
Faster Numerical Algorithms via Exception Handling

James W. Demmel �

Xiaoye Liy

February 8, 1993

(To appear at 11th IEEE Symposium on Computer Arithmetic)

Abstract

An attractive paradigm for building fast numerical algorithms is the following: (1) try a
fast but occasionally unstable algorithm, (2) test the accuracy of the computed answer, and
(3) recompute the answer slowly and accurately in the unlikely event it is necessary. This is
especially attractive on parallel machines where the fastest algorithms may be less stable than
the best serial algorithms. Since unstable algorithms can over
ow or cause other exceptions,
exception handling is needed to implement this paradigm safely. To implement it e�ciently,
exception handling cannot be too slow. We illustrate this paradigm with numerical linear
algebra algorithms from the LAPACK library.

1 Introduction

A widely accepted design paradigm for computer hardware is to execute the most common instruc-
tions as quickly as possible, and replace rarer instructions by sequences of more common ones. In
this paper we explore the use of this paradigm in the design of numerical algorithms. We exploit
the fact that there are numerical algorithms that run quickly and usually give the right answer
as well as other, slower, algorithms that are always right. By \right answer" we mean that the
algorithm is stable, or that it computes the exact answer for a problem that is a slight perturbation
of its input [9]; this is all we can reasonably ask of most algorithms. To take advantage of the faster
but occasionally unstable algorithms, we will use the following paradigm:

(1) Use the fast algorithm to compute an answer; this will usually be done stably.
(2) Quickly and reliably assess the accuracy of the computed answer.
(3) In the unlikely event the answer is not accurate enough, recompute it slowly but
accurately.

�Computer Science Division and Mathematics Department, University of California, Berkeley CA 94720. Email:
demmel@cs.berkeley.edu. The author was supported by NSF grant ASC-9005933, DARPA contract DAAL03-91-C-
0047 via a subcontract from the University of Tennessee (administered by ARO), and DARPA grant DM28E04120
via a subcontract from Argonne National Laboratory.

yComputer Science Division, University of California, Berkeley CA 94720. Email: xiaoye@cs.berkeley.edu. The
author was supported by the National Science Foundation under award number ASC-9005933, and by Subcontract
ORA4466.02 to the University of Tennessee (Defense Advanced Research Projects Administration contract number
DAAL03-91-C-0047).

1



The success of this approach depends on there being a large di�erence in speed between the fast
and slow algorithms, on being able to measure the accuracy of the answer quickly and reliably, and,
most important for us, on 
oating point exceptions not causing the unstable algorithm to abort
or run very slowly. This last requirement means the system must either continue past exceptions
and later permit the program to determine whether an exception occurred, or else support user-
level trap handling. In this paper we will assume the �rst response to exceptions is available; this
corresponds to the default behavior of IEEE standard 
oating point arithmetic [3, 4].

Our numerical methods will be drawn from the LAPACK library of numerical linear algebra
routines for high performance computers [2]. In particular, we will consider condition estimation
(error bounding) for linear systems as well as computing eigenvectors of general complex matrices.
What these algorithms have in common is the need to solve triangular systems of linear equations
which are possibly very ill-conditioned. Triangular system solving is one of the matrix operations
found in the Basic Linear Algebra Subroutines, or BLAS [6, 7, 14]. The BLAS, which include re-
lated operations like dot product, matrix-vector multiplication, and matrix-matrix multiplication,
occur frequently in scienti�c computing. This has led to their standardization and widespread
implementation. In particular, most high performance machines have highly optimized implemen-
tations of the BLAS, and a good way to write portable high performance code is to express one's
algorithm as a sequence of calls to the BLAS. This has been done systematically in LAPACK for
most of numerical linear algebra.

However, the linear systems arising in condition estimation and eigenvector computation are
often ill-conditioned, which means that over/under
ow is not completely unlikely. Since the �rst
distribution of LAPACK had to be portable to as many machines as possible, including those where
all exceptions are fatal, it could not take advantage of the speed of the optimized BLAS, instead
using tests and scalings in inner loops to avoid computations that might cause exceptions.

In this paper we present algorithms for condition estimation and eigenvector computation that
use the optimized BLAS, test 
ags to detect when exceptions occur, and recover when exceptions
occur. We report performance results on a \fast" DECstation 5000 and a \slow" DECstation 5000
(both have a MIPS R3000 chip as CPU [13]), a Sun 4/260 (which has a SPARC chip as CPU [12]),
a DEC Alpha [8] and a Cray-C90. The \slow" DEC 5000 correctly implements IEEE arithmetic,
but does arithmetic with NaNs about 80 times slower than normal arithmetic. The \fast" DEC
5000 implements IEEE arithmetic incorrectly, treating NaNs as in�nity symbols, but does so at the
same speed as normal arithmetic. Otherwise, the two DEC 5000 workstations are equally fast.1

The Cray does not have exception handling, but we can still compare speeds in the most common
case where no exceptions occur to see what speedup there could be if exception handling were
available.

We measure the speedup as the ratio of the time spent by the old LAPACK routine to the time
spent by our new routine. The speedups we obtained for condition estimation in the most common
case where no exceptions occur were as follows. The speedups ranged from 1.43 to 3.33 on either
DEC 5000, from 1.50 to 5.00 on the Sun, from 1.66 to 3.23 on the DEC Alpha, and from 2.55 to 4.21
on the Cray. Results were similar for computing eigenvectors. These are quite attractive speedups.
They would be even higher on a machine where the optimized BLAS had been parallelized but the
slower scaling code had not.

1Normally a buggy workstation would be annoying, but in this case it permitted us to run experiments where only
the speed of exception handling varied.

2



Exception raised Default value Condition

over
ow �1 e > emax

under
ow 0;�2emin or denormals e < emin

division by zero �1 x=0, with �nite x 6= 0
invalid NaN 1+ (�1), 0�1,

0=0,1=1, etc.
Inexact round(x) true result not representable

Table 1: The IEEE standard exceptions and the default values

In the rare case when exceptions did occur, the speed depended very strongly on whether
the exception occurred early or late during the triangular solve, and on the speed of subsequent
arithmetic with NaN (Not-a-Number) arguments. On some examples the speedup was as high as
5.41 on the fast DEC 5000, but up to 13 times slower on the slow DEC 5000.

The rest of this paper is organized as follows. Section 2 describes our model of exception
handling in more detail. Section 3 describes the algorithms for solving triangular systems both
with and without exception handling. Section 4 describes the condition estimation algorithms
both with and without exception handling, and gives timing results. Section 5 does the same for
eigenvector computations. Section 6 draws lessons about the value of fast exception handling and
fast arithmetic with NaNs and in�nity symbols.

2 Exception Handling

In this section we review how IEEE standard arithmetic handles exceptions, discuss how the relative
speeds of its exception handling mechanisms a�ect algorithm design, and state the assumptions we
have made about these speeds in this paper. We also brie
y describe our exception handling
interface on the DECstation 5000.

The IEEE standard classi�es exceptions into �ve categories: over
ow, under
ow, division by

zero, invalid operation, and inexact. Associated with each exception is both a status 
ag and a trap.
Any of the �ve exceptions will be signaled when detected. The signal entails setting a status 
ag,
taking a trap, or possibly doing both. All the 
ags are sticky, and can be tested, saved, restored,
or altered explicitly by software. By \sticky" we mean that, once raised, they remain set until
explicitly cleared. A trap should come under user control in the sense that the user should be able
to specify a handler for it, although this capability is seldom implemented on current systems. The
default response to these exceptions is to proceed without a trap and deliver to the destination an
appropriate default value. The standard provides a clearly-de�ned default result for each possible
exception. The default values and the conditions under which they are produced are summarized
in Table 1.

According to the standard, the traps and sticky 
ags provide two di�erent exception handling
mechanisms. Their utility depends on how quickly and 
exibly they permit exceptions to be
handled. Since modern machines are heavily pipelined, it is typically very expensive or impossible
to precisely interrupt an exceptional operation, branch to execute some other code, and later
resume computation. Even without pipelining, operating system overhead may make trap handling

3



V Z O U I

V Z O U I

V Z O U I
Sticky
Bits

23456

7891011

1213141516

Bit #

Bit #

Bit #

Nonsticky
Exception

Bits

TrapEnable
Bits

U
O

Inexact
Underflow
Overflow
Division by zero
Invalid

Z

 

I

V

Figure 1: MIPS Control/Status Register Exception/Sticky/TrapEnable Bits.

very expensive. Even though no branching is strictly needed, merely testing sticky 
ags may be
somewhat expensive, since pipelining may require a synchronization event in order to update them.
Thus it appears fastest to use sticky 
ags instead of traps, and to test sticky 
ags as seldom as
possible. On the other hand, infrequent testing of the sticky 
ags means possibly long stretches
of arithmetic with �1 or NaN as arguments. If default IEEE arithmetic with them is too slow
compared to arithmetic with normalized 
oating point numbers, then it is clearly inadvisable to
wait too long between tests of the sticky 
ags to decide whether alternate computations should be
performed. In summary, the fastest algorithm depends on the relative speeds of

conventional, unexceptional 
oating point arithmetic,
arithmetic with NaNs and �1 as arguments,
testing sticky 
ags, and
trap handling.

In the extreme case, where everything except conventional, unexceptional 
oating point arith-
metic is terribly slow, we are forced to test and scale to avoid all exceptions. This is the unfortunate
situation we were in before the introduction of exception handling, and it would be an unpleasant
irony if exception handling were rendered unattractive by too slow an implementation. In this pa-
per, we will design our algorithms assuming that user-de�ned trap handlers are not available, that
testing sticky 
ags is expensive enough that it should be done infrequently, and that arithmetic
with NaN and �1 is reasonably fast. Our codes will in fact supply a way to measure the bene�t
one gets by making NaN and 1 arithmetic fast.

Our interface to the sticky 
ags is via subroutine calls, without special compiler support. We
illustrate these interfaces brie
y for one of our test machines, the DECstation 5000 with the MIPS
R3000 chip as CPU. On the DECstation 5000, the R3010 Floating-Point Accelerator (FPA) operates
as a coprocessor for the R3000 Processor chip, and extends the R3000's instruction set to perform

oating point arithmetic operations. The FPA contains a 32-bit Control/Status register, FCR31,
that is designed for exception handling and can be read/written by instructions running in User
Mode. The bit pattern of FCR31 is depicted in Figure 1. The Nonsticky Exception bits are
appropriately set or cleared after every 
oating point operation. The TrapEnable bits are used to
enable a user level trap when an exception occurs. The Sticky bits hold the accrued exception bits
required by the IEEE standard for trap disabled operation. Unlike the nonsticky exception bits,

4



the sticky bits are never cleared as a side-e�ect of any 
oating point operation; they can be cleared
only by writing a new value into the Control/Status register. The nonsticky exception bits might
be used in other applications requiring �ner grained exception handling, such as parallel pre�x [5].

In the algorithms developed in this paper for condition estimation and eigenvector computation,
we need only manipulate the trap enable bits (set them to zero to disable software traps) and the
sticky bits. Procedure exceptionreset() clears the sticky 
ags associated with over
ow, division
by zero and invalid operations, and suppresses the exceptions accordingly. Function except()
returns true if any or all of the over
ow, division by zero and invalid sticky 
ags are raised.

3 Triangular System Solving

We discuss two algorithms for solving triangular systems of equations. The �rst one is the simpler
and faster of the two, and disregards the possibility of over/under
ow. The second scales carefully
to avoid over/under
ow, and is the one currently used in LAPACK for condition estimation and
eigenvector computation [1].

We will solve Lx = b, where L is a lower triangular n-by-n matrix. We use the notation
L(i : j; k : l) to indicate the submatrix of L lying in rows i through j and columns k through l of
L. Similarly, L(i; k : l) is the same as L(i : i; k : l). The following algorithm accesses L by columns.

Algorithm 1: Solve a lower triangular system Lx = b.

x(1 : n) = b(1 : n)
for i = 1 to n

x(i) = x(i)=L(i; i)
x(i+ 1 : n) = x(i+ 1 : n)� x(i) � L(i+ 1 : n; i)

endfor

This is such a common operation that it has been standardized as subroutine STRSV, one of
the BLAS, along with many other common linear algebra operations like matrix multiplication
[6, 7, 14]. The purpose of this standardization has been to encourage machine manufacturers to
provide highly optimized versions of these BLAS for their architectures, so that programmers can
use them portably. Indeed, one goal of the LAPACK project was to exploit the optimized BLAS
by reformulating linear algebra operations, like Gaussian elimination, as a sequence of calls to the
BLAS. This leads to signi�cant speedups on many highly pipelined and parallel machines [2]. It is
clearly in our interest to use the BLAS whenever possible.

Algorithm 1 can easily over
ow even when the matrix L is well-scaled, i.e. all rows and columns
are of equal and moderate length. For example,

x = L�1b =

2
66666664

1 0 0 0 0 0
�1 c 0 0 0 0
0 �1 c 0 0 0
0 0 �1 c 0 0
0 0 0 �1 c 0
0 0 0 0 �1 1

3
77777775

�1

�

2
66666664

1
0
0
0
0
0

3
77777775
=

2
66666664

1
c�1

c�2

c�3

c�4

c�4

3
77777775
;

5



where c = 10�10, over
ows in IEEE single precision, even though each row and column of L has
largest entry 1 in magnitude, and no terribly small entries. Similarly, let Ln(c) be the analogous
n-by-n matrix with 0 < c < 1 in the second through n � 1-st elements along the main diagonal.
This means that (Ln(c))

�1[1; 0; :::; 0]T = [1; c�1; c�2; :::; c2�n; c2�n]T .
The second algorithm scales carefully to avoid over
ow in Algorithm 1. The algorithm works

by choosing a scale factor 0 � s � 1 and solving Lx = sb instead of Lx = b. A value s < 1 is
chosen whenever the solution x would over
ow. In case x would over
ow even if s were the smallest
positive 
oating point number, s is set to zero (for example, consider L27(10�4) with IEEE single
precision in the above example). If some L(i; i) = 0 exactly, so that L is singular, the algorithm
will set s = 0 and compute a nonzero vector x satisfying Lx = 0 instead.

Here is a brief outline of the scaling algorithm; see [1] for details. Coarse bounds on the
solution size are computed as follows. The algorithm begins by computing cj =

Pn
i=j+1 jLij j,

G0 = 1=maxi jbij, a lower bound Gi on the values of x�1i+1 through x�1n after step i of Algorithm 1:

Gi = G0

iY
j=1

jLjj j
jLjj j+ cj

;

and �nally a lower bound g on the reciprocal of the largest intermediate or �nal values computed
anywhere in Algorithm 1:

g = min
1�i�n

(G0; Gi�1 �min(1; jL(i; i)j)) :

Lower bounds on x�1j are computed instead of upper bounds on xj to avoid the possibility of
over
ow in the upper bounds.

Let UN = 1=OV be smallest 
oating point number that can safely be inverted. If g � UN, this
means the solution can be computed without danger of over
ow, so we can simply call the BLAS.
Otherwise, the algorithm makes a complicated series of tests and scalings as in Algorithm 2.

Now we compare the costs of Algorithms 1 and 2. Algorithm 1 costs about n2 
ops (
oating
point operations), half additions and half multiplies. There are also n divisions which are insignif-
icant for large n. In the �rst step of Algorithm 2, computing the ci costs n

2=2 + O(n) 
ops, half
as much as Algorithm 1. In some of our applications, we expect to solve several systems with the
same coe�cient matrix, and so can reuse the ci; this amortizes the cost over several calls. In the
best case, when g � UN, we then simply call STRSV. This makes the overall operation count about
1:5n2 (or n2 if we amortize). In the worst (and very rare) case, the inner loop of Algorithm 2 will
scale at each step, increasing the operation count by about n2 again, for a total of 2:5n2 (or 2n2

if we amortize). Updating xmax costs another n2=2 data accesses and comparisons, which may or
may not be cheaper than the same number of 
oating point operations.

More important than these operation counts is that Algorithm 2 has many data dependent
branches, which makes it harder to optimize on pipelined or parallel architectures than the much
simpler Algorithm 1. This will be born out by the results in later sections.

Algorithm 2 is available as LAPACK subroutine SLATRS. This code handles upper and lower tri-
angular matrices, permits solving with the input matrix or its transpose, and handles either general
or unit triangular matrices. It is 300 lines long excluding comments. The Fortran implementation
of the BLAS routine STRSV, which handles the same input options, is 159 lines long, excluding
comments. For more details on SLATRS, see [1].

6



Algorithm 2: Solve a lower triangular system Lx = sb with scale factor 0 � s � 1.

Compute g and c1; :::; cn�1 as described above
if (g � UN) then

call the BLAS routine STRSV
else

s = 1
x(1 : n) = b(1 : n)
xmax = max1�i�n jx(i)j
for i = 1 to n

if (UN � jL(i; i)j< 1 and jx(i)j > jL(i; i)j �OV) then
scale = 1=jx(i)j
s = s � scale; x(1 : n) = x(1 : n) � scale; xmax = xmax � scale

else if (0 < jL(i; i)j< UN and jx(i)j > jL(i; i)j �OV) then
scale = ((jL(i; i)j �OV)=jx(i)j)=max(1; ci)
s = s � scale; x(1 : n) = x(1 : n) � scale; xmax = xmax � scale

else if (L(i; i) = 0) then ... compute a null vector x: Lx = 0
s = 0
x(1 : n) = 0; x(i) = 1; xmax = 0

end if
x(i) = x(i)=L(i; i)
if (jx(i)j> 1 and c(i) > (OV� xmax)=jx(i)j) then

scale = 1=(2 � jx(i)j)
s = s � scale; x(1 : n) = x(1 : n) � scale

else if (jx(i)j � 1 and jx(i)j � c(i) > (OV� xmax)) then
scale = 1=2
s = s � scale; x(1 : n) = x(1 : n) � scale

endif
x(i+ 1 : n) = x(i+ 1 : n)� x(i) � L(i+ 1 : n; i)
xmax = maxi<j�n jx(j)j

endfor
endif

4 Condition Estimation

In this section we discuss how IEEE exception handling can be used to design a faster condition
estimation algorithm. We compare �rst theoretically and then in practice the old algorithm used
in LAPACK with our new algorithm.

4.1 Algorithms

When solving the n-by-n linear system Ax = b, we wish to compute a bound on the error xcomputed�
xtrue. We will measure the error using either the one-norm jjxjj1 =

Pn
i=1 jxij, or the in�nity norm

7



jjxjj1 = maxijxij. Then the usual error bound [9] is

jjxcomputed � xtruejj1 � k1(A) � p(n) � � � � � jjxtruejj1 (1)

where p(n) is a slowly growing function of n (usually about n), � is the machine precision, k1(A)
is the condition number of A, and � is the pivot growth factor. The condition number is de�ned
as k1(A) = jjAjj1 � jjA�1jj1, where jjBjj1 � max1�j�n

Pn
i=1 jbijj. Since computing A�1 costs more

than solving Ax = b, we prefer to estimate jjA�1jj1 inexpensively from A's LU factorization; this is
called condition estimation. Since jjAjj1 is easy to compute, we focus on estimating jjA�1jj1. The
pivot growth may be de�ned as jjU jj1

jjAjj1 (other de�nitions are possible). This is close to unity except
for pathological cases.

In the LAPACK library [2], a set of routines have been developed to estimate the reciprocal of
the condition number k1(A). We estimate the reciprocal of k1(A), which we call RCOND, to avoid
over
ow in k1(A). The inputs to these routines include the factors L and U from the factorization
A = LU and kAk1. Higham's modi�cation [11] of Hager's method [10] is used to estimate jjA�1jj1.
The algorithm is derived from a convex optimization approach, and is based on the observation
that the maximal value of the function f(x) = jjBxjj1=jjxjj1 equals jjBjj1 and is attained at one of
the vectors ej , for j = 1; � � � ; n, where ej is the jth column of the n-by-n identity matrix.

Algorithm 3 [10]: This algorithm computes a lower bound 
 for jjA�1jj1.

Choose x with jjxjj1 = 1 (e.g., x := (1;1;���;1)T
n

)
Repeat

solve Ay = x (by solving Lw = x and Uy = w using Algorithm 2)
form � := sign(y)
solve ATz = � (by solving UTw = � and LT z = w using Algorithm 2)
if jjzjj1 � zTx then


 := jjyjj1
quit

else x := ej , for that j where jzj j = jjzjj1

The algorithm involves repeatedly solving upper or lower triangular systems until a certain
stopping criterion is met. Due to the possibilities of over
ow, division by zero, and invalid exceptions
caused by the ill-conditioning or bad scaling of the linear systems, the LAPACK routine SGECON

uses Algorithm 2 instead of Algorithm 1 to solve triangular systems like Lw = x, as discussed in
Section 3.

Our goal is to avoid the slower Algorithm 2 by using exception handling to deal with these
ill-conditioned or badly scaled matrices. Our algorithm only calls the BLAS routine STRSV, and
has the property that over
ow occurs only if the matrix is extremely ill-conditioned. In this case,
which we detect using the sticky exception 
ags, we can immediately terminate with a well-deserved
estimate RCOND=0. The algorithm is as follows. Comments indicate the guaranteed lower bound
on k1(A) if an exception leads to early termination.

8



Algorithm 4: This algorithm estimates the reciprocal of k1(A) = jjAjj1jjA�1jj1.
Let � = jjAjj1
RCOND is the estimated reciprocal of condition number k1(A)
Call exceptionreset()

Choose x with jjxjj1 = 1 (e.g., x := (1;1;���;1)T
n

)
Repeat

solve Lw = x by calling STRSV

if (except()) then RCOND := 0; quit /* k1(A) � OV=� */
if (� > 1) then go to (1)
else w := w � �

solve Uy = w by calling STRSV

if (except()) then RCOND := 0; quit /* k1(A) � OV */
else go to (3)

(1): if (jjwjj1 � OV=�) then go to (2)
else w := w � �

solve Uy = w by calling STRSV

if (except()) then RCOND := 0; quit /* k1(A) � OV */
else go to (3)

(2): solve Uy = w by calling STRSV

if (except()) then RCOND := 0; quit /* k1(A) � OV */
else y := y � �

if (except()) then RCOND := 0; quit /* k1(A) � OV */
(3): form � := sign(y)

y := y � �
solve UTw = y by calling STRSV

if (except()) then RCOND := 0; quit /* k1(A) � OV=n */
else solve LTz = w by calling STRSV

if (except()) then RCOND := 0; quit /* k1(A) � OV */
if jjzjj1 � zTx then

RCOND := 1=jjyjj1
quit

else x := ej , where jzj j = jjzjj1

The behavior of Algorithm 4 is described by the following:
Lemma 1. If Algorithm 4 stops early because of an exception, then the \true rounded" reciprocal

of the condition number satis�es RCOND � max(n; �)=OV, where � = jjU jj1
jjAjj1 is the pivot growth

factor.

Proof: In the algorithm there are seven places where exceptions may occur. We will analyze them
one by one. Note that in the algorithm the vector x is chosen such that jjxjj1 = 1.

1. An exception occurs when computing L�1x.

9



Since A = LU , L�1 = UA�1, this implies

OV � jjL�1xjj1 � jjU jj1jjA�1jj1jjxjj1 = jjU jj1
jjAjj1 jjAjj1jjA

�1jj1 = � � k1(A) :

Therefore, k1(A) � OV=�, i.e., RCOND � �=OV.

2. An exception occurs when computing U�1�L�1x with � � 1.
Then

OV � jjU�1�L�1xjj1 � jjA�1jj1�jjxjj1 = k1(A) ;

so k1(A) � OV, i.e., RCOND � 1=OV.

3. An exception occurs when computing U�1�L�1x with � > 1 and jjL�1xjj1 < OV
�

.
Then

OV � jjU�1�L�1xjj1 � jjA�1jj1�jjxjj1 = k1(A) ;

so k1(A) � OV, i.e., RCOND � 1=OV.

4. An exception occurs when computing U�1L�1x with � > 1.
Then OV � jjU�1L�1xjj1 � jjA�1jj1 < k1(A), so RCOND � 1=OV.

5. An exception occurs when computing �U�1L�1x with � > 1.
Then OV � jj�U�1L�1xjj1 � k1(A), so RCOND � 1=OV.

6. An exception occurs when computing U�T�x.
Since AT = UTLT , U�T = LTA�T , so

OV � jjU�T�xjj1 � jjLT jj1jjA�T jj1�jjxjj1 = jjLT jj1k1(A) � n � k1(A) :

Therefore, k1(A) � OV=n, i.e., RCOND � n=OV.

7. An exception occurs when computing L�TU�T�x.
Then OV � jjL�TU�T�xjj1 � k1(A), so RCOND � 1=OV.

Combining the above seven cases, we have shown that RCOND � max(n; �)=OV when an
exception occurs.

In practice, any RCOND < � signals a system so ill-conditioned as to make the error bound
in (1) as large as the solution itself or larger; this means the computed solution has no digits
guaranteed correct. Since max(n; �)=OV� � unless either n or � is enormous (both of which also
mean the error bound in (1) is enormous), there is no loss of information in stopping early with
RCOND = 0.

Algorithm 4 and Lemma 1 are applicable to any linear systems for which we do partial or
complete pivoting during Gaussian elimination, for example, LAPACK routines SGECON, SGBCON
and STRCON (see Section 4.2 for the descriptions of these routines), and their complex counterparts.

For symmetric positive de�nite matrices, where no pivoting is necessary, the algorithm (e.g.,
SPOCON) and its analysis are given in Algorithm 5 and Lemma 2, respectively. We write the Cholesky
factorization A = LLT or A = UTU .

10



Algorithm 5: This algorithm estimates the reciprocal of jjAjj1jjA�1jj1, where A is
symmetric positive de�nite.

Let � = jjAjj1
RCOND is the estimated reciprocal of condition number k1(A)
Call exceptionreset()

Choose x with jjxjj1 = 1 (e.g., x :=
(1;1;���;1)T

n
)

Repeat
solve Lw = x � � by calling STRSV

if (except()) then RCOND := 0; quit /* k1(A) �
p
OV */

else solve LT y = w by calling STRSV

if (except()) then RCOND := 0; quit /* k1(A) � OV */
if jjzjj1 � zTx then

RCOND := 1=jjyjj1
quit

else x := ej , where jzj j = jjzjj1

Lemma 2. If Algorithm 5 stops early because of an exception, then the \true rounded" reciprocal

of the condition number satis�es RCOND � 1=
p
OV.

Proof: In the algorithm there are two places where exceptions may occur. We will analyze the
two cases as follows. We need to use the fact that jjAjj = jjLjj2. Note that x is chosen such that
jjxjj1 = 1.

1. An exception occurs when computing L�1�x.
Since A = LLT , L�1 = LTA�1, this implies

OV � jjL�1�xjj1 � jjL�1jj1�jjxjj1 � jjLT jj � jjA�1jj� =
p
� � k1(A) :

Therefore, k1(A) � OVp� � pOV (since � � OV), i.e., RCOND � 1=
p
OV.

2. An exception occurs when computing L�TL�1�x.
It is clear that k1(A) � OV, and hence RCOND � 1=OV.

Combining the above two cases, we show that RCOND � 1=
p
OV.

In practice, RCOND � 1=
p
OVmerely indicates that the condition number is enormous, beyond

1=�. There is no loss of information in stopping early with RCOND = 0.

4.2 Numerical Results

To compare the e�ciencies of Algorithms 3 and 4, we rewrote several condition estimation routines
in LAPACK using Algorithm 4, including SGECON for general dense matrices, SPOCON for dense
symmetric positive de�nite matrices, SGBCON for general band matrices, and STRCON for triangular
matrices, all in IEEE single precision. To compare the speed and the robustness of algorithms
3 and 4, we generated various input matrices yielding unexceptional executions with or without

11



Machine Matrix size n 100 200 300 400 500

DEC 5000 SGBCON 1.57 1.46 1.55 1.56 1.67
SGECON 2.00 1.52 1.46 1.44 1.43
SPOCON 2.83 1.92 1.71 1.55 1.52
STRCON 3.33 1.78 1.60 1.54 1.52

Sun 4/260 SGBCON 2.00 2.20 2.11 2.77 2.71
SGECON 3.02 2.14 1.88 1.63 1.62
SPOCON 5.00 2.56 2.27 2.22 2.17
STRCON 1.50 2.00 2.30 2.17 2.18

DEC Alpha SGBCON 2.67 2.63 2.78 2.89 3.23
SGECON 2.66 2.01 1.85 1.78 1.66
SPOCON 2.25 2.46 2.52 2.42 2.35
STRCON 3.00 2.33 2.28 2.18 2.07

CRAY-C90 SGECON 4.21 3.48 3.05 2.76 2.55

Table 2: Speedups on DEC 5000/Sun 4-260/DEC Alpha/CRAY-C90. No exceptions nor scaling
occur.

invocation of the scalings inside Algorithm 2, as well as exceptional executions. The unexceptional
inputs tell us the speedup in the most common case, and on machines like the CRAY measure the
performance lost for lack of any exception handling.

First, we ran Algorithms 3 and 4 on a suite of well-conditioned random matrices where no
exceptions occur, and no scaling is necessary in the triangular solve Algorithm 2. This is by far the
most common case in practice. The experiments were carried out on a DECstation 5000, a SUN
4/260, a DEC Alpha, and a single processor CRAY-C90. The performance results are presented in
Table 2. The numbers in the table are the ratios of the time spent by the old LAPACK routines
using Algorithm 3 to the time spent by the new routines using Algorithm 4. These ratios measure
the speedups attained via exception handling. The estimated condition numbers output by the two
algorithms are always the same.

Second, we compared Algorithms 3 and 4 on several intentionally ill-scaled linear systems for
which some of the scalings inside Algorithm 2 have to be invoked, but whose condition numbers
are still �nite. For SGECON alone with matrices of sizes 100 to 500, we obtained speedups from 1.62
to 3.33 on the DECstation 5000, and from 1.89 to 2.67 on the DEC Alpha.

Third, to study the behavior and performance of the two algorithms when exceptions do oc-
cur, we generated a suite of ill-conditioned matrices that cause all possible exceptional paths in
Algorithm 4 to be executed. Both Algorithms 3 and 4 consistently deliver zero as the reciprocal
condition number. For Algorithm 4, inside the triangular solve, the computation involves such
numbers as NaN and �1. Indeed, after an over
ow produces �1, the most common situation
is to subtract two in�nities shortly thereafter, resulting in a NaN which then propagates through
all succeeding operations. In other words, if there is one exceptional operation, the most common
situation is to have a long succession of operations with NaNs. We compared the performance of
the \fast" and \slow" DECstation 5000 on a set of such problems, of dimension n = 500. Recall
that the fast DECstation does NaN arithmetic (incorrectly) at the same speed as with conventional

12



arguments, whereas the slow DECstation computes correctly but 80 times slower. The following
table gives the speeds for both DECstations:

Example 1 Example 2 Example 3

\fast" DEC 5000 speedup 2.15 2.32 2.00
\slow" DEC 5000 slowdown 11.67 13.49 9.00

In other words, the slow DEC 5000 goes 18 to 30 times slower than the fast DEC 5000.
On some examples, where only in�nities but no NaNs occurred, the speedups ranged from 3.5

to 6 on both machines.

5 Eigenvector Computation

We now consider another opportunity to exploit IEEE exception handling. The problem is to
compute eigenvectors of general complex matrices.

Let A be an n-by-n complex matrix. If non-zero vectors v and u, and a scalar � satisfy Av = �v
and u�A = �u� (� denotes conjugate transpose), then � is called an eigenvalue, and v and u� are
called the right and left eigenvectors associated with the eigenvalue �, respectively. In LAPACK,
the task of computing eigenvalues and the associated eigenvectors is performed in the following
stages (as in the routine CGEEV):

1. A is reduced to upper Hessenberg form H , which is zero below the �rst subdiagonal. The
reduction can be written H = Q�AQ with Q unitary [9].

2. H is reduced to Schur form T . The reduction can be written T = S�HS, where T is an upper
triangular matrix and S is unitary [9]. The eigenvalues are on the diagonal of T .

3. CTREVC computes the eigenvectors of T . Let V be the matrix whose columns are the right
eigenvectors of T . Then S � V are the right eigenvectors of H , and Q � S � V are the right
eigenvectors of A. Similarly, we can compute the left eigenvectors of A from those of T .

Let us �rst examine the important stage of calculating the eigenvectors of an upper triangular
matrix T . The eigenvalues of T are t11; t22; : : : ; tnn. To �nd a right eigenvector v associated with the
eigenvalue tii, we need to solve the homogeneous equation (T � tiiI)v = 0, which can be partitioned
into the block form 2

64
T11 � tiiI T12 T13

0 0 T23
0 0 T33 � tiiI

3
75 �
2
64
v1
v2
v3

3
75 = 0 (2)

By backward substitution, we have v3 = 0, v2 = 1 and v1 satisfying the equation

(T11� tiiI)v1 = �T12 (3)

Therefore, the problem is reduced to solving an upper triangular system (3) of dimension (i� 1)-
by-(i � 1). To �nd all the n eigenvectors we need to solve triangular system (3) for i = 2; : : : ; n.
Since any scalar multiple of v is also an eigenvector of T , we always expect to obtain an answer
by scaling the solution vector no matter how ill-conditioned or badly scaled the triangular system
(3) is. For this purpose, CTREVC calls the triangular solve routine CLATRS instead of calling the

13



triangular solver CTRSV in the BLAS. CLATRS is a complex counterpart of SLATRS as discussed in
Section 3, using Algorithm 2. In most common cases, however, the scaling unnecessarily introduces
overhead. We reimplemented the part of CTREVC containing the triangular solve. When solving
each equation (3), we �rst call CTRSV and test the exception 
ags. If exceptions occur, then we go
back to call CLATRS.

To study the e�ciency of the modi�ed CTREVC, we ran the old code and our new one on random
upper triangular matrices of various sizes. We observed the speedups of from 1.49 to 1.65 on the
DECstation 5000, and from 1.38 to 1.46 on the Sun 4/260. In the case of over
ow, each triangular
solve is invoked twice, �rst using CTRSV yet throwing away the solutions, and second using CLATRS.
Since CTRSV is about twice as fast as CLATRS (see Section 3), the performance loss is no more than
50% when a (rare) exception occurs.

To see how the performance attained from CTREVC alone e�ects the performance of the whole
process of computing eigenvectors of general complex matrices, we timed CTREVC in the context
of CGEEV. It turns out that CTREVC amounts to about 20% of the total execution time of CGEEV.
Therefore, we expect that the speed of the whole process can be increased by about 8%.

6 Lessons for System Architects

The most important lesson is that well-designed exception handling permits the most common cases,
where no exceptions occur, to be implemented much more quickly. This alone makes exception
handling worth implementing well.

A trickier question is how fast exception handling must be implemented. There are three speeds
at issue: the speed of NaN and in�nity arithmetic, the speed of testing sticky 
ags, and the speed
of trap handling. In principle, there is no reason NaN and in�nity arithmetic should not be as fast
as conventional arithmetic. The examples in section 4.2 showed that a slowdown in NaN arithmetic
by a factor of 80 from conventional arithmetic slows down condition estimation by a factor of 18
to 30.

Since exceptions are reasonably rare, these slowdowns generally a�ect only the worst case be-
havior of the algorithm. Depending on the application, this may or may not be important. If
the worst case is important, it is important that system designers provide some method of fast
exception handling, either NaN and in�nity arithmetic, testing the sticky 
ags, or trap handling.
Making all three very slow will force users to code to avoid all exceptions in the �rst place, the
original unpleasant situation exception handling was designed to avoid.

Our �nal comment concerns the tradeo� between the speed of NaN and in�nity arithmetic and
the granularity of testing for exceptions. Our current approach uses a very large granularity, since
we test for exceptions only after a complete call to STRSV. For this approach to be fast, NaN and
in�nity arithmetic must be fast. On the other hand, a very small grained approach would test for
exceptions inside the inner loop, and so avoid doing useless NaN and in�nity arithmetic. However,
such frequent testing is clearly too expensive. A comprise would be to test for exceptions after
one or several complete iterations of the inner loop in STRSV. This would require re-implementing
STRSV. This medium grained approach is less sensitive to the speed of NaN and in�nity arithmetic.
The e�ect of granularity on performance is worth exploration in the future.

The software described in this report is available from the authors.

14



7 Acknowledgements

The authors wish to thank W. Kahan for his detailed criticism and comments.

References

[1] E. Anderson. Robust triangular solves for use in condition estimation. Computer Science Dept.
Technical Report CS-91-142, University of Tennessee, Knoxville, 1991. (LAPACK Working
Note #36).

[2] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Ham-
marling, A. McKenney, S. Ostrouchov, and D. Sorensen. LAPACK Users' Guide, Release 1.0.
SIAM, Philadelphia, 1992. 235 pages.

[3] ANSI/IEEE, New York. IEEE Standard for Binary Floating Point Arithmetic, Std 754-1985
edition, 1985.

[4] ANSI/IEEE, New York. IEEE Standard for Radix Independent Floating Point Arithmetic, Std
854-1987 edition, 1987.

[5] J. Demmel. Speci�cations for robust parallel pre�x operations. Technical report, Thinking
Machines Corp., 1992.

[6] J. Dongarra, J. Du Croz, I. Du�, and S. Hammarling. A set of Level 3 Basic Linear Algebra
Subprograms. ACM Trans. Math. Soft., 16(1):1{17, March 1990.

[7] J. Dongarra, J. Du Croz, S. Hammarling, and Richard J. Hanson. An extended set of fortran
basic linear algebra subroutines. ACM Trans. Math. Soft., 14(1):1{17, March 1988.

[8] Richard L. Sites (editor). Alpha Architecture Reference Manual. Digital Press, 1992.

[9] G. Golub and C. Van Loan. Matrix Computations. Johns Hopkins University Press, Baltimore,
MD, 2nd edition, 1989.

[10] W. W. Hager. Condition estimators. SIAM J. Sci. Stat. Comput., 5:311{316, 1984.

[11] N. J. Higham. Algorithm 674: FORTRAN codes for estimating the one-norm of a real or
complex matrix, with applications to condition estimation. ACM Trans. Math. Soft., 14:381{
396, 1988.

[12] SPARC International Inc. The SPARC Architecture Manual: Version 8. Prentice Hall, Engle-
wood Cli�s, New Jersey 07632, 1992.

[13] Gerry Kane. MIPS Risc Architecture. Prentice Hall, Englewood Cli�s, NJ 07632, 1989.

[14] C. Lawson, R. Hanson, D. Kincaid, and F. Krogh. Basic Linear Algebra Subprograms for
Fortran usage. ACM Trans. Math. Soft., 5:308{323, 1979.

15


