \ np2 - -—— + -—— (-—— + px j =o
qi-pi qi -pi \qi -pi

or

P2 — q2 -Pz
I ?3~P3 (v I p2-?2 \

qi-pi v1 ii-vi) _= 0
qi-pi p2 - 32=£1 +E2:z32- i*21132- + pi)f£ 91-P1 91-P1 \9l-Pl riJ

Note first that (19) and (20) are the same as (13) and ( 14), respectively. Second, (21) is
not present in Sc. In fact, it represents a time rescaling that must not be equal to zero. We

do not have this problem in Ec. In this case, although we can still find values for a, /?,7, m0

and mi, they are meaningless because the equation (5) is not valid. The reader can read

appendix A for more details. Third, in (5), only I/C2 appears (not C2), and assuming that
Pi 7^ qiA/G2 always exists (see (11)). Therefore (15) is not present in Sd- Also note that

(17)

(18)

(20)

(21)

4Note that in general, for systems other than Chua's canonical equations, the set of eigenvalues for which
the parameters does not exists is not a zero-measure set



Chua's canonical circuit generates some eigenvalue patterns that Chua's canonical equations

cannot generate and vice-versa. These sets have both a zero measure zero.

2.4 Equilibrium points and eigenspaces

In this section we shall determine the equilibrium points and the eigenspaces corresponding

to the Chua's canonical equations. These formulas constitute the basis of a user-friendly

program, presented in Appendix B, that determines the equilibrium points and displays the

trajectory in the eigenspaces, starting from any initial conditions. Let us first determine the
equilibrium points 5 of Chua's canonical equations. Consider the equilibria:

' -/(*) + * = o
< -cty + Pz = 0 (22)
k 7(3 + y + z) = 0

From a physical point of view, (22) can be interpreted as the equations of the circuit at
dc, when the capacitors are open-circuited and the inductor short-circuited. The equation

of the load line is:

z= 2-z (23)
<x + p

The only interesting case, which can lead to complicated dynamics, is when the circuit

has three dc-operating points. The nonlinear function F(-) and the load line are shown in

Fig.5.

The load line intersects the outer segment if and only if the operating point I has an

abscissa

greater than 1 as in Fig.5, leading to an equilibrium point in each of the three regions.

P+ = (x/,-^*/,-^*/) eD+
Po = (0,0,0) eD0 (25)

p- = (-*/.;&*/*/) efl-

In the case of three equilibrium points, let us now study their stability i.e. the nature of eigen

spaces present in the neighborhood of P+,Poand P_. One of the advantages of a piecewise-

linear vector field is that in each region these eigenvalues and the eigen spaces are constant,

therefore we do not have to do any local approximation in order to determine the Jacobian

'In our case, the equilibrium points are the points where the vector field is equal to zero

10



"VChua diode
characteristic

Figure 5: dc operating points of the Chua diode

matrices of the system. Let us first examine the stability of the origin Po- In the region Do
the state equation is :

X = M0X

where the Jacobian matrix is the constant matrix

Mo = 0

and its chracteristic polynomial is :

( -m0 0 1 >

0 -a fi

\ -7 ~7 -7 /

| XI -Mo | = A3 + 0X2(a + a + 7)
+A(c*a + cry + 07 + /?7+ 7c)
+0(aa!7 + 7«e + /?7«) = 0

(26)

(27)

(28)

The eigenvalues of the Chua's canonical equations are the roots of (28). In order to determine
the type of the eigenvalue pattern associated with Af0, let us introduce T :

T = I [3(aa + cry + a7 + £7 + 7) - (a + a + 7)2]2
+312 [20(a + a + 7)3 - 9#(<* + a + 7)(«« + «7 + a7 + #7 + 7)
+270(ac*7 + 7a + /37a)]3

According to the value of T, there are three different cases:

(a) (r > 0) : one real and two complex conjugate eigenvalues

11

(29)



(b) (T = 0) : three real eigenvalues of which at least two are equal.

(c) (r < 0) : three real and unequal eigenvalues.
If we have determined the canonical dimensionless parameters from an eigenvalue pattern

(//; i/), we already know the type of eigenvalue pattern. However as we have already noticed,

the eigenvalues of E^ are not (fi; i/) but wjf?1'' where K2 and K3 are given in (18). This
multiplication of the eigenvalues by a positive coefficient does not affect the qualitative

behavior of the system. After having found the eigenvalues of E<*, in each of the three cases

(a),(b) and (c), we shall determine the corresponding eigen spaces:
case (a) The eigenvector Vah, corresponding to the real eigenvalue Xr, is determined up

to a multiplicative constant by:

and a solution of (26) is:

M0VXr = XrVXr (30)

( 1 X
-i((0X + l)(0\ + a) + 1)

\ (« + «) )

(31)

Note that if 7 were equal to zero, (30) would imply that A.r is also equal to zero. The
eigenplane Pq corresponding to the complex conjugate eigenvalues :

Xc± = u±iv (32)

is determined as a linear combination of the two vectors U and V such that:

A — uI vl

12

. . T . . ., .=0 (33)
A — vl —ul

By definition of u and v, the determinant of the linear system (33) which has six unknowns
and 6 equations is equal to zero. By giving an arbitrary value to one of the coordinates of

U or V, we obtain a full rank i.e. (5) Cramer system that can be easily solved by classical

methods. Note that T ^ 0 implies that there exists such a fifth-order Cramer system of

equations in (33).

case(b) This case corresponds to a measure-zero set of parameters. Therefore, as it has
been explained in 2.2, it is possible to slightly perturb the paramaters without changing the

behavior of the system and obtain a system that belongs to case (a) of in case (c). This case

could also have been directly treated.



case(c) The coordinates of the three eigenvectors corresponding to the real eigenvalues
Xr can directly be determined by (31).

The study of the stability of the outer equilibrium points is very similar to that at P0,
exept that the Jacobian matrix of the vector field is now:

Ml=6

( -mi 0 1 \

0 -a p

\ -7 -7 -7 /

(34)

Therefore, we can determine the eigen elements in the outer regions by substituing mi

into mo in the equations obtained in the inner region. In the next section, we shall examine

examples of eigenvalue and eigenspace patterns in C

3 Example of the use of the explicit formulas to find

the parameters of Chua's canonical systems

3.1 introduction

In this section, we have two objectives. First we want to show with some well-known examples

that it is easily possible to obtain the dynamics of any elements6of C from Chua's canonical
circuit and from its associated canonical system. In each case we shall verify that we find the

same trajectory with Chua's canonical equations as with the original system (the trajectories
are copied from the original paper). Second, we shall take advantage of these examples to

present some aspects of the dynamics in C, in particular the role of the eigenspace and the

eigenvalues in the dynamics of an element of C.

For each element of C considered in this section, we shall give the expression of the

vector field before giving the eigenvalue pattern corresponding to each attractor. To avoid

any confusion with the notations, the parameters relative to the original system will have a

tilde (i.e. a, p....). All these systems belong to C, therefore they have the same three-region

piecewise linear nonlinearity:

f(x) = mxx + -(m0 - mi)(|z + 1| - \x - 1|) (35)

When there are three real eigenvalues in the middle region Do, (/i, v) is said of type I. If

there is one real and two complex conjugate eigenvalues in Do, (/^, v) is said of type II.

'Chua's circuit, Chua's torus circuit, Orgozalec ladder circuit, Brockett and Sparrow's systems

13



3.2 Three examples of attractors from Chua's circuit

The dimensionless form of Chua's circuit state equations [6] [7] [8] is :

' x = a (y - f(xj)
< y = x - y + z (36)

>* = ~h

3.2.1 A Rossler-type attractor.

For a = 8.5;0 = 14.28; m0 = —1/7; mi = 2/7, (36) leads to a chaotic attractor [9] shown in
Fig.6-a,. This corresponds to the following set of eigenvalues :

pi = 0.677 & = -0.304 + J0.901 ji3 = -0.304 - J0.901

vx = -1.22 v2 = -0.304 + j u3 = -0.304 - j

which is equivalent to

pi = 0.07030 p2 = 0.4915 p3 = 0.6125

qi = -1.125 q2 = 0.8837 qz = -1.225

(37)

(38)

With (11) (resp. (17)), we can determine the parameters of Chua's canonical circuit (resp.
Chua's canonical equations ):

d = 1 ; C2 = -0.5952 ; G = -5.733 ; Ga = -0.3984 ; Gb = 0.7968 ; L =

-1.092; R= -0.3586

(resp. a = 0; 0 = 1.680; 7 = 0.1176; m0 =-0.1428 ; mx = 0.2857; 0 = -1 )
The trajectory obtained from Chua's canonical equations is shown in Fig.6-b. One can

compare it to that obtained from the original Chua's system in [9], shown in Fig.6-a. Suppose

that starting from the initial conditions (xtnt',r/,ni,ztTM) we obtain the trajectory T\ shown in
Fig. 6-b, if we change the initial conditions into (—xtm-, —y,-m-, —Zini) , we obtain a trajectory
which is the symmetric image of Ti with respect to the origin as shown in Fig.6-c. Provided

that the vector field Sj is symmetric with respect to the origin, if we find a trajectory T

from any element of C, it is always possible to find its "twin" symmetric by choosing the

odd-symmetric initial conditions. Note that the symmetric image of T can be T for all odd-

symetric periodic orbit. This will also appear to be the case in the next example, but it is

only an illusion, since the double scroll presented below cannot be periodic. With sufficient

computer precision, one can always find its symmetric twin, which will look almost identical

to its twin.

14
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Figure 6: Comparison of a Rossler-type attractor and its odd-symmetric twin obtained from
Erf with the attractor obtained from the original Chua's system

3.2.2 The Double Scroll

For : a = 9;/3 = 14.28; m0 = -1/7; mj = 2/7(36) leads to a chaotic attractor [10] [11] called
the double scroll, shown in Fig. 7-a . This corresponds to the following set of eigenvalues :

m = 0.728 fi2 = -0.317 + jO.889 fi3 = -0.317 - jO.889

vx = -1.29 i/2 = 0.0608 + j i/3 = 0.0608 -j

which is equivalent to :

pi = 0.0937 p2 = 0.430 p3 = 0.649

2! = -1.17 q2 = 0.846 ?3 = -1-29

15
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With (11) (resp. (17)), we find the parameters of Chua's canonical circuit (resp. Chua's
canonical equations) :

Ci = 1 ; C2 = -0.632 ; G = -0.0033 ; Ga = -0.419 ; Gh = 0.839 ; L =
-1.02; R= -0.330

(resp. a = 0; 0 = 1.58; 7 = 0.111; m0 =-0.143 ; ml = 0.286; 0 = -1 )
The trajectory obtained from Chua's canonical equations is shown in Fig 7-b. One can

compare it to that obtained from the original Chua's system in Fig.7-a. One can also notice
that the double scroll attractor can be considered as the result of merging the two Rossler

attractors shown in Figs.6-b - 6-c.

(b)

Figure 7: Phase portrait of the double scroll obtained from Chua's original system and from
Erf

A typical trajectory of the double scroll and its eigenspaces are shown in Fig.8. The
eigenvalue pattern (/x, v) is of type II; in each region, there is one eigenvector corresponding
to the real eigenvector and one eigenplane corresponding to the two complex conjugate
eigenvalues. One can recognize in Fig.8 the middle region Z)0, separated by the two boundary
planes U\ and U-u tne outer region D\ which is the half space above U\, and £>_i which
is the symmetric image of D1 with respect to the origin 0. As we have said earlier, one the
advantages of C is that in each region ( D_i,A> and D\ ), the system is affine, therefore it
has a well-known behavior. Before going any further, let us recall the solution of a linear

system whose dynamics are determined by a state equation of the type:

X = MX (41)

rwe assume that the origin of the basis B is located at an equilibrium point
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Figure 8: Typical trajectories and eigen spaces for the double scroll

If --he matrix has one realeigenvalue Xr and two complexconjugate eigenvalues Xc± = cr±ju>,
there exists a basis B where the matrix M is in the form 8 :

A solution of (41) is of the type :

x = GeXRt

y = eat(Hcos(ut) - Ksin(ujt))
k z = e^iHsiniut) + Kcos(ut))

(42)

(43)

The behavior of the system crucially depends on the sign of Xr and o~, this will determine the

sign of the parameter located before t in the exponentials in the equations (43) . We have
to consider four cases as shown in Fig.9. In the case (a), the system is stable, the trajectory

in attracted along the eigenvector towards the eigenplane where it spirals inwards towards

the equilibrium point. This cannot lead to any interesting dynamics, if we have such an
eigenvalue pattern in a region /},-, as soon as the trajectory enters D it is attracted towards
the corresponding equilibrium point. In the case (b), the trajectory is attracted towards

8Jordon form
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the eigenplane while spiralling outwards. In the case (c), the trajectory spirals inwards and

diverges along the eigenvactor. In the last case (d), the trajectory spirals outwards and

diverges along the eigenvector.

(a) XR < 0 ; a < 0 (b) XR < 0 ; a > 0

(c) XR > 0 ; a < 0 (d) XR > 0 ; cr > 0

Figure 9: Four types of trajectory in an affine system with one real and two complex conju

gate eigenvalues

For the double scroll, we are in case(c) in the middle region and in case (b) in the outer

regions. Let us for example start from a point A'o in the region D\. The trajectory is

strongly {yi CO) attracted towards the eigenplane EU(P+) while it spirals outwards. We
have assumed that in C no eigenspace can be parallel to the boundary plane, therefore the

trajectory will exit from D\. In jD0, we are in the case (b), the trajectory spirals inwards

in E (0), and diverges along the eigenvector Es(0). Schematically, as shown in Fig.8, if
the trajectory enters D0 above Es(0) it will return to D\ and if it enters D0 below Es(0) it
will go to D-\. Thus, one can easily understand the evolution of the trajectory. However,

although deterministic, it cannot be predicted as it is chaotic. For us, this means that the

system exhibits a sensitive dependence on the initial conditions. If instead of starting from
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xq, we started from a point xQ infinitely close to xq (but different), wewould find two different
trajectories. If we integrate these two trajectories simultanetely, the distance between two

corresponding points ( one on each trajectory) does not remain infinitely small (it increases
exponentially with time until the two trajectories are practically uncorrected). For example,

one of the two trajectories coming from the region Do would go to D\ while the other one

would go to D-\. In Fig.10 we show the time series coresponding to the trajectories Ti and
T2 (dash line) starting from (0.001,0.001,0.001) and (0.0015,0.001,0.001), respectively .The
two trajectories are close to each other until t = 280 when T\ and T2 are both in the middle
region D0. Then Ti goes to the region Di while T2 returns to D_i. After this, 7\ and T2 are
completely uncorelated.

Figure 10: Time series of the double scroll obtained from Ed, starting from two different but
close initial conditiions

3.2.3 The double hook

For a = 9]p = 14.28; m0 = -1/7; ma = 2/7(36) leads to a chaotic attractor [12] shown in
Fig 11-a . This corresponds to the following set of eigenvalues :

fi! = 1.15

1/1 = -0.89

fi2 = -2.98

i/2 = 0.15 + j
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fj,3 = -5.70

1/3 = 0.15 -j
(44)



which is equivalent to

Pl = -7.53

qi = -0.589

p2 = 6.99

q2 = 0.753

p3 = 19.60

q3 = -0.911
(45)

This eigenvalue pattern is of Type I. In the middle region, instead of having one eigenvec
tor and an eigenplane as it was the case so far, there are three eigenvectors. Two of them are
stable and the third one in unstable. The Jordan form of the Jacobian matrix of the linear

dynamical system present in Do is a diagonal matrix with the eigenvalues on its diagonal.
The associated dynamical system has a solution of the type :

(46)

With (11) (resp. (17)), we find the parameters of Chua's canonical circuit (resp. Chua's
canonical equations) :

C1 = l; C2 = -1.35; G = 0.014; Ga = 6.63 ; Gb = -0.310 ; 1 = 0.251; R =
0.226

(resp. a = 0; /? =-0.741 ; 7 = 0.2029 ; m0 = 1.492 ; rm = 4.928; 0=1)
The trajectory obtained from Chua's canonical equations is shown in Fig 11-b. One can

compare it to that obtained from the original Chua's system in Fig.ll-a.

40 60

• >•.»•• .»•.«•• -II.*M tl.tM »•

Figure 11: Phase portrait of the double hook obtained from Chua's original system in and

from Erf
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3.3 Two examples of attractors from Chua's torus circuit

The dimensionless form of Chua's torus circuit [13] is

( dx
dt

A

= -af(y-x)
dx

dt
= -f{y-x)-z

dx

*> dt = Py

(47)

3.3.1 A two-dimensional quasi-periodic torus

For : a = 2;/? = l;roo = 0.1;mi = —0.07, (47) leads to a quasi-periodic 2-torus 9 [13] shown
in Fig 11-a . It corresponds to the following set of eigenvalues :

f in = 0.1955 fi2-3 = -0.04794 ±jl.004
1 7i = -0.1381 v2 = -0.03419 + j v2 = -0.03419 - j

Which is equivallent to

Pl = 0.09958 p2 = 0.9917 p3 = 0.1975

qi = -0.06970 q2 = 0.9917 q3 = -0.1382

(48)

(49)

With (11) we can determine the parameters of Chua's canonical circuit : C\ = 1 ; C2 =

-0.5 ; G = 0 ; Ga = -0.09958 ; Gb = 0.06970 ; L = -1.008 ; R = 0

We have found R = 0, therefore we know that we shall have to perturb the eigenvalues

in order to use Chua's canonical equations. As we have seen in 2.3, R = 0 is equivallent to

Kz = 0 which belongs to Sd- In order to have Kz ^ 0, let us add for example 10"6 to fi\.
After this perturbation we find R = 1.77 10~5 ^ 0 and :

a = 2.07 10~10 ; fi = -2.000 ; 7 = -3.114 10"10 ; m0 = -1.764 10"6 ; mx =
1.235 10"6; 0 = 1

Unfortunately, when we integrate the system Ej, with our program, we do not find the

trajectory shown in Fig.ll-a, because the calculations are not made with enough precision.

To solve this problem, we can multiply the parameters by a coefficient K, e.g. K = 105, so
that we avoid very small parameters. This leads us to a system with identical behavior. Note

that if we choose K = t^t, the trajectory would be the same as that obtained directly with
Chua's canonical circuit (in another basis). However, our aim is to find parameters to use
Chua's canonical equations directly . In order to do so, we have to perturb the eigenvalues

a little bit more. Let us add 10~2 to fii. In this case, we find :

9see 5.3 for a definition
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(a)

Figure 12: Two-dimensionnal quasi-periodic torus obtained from the original Chua's torus
system and from E^

a = 0.0211 ; fi = -2.036 ; 7 = -0.03169 ; m0 = -7.35964 10~3 :
0.02302; 0 = 1

With these parameters, using Ej, we obtain the trajectory shown in Fig.l2-b. One can
verity that it is identical to that obtained directly from the torus circuit shown in Fig. 12-a.

E"CO>

m,\ =

Figure 13: Typical trajectories and eigenspaces for the 2-torus

As we did for the double scroll, let us also examine the typical trajectories and the
eigenspaces represented in Fig. 11 . The eigenvalue pattern is also of type (c) in the middle
region and of type (b) in the outer region. However there are two slight differences :
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- The magnitude of |7i| = 0.14 is not as large as for the double scroll (1.29) and therefore
the "flattening" onto EU(P±) is relatively weak.

- Es(0) and EU(P±) are almost parallel.
The reader can verify that if we increase (a), we would find a double scroll (a = 30).

A time serie of the quasiperiodic attractor is given in Fig.l 1. It is characteristic of a quasi-

periodic system with two incommensurate frequencies.

Figure 14: Time series of a quasi-periodic torus obtained from Ej

Note that the coefficient obtained after perturbing p2 of 10~6 would lead to a trajectory
identical to that obtained in Fig.11a if we were using better precision. The question is :

how much can we perturb the eigenvalues and still obtain the same trajectory ? There is no

general answer to this question, as it depends on the attractor 10. We know that in theory,
if the perturbation is small enough, we shall find a system that has the same qualitative

behavior. In practice, in section 4, we have found without any difficulty the coefficients of

Ed, that give the expected trajectory with our program. As we shall see in this section, one
must identify where the singularity comes from (K3 = 0 in our case) and slightly modify the

eigenvalue pattern to avoid the singularity. Note that in our case, by changing one of the
eigenvalues we shall exit from S^, if we change several eigenvalues we should verify that we

do not stay mSd-

10see 5.2 for more details

23



3.3.2 A folded torus

For a = 15; p = I; rn0 = 0.1; mi = —0.07, (47) leads to an attractor [13] shown in Fig 12-a,.

It corresponds to the following set of eigenvalues :

m = 1.408

l/! = -0.997

Which is equivalent to :

fi2 = -0.0161 +J1.006

i/2 = 0.01695 + ?'

p3 = -0.0161 -jl.006

i/2 = 0.01695 +j

Pi = 1.376 p2 = 0.9634 p3 = 1.425

qi = -0.9634 q2 = 0.9664 q3 = -0.9976

(50)

(51)

With (11) we can determine the parameters of Chua's canonical circuit : C\ = 1 ; C2 —
-0.06666; G = 0; Ga = -0.09958 ; Gb = 0.06970 ; £ = -1.008; /2 = 0

As above, and as for any eigenvalue pattern obtained from Chua's torus circuit, we have
found R = 0. We apply the same perturbation as above, by adding 0.01 to pi. This leads
to the following values of dimensionless parameters :

a = 0.07068 ; 0 = -15.992 ; 7 = -0.07512 ; m0 = -1.474 ; ml = 1.0398; 0 = 1
and to the trajectory shown in Fig. 15-b which is identical to that of Fig. 15-a.

(a) (b)

Figure 15: Folded torus obtained from the original Chua's torus system and from Ej.

24



3.4 Ogorzalek's example

In order to simplify the equations of his ladder circuit, Ogorzalek assumes in [14] that
R\ = R2 = Rz = in and C\ = C2 = Cz = IF. The state equation becomes :

/ -2 1 0

1 -2 1

V 0 1 -1

For mo = —33.03 and mi = 400, Ogorzalek obtains the trajectory shown in Fig.l3-a

The eigenvalue pattern of this system is :

/*i\
Xi

pi = -0.809

vi = 0.9234

P2-3 = 0.00753

ai = -0.8588

which is equivalent to

+

I \ \

0

V o /
fM

±j0.4045

CJi = 1

f Pl = -.7944 p2 = 0.151 pz = -0.132
\ qi = -0.794 q2 = 0.151 q3 = 1.604

One can note that p\ = q\ therefore we have to perturb the eigenvalue pattern in order

to be able to determine the parameters of Chua's canonical circuit and Chua's canonical

equations. If we modify one of the eigenvalues, it will have an effect on pi or q\ and therefore

we shall be able to calculate the canonical parameters. In the case of the torus we have

seen that if the perturbation is too small the parameters exist but in practice for numerical

reasons the integration of the system does not lead to the expected trajectory. On one hand,

we want to avoid a singularity of the type * . On the other hand we do not want to
change the eigenvalues too much because then it is very likely that we shall not find the

same qualitative behavior. The best way to do so is to modify (p;q) directly instead of
(//; v). By proceeding this way we are sure that we eliminate the singularity as efficiently as

possible for a minimum perturbation of the eigenvalues. In our case, let us add 0.1 to p\ and

substract 0.1 from qi, in order to maximize p\ —qi. This leads to the following eigenvalue

pattern :

which is equivalent to

pi = -.6944 p2 = 0.151 pz = -0.132

qi = -0.894

> :

q2 = 0.151 q3 = 1.604

pi = -0.746 p2-z = -0.913 ±;'0.431

vi = 0.918 o-i = 0.913 u>! = 1
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and to the following parameters for chua's canonical circuit (resp Ej)
d = l; C2 = -1.077; G = -0.764 ; Ga = 0.706 ; G6 = 0.909 ; Z, = 0.109 ; R =

-0.0776

(resp. a = 0.0551 ; p = 0.928 ; 7 = -0.0551 ; m0 = 0.0548 ; m1 = 0.0706; 0 = -1

)

(b)

Figure 16: Attractor from Ogorzalec's example obtained from the original system and from

The trajectories on Fig. 16a and Fig. 16b do not look quite the same. As shown in Fig.
16c, the problem is that the trajectory is flattened onto a plane P that does not correpond
to any of the planes x = 0, y = 0 or z = 0. Therefore there is no way of expending the

trajectory along one of the axes. As shown in Fig. 16d-e, we rotate the attractor around
the axis x through an angle of 45.4 degrees to expose the third dimension of the attractor in

greater details. We eventually obtain the attractor shown in Fig. 16f that looks identical to
the original one in Fig. 16a.

3.5 Brockett's example

In [15], Brockett studies the following single loop feedback system:

/0\

where

( ° *
0 0 1

^ -1 -1.25 0 J

0 \ / xi

Xi

\ si
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—ky if \y\ < 1

g{y) = I 2ky-3k if 1< \y\ < 3 (58)
—3k sgn[y) if \y\ < 1

The only interest of the region \y\ > 3 is to claim that all solutions of (57) are bounded when
t goes to infinity [16]. This region does not play any role in the dynamics of the system,

therefore we replace the function g by f defined by mo = —k and mi = —3k.
The phase portrait obtained in [15] from (57) is shown in Fig. 17-a. As in the previous

case, we find p\ = qu after adding 0.05 to p\ and subtracting 0.05 from qi we obtain :

which is equivalent to :

pi = -0.95 p2 = 1-25 p3 = 1.8

qi = -1.05 q2 = 1.25 q3 = -3.6

pi = 0.500 p2-3 = -0.576 ±j0.913

vi = -1.12 ax = -0.201 wi = 1

and to the following parameters for Chua's canonical circuit (resp Ej)
Ci = 1 ; C2 = -0.959 ; G = -0.663 ; Ga = 0.652 ; Gb = 0.721 ; L =

-0.0402 ; R = 0.0277

(resp. a = 0.0192 ; /? =-1.042; 7 = -0.0192 ; m0 = 0.0181 ; rrn = 0.02004; 0 = 1

)

(b)

(59)

(60)

Figure 17: Attractor from Brockett's example obtained from the original system and from

Ed.
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3.6 Sparrow's example

Sparrow studies in [17] the following system of single-loop feedback system :

(61)

k z = y - z

where:

g(z)={ ~ w'"~ '"*"" "~^J (62)w \= 8.14r* -0.25 - 3.6r if z > f v '
This system does dont directly belong to C but after making the system symmetrical

with respect the origin, Sparrow obtained the double sided attractor shown in Fig. 18a. The

only thing that change in the vector field is the nonlinear function that becomes / given in

(35) with m0 = —8.4 and mi = 8.4r. After adding 0.1 to p\ and substracted 0.1 from q\ we

obtained the following eigenvalue pattern:

pi = -0.6316 p2 = 0.006352 + J0.3802 p3 = 0.006352 - J0.3802

Vi = 0.9395 v2 = -0.8005 + j v3 = -0.8005 - j

and the following parameters for Chua's canonical circuit (resp. Chua's canonical equa

tions ):

Ci = 1 ; C2 = -1.0137 ; G = -0.6275 ; Ga = 0.61890 ; Gb = 0.6615 ; L =

0.02604 ; R = -0.01612

(resp. a = 0.009981 ; p = 0.9864 ; 7 = -0.00998 ; m0 = 0.009979 ; ma =
0.01066; 0 = -1 )

This leads to the trajectory shown in Fig. 18b. For the same reasons as in the case

of Ogorzalec's example, we do not obtain a trajectory similar to that in Fig. 18a. After a
rotation around the axix x through an angle of 44.7 degrees we find the trajectrory shown

in Fig. 18c. One can notice that the attractor has the same geometrical structure as that

obtaiend from Ogorzalec's example. Although these two systems have different eigenvalue
patterns, the structure of the attractors is the same. We had already seen in 3.4 that it is

not be obvious to recognize that two attractors have the same geometrical structure, but it
is not always obvious either that two attractors have different geometrical structures. In the
next part where we give a gallery of attractors, we have checked carefully that it is not the
case.

' * = 9(z) ~ X

< y = x - y

, z = y - z

= -8.14* +3.35 if*<f
= S.Urz -0.25 - •3.6r if z > |
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G>)

Figure 18: Attractor from Sparrow's example obtained from the original system and from
E<*.

3.7 Conclusion

For each exampleconsidered in this section, it has been possible to find easily the parameters
for both Chua's canonical circuit and Chua's canonical equations that lead to the same be
havior. Through these examples, wehave also presented a method to perturb the eigenvalues
when needed. This method can be used to find the dynamics of any system of C in that of

Ec or Ed, as soon as we know its eigenvalue pattern. As far as the existing elements of C
11 are concerned, it has been possible to find formulas that give the parameters of Chua's
canonical equations directly as a function of the parameters of the original systems. With
the formulas given in appendix A, the reader can directly use the program provided with this
article, or use (5) to find the parameters of Chua's canonical circuit to study the dynamics of
any elementof C studied so far. In the next section, we shall give a list of all the attractors
found in C.

4 A gallery of attractors

In this section, we present a zoo of attractors obtained from elements of Chua's canonical
family. As it has already been explained earlier, all these attractors lie in the dynamics of
Chua's canonical circuit and in that of its associated dimensionless form. We shall use this

last system E<f to generate the trajectories of each of them. For each attractor, we shall also

nChua's circuit, Chua's torus circuit, Ogorzalec ladder circuit,Sparrow and Brokett's examples
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provide the eigenvalue pattern, the parameters of Chua's canonical equation Ej and Chua's

canonical circuit ac as well as the Lyapunov dimension 12 13 . All these informations are

gathered in two tables given in appendix D.

Among this zoo of attractors, we first find those studied in the previous section : Rossler's

attractor, the double scroll, the double hook, the quasi-periodic and folded tori, Ogorzalec,

Brockett and Sparrow's examples. In the case of Chua's circuit we present six new attractors.

In addition to the attractors originally discovered from one of the system presented in the

previous section, we add 12 other attractors reported in Chua's canonical circuits.

4.1 Attractors obtained from Chua's circuit

In addition to the Rossler's attractor, the double scroll, and the double hook, we add six

other attractors obtained from Chua's circuit :

- a torus obtained for large values of a and p.lA : a = 1800.0; /? = 10000.0; mo =
-0.026; mi = 0.018

a = 0; P = -11.111; 7 =-0.001111 ; m0 = 0.052 ; ma =-0.036; 0 = -1

- three attractors obtained for the following values of parameters for the dimensionless

form of Chua's circuit :

a = -4.087;/? = -2.0; m0 = -.1429; m2 = 0.2858 (Fig. 19b)

a = -6.691;/? = -1.520; m0 = -.1429; ma = 0.2858 (Fig. 19c)
a = 8.342;/? = 11.925; m0 = 0.2952; mi = 0.1467 (Fig. 19d)
- Two attractors obtained for the same values of parameters but different initial con

ditions. One of them is not symmetrical with respect to the origin, therefore we can

consider its symmetric image as a third attractor. These attractors are obtained for :

a = 15.6; p = 28.58; mo = —1/7; mi = 2/7 which is equivallent to : a = 0 ; p =
1.832 ; 7 = 0.0641 ; m0 = -1/7 ; mi = 2/7; 0 = -1 and the following initial

conditions (for Ej):

x = 1.27790; y = -1.83719; z = 0.190468; (Fig. 19e)
x = 1.34501; y = -0.32641; z = -0.256188; (Fig. 19f)
x = —1.34501; y = 0.32641; z = 0.256188; ( the symmetric of the previous one )
The theory of confinors [18] [19] made possible to prove rigorously that these three attrac

tors are different. As we shall see in the next section, this is a non-trivial problem that will

12see 5.4

13obtained with the software package INSITE
14Note that it is the first torus obtained in Chua's circuit
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not be tackled in this paper. Let us say that all the geometrical structure of the attractors
discoved so far in C is close to that of one of the attractors presented in our gallery.

4.2 Concluding remarks

As explained earlier in this paper, all the dynamics of C lies in a five parameter family of
dynamical system : E<*. The corresponding five dimensional parameter space Pd is huge and

a systematic scanning of Pd is almost impossible. So far, only a tiny portion of Pd has been

explored, many more new attractors are expected. The aim of this gallery is mainly to give
an idea of the wealth of the complicated dynamics in C and to encourage the reader to look

for new attractors with programs like that proposed with this article of that in [20].

Figure 19: Attractors originally obtained from Chua's circuit

5 Elements of dynamics in C

5.1 Comparison of the original system and the corresponding

Chua's canonical systems Ec and £<*

Let us first recall the exact relation between the original dynamical system and that obtained

from Chua's canonical circuit Ec or from its associated canonical system E<*. Let us denote

by F0,FC and Fd the vector field of the original circuit, that of Ec and Ej, respectively. As it

is proven in section 6, there exists two invertible matrices Jc and </<*, and a positive non-zero

constant 5j, such that15:

15J and Je are said to be linearly conjugate, while J and J& are said to be linearly equivallent
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Figure 20: Some other attractors obtained from Chua's canonical circuit

p _ j-ip j

_i (63)
Fd = SdJd FoJd

If X(t, x0) where t is the time and xq the initial condition, (i.e. the value of X at t = 0)
is a solution of the original equation :

X(t) = F(X) (64)

then

JcX{t) = JCX = JcFc{x) = Fc(JcX{t)) (65)

and

JdX = JdX = SdJdFd(x) = SdFd(JdX(t)) (66)

(65) impliesthat JcX(t) is a solution of Ec, and (66) implies that JdX(Sdt) is a solutionof Ej.
Concretely, this means that the trajectory obtained from Chua's canonical circuit is the same

as X(t), but in a different basis. The trajectory obtained from Chua's canonical equation is
also the same as X(t) in a different basis, but after a time rescaling 16. Therefore, we have
to compare two trajectories which are not in the same basis. If there exists a relation of the

type (63) between two vector fields (after a small perturbation if needed) the two systems
are said to have the same qualitative behavior. In section 3, we did not insist on this point.
By choosing the appropriate view point, we were able to verify that the trajectories obtained
from the original system and from Ej look the same. Regardless of this, strictly speacking,

16Note that we cannot see this time rescaling in a phase portrait
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we had not the same trajectory in two different basis, but two different trajectories. Indeed,

we should not think in term of trajectory but in term of attractor as we explain below.

5.2 steady-state behavior and attracting sets

Let us first give some definitions:

A steady state refers to the assymptotic behavior as t —> oo.

A point y is a limit point of x if, for every open neighborhood U of ?/, X{t, x) repeatedly

enters U as t —> oo.

The set of all limit points of x is called the limit set of X(t, x).
A limit set L is said attracting if there exists an open neighborhood of L such that the

steady-state of X(t, x) is L for any x of U.
The basin of attraction of an attracting set L is B(L) such that every trajectory starting

from B(L) tends toward L as t —* oo.

Attracting limit sets are the only set that can be observed in physical system. This does

not mean that a nonattracting set cannot have an influence on the transient (before the

steady-state is reached). The definition of limit sets that we gave is in fact too simple for
complex steady-state behaviors such as those existing in chaotic systems. The term strange

attractor has been introduced as the set on which the trajectory accumulates. For us we shall

use interchangeably attracting limit set and attractor. Nnote that in a stable linear system

there is only one limit set but in a nonlinear system there are typically several attracting

sets with their own bassins of attraction. The initial conditions determine in which limit set

the system settles.

5.3 Equilibrium points, periodic orbits, quasi-periodic orbits and

chaos

Xeq is an equilibrium point if for all t: X(t,Xeq) = Xeq.
X(t, Xo) is a periodic solution if there exists a minimal period T such that X(t, Xo) =

X(t + T,X0)ioTa[\t.

X(t, Xo) is a quasi-periodic solution if it can be written as the sum of periodic functions
: X(t) = J2% h%(t) where hi has a minimal period Tt- and a frequency /,-. In addition to this,
there exists a finite set of base frequencies (/i, ..fp) such that

A A A A A A

- there does not exist a nonzero set of integers (A?i, ..kp) such that kifi + .. + kpfp = 0
- it forms a finite integral basis for any /,-.
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The base frequency is not unique but p is. A quasi-peiodic solution with p base frequencies
is called p-periodic.

From a practical point of view, chaos can be defined as none of the above; that is,

a bounded steady-state behavior that is not an equilibrium point,periodic and not quasi-

peiodic. The limit set for chaotic behavior is not a simple set like a circle or a torus but it

is related to fractals and cantor sets [21].
Another property of chaotic system is its sensitive dependence on initial conditions al

ready mentioned in 3.2.2. Consider two different initial conditions arbitrarily close to each

other, the corresponding trajectories to these two points diverge at a rate characteristic of

the system before becoming uncorrelated for all practical purposes. Even if two different

initial conditions are very close to each other, so that they cannot be distinguished, the cor

responding trajectories will diverge and become uncorrelated after a finite amount of time.

Therefore, no matter how precisely the initial conditions are known, the long term behavior

of a chaotic system cannot be predicted. That it why chaotic systems, although deterministic

are said to exhibit a "random behavior". This is the reason why it is impossible to reproduce

with Chua's canonical system exactly the same trajectory as with the original system. In

the previous section, we in fact verified that the attractors obtained from the original system

from Ed look the same. The reader can easily imagine that to prove that two chaotic attrac

tors are identical, or different, in a non trivial task [19]. When we do not have to perturb
the parameters, the dynamical systems E0, Ec and Ej are equivalent. Therefore the same

attractors should be present in the three systems. In fact this is not obvious either. Indeed

the vector fields are not defined with infinite precision. Fortunately, except in some patho

logical cases, attractors are said to be stucturally stable which means that they are preserved

under perturbations of the system (otherwise we could not see them). This is equivalent to

the continuity properties of the ODE with respect to parameters. One can also refer to a

real circuit where the components are not defined with an infinite precision, fluctuate but

still give birth to the "same" attractor. Assuming that an attractor is stable, it has an open

basin of attraction. On one hand, we cannot reproduce the same initial conditions in Chua's

canonical systems (Ec and Ej) as in the original system. On the other hand, it is possible
to start in the same basin of attraction and therefore obtain the same attractor. That is

what we did in the previous section. Also note that if the notion of attractor is a non-trivial

one and it is not obvious either to determine wether or not two attractors are distinct, if

their bassins of attraction are distinct. In this paper we shall not tackle this problem. In

the previous section, we do not pretend to have given an exhaustive list of all the existing

attractors in Chua's canonical circuit but much more that all the attractors discoved so far in
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C have a geometrical structure close to that of one presented in the gallery. There are in fact
many attractors present, thinking for example of a bifurcation sequence where the attractors

evolve, merge ... [9] [22] We have also seen in 3.4 that it is not always easy to recognize that
two attractors are similar (almost if there is no way to predict it from the eigen pattern).
To build a complete list of attractors, it would be at the same time difficult to be exhaustive

but also to make sure not to mention the same attractor twice. In addition to the phase

portrait, one of the criteria to characterize an attractor is its Lyapunov exponents.

5.4 Lyapunov exponents

After this brief presentation of what chaos is, we introduce a generalization of the eigenvalues

at the equilibrium points. The Lyapunov exponents are used to determine the stability of any

steady-state behavior (behavior when t —• oo) including chaotic and quasi-periodic solution

for which they provide valuable information. They are defined in terms of solutions of the

variational equation as follows: let {wit(0}f=i De *ne eigenvalues of X(t,xo). The Lyapunov
exponents are defined by :

At = \im-ln\mi(t)\ (67)

if the limit exists 17. To have a better understanding of what these Lyapunov exponents are,

let us for example find them at the equilibrium point P+. The eigenvalues of the Jacobian

matrix Mi are ^,(<)?=i = e^K Therefore :

At- = limt_oo^n|mt(i)|
= limt_oo \Re[pi]t = Re[pi]

Hence, in this special case, the Lyapunov exponents are equal to the real part of the eigen

values at the equilibrium point; they indicate the rate of contraction (A,- < 0) or expansion

(A,- > 0) near the equilibrium point.

Suppose that xo ^ P+ but X(t, xo) —> P+ as t —• oo, which means that xo is in the basin
of attraction of P+. Since the Lyapunov exponents are defined as the limit as t —• oo, the

Lyapunov exponents of xo and P+ are identical. In general, every point of an attractor has

the same Lyapunov exponents as the attractor 18; therefore we can refer to the lyapunov

exponents of an attractor. It is proven in dimension n that at least one of the Lypunov

17Urn can be replaced by Urn sup to guarantee existence of the lyapunovexponents. Our short presentation
is only true when the limit exists.

18We should say for almost every point in some cases of strange (or chaotic) attractors, but it is always
true for non-strange attractors
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exponents must be equal to zero. In addition to this , note that for an attractor, the
contraction must outweight expension so :

2><°
t=0

From these Lyapunov exponents :

Ai > A2 > —An

Kaplan and Yorke defined the Lyapunov dimension as :

Ai + A2 + Xj
DL=j +

W

(69)

(70)

(71)

where j is the largest integer such that Ai + A2 + Xj > 0.

5.5 Classification of Attracting sets

Having now a better idea of what attractors are, let us classify them. Oneof the features of
chaos is its sensitivedependence on initial conditions. This ocurs only in an expanding flow.
Hence, what distinguishes a chaotic (or strange) attractor from the other types of attractor
is the presence of at least one positive Lyapunov exponent. In the three-dimensional case, we
can only have one positive Lyapunov 19 but in systems of higher dimension, it is possible to
have more than one positive Lyapunov exponent; the system is then termed hyper chaotic.
Among the attracting set, it is possible to operate a classification of attracting sets as follows:

Classification of attracting sets

Steady-state Attracting set Lyapunov

exponents

Lyapunov

dimension

Equilibrium point point 0 > Xi > ...Xn 0

Periodic closed curve Ai = 0; 0 > A2 > ...An 1

K-periodic K-torus Ai = 0 = ... = A* = 0;0 > XK+1 > ...An K

Chaotic Cantor-like Ai>0;EAt<0 noninteger

19one is equal to zero, and their sum has to be negative
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6 Linear conjugacy of two systems having the same

eigenvalue pattern

Our aim in this section is to prove the following proposition :
- Two elements ofC, whose vector fields F and F' have the same eigenvalue pattern (//; v)

or (p; q) 20 are linearly conjugate, i.e. : there exists a non-singular matrix H such that:

HoF = F' oH (72)

(72) immediately implies that the two dynamical systems associated with F and F' have
the same qualitative behavior. If X is a solution of the dynmical system

X = F{X) (73)

in the basis B, then:

HX = Ho F(X) = F'(HX) (74)
A

therefore X = HX is a solution of :

X = F\X) (75)

This means that if (73) leads to a trajectory, (75) leads to a similar trajectory 21 in another
basis defined from B by H (we invite the reader to verify that this is equivalent to what has

been said in 5.1).

More precisely, in order to prove our proposition, we shall show that any vector field

of C with an eigenvalue pattern (p;q) is linearly conjugate to some function Fpq uniquely

determined by (p\q). By transitivity, this implies that two vector fields have the same
eigenvalue pattern (p;q) are linearly conjugate. The proof is decomposed into three steps :

6.1 step 1

Let us first express the vector field F of any element of C in a form in which it will be easier

to prove our proposition. It is first possible to recast the equation of F in a basis B where

the equations of the boundary planes are x = 1 and x = —1. F can be expressed in the form
22.

20In this section, it will more convenient to define the eigenvalue patterns by (p;q), let us recall that there
exists a bijection between (p; v) and (p; q)

21with the restrictions of the previous section
22<, > denotes the vector dot product. If for exmple x = (x\, x2,xa)T and y = (2/1,2/2, 2/3)T then < x,y >=

*ij/i + «2j/2 + S32/3
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where:

BX + c foi(<W,X>)<-l
f(X) = { AX for | < W,X > | < 1

BX-c for (<W,X>)>1

(76)

A = (aij) is the Jacobian matrix of F in the middle region, denoted by Mo in Fig.l.

B = (bij) is the Jacobian matrix of F in the outer region, denoted by Mi in Fig.l.

c=(ci.C2,C3) is a vector of R3 that ensures the continuity of F on the boundary point.
W = (1,0,0)T is a vector of R3.
The coordinates of a point belonging to the boundary plane Bi can be expressed by

(l,t/,z) where y and z are two real numbers. The assumption that F is continuous on B\ is

equivalent to :

/ 1 \ / 1

Vy,zeR, A

which can be explicitly written as follows :

y

\z I

= B y

\z

+ c

' an - hi - ci + (a12 - 612)2/ + (fli3 - hz)z = 0
Vty, 2 e R, < a2i - 621 - c2 + (a22 - 622)2/ + (a23 - 623)2 = 0

k a3i —631 —c3 + (a32 —632)2/ + (033 —633)2 = 0

(77)

(78)

Eq.(78) implies that the two last columns of the matrices A and B are identical. Thus

there exists a vector

/ -611 - Ci
P =

such that

-62i - c2

V ~hi - c3

£ = yi + P(l,0,0)T

Therefore / can be expressed as follows [11] [10] :

F[X) = AX +±P(\<W,X>-l\ +(<W,X>-lj)
- (| <W,X >+1| - (< W,X >+1))

Let us now note that there exists a nonsingular matrix H such that A = HAH'1 is in
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its Jordan form [23]. The equation of /(•) as defined in (81) in a basis By becomes

Hf(H~lX) = HAH^X +\HP{(\<{H-1)TW,X>-\\
+(<(H-1)TW,X>-1))
-(\<(H-1)TW,X>+1\
~(<(H-*)TW,X >+!))}

(82)

in a basis B characterized by the passage matrix H from B to B. A, P and W are transformed

into HAH~*, HP and (H^YW, respectively, and denoted by A,P and W. Therefore, we
can suppose, without loss of generality that F A is in the form

F(X) = X + \P(\<W,X > -1\ + (<W,X > -1))
- (| < W,X > +1| -(<W9X> +1))

where A is in its Jordan form. Note that W is not necessarily equal to (1,0,0)T.

(83)

6.2 Step 2

In a second step, we shall prove that there exists a basis B' where A' is in its horizontal

companion form 23 :
/ 0 1 0 \

0 0 1 (84)

\ n r2 r3 /

and W is equal to (1,0,0)T. We have assumed above that A is in its Jordan form, there are
four possible cases :

(a)

(c)

I a 1 0 \

0 a 1

\ 0 0 a ]

I a 1 0

0 6 0

\ 0 0 c

(*)

(d)

/ a 0 0 \
0 b 1

\ 0 0 b j
I a 0 0 \

0 a —uj

\ 0 w a

where a,b and c are distinct and u> ^ 0. In each case, we shall make some assumptions

regarding the vector W. They correspond to the fact that, as stipulated in the introduction,

there is no plane or line parallel to the boundary plane which is invariant under the action

of the linear vector field f in the middle region. Let us now examine these four cases :

J

23One can easily verify that ri = pi, t2 = —P2 and rz = pz
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6.2.1 Case (a)

Assume that W = (w\,W2)Wz)T satisfies W\ ^ 0. W is tranformed by the matrix W\I into
W = (l,y,z)T which in turn is tranformed by the matrix :

/ 1 V z \
0 1 y

\o o i;

into W = (1,0,0)T. A is invariant under these transformations. Choosing

A is transformed into :

K =

/ 1 0 0 \

a 1 0

V a2 2a 1 /

/ 0
A1 = KAK-1 =

1 0

0 0 1

\ 3a -3a2 a3

and W is transformed into W = {K^fW = (1,0,0)T.

(85)

(86)

(87)

6.2.2 Case (b)

Assume that W = (wi,u>2> w3)T satisfies w\ ^ 0 and w2 ^ 0. W is tranformed by the matrix

/ tui 0 0 \

0 w2 0

\ 0 0 w3 J

into W = (1, l,z)T which in turn is tranformed by the matrix

into W = (1,0,0)T. A is invariant under these transformations. Choosing

K =
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A is transformed into

A' = KAK-1 =

/ 0 1 0

0 0 1

^ ab2 -(2a + b)b a + 26

and W is transformed into W = (K^fW = (1,0,0)T.

(91)

6.2.3 Case(c)

Assume that W = (w\,W2, w3)T satisfies w\ ^ 0, 102 7^ 0 and 103 ^ 0. W is tranformed by
the matrix

/ ti>i 0 0 \

0 w2 0

^0 0 w3 )
into W = (1,1,1)T. A is invariant under these transformations. Choosing

/ 1 0 1 \

a b c

\ a2 b2 c2 )
ff =

A is transformed into

A' = KAK-1 =

/ 0 1 0

0 0 1

\ a6c —(a6+6c + ca) a + 6+c

and W is transformed into W = (K~l)TW = (1,0,0)T.

(92)

(93)

(94)

6.2.4 Case(d)

Assume that W = (wi,W2-)w3)T satisfies wi ^ 0 and w\ + w\ ^ 0. W is tranformed by the
matrix

/ ti>i 0 0 \

0 W2 U>3

\ 0 —w3 w2 )

into W = (1,1,1)T. A is invariant under these transformations. Choosing
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A is transformed into

K =

/ 1 1 0 \

a a —to

\ a2 a2 + u2 -2w2 j

/ 0 1 0

0 0 1

V a + 2cr -(2aa + a2 + u2) a(a2 + u>2) /

and W is transformed into W = (K^fW = (1,0,0)T.

6.2.5 Conclusion

In each case, it exists a matrix K such that :

A' = KAK-1 =

A' = KAK-1 =

/ 0 1 0 \

0 0 1

V ~P3 ~P2 -Pi )

w =(K~1yw = (1,0,0)

(96)

(97)

(98)

(99)

6.3 Step 3

The vector field expressed in (70) is defined by A,W and P. We have proven that there
exists a basis B' defined by K from B where simultaneously A is in its companion form

(completely defined by pi,/>2 and pz ) and W = (1,0,0)T. The last unknown is

p' = Kp = (eue2,e3)T (100)

We are now going to prove that it is also uniquely defined by (p;q). Indeed, from (80), the
Jacobian matrix of the vector field in the outer regions is the matrix :

/ ej 1 0 \
B' = p'w'T + A' =

ei

e2 0 1

V e3 - P3 p'2 -Pi )

Its characteristic polynomial is :

P(\) = \XI-B\ = A3-A2(Pl + ei)
+A(ei/>i -p2 -e2)

+(e3 + P3 - P2&1 ~ Pie2) = 0
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but it is also, by definition of qi, 02 and 03,

P(A) = A3-giA2 + 92A-g3 (103)

This leads to the following set of equations

ei = 9i - Pi

e2 = tf2-P2-Piei (104)

, e3 = q3 - p3 + p2<7i + Pi92

that uniquely defines p . We have exhibited a function Fpq uniquely determined by p\, p2, P3,<7i, 92

and ^3 that is linearly conjugate to any element f of L with the same eigenvalue pattern.

7 Conclusion

In this paper, we have shown how rich the dynamics of a huge family of dynamical systems

C are, but also how all these dyanamics can be subsumed within that of a simple circuit

or of its associated dimensionless form driven by only five parameters. The fact that the

only nonlinearity in the system is three-region piecewise linear and therefore that in each of

the three regions the system is linear makes the study of the dynamics easier. With some

examples, it has been possible to give some intuitions about the evolution of the trajectory,

mainly in terms of eigen spaces and to introduce the notion of sensitive dependence to initial

conditions. The program available with this article constitutes a complement for the study

of attractors in a more lively way and allows a better understanding of the structure of an

attractors. This paper is aimed for the non-specialist. We tried to make full use of the

simplicity of the structure of the vector fields in C. However, the theory of chaotic dynamics

is much more complex than it appears in this paper. The simplicity of the elements of

C provides a vehicule for finding an answer to many questions still opened about chaos.

Reference [21] constitutes a good introduction to chaotics dynamics, [24] will provide the
necessary algorythms to study these systems. To close this paper we shall remember that the

elements of Chua's circuit family can be built with standard components, thereby providing

a useful real-time complement to their study.
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8 Appendix

8.1 Appendix A : derivation of Chua's canonical equations

In section 6, we proved that two vector fields with the same eigenvalue pattern (p;q) lead
to dynamical systems with the same behavior. We are now going to show that from (6) it

is possible to reach any eigenvalue pattern. In fact we shall see that a set of eigenvalues of

zero measure cannot be reached. It may happen that some attractors are not structurally

stable, but the only relevant properties for the elements of L are the ones preserved under

perturbation of the system. Subsequently, as it has already been explained, we consider that

if we cannot reach a certain set of eigenvalues, we change the parameters slightly to obtain

a topologically conjugate vector field whose eigenvalues can be reached.

In the region Do the state equation is :X = MqX
Where Mq is the constant matrix:

M0 = e

Its characteristic polynomial is

I -a 0 1 \

0 -a /3

V-7 -7 "7 /

| XI-Mo | = A3 + \26(a + a + 7)
+\92(cta + «7 + try+ £7 + 7)
+03(ac*7 + 7ae + p^a) = 0

Since \i\, p.2 and \l3 are the eigenvalues that we expect in Chua's canonical system, we

also have:

(A - \ix)(\ - fj,2)(\ - p3) = A3 - p! A2 + p2X - p3

Comparing 106 to 107, we obtain :

8(a + a + 7) = -pi
02(aa -f «7 + 07 + ^7 + 7) = p2

k 03a(c*7 + £7) + 7a) = -p3

Similarly, we would find in the region D±\:

' 0(& + a + 7) = -9i
B2(ab + 07 + 67+ £7 + 7) = q2

k 03(&(a7 + £7) + 7a) = -q3
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The two sets of equations (109) and (110) constitute a system of six nonlinear equations;
one can verify that in general it is impossible to find a solution with 6 = ±1.

Therefore, in the first step, we replace

theta by 6 on which we do not impose any condition. This leads us to a system £ which has

the eigenvalue pattern required.

In the second step, we divide f by | 6 |^ 0 and obtain a system £ of the form (6) which

is linearly conjugate to £ and therefore has the same behavior. Physically, the coefficient

6 represents a time rescaling. The dimensionless forms are governed by five parameters;

therefore, there cannot exist any bijection between this five parameter space and the 6

dimensional eigenvalue space. However, by allowing a time rescaling, it is possible to reduce
this six-dimensional space, except for a zero measure family, to a five dimensional space.

The zero measure set depends on the method we apply to do this "reduction". In any case,

we have to normalize the system by a coefficient which may be equal to zero or infinite. In

our example this normalization coefficient will be S.

Let us first solve, when possible, the following system of 6 nonlinear equations obtained

by subtracting (110) from (109) where the six unknowns are: a, 0,^,6, a and b :

S(a -b) = q1-p1
S(a+ a + 7) = -pi
S2(a - b)(ct + 7) = p2 - q2
S2(a(a + 7) + 7(0 + p) + 7) = p2
63(a - 6)7(0: + 0) = q3 - p3
S3(a'f(a + /?) + ^a8) = —p3

If px = qli from the first equation of (110), we have a = band from the third and the fifth
equations of (110), we have P2 = 92 and p3 = q3, respectively. This means that if p\ = q\,
the vector field is in fact linear, which cannot lead to any complex dynamics. From now on,

let us suppose that p\ ^ q\. The system (110) is equivalent to :

-p E2=3i = 6a (111)

-q Ei=3i = Sb (112)

%i -J>i)(<* + 7) -P2-(ti (113)
62(a(a+ <y) + j(a + l3) + i)=p2 (114)
(qi - Pi)Sj(a -\-/3) = q3-p3 (115)
63(a-y(a + /?) + 7a) = -p3 (116)

Substituting (114) and (116) into (115) , we obtain :

(110)

q\ —p\ qi— p\
(117)
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Substituting (116) into (117), we obtain :

Sa^^. +a(7£2) = -p3 (118)
qi-pi

If 7#2 given in (118) is different from zero, we can substitute its value into (47) in order
to obtain 6a

From (114), we obtain 6j as a function of £or given above in (120)

6<y = ?1^3l - 6a (120)
qi -pi

From (116) we can determine 60 as a function of £a and £7 as follows

Sfi = cqf~Pz . - <fo (121)

The last unknown 6 can be obtain from either (115) or (117). Having found the values of
a, 0,7,6, a and 6 we now have to normalize these values by \6\ when it exists and is different

from zero. To avoid any confusion, from now on in this paper, we shall denote by a, /?,7, e,a

and 6 the parameters of this new system. The parameters of Chua's canonical equations are

given in (17).

8.2 Appendix B : Presentation of the user-friendly program

The aim of this C-program available on PC is to simulate Chua's canonical equations and

to display the trajectory, the eigen spaces, the boundary planes, to rotate them, and to

provide the eigenvalues. In this appendix, we give a brief description of the main menu

presented at the top of the screen. To have access to any of the following features, click

on the corresponding rectangle with the mouse or press the first letter of the option on the

keyboard 24:
Parameters

Choose the values of a, 0,7, m0, mi and k. To set the value of a particular parameter,

choose the parameter option in the main menu and then select the parameter to be modified

by clicking on the appropriate menu button. When the parameter is chosen, a tick mark

appears in the box along side the name of the parameter. Enter the parameter value by typing

the desired number in the dialog box and pressing modify or by incrementing/decrementing

24except for Plot, type O
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the digits of the display by clicking on the arrow keys. Note that k can only take the value

1 and -1, by clicking on the button k one sets the opposite value.

The calculate button initiates the circuit equations from the chosen initial conditions

from the chosen initial condition.

continue uses the last point of the previous integration as the new initial condition and

continues to solve the equations.

Load

Instead of typing in a new set of parameters each time one runs the program, one may load
the values from an option file by choosing the load option from the main menu. Pressing

this button brings up the search path for a file. Complete the path name to the desired
subdirectory and press the return key. A scrolling window appears which displays the
content of a subdirectory. Use the arrow keys or scroll bar to move through the list of files;
select a file by highlighting it and pressing the Okay button. Press Cancel to return to the
main menu without menu without saving file.

Initial conditions

The window for choosing the initial conditions of the simulation is similar to that for
setting the parameters. Each state variable is initialized by clicking the appropriate state

button (x,y or z), and either incrementing/decrementing the current values by mean of the
up and down arrows, or typing the value in the dialog box and pressing modify. The default
values are : xo = yo = z<s = 0.1. Note that if one uses continue in the menu Parameters

to integrate the equations, he can press initial condition in the main menu and henceforth
obtain the coordinates of a current point on the trajectory (the initial condition of the next

iteration).
Algorithm
In our program, the user may choose to solve chua's canonical equations by means of the

forwards Euler, fourth order Runge-Kutta, or sixth order Adams-Bashforth algorythm. The

user specifies the value of the integration step. He also gives an upper bound on the relative

local truncation error |Tn|/|z(tn)|. The program puts out an alert if the current step size

causes the LTE estimate to exceed the bound.

plOt
Choose what you want to display on the screen : eigenplanes and eigenvector in the

middle region and in the outer regions , boundary planes, equilibrium points. When

the button is lighted, the corresponding element is displayed. The users can also choose the

speed option which displays the trajectory slowly so that he can have a better understanding

of the evolution of the trajectory. This is particularly interesting when the eigen elements
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are displayed. When the selections are done, press Okay and the graphic display appears.

If you click on the button of the mouse with the cursor inside the graphic screen, a

menu appears that allows one to rotate the attractor, either step by step (10 degrees) or
automatically by chosing the option auto. To exit the menu type cancel, reset sets back

the attractor in its initial position (before any rotation). For convinience, it is also possible

to rotate the attractor directly from the keyboard without even selecting the rotation menu

: Q and A rotate the attractor around the axis X in both directions, W and S around the

axis Y and E and D around the axis Z.

Save

The save option prompts the user for the names of files in which to save options and/or
data from a simulation. Data files include the parameters for the simulation as a header and

are written in ASCII format.

Quit
The quit button exits the program gracefully

8.3 Appendix C : formulas giving directly the value of a, /3,7, m0, mi

and 9 as a function of the parameters of other elements of C

In this appendix weprovideformulas that give directly the values of the parameters of Chua's
canonical equations as a function of those of the five systems presented in section 3 :

8.3.1 Chua's circuit

a = 0

0 = 1
7 = 1

a = rho

b = rh\

0 = sgn(a)

(122)

8.3.2 Chua's Torus circuit

The parameters of Chua's canonical circuit, after adding 0.01 to P2 and substracting 0.01 to

q2 are obtained by replacing P\,P2->P3->qi,q2 and q3 by :

25let us recall that the parameters of the original systems have a tilde
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pi =rho(a- 1)

P2M + O.OI

p3 = 0arho

qi = mi(a-l)

q2 = 0- 0.01

q3 = 0am1

(123)

8.3.3 Ogorzalek's ladder circuit

The parameters of Chua's canonical circuit, after adding 0.1 to jo2 and substracting 0.1 to
q2 are :

(—mo+24.5(mi—mp)2
" - (6+5(771!-mo))3
O —5(77X1—7710) (—7710+24.5(7711—7710)
P ~ (6+5(771!-7710)) (6+5(77ii-mo))3

(—7710+24.5(7711 —TTlp)2
7 — (6+5(7711-7710 ))3

_ _A A (-7710+24.5(7711 -TTlp)
~~ *'* (6+5(7711-7710 ))2

7 _ _C 1 (-7710+24.5(7711 -771Q)
0 ~ °'1 (6+5(7711-7»l0))2
9 = —sgn(—rho + 24.5(mi —m0))

7-\2

(124)

8.3.4 Brockett's system

The parameters of Chua's canonical circuit, after adding 0.1 to P2 and substracting 0.1 to
92 are

a- = (29-sfe)2
(30Jb-1.25)3

+
(29.5fe)2

(30Jk-1.25)3
8 = _3Qfe
P 30A:-1.25
T _ (29.5k)
1 (30fc-1.2(30fc-1.25)3
n = 27.075&

(30Jk-1.25)2
h — 30.975fe

(30Jb-1.25)2

9 = sgn(Z0k - 1.25)

8.3.5 Sparrow's system

After adding 0.1 to p2 and substracting 0.1 from q2 we obtain
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( (9.4+121.8(f+l))2)
" (45+42r)3
a _ 42(f+l) _ (9.4+121.8(f+l))2)
P 45+42f (45+42r)3

_ (9.4+121.8(f+l))2
7 (45+42r)3

_9 n9.4+121.8(f+l)
« — ^-» (45+42f)2
L _ _o i _ 9.4+121.8(f+l)
0— °"1 (45+42f)2
0 = s#n(45 + 42f)

(126)

8.4 Appendix D : eigenvalues, canonical parameters, circuit pa

rameters and Lyapunov dimension for the gallery of attrac

tors

In this last appendix we have gathered all the data relative to the gallery of attractors. For

each of them, in a first table we give the number of the figure where it is displayed, its lya

punov dimension, the eigenvalue pattern and the parameters of Chua's canonical equations,

and in a second table the value of Chua's canonical circuit.
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A gallery of attractors

Fig
Circuit parameters

c2 G Ga Gh L R

6 -0.6 0.01 -0.445 0.851 -1.10 -0.409

7 -0.632 -0.0033 -0.419 -0.839 -1.02 -.33

11 -1.35 0.0014 6.63 -0.310 0.251 0.226

19a -0.18 0 -0.510 0.353 -4.677 0.05097

19b -2,043 0 0.43 -0.8617 0.4495 0.03316

19c -4.40 0 0.497 -0.9944 0.5524 0.2873

19d -0.70 -0.0015 1.034 -0.515 -0.685 -0.285

19ef 0.6995 0 1.0297 -0.516 -0.6856 -0.2866

12 -0.491 -0.0579 -0.0410 0.128 1.016 0.1794

15 -0.0652 -0.004112 -1.372 0.9675 -15.38 1.074

16 -1.014 -0.79 0.7804 0.8123 0.01815 -0.01417

17 -0.958 -0.6631 0.6527 0.7214 -0.04015 0.02775

18 -1.0137 -0.6275 0.6189 0.6615 0.02604 -0.01612

20a 48.4 31.6 -2.68 -2.36 0.171 0.346

20b 99.6 -89.4 6.72 8.50 0.020 -0.113

20c 11183 -2565 30.73 33.93 0.00094 -0.02947

20d 170.0 -86.0 5.98 7.146 0.0234 -0.1376

20e 105.0 -70.3 5.17 6.47 0.0297 -0.15

20f -0.154 0.0285 -1.41 0.941 -5.82 -1.25

20g 2.4 -1.482 -0.2965 20.76 0.3410 0.06743

20h 2.4 -0.7371 10.319 -0.1474 1.3803 0.1356

20i 22.83 11.58 -2.363 -2.148 0.2135 0.3642

20j 22.83 11.58 -2.363 -2.148 0.2135 0.3643

20k -95.68 3.733 -2.0 -0.895 .4448 .5845

201 41.1 -18.5 2.36 1.93 .252 -0.381

20m 12.30 -15.64 -11.1 11.47 0.0389 -0.0473
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