Performance Evaluation for Computer
Image Synthesis Systems

Ricki Blau

Report No. UCB/CSD 93/736

March 1993

Computer Science Division (EECS)
University of California
Berkeley, California 94720

Performance Evaluation for Computer Image Synthesis Systems

Ricki Blau

Computer Science Division
University of California
Berkeley, California 94720

ABSTRACT

This dissertation applies performance analysis to the problem of computing
complex three-dimensional images. First, it identifies factors that affect the cost
of image synthesis and characterizes the complexity of realistic images. Four
categories of performance factors are defined: scene characteristics, viewing
specifications, rendering parameters, and the computing environment. This
classification provides a framework for discussing image complexity and design-
ing performance experiments. The complexity of several complex images from
an actual animation workload is described in detail.

A methodology is presented for the construction of reproducible and con-
trollable performance measurement experiments. To measure the performance of
a rendering system, an experimenter provides a set of test data, including image
specifications. The dissertation describes a portable tool that generates test cases,
varying the scene characteristics and viewing specifications under the control of a
set of parameters. This model generator, Mg, has been implemented for two dif-
ferent rendering systems. Its test cases have been used to detect performance
differences between the two systems and to evaluate the effects of varying the
scene characteristics.

Finally, we address the workload partitioning problem for a MIMD render-
ing system. A simple, low-overhead adaptive algorithm balances the workload
effectively on a sixteen-node rendering accelerator. The algorithm uses the
rendering time observed for one frame of an animated sequence to predict costs
for the next frame. The resulting cost estimates can be used by a second algo-
rithm to divide the work among the available processing nodes. Our cost esti-
mates are approximate, but they are obtained with very little overhead. The net
result is an improvement of thirty to eighty percent over the previous load
balancing schemes for production-quality rendering of animated sequences. An
analysis of several competing schemes demonstrates that tradeoffs between
balancing the load and preserving locality are a key consideration in the design
of a parallel rendering system.

Performance Evaluation for Computer Image Synthesis Systems
Copyright © 1992
by
Ricki Blau

Acknowledgements

I would like to thank my advisor, Alan Smith, for his making it possible for me to pursue my own
topic, for his help in finding funding, for his constructive criticism, and for his patience. My other readers
have helped with their interest in my research. In particular, I would like to thank Ed Catmull for his help
in focusing on the goal of controlled variation in Chapter 4, Brian Barsky for making Chapter 2 both
more rigorous and more clear, and Michael Cooper for his enthusiastic teaching, his friendship, and his
getting me into this in the first place. While not an official reader, Scott Baden read Chapter 5 very care-
fully. I am grateful to him for his comments on the chapter, for many discussions about load balancing,
and for his lead in examining the factors contributing to lost efficiency.

I would like to thank Pixar for the use of hardware, software, and data. Many people at Pixar, past
and present, have helped make my research possible. Bill Reeves first suggested the load balancing prob-
lem. He has spent much time preparing models for my experiments, answering questions, and retrieving
files that I should have backed up (all great ways to avoid housework). Tony Apodaca, Darwyn Peachey,
Rob Cook, and Jim Lawson answered innumerable questions about the inner workings of the rendering
systems Reyes, Prman, and Opal. Discussing load balancing with Pat Hanrahan helped me see my way
through to the essence of the problem. I'd like to thank Don Conway, Deirdre Warin, and Craig Good for
help obtaining slides, prints, and videos.

The images in Figures 3.3 were created by Pixar’s Animation Division. I am grateful to Pixar for
permission to reproduce these images and for allowing me to create illustrations for Chapter 5 using
Pixar’s models and software. I would also like to thank Paramount Pictures Corporation and Amblin’
Entertainment for permission to reproduce Figure 3.3(b) from the film Young Sherlock Holmes.

Many people have made my stay in the department a much warmer experience, including Jean
Root, Teddy Diaz, Liza Gabato, and Kathryn Crabtree. Sheila Humphreys deserves special thanks for her
friendship and and encouragement, and for her work on behalf of women in science and engineering.
Scott Baden, Paul Hansen, Rafael Saavedra, and Barb Tockey helped make my offices places where I
enjoyed working. Doloros Anderson, Brandi Blair, and Karen-Sue Taussig allowed me to work knowing
that my children were safe and happy.

Thanks to my parents, Rita and Norman Blau, for a lifetime of encouragement and to Dr. Blau for
her example. And, most of all, big hugs for Julia, Oliver, Ian, and Bill.

This work was supported in part by the Computer Measurement Group through a CMG Fellowship,
by a California Fellowship in Microelectronics, and by Philips Laboratories/Signetics, the National Sci-
ence Foundation under grants MIP-8713274, MIP-9116578 and CCR-9117028, by NASA under Grant
NCC 2-550, by the State of California under the MICRO program, and by the Digital Equipment Cor-
poration, International Business Machines Corporation, Apple Computer Corporation, Mitsubishi Cor-
poration, Sun Microsystems, and Intel Corporation.

Table of Contents
Chapter 1. INrOQUCHIONcc.cviererieieieecierteentnttere sttt sttt sres et ere bbb eaes 1
Chapter 2. Image Synthesis TECANIQUESc.ccevveieererierinenienieireententenreseeieeeeeseeae e ssenns 4
2.1, INFOQUCHION ..cveneiieiiciiienteniente ettt creert b st cb et se e ebe st e beeaaes 4
2.2, Scene MOAEliNgc..ceeeveeeierieeeeeieeieeeieet et esre e eeesreeseebe et e ereenes 6
2.2.1. MOdElng COSLS ...cvveriiriiiiinieiiiieiiiiiiiirensetesiecr e esaese et et eeeseesbeenaes 7
2.3. Geometric Operations and Complexity Measuresceeeveeveeveveeneennenns 8
2.3.1. Coordinate Systems and Transformationsc.cceceeveerenienennreeniennnnne. 8
2.3.2. Geometric CoSt FACOISc.ceveiirrieiinintreetenie ettt 9
2.4. ADHAIIASINE .oveevvreenieiiieriieienrteereee ettt et s ee s ettt neen 12
2.4.1. Approaches to ANtHALASINEc.cceeerereruererenreniererireentenieeniee et eneenans 12
2.4.2. AntialiaSing COStSceceriereerreeriereerirtetertenteneeee et eseeste st eseesteessessesneesnnas 14
2.5, VISIDIIEY wovveieiirieieieincccce ettt vttt esre st st en st st b e a e 15
2.5.1. Approaches to the Visible Surface Problemc..ccccoveeeviivincincinencrennnne. 15
2.5.2. Visible Surface COStSccevvrvererrererenterenrereieeeeseeseesseseseensesseseesesssesesneas 18
2.6. Shading and TEXUIINEc.eouereererreererrereereruermetererensteneesestessenseseesessesesnens 21
2.6.1. Light Source Models and Cost FACLOTSccceveverreneerirerierenreinreieseiee e 21
2.6.2. Local HHIUuMINAtionc.ceceeeveerererenenreneereneeesrenenesessessesesiesesesnesenesion 22
2.6.3. TeXtUIe MAPPINZ ..ccvevveveerereeerenrenreriesiesesseeeessessessessessessesssesessessessessessensesnes 24
2.6.4. Global HIUMINAtION ...coueeeemierieniirririerteseeetenterreereeseeste st esaeseeestesieeaeesaeenens 25
2.6.5. Costs of Shading and Texturing OpPerationsccceeceevvereeervesrerieernecnennens 26
2.7. The Structure of Rendering SYSteIMSccoeceereerrierriverrreenveenieercreniseesnesnnes 27
2.8, SUMMALY ceviuiiiirieieieiieseicentenr ettt et es et saesues e st es e sesaeseenbessentenees 30
Chapter 3. An Analysis of Image CharaCteriStiCscceveeverrrerrrernreesieescrreneernesssenssessaesnns 31
3.1. INELOAUCLION ..ttt ettt ettt ettt e e st e bbb e s sbe e e 31
311, Previous WOTK ...ccciiiiiiieceeeenrtne ettt sttt st s 32
3.2, HiStOrICAl SUIVEY .eoiviiriieiiiiiiieteee et ettsteeee e eesteasebessae et e sresssesenneenes 32
3.3. The Measurement ENVironmentc.cccecevereenenecnernenneeneneenceneeneeneees 35
3.3.1. Visibility Determination in Reyesc.cccceecerreeveenneene. s 36
3.3.2. Differences Between Reyes and Prmanccceevevenenininenencneiencenne. 37
3.4. Measurement RESULLSc.coievieririerienenerienieeienteteet ettt e 38
3.4.1. CompleXity MELIICS ...coeeveruirririenieniiiniiiciiet ettt st 39
3.4.2. Model FIle StatiStICScooveeeeriereerieieneertireeteseeereseeseesseeseesteseesbeaeesbesaeens 39
3.4.3. Rendering-time Model StatiStiCscoevverervierirrernerieenrtenenrnne e sreeeens 51
3.4.4. Rendering-time TEXtUIe StatiStICScceetererrerrereereruerueieneeneereeneeesrenreerennens 55
3.4.5. Profiling RESULLS ...c..cceeervevieriiniiniiiiiniiiciiietetctcreeest et 56
3.4.6. Visible Surface MEaSUremMentsoceeeeveruerueeeriereeruesienenseseseeseeseesseseenees 59
3.5, SUININATY .eeertiiiiiiienieeteteieeteiee et et esteste st eeesreseesmeesaeetesaesntesbeseesseeneenn 63
Chapter 4. A Tool for Measuring the Performance of Rendering Systemscoccveeueeann. 64
4.1, INEEOQUCHION .eteiiiitieiieteeee ettt ettt ettt e e s e a e e s essesa e s sessenens 64
4.2, A Survey of Benchmarking Tools for Graphics Systemsc.ccceeeevvennnns 66
4.2.1. Methodology for Rendering Test Casescocoeeveveeverirenieiereereneneniennenn 67
4.2.2. Standard Rendering Benchmarksccoceeveeverniiiniinnieeniecnecneenreeieenen. 67
4.2.3. Workstation Benchmarks and Measurement TOOISccccceevevveerereennnnne. 69
4.2.4. SUININATY ..eeovvveireeeeirreernterriecereesseesseeetessteseesssesonesosesensesaseessseessessssesssesssesssnes 69

i

iii

4.3. The Structure of Graphics Performance Experimentsccccccceeceeceennnns 70
4.3.1. Computing ENVIrONMENEcccceveeviiruereririeieniereenitreteeeseeesessesseeseenennns 70
4.3.2. Rendering Parameterscceceeveererereriineeneneeneeneenteseneteteseeeeeseeesenas 70
4.3.3. Viewing SPeCIfiCatiOnscc.ceceeereererirertertererineieeeeentesteseeeeseeseseeseenens 71
4.3.4. Scene CharaCteriStiCsceerreerrerruerrerrierrersreeseeeereesareesenreseesssessserssasssseenns 71
4.4. The structure Of ME ..occveeeiiieeeeieeeeereetere ettt ee st r v v e 71
4.4.1. Frame InitialiZationcccccoeveenieneninninnieieneniiieneeseeeneniesee st eeeenee 72
4.4.2. Geometric SPECIfiCAIONScccevvererrerirreeertereerereereetereestestessesensesseseeneesnens 73
4.4.3. PrIMILIVES .eeciriieiiiiiitietcnie ettt et e see st e se e ese et e e eenee 74
4.4.4. Surface Properties and Shading Informationccceceeveeveneneneneciennennane. 75
4.4.5. TeXtUIE MAPS .cveeeieeereerieecieeererieesieesreesteeeeseeesseeessassssessssesssessessssensseseresennes 76
4.5. Controllable Parametersc..cccceeerrevinieriienrerenienierenenieieneerensereseeesseneenens 77
4.6. TESE SCOIMES ..ecuverreeeeeeieeieettet ettt et te e et saeeeaeeesabeesatesaeesusesssaeseesnsens 77
4.6.1. SPRETES ..oviteiiiieteeectee ettt ettt et st e a e s r et sre st sans 78
4.6.2. TEITAIN ..coueuvenreienenieieteterteeestestes et stesteatetestesaeseeseeaeetesaesaessaseeneesaeseensessesns 79
4.6.3. A Benchmark SUIEc.cecevirinieniniienineiniecieenteest et reiet oo ere e seneeaens 80
4.7. Reporting the RESULLSc.cocuiiriiiiiieeee ettt s 86
4.8. Implementation EXPEIIENCEccceveererrerrererrenenienteniineneeesnnsessensessesaesnenns 86
4.8.1 AnImage-Space RENErErccccocevminireiriirinenieiieeenteneeneeeceee e 86
4.8.2 A RAY TTACET .eoveeiieiiieeieeeeett ettt v e e asae b seeaeeaeeanens 87
4.9. EXPeriments USiNZ MEcocovueriiiiniiniiieietesietetstee e se et e nenve e 87
4.9.1. Comparing Two Rendering SYStemSc.cceceverreceerverienerrenenereereeeeeennnns 88
4.9.2. Shading and Texturing ISSUEScccccvvevriiieririinienieneeenienteneeeeeneeeeene 91
4.9.3. Prman’s Visible Surface Algorithmc..cccoovevirnianiineriinieeeieeeereeee 94
4.9.4. SUIMINATY .coevereiiienienreeeereeeneereeseestestesessesstesseseesseeseeenesessessesstensassesnsesnes «. 96
4.10. CONCIUSIONS ...oveuriviiniriiniiniereieieieeetieree e srebessesresresse e essese st e seennenne 96
Chapter 5. Workload Partitioning for a Multiprocessor Rendering Systemcc.ccccceueenn. 98
5.1 INEFOQUCHON «.oeviviriiieinnicterieerte et eeteteeeesee e cene et et et e st e st et e sae st eeneeneas 98
5.2, Literature REVIEWcccoceoererienieririnienteeneententeseestessesisssessessessessessensenees 99
5.2.1. Spatial Subdivision for Uniprocessor Graphicscceceeververnenenneeneeneen. 100
5.2.2. Implicit Load Balancing with Spatial Subdivisioncccccceeerveeeenninnnn. 100
5.2.3. Explicit Load BalancCingccccecevevirienrerinrenenieneneneneesieeeiesessesesseseenes 100
5.2.4. Load Balancing for Multiprocessor Ray TTacerscceceevererververeereeneenen. 101
5.2.5. Workload Partitioning for Scientific Applicationsc..ccecvevrerererueennnns 101
5.2.6. Frame-to-frame Coherence and Video Compressionc.cceceveceeuenennens 101
5.3. The Rendering Environmentcococcoeeeevieenninenenineneeiieenieseseeenens 102
5.3.1. The RM-1 System ATChItECUIEcccerereerrerrerrerreerirreeeseeseeeeseeeeesrenenens 102
5.3.2. The Software ATChItECIUTEcoctevueriirirerrterteetreeeeste et eete e st saeseneneeas 103
5330 TIDNE ceeeoiiiiitestere ettt et et et et este st e stesbesrnaseeesaassessasnsesenessenn 105
5.4. Spatial Subdivision SCHEMESccecrvireerieerienierienie ettt 107
5.4.1. Qualities of Spatial Subdivision SChemesccccvevreervieiviecireceecneeene. 107
5.4.2. Fixed Spatial Subdivision on the RM-1cccccoeiiiiiniiiiiciiicecie e, 108
5.4.3. Cost Estimates for Adaptive SubdiviSioncccccceevveererrviervrecnreenreennennnen. 108
5.4.4. Partitioning AIZOTItRMS ...coceoireiriiriiriiirceieieeen et 110
5.5. Estimating Rendering Costs with the Program Adjustccccceeveeieennnne. 111
5.6. Experimental RESUILScccoueeiiriniicinciinnierccintnetete e 112
5.6.1. The WOrKIoadcccueiverieieiirieieeneteeeeeseteteseesteste e sieeseste st steneesseneenees 112
5.6.2. Processing CONAItIONScceeervereeenrereereseniereessessensensessnesessessessessesseseenees 118
S5:6.30 MELIICS .cverviuiiiriereeiieiresiereeietest ettt est et e sesteesstesbassaenaesaesassansensensansanean 118

5.6.4. MEASUTCINEINLS ...veevveeeeerirrerensueeesreeesaesseessseessssessssessssasessssaesssseesssesssssasennes 119
5.6.5. Varying the Number of PrOCESSOTScccerrerurriererceenreenenreeneeseenseseenseennes 123
5.7. Analysis of Lost Efficiencyccueeiiininininiincnniniennecineeeenneeeens 123
5710 TMDALANCE ..ovvieeeeieie ittt ettt ettt e et et 127
5.7.2. Contention and Communications Delaysccceevervirrevrniencnenncnncnnne. 129
5.7.3. Reduced COREIENCEccccovveiiiiririiiieieieteetereene ettt et et 131
5.7.4. Varying the Number of ProCESSOLScccevuereerrerrreerneernennennieeneennieninens 134
5.7.5. Inter-processor DEPEendencecccceeeeveveenienenrtenieenenstereessenesseessesseensnns 134
5.7.6. SUINIMATY ..eccvvievirererieenernteeeeeteeseeeeseeesteseeseeeseesreeessseesstesseessesseessnsesnsens 137
5.8, Production EXPEIINCEccceeeeerieeirierienieniietenieeteseeseteeesieessesseseesseennes 137
5.9. An Evaluation of the Rendering ArchiteCturecoocceeveeeveeneeneennennnen. 138
5.9.1. The Hardware ATChitECtUrecocveeuevierireieieieeteeteeeeee et 138
5.9.2. Dynamic SChedulingccceeciereviieriierreeneiniieneieeeerieeeeeee st eeeeeeiees 139
5.9.3. The Software ATChItECLUIEccueeeeveeieiereeneteeereetereeneeeteee et e 141
5.9.4. Scaling ISSUES ..ceovtevuireieriieeeeeeeecreerttereee e tee e aesene e st e te e e sreeneeneeeareeen 141
5.10. CONCIUSIONS ..eeeiereieieeieieeieseete ettt et stessee st ete st esae et e stesbeeaesaeeseeas 142
Chapter 6. Conclusions and Directions for Future Researchcc.cccvvveeeveeeeincvnvenenens 144
6.1. Workload Characterizationeceeeeerveereeereesreeseeeesessrnesssessssesssesssenssnes 144
6.2. Performance MEaSUICMENLceceveeerereeriereerererreererssenseseneeessessesseesesns 145
6.3. Workload Partitioningcceeceeeveeeruersierensenseneeenseeesseessesssaesssesssesssessenes 145
REFEIEICES ..oonuiiieiiiiiiiiieite et eeese ettt eett e re st e s bt esteestesasesseessaesseesssessanessbesssansseesesssessssaenns 147
Appendix A. Image Complexity, 1966-1991ccceiriiniinininniiiicenreneeeeneeeeiesreneens 154

Appendix B. Mg Interface Specifications and Source Code

v

List of Figures

Chapter 2. Image Synthesis Techniques

2.1.
2.2.
2.3.
24.
2.5.
2.6.

Image synthesis PIPELNEcccocverierieieenrenienieeniieeren et eans 4
Weighted intensity CONtribUtIONSccccoceeverreeneeeeerennieneeniesertesee e sereeens 12
FAIEBTS w.nvivieieeieieeee e etee ettt et et e sne st e saaesnesseasaeasaesbeensesbennneeseenneen 13
Estimated run time for four visible-surface algorithmsccccccvveennnenn. 20
Local 11TUMInationc.ccceeeveererierieeiseneeeresteseeesesstesneeseseesseseessesseenseens 23
Structure of five rendering approachescocccecceevveiieieeneenieseeseeeieenenn 28

Chapter 3. An Analysis of Image Characteristics

3.1.
3.2,
3.3(a).
3.3(b).
3.3(c).
3.3(d).
3.3(e).
3.3(D).
3.3(g).
3.3(h).
3.4,
3.5.
3.6.

Number of ZE0mMELric PIIMItIVESccceeeeeereererieierrirerresesreresaessenenenneens 34
Visible surface processing StaAgeSc.ccecvceveerreerrerereerneersenereesieessessssennnens 36
ADAIC ettt ettt sttt e sttt e et saente e 40
Stained glass KNIRt ...coceeeeiiiviiiiiieiineeirteneeeete et 41
WAVES ettt st sttt e s s e b st e e e b s 42
LIUXO JT. T ettt sttt st st sttt 43
Bike shop window (I and II)c.cccccoomeivinciiniennineeineieeceinrceeee e 44
TIINY ettt ettt ettt et et et saeesteete st e sbesateeeeseeateentesnean 45
Bike ShOD INLETIOL ..c.oiuiimiiiiiiiiiieinientintrteetct ettt ettt et nens 47
COMBA ettt ettt ettt ettt bt e et e et esre e sneaensaenes 49
Number of modeling PrimitiVescc.ccceoceeverreereriieseeneniteneeeeseeseeseenenens 50
Percentage of runtime charged to major rendering activities 58
Mean input size per Sample POINEcceecververreerriernieerrereerreesreeseesresesvesneens 61

Chapter 4. A Toolkit for Measuring the Performance of Rendering Systems

4.1(a).
4.1(b).
4.1(c).
4.1(d).
4.1(e).
4.2.
43.
4.4.
4.5.
4.6.
4.7.

SPhErEI00 ...ooviiiiieiirierieeeerte sttt ettt st e e e e sressre e ssbe s seese s ereeesraenns 81
SPhETEL1O00coooviiiriiiiiiiietiretet sttt sttt sttt st 82
SEACK ettt sttt s 83
LandSCapeccceveviniiiiiniiiii ettt 84
LAYEIS eeiiiiiiiieentieniee ettt cete et ette st ste e e beeeeat e e s te e e st sabe e e neeannes 85
Prman. User cpu time for rendering five benchmark images 89
Opal. User cpu time for rendering five benchmark imagesccoo....... 89
Comparison of spheres and patches, prman and opalc.ccoecveeveereenenne. 91
Grid. Varying the number of spheres, prman and opalcccoeevvevrennenns 92
Scattered spheres. Varying the number of spheres, prman and opal 92
Terrain depth EXPErimMEntcoccveeerrierreriieereeereeenirerieesraessresseessseesseesssens 95

Chapter 5. Workload Partitioning for a Multiprocessor Rendering System

5.1.
5.2(a).
5.2(b).
5.2(c).
5.3.
5.4.
5.5.

Partition generated by recursive biSECtionccc.eeeeeuereveruereucrereercreneenne 110
Motion in the Camera MOVE SEQUENCEccceevueeuteriernreeieeireniesaeeeresneenns 115
Motion in the JUNIOr SEQUENCEccceverueieriiirenieniieiineeeeteeteeeerenee e erenieeee 116
Motion in the TiNNY SEQUENCEcceevierrerrerrierterteeneeereentenseeeeeeeeeneaenns 117
Rendering times for adaptive and fixed partitionscc.cecceevverererrennene. 121
Camera Move. Increasing the number of processing nodesc.cc....... 125

Junior. Increasing the number of processing nodesc.ceccecveeevienennnns 125

5.6.
5.7.
5.8.
5.9.
5.10.
5.11. .

Tinny. Increasing the number of processing nodesccccceeveeveeereennenne.. 126
Balance improves from the start of the sequencec.cocoeceevevieveeneennennen, 128
LOSt EffICIENCY .evevvereeiiieieieietreet sttt ettt ve st aeeans 133
Camera Move. Loss of efficiency with a varying number of processors ... 134
Junior. Loss of efficiency with a varying number of processors 135

Tinny. Loss of efficiency with a varying number of processors 135

vi

vii

List of Tables

Chapter 2. Image Synthesis Techniques

2.1. Image SPECIfICAtIONScceiiriiriiiiiiiiiiiirccccee ettt 7
2.2, Modeling COSt fACLOTSc.covevrerrereerrerieiriirtertenterenre ettt s e e sanes 8
2.3. COOTAINALE SYSLEIILS ..cevervvererurereriertenteereeeerteseesstesrestesseessaeseessessassssssnessanes 9
24. Geometric compleXity fACtOrScccccoirriivirniinieriireeee et e 10
2.5. Antialiasing cOSt faCtOIScccuevievirirerierenenererertente et 15
2.6. Visibility COSt fACLOTSevveiriiriirieiiiriciirtei ettt 19
2.7. Shading and texturing cost factorscoceeverveerrernieeceeenie e, 27

Chapter 3. An Analysis of Image Characteristics

3.1 Images in the tESt SUILEecveeeirrerrieierireireerctereeeeeeete et et ere e enes 38
3.2. Computing environment and rendering parameter valueso......... 39
3.3(a) Characteristics of the Andre modelcccooovveeeveeeeviiiiiei e, 40
3.3(b) Characteristics of the stained glass knight modelcccceeeveeviecinnniennen. 41
3.3(c) Characteristics of the waves MOdelcceeeveveveeieeeiiiier e 42
3.3(d) Characteristics of the Luxo Jr. Imodelcooovveeviiieiiiiiiiiiriieeeeveeee. 43
3.3(e) Characteristics of the bike shop window I modelccccceeerieerinneennnnen. 44
3.3(f) Characteristics of the Tinny modelcccoeeveivieecieeiienieecee e, 45
3.3(g) Characteristics of the Luxo Jr. IImodelcoovveeeeeiieeiiiiiiiiiieee e, 46
3.3(h) Characteristics of the bike shop interior modelc.cccooieeeeiiiiereennnnn. 47
3.3(1) Characteristics of the bike shop window Il modelccccovveerveerereneennen. 48
3.3(3j) Characteristics of the conga modelccccoveveveerieecieeneieeiccee e 49
3.4. Rendering statistics, Group Icoccevrieieieninrenrinecre et 52
3.5. Rendering statistics, Group Iccceeveverceirierieiree e 52
3.6. Sample point depth complexity, Group Ic.cceevevveircrreniienneeneenreceveeenens 54
3.7, Texture usage StALISLICScc.evvereereeeruerrereereruerieeeestestesteseeessessesseseesseseesens 55
3.8. User CPU Time, Group Ioooviviiiienieieiieeeseeeee e 57
3.9. User CPU Time, Group ILcc.ooceeveeieeeieeeeeeeeeeteere et 57
3.10. Visible SUIrface tiMeccceeeeevveerieeieeieneeieeseeereeereeerreesteesenecreeereeenveeeneeas 60
3.11. Reduction of size in the visible surface algorithmcccocooeveenennnnn. 60
3.12. Reduction of cost in the visible surface algorithmcceeeevvrereeeennen. 60
3.13. Input size per Sample POINLccceeueerruererreerierenieienientetrereee et eaees 61
3.14. Invisibility processing, Group IIcccocceverviiiininniniiene et 62

Chapter 4. A Tool for Measuring the Performance of Rendering Systems

4.1. Characteristics of Haines’ Standard Procedural Databases 68
4.2. Mg SOUICE fIIES ...euvieeiiiieiiitiriictieteecete ettt ettt et ees 72
43. Frame initialization TOULINESccceeeivueirieucierentnieneerteeneeeeeeeseeee e seneeaes 73
4.4. Matrix COMMANAS ..c..oveuieueriiiiniirenrerteieentet et srtes et et estestentenbeneeneeneennns 74
4.5, GEOMELIIC PIMITIVES ..eoververrerierierieeeerienieeseesteseeeeseessesseesessassesessessensessenns 75
4.6. Shading cOMMANASccoceruerreieirerenieiee s sttt sre e aes s e sae e esenis 76
4.7. Texture map COMMANASccceererueriereuiirieeierentereesesteeeiesreetessesesaeseseesens 77
4.8. Universal scene generator OPtIONSccceeerverterverrressesivesseesessseeessseereenss 77
4.9. Spheres scene generator options and their defaultsccccovvevivecinenni. 78
4.10. Terrain scene generator options and their defaultscccevvviveniennnne. 79

4.11. Suite of fIVE DENCHIMATKS coieeeeeeieeeeeeee ettt eeeeeee e eeeereaeesereeesseseenees 80

4.12.
4.13.
4.14.
4.15.
4.16.
4.17.
4.18.

4.19
4.20

Characteristics of five benchmark imagescc........ s 80
Surface types for prman implementationc.ccceeceeeevernreesreesreenreessreesnnens 87
Prman. User cpu time for rendering five benchmark images 88
Opal. User cpu time for rendering five benchmark images 88
Comparison of spheres and patches, prman and opalcceceeeeveerennnen. 91
Opal. User cpu time with different levels of ray tracingcccecveeurennenn. 93
TEXtUIE ACCESS SLALISLICS .eveuverrereeieiertentireetenteeeestesseesneseesnessessassesseensees 93
Sphere depth eXperimentccccccvrveeeeeniinnienieieneenteneneeree e 94
Terrain depth EXperimentccccvviiiniiiniiiniiiiencstece et eaens 95

Chapter 5. Workload Partitioning for a Multiprocessor Rendering System

5.1.
5.2.
5.3.
5.4.
5.5.
5.6.
5.7.
5.8.
59

5.10.
5.11.
5.12.
5.13.
5.14.
5.15.
5.16.
5.17.
5.18.
5.19.
5.20.

Terms and NOLALION ...c..covvererrieieriieiertertereeterteeee e e e s e esae s e saesreeneeteenenen 106
Partitioning overheadcc.ccccooeveiirienreneneentnenieretent e sreaeeee e 111
Spatial subdivision SChEMEScceeveeveeieeriererieiieceesreereeeeree et 112
Length of continuous SEQUENCEScceeververrienerreriiernieeieneerenreseesaeereeenees 114
Geometric complexity of the experimental workloadc..ccoccvevveeneennenn. 114
Texture data for the experimental workloadcccevvevereneiievinierceninennnn, 114
TImes and SLAtISHICS ...c.eovereereereeruereererenteenrensertesteseeseseessassessensesessessessensens 120
Relative rendering tileccoceeveeeerenreereereenenreenesstensteereesteseresaesesssesenens 122
Partitioning overhead for Adjust 2dccoceeeevnineniininnieeeene e, 122
Times and statistics, varying the number of processorsccocceevveenneene.. 124
Lost efficiency due to imbalancecccceeveeveevirrieseecieneesecee e ereneens 127
Loss of efficiency due to a less efficient first frameccccccceevvevverreennns 128
Observed balance compared with predicted balanceccccveeveeveervenene.. 129
Texture faults and read time StAtiStICSccoceeeerverrerrrerererirenereesseseessenenans 130
Lost efficiency due to texture read cOntentioncceeveeeereeecvesreecvesreennens 132
Sources of 10St effiICIENCYcevvvviviviniirrieniirierterreesrtrrree e seesteesereeeeeens 132
Rendering primitiVescocceeeerereerinereneentenenienreeteeessensessesseneeseseennennens 132
Times and statistics with a 2x2 Gaussian filtercecceevvveecvreieeceeseeennn. 136
Junior. Increasing the display resolutionccccoccceeveeeiercienieiiesiereeciennens 138

Dynamic SChedulingccccocviiiiiniiiiiiirinenee ettt 140

1

Introduction

The research described in this dissertation applies performance evaluation to the field of realistic
image synthesis. Realistic computer graphics has many applications in design, engineering, entertain-
ment, scientific visualization, medicine, and advertising. Advanced image synthesis systems produce
color images of complex, three-dimensional scenes using naturalistic shading techniques. Researchers in
the forefront of image synthesis have been extending the capabilities of computer graphics to simulate
visual reality, seeking a quality some call ‘‘photo-realism.”” Two key properties of realistic images are
geometric complexity and a naturalistic simulation of surfaces and illumination. The geometry of a scene
describes the shapes and positions of objects, while sophisticated shading algorithms simulate the interac-
tions between light and the surface of objects. Realistic images tend to include many objects, and the
objects themselves can be very intricate. Advanced computer graphics algorithms can simulate visual
qualities such as transparency, reflection, refraction, shadows, motion blur, depth-of-field and complex
surface textures.

Unfortunately, high-quality image synthesis is computationally expensive. Nature creates high
quality images by sending many light rays, traveling at the speed of light, in parallel to the viewer or
camera. Computers have to generate each point in the image separately by sequential computation. By
these standards, photo-realism will, obviously, be very computationally intensive, and computers will
never create images as fast or as well as nature. While added detail and sophisticated algorithms lead to
greater realism in computer graphics, they also increase the cost of computing an image. Applications
that demand motion, or animation, intensify the problem, because the system must compute from ten to
thirty different frames for each second of animation that the user sees. The challenge facing researchers
and industry is to offer more realism and image complexity in higher speed, or even interactive, graphics
systems. In the past, realistic image synthesis was usually limited to research labs. Researchers often
reported using hours, or even days, of computer time to produce a single image. Now, technological
advancements and the maturation of image synthesis algorithms have put realistic image synthesis and
animation into the reach of a wide range of users, who rely on graphics as a tool in everyday work. These
users need efficient graphics tools, and they want to be able to compare the performance of different sys-
tems and algorithms. Performance analysis tools and methodology are needed to design and evaluate
practical algorithms and systems for realistic graphics.

Because photorealistic graphics requires a great deal of computation, there is a lot of interest in
using multiprocessor systems to produce images more quickly. To use a multiprocessor effectively, we
must first solve the workload partitioning problem: to divide the work into an efficient set of sub-tasks
that can be distributed among the processing units. For the multiprocessor to perform efficiently, the
workload partitioning algorithm must (1) distribute the work evenly among the processors, and (2) avoid
introducing additional overhead in the way it subdivides the task.

This dissertation explores three topics in the application of performance evaluation to realistic
image synthesis. First, it identifies factors that influence the cost of image generation and characterizes
the complexity of realistic images. Second, it describes a methodology and tools for reproducible, con-
trolled graphics performance experiments. Third, it presents a workload partitioning scheme for a mul-
tiprocessor graphics architecture and compares its performance against several existing schemes.

A computer-generated image is the visual representation of a set of object descriptions, or models .
A model database specifies the geometry of the objects, as defined by three-dimensional coordinates, and
it describes the appearance of the objects’ surfaces. The final image is composed of a two-dimensional
array of individual picture elements, or pixels. To produce an image, the three-dimensional scene
description is mapped onto the two-dimensional coordinate system of the screen during a process called
rendering . Rendering performs geometric processing, determines which objects are visible from the
specified viewpoint, and calculates the intensity of the surfaces in the image.

System designers must make compromises, because no attainable system will generate arbitrarily
complex images in real time. Historically, there have been two approaches to the tradeoffs between
image complexity and compute time, one emphasizing speed and the other emphasizing realism. Interac-
tive systems aim for real-time speeds, at, or close to, the real time video rate of thirty frames a second.
They produce pictures that are as complicated as possible given the time constraints. In contrast, image
quality and complexity take precedence in the field of realistic image synthesis. The primary goal is to
achieve the desired image qualities, and performance goals are secondary.

This dissertation emphasizes the latter approach, that is, the problem of realistic image synthesis. It
considers systems that favor quality over speed in the trade-offs noted above. In particular, it concen-
trates on the process of rendering, which transforms the three-dimensional specifications of a scene into a
shaded, two-dimensional image.

Algorithms for rendering realistic images are described in Chapter 2. It summarizes the techniques
of image synthesis, concentrating on the themes of image complexity and rendering costs. It also exam-
ines the performance of rendering algorithms and the effect of image characteristics on their costs. In this
chapter, I define four categories of performance parameters: scene characteristics, viewing specifications,
rendering parameters, and the computing environment. Scene characteristics describe the inherent pro-
perties of the model, including its geometry, illumination, and surfaces. Viewing specifications give the
position and direction of the viewer, as well as a model for the eye or camera. Rendering parameters are
independent of the scene, but they influence the execution of the rendering system or the way that the
model is mapped to the two-dimensional image. The computing environment includes the hardware and
the systems software that are external to the rendering environment. Throughout the dissertation, this
classification provides a framework for discussing image complexity and designing performance experi-
ments.

The major tasks of a rendering system include geometric processing, visibility determination,
antialiasing, shading, and texturing. For each task, Chapter 2 describes approaches to the problem and
discusses the factors that tend to influence performance. Because some performance issues depend on the
global structure of the rendering system, a set of examples illustrates different approaches to organizing a
rendering system. An important property that influences the performance of rendering systems is coher-
ence , or the tendency for images to be similar in a spatial or temporal locality. Many efficient algorithms
take advantage of coherence to reduce the cost of calculations or to improve the locality of memory and
disk references.

Having established the background, the dissertation turns to three topics in the performance of
image synthesis systems.

First, it presents a qualitative and quantitative characterization of the workload. Chapter 3 examines
two sets of data. The first is extracted from the computer graphics literature, and shows trends in image
complexity over the past twenty-five years. The second describes the characteristics of several complex
images taken from an actual computer animation workload; these data were obtained by examining the
model specifications, by instrumenting and profiling a sophisticated rendering system, and by analyzing
images.

Although we informally talk about ‘‘image complexity,”” we are really interested in the complexity
of the input to the renderer. The workload of a rendering system has two components. The first

component includes the data needed to specify an image: the scene description, the viewing parameters,
and the motion in an animated sequence. The second component consists of system-specific parameters
that control the execution of the rendering system.

The dissertation’s next topic is performance measurement, which is considered in Chapter 4. To
measure the performance of an image synthesis system, we observe the resources it requires to generate
an image. The image is specified by a database with a detailed model of the scene, controls for viewing
the scene, and controls for displaying the image. Together, the model and controls form a test case, or
benchmark. The chapter describes an approach to constructing reproducible, controlled performance
experiments. In this model, the experimenter varies a performance parameter while holding other factors
constant. Chapter 2 groups performance factors into four categories, and Chapter 4 uses this categoriza-
tion to describe corresponding types of performance experiments. In a performance experiment, we can
vary the scene characteristics, the viewing specifications, the rendering parameters, or the computing
environment. For example, a benchmarking effort that compares different computer systems is an experi-
ment that varies the computing environment. Because the model’s characteristics and the viewing
specifications affect the performance of rendering algorithms, other interesting experiments vary the
scene definition.

Chapter 4 describes a portable tool, Mg (model generator) that creates model data for performance
experiments. Mg varies the scene characteristics and viewing specifications under the control of a set of
parameters. The model generator consists of programs that generate the scene specifications, general util-
ities, and an output library. To port Mg to a new system, a programmer modifies a small set of pro-
cedures that output the scene specifications. Mg differs from a static benchmark suite, because the exper-
imenter can adjust the complexity and characteristics of the scenes to simulate different workloads or to
evaluate specific aspects of a system’s performance. The interface supports geometric features such as
parametric patches, quadric surfaces, polygons, and nested transformation matrices. The lighting and
shading procedures support multiple distant and local light sources, texture mapping, reflections, and
transparency with refraction. Chapter 4 describes Mg’s implementation on two different rendering sys-
tems and experiments that demonstrate its use.

Finally, we addresses the workload partitioning problem for a multiprocessor rendering system.
Chapter 5 explores the performance of a class of algorithms based on a spatial subdivision of the image
plane, and describes a simple, low-overhead load balancing scheme designed for rendering animated
sequences. The algorithm uses the rendering time observed for one frame to predict costs for the next
frame. The resulting cost estimates can be used by a second algorithm to divide the work among the
available processing nodes. The algorithm depends on frame-to-frame similarities, or coherence, in the
input. Compression schemes for digital video also exploit frame-to-frame coherence with success. Our
cost estimates are approximate, but they are obtained with very little overhead. The net result is an
improvement of thirty to eighty percent over the previous schemes for production-quality rendering.

Chapter 5 analyzes the performance of eight related spatial subdivision schemes and examines three
factors in the loss of multiprocessor efficiency: imbalance, contention for disk accesses, and reduced
coherence (or, locality). There is an inherent conflict between load balancing and maintaining coherence.
To balance the load, we divide the work into smaller units, but by dividing the work we lose coherence.
The partitioning scheme described in this chapter balances the load reasonably well, while maintaining
much of the workload’s coherence.

Chapter 6 concludes the dissertation with a summary and suggestions for future research.

2

Image Synthesis Techniques

““‘Unfortunately, the price of increased realism
is a huge increase in computation costs.’’
Turner Whitted [Whit82]

2.1. Introduction

A realistic computer-generated image is the visual representation of some three-dimensional scene .
In contrast to the scene, the image is two-dimensional, an array of discrete raster display elements called
pixels . The scene is described by a set of object descriptions, or models , in a model database. Creating
an image requires three major steps: modeling, rendering, and display (Figure 2.1). Modeling is the pro-
cess of specifying the geometry and the visual properties of the scene. Rendering transforms the three-
dimensional model into its two-dimensional representation, as seen from a specified viewpoint and
according to a given model for the viewer. The rendering algorithms project the scene’s geometry onto
the image plane, decide which objects are visible, determine the colors reflected by the surfaces, and
assign a color to each pixel. The final step is to display the image. The image can be stored in a special-
purpose memory, called a frame buffer, and converted from a digital format into analog signals by a dedi-
cated display processor. Alternatively, the image may be recorded directly onto film or video, stored in
main memory, or written to a file for later display. In real-time or interactive graphics systems, the
rendering system and the display hardware must cooperate closely. With photorealistic graphics, the
interface between rendering and display can be looser.

scene and
parameters intensities
—— | Modeling Rendering Display +——

Figure 2.1. Image synthesis pipeline.

This chapter summarizes the techniques of image synthesis. It has three goals: to provide a back-
ground for readers who are not familiar with image synthesis,! to define the terminology used in this
thesis, and to identify the factors that affect the cost of rendering an image. Because the characteristics of
the models bear significantly on rendering costs, this survey covers both modeling and rendering. Image
display is a separate problem, which we will not consider in detail.

Realistic image synthesis is an active research area, and new algorithms are constantly being
developed. This survey concentrates on the general principles of image synthesis and aspects that are
related to performance. In a previous survey, Whitted [Whit82] discussed the processing requirements
for rendering, but there have been many advances in realistic graphics since then. Two more recent

1 Throughout this thesis, I will use footnotes to discuss graphics technicalities, which are not essential to the main
text.

surveys take alternative points-of-view: Amanatides emphasizes the pursuit of realism [Aman87], and
Dennis summarizes key algorithms [Denn90]. Several textbooks provide more complete explanations of
the basic methods of computer graphics, including the comprehensive and up-to-date work of Foley et al.
[Fole90].

Two tasks dominate the cost of rendering a scene: visibility and shading. The visible surface algo-
rithm determines what parts of the objects are visible, and therefore are to be displayed. Visibility is a
geometric problem, and the performance of visible surface algorithms depends mainly on well-defined
geometric quantities, such as the number of objects in a scene. The shading algorithm determines color
values for the surfaces in the scene. It must consider such information as the color of an object, the
reflectance properties of its surface, its location, its orientation, the light sources, and any textures that
may cover the surface. The most realistic algorithms also take into account the location, orientation, and
reflectance properties of the other objects in the scene. Naturally, the color can vary over the surface of
an object. The number and complexity of the geometric primitives influence the size of the problem, but
shading performance is not explained by geometric quantities alone. The computational effort also
depends on the characteristics of the surfaces, which are hard to quantify.

In rendering, there are important tradeoffs between realism and efficiency. Realism is subjective,
but we can identify properties of images that contribute to our perception of realism. One essential pro-
perty is the realistic simulation of surfaces and light sources, and of the interactions among them. A
second important property is a sense of geometric complexity. A third property is a careful rendering that
reduces the distortion introduced by displaying the image as a grid of pixels. In general, the pursuit of
these properties raises the computational cost. Realistic shading and illumination tend to require compli-
cated algorithms. Increasing the geometric complexity adds to the size of the problem, and thus increases
the number of operations that must be performed for any fixed set of algorithms. There are several
approaches to reducing display artifacts. Some complicate the rendering algorithms, some mainly
increase the size of the problem, and others do both.

Solutions to the visible surface problem can be evaluated objectively. Given a scene and viewing
parameters, a solution is either correct or incorrect. A correct solution to the visible surface problem is
essential to any shaded image. In the early days of raster graphics, the visible surface problem consumed
most of the rendering time and most of the research and development effort. In the mid-seventies, Suth-
erland, Sproull, and Schumacker [Suth74] published a landmark survey of the problem, analyzing ten dis-
tinct algorithms and offering a taxonomy of approaches to its solution. By now, many correct and practi-
cal solutions have been implemented. Joy et al. [Joy88] present a more recent survey, which includes
Grant’s expanded taxonomy of visible surface algorithms [Gran87].

In comparison, shading and illumination are open-ended problems. Graphics researchers are still
learning how to make surfaces look real. Because it is too expensive to simulate the actual physics of
vision, most algorithms merely attempt to simulate a realistic appearance. Hall, discussing the evolution
of illumination models for computer graphics [Hall89, especially Chapter 4], offers a classification of
algorithms. The earliest algorithms, beginning in the late 1960’s, supported simple empirical models.
Starting in the mid-1970’s, transitional models added detail and realism, drawing upon the principles of
physics and optics to enhance the underlying empirical models. Analytical models began to appear in the
early- to mid-1980’s, attempting to simulate physical processes more closely. Hall’s final category, the
hybrid approaches, combine elements of the transitional and the analytical models.

When more realistic shading and illumination techniques are developed, they tend to complicate the
work of shading a scene and increase the proportion of rendering time devoted to shading. However, the
factors that influence shading costs are less well-defined and dependent on a wider variety of workload
characteristics.

This chapter examines the factors that influence the performance of rendering algorithms and the
effect of image characteristics on the cost of rendering. It considers general classes of performance
parameters; a few affect the performance of most graphics systems, while others are important only for

certain classes of algorithms or implementations. We can group these performance factors into four
classes: scene characteristics, viewing specifications, rendering parameters, and the computing environ-
ment. The scene characteristics specify the inherent properties of the model, including its geometry,
illumination, and surfaces. Viewing specifications include the viewpoint, the view direction, the angles
of view in the horizontal and vertical directions, and a model for the eye or camera. Rendering parame-
ters, such as the image resolution, are independent of the scene; they influence the execution of the
rendering system or the scene’s representation in the image. The computing environment undeniably
affects rendering performance, but it is external to the rendering environment. So, this chapter will
mostly ignore the computing environment.

For each of the major rendering tasks, this chapter will describe approaches to the problem and dis-
cuss the factors that tend to influence performance. Some performance issues depend more on the global
structure of the rendering system, so a set of examples will illustrate different approaches to organizing a
rendering system.

This chapter will emphasize compute time costs and only occasionally will describe how memory
costs have affected the development of algorithms. Nevertheless, many time-efficient rendering algo-
rithms require substantial amounts of main memory.

2.2. Scene Modeling

Two types of information describe the objects in a scene: geometric specifications and surface
characteristics. (Table 2.1). Models are usually created in a separate process preceding image generation.
Typically, a special-purpose modeling language is used to describe the scene.

The shape and location of an object is specified mathematically by a set of three-dimensional
modeling primitives. Some objects can be represented exactly by simple geometric primitives, such as a
sphere, a torus, or a set of polygons. More complex surfaces must be approximated. Early computer
graphics systems approximated the surface of objects with sets of planar polygons. Although polygons
are still often used, curved surfaces are represented more smoothly by parametric curves and surfaces.
Different mechanisms can be used to generate and combine the basic mathematical elements. One
method, called constructive solid geometry (or CSG), combines geometric solids with set operations.
Another approach is a sweep representation, which defines a three-dimensional object by sweeping a
two-dimensional shape through space. Among the other possibilities are boundary representations, which
specify solids with the vertices, edges, and faces that define their boundaries.

In applications such as engineering, design, and scientific visualization, the model is derived from
real data. In other applications, models can be created by hand, often by a designer at a graphics worksta-
tion. For highly complex scenes, it is too tedious to specify every detail by hand. Instead, procedural
modeling algorithms follow a set of guidelines to generate detailed object specifications. Deterministic
algorithms are appropriate for objects with regular geometry, such as a bicycle wheel with many spokes.
Stochastic algorithms can be used to create objects with more variation, such as models of natural
phenomena. Properties such as length, orientation, or even shape and color are taken from a distribution
specified by the scene designer. Fractals [Four82] and particle systems [Reev83] are two approaches to
stochastic procedural modeling.

Some rendering algorithms can interpret a variety of primitives directly. Many others require all
objects to be defined in terms of a single intermediate representation, such as planar polygons. This inter-
mediate representation may be hidden from the scene designer by a algorithms that convert other primi-
tives to the required form.

To complete an object’s description, the designer assigns surface characteristics such as color, tran-
sparency, and textures. Information about the material properties and visual characteristics are stored in
the model database along with the geometric data. Shading is computed according to an illumination
model, which requires light sources to illuminate the scene. Realistic scenes can contain many light

Category Information Specified

shape
dimensions
position
orientation

Object Geometry

color
Surface Properties texture

The Scene optical properties

number
position
Light Sources direction
shape
color

position

direction

field of view

model for camera or eye

The Viewer | Viewing Specifications

Table 2.1. Image specifications.

sources with varied characteristics, such as color and shape.

The scene itself is specified by the object descriptions and the lighting. Viewing specifications are
external to the scene, but they are required for image creation. The model for the camera or eye is often
created along with the model for the scene, so Table 2.1 includes viewing specifications.

For computer-generated animation the scene specifications are dynamic over a sequence of indivi-
dual frames. An animator or an algorithm defines the movement of objects within the scene. The shape
or appearance of objects, the viewpoint, and the lighting conditions can change during an animated
sequence.

2.2.1. Modeling Costs

Ordinarily, modeling is independent of rendering, so its costs are not directly relevant. However,
some modeling operations are performed on-the-fly by rendering systems.

For example, the initial modeling phase specifies only algorithms and general parameters for pro-
cedural models. Some typical parameters include the number of objects to be generated, their mean size,
and the variability of their sizes. To save space and time, the model is not fully instantiated until it is
needed. The detailed specifications for procedural objects may be generated by a preprocessor or at
rendering time.

Some rendering systems operate on only one type of geometric primitive, such as planar polygons.
The renderer may support a wider variety of primitives by converting them on-the-fly to the required
intermediate representation. For example, bicubic patches may be subdivided recursively until the sub-
patches are nearly flat or until they are smaller than some maximum screen size. The resulting sub-
patches are then approximated by a simple polygon.

The complexity of these modeling functions depends on the type of modeling operations required,
the number of objects involved, their size, and their geometric complexity. The following section

discusses measures of geometric complexity in more detail. Viewing specifications also influence the
cost of on-the-fly modeling, because less detail is visible when objects are distant. Adaptive algorithms
for subdivision and procedural modeling adjust the level of detail according to the object’s size on the
screen, which changes with the viewing distance. When an object is viewed from nearby, a detailed
model is necessary. When the same object is viewed from a distance, a simpler model can represent it
adequately.

Table 2.2 summarizes the costs of on-the-fly modeling operations that may be performed by the
rendering system.?

Category Cost Factors

Scene Characteristics type of modeling needed
number of objects
geometric properties of objects

Viewing Specifications | viewing distance

Table 2.2. Modeling cost factors. The list is limited to modeling operations performed at
rendering time.

2.3. Geometric Operations and Complexity Measures

Geometric computation is the foundation of computer graphics and occurs in all stages of the image
synthesis pipeline. Before describing any rendering algorithms, we will discuss some important
geometric concepts and cost factors that apply throughout the rendering process.

2.3.1. Coordinate Systems and Transformations

Typically, a series of coordinate systems, or spaces, is used during the image synthesis process. A
matrix multiplication transforms the data from one coordinate system to the next. A sequence of transfor-
mation matrices can be composed into a compound transformation matrix by pre-multiplying. With the
compound matrix, a single matrix multiplication applies the entire sequence of transformations to each
data point. In the image synthesis literature, individual coordinate systems have been given many names,
which are sometimes conflicting. This thesis uses one name for each coordinate system. Foley et al. pro-
vide a comprehensive list of coordinate system names [Fole90, pages 279-281].

For convenience, each object, or part of an object, can be modeled in its own local coordinate sys-
tem. For more complicated objects and scenes, all of the primitives are transformed into a single world
coordinate system. This is accomplished by a modeling transformation that composes a sequence of
operations such as rotation, translation, and scaling.

The local and world coordinate systems are view-independent. After the model is transformed into
eye space, coordinates are defined relative to the viewer’s position. Typically, the viewer looks in the
positive z direction, with x to the right and y up. Next, a viewing transformation projects the scene onto
the screen coordinate system. This transformation depends on the field of view. Its x and y coordinates
describe the location of pixels on the screen. They may be integers corresponding to the image

2 It can be argued that some applications of texture maps serve a modeling function. Some examples of quasi-
modeling applications are varying the surface texture, varying the surface normal, or describing surface displacements.
Because these texturing applications are more commonly considered part of shading and because their costs are in-
curred during shading, texturing is considered along with shading in Section 2.6. Other texture map applications simu-
late global illumination effects, such as reflections or shadows. They clearly serve a shading function.

resolution, or they may be normalized values with the range [0,1] describing the extent of the screen.
Thus, integer arithmetic or lower-precision calculations are often suitable. Many rendering algorithms
determine visibility in screen space, so depth information is retained and the model is still described in a
three-dimensional coordinate system. For realistic images a perspective projection is used, so that objects
appear smaller as their distance from the viewer increases. The perspective transformation preserves the
depth order, straight lines, and flat planes of the original scene; visible-surface algorithms can therefore
operate on the perspective data.

Eventually, the scene is mapped onto device space, the two-dimensional coordinate system of the
display. Because the perspective transformation has already been applied, a simple orthographic projec-
tion of the transformed scene onto the screen is the equivalent of a perspective projection of the original
scene. The orthographic projection drops the z coordinate and transforms x and y directly into display
addresses.

Table 2.3 summarizes this sequence of coordinate systems. All are three-dimensional until the final
transformation into two-dimensional device coordinates. Most algorithms use only some of these coordi-
nate systems. Some, such as ray casting algorithms, operate on world coordinates. They project rays into
the scene from discrete points on the screen. The nearest object that intersects a ray is visible at the
corresponding sample point. In theory, many classical algorithms follow the progression of Table 2.3.
They project objects onto the image plane and operate on them in screen space. But in practice, many of
these algorithms combine transformations and do not explicitly use every coordinate system.

Name Description

local many local spaces for subsets of the scene; often hierarchical

world describes the complete scene; independent of viewpoint

eye relative to viewpoint and view direction

screen screen coordinates (may be normalized); after perspective transformation
device device-specific addresses

Table 2.3. Coordinate systems.

2.3.2. Geometric Cost Factors

The cost of rendering realistic images is dominated by shading and the visible surface problem.
Coordinate transformations and the geometric aspects of runtime modeling typically consume less com-
pute time.3 However, there is a geometric aspect to all stages of image synthesis, and the geometric com-
plexity of the scene affects the costs of operations throughout the rendering process.

In 1974, Sutherland, Sproull, and Schumacker published an influential analysis of the visible surface
problem [Suth74]. They identified a set of ‘‘statistical measures of environmental complexity’’ that
affect visible-surface performance. These statistics characterize the geometric complexity of the models
and, to some extent, the spatial distribution of objects. Because algorithms for polygons dominated com-
puter graphics in 1974, the complexity measures are based on faces and edges. These complexity meas-
ures are a good starting point, but we must now include a broader range of primitives.

The list of geometric complexity factors in Table 2.4 is not exhaustive, but it summarizes the pri-
mary categories. Unlike Sutherland, Sproull, and Schumacker, it separates the intrinsic characteristics of
the model from the view-dependent characteristics of its projection into screen space. In addition, it
recognizes geometric entities that the rendering system may create by subdividing primitives or convert-
ing objects to an intermediate form.

3 Some profiling results are given in Chapter 3 and by Schoeler and Fournier [Scho86].

10

Category Cost Factors

types of modeling primitives

number of primitives

size of primitives

relationships of primitives, e.g. intersection
3D spatial distribution of primitives
variability of these properties

View-independent

screen size of primitives

sum of screen area covered by all primitives
number of relevant primitives

size of relevant primitives

number of visible primitives

size of visible primitives

screen area covered by visible primitives

2D spatial distribution of primitives in the image
depth complexity

variability of these properties

View-dependent

number of rendering primitives
Rendering-dependent | size of rendering primitives
distribution of rendering primitives

Table 2.4. Geometric complexity factors. Rendering factors describe internal primitives gen-
erated by the rendering system.

The view-independent factors in Table 2.4 describe the intrinsic properties of the complete scene.
A scene might contain only polygons, or it might contain many types of geometric primitives. Algo-
rithms that manipulate primitives vary in complexity according to the geometric properties of the primi-
tive. Other factors include the number of primitives of each type and their dimensions. Relationships
among the objects can also affect costs. Sutherland, Sproull, and Schumacker cite intersecting polygons
as an example; some algorithms split polygons or create an implied edge at the line of intersection.

Another set of complexity statistics are view-dependent. Given the viewing specifications, we can
determine which objects are visible or potentially visible. Some invisible objects can be eliminated with
simple culling operations, before the system applies the full visible surface algorithm. The aim of culling
is to quickly eliminate surfaces that cannot possibly be visible, such as objects located behind the viewer
or the back-facing sides of opaque surfaces. The cost of some rendering systems is dominated by the
characteristics of the relevant primitives that remain after culling.

Many objects survive an initial cull but are still wholly or partially outside of the screen area. A
clipping algorithm determines the intersection of a primitive’s projection with the screen. If a primitive
straddles the edge of the screen, the clipping algorithms trims it and discards the portion that falls outside
of the image area.

Normally, only a subset of the relevant primitives are actually visible in the image. The perfor-
mance of certain algorithms is sensitive to the characteristics of the visible primitives. For example, most
rendering systems shade only visible objects.

11

Given the viewing specifications, we can also determine the dimensions of primitives, in pixels,
when projected on the screen. This screen size is an important cost factor for many rendering systems.
The complexity of many algorithms is proportional to the number of pixels covered by the objects in the
scene. Some algorithms consider an object’s apparent size when deciding the level of detail to generate
during procedural modeling or to process while rendering.

A primitive that covers several pixels of the display is typically specified by only a few coordinates,
polygon vertices for example. In a process called scan conversion, the rendering system examines the
coordinates and outputs values for all pixels covered by the primitive. Some algorithms scan convert
whole primitives directly, by filling the pixels they cover. Other algorithms perform the operation
indirectly. They sample the scene at each pixel, finding the visible objects and determining the proper
shade.

Different expressions more closely describe the performance factors for different algorithms. We
will consider a variety of size statistics, even though some are easily derived from others. One example is
the depth complexity, which measures the average number of primitives that project onto each point of
the image. Assume that the objects have been clipped to the screen, leaving only primitives whose pro-
jections are contained within the screen area. Then, let n be the number of primitives and g; be the screen
area of primitive i. The total screen area of all objects, visible or hidden, is defined by:

If A, is the area of the screen covered by visible objects, we can calculate the depth complexity, D, as the
ratio:

D =

A,

The final category in Table 2.4 covers cost factors that vary with the rendering system. These fac-
tors describe properties of any intermediate primitives that the renderer may create internally, for example
as the result of polygonalization. Their values may depend on run-time controls that the system provides.

Sutherland, Sproull, and Schumacker focused on averages and sums to describe geometric complex-
ity. Many parallel graphics systems use spatial or screen subdivision, assigning regions of world space or
of screen space to different processing nodes. Other rendering systems use spatial or screen subdivision
as part of a divide-and-conquer strategy to improve uniprocessor performance. These approaches are
most efficient when the sub-problems are approximately equal in complexity. Thus, the distribution of
primitives in 2D and 3D space and the variability of the complexity measures have become increasingly
important.

The performance of a rendering system is also sensitive to its ability to exploit locality in the data.
The tendency for images to be similar in a spatial or temporal neighborhood is called coherence. This
property was discussed extensively by Sutherland, Sproull, and Schumacker. On the image plane, coher-
ence is exhibited by the similarities among contiguous locations, which typically display the same object
or similar objects. Furthermore, the shading and texture of an object is usually similar at adjacent loca-
tions on the screen. Spatial coherence is also seen in the three-dimensional relationships among objects
in a scene, and temporal coherence is seen in consecutive frames of an animated sequence. Algorithms
that capitalize on coherence can reduce the cost of many calculations and improve the locality of memory
and disk references. It is often possible to avoid repeating complex calculations by performing simple
incremental adjustments. The degree of coherence is reflected in many of the complexity measures, such
as the number of primitives, their types, and their sizes both in world space and in image space. Images
have become more complex since 1974, and increases in complexity tend to reduce some forms of coher-
ence. For example, a simple image might display a few large primitives. In this case, the typical primi-
tive would cover many pixels. In contrast, complex images tend to display large numbers of small

12

primitives; the average primitive may be smaller than a pixel.

In summary, geometric cost factors characterize the number, type, and sizes of primitives, their vari-
ability, and their spatial distribution. We can apply these complexity measures to the modeling primi-
tives, to their projection on the screen, to the visible subset of their projection, or to internal rendering
primitives. We must choose an appropriate set of statistics to analyze any specific renderer, since the
effect of the geometric cost factors depends on the structure of a rendering system and the algorithms that
it uses.

2.4. Antialiasing

The scene is modeled by continuous, high-precision primitives, but the final image displays a grid
of discrete dots. A high-quality rendering system must avoid or reduce the undesirable visual artifacts
that will arise if the mapping from the continuous to the discrete is not done carefully. The problem of
avoiding these visual defects is called antialiasing.

The appearance of jagged edges in place of smooth silhouettes is a classic defect of simple render-
ing algorithms. But the potential problems are even more extensive, occurring in the interior of surfaces
as well as at the edges. Small or thin objects can fall into the cracks between pixels, although they should
make some contribution to the image. Long, thin objects may appear at some pixels and disappear at oth-
ers, taking on a beaded or segmented look. Sub-pixel detail, such as textures or highlights, may be
represented inaccurately. More subtle problems surface in animation. For example, motion may appear
jerky rather than smooth. A small object can appear in some frames and not in others, depending on how
it intersects pixel boundaries, and it will appear to ‘‘twinkle’’ or ‘‘pop’’ in and out of the animated
sequence.

Signal processing theory explains that these artifacts are due to sampling the high-frequency, con-
tinuous model at an inadequate low frequency. In other words, the resolution of the image is too coarse
to accurately represent all the detail in the model. This leads to the problem called aliasing. Antialiasing
is the process of reducing, or avoiding, the defects introduced by aliasing. In image synthesis, the display
frequency is dictated by the grid of pixels, whereas the frequencies represented in the model may be arbi-
trarily high. Crow discusses the aliasing problem in computer graphics and reviews some early antialias-
ing algorithms [Crow77, Crow81].

2.4.1. Approaches to Antialiasing

Let’s view each pixel as representing not just a point, but a finite area. In an antialiased image, the
color for a pixel is determined by contributions from all objects that are partially visible within its area.
The contribution of an object to the pixel’s intensity is weighted by the proportion of the pixel’s area in
which it is visible. Figure 2.2 illustrates this concept.

Figure 2.2. Weighted intensity contributions. If the white polygon is closer to the viewer than
the dark polygon, a simple algorithm without antialiasing might display a completely white pix-
el. The most accurate shade for this pixel would be a dark gray that is a weighted blend of the
two shades. We would, in fact, prefer the color of the darker polygon to white.

13

The problems of antialiasing and visible surface determination are closely tied. Antialiasing
requires information about all objects partially or wholly visible in any part of the pixel. Ideally, this
information is generated by the visible surface algorithm. Simple algorithms that consider only the
nearest visible object for each pixel do not, in general, provide adequate support for antialiasing.
Antialiasing algorithms use different approaches to obtain either approximate or more exact information
about partial pixel coverage and they produce images of varying quality. Some algorithms continue to
consult the full three-dimensional object descriptions. Others extract only some approximate informa-
tion, such as the percentage of pixel coverage. Three approaches to antialiasing are discussed below.

1. Post-processing strategies blur the computed image to make some visual artifacts less apparent.
For example, image processing algorithms can smooth jagged edges. Unfortunately, blurring reduces the
quality of the image and destroys information. These methods tend to be ineffective with surface details
such as textures or highlights on glossy surface, and we will not consider them further.

2. Area Sampling, proposed by Catmull in 1974 [Catm74], supports highly accurate antialiasing.
The idea of area sampling is to integrate the contributions of all visible objects or fragments over the
screen area associated with each pixel. The intensity of a pixel is set to the average over its region. An
object’s contribution is determined according to a filter function, called the kernel. The kernel specifies
the region of the image plane that affects the intensity of the pixel.

The box filter is a simple form of area sampling. The contribution of an object to the pixel’s color is
proportional to the area of the square that it covers. A box filter models the image as a grid of non-
overlapping square pixels, as in Figure 2.3(a). The filter is unweighted, which means that an object’s
contribution is determined only by its area and not by its location.

For greater accuracy, objects within a larger radius can contribute to the pixel, and the contributions
can be given more weight closer to the pixel’s center. Weighted filters model pixels more like the dots on
a video monitor. In Figure 2.3(b), for example, a pixel is represented by a circle with a diameter of two
pixel widths; therefore, the regions of adjacent pixels overlap. To visualize the weights increasing
towards the center of the pixel, we can imagine each circle in Figure 2.3(b) describing the base of a
three-dimensional object, such as a cone. The height of the object, which represents the filter’s weighting
function, increases from the perimeter towards the center.

One weighted filter that produces good results is a Gaussian filter. It weights an object’s contribu-
tion according to a Gaussian distribution with the origin at the pixel’s center. This distribution gives
greater weight to objects nearer the center of the pixel and is radially symmetric. In practice, such a dis-
tribution is truncated so that only objects within a finite radius of the pixel’s center (typically about one
pixel width) affect the intensity of a pixel. The extent of this region is called the filter’s support.
Feibush, Levoy, and Cook [Feib80] describe the implementation of a such a filter and the rationale for its
design.

(@)
Figure 2.3. Filters.

14

Exact analytic algorithms for area sampling tend to be computationally intensive, but cheaper
approximations have been developed. For example, coverage mask strategies can give discrete approxi-
mations to an unweighted filter [Carp84, Fium83, Schu80]. A coverage mask is a bitmap that records
coverage information for a regular grid of subpixels within each pixel. Another efficient approximation is
the use of lookup tables for sampling with either weighted or unweighted filters [Abra85, Feib80].

3. Supersampling computes the image at a higher resolution, thereby increasing the sampling rate.
This approach is generally associated with point sampling rendering algorithms, which determine visibil-
ity and intensity at discrete points. Simple point sampling algorithms select only one point per pixel,
often its center. They compute the color of whichever object is visible at the sample point and assign that
color to the pixel. Because of their coarse resolution, these simple algorithms tend to have many prob-
lems with aliasing. With supersampling, the renderer computes not one, but many, intensity values per
pixel and then averages the sub-pixel values to calculate the pixel’s intensity. The samples can be com-
bined with either a weighted or unweighted filter.

More abstractly, point sampling is an approximation to area sampling, and Fiume shows that it con-
verges to area sampling as the sampling frequency increases [Fium89].

Supersampling is simple to implement and reasonably effective, but it cannot solve all problems. If
the scene contains patterns of sufficiently high frequency, any given sampling rate will be inadequate. A
second disadvantage to supersampling is its cost. The computation time tends to increase with the sam-
pling resolution, and satisfactory antialiasing may require a much higher resolution.

Stochastic sampling addresses these problems with an approach supported by signal processing
theory. Its principles and applications to image synthesis have been described by Cook [Cook86] and by
Dippé and Wold [Dipp85]. Conventional algorithms, whether they use one or many samples per pixel,
sample on a regular grid of uniformly-spaced locations. Stochastic sampling differs by selecting an irreg-
ular or randomized pattern of samples, usually in combination with supersampling. Low sampling rates
still introduce errors, but the advantage of stochastic sampling is that the errors appear as noise, without
the objectionable visual patterns of aliasing. Various types of sampling patterns and filters may be used,
but in practical implementations both sampling and filtering may be table-driven. Another advantage of
stochastic sampling is that it leads to natural solutions to such problems as motion blur, penumbras, and
depth of field [Cook84b].

Adaptive supersampling is another approach to lowering the cost of antialiasing. The idea is to
increase the sampling rate only where the image contains high-frequency information. An early example
of adaptive sampling is described by Whitted [Whit80]. He samples at the corners of each pixel and aver-
ages the intensity values; if the intensity at the corners differs from the average by more than a given
threshold, the pixel is subdivided for further sampling. Lee, Redner, and Uselton consider statistical cri-
teria for determining the sampling rate [Lee85]. Adaptive sampling can be combined with stochastic
supersampling.

2.4.2. Antialiasing Costs

Because of the ties between antialiasing and visibility, their costs are closely related. Several
geometric factors help determine the size of both problems, including the number of objects visible in the
scene, the screen area they cover, and the average number of objects intersecting a pixel. The scene
geometry is not directly important for postprocessing algorithms, which operate on the rendered image.
They are affected by the number of pixels covered by visible objects and by the frequency of detail in the
two-dimensional image.

The frequency of detail in the scene determines the sampling rate of adaptive algorithms and has a
large effect on their performance. This detail includes not only the geometric structure of objects, but
also surface features such as textures, highlights, and reflections. The frequency of detail with respect to
the image is affected by the screen size of objects, which, in turn, depends on the viewing distance and

15

image resolution.

Antialiasing costs are also influenced by parameters that are set at rendering time. The display reso-
lution affects the cost of both visibility and antialiasing. Antialiasing introduces a related factor: the sam-
pling resolution, or the computed resolution for area-averaging algorithms. The choice of a filter, espe-
cially its area, further affects the cost. Section 2.3.2 discusses the geometric cost factors that affect most
image synthesis operations, while Table 2.5 below lists the factors that are special to antialiasing.

In general, an algorithm that supports good antialiasing needs more information than a less sophisti-
cated algorithm, so we can expect its memory costs to be higher.

Category Cost Factors

Scene Characteristics frequency of detail

Viewing Specifications | viewing distance

Rendering Parameters filter area
image resolution
sampling frequency

Table 2.5. Antialiasing cost factors. This table lists factors that specifically affect antialiasing
costs. The geometric cost factors discussed in Section 2.3.2 also affect antialiasing algorithms,
except for post-processing algorithms.

2.5. Visibility

The visible surface algorithm examines the model to determine what is visible with respect to the
specified viewpoint.

2.5.1. Approaches to the Visible Surface Problem

Visibility algorithms are often classified as either image-space or object-space algorithms[Suth74].
Image-space algorithms approach the problem from each pixel in the image. They examine the objects in
the scene to determine which are visible in the area represented by the pixel. These algorithms typically
operate at the precision of the image resolution, or of the sampling resolution. In general, the complexity
of image-space algorithms is proportional to the product of the number of objects and the number of pix-
els. Object-space algorithms approach the problem by considering the relationships among the objects.
They compare primitives to determine if one obscures the other, either partially or completely. These
algorithms tend to operate at the precision of the model’s definition, which is usually higher than image
precision. In general, the complexity of straightforward object-space algorithms is proportional to the
square of the number of objects. Foley et al. [Fole90, page 650] compared the complexity of image-space
algorithms (np, where n is the number of objects and p is the number of pixels) and object-space algo-
rithms (n2): ‘‘Although this second approach might seem superior for n<p, its individual steps are typi-
cally more complex and time consuming, ... so it is often slower and more difficult to implement.”’

Visible surface algorithms, like antialiasing algorithms, may also be classified as either point sam-
pling or area sampling. When discussing rendering performance, another useful way to categorize the
algorithms is by the order in which objects are processed. We will follow this approach, describing four
classes of visible surface algorithms and a hybrid category.

1. Arbitrary order algorithms process objects one-by-one, in any order. The primary example is
the simple z-buffer algorithm, introduced by Catmull [Catm74], and its variants. This image-space algo-
rithm requires a z-buffer, or depth memory, which has an entry corresponding to each pixel stored in the

16

frame buffer. The z-buffer is initialized to the depth of an assumed background located behind the scene.
Objects are scan-converted one at a time, in any order. At each pixel, the object’s depth (that is, its z
coordinate) is compared to the value already in the z-buffer. If the new object is closer to the viewer, its
intensity is stored in the frame buffer and its depth is stored in the corresponding cell of the z-buffer.

Because the simplest z-buffer algorithm maintains no sub-pixel information, it cannot support
antialiasing. Sometimes a z-buffer is combined with supersampling to enable antialiasing. A modified
z-buffer can also support antialiasing by maintaining per-pixel lists of visible objects. Other antialiasing
z-buffers retain approximate information, such as the fraction of the pixel area covered by a set of objects.

The z-buffer algorithm makes a single pass over an unsorted data base, performing a constant
number of operations for each pixel covered by an object. Thus, its costs rise linearly with the total
number of pixels covered by all objects. The basic operations are simple, and there are no direct pairwise
comparisons of objects. The algorithm is, therefore, suitable for moderately complex scenes. If the
workload contains large primitives, the renderer can use incremental calculations to interpolate the depth
across scan lines and from one scan line to the next.

The z-buffer requires a second large memory, but the algorithm may save some object memory.
When objects are rendered in an arbitrary order, they may be discarded after processing. Antialiasing
algorithms usually require extra memory to maintain more extensive information about partial pixel cov-
erage. The extra memory can take the form of coverage masks (Section 2.4.1), sub-pixel information for
supersampling, or retained object descriptions. Approximate methods may consume less memory, but at
the same time they may limit image quality.

2. Screen-area order algorithms subdivide the screen and process together all objects that appear
in the same region. Objects are pre-sorted, often with a cheap bucket sort on the line where the object
first enters the image. One approach to screen-area subdivision is illustrated by scan-line algorithms,
which examine together all objects that intersect a given scan line. Other types of subdivision algorithms
partition the screen into rectangles. The main objective of these algorithms is to exploit coherence by
processing objects in a suitable spatial ordering. By working on smaller sub-problems, they can often
reduce the processing time for steps that are worse than linear. Spatial subdivision algorithms may also
save memory; they can usually discard object descriptions after each region is processed.

Scan-line algorithms typically step along the scan line horizontally, doing all work for a pixel at one
time. Classical image-space scan-line algorithms, such as Watkins’ [Watk70], were developed for
rendering polygonal models. They take advantage of scan line coherence and process polygons with sim-
ple incremental calculations. At each pixel, the polygon’s depth and color are adjusted by a per-pixel
increment to compute values for the next pixel. This optimization works for large primitives that cover
many pixels, but it is ineffective for the tiny primitives that are common in complex images. This
approach was later extended to other types of primitives. Blinn, Whitted, and the team of Lane and Car-
penter developed algorithms for rendering bicubic patches in scan line order [Blin80].

Some screen subdivision algorithms, including classical scanline algorithms, use a fixed set of uni-
form regions. Other algorithms generate adaptive, rather than regular, regions. Warnock [Warn69] sug-
gested a recursive subdivision algorithm. It divides each region along pixel boundaries into four equal
subregions. If no more than one primitive is visible in the subregion, visibility is determined for the
subregion. Otherwise, the area is subdivided recursively. The recursion ends when visibility is deter-
mined for all pixels, or when the subdivision reaches the sampling resolution. Dividing objects along
subregion boundaries dominates the cost of this algorithm. The object-space ‘‘cookie cutter’’ algorithm
of Weiler and Atherton [Weil77] also subdivides the image until a single primitive is visible. It differs
from Warnock’s algorithm, because it clips primitives along the boundaries of other primitives. The
algorithm is based on the observation that visibility can change only at the boundary of objects. It
requires complicated geometric operations that are most practical for polygonal models. In the worst
case, the Weiler-Atherton algorithm could require that each primitive be compared with every other prim-
itive. As with Warnock’s algorithm, it depends on object coherence for efficiency and is most suitable for

17

images that display large primitives.

Screen-order algorithms seem well-suited to antialiasing, since it is natural to consider the contribu-
tions of all objects that are visible at a single pixel.

3. Depth order algorithms pre-sort primitives by their depth relationships and render them in
sorted order. Screen-space algorithms sort the primitives once for each view of the scene. The ordering
may be either back-to-front or front-to-back. Either order accommodates transparency naturally and per-
mits antialiasing. Another category of algorithms, called depth-priority or list-priority, determine view-
independent visibility relationships once per static scene in a separate pre-processing step.

The ‘‘painter’s’’ algorithm suggested by Newell, Newell, and Sancha [Newe72] sorts all objects
back-to-front in screen space and renders them, one-by-one, into the frame buffer. Nearer objects are
painted on top of more distant objects. If an object is tagged as transparent, the background is allowed to
show through by blending the existing image with the color of the transparent object. Back-to-front algo-
rithms must process everything, even if the nearest primitive is opaque and covers the entire pixel.
Reeves used an antialiased variation of the painter’s algorithm to render complex images of natural
phenomena [Reev85].

The Evans and Sutherland CT-5 flight simulator renders objects in a front-to-back order [Schu80].
A high resolution coverage mask records which portions of each pixel have been filled. This coverage
mask supplies sub-pixel information for approximate antialiasing. Once a pixel has been completely
covered by opaque objects, more distant primitives can be ignored.

Depth-priority algorithms pre-process a static data base in world space to obtain depth relationships
that are independent of the viewpoint [Fuch80, Hubs82, Suth74]. Because the priority computation is
expensive, these algorithms are most useful in applications such as flight simulation and architectural
“‘walk throughs,”” where many views will be generated of the same static scene. A linear traversal of the
ordered data renders each view efficiently.

The performance of all of the depth order algorithms is determined by the number of primitives and
their depth relationships. When objects overlap, the algorithms must split them before resolving depth
order. Thus, overlap in the scene increases the number of internal rendering primitives and the compute
time. The number of visible objects and the size of transparent surfaces further influence the performance
of front-to-back algorithms, which can discard more distant objects once the screen is covered by opaque
surfaces. When objects are rendered back-to-front, as with the painter’s algorithm, all surfaces must be
shaded, even surfaces that are obscured by closer objects.

4. Random order processing is typified by the recursive ray tracing algorithm, which determines
visibility and shading concurrently. Ray tracing models the properties of light and can simulate
reflection, refraction, shadows, and transparency in a unified way [Kay79, Whit80]. Rays are projected
from each pixel into the scene, typically in scan line order. The rays are intersected with the primitives in
the scene to determine the nearest object. When a ray hits a primitive, illumination information is com-
puted. Depending on the surface characteristics of the intersected object, secondary rays are sent out in
the direction of transmission and reflection. Thus, ray tracing models the reflection of one object on
another.

The secondary rays can be transmitted anywhere in world space, and they potentially intersect any
object in the scene. Consequently, the order in which objects are accessed depends not only on the order
in which the primary rays are cast from the image plane but also on the lighting and reflectance properties
of the model, which determine the direction of the subsequent rays.

A non-recursive ray tracing algorithm, also called ray casting, solves only the visible surface prob-
lem. It casts just the first level rays from the screen to determine the nearest visible object. Given a suit-
able organization of the model data, a non-recursive ray tracer need not access primitives in a truly ran-
dom order.

18

The cost of a brute-force ray tracing algorithm is dominated by ray-primitive intersections. It is
prohibitively expensive to test all rays against all primitives in a highly complex scene. There are many
strategies to reduce the number of intersections. Instead of examining all objects for each ray, they exam-
ine only likely candidates. Object partitioning, by either spatial subdivision or some hierarchical arrange-
ment of the data, is the key to reducing the number of intersections.

The cost of intersecting a ray with an object depends on the type of primitive. Thus, the cost of ray
tracing is affected not only by the number of primitives but also by their types. Some systems simplify
the problem of solving for intersection by enclosing objects in simple bounding volumes, for example,
[Rubi80] or [Kay86]. The cost is also affected by the image resolution, which determines the number of
primary rays. Supersampling and stochastic sampling have been applied to ray tracing to produce
antialiased images [Cook84b]. For antialiased images, the sampling frequency further influences the
number of primary rays. Adaptive supersampling algorithms concentrate rays in areas of greater detail,
and their cost increases with the frequency of detail in the image.

5. Hybrid schemes combine scene partitioning with one of the other approaches to save time,
memory, or both. In many cases, the object ordering is not an intrinsic part of the underlying algorithm,
but an independent optimization.

Spatial subdivision is often combined with another approach. For example, the CT-5 flight simula-
tor and its successors have used spatial subdivision in hardware implementations of a front-to-back visi-
bility algorithm. Multiple processing units perform the visible surface algorithm on several groups of
small sub-regions because of the prohibitive cost of enough hardware to process the entire image at once.
Two different rendering systems developed at Lucasfilm use modified z-buffers and subdivide the screen.
Carpenter’s A-buffer algorithm [Carp84] supports approximate antialiasing with a coverage mask. The
Reyes image synthesis architecture uses a stochastic sampling visibility algorithm [Cook86]. Both of
these systems could theoretically process objects in any order, but they subdivide the screen to save
memory. The A-buffer system processes objects in scan line order, and Reyes uses rectangular regions.

An approximate pre-ordering of the data is another cost reduction technique. Consider the z-buffer
algorithm, which paints primitives into the frame buffer in an arbitrary order. The algorithm shades many
objects that it later overwrites. A preliminary front-to-back sort based on approximate depth bounds may
eliminate much of the unnecessary shading. A similar optimization has been applied to Reyes, as
described in Chapter 3.

Ray tracing systems use many forms of object partitioning. If the objects in the scene are organized
suitably, only a subset need to be tested for intersection with a given ray. These approaches lead to more
efficient uniprocessor implementations and can also be the basis for parallel implementations. Spatial
subdivision schemes have used either adaptive partitions (for example, [Dipp84] or [Glas84]) or regular
partitions (for example, [Fuji86]). Other ray-tracing algorithms use bounding volumes and object hierar-
chies to reduce the number of intersections [Kay86, Rubi80, Wegh84]. Hierarchical object grouping can
also be applied to image-space algorithms [Clar76].

2.5.2. Visible Surface Costs

Since visibility is a geometric problem, the geometric cost factors discussed in Section 2.3.2
predominate. Table 2.6 lists additional factors that influence the cost of the visible surface problem. In
general, the number and size of primitives in the scene determine the size of the problem. Sometimes all
of the primitives in the scene affect the runtime, as with the z-buffer. In other cases, the subset of visible
primitives dominates, as with front-to-back rendering. In general, the types of primitives in the scene
affect the complexity of the geometric calculations. Other geometric factors are important to certain
algorithms. For example, depth relationships and overlap affect depth-priority algorithms, and the spatial
distribution of objects affects spatial subdivision algorithms. The number and size of transparent surfaces
affect algorithms that support transparency.

19

Frame-to-frame coherence characterizes the similarities between consecutive frames of an animated
sequence of images. Some algorithms, such as the depth priority methods, depend on frame-to-frame
coherence and are efficient when many images are generated of a static scene.

Appropriate data structures speed processing. Some rendering systems use supplementary data. For
example, bounding boxes describe the minimum and maximum x and y coordinates of an object, and
bounding volumes can delimit the extent of objects in three-space. Simple calculations with bounding
boxes often replace more complicated operations on the actual object geometry. Bounding boxes are also
useful for bucket sorts that partition the data spatially. Some rendering systems group related objects in
hierarchical data structures that provide extra coherence.

Sutherland, Sproull, and Schumacker emphasized the importance of sorting to the visible surface
problem. Primitives are sorted by depth and into the proper location on the screen. Sorting performance
is influenced by the algorithm, the size of the problem, and by the initial ordering of the data. It is impor-
tant to choose efficient sorting techniques. For example, radix sorts group objects into scan line buckets
with a linear pass over the data. Many algorithms partition the image into small sub-problems. In this
case, a bubble sort can be efficient, especially when the objects are almost in order.

Category Cost Factors

Scene Characteristics | changes in objects’ shapes over time
movement of objects over time

Rendering Parameters | number of images (frames) per scene
initial ordering of model data
data structures (hierarchy, bounding volumes, etc.)

Table 2.6. Visibility cost factors. This table lists factors that affect visibility costs only. The
geometric cost factors discussed in Section 2.3.2 are also critically important.

Sutherland, Sproull, and Schumacker estimated the performance of several visible-surface algo-
rithms as a function of the number of polygons in the scene [Suth74, page 346], and Foley et al. normal-
ized their results [Fole90, page 716]. Figure 2.4 is based on Dennis’ graph of the normalized data
[Denn90]. Sutherland, Sproull, and Schumacker estimated both the timing data and the workload com-
plexity without making any measurements. They suggested that their estimates be used only for order-
of-magnitude comparisons. Their performance analysis estimated the visible surface processing time for
three hypothetical scenes with varying complexity. In these scenes, the aggregate screen area is approxi-
mately constant. Consequently, the average screen size of a polygon varies inversely with the number of
polygons in the scene.

As Figure 2.4 shows, the depth sort algorithm is efficient for small scenes. When the number of
polygons increases, more complicated depth relationships and overlap problems make the algorithm very
expensive. We have already noted that two algorithms, the scan-line algorithm and Warnock’s subdivi-
sion, are more efficient for larger primitives. Their estimated runtimes increase with the scene complex-
ity, as primitives tend to become smaller. In contrast, the cost of the z-buffer depends primarily on the
total number of pixels covered by all primitives. Its runtime stays constant under this workload complex-
ity model. However, the z-buffer normally shades all objects in the scene, while ray tracing shades only
surfaces that affect the final image. For very complex scenes, Kajiya argues that ray tracing becomes
more efficient [Kaji88].

Other characteristics of the workload, besides the size and number of primitives, influence the
choice of an algorithm. The types of geometric primitives in the workload may be an important

20

1000 —
m Depth sort
/.-~ Warnock subdivision
100 — ///A Scan line
Estimated — : d Z-buffer
Time '
(normalized)

i I I I
100 1000 10000 100000

Polygon faces

Figure 2.4. Estimated run time for four visible-surface algorithms.

consideration, because some visibility algorithms are efficient only for limited types of primitives. For
example, the Weiler-Atherton algorithm requires complex clipping algorithms that are practical only for
polygons. The choice of an algorithm is also influenced by the visual effects, such as transparency, that
the application requires. Recursive ray tracing, scan-line, and depth order algorithms support tran-
sparency easily, but straightforward z-buffer algorithms cannot render transparent surfaces accurately.*
Some algorithms are optimized for applications that render many views of a static scene. For example, a
single rendering would probably not recoup the cost of a depth-priority algorithm’s extensive pre-
processing.

Systems issues such as parallelism, hardware support, and time/memory tradeoffs favor certain
algorithms. In a successful parallel implementation, the data must be partitioned without destroying any
type of coherence needed by the chosen algorithms. The independence of each primary ray makes ray
tracing amenable to parallel implementation, but its random access to a potentially large data base com-
plicates data distribution and communications issues. Hardware implementations are practical for simple
z-buffer algorithms and the scan conversion portion of depth-order algorithms, if we assume a simple
shading model. Tradeoffs between time and memory have shifted since Sutherland, Sproull, and
Schumacker compared visible surface algorithms. They advocated scan-line algorithms over a z-buffer
for complex images, because the additional depth memory was impractical at the time. Commercial z-
buffer systems have now been common for many years. Spatial subdivision schemes often save memory,
although they tend to increase the complexity of a system and may increase runtime.

4 See Foley et al. for a detailed explanation [Fole90, page 754-755].

21

2.6. Shading and Texturing

The rendering system must determine a color value, or intensity , for each visible surface in the
scene. The intensity describes the light reflected by the surface towards the viewer. Its value is normally
a triple of red, green, and blue color components. In real scenes, the intensity perceived by a viewer is
affected by the material properties of the surface, its position and orientation with respect to the viewer,
the properties and position of light sources, and inter-reflectance among the objects in the scene. The
computer graphics community has pursued two contrasting approaches to shading: imitating a realistic
appearance with heuristics and simulating physical processes. Simulating the physics of illumination is a
very hard problem, and even the most realistic shading algorithms are only approximate. On the other
hand, many simple conventions produce acceptable results. Realistic shading is an active research area.
Researchers are continuing to introduce improved shading techniques, based increasingly on models of
actual physical processes. Hall surveys the history, theory, and practice of illumination [Hall89].

An image is a representation of the light reflected by objects in the scene. The shading process
models two types of reflection. Diffuse reflection is characteristic of dull surfaces, which scatter light
equally in all directions. The direction to the viewer does not affect diffuse reflection. Specular
reflections are seen in the highlights of shiny surfaces, and they are strongest in a direction of reflection,
which depends on the direction to the source. Because specular surfaces do not reflect light evenly in all
directions, the intensity of the highlight depends on the viewer’s position. Most surfaces have a combina-
tion of diffuse and specular components.

The illumination model describes how to calculate the intensity of light at a specified point on a
surface. The shading model specifies at which points to apply the illumination model and determines the
environment in which it is applied. A local illumination model considers only a point on the surface, the
viewing specifications, and the light sources. A global illumination model also considers the transmit-
tance of light throughout an environment. Global illumination is inherently more complex than local
illumination, since it includes other surfaces in the scene to simulate phenomena such as reflection, sha-
dows, and refraction. One approach to global illumination is recursive ray tracing, which models specular
reflection, transparency, refraction, and shadows by following secondary rays in the directions of
reflection and transmittance and towards the light sources. Another approach to global illumination is
radiosity , which is based on thermal engineering methods. It simulates color bleeding and diffuse inter-
reflection by modeling the energy equilibrium in a closed environment. Global illumination algorithms
are described in more detail later in this section.

2.6.1. Light Source Models and Cost Factors

The intensity of reflected light is determined not only by the properties of the objects but also by the
light arriving from light sources in the environment. Light sources may either reflect or emit light. Con-
ventionally, a single ambient light computation approximates the combined effect of reflected light from
nearby objects in the environment.>

Light sources such as the sun, lamps, and candles emit light. A scene may contain multiple emitting
sources. Each light source requires a separate shading calculation, so the cost of shading increases with
the number of light sources. Ambient light alone produces unrealistic images, because it gives the same
intensity to all points of a surface. When an object is illuminated by an emitting light source, the inten-
sity varies over the surface according to the position of the light.

Geometric properties of the light sources affect the cost of shading a scene. Shading computations
apply Lambert’s cosine law, which states that the intensity of diffuse reflection depends on the angle of
illumination. Accounting for the direction normally requires a dot product operation to compute the

5 Radiosity models ambient lighting more precisely by calculating the interactions of reflected light on diffuse sur-
faces.

22

cosine. But if the light has no direction, as with ambient light, the dot product may be skipped.

The cost of shading depends on whether the light source is modeled as infinitely distant or nearby.
The simple point light source model describes an emitting source that is distant and small relative to the
scene. Its light rays come from a single point. This model is adequate for light sources like the sun. It is
reasonably accurate to assume that all light rays reaching a surface from a point source are parallel,
because the model assumes that the light source is distant. In effect, the angle of illumination is constant
over the surface. With nearby lights, the angle changes, and the shading algorithm must re-evaluate the
dot product or interpolate its value over a surface. The intensity of light falls off as the distance from the
light source to the surface increases (specifically as the inverse of the square of the distance). If the light
is distant, the effect of distance is approximately the same for the entire scene. If the light is nearby, more
computation is required to simulate the attenuation of light for objects that are far from the light source.

The size of the light source also affects shading costs. A point light source has no area, which is
another simplification of the model. In contrast, large and nearby lights have area. They are simulated
more accurately by a distributed light source model. Several properties of distributed light sources
increase the computational costs. Sometimes a distributed source is approximated by a group of point
sources, but ideally the illumination is integrated over the light’s area. Light rays from a distributed
source are not parallel, so the cosine varies at each point. Interpolation can approximate the change in the
cosine, but the results are not always satisfactory. Furthermore, distributed light sources generate soft
shadows, which are more complicated to compute than hard-edge shadows.

Not all light sources emit light evenly over their surfaces. Realistic models can assign different pro-
perties to regions of the light’s surface, thus increasing the complexity of the shading operations.
Comprehensive and unrestricted approaches to modeling luminous function distributions are rare; Ver-
beck and Greenberg describe an exception [Verb84].

2.6.2. Local llumination

Simple, empirical illumination models are common in computer graphics. A typical model uses
ambient light and point light sources to illuminate surfaces with diffuse and specular components. The
diffuse and specular coefficients that describe surface materials are usually assigned empirically. The
final intensity is the sum of three terms: the contributions of ambient, diffuse, and specular reflection.

Diffuse reflection, according to Lambert’s law, varies with the intensity of the point light sources,
the value of the diffuse reflectance coefficient, and the angle between the surface normal and the light
direction. Specular reflection is simulated with an empirical model developed by Phong Bui-Tong
[BuiT75]. A non-linear factor accounts for the declining specular intensity as the view direction diverges
from the direction of reflection. Phong’s model raises a cosine to a power to simulate the nonlinear
decline; the empirically-derived exponent is greater for shinier materials. The intensity of the point light
sources and the value of the specular coefficient are also needed to compute the specular contribution.
The equation for this simple illumination model is given in Figure 2.5.6 More realistic variants of this
model may support other light source models or light-source attenuation.

The shading model specifies how frequently the illumination model is evaluated. In general, inten-
sity varies over the surface of each primitive. Suppose that the rendering system is shading a polygon
that covers several pixels. The simplest approach is to shade the polygon at only one point and use the
same intensity for all pixels that the polygon covers. Unfortunately, this would give the image an unreal-
istic faceted appearance. The most accurate, and most costly, approach is to integrate the illumination
over the area corresponding to each pixel. Between these two extreme lies a range of approaches, often

6 A different formulation for the specular component was suggested by Blinn [Blin77]. Instead of using R;-V, it
uses the “‘halfway’’ vector bisector H, between V and L;. In the restricted case where both the viewer and the light
source are at an infinite distance, H is constant throughout the scene and can be evaluated once [Whit82].

23

=Lk, + ﬁl,,,, [ky(N-L;) +k, (R,.-V)"]
i=1
Notation:
I computed intensity
I, intensity of ambient light
I, intensity of point light source i
l number of point light sources
k, ambient reflection coefficient; may be the same as k,
k; diffuse reflection coefficient
ky specular reflection coefficient
n Phong specular reflection exponent
N surface normal at specified point (normalized)
VvV direction to viewpoint from surface (normalized)
L; direction to light source i from surface (normalized)
R; direction of reflection from light source i (normalized)

Figure 2.5. Local illumination. This equation, or a variation, is commonly used to calculate
the intensity of light at a point on a surface. This model is based on Phong’s model for specular
reflection and allows multiple point light sources.

related to antialiasing choices. In general, the shading quality increases with the computational cost.

A method described by Gouraud in 1971 [Gour71], interpolates the intensity to give a smooth
appearance to curved objects approximated by polygons. It evaluates the illumination model only at the
vertices of a polygon and interpolates the shade linearly in the interior. The algorithm uses incremental
calculations to interpolate along polygon edges from scan line to scan line, and along scan lines from one
pixel to the next. Gouraud’s interpolation renders highlights inaccurately. The surface normal of a
curved object changes from point to point, so it is more accurate to vary the normal and re-evaluate the
illumination model in the interior of the polygon. Phong Bui Tuong [BuiT75] improved upon Gouraud’s
model by approximating the surface normal at each pixel to render more accurate highlights. Phong’s
algorithm uses the same type of incremental interpolation as Gouraud’s, but instead of interpolating the
intensity it interpolates the surface normal between vertices. It calculates the pixel’s intensity using the
approximate normal as N in Figure 2.5. Phong shading is more expensive than Gouraud shading because
it evaluates the illumination model in the interior of the polygon, computing a new normal for each
evaluation.

Interpolation, in general, introduces errors because it misses high-frequency detail and because
intensity changes are not really linear in screen space. Furthermore, when polygons approximate a curved
surface, inaccuracies in the approximation introduce shading discontinuities. A more expensive, but
more accurate, alternative is to avoid interpolation and evaluate the illumination model in the interior of
the object. For an antialiased image, this may imply multiple shading calculations for a single pixel.

24

The illumination model of Figure 2.5 is based on appearances and not on physical processes. More
realistic shading algorithms use physically-based illumination models to describe material properties and
reflection. Blinn [Blin76] and Cook and Torrance [Cook82] introduced more accurate algorithms based
on the Torrance-Sparrow model of reflective surfaces. In this model, a surface consists of a set micros-
copic facets with non-uniform orientations. Simpler surface models make most objects look like plastic.
With the improved models, surfaces may resemble many real materials, such as various metals or types of
stone. As usual, the increased realism comes at the cost of increased computational effort.

2.6.3. Texture Mapping

Geometric modeling is not the only way to add detail to an image. An alternative is to map a tex-
ture onto a three-dimensional surface when the surface is shaded, as first described by Catmull [Catm74].
Texture maps have been used to modify transparency, surface normals, reflection, shadows, and other sur-
face properties, but they are most commonly applied to the surface color. Most texture maps are two-
dimensional, but it is possible to use three-dimensional texture functions to simulate surfaces carved from
solid textures, such as marble or wood. Heckbert provides a comprehensive survey of texture mapping
techniques [Heck86].

To apply a texture to a geometric primitive, two types of information are required: a texture name
and a function mapping points in the texture map onto the three-dimensional surface. This function may
be an arbitrary function of the surface parameters or a pair of indices into the texture map. The mapping
is easier for some types of primitives, such as bicubic patches, than for others. The value retrieved from
the texture map is used to modify some property of the surface, most often its color.

One special use of texture maps is to create the illusion of bumpy or wrinkled surfaces. The values
in a bump map are small perturbations that vary the direction of the surface normal [Blin78]. The per-
turbed normal produces changes in intensity that mimic the appearance of a bumpy surface.

Texture maps can also approximate reflections of the surrounding environment on the shiny surfaces
of objects. This application, called reflection mapping or environment mapping, was introduced by
Blinn and Newell [Blin76]. The environment mapping algorithm assumes that a sphere surrounds the
scene.” The viewer does not see the sphere itself. However, an image of the reflected environment is
mapped onto its interior surface. When a shiny objected is shaded, any reflections are found by accessing
the appropriate location on the surface of the sphere. This location is determined by direction of
reflection from the point being shaded to the surface of the surrounding sphere. The direction indexes the
corresponding environment map, and the value retrieved from the map represents the image of a
reflection.

With any type of texture map, several texture pixels or portions of texture pixels, may map to a sin-
gle display pixel. If the texture is not filtered, the image will be aliased. In the general case, the texture
value is a weighted sum of the relevant texture pixels. Accurate, but expensive, analytic algorithms
access the relevant texture pixels and apply a weighted filter [Feib80]. This approach is called direct con-
volution. Supersampling the texture can also produce acceptable results. The sampling pattern can be
adaptive, to sample more heavily in regions of high-frequency information. It can also be stochastic, to
minimize the visual artifacts of aliasing.

The cost of texturing corresponds approximately to the number of texture accesses. Both direct
convolution and supersampling may access a large, and highly variable, number of texture pixels for each
screen pixel. Algorithms that pre-filter textures can ensure a constant, relatively small ratio of texture
pixels to screen pixels. Pre-filtering algorithms process textures before rendering and store a filtered ver-
sion of the textures [Crow84, Will83]. Pre-filtered textures consume more memory and incur a setup cost.
They can be efficient when the texture is re-used, either in a single image or in several images. If the

7 Another object, such as a cube, may be used instead. For the sake of simplicity, we can assume a sphere.

25

texture will be used only once, a different algorithm may perform better. If the texture is an arbitrary
function, and not an array, pre-filtering is not generally feasible.

Rendering costs can vary with the characteristics of the texture. Typically, the texture parameters
index an array. More generally, the texture value can be computed as an arbitrary function of the parame-
ters. It is usually more costly to compute an arbitrary texture function than to retrieve a value from an
array. Once the texture value is retrieved, subsequent computation may be more expensive for certain
texture applications. For example, bump mapping varies the surface normal and rules out simple interpo-
lated shading for bump-mapped objects. High-frequency detail can increase the cost of adaptive
antialiasing, whatever the type of texture.

Texture maps can be very big, and using a number of textures in a single image introduces impor-
tant systems and memory issues. The renderer may implement a cache for the portions of texture maps
that it accesses. The degree of coherence (that is, the locality) in a sequence of texture requests naturally
affects the system’s performance. The order in which texture pixels are accessed depends heavily on the
visibility algorithm. Locality is stronger when an algorithm shades one object at a time, as do the z-
buffer and the depth-order algorithms. Locality is weaker when an algorithm processes several objects
concurrently, as do the scan-line algorithms.

2.6.4. Global Illumination

Realistic images must give a convincing representation of global illumination effects such as sha-
dows, transparency, refraction, and inter-object reflection. It is possible to imitate the appearance of glo-
bal illumination with heuristic techniques. For example, texture maps may simulate shadows or
reflection. However, true global illumination models are more powerful and complex, producing the
most accurate representation of inter-object reflection. Three approaches to global illumination are dis-
cussed below.

1. Heuristic approximations have been developed for shadows, transparency, and reflection. The
shadow problem is a variation of the visible surface problem. If an object is visible from the light source,
then it is not in shadow with respect to that light source. Rendering systems have augmented local illumi-
nation models with shadows by adapting a variety of visible-surface techniques. This class of algorithms
works best with point light sources, which cast hard shadows. Both object-space and image-space
methods have been used, as well as approximate shadow algorithms. Williams first proposed a two-pass
z-buffer shadowing algorithm [Will78]. The first pass computes the scene from the point of view of the
light source and creates a z-buffer. This z-buffer, or shadow map , contains the depth of the object closest
to the light. The second pass renders the scene. When a surface is shaded, its position is transformed into
coordinates in the light source’s space. Using the transformed x and y, the shadow map z value is
retrieved. If the shadow map z is less than the transformed z of the surface, then another object is closer
to the light source, and the surface is in shadow. The shadow map can be accessed as a variation of a tex-
ture map. Generally, the cost of computing shadows depends on the same geometric factors that affect
visibility costs. The cost is multiplied by the number of light sources that cast shadows.

Distributed light sources cast shadows with soft edges. Because a distributed source has area, only
part of the light it emits is blocked by the edge of an object. Soft edges are sometimes imitated success-
fully with heuristics [Verb84], but an accurate representation requires a more complicated global illumi-
nation model [Aman84, Cohe85, Cook84b].

Transparent surfaces transmit the light from objects located behind them; typically, they also reflect
some light. A coefficient of transmission weights the contributions of reflected and transmitted light.
Transparency has ties to the visible surface problem, since the shader needs to know all of the objects that
are visible at each point on the screen.

Refraction bends light as it travels through a transparent material. The index of refraction describes
how a specific material refracts light. The angle of refraction is computed with dot product operations

26

and a square root. To avoid this computation, some systems overlay objects in screen space without com-
puting an angle of refraction. Ignoring refraction gives transparent objects the appearance of very thin
glass.

Texture maps are sometimes used to simulate inter-object reflections, as described in Section 2.6.3.
These reflections are inaccurate, because the mapping considers only the direction to the environment
map and not the location of the shaded surface within the environment.

2. Ray tracing simulates specular inter-object reflection, shadows, and transparency with refrac-
tion. After shading the nearest visible point with a local illumination model, it generates secondary rays
in the directions of reflection and transmittance. Rays are generated recursively until there are no more
intersections. The recursion can also end at a user-specified depth or when the algorithm determines that
further rays will have a negligible effect on the pixel’s intensity. Ray tracing handles sharp specular
reflection well and produces shadows by sending secondary rays in the direction of light sources. It does
a poor job of simulating diffuse inter-reflection among objects.

As discussed in Section 2.5.1, ray-object intersections dominate the cost of ray tracing. Two com-
plementary strategies make ray tracers more efficient: speeding intersection calculations and reducing the
number of intersections. Object partitioning and object bounding are useful techniques for improving ray
tracing performance following the latter strategy.

3. Radiosity is a global illumination approach based on thermal engineering models of radiative
heat transfer. It calculates more accurately the diffuse inter-object reflection that conventional ambient
lighting only approximates. Goral et al. [Gora84] first applied radiosity to image synthesis. In the radios-
ity model, all surfaces emit and reflect light. The energy that leaves a surface is absorbed by or reflected
from other surfaces in the environment.

Radiosity algorithms subdivide each primitive into a set of patches, such that the illumination of
each patch is uniform over its surface. For a scene with n patches, a set of n? form factors describes the
proportion of energy leaving one patch that arrives at each other patch. Form factors are geometric; they
are independent of the viewpoint, the lighting, and the surface characteristics. A set of simultaneous
equations determines the form factors. This computation is very expensive, but it is required only once
per static scene. Any number of views of the scene may be rendered without recomputing the form fac-
tors. For each view, the rendering system first determines visibility, for example with a scan-line algo-
rithm or a z-buffer. It then shades the image with a simple interpolated shading model that considers the
stored form factors and information about the surface characteristics.

Approximation techniques have been developed to speed the form factor computation. These
include progressive refinement algorithms that approximate the form factors in stages [Cohe88a]. Adap-
tive subdivision can be used to reduce the number of patches, and therefore the number of form factors.
Scenes with large, uniform surfaces require fewer patches. In contrast to other algorithms, radiosity han-
dles large light sources more efficiently than point sources. Cohen examines some performance aspects
of radiosity algorithms [Cohe88b].

Specular reflection varies with the viewpoint. Because radiosity offers a view-independent solution
to inter-object reflections, it handles diffuse reflection but not specular effects. There have been some
efforts to combine ray tracing and radiosity, such as the work of Wallace, Cohen, and Greenberg
[Wall87], Heckbert [Heck91], and others.

2.6.5. Costs of Shading and Texturing Operations

Realistic shading is still an open-ended problem; the realism, and corresponding costs, vary widely
with the algorithm. The choice of an illumination model may depend on the characteristics of the objects.
If the scene exhibits little specular reflection or transparency, an expensive ray tracing algorithm may be
inappropriate. So far, we have assumed that a renderer applies a uniform illumination model to all sur-
faces. Some more flexible rendering systems interpret shading languages, which can specify different

27

illumination equations for different materials. In any case, it is not the colors of the objects, but the com-
plexity of the illumination model, that affects the cost of shading calculations.

Given a specified model, the factors summarized in Table 2.7 affect the costs of shading and textur-
ing. The material properties of the surfaces have performance implications that are very important, but
hard to quantify. In general, reflectivity and transparency affect shading costs in proportion to a surface’s
size. Geometric factors influence the size of the problem, that is, the area that must be shaded. The types
of geometric primitives also affect the complexity of some calculations. Current radiosity algorithms
handle polygonal patches, so curved surfaces must be converted to a polygonal approximation.

True global illumination algorithms, such as radiosity and recursive ray tracing, are compute inten-
sive. Texture maps approximate global illumination effects. This alternative requires less compute time
and summarizes illumination information in a texture file.

Category Cost Factors

Scene Characteristics number of light sources

directional or non-directional light sources

distant or near light sources

size of light sources

luminous function distribution of light sources
types of primitives

number of primitives

material properties of surfaces

number, size, and distribution of transparent surfaces
number, size, and distribution of reflective surfaces
number of texture maps

types of texture maps

Viewing Specifications | number of visible transparent surfaces

screen size and distribution of transparent surfaces
screen size and distribution of reflective surfaces
number of texture requests

number of texture pixels accessed

Rendering Parameters shading frequency

maximum recursion depth for ray tracing

number of views or frames rendered of each scene
number of times each texture map is used

texture filtering parameters

Table 2.7. Shading and texturing cost factors. Other geometric cost factors discussed in Sec-
tion 2.3.2 also affect the cost of shading.

2.7. The Structure of Rendering Systems

The performance of a rendering system is more than a sum of isolated parts. The structure of the
system and interactions among the various algorithms influence the strengths and weaknesses of the sys-
tem with respect to both image quality and performance. Choices that characterize the system’s structure
include the order of operations, data structures, specific algorithms, and the information that is kept or

28

discarded at each processing stage. For example, the visibility algorithm and the order of operations
affect the scope of the shading problem. If the system determines visibility before shading, it may avoid
shading invisible surfaces. If the system calculates illumination entirely in screen space, it lacks the
information needed for true global illumination. The algorithms that implement true global illumination,
such as ray tracing and radiosity, must do at least some shading computation before the transformation to
screen space. Figure 2.6 illustrates the order of operations and the coordinate systems used in different
rendering stages, summarizing the information in Sections 2.5 and 2.6. All of the examples support
modeling in the local object space and display the image in device coordinates. They differ in the order
of the visibility and shading operations and in the timing of coordinate transformations.

Coordinate System
Approach

Local World Eye Screen Device
classical image space || Modeling Visibility = Shading | Display
classical object space || Modeling Visibility Shading | Display
Reyes Modeling Shading | Visibility Display

Visibility
ray tracing Modeling) Display

Shading

e . Per-scene Shading s Per-view .

radiosity Modeling (Form Factors) Visibility Shading Display

Figure 2.6. Structure of five rendering approaches: (1) classical image space, (2) classical ob-
ject space, (3) Reyes, (4) ray tracing, (5) radiosity. The figure shows the order of operations
and the coordinate systems in which they are performed.

1. Classical image space algorithms determine visibility and illumination in screen space, in that
order. One example is the combination of a scan-line visibility algorithm with Gouraud or Phong shad-
ing. Another example is a z-buffer with Gouraud or Phong shading.

The scan-line algorithm completely determines visibility for a pixel before shading, so it only
shades visible surfaces. The z-buffer processes one primitive at a time, first checking its visibility and
then shading the visible fragments. Because it processes primitives in an arbitrary order, the z-buffer
algorithm may shade surfaces that are later obscured.

The performance strategy of scan-line rendering and many other classical screen-space algorithms is
to speed scan conversion by exploiting object coherence. This strategy succeeds when the image is

29

composed of large primitives, especially polygons. For complex scenes with many tiny surfaces and a
variety of primitives, the strategy falls apart.

The scan-line algorithm processes together all objects that intersect the current scan line. For each
object, it considers only the fragment that intersects the current scan line. If fragments of many different
surfaces are visible in one scan line, shading and texturing operations will tend to exhibit little locality.
For this reason, scan-line algorithms can fail to perform well for workloads with heavy texturing. In con-
trast, the z-buffer preserves locality by shading an entire primitive at one time.

Both algorithms perform shading without access to the full scene description or to the world space
geometry. Therefore, they cannot support true global illumination models.

2. Classical object space algorithms, like Weiler and Atherton’s, differ by determining visibility
in world space. Like the classical image space algorithms, they shade in screen space and do not compute
global illumination. By determining visibility first, these algorithms are able to avoid shading invisible
surfaces. Compared with image-space algorithms, object-space approaches frequently involve more com-
plicated geometric calculations. Image space algorithms determine visibility relative to the viewpoint.
Object-space algorithms can compute view-independent visibility information and re-use the results to
render many views of a static scene. The depth priority algorithm is an example of this approach.

3. The Reyes image rendering architecture [Cook87] is unusual because it shades all surfaces
before deciding which are visible. Traditional rendering systems determine visibility first, and then shade
only visible surfaces. Frequently, they shade the visible fragments of a given object at different times.
Reyes, on the other hand, shades an object’s entire surface at once. Thus, it can more effectively exploit
coherence in shading and texturing. The Reyes rendering system is optimized for scenes with extensive
texture mapping, since it simulates shadows and reflections with texturing. The design of the system is
based on the hypothesis that the efficiency gained from increased coherence offsets the losses incurred by
shading hidden surfaces.

Reyes uses a modified z-buffer to determine visibility. Its high-resolution z-buffer supports stochas-
tic supersampling, and the system creates a list of all surface fragments that are visible at each pixel. A
filtering pass examines the visible fragment lists to compute the final intensities. To save memory, Reyes
partitions the screen and renders one rectangular sub-region at a time.

4. Ray tracing determines visibility and illumination concurrently using world coordinates. Glo-
bal illumination is computed with full access to the scene data in world space. With proper organization
of the scene description, the system can reduce the references to objects that do not contribute to the
image. Thus, it can avoid shading surfaces that are not visible either directly, through reflection or refrac-
tion, or in shadows.

The algorithm has elements of both screen-space and world-space processing. Primary rays are pro-
jected from the screen into the scene. The image resolution, therefore, affects the sampling resolution,
and adaptive algorithms may increase the sampling frequency to suit the detail in the image. To subdi-
vide the scene, a parallel ray tracer may partition the screen to distribute primary rays among the proces-
sors. On the other hand, the system can partition the three-dimensional world space and distribute the
scene among processors.

5. Radiosity, separates shading into two steps: a view-independent form factors computation in
world space and view-dependent interpolated shading in screen space. The approach solves for the form
factors once for each static scene. For each view, it then completes the rendering much like a classical
image space algorithm. Radiosity can be implemented with a front end that computes form factors and a
back end that performs classical screen space rendering. While the front end processing is expensive, the
back end is relatively simple. Once the form factors are available for a scene, a graphics workstation can
generate many views quickly. This is attractive for applications such as architectural walk throughs.
Typically, radiosity algorithms handle only diffuse reflection in world space and do a poor job of han-
dling global specular effects.

30

2.8. Summary

Two considerations affect rendering costs: the size of the problem and the complexity of the prob-
lem. The factors that determine the problem size are easier to identify and to quantify. The complexity
of image space algorithms is often described as np where n is number of objects and p is number of pix-
els. Similarly, the complexity of object space algorithms is described as n2. In general, the number of
objects and the image resolution are the primary factors that describe the size of the problem.

More specifically, the geometric factors that most strongly influence the size of the problem are the
number of primitives and the size of the primitives when projected on the screen. The resolution is more
than just the number of pixels in the image. The sampling frequency and the shading frequency both
affect the computed resolution. In one respect, the image resolution is independent of the model, because
it can be set arbitrarily at rendering time. However, in practice, the sampling frequency and shading fre-
quency depend on the frequency of detail, which is a characteristic of the model.

The types of geometric primitives affect the complexity of the problem by determining the com-
plexity of the geometric expressions and by influencing the types of algorithms that may be used.

The number of primitives and their screen size affect the size of the shading problem as well as the
visible surface problem. Other factors that determine the size of the shading problem are the number of
light sources, the number of textures, and the number of texture accesses. The characteristics of the sur-
faces, the illumination models, and the light source models all contribute to the complexity of the shading
problem. The shading complexity of a scene is very difficult to characterize, and the complexity of shad-
ing algorithms varies tremendously.

31

3

An Analysis of Image Characteristics

3.1. Introduction

Workload characterization provides a necessary foundation for performance studies. This chapter
characterizes, both quantitatively and qualitatively, the image synthesis workload. There are several
motivations for quantifying the complexity of images. The first goal is to explore the performance of
rendering algorithms. Measurements of actual images can help us understand the implications of theoret-
ical performance bounds and predict average case behavior. The second goal is to obtain data to use in
the design and evaluation of new systems.

The first set of data in this chapter is extracted from the computer graphics literature. It documents
trends in image complexity over the past twenty-five years. The remaining data describe the characteris-
tics of several complex images taken from an actual computer animation workload. These measurements
were obtained by instrumenting and profiling a sophisticated rendering system.

For a rendering system, the workload consists of the data that specify an image: the scene descrip-
tion, the viewing parameters, and the motion in an animated sequence. The workload is modified by
system-specific rendering parameters that the user supplies at runtime.! Chapter 2 identified a set of fac-
tors that affect the cost of rendering operations. Metrics of image complexity are derived naturally from
these cost factors.

Some characteristics of models can be determined by studying the input specifications directly.
These include scene complexity statistics like the number and types of modeling primitives or light
sources. Other characteristics can be determined only by evaluating the model, for instance, by fully
instantiating an object that is described tersely by procedural modeling specifications. Although a sto-
chastic element might add variation to models, in production the variability is usually controlled and
repeatable.

The rendering algorithms uncover further characteristics of the scene. For example, the visible sur-
face algorithm discovers the number of visible objects, and, perhaps, the depth complexity. The
geometric computations calculate characteristics such as the screen size of primitives.

A direct examination of the image provides further information, such as the percentage of the screen
covered by the scene. A visual inspection of the image can indicate the importance of qualities such as
texture, reflection, shadowing, or transparency.

This chapter presents information obtained by examining scene specifications, by instrumenting or
profiling the renderer, and by analyzing images. Informally, we refer to ‘‘image complexity,”” although
our true interest is in the complexity of the input to the renderer.

What is image complexity? In one respect, a complex image is a picture with a visual richness and
perceptual clues that contribute to a sense of realism. Photorealism, an approach that attempts to render a
scene as a photograph would show it, has been suggested as one standard for perceptual complexity.

1 If the system is interactive, the workload includes further commands and dynamic specifications from the user.
The research described in this chapter does not address interactive graphics, and the rendering systems do not support
real-time image manipulation.

32

Thus, we can apply the ‘‘Turing test’’ to try to distinguish between a synthetic image and a photograph.
Hagen presents an extensive examination of perceptual issues and realism in two-dimensional imagery
[Hage86].

The computer graphics community has often focused on geometric complexity, especially on
metrics that are easy to quantify. The number of polygons in a scene is a common metric, but this sup-
ports only a simple view of complexity. It fails to account for the range of primitives in computer graph-
ics, which vary widely in complexity. It also ignores the complexity associated with shading and render-
ing effects.

This thesis addresses the performance of rendering systems, so it is natural to take an operational
approach to image complexity. That is, the complexity of an image is reflected by the complexity of
computing the image. This view encompasses both the geometric complexity of the model (which deter-
mines the number of rendering operations) and the complexity of the algorithms (which determines the
cost of the rendering operations).

3.1.1. Previous Work

In the past decade, computer-generated images have become increasingly more complex, and the
workload has changed accordingly. The changeability of the workload is only one obstacle to character-
izing image complexity. Because of the considerable effort required to create models, research installa-
tions typically rely on small test suites. In production installations, information about graphics workloads
is often proprietary.

Studies of image synthesis workloads are rare, although the literature reports scattered measure-
ments about individual images. The measurements most often document the number of geometric primi-
tives and sometimes count other elements, such as light sources and texture maps. Typically, the purpose
of the statistics is to demonstrate the capabilities and speed of a new algorithm or system. Image com-
plexity statistics also allow designers to compare systems. At times, the actual model files are shared
with other sites as benchmarks. For the purpose of comparison, graphics researchers tend to emphasize
repeatability over representativeness.

Whelan presents one of the few quantitative studies of image characteristics in the graphics litera-
ture [Whel85] . He characterizes the distribution of objects on the screen to assist in the design of a mul-
tiprocessor system. The six test images are varied, but they are not part of any production workload. His
target application is real-time animation, rather than photorealism.

Dunwoody and Linton also target real-time graphics in their studies of interactive workloads on
graphics workstations. They investigated both two-dimensional applications under the X window system
[Dunw88] and three-dimensional applications [Dunw90]. In the second publication, they describe tools
that dynamically capture the graphics commands generated by interactive programs. A profiler tool inter-
prets the trace and analyzes the workload.

3.2. Historical Survey

The most common metric of image complexity is the number of modeling primitives. To document
trends in geometric complexity, I scanned the computer graphics research literature of the past two
decades and identified references that reported the number of modeling primitives in three-dimensional
images. The data were taken as reported, with little interpretation. To simplify comparisons, only data
for conventional surface modeling techniques are included.? To emphasize realistic image synthesis,

2 Images based on volume rendering, height fields, and particle systems were, therefore, excluded. So were data
about internal rendering primitives or other intermediate representations, such as micropolygons in the Reyes system
[Cook87], or the tessellated models of Snyder and Barr [Snyd87]. Data about patches and elements for radiosity algo-
rithms were also excluded, because they are not comparable to geometric complexity statistics for classical surface
modeling.

33

flight simulators, real-time applications, and simple illustrations of modeling techniques are excluded. In
general, the survey is limited to realistically shaded images, although the definition of realism is subjec-
tive and depends on the state-of-the-art at the time an image is created. In order to show early data points,
it was necessary to include some hidden-line images published before 1973.

Figure 3.1 plots the number of geometric primitives in a scene for one hundred sixteen data points
from thirty-eight publications. Appendix A cites the sources and gives more detailed information about
each of the images; a separate bibliography appears at the end of the Appendix. The graph displays one
data point for each distinct scene in a publication, even if it appears in multiple views.

Figure 3.1 divides the models into three categories: hidden-line drawings of polygonal models,
shaded renderings of polygonal models, and models with a mixture of three-dimensional primitives. The
first two categories include scenes that contain only polygons. A mixed model may contain polygons, but
it must also have other geometric primitives. A different symbol marks each of the three categories.

The data in Figure 3.1 represent only a fraction of the images published each year, so I cannot claim
that they are truly representative. Most would probably have been considered typical of the state of the
art at the time of their publication. Because of the nature of the sample, broad observations are more
appropriate than a statistical analysis of the data.

Polygonal models predominated until the mid-1980’s and are still common. Algorithms for non-
polygonal representations appeared in the graphics literature in the 1970’s, but complex examples fol-
lowed several years later. Figure 3.1 shows few mixed models before the mid 1980’s, although one
appeared as early as 1971.

Instead of a gradual growth that follows some continuous function, Figure 3.1 shows two clusters of
data points, one before 1979 and one after. Ninety percent of the scenes published before 1979 have
fewer than 500 primitives. From 1979 on, most scenes have at least 1,000 primitives. The cluster
between 1,000 and 100,000 contains three-fourths of the data points after 1978. One interpretation of
Figure 3.1 is that changes in technology in the late 1970’s and early 1980’s allowed the geometric com-
plexity to advance to a new level. Procedural modeling probably played a large role in the increasing
geometric complexity of synthetic images. The growth in model size occurred at about same time that
stochastic modeling with fractals was introduced.3 From 1979 to 1991, the data values are spread over a
wide range. Even though complex geometric models are possible, designers still want to model some
scenes that have simpler geometry.

Some of the small clusters in Figure 3.1 are not accidental. In the mid-1980’s certain images gained
popularity as common ray tracing benchmarks. In 1987, Haines added five new scenes to a popular test
case and created a benchmark suite. He deliberately constructed the scenes to contain around eight
thousand primitives [Hain87]. Independent or not, these data points suggest the capabilities of rendering
systems at the time of publication. In the early 1970’s, researchers also shared models or tried to repro-
duce images published by others, but these early models contained no more than a few hundred primitives
(see Appendix A).

Even in the 1990’s, some models are small. But the corresponding images are complex in other
ways. For example, the two lowest data points for 1990 represent collision simulations with rigid-body
dynamics. The images are rendered with shadows and reflections.

Figure 3.1 shows a difference in the sizes of polygonal models and mixed models. On the whole,
the polygonal models have more primitives than the mixed models. Proportionately more of the polygo-
nal models contain over 10,000 primitives. In general, mixed models can describe a scene more econom-
ically and more exactly than polygons. Modeling polygons are typically triangles or convex planar

3 Two fractal modeling papers were given at Siggraph *80, one by Carpenter and the other by Fournier and Fussel.
Only the abstracts appeared in the proceedings, and a combined paper by the three authors was published two years
later [Four82].

1e+07
A
1le+06 —
A
O
A
Legend A
+ hidden-line
100000 —| A polygons oo
o mixed models A
A
A
AAA A O
. A o)
Primitives A ©
(log scale) 10000 A d%@%
A A
A
o ﬁA A o
A Ao ° &
oBoag 00,
1000 — AAAARA
A A 40
A
A A ©
A A o .
+ * A AA A A A O
+ A A
100 — + o
+ + © o
A
+ A
+
O
A
+ A
10 |||I||I lll [| |l|| III
1965 1970 1975 1980 1985 1990
Year of publication

34

Figure 3.1. Number of geometric primitives. The data describe images published in the computer
graphics literature, 1967-1991. Appendix A lists the sources of the data. The data points for a sin-
gle year are spread horizontally over the corresponding interval. Within one year, the horizontal po-
sitions of data points were chosen strictly for clarity and are independent of the month of publica-

tion.

35

quadrilaterals, and it takes many to approximate complex surfaces. Also, the greater computational cost
of rendering complex primitives may tend to limit the size of mixed models.

The increase in geometric complexity has been accompanied by an increase in the complexity of
surface representation, shading, and rendering. Appendix A shows that transparency, reflections, sha-
dows, textures, and antialiasing have become more common over the last twenty years.

Given past trends, how many primitives can we expect to find in models in the future? In 1991,
Greenberg predicted that model databases will grow by two orders of magnitude in two decades [Gree91].
In the previous two decades, as Figure 3.1 shows, the growth was somewhat less than two orders of mag-
nitude. In the years around 1970, the models contained between 10! and 10° primitives. In the late 1980’s
and early 1990’s, the largest cluster of models contained between 10° and 10* primitives and a large subset
contained 10* to 10° primitives. However, if we include only polygonal models in the comparison, the
growth is indeed close to two orders of magnitude. Greenberg [Gree91] and Reeves, Ostby, and Leffler
[Reev90] suggest that the problem of modeling complex scenes now limits geometric complexity more
than the problem of rendering complex scenes.

3.3. The Measurement Environment

To characterize the complexity of synthetic images in an animation environment, I measured
several complex scenes obtained from Pixar. Pixar is a Richmond, California, computer graphics com-
pany, formerly a division of Lucasfilm Ltd. Its animation production and research groups have created
state-of-the-art computer animated films and commercials. To produce these films, Pixar has developed
languages, algorithms, software, and hardware for modeling and rendering.

This chapter presents three types of measurements about the complexity of the Pixar images.
Characteristics of the models were measured by examining the input to the rendering system. Further
geometric data and information about texture usage were generated by instrumentation code in the render-
ing software. CPU time statistics were obtained by profiling the rendering system. This section intro-
duces the rendering environment, and the following section presents the metrics, measurement methodol-
ogy, and results.

The Pixar software has been developed continuously to add features, improve performance, and
exploit new hardware. Two rendering systems served as measurement vehicles: the Reyes image render-
ing architecture [Cook87] and its successor PhotoRealistic RenderMan?, or prman . Both systems follow
the same philosophy, although their input languages, implementations, and some sub-algorithms differ.
To simplify the discussion, we will refer to Reyes>, but the description also applies to prman, except
where noted.

Reyes was designed to support complex animated scenes, specifically, scenes with many geometric
primitives and extensive texture mapping. The performance goals for Reyes address problems associated
with large models. Compute time should increase only linearly with geometric complexity, assuming a
constant shading complexity. The system should also preserve locality in referencing the model data,
because complex scenes require large amounts of data. One way that Reyes improves locality is to focus
on local illumination models, using texture maps to approximate global effects such as shadows and
reflections. The system provides mechanisms to include ray-traced elements, but the primary algorithms
do not perform raytracing. Instead, a modified z-buffer algorithm with good locality processes objects in
O (n) time. Stochastic super-sampling meets the goal of high-quality rendering with good antialiasing.

4 RenderMan is a trademark of Pixar.

5 The Lucasfilm graphics division produced two different rendering systems and named them both Reyes. Car-
penter created the first Reyes in the early 1980’s using the A-buffer visibility algorithm [Carp84]. This thesis describes
the second Reyes, which takes an entirely new approach to the visible surface problem. It was the production rendering
system for the Lucasfilm/Pixar group from 1984 through 1988.

36

Models can contain a variety of three-dimensional primitives, including polygons, parametric sur-
face patches, and quadric surfaces. The modeling language may be written directly, but it is more com-
monly generated by interactive or procedural modeling tools. The input language for Reyes is called
model , while prman supports the RenderMan Interface [Pixa89, Upst90]. The shapes of objects, as well
as their positions, can change during an animated sequence. The modeling software interprets the scene
description and generates a complete model file for each frame.

Reyes reduces all primitives to a common internal representation, called micropolygons. Micropo-
lygons are very small triangles or quadrilaterals; by default they are no longer than one pixel-width in any
direction. Because a micropolygon is very small, it can be shaded with a single flat color. Thus, the
rendering parameter that limits the size of micropolygons controls the shading frequency. Adaptive sub-
division routines ensure that all micropolygons are sufficiently small and flat. Each set of micropolygons
closely approximates the original object. To support a higher-level modeling primitive, an implementer
provides a module that either subdivides the primitive into micropolygons or reduces it to other primi-
tives that Reyes can subdivide.

Micropolygons are created in two-dimensional meshes called grids. To improve texture locality
and support vectorized shading, Reyes shades all micropolygons in a grid at one time, before determining
visibility. Consequently, some invisible micropolygons are shaded. The designers of Reyes believed that
the savings from improved shading coherence would outweigh the costs of any unnecessary shading
operations. The amount of extra shading work is a function of the scene’s depth complexity. If the depth
complexity is low, fewer objects are hidden and more of the shaded surfaces are displayed.

The system supports an extensible shading language, which describes surfaces, light sources, and
textures. The Reyes shading language embeds operations in graphs called shade trees [Cook84a], while
prman supports the RenderMan Interface shading language [Hanr90]. The cost of shading a single micro-
polygon can vary greatly, because the illumination model is not constant. The number of texture maps,
the number of light sources, and the light source complexity also change from surface to surface and from
scene to scene, with considerable impact on the cost.

3.3.1. Visibility Determination in reyes

Reyes determines visibility with point sampling and stores sampling results in a modified z-buffer.
A stochastic supersampling scheme developed by Cook [Cook86] supports high-quality antialiasing. It
subdivides pixels into uniform regions. Each sub-pixel has one sample point, offset from the region’s
center by random amounts in x and y. To support transparency and constructive solid geometry, each z-
buffer entry contains a list of all micropolygons that intersect the corresponding sample point.

Figure 3.2 illustrates the three processing stages of the visibility algorithm: sampling, depth sorting,
and filtering. On average, each stage of the algorithm reduces the size of the input passed to the next
stage.

The first stage discovers which sample points intersect, or it , a micropolygon. Each micropolygon
is associated with a bounding box , which contains the rectangular area defined by its minimum and max-
imum x and y coordinates. The algorithm samples each micropolygon over its bounding box, testing for
intersection with each sample point. When a sample hits a micropolygon, the surface is potentially visi-
ble at that sample point. The output from the sampling stage is one list per sample point, consisting of all
micropolygons hit by the sample point.

potentially
all ppoly visible visible
——3 sampling depth sort filter >

Figure 3.2. Visible surface processing stages.

37

The second stage sorts each list by increasing depth into the scene. In general, the first micropo-
lygon on the list is visible. If it is transparent, any objects behind it are also visible, but only to the degree
that the front object transmits light. The algorithm processes the list iteratively until it finds an opaque
object that blocks the view of any obj behind it. Its output is a list of all micropolygons that are visible at
the sample point and contribute to the pixel’s color.

The final processing stage traverses the visible micropolygon list to determine the contribution of
each micropolygon to the final color of the pixel. For high-quality rendering, a weighted filter considers
the sample point’s location within the pixel to determine its contribution both to the current pixel and to
the surrounding pixels.

The Reyes visible surface algorithm could, theoretically, process objects in an arbitrary order, but it
would have to maintain a prohibitively large amount of data until each frame is completed. Instead, a
spatial subdivision scheme reduces memory costs and improves locality. The system partitions the screen
into rectangular buckets, typically four to sixteen pixels square. It sorts objects into buckets and
processes them from top to bottom and from left to right. After rendering a bucket, Reyes can discard
most of the micropolygons. If a surface falls into more than one bucket, its micropolygons are added to
the list for the next bucket that they intersect. Spatial subdivision saves memory by restricting the size of
the z-buffer and by reducing the amount of time that micropolygons are retained.

3.3.2. Differences Between Reyes and Prman

Although Reyes and prman are closely related, some differences affect the image complexity
analysis. Both systems are written in C, but they have been implemented on different hardware and under
different versions of the Unix operating system. Thus, we can neither compare runtime measurements
nor profile the systems with the same tools. In addition, their shading and texture mapping subsystems
use different algorithms and report different statistics. However, the model files contain equivalent infor-
mation even though the model languages differ.

PhotoRealistic RenderMan (specifically, prman Version 3.1) introduced improvements to the visible
surface algorithm that affect the complexity measurements substantially. An approach called invisibility
processing reduces the performance problems associated with shading before determining visibility. The
goals of invisibility processing are to avoid shading invisible objects and to reduce the size of the visible
surface problem. The new algorithm bounds the depth of all objects and uses the estimated depths for a
preliminary sort [Apod91]. Then, the system processes the objects in an order that is roughly front-to-
back. Tests at three stages of rendering detect and discard many of the invisible surfaces before perform-
ing the complete visible surface algorithm. The first test checks micropolygon meshes (called grids), the
second checks individual micropolygons, and the third checks individual samples. The tests rely on
estimated bounds that may be loose but are always correct. They might pass an invisible object on for
further processing, but they never reject something that is visible.

The system tests for invisible grids after subdividing a surface but before creating the grid data
structure. The algorithm bounds the grid in x, y, and z and tests the z-buffer over the entire x,y bound-
ing box. It compares the existing values in the zbuffer with the grid’s minimum z bound. If the bounding
box is completely obscured by opaque objects, the grid is discarded. The surviving grids may be entirely
visible, partially visible, or invisible. Prman shades them all, but before sampling it tests for invisible
micropolygons. It discards a micropolygon if its entire bounding box is obscured. Finally, prman tests
each sample point before calculating its intersection with any micropolygon. If the value in the z-buffer
is closer than the micropolygon’s z bound, the sample is discarded. Measurements in Section 3.4.3
characterize the proportion of objects that prman discards at each invisibility test.

Because of these optimizations to the visibility algorithm, prman cannot produce the same statistics
as Reyes. Consider, for example the depth complexity , which is the number of objects, both visible and
invisible, intersected by a ray projected through the image plane. For Reyes, the depth complexity at a
sample point is the same as the number of micropolygons hit at that point. Reyes can report the depth

38

complexity at every sample point, because it samples each micropolygon over its entire x,y bounding
box. In contrast, prman discards many objects before sampling. It only guarantees to hit the visible sur-
faces, although it may also intersect some or all of the hidden surfaces. Thus, the number of micropo-
lygons that prman hits at a given sample point is only a lower bound for the true depth.

Although the statistics vary, this chapter contains similar groups of measurements for images pro-
duced by Reyes and prman.

3.4. Measurement Results

A set of images were selected to represent the range of geometric complexity, applications, and
visual style found in the actual animation workload at Pixar (Table 3.1). Reproductions of the images
appear in Section 3.4.2. Because the availability of statistics depends on the rendering system, the images
are divided into groups that we will discuss separately. Group I contains images that were rendered by
Reyes; the corresponding models were created between 1984 and 1987. Group II contains images that
were rendered with prman between 1989 and 1991. One 1988 scene, that depicts a character named
Tinny, comes from a transitional period and belongs in neither group. It was defined in an early version
of the RenderMan language, but rendered with the multi-processor implementation of Reyes that is dis-
cussed in Chapter 5. The runtime statistics available for this scene are incompatible with the statistics for
both Group I and Group II, so they are not included in this chapter.

Two of the Group II scenes correspond to Group I scenes: Luxo Jr. and the bike shop window.
Although these models date from 1986 and 1987, their creators still consider them representative of the
workload. The Luxo Jr. model was used in new animation projects in 1989 and 1991. Pixar personnel
converted the bike shop to the RenderMan format in 1991 for use in performance studies. Some changes
to the geometry were introduced when the models were converted to the new format. Although the pairs
of corresponding scenes are not exactly alike, they are similar enough for general comparisons.

Group II also contains two related views of the bike shop. In one, the camera is on the street look-
ing through the shop’s front window. In the other, the camera is inside at the front of the shop, looking
towards the back wall. The first scene uses a less detailed model of the shop’s contents, but its brick wall
and glass window add an extra layer of depth.

Most of the images are stills from short animated films. One scene, the stained glass knight, was a
special effect in the feature film Young Sherlock Holmes (1985). Another, conga, is a frame from a telev-
ision commercial.

Some of the models are characterized by simple geometry with complex shading or heavy texturing.
These include Andre, the stained glass knight, Luxo Jr., and conga. The Luxo Jr. scenes are inherently
simple, but the rendered images have a convincing realism. Shadows contribute significantly to the real-
istic appearance. Another scene, waves, has complex geometry and moderately complex shading. Both
the geometry and the shading are complex in the bike shop scenes. The final model, Tinny, is a relatively
simple element that was combined with textured backgrounds and other, more complex, objects.

Group I Group I1 multi-processor
andre tinny

luxo jr. I luxo jr. IT

bike shop window I bike shop window II

waves bike shop interior

stained glass knight conga

Table 3.1. Images in the test suite.

39

3.4.1. Complexity Metrics

Chapter 2 identifies four classes of parameters that affect rendering costs: scene characteristics,
view-dependent characteristics, rendering parameters, and the computing environment. Most of the
rendering parameters and characteristics of the computing environment do not indicate the intrinsic com-
plexity of the images. Because they do affect many of the measurements, they are listed in Table 3.2.

This chapter characterizes the test suite in terms of the relevant scene characteristics and view-
dependent characteristics. Some scene characteristics are described as static properties of the model data-
base: the number and type of modeling primitives, the number and type and size of light sources, and the
number and types of texture maps. The description of each scene also describes in general terms the ani-
mation characteristics, transparency, shadows, and reflections. Because the visible surface algorithm
operates on screen coordinates, world-space dimensions are not considered. View-dependent characteris-
tics are measured dynamically by rendering system instrumentation. These include the depth complexity,
the screen size of objects, and measurements about visible or relevant objects. The renderer also docu-
ments certain properties of the internal rendering primitives,

3.4.2. Model File Statistics

Characteristics of the model files are shown in Table 3.3, which also describes the applications from
which the scenes were taken. Figure 3.3 contains black and white reproductions of the corresponding
images, which give a feeling for their content. Without high-quality color photographs it is impossible to
show the detail and shading complexity of the original images. The table cites publications and films that
contain more accurate color reproductions of these, or related, images as well as publications that
describe the related graphics research. The suite contains two pairs of similar images. Although the two
Luxo Jr. images are not exactly alike, they are very similar, and only the Group I version is shown, in Fig-
ure 3.3(d). The bike shop window is also included only once, in Figure 3.3(e).

Each entry in Table 3.3 describes the characteristics of the three-dimensional model of a scene, not
its representation as a two-dimensional image. Some of the Group I models contain information that is
not required for all renderings of the scene, such as texture maps that are visible only from certain
viewpoints. Table 3.3, however, describes all of the model’s data.

Some of the texture maps, particularly those used to simulate shadows or reflections, may be com-
puted in separate rendering passes. When discussing model complexity, this chapter ignores any auxili-
ary data or computation that may be needed to create such texture maps.

Collectively, the scenes use four standard types of light sources. Every scene has ambient light , a
non-directional source with only an intensity and a color. A distant light, such as the sun, has a direction
but no position. Its light rays are parallel, because the light is cast in a single direction. A point light
source is local. Its light is cast from a single point equally in all directions, but it falls off with increasing
distance from the source according to an inverse square law. A spotlight is a type of point light source
that has both a position and a direction. It casts light within a cone, and the light is most intense in the
center of the cone.

Group I Group II
Computer system CCI Power 6/32 Silicon Graphics 4D/220
Micropolygon size || <1 pixel in any direction | <1 square pixel
Bucket size 4x4 pixels 4x4 pixels
Screen size 1024x614 1024x614
Samples/pixel 16, in a jittered 4x4 grid 16, in a jittered 4x4 grid
Backfacing objects || culled culled

Table 3.2. Computing environment and rendering parameter values.

40

andre (cartoon character)

Y ear, references
Application

Visual properties
Animation

1984 [Cook86, Lass87]

research in animation, rendering, and modeling of natural phenomena
short animated film

simple surface textures

character moves and changes expressions, but remains seated
shapes change
camera static

Total modeling primitives
Description of primitives

91 (character only, excluding background)

74 spheres

2 cones

13 cylinders

24 bicubic patches

2 ‘‘teardrops’’

13 constructive solid geometry (csg) operations

Texture maps

11 surface color

Light sources

1 distant light (the sun), no shadows

Table 3.3(a). Characteristics of the Andre model.

Figure 3.3(a). Andre. ©1984 Pixar

41

stained glass knight

Year, references
Application
Visual properties

Animation

1985 [Cook86, Fole90, Plate IV.24]
special effect for a feature film [Para85], composited with live action

transparency, refraction

many surface textures

surface normal perturbations (bump maps)
many light sources

character walks towards camera, moves body parts
static shapes
camera tilts up (rack focus in original, but not in instrumented runs)

Total modeling primitives
Description of primitives

1,403

1,403 cubic bezier patches
(describing 82 pieces of thick glass, 6 surfaces each)

Texture maps

51
(each object needs 2 bump maps, 1 background, and 2 or 3 colors)

Light sources

15 spotlights, no shadows

Table 3.3(b). Characteristics of the stained glass knight model.

Figure 3.3(b). Stained glass knight. © 1985 Paramount Pictures Corporation and

Amblin’ Entertainment

42

waves

Year, references
Application

Visual properties

Animation

1986 [Four86] and [Fole90, Plate IV.19]

research in modeling natural phenomena
short animated film

complex geometry

simulated reflections

surface normal perturbations (bump maps)

waves roll in and crash on beach; beach and cliffs are static

primitives move and change shape with each frame
vertical camera move

Total modeling primitives 54,440

Description of primitives 45,366 bicubic patches
8,580 fractal specifications
494 bilinear patches

Texture maps 2

Light sources

1 distant light (sun), no shadows

Table 3.3(c). Characteristics of the waves model.

Figure 3.3(c). Waves. ©1986 Pixar

luxo jr. I

Year, references 1986 [Lass87] and [Fole90, Plate D]
Application rendering research (shadow map algorithm [Reev87])
short animated film
Visual properties shadows from three light sources
simple surface texture (no reflections)
Animation two lamps move, ball rolls, lamp cord moves
cord shapes change, but lamp and floor geometry static
camera static
Total modeling primitives 454
Description of primitives 51 spheres
78 cones
54 cylinders
9 tori
8 “‘teardrops”’
254 bilinear patches
Texture maps 4
Light sources 1 spotlight off-camera, casts shadows

2 spotlights visible in scene, cast shadows

Table 3.3(d). Characteristics of the Luxo Jr. I model.

Figure 3.3(d). Luxo Jr. 1. ©1986 Pixar

44

bike shop window 1
Year 1987
Application animation and rendering research and development

Visual properties

Animation

research in modeling natural phenomena
short animated film, Red’s Dream

complex geometry
transparency, surface textures, simulated reflections
sophisticated lighting and shadows

geometry static; camera tilts up and lighting changes

Total modeling primitives

Description of primitives

10,406

334 spheres

541 cones

3,274 cylinders

1,683 tori

1,300 cubic Bezier patches
3,206 bilinear patches

68 ‘‘teardrops’’

Texture maps

22

Light sources

2 spotlights, cast shadows

3 spotlights, no shadows

1 neon sign, modeled as bi-directional spotlight
simulated moonlight, modeled as a distant light

Table 3.3(e). Characteristics of the bike shop window I model.

Figure 3.3(e). Bike shop window (I and II). ©1987 Pixar

45

tinny
Year, references 1988 [Upst90, Plates 5 and 6]
Application short animated film
Visual properties shadows, including self-shadowing
simple surface textures
Animation in this scene, character marches across screen
camera static
Total modeling primitives 1,510
Description of primitives 113 spheres
217 cylinders
350 hyperboloids
14 tori
545 bicubic patches
271 bilinear patches
Texture maps 2 surface textures
Light sources 2 distant lights

Table 3.3(f). Characteristics of the Tinny model.

Figure 3.3(f). Tinny. ©1988 Pixar. The measurements include only the figure at the
lower left.

46

luxo jr. II (revised model)

Year, reference
Application
Visual properties

Animation

Animation

1989, 1991 [see Figure 3.3(d) and Table 3.3(d)]
short animated films

adds simulated reflections to original described in Table 3.3(d))
adds more complex spring geometry
stereo 3D in 1988 film; video format for 1991 film

similar to original; 1988 film has one lamp and one ball;
statistics bem

similar to original; 1988 film has one lamp and one ball;
statistics below describe 1991 film with two lamps and two balls

Total modeling primitives

Description of primitives

4,445

24 cylinders

74 hyperboloids

46 spheres

8 tori

4,036 bicubic patches
257 bilinear patches

Texture maps

6

Light sources

same as Table 3.3(d)
1 spotlight off-camera, casts shadows
2 spotlights visible in scene, cast shadows

Table 3.3(g). Characteristics of the Luxo jr. II model.

47

bike shop interior

Year, references
Application

Visual properties

Animation

1987, rendered 1991 [Reev87] and [Fole90, Plate F]

still from 1987 animated film, Red’s Dream
used in 1991 as a benchmark for machine comparisons

complex geometry
transparency, surface textures
sophisticated lighting and shadows

n.a.

Total modeling primitives
Description of primitives

18,258

690 spheres

3,136 cylinders

1,839 tori

883 hyperboloids

1,030 cubic Bezier patches

10,680 bilinear patches

4 constructive solid geometry (csg) intersections

Texture maps

13

Light sources

2 spotlights, cast shadows
5 spotlights, no shadows

Table 3.3(h). Characteristics of the bike shop interior model.

Figure 3.3(g). Bike shop interior. ©1987 Pixar

48

bike shop window II

Year, reference
Application

Visual properties

Animation

1987, rendered 1991 [see Figure 3.3(e) and Table 3.3(e)]

still from 1987 animated film, Red’s Dream
used in 1991 as a benchmark

complex geometry
transparency, surface textures, simulated reflections
sophisticated lighting and shadows

n.a.

Total modeling primitives

Description of primitives

11,311

334 spheres

526 hyperboloids

3,328 cylinders

1,683 tori

2,233 cubic Bezier patches
3,207 bilinear patches

Texture maps

12

Light sources

2 spotlights, cast shadows

3 spotlights, no shadows

1 neon sign, modeled as bi-directional spotlight
simulated moonlight, modeled as distant light

Table 3.3(i). Characteristics of the bike shop window II model.

49

conga

Year 1990

Application television commercial

Visual properties simple geometry
displacement mapping
transparency, surface textures, simulated reflections
large number of light sources

Animation

dancing gummy candies; geometry ‘‘bends’’
camera slowly moves upwards; lighting changes

Total modeling primitives
Description of primitives

968

18 spheres

64 cylinders

166 tori

168 hyperboloids

533 cubic Bezier patches
19 bilinear patches

Texture maps

9

Light sources

1 spotlight, casts shadows
15 spotlights, no shadows
15 point light sources

1 distant light

Table 3.3(j). Characteristics of the Conga model.

Figure 3.3(h). Conga. Pixar/Colossal Pictures 1991

50

Some images, especially the early ones, cover only part of the screen. This reflects a model of com-
puting pictures that relies on compositing separate elements to create a complete image [Duff85, Port84].
Subdividing the scene into smaller subproblems can save memory or compute time. Backgrounds and
other elements may be computed and rendered using different techniques, and rendered elements can be
used again in different settings. The stained glass knight inherently follows this model, because the com-
puter graphics elements were designed to be composited with live action film footage. Composited ele-
ments must be separable. Partitioning the scene and resolving visibility among the elements is usually a
manageable manual task, but this requirement imposes design constraints.

To what extent has the workload become more complex over time? Andre is the earliest and sim-
plest scene of the test suite, but it was created while the renderer was under development. The other
scenes were created with more mature rendering software. In general, image complexity depends more
on the requirements of the application than on the year created.

Figure 3.4 plots the number of primitives in the scenes, and compares the test suite with data from
the literature. There are both large and small models throughout the time period shown in the graph.
However, the RenderMan versions of Luxo Jr. and the bike shop do contain more primitives than the ear-
lier versions, mostly because the geometry of the lamp’s springs is more exact. (There is a Luxo lamp on
the bike shop’s counter.) Better modeling tools, as well as increased rendering capacity, encouraged this
improvement in the model.

Shading complexity also depends on the needs of the application. The greatest number of light
sources are seen both in one of the earliest images, the stained glass knight in 1985, and in one of the
latest, conga in 1990. The use of texture maps has changed little over the years, except for the introduc-
tion in 1986 of an algorithm that uses texture maps to simulate shadows [Reev87]. Bump maps to vary

1e+06
o
100000 — o0
°
o © ¢
_ °
10000 3. 8og
Primitives o °
(log scale) o o o o ©
1000-f °© ® ©°°%¢9° o
o ° ©
O
(@]
100 — ° o o
10 [[I

|
1984 1986 1988 1990 1992

Year of publication

Figure 3.4. Number of modeling primitives. The figure compares the Pixar test suite with
other models in the literature. Data points corresponding to the test suite are marked with
bullets: . The mixed models data from Figure 3.1 are marked with circles: o.

51

the surface normal, environment maps to simulate reflections, and displacement maps to offset the loca-
tion of points on the surface were all available in Reyes as early as 1984 [Cook84a]. However, these
applications of texture mapping do not appear in the test suite until later.

In summary, the test images exhibit a general consistency in their complexity. One explanation is
that they were all created by a family of tools with similar capabilities and approaches to rendering.

3.4.3. Rendering-time Model Statistics
The rendering system gathers information dynamically about certain properties of the scene, includ-
ing
° its internal representation in rendering primitives,
° the screen size of objects,
° the proportion of the screen covered by the image, and
e the number of objects visible at different locations on the screen.

Pixar’s production rendering systems report statistics about rendering primitives and provide limited
instrumentation of the visible surface algorithm. I added measurement code to Reyes that reports more
detailed information about objects in screen space and about the performance of the visible surface algo-
rithm. The instrumentation is contained in a visible surface module that substitutes for the default code.
It can produce statistics with or without generating an image. For all statistics, the code records not only
the mean but also the standard deviation and a histogram. Variability is important because it affects how
evenly the workload may be distributed among multiple processors. I did not add the equivalent instru-
mentation to prman, because of the differences in the visible surface algorithm. Since prman does not
sample all objects, it cannot provide complete information about objects in screen space.

The additional instrumentation in Reyes measures characteristics of both the visibility algorithm
and the scenes. The code measures the number of objects processed at each sample point and in each
bucket during the three stages of the visible surface algorithm. It measures, as well, the number of visi-
bility operations applied to each micropolygon. The depth complexity statistics are obtained in an
unusual manner, by sampling the depth at a large number of locations distributed pseudo-randomly
throughout the screen area. This instrumentation piggybacks on the stochastic sampling code. For an
image with many sub-pixel size features, supersampling indicates the depth of the scene more accurately
than counting the number of objects per pixel.

Table 3.4 shows some of the rendering statistics for Group I, and Table 3.5 shows the corresponding
information for Group II. Because of differences in the rendering system, some of the statistics are com-
puted differently for the two groups. We will consider the table entries in order, from top to bottom.

Resolution . All of the images were computed at the same resolution except for Luxo Jr. II. Ithas a
different aspect ratio because it was computed for video rather than for film.

%Coverage . For Group I, the screen coverage is defined as the percentage of sample points that
have at least one hit. This percentage was determined by instrumenting the sampling code. In produc-
tion, Andre and waves were composited with other computer-generated elements, the stained glass knight
was composited with live-action film, and the other images contained some black background. All of the
images except the bike shop have many empty pixels. For Group II, the screen coverage is defined as the
percentage of pixels that contain something other than empty background. This percentage was deter-
mined by a program that examines the image data. The Group II images are all complete frames, which
indicates a trend away from compositing. Although compositing saves rendering time, it requires extra
human intervention and can introduce errors. It is also more difficult in scenes with shadows. With faster
rendering and the more frequent use of shadows, compositing has become less common.

Sample Hits. The total number of sample hits is a function of the image geometry, the sampling
rate, and the image resolution. For Group I, the number of hits is proportional to the total screen area of

52

Image andre stained glass waves luxo jr. I bike shop
knight window I
Resolution 1024x6146 | 1024x614% | 1024x614 | 1024x614 | 1024x614°
%Coverage (sample points) 15.49 67.10 51.54 36.71 95.87
Sample Hits 4,940,937 | 10,814,982 9,144,470 5,474,264 | 21,682,346
Depth Complexity
covered sample points 3.17 1.58 1.75 1.47 248
all sample points 0.49 1.08 0.91 0.54 247
Micropolygons 485,531 819,089 1,738,291 777,607 3,065,513
Hits per Micropolygon 10.18 13.20 5.26 7.04 7.07
Modeling Primitives 91 1,403 54,440 454 10,406
Pixels per Primitive (est.) 3,394 482 11 754 130
Table 3.4. Rendering statistics, Group I.
Image luxo jr. II bike shop bike shop conga
interior window II
Resolution 1024x768 1024x614 1024x614 1024x614
%Coverage (pixels) 45.40 100.00 100.00 100.00
Sample Hits 5,890,317 14,010,635 12,866,921 15,790,568
Hits per sample point
covered sample points 1.03 1.39 1.28 1.57
all sample points 0.59 1.39 1.28 1.57
Micropolygons Shaded 806,187 2,152,432 1,344,626 2,573,665
Micropolygons Sampled 744,200 1,896,737 1,268,163 2,487,586
Hits per Micropolygon 7.92 7.39 10.15 6.35

6 Because of memory limitations, the left and right halves of these three images were computed separately and composit-

ed by a post-processing task.

Table 3.5. Rendering statistics, Group II.

53

all surfaces in the scene. This statistic is an important property of the scene, because the cost of a z-buffer
algorithm increases in direct proportion to the total screen area. The number of hits varies by about a fac-
tor of four for Group I. We can not use the number of hits to estimate the total projected area of the
Group II scenes, because prman does not sample all surfaces. For these images, the number of hits meas-
ures the renderer’s effort rather than any intrinsic property of the scene. There is a large difference in the
number of hits between versions I and II of the bike shop window. This difference demonstrates prman’s
ability to discard many objects that are hidden behind the front wall of the shop. Between versions I and
II of Luxo Jr, the number of hits increased by about eight percent. However, the screen coverage
increased by over twenty percent.

Depth Complexity . A useful way to think about the total projected area of a scene is to average the
number of hits over the sample points. The quotient is the mean sample point depth complexity, that is,
the average number of surfaces intersected by a ray projected from a sample point into the scene. The
depth complexity is an important property of the scene, because it estimates the amount of extra shading
performed by a renderer that shades all surfaces, visible or not.

For Group I, the depth complexity is computed as the average number of hits per sample point.
Table 3.4 shows two depth complexity statistics for each image. The first ignores the background, and
averages the depth over the non-empty sample points. For three of the five images, the mean is less than
two, and it is always less than four. Table 3.6 shows the median and other percentiles of this distribution.
Some sample points do have a large number of hits, but they are rare. The second depth complexity
statistic in Table 3.4 averages the number of hits over all sample points in the image, including the empty
background.

Although these images are generally considered complex, their depth complexity is low. Does the
low depth complexity reflect inadequate rendering capacity or the difficulty of modeling complex scenes?
Modeling is labor-intensive, so scene designers tend to avoid modeling objects that would be hidden
behind other elements of the scene.

Depth complexity measurements are rare in the literature, but Whelan gives distributions for six
images [Whel85]. The median for his images ranges from one to five, and it is greater than three in half
of the images. The ninetieth percentiles range from two to over thirty. Although Whelan reports higher
depth complexities than Table 3.6, his images do not appear to have much more depth. Two factors help
explain the differences between his measurements and Table 3.6. First, Whelan measured the pixel depth
complexity, which counts all objects that intersect any part of a pixel. Suppose a pixel contains parts of
three non-intersecting fragments. The pixel depth complexity is then three. This chapter reports a statis-
tic that depends less on the image resolution, the sample point depth complexity. If a pixel contains three
non-intersecting fragments, the mean sample point depth complexity is at most one, since a ray projected
from a sample point hits either one of the fragments or none. Furthermore, the mean sample point depth
complexity can be less than one if the fragments do not completely cover the pixel. The second differ-
ence in the measurements is that Whelan’s scenes apparently contain an explicit background polygon.
Each pixel then has a minimum depth complexity of one. The Pixar images, which contain no explicit
background plane, have a minimum depth complexity of zero.

Hits per Sample Point. For Group I, there are no depth complexity estimates. When prman dis-
cards an invisible object before sampling, it loses information about the true depth of the scene. The
mean hits per sample point is a lower bound that underestimates the true depth of the scene. As expected,
the means for the Group II images are lower than for Group 1.

Micropolygons . The rendering system also reports on rendering primitives. For Group I, Table 3.4
shows the number of micropolygons generated for each image. For Group II, the table shows both the
number of micropolygons that are shaded and the number that are later sampled after prman discards
some invisible micropolygons.

54

Image median 90th 99th maximum
percentile percentile
andre 2 8 14 16
stained glass knight 1 3 6 15
waves 2 3 6 40
luxo jr. 1 1 2 4 8
bike shop window 2 4 8 27

Table 3.6. Sample point depth complexity, Group I. The percentiles exclude sample points in
empty background pixels.

The number of micropolygons ranges from half a million to three million. In other words, the
rendering primitives are commonly about three orders of magnitude more numerous than the input
modeling primitives. These numbers are large in comparison with the number of intermediate primitives
reported for some other systems. Two examples in the literature describe systems that render large
numbers of small intermediate primitives, but in neither case are the numbers of primitives as consistently
large. Snyder and Barr tessellated surfaces into small triangles for ray-tracing [Snyd87]. One scene gen-
erated 4x10'! intermediate primitives but most had fewer than half-a-million triangles. Reeves’ particle
systems algorithm generated many simple, tiny primitives [Reev83, Reev85]. The most complex con-
tained nearly two million particles, but most had fewer than one million primitives.

Hits per Micropolygon . Reyes subdivides each pixel into sixteen equal regions and places one sam-
ple point pseudo-randomly within each sub-pixel. The stochastic sampling algorithm can be use to esti-
mate the screen size of micropolygons in the Group I images. The algorithm guarantees one hit for each
sub-pixel that is completely covered by a micropolygon, and on average the number of hits is propor-
tional to the size of the object. The maximum micropolygon size is controlled by a rendering parameter,
which limits the longest dimension to the width of one pixel. The minimum size depends on the shape of
the surface. The renderer subdivides objects until the resulting micropolygons are flat. Micropolygons
can be very small if the shape of a surface requires a fine subdivision or if the surface itself is very small.
In the test suite, the mean number of hits per micropolygon varies by more than a factor of two, ranging
from five to thirteen.

The number of hits per micropolygon is computed the same way for Group II. However, because of
the optimizations that avoid unnecessary sampling, this statistic underestimates the screen size of objects.
Rather than describing the intrinsic complexity of a scene, this statistic describes the amount of work per-
formed by prman.

Coarse polygonal approximations of curved surfaces tend to produce unrealistic, faceted scenes.
Because Reyes generates such a large number of tiny micropolygons, it can represent geometric detail
accurately. This level of accuracy requires a large amount of data and many operations.

Pixels per Primitive . For Group I, Table 3.4 gives an estimate of the mean screen size of modeling
primitives. To compute the estimate, first divide the total number of sample hits by the number of model-
ing primitives. Then, divide the quotient by the number of samples per pixel. Because back-facing sur-
faces have been culled, the result estimates the average projected screen area of the modeling primitives.
Table 3.5 omits the equivalent statistic for Group II because the sampling optimizations do not preserve
enough information to produce a meaningful estimate. The average number of pixels per primitive varies
greatly, by a factor of three hundred (from 11 to 3,394). Much of the variation is due to the different
requirements of the applications. For example, the largest primitives are in the images that show close-up
views of a few objects. However, the statistics also hint at a trend towards modeling with smaller primi-
tives. Andre has the largest primitives, but it was designed to be a simple first production with the render-
ing software. Luxo Jr. I has large primitives, and it was also given a simplified design. The later version,

55

Luxo Jr. II, was modified to to represent the geometry more exactly; it has nearly ten times as many prim-
itives. If the earlier version had the same representation, it would average about one hundred pixels per
modeling primitive instead of 754. Improved modeling tools, as well as increased rendering capacity,
have made more detailed models practical.

3.4.4. Rendering-time Texture Statistics

The rendering system also provides information about the dynamic use of texture maps, as shown in
Table 3.7. Five different types of texture maps were used: surface textures, bump maps, shadow maps,
reflection maps, and environment maps. As many as four types were used in a single scene. The number
of distinct texture maps defined for a scene varied from two to fifty-one, but not all of the texture maps
were visible in the views that were rendered.

Image Texture Type Number of Maps Texture Pixels
defined used accessed per shaded pup

andre surface color 11 11 n.a.

stained glass knight surface color 48 26 n.a
bump map 2 2 n.a
background color 1 1 n.a

waves bump map 1 1 n.a.
reflection map 1 1 n.a.

luxo jr. I surface color 1 1 n.a.
shadow map 3 3 n.a.

bike shop window I surface color 17 14 n.a.
shadow map 2 2 n.a.
reflection map 3 1 n.a.

luxo jr. II surface color 2 2 4,083,613 5.07
shadow map 3 3 11,213,746 13.91
reflection map 1 1 7,032,033 8.72
total 22,329,392 27.70

bike shop interior surface color 11 11 12,724,655 5.91
shadow map 2 2 15,541,683 7.22
total 28,266,338 13.13

bike shop window II | surface color 9 9 8,272,392 6.15
shadow map 2 2 8,698,121 6.47
reflection map 1 1 3,453,864 2.57
total 20,424,377 15.19

conga surface color 6 6 2,435,799 0.95
shadow map 1 1 3,286,309 1.28
reflection map 1 1 10,144,884 3.94
displacement map 1 1 6,386,704 2.48
total 22,253,696 8.65

Table 3.7. Texture usage statistics. For images in Group II, the table shows the total number
of texture pixels used and the average number of texture pixels per shaded micropolygon. This
information is not available for the images in Group 1.

56

Unfortunately, the texture statistics supply only aggregate data for each texture map, without
describing the distribution of texture requests over different surfaces. Two examples show how texture
usage can vary with the application. For Andre, each texture map adds a pattern to one object, such as the
tread on the sole of the shoes. In this scene, a single surface receives at most one texture and many sur-
faces are not textured. In the stained glass knight, every surface uses five or six varied maps to create a
richly-textured appearance.

Reyes supports efficient access to texture data by caching texture pages obtained from the server or
local disk. Overall, the Reyes texture statistics document the performance of the texture cache. They are
helpful in tuning the system but have little to say about the system-independent, intrinsic properties of the
scene. Table 3.7 simply notes that two Group I models, the ones with the most texture maps, define more
textures than the specified views require. Prman’s texturing subsystem provides a different set of statis-
tics, including information about the number of pixels accessed from each texture map. Table 3.7 sums
the number of pixels accessed by the type of texture map. It also averages the number of texture pixels
over all of the shaded micropolygons and summarizes the statistics for each scene. Depending on the sur-
face, the actual number of texture accesses may vary greatly from the mean.

There are some differences between the Group I and Group II versions of similar images. Luxo Jr.
IT has two more texture maps than the earlier version, including a reflection map. On average, the addi-
tional textures increase the amount of texturing work per micropolygon. Bike shop window II uses fewer
texture maps than before, because a change in the camera angle removes some textures from the field of
view. However, more of the textured brick wall is visible, and the aggregate screen area covered by tex-
tured surfaces is about the same. Although the texture map count is lower in the Group II version, the
number of texturing operations is probably similar.

3.4.5. Profiling Results

For each image, I profiled the execution of the rendering system to learn the proportion of time con-
sumed by the major categories of rendering tasks:

e visibility determination

e shading and texturing

° geometry

e rendering-time modeling

° input and display
Tables 3.8 and 3.9 show the timing results, and Figure 3.5 presents the information graphically. Reyes
and prman run on different hardware and under different version of the Unix operating system, so the

profiling tools are not the same. Because of profiling and implementation differences, categories vary
slightly for Groups I and II. The differences are explained below.

I measured Reyes on the CCI Power 6/32 under Berkeley Unix using gprof, which reports the
results of program counter sampling. A gprof report for a procedure includes not only the time spent exe-
cuting its own code, but also the time spent in sub-procedures on its behalf. If a subroutine is called from
several locations, gprof estimates a proportion of the execution time to attribute to each caller. From
gprof’s hierarchical report, we can read the percentage of runtime charged to a given phase of rendering.
Some of the outer loop overhead, initialization, and data structure management fall outside of the defined
tasks. Iinclude these costs and some instrumentation overhead in the ‘‘Other’’ category.

I measured prman on a Silicon Graphics 4D/220 with a 25 MHz R3000/3010 and 16 MB of
memory. The execution profiling support for the MIPS compiler under Unix System V counts basic
blocks rather than sampling the program counter. It provides only a flat listing of the user cpu time
charged to each procedure. To calculate the percentage of time devoted to a specific rendering task, I
grouped the procedures by their source files. This categorizes most of the code accurately. However,

57

Image Total | Visibility Shading & Geometry Fractal & Input& Other
Texture CSG Display
hh:mm:ss % ¥ % % %o %
andre 50:07 64.6 15.2 8.2 5.1 2.7 4.2
stained glass knight | 2:19:46 45.5 46.1 32 0.0 34 1.8
waves 4:51:06 32.5 50.1 8.1 34 2.0 3.9
luxo jr. I 1:20:01 51.2 36.6 54 0.0 1.4 5.4
bike shop window 5:59:55 40.8 44.6 6.8 <0.01 2.7 5.1
average 3:04:11 46.9 38.5 6.3 1.7 2.4 4.1

Table 3.8. User CPU Time, Group I. The table lists the total user cpu time to compute each
image on the CCI Power 6/32, and the proportion of time devoted to major rendering functions.
Geometry is the time to adaptively subdivide primitives other than fractals and to create micro-
polygons. Fractal & CSG is the time to initialize, subdivide, and bound fractals or to compute
constructive solid geometry operations. The column labeled Other covers costs such as initial-
ization, some of the loop overhead and data structure management, and any easily separable in-

strumentation.
Image Total Visibility Shading & Geometry Input& Other
Texture Display

hh:mm:ss % Yo % % %
luxo jr. II 29:44 45.8 45.7 1.2 2.0 53
bike shop interior 39:17 47.7 41.1 3.0 1.1 7.1
bike shop window II 28:05 54.9 34.7 33 14 5.7
conga 1:35:20 29.8 61.6 1.0 04 7.2
average 48:07 44.6 45.8 2.1 1.2 6.3

Table 3.9. User CPU Time, Group II. The table lists the total user cpu time to compute each
image on and the proportion of time devoted to major rendering functions. The images were
rendered on a Silicon Graphics 4D/220 with a 25 MHz R3000/3010 and 16 MB of memory.
Geometry is the time to adaptively subdivide primitives other than fractals and to create micro-
polygons. The column labeled Other includes all time spent in routines from the math library,
the matrix library, and other libraries called from multiple locations. It also includes some ini-
tialization and loop overhead.

many library routines, including the math library and matrix manipulation procedures, are called from
several locations, so there is not enough information to show precisely how much execution time to attri-
bute to each rendering task. The time spent in these shared procedures appears in the ‘‘Other’’ category.

All of the runtime measurements include only the time to render the image directly. They exclude
any pre-processing needed to create texture maps, such as shadow maps. (The performance of the sha-
dow algorithm is discussed by Reeves, Salesin, and Cook [Reev87].)

The measurements confirm that two tasks dominate rendering costs: visibility determination and
shading and texturing. For Group I, the two tasks combined account for 79.8 to 91.6 percent of the exe-
cution time. For Group II, they use from 88.8 to 91.5 percent of the execution time. The spread is much
wider for Group I, because two of its images require runtime modeling and increased geometric computa-
tion. Once scene uses stochastic procedural modeling with fractals, and the other uses constructive solid
geometry (CSG). The balance between the two tasks, visibility and shading, shifts from scene

Group 1
100

80
60
40

20

Legend: i

other

input and display
fractal and csg
geometry
shading
visibility

Group 11

100
80
60
40

20

stained glass knight

luxo jr. IT

bike shop interior

waves

bike shop window II

conga

bike shop window I
luxo jr. I

0.4%
1.0%

Figure 3.5. Percentage of runtime charged to major rendering activities. The graph uses
the same categories as Tables 3.8 and 3.9.

58

59

to scene. The visible surface problem dominates three times and the shading and texturing problem dom-
inates twice. In the other four cases, the costs are fairly even.

Because Reyes supports an extensible shading language instead of a constant local illumination
model, shading costs vary among the images. The average time to shade a micropolygon varies by a fac-
tor of 6.6 for Group I and by a factor of 3.1 for Group II. The cost of the visible surface problem is less
variable, because the algorithm does not vary.” Excluding CSG operations, the average time per micropo-
lygon varies by less than a factor of two for each of the two groups. The time to process a micropolygon
is affected by its screen size, the screen size of its bounding box (which determines the number of sam-
ples), and the presence of transparent surfaces.

The ‘‘Geometry’’ category describes the preprocessing that subdivides modeling primitives into
grids of micropolygons. This is the third most expensive task for Group I, although it consumes no more
than 8.2% of the execution time. For Group II, we cannot include the cost of calls to the mathematics
library; only one to three percent of the execution time is charged directly to the geometric preprocessing.
Other geometric operations are necessary for shading, texturing, visibility determination, and modeling.
The modeling costs for fractal generation and csg are low.

The Input and Display category includes computation as well as input/output operations. The input
module parses the model, while display requires initialization and encoding. At most 3.4% of the execu-
tion time is spent in these tasks. The input category includes only the operations that read the model data.
Texture mapping requires additional input. The ratio of texture reads to model reads varies greatly,
depending on the length of the model files, the amount of texturing, and the locality of the texture
accesses. For example, the texture mapping module made thirty-five percent of the read system calls for
the stained glass knight and about ninety percent for Luxo Jr. L.

3.4.6. Visible Surface Measurements

The measurements in the previous section show a substantial speedup from the 1985 technology of
Group to the 1990 technology of Group II. The speedup comes not only from faster hardware, but also
from the new software, such as the improved visible surface algorithm.

A more detailed analysis of visible surface measurements reveals further characteristics of the algo-
rithms and the workload. Table 3.10 shows the execution time and input size for each of the three stages
of the visible surface algorithm. This data is obtained from the hierarchical profiles and additional instru-
mentation, which is available only for Group I. The time for each stage is given both as a proportion of
the total user time and in seconds. The input size is the number of samples processed in each stage, in
thousands.

The workload is not balanced among the three stages. Without exception, each stage is smaller and
faster than the previous stage. Table 3.11 shows the reduction in input size more clearly, by expressing
the size of each stage as a fraction of the initial input to the algorithm. The reduction in execution time
from one stage to the next is only partially explained by the smaller input size. As Table 3.12 shows, the
computation is less complex in each successive stage. For a given stage, the average cost per sample is
remarkably consistent across all five images.

Many parallel rendering algorithms subdivide the screen and assign one or more regions to each
processing node. The variability of the input size at different locations affects the system’s ability to bal-
ance the load among the processors. Table 3.13 shows the distribution of input among the sample points,
and Figure 3.6 graphs the mean input size per sample point. The variability is expressed by a relative
measure, the coefficient of variation, which expresses the standard deviation as a fraction of the mean.

7 Reyes allows a different visible surface module to be substituted for the default module. As Section 3.4.3 notes,
this mechanism was used to instrument the visible surface algorithm. It is also possible to vary the algorithm, but, in
practice, the default stochastic supersampling algorithm is always used.

60

Image sample sort filter
% sec size % sec size % sec size
andre 49.7 1,495 16,397 144 435 4,789 | 3.0 92 2,543
stained glass knight | 31.1 2,611 31,924 7.7 648 10,815 | 4.1 342 9,010
waves 239 4,174 49,074 3.1 541 9,144 | 1.3 227 7,917
luxo jr. 1 36.9 1,772 18,704 7.0 336 5474 | 4.4 211 5,024
bike shop window 304 6,565 69,199 54 1,158 21,682 | 24 521 16,092
average 344 3323 37,059 7.5 624 10,381 3.0 279 8,117

Table 3.10. Visible surface time. For each stage of the visible surface algorithm the table
shows the percent of execution time, seconds of cpu time, and the size of its input expressed in
thousands of samples.

Image size of input

sample sort filter
andre 1.00 029 0.16
stained glass knight 1.00 034 0.28
waves 1.00 0.19 0.16
luxo jr. I 1.00 0.29 0.27
bike shop window 1.00 031 0.23
average 1.00 0.28 0.21

Table 3.11. Reduction of size in the visible surface algorithm. The size of the input to each of
the three stages is expressed as a fraction of the initial input to the first stage. The average is
the geometric mean.

Image ms/1000 samples

sample sort filter
andre 91.18 58.568 36.20
stained glass knight | 81.77 59.90 37.95
waves 85.06 59.21 28.68
luxo jr. I 9472 61.40 42.04
bike shop window 94.87 53.41 32.35
average 89.52 58.50 35.44

Table 3.12. Reduction of cost in the visible surface algorithm.

8 For Andre, the depth sort statistic excludes csg operations. Including csg, the average time to process one thousand

samples is 90.83ms.

Image sample sort filter

mean CV | mean CV | mean CV
andre 977 105 | 294 088 | 1.64 0.29
stained glass knight | 452 0.88 | 1.53 0.76 | 1.32 0.35
waves 932 116 | 1.74 0.75 152 033
luxo jr1 473 080 | 138 058 | 135 035
bike shop window 784 163 | 246 064 | 183 034
average 724 110 { 201 072 | 153 0.33

Table 3.13. Input size per sample point. The entries describe each of the three stages of visible
surface processing for Group I. The mean input size is the average number of micropolygons
processed, per sample point, during each stage. CV is the coefficient of variation, or the ratio of
the standard deviation to the mean. The table excludes sample points in empty background pix-

els.

Legend:

- sample

sort

D filter

andre

stained glass knight

Figure 3.6. Mean input size per sample point. The data describe each of the three stages of

waves

bike shop window

luxo jr. 1

visible surface processing for Group I. This graph plots the data in Table 3.13.

61

62

There is considerable variation in input size to the sampling stage, which consumes most of the execution
time. With each stage, the input becomes not only smaller, but also less variable. This analysis considers
only the variability among sample points. Chapter 5 addresses the workload variability among larger
regions.

The approach called invisibility processing attempts to reduce the number of sampling operations.
Prman reports the number of discarded objects, and Table 3.14 summarizes these statistics for Group II.
The success of these optimizations depends heavily on the depth complexity, and it can also be influenced
by the relative size of the primitives. The bike shop window has the highest mean depth complexity of
the Group I images, and prman is able to eliminate nearly 70% of the grids from further processing. The
opaque wall in the foreground of the scene makes it easy for the renderer to discard large portions of
many surfaces. By discarding grids, the systems not only reduces the size of the visible surface problem
but it also avoids shading invisible surfaces. The optimizations are also effective with the interior view,
although the system discards more of the smaller objects and fewer whole grids. The algorithm is less
successful with the other images, which are flatter.

The algorithm’s designer experimented with invisibility processing on a variety of scenes. For
images with very low depth complexity, he found that the required tests can consume more time than they
save [Apod91]. In general, invisibility processing pays off for the images with higher depth complexity.
For the typical image in Pixar’s current workload, the algorithm pays off. It reduces the problems of
shading before determining visibility while preserving the advantage of shading large pieces of a coherent
surface at one time.

We can compare the performance of prman and Reyes for two pairs of scenes. Prman renders the
bike shop window twelve times faster than Reyes. Because prman discards most of the grids before shad-
ing, it spends a much smaller proportion of time in shading and texturing. The average number of hits per
sample point is reduced from 2.48 to 1.57. For Luxo Jr., the average number of hits per sample point
shows a smaller decrease, from 1.47 to 1.03. The proportion of time spent shading and texturing Luxo Jr.
is actually greater under prman. Two factors explain this increase. First, the Group II version has a more
complicated shading model that includes reflection mapping. Second, the low depth complexity limits
the benefits of invisibility processing.

luxo jr. II bike shop bike shop conga average
interior window I

shaded 8,437 53,841 25,720 15,418 25,854
Grids discarded 733 41,186 56,285 2,518 25,181
% discarded 8.0% 43.3% 68.6% 14.0% 33.5%
sampled 717,707 1,676,167 1,192,292 2,340,643 1,481,702
Micropolygons discarded 26,493 221,865 75,871 136,385 115,154
% discarded 3.6% 13.2% 6.4% 5.8% 7.3%
tested 17,741,221 37,043,356 29,361,513 51,511,258 33,914,337
Samples discarded 399,290 6,001,405 2,107,101 1,921,371 2.607,292
% discarded 2.2% 13.9% 6.7% 3.7% 6.6%

Table 3.14. Invisibility processing, Group II. The table shows the number of items discarded

after each of the three tests that identify invisible objects.

63

3.5. Summary

The images in the test suite vary in geometric complexity, depth complexity, shading models, light-
ing, and texturing requirements. On a whole, however, they are more alike than different, reflecting a
uniform style of modeling and rendering. An examination of the historical data in Section 3.2, finds
growth in geometric complexity, but also clusters that represent periods when the complexity tends to
range within similar bounds. For example, when we extract the data for the years 1984 to 1991 (Figure
3.4), the growth is not obvious. Improvements in technology often push complexity to a new plateau,
where it may settle until the next large change. In the Pixar workload, there has been a mild trend
towards more complex scenes over the years. On the other hand, Pixar’s workload has been shifting more
from research and development towards commercial production. Tight production schedules usually
allow less time for model development, so the complexity of Pixar’s scenes may now level off.

The test images lack true global illumination effects, but in other respects the workload is still com-
plex compared with other examples in the literature. The geometric intricacy, local illumination, textur-
ing, and rendering quality are very advanced and the animation tools support dynamic changes in
geometry.

The measurements presented in this chapter document the variability in the workload. For the visi-
ble surface algorithm, the workload is distributed unevenly over the sample points. The variability is the
greatest in the initial, most costly stage of the processing. However, the visibility costs per unit of input
are consistent for all the images. The costs of shading and texturing are even more unbalanced, because
the complexity of the shading model and the number of texture operations varies from surface to surface
and from image to image.

Reyes attempts to improve locality and make shading more efficient by shading large pieces of a
surface at one time. Its approach involves shading all surfaces before determining which are visible. One
concern with this algorithm is that the renderer will spend a lot of time unnecessarily shading invisible
objects. The measurements in this chapter point out two mitigating factors. First, there may be fewer
invisible surfaces than expected. The depth complexity indicates how much extra shading is required,
assuming that most surfaces are opaque. In general, the depth complexity of the images in the test suite is
seldom high. Second, improvements to the algorithm discard many of the invisible surfaces prior to
shading. Chapter 4 describes the results of experiments that explore these issues further.

64

4
A Tool for Measuring the Performance

of Rendering Systems

4.1. Introduction

To measure the performance of an image synthesis system, we observe the resources it requires to
generate an image. The image is specified by a database with a detailed model of the scene, controls for
viewing the scene, and controls for displaying the image. Together, the model and controls form a test
case, or benchmark. Meaningful performance measurements depend on good test cases.

It can be hard to obtain a varied and appropriate set of benchmarks to test a system. Typically, indi-
vidual sites have developed their own suites of test images. The number and scope of the tests is often
limited, because it is time-consuming to create the models for complex new images. Researchers fre-
quently create images that illustrate the functionality of a new algorithm without simulating any actual or
anticipated workload. Scene specifications are often proprietary and are seldom portable, since no stan-
dard for describing complex, realistically-shaded, three-dimensional images is widely supported. A port-
able test suite and scene description language would provide a source of additional test cases, support per-
formance comparisons, and facilitate the sharing of scene data.

This chapter describes the design of a portable model generator which creates test cases useful for
studying the performance of rendering systems. The model generator, or Mg, is a group of programs,
written in C. Under the control of a set of parameters, they generate scene specifications, including model
geometry, surface properties, textures, light sources, and viewing parameters necessary to define an
image. To port Mg to a new system, a programmer modifies a small set of procedures that output the
model data. Mg differs from a static benchmark suite, because the experimenter can adjust the complex-
ity and characteristics of the scenes to simulate different workloads or to evaluate specific aspects of a
system’s performance. Two test cases with different characteristics have been implemented, and the
tool’s format allows new scenes to be added as image synthesis workloads and technology evolve.

The primary goal of this project is to demonstrate a methodology and a tool for reproducible, con-
trolled performance experiments. A reproducible experiment yields essentially the same results when
repeated by different people or when executed on different, but equivalent, systems. A controlled experi-
ment studies the effect of a specific parameter by varying that parameter while holding other factors con-
stant. To study an image synthesis system, an experimenter may need to vary some geometric charac-
teristics of the model, such as the number of texture maps, the type of primitives, or the depth complexity.
In this case, a single set of static models would not be useful. Mg promotes a different approach: model
data are generated to the specifications of the experimenter. The same model is always generated for a
given set of specifications, so that experiments are reproducible. By providing a framework for generat-
ing parameterized models and reporting results, Mg supports performance experiments that are both
reproducible and controlled.

By generating geometric data on the fly, Mg also meets design goals concerning portability. First,
the programs that generate models are more compact and easier to distribute than raw data files. Second,
it can be easier and more efficient to modify a clearly-defined set of output routines than to translate large
data files when porting benchmarks to a new system.

65

No benchmark suite can be appropriate for all graphics systems or applications. The types of opera-
tions and the contents of the scenes together define a subset of graphics systems for which a measurement
tool is suited. Mg targets systems for realistic image synthesis and omits consideration of issues raised by
real time graphics and user interaction. Its geometric interface supports parametric patches, quadric sur-
faces, polygons, and nested transformation matrices. Its lighting and shading procedures support multiple
distant and local light sources, textures, reflective surfaces, and transparency with refraction.

Having defined an interface, it is still hard to design scenes that are characteristic of a range of
applications. Rendering workloads vary widely in the complexity of scenes, their specific characteristics,
and the balance between application computing and rendering. For this reason, many people in graphics
favor tools that help users create portable benchmarks from their own workloads [Dunw90, Tice88] over
standardized test scenes. Mg’s aim is different, because it generates scenes with controlled variation and
permits the experimenter to evaluate the effect of changing specific workload characteristics.

In a performance experiment, we can separate the quantitative properties from the qualitative. Mg
is designed to help measure how fast a system renders images, not how well it renders. It is not a valida-
tion suite, and it is not intended to assess either rendering accuracy or functional completeness. Although
Mg does not evaluate qualitative properties, they can be incorporated into the experimental design. For
example, we can compare the time to render a given image with different antialiasing options, separating
any subjective evaluation of rendering quality from the performance analysis.

Benchmarks are commonly used to compare the performance of competing systems. Although
inter-system comparison is not a major goal for Mg, a well-defined set of test cases serves as a benchmark
suite. Even when systems have similar capabilities, comparisons raise many tough issues about the
rendering system interface, portability, and fairness. One problem is to find the right balance between
completeness and generality in the selection of geometric and shading operations. The operations should
be widely available, but they should not be so limited that they omit important workload characteristics.
A second problem is to design an interface that is fair to different systems and implementations. For
example, the format that represents geometric data most efficiently for one system may be inefficient for
another. Some biases may be reduced by allowing the data formats to vary, but others are harder to elim-
inate. Workload characteristics can also introduce biases, because systems that are tuned for specific
workloads often perform poorly on other workloads. Finally, qualitative differences among systems can
affect performance as well as portability. Systems that support complexity and realism typically have
higher overhead than less powerful renderers and take longer to render even simple scenes. Flexible sys-
tems that offer a range of algorithms and approaches are typically slower than systems that are optimized
for specific algorithms.

Some of the problems with inter-system comparisons must be addressed in the design of bench-
marks, while others can be handled with clear documentation. It is important to carefully define the
category of systems that are evaluated and report test conditions. In practice, there is seldom a strong
need to compare systems with vastly different capabilities. However, even if we ignore inter-system
comparisons, we must address problems with bias and portability if a measurement tool is to be useful for
studying many systems.

The following section surveys issues and related work in graphics benchmarking, and Section 4.3
presents a framework for controlled rendering performance experiments. Sections 4.4 to 4.7 describe
Mg’s organization, its rendering system interface, the sample test cases, and guidelines for reporting
results. The remaining sections document the implementation of Mg on two different rendering systems
and demonstrate its use.

66

4.2. A Survey of Benchmarking Tools for Graphics Systems
Four major issues in the design of performance measurement tools for graphics are
e the overall structure of the tools,
e the interface used to transmit the scene data to the graphics system,
° the primitives and operations supported by the interface, and
e the characteristics of the scenes used as test cases.

The first three issues are important to almost all graphics performance tools. However, not all tools
include test scenes.

1. Structure. For most applications, benchmarks are programs that are run with standardized sets
of input data, and the elapsed time to run the benchmarks is the primary metric. Usually, benchmarks are
executable: sometimes real applications programs, either small or large, sometimes representative por-
tions of code, and sometimes synthetic programs that are constructed to simulate a workload. To study
the performance of a graphics system, one usually submits input , and not executable programs to the sys-
tem. In this respect, graphics test images resemble the Wisconsin database benchmarks [Bora84], com-
posed of artificial databases and carefully-selected queries. The DARPA Image Understanding Bench-
mark for parallel computers contains elements of both data and programs [Weem91]. It consists of a set
of inputs and a specified method of solving a problem; although a reference implementation is given, the
solution must generally be implemented afresh for each target architecture.

The relationship between a performance tool and the test data is a major factor in the tool’s overall
structure. Standard rendering benchmarks emphasize test data, which may be contained in a static data-
base or generated on the fly. Benchmarks suites may or may not specify measurement procedures, and
they may offer little support for running or timing the tests. Another type of tool helps users capture their
own data for test cases. Such tools typically define a portable scene definition language and provide
software to translate that language for various target systems. They sometimes include procedures for
running and timing tests. The scene data can be created by editing data files or by tracing graphics com-
mands while executing an application program. A third class of tools studies low-level operations outside
the context of a picture. These tools typically target interactive applications and emphasize measurement
procedures and timing methodology. Information about low-level operations is not generally useful for
image synthesis systems, because the cost of an operation is very sensitive to interactions with other ele-
ments in the scene.

2. Interface. The data for portable benchmarks are generally expressed in some intermediate inter-
face language . Decisions in the design of the interface can give some systems performance advantages
or deny systems the information they need to use optimal data formats or commands. Some of the low
level issues in interface design are the amount of state a translator must maintain, the coordinate systems
used to define primitives, the representation of vertex information, and support for data hierarchy. For
example, consider a flat, stateless interface for polygonal data. Each polygon definition includes a com-
plete description for all of its vertices. Because this interface does not show when a vertex is shared by
adjacent polygons, it rules out more efficient, list-based representations.

3. Primitives and operations. High level issues in interface design include the types of primitives
and operations that are supported. These design decisions bias the interface towards certain types of
applications, workloads, and rendering systems. They also influence the complexity of images that can
be represented. Generality trades off against complexity in the interface design. By demanding certain
levels of sophistication, the performance tool may rule out some systems. On the other hand, by limiting
the interface, it may fail to represent the complexity of many applications.

4. Scene characteristics. The scenes used as test cases determine the specific workload charac-
teristics, which strongly affect the relative performance of different rendering algorithms. Because image
synthesis workloads vary greatly and there has been little research on workload characterization, it is hard

67

to argue that any set of benchmarks adequately represents the workload of more than one application or
installation. One solution to this problem is to design tools that allow users to capture their own applica-
tions for benchmarks. Mg proposes another solution, to vary selected workload characteristics under
parametric control.

The rest of this section surveys previous work in graphics performance methodology and bench-
marking and discusses the approach other researchers have taken to the design issues introduced above.

4.2.1. Methodology for Rendering Test Cases

Schoeler and Fournier [Scho86] proposed a methodology for constructing test cases in their analysis
of different rendering systems. Most test cases in the literature are static, that is they cannot easily be
varied by changing parameter values. Schoeler and Fournier took a different approach, advocating a con-
trolled manner of changing the image complexity, so that one well-defined type of variable varies while
others remain fixed. The simple geometry of their two scenes allowed them to port the models easily to
different rendering systems, but there is a need for more varied and complex scenes and for test cases that
are more comprehensive in their treatment of shading, visibility, and special effects. Schoeler and
Fournier’s methodology influenced the parameterized controls in Mg’s design.

4.2.2. Standard Rendering Benchmarks

Among the graphics community, there has been a growing interest in more serious performance
analysis and a desire to compare the performance of different algorithms or systems. Some of the first
steps in this direction were taken by researchers who shared their model data or attempted to reproduce
the images published by others. Appendix A documents some duplicated images as early as 1971. More
recently, Glassner introduced a recursive tetrahedron test case [Glas84] that others have reproduced
[Arvo87, Kay86].

In 1987, Haines released the Standard Procedural Databases (SPD) [Hain87], the most prominent
example of image synthesis benchmarks. The SPD is a set of programs that generate the descriptions for
six different images in a simple, easily-translated language. One of the six scenes is the tetrahedron
described above. The package is strongly oriented towards two types of rendering systems: ray tracers
and polygon-based graphics hardware. The programs are accompanied by detailed specifications for tim-
ing tests and statistics describing the images.

The six scenes are described in Table 4.1: a recursively-defined collection of reflective balls, a two-
dimensional array of meshed gears, glass spheres in front of a fractal mountain, layers of intertwined
rings, the recursive tetrahedron, and a bare tree. The scenes contain specular reflection, transparency with
refraction, and shadows. They use ambient light and between one and seven positional light sources.

The models contain four types of primitives: polygons, spheres, cones, and cylinders. The simplest
primitives, polygons and spheres, predominate. Haines designed the scenes to contain roughly ten
thousand modeling primitives. All of the databases can be generated in a polygonal form by subdividing
quadric surfaces into polygonal patches, which retain the surface normal of the underlying primitive at
each vertex. Half of the scenes are modeled directly with polygons or using mostly polygons; they have
about the same number of primitives in both the original and the polygonal formats. The remaining
scenes, which have many quadric surfaces, generate around a million polygonal patches.

In four scenes (balls, gears, rings, and tree), a single large polygon models a floor or background.
Objects cast shadows on these surfaces, and one floor is reflective. The screen coverage, as shown in
Table 4.1, is greater for the SPD images than for the Reyes workload, largely because the SPD uses back-
ground planes while the Reyes scenes assume blank backgrounds. The SPD background polygons tend to
cover a large portion of the screen, but the scene complexity is often clustered in a smaller region. For
example, the balls image covers the entire screen when computed with its background polygon. Without
the background, the objects cover only about a third of the screen. Table 4.1 also shows the sample point

68

Scene balls gears mountain | rings tetra tree
Modeling primitives

cones 4,095

cylinders 4,200

polygons 1 9,345 8,192 1 4,096 1

spheres 7,381 4 4,200 4,095
Total 7,382 9,345 8,196 8,401 4,096 8,191
Polygon version

#primitives 1,417,153 9,345 8,960 873,601 4,096 851,761
%Coverage 100 93 65 99 19 64
Depth Complexity

covered sample points 1.7 3.1 1.6 4.9 1.8 1.1

all sample points 1.7 2.9 1.1 4.9 0.3 0.7
#Lights 3 5 1 3 1 7
Specular reflection yes yes yes yes no no
Transparency no yes yes no no no

Table 4.1. Characteristics of Haines’ Standard Procedural Databases.

depth complexity, computed by rendering the scenes with the instrumented version of Reyes described in
Chapter 3. We can compare statistics for the SPD with the corresponding entries for the Reyes Group I
images in Table 3.4. The SPD scenes also tend to have greater depth complexity. This difference is due in
part to the background polygons and in part to the inclusion of two images which display many objects
stacked together.

Standard versions of each scene make up a benchmark suite. The package also offers some coarse
control over the database complexity for researchers who want to generate their own test cases. Most of
the scenes are defined recursively: balls, mountain, tetra, and tree. Increasing the complexity of these
scenes increases the number of primitives, adds detail, and lowers the average screen size of the primi-
tives. However, the depth complexity and screen coverage remain the same or increase only slightly.
Increasing the complexity of the other two scenes, gears and rings, adds a layer of objects to a three-
dimensional array. Thus, the depth complexity increases, but the screen coverage and the variability of
geometric characteristics changes little.

The interface language consists of eight commands. Four of the commands define the modeling
primitives. A fifth command gives the surface characteristics, or material properties, for a surface.
Another specifies a positional light source, and the remaining commands specify viewing and display
parameters or the background color. All objects are described in a flat world coordinate system, because
the interface does not support any type of geometric transformations or object hierarchy. With this sim-
ple interface, a translator need not maintain any state while converting a scene database to the target
system’s format.

The SPD emphasizes two types of renderers: ray tracers and polygon-based systems with hardware
assists. The testing guidelines and statistics distributed with the code demonstrate these priorities. The
ray tracing orientation is further shown by the choice of primitives and the support for specular reflection,
refraction, and shadows. For other types of renderers, the surface descriptions are well-suited to Phong
specular highlights and Gouraud interpolation; these models are commonly available on graphics works-
tations. The scenes and the interface of the SPD ignore features that are important to other types of image

69

synthesis systems, such as parametric patches, a wider range of surface and lighting models, and texture
mapping.

4.2.3. Workstation Benchmarks and Measurement Tools

Most of the work in graphics performance has been motivated by the needs of marketing and pro-
curement, and has consequently been directed towards evaluating interactive workstations. An early
example is Linton’s workstation benchmarks, which assess processor, file access, multitasking, and
graphics performance [Lint86]. These benchmarks are structured as a set of programs that are run on the
target system. The graphics tests cover a limited range of low-level, two-dimensional graphics and text
operations.

The now inactive Technical Interest Group in Performance Evaluation (TIGPE) of the Bay Area
ACM/SIGGRAPH chapter discussed methodology and data for benchmarking workstation graphics. One of
TIGPE’s contributions was to define four levels of graphics performance characterization: primitive opera-
tions, pictures, systems, and applications. The group concentrated on the first level, characterizing works-
tation performance on primitive operations for drawing vectors, polygons, and characters. The second
level measures the time to generate a complete image, the third level adds interactive input and display,
and the fourth level tests the performance of entire applications. TIGPE produced prototypes for some
measurement tools. These tools emphasized timing methodology and controlled experiments that varied
a single, well-defined property of the data. For example, a test of vector drawing time would analyze the
effect of varying the length or orientation of the vectors. TIGPE’s analysis of the problem was well-
constructed and comprehensive, but inappropriate for measuring the cost of realistic shading or visibility
in a complex, three-dimensional environment.

The Graphics Performance Characterization (GPC) group is a consortium of workstation vendors.
Influenced by early contact with TIGPE, the GPC chose to focus on the second level of graphics measure-
ment, the ‘‘picture’’ level. The main goal of the GPC is to help customers create portable benchmarks
from their own picture data. They defined a benchmark interchange format for three-dimensional scenes
[Tice88] and contracted a reference implementation. The interface is oriented towards the classes of
applications that are currently supported on commercially-available workstations. Each participating
vendor ports the interface to its own system. Customers who create data files in the interchange format
should be able to run their benchmarks on any of these systems. A small set of reference picture files has
attracted some interest as a benchmark suite. These files are taken from applications such as circuit board
design and mechanical CAD.

Another approach to evaluating workstation performance is to use a complete application as a
benchmark. If the benchmark is truly representative of the anticipated workload, this approach is accu-
rate and it allows users to assess interactive responsiveness. However, it requires much more effort to
implement a truly portable, unbiased application benchmark. Zyda, Fichten, and Jennings have used mil-
itary visual simulators to measure the performance of graphics workstations [Zyda90]. They compare the
vendor’s claimed drawing rates with the rates observed in the context of their application.

4.2.4. Summary

The graphics performance community tends to emphasize tools rather than standard benchmarks.
This bias acknowledges the wide variety of workloads and the inadequacy of ‘‘single figure of merit’’
benchmarks, which provide little information beyond the observed runtime. The only well-known suite
of standard test cases is Haines’ SPD, which grew out of an implementer’s effort to develop test cases for
himself and to share them with others.

There has been little work on performance measurement for realistic image synthesis systems. An
evaluation of a realistic renderer often concentrates on quality, the interface to modeling systems, and
support for desired features. Customers often accept performance that is ‘‘fast enough,”” given acceptable
rendering quality and modeling support. For this reason, a performance tool that can be used to design

70

and improve a single system is very attractive.

4.3. The Structure of Graphics Performance Experiments

Most image synthesis systems contain several separate components, such as a host computer, a
graphics processor, rendering software, and a frame buffer. Let us define an abstract graphics computer
as the configuration of hardware and software elements that processes the scene specifications to produce
a raster image in the frame buffer or a file. The graphics computer encompasses all factors in the environ-
ment that affect rendering performance, such as whether or not a rendering package is embedded within a
window system. A performance experiment measures the resources that the graphics computer requires
to generate a specified image. A reproducible experiment must specify the graphics computer com-
pletely. This abstract view of the rendering process provides a unified framework for studying diverse
hardware and software architectures.

We construct a rendering performance experiment by varying a parameter that affects rendering and
observing the effect on the system’s performance. Chapter 2 introduced four categories of parameters
that affect the contents of an image and the resources required to render the image. The computing
environment describes the rendering system as embodied in the graphics computer. Rendering parame-
ters control the way in which the rendering system processes or displays the image. Viewing
specifications describe the way that the simulated viewer or camera observes the scene. Finally, the
scene characteristics specify the inherent properties of the modeled scene, including its geometry, illumi-
nation, and surfaces. Each category is discussed below in more detail.

4.3.1. Computing Environment

The abstract graphics computer defines the computing environment. Environment parameters
include the type of host computer, the availability of special hardware assists, and the amount of memory.
Changes in the graphics computer affect the resources required to compute an image, but do not, in gen-
eral, affect the resulting picture. Occasionally, changes in the environment do have subtle effects on the
image contents. For example, the use of integer arithmetic instead of floating point can alter the results of
geometric or shading computations.

A common type of performance experiment is to change part of the environment while keeping the
image specifications constant. Indeed, this is the basis for inter-machine comparisons. For example, the
same image synthesis software might render the same image on different host computers. The control of
environment parameters is independent of Mg’s operation, in that none of its input or output changes
when the computing environment changes. A full report of the environmental conditions is necessary to
give a context for understanding the results of measurement experiments.

4.3.2. Rendering Parameters

Rendering parameters control the execution of the graphics algorithm on the graphics computer.
Unlike the computing environment, rendering parameters frequently affect the image’s appearance. But
like the computing environment, rendering parameters do not, in general, affect the scene description.
One class of rendering parameters includes the rendering system’s runtime parameters. For instance, an
image might be rendered at different resolutions. Or, it might be rendered with and without a special
effect, such as depth-of-field. Another class of rendering parameters describes the internal operation of
the rendering system, its algorithms, and its implementation. For example, Crow considered changes to
rendering parameters in his cost-effectiveness study of antialiasing techniques [Crow81]. Some impor-
tant rendering parameters deserve further discussion.

The display resolution is a special case of a rendering parameter, because it can affect the scene’s
geometry in addition to the number of pixels in the image. Procedural modeling algorithms often con-
sider the screen size of an object to determine how much detail to generate. Mg knows the resolution,
and passes the information to the rendering system. Currently, none of the scenes are affected by the

71

display resolution, but future scenes may be resolution-dependent.

Antialiasing is often controlled by runtime options. They may enable and disable antialiasing or
select an antialiasing algorithm. Options may also specify the degree of antialiasing, the degree of super-
sampling, or the type of filter. Antialiasing parameters do not affect the model, but the cost or effective-
ness of an antialiasing algorithm depends on the characteristics of the scene.

Not all rendering systems support properties such as reflection, refraction, shadows, and depth-of-
field. Some systems provide these effects as options, and others approximate them with varying degrees
of realism. Rendering parameters enable and disable visual effects, select options, or adjust approxima-
tions. Given a fixed set of values for the rendering parameters, the actual cost of computing an effect
depends on the scene characteristics. A rendering system can ignore information if the corresponding
effects are unavailable or unwanted, but the experimenter should report the omission.

4.3.3. Viewing Specifications

Viewing specifications include the viewing position and direction, the angles of view, and a model
for the eye or camera. Mg generates viewing specifications and allows them to vary. These parameters
are an integral part of the image definition, but they are generally independent of the model definition.
The viewing specifications determine which parts of the model are visible and which parts of the screen
are covered. Thus, changes to the viewing specifications directly affect the image and the rendering
costs, although they do not normally affect the model. Suppose we zoom in on a set of objects that are
displayed against an empty background. Without modifying the model definition, we vary the screen size
of the objects and the screen coverage.

Occasionally, changes to the viewing specifications affect the model’s definition. If an object’s
screen size changes, some applications or systems will adjust the level of detail in the model.

4.3.4. Scene Characteristics

The scene characteristics describe the geometry, surface properties, and lighting of the scene. They
define the complexity of the scene, which in turn determines the cost of computing an image. Chapter 2
lists the most important scene characteristics and discusses their potential effects on rendering costs.

There are many ways to vary a scene’s geometric complexity. For example, experiments can
change the number of objects, modify the structural complexity of a fixed set of objects, or vary the distri-
bution of objects in space. Simple changes to the scene geometry can exhibit a complex range of effects.
Suppose we want to add new primitives to an existing scene of some objects displayed against a blank
background. We can maintain the screen coverage and depth complexity by subdividing the existing
objects into smaller primitive elements. Alternatively, we could add new objects with the same average
size as the existing objects. In this case, the spatial distribution of the objects determines the effect on the
screen coverage and depth complexity. If all of the objects are visible, the screen coverage increases but
the maximum depth remains about the same. If the new objects are all hidden, the depth complexity
increases but the screen coverage remains the same.

Other experiments can vary surface properties such as the amount of transparent or reflective sur-
faces, the number of texture maps, or the amount of textured surfaces. Varying the number of light
sources and their characteristics affects the cost of shading and shadowing.

4.4. The Structure of Mg

Mg is made from two types of source files: scene generators and library code (see Table 4.2). Each
scene generator outputs the model for one family of scenes. The scene generators describe the contents of
the scene in an interface language composed of procedure calls. The library source files implement the
interface to the rendering system; they also provide definitions and general utilities. The interface pro-
cedures translate the scene description into the format required by the target rendering system. To port

72

Mg to a new system, a programmer modifies the interface procedures in mg_output.c to output the
system’s own scene description language. Once a scene generator is compiled with Mg’s library, running
the scene generator will produce a model description file.

The scene generators vary the scene characteristics under the control of a set of parameters. Some
general parameters, such as the image resolution, are applied all scenes. Others are defined individually
by the scene generator. The options are specified as command-line arguments. Every option has a
default, so it is not an error to omit the options. To document the test conditions, each scene generator
reports the values of all of its options.

Mg’s interface is closely related to the RenderMan Interface [Pixa89]. RenderMan, unlike most
other current or proposed graphics standards, supports all of the features for realistic image synthesis that
Mg uses. The interface is not proprietary, documentation is widely available [Upst90], and implementa-
tions are available for a number of different platforms. Mg’s interface is not a subset of RenderMan, but
it can be easily translated into the RenderMan interface. In the interest of portability and generality, it
differs from RenderMan in some respects.

This rest of this section describes the interface language. Appendix B specifies the complete inter-
face in C syntax. Later sections describe the scenes and the options. Complete specifications for porting
Mg to a rendering system are documented in the source files. Upstill provides a more detailed explana-
tion of the RenderMan Interface [Upst90].

Type File Description
library mg_defs.h definitions
library mg_lib.c general utilities: matrix routines,
random number generator, etc.
.sp.15
library mg_output.c interface procedures
library mg_texture.c utilities to generate texture data
scene generator ~ mg_spheres.c spheres model
mg_spheres.h coordinate data for patches and polygons
scene generator mg_terrain.c textured terrain

Table 4.2. Mg source files.

4.4.1. Frame Initialization

Before generating any data for an image, the scene generator calls the routine OutputBegin with a
name for the picture as its only argument. After completing the image specifications, the scene generator
calls OutputEnd. These calls are provided as a convenience for porting Mg. The two routines have no
required function, but they can be used to output any prologue or epilogue that is useful for the target sys-
tem.

A scene is initialized with viewing and lighting specifications that affect the entire scene. Outpu-
tResolution is called once per frame to specify the image resolution. This is the only rendering parameter
that Mg specifies, because it can potentially affect the level of detail in procedural models.! Other render-
ing parameters, such as sampling and filtering specifications, do not affect the scene data generated by
Mg. An experimenter can vary any of the other rendering parameters without modifying Mg’s input or
output.

1 None of the images currently generated by Mg are affected by the display resolution.

73

OutputViewpoint is called once per frame, after OutputResolution , to specify the viewing position,
field of view, and near and far clipping planes. The eye or simulated camera is located at the specified
position and aimed at the ‘‘look at’’ point. Together, the viewing position and the ‘‘look at’’ point define
a viewing direction. The camera’s orientation is defined by ‘‘up,”’ a point in the up direction from the
camera’s position. The field of view is specified as an angle; the RenderMan interface requires an angle
less than 180 degrees. The near and far clipping planes are specified by distances from the camera; the
planes are perpendicular to the z axis in camera space. Mg assumes a perspective projection for all
images. The current viewing model does not support visual artifacts such as depth-of-field, which
describes a range of depth over which objects appear in sharp focus.

OutputLight is called once per light source to describe its lighting model and its light source proper-
ties. The light source models are a subset of RenderMan’s standard light source shaders: ambient, distant,
and point light sources [Upst90].- Mg favors generality over completeness by omitting more complex
models, such as area light sources. All light sources have a scalar intensity and a color with red, green,
and blue components. Ambient light has no position or direction; a distant light has a direction, but no
position; and a point light source has a position but no direction. The unused properties have a null value.

The interface does not enforce any maximum number of light sources in a scene. Each scene gen-
erator creates a fixed set of light sources, which are initially turned on. Options to the scene generator can
control the number of light sources by turning off selected lights.

OutputViewpoint (position, look_at, up, field_of_view, near, far)
OutputResolution (xres, yres)
OutputLight (model, intensity, color, position, direction)

Table 4.3. Frame initialization routines.

4.4.2. Geometric Specifications

Most of the data for a scene are detailed geometric specifications. No matter what format is used
internally by the scene generator, the geometric specifications will probably have to be translated into
another format. The interface must provide enough geometric information to enable a programmer to
translate its data structures into the format required by another system.

The interface supports nested transformations to simulate the characteristics of complex, hierarchi-
cal models. This design contrasts with Haines’ Standard Procedural Databases, which use absolute world
coordinates for all geometry. In fact, the RenderMan interface requires transformations. It defines many
primitives relative to the origin and positions them with a sequences of transformations. This decision
raises the issue of bias in comparing a system that can use absolute coordinates against a system that
implements the RenderMan interface. If we insist on including transformations as part of the renderer’s
workload, we deprive the first system of a potential performance advantage. However, models with
nested transformations probably represent more accurately the workload of production-quality, realistic
renderers. This is the major factor behind Mg’s design.2

Geometric data are described in a left-handed coordinate system, in which the positive x, y, and z
axes point right, up, and forward, respectively. In this system, polygon vertices are given in clockwise
order.

2 Tt is, of course possible, to perform the transformations within Mg’s output module and supply the rendering sys-
tem with absolute world coordinates. Such a perverse deviation from the interface violates the intent of the bench-
marks and calls for careful documentation when reporting test results.

74

A rendering system that supports nested transformations maintains at all times a current transfor-
mation matrix. Any new transformation operation modifies the current transformation. Mg supports
nested transformations with OutputSave , to save a copy of the current transformation matrix, and Outpu-
tRestore , to restore the matrix from the top of the stack. Outputldentity initializes the current transfor-
mation matrix to the identity matrix. Mg does not maintain the transformation stack itself, but passes the
commands to the renderer.

Three transformations can modify the current transformation matrix. OutputTranslate moves
objects by the specified distance in x, y, and z. OutputScale changes the size of objects by the specified
factors in x, y, and z. OutputRotate specifies a rotation in degrees. The axis of rotation passes through
the origin and the specified point. The direction of the rotation is defined by a left-handed coordinate sys-
tem; with the left thumb pointing from the origin to the specified point, the rotation follows the direction
of the curled fingers.

OutputSave()
OutputRestore()
Outputldentity()
OutputTranslate(dx, dy, dz)
OutputScale(sx, sy, sz)
OutputRotate(angle, x, y, z)

Table 4.4. Matrix commands.

4.4.3. Primitives

Mg uses three types of primitives: quadric surfaces, polygons, and bicubic patches. Polygons are
planar and convex; they do not have holes. Initially, Mg supports only bézier patches, but support for
other types of patches could be added in the future.

The quadric surfaces include spheres, cones, and cylinders. OutputSphere specifies the radius of a
sphere centered on the origin. OutputCone describes a cone by its height and the radius of its base. The
base lies on the x,y plane. The z axis passes through the center of the base and the apex. Our-
putCylinder specifies the radius of a cylinder about the z axis. Its height is given by z coordinates for the
bottom and top. Cylinders are open on top and bottom, and cones are open on the bottom. All of these
primitives are positioned through a sequence of transformations.

Both polygons and parametric patches are described by structured lists of vertices. Two data struc-
tures are commonly used for vertex lists. Consider the case of a four-sided polygon. In one representa-
tion, the data is fully expanded, and a list of four triples gives the vertex coordinates. In the other
representation, two lists specify the data hierarchically. First, a vertex list gives the coordinates of each
vertex. Then, a polygon list points to the four vertices used by the primitive.

Each representation has advantages and disadvantages. The fully-expanded representation normally
requires more data to be transmitted, because shared vertices must be repeated in full. On the other hand,
it does not require that any state be maintained. The hierarchical representation is more compact, but it
requires state. Because the the hierarchical representation specifies each vertex just once, it reduces prob-
lems with inconsistencies and round-off errors. Mg’s interface uses the hierarchical representation in the
interest of portability; it is easier to go from the hierarchical to the fully expanded representation than the
reverse.

Vertices are numbered implicitly from zero. The counter is incremented when OutputVertex is
called to specify the position for a new vertex. OutputVertexReset resets the counter. The interface

75

OutputSphere(radius)

OutputCone(radius, height)

OutputCylinder(radius, bottom, top)

OutputVertex(position)

OutputVertexReset()

OutputVertexNormal(xyz)

OutputVertexColor(rgb)

OutputVertexST(s, t)

OutputPolygon(nvertices, vertex_pointers|],
normal_flag, color_flag, texture_flag)

OutputPointsPolygons(npolygons, nvertices[], vertex_pointers[],
normal_flag, color_flag, texture_flag)

OutputPatch(basis, vertex_pointers[])

Table 4.5. Geometric primitives.

supports additional, but optional, information for polygon vertices. When polygons are used to approxi-
mate a curved surface, OutputVertexNormal specifies the direction of the true surface normal at the
current vertex. OutputVertexColor specifies a color for the current vertex, and OutputVertexST specifies
texture coordinates, s and ¢, for the current vertex.

Polygons and patches are described by lists of vertex numbers. The first two arguments to Output-
Polygon give the number of vertices in the list and the array of vertex numbers. Three flags indicate
whether the vertices have normals, colors, or texture coordinates. OutputPointsPolygons specifies multi-
ple polygons that share a common set of vertices. Its first argument gives the number of polygons. The
second argument is an array of integers, with one entry for each polygon in the list. This array gives the
number of vertices in each polygon. The vertex pointer array lists the vertices for all of the polygons.
The flag arguments are the same as for OutputPolygon. OutputPatch specifies the type of bicubic patch
and a vertex list with sixteen control points in a four-by-four matrix.

4.4.4. Surface Properties and Shading Information

Each surface is described by its material properties, including color, opacity, coefficients of
reflection, and the index of refraction. These attributes are set by three procedures: OutputColor , Outpu-
tOpacity , and OutputSurface . Typically, a single set of surface properties describes several primitives
that form a high-level object. It is not necessary to specify the properties individually for each primitive.
Instead, a surface attribute can be set once, and it will remain in effect until it is explicitly changed. If a
color has been specified individually for a polygon vertex, it overrides the current color.

Color consists of red, green, and blue components. Both color and opacity are specified on a scale
of 0 to 1. For a completely transparent surface opacity is set to 0, and for an opaque surface it is set to 1.
The opacity is specified for separately for the red, green, and blue channels. With transparent materials,
the index of refraction is supplied for shaders that compute more accurate refraction effects.

Mg supports three of RenderMan’s standard surface types: constant, matte, and plastic [Upst90].
The constant surface model ignores light sources and uses the current color for all points on the surface.
This is the most simple model, useful for baseline measurements. A plastic surface uses ambient, diffuse,
and specular reflectance coefficients, while a matte surface uses only ambient and diffuse (Figure 2.5). A
fourth surface model, reflective, is used for metallic surfaces that reflect objects in the environment. It
uses ambient and diffuse coefficients and assumes that the reflection coefficient is 1. OutputSurface
describes the material’s reflectance properties. It specifies a surface model, ambient, diffuse, and specular
coefficients, and a roughness factor. The roughness factor controls specular reflection. Specular

76

OutputColor(rgb)
OutputOpacity(percent, refraction)
OutputSurface(model, Ka, Kd, Ks, roughness)

Table 4.6. Shading commands.

highlights are sharpest when the surface is most smooth, as indicated by a roughness value close to 0.
With a rougher surface, the highlight becomes more broad.

Mg generates surface attributes, because they are intrinsic characteristics of a scene. It does not,
however, specify details of the shading model, such as the shading frequency or the interpolation algo-
rithm for smooth shading. More sophisticated surface models and atmospheric affects are omitted from
the interface in order to limit Mg’s complexity and make its interface more general. Many rendering sys-
tems will not support all of the surface attributes that are in the interface, and any deviations from the
specified surface models should be reported.

4.4.5. Texture Maps

Mg supports texture maps that modify the surface color. Its textures have horizontal or vertical
stripes in varying widths and colors. Multiple texture maps may affect a surface. The utility in
mg_texture.c generates the specifications for ten texture images with three channels of information: red,
green, and blue. Texture images can be converted to the texture map format required by the rendering
system. Normally, the conversion is a pre-processing step that precedes rendering. Because the colors in
a texture map do not generally affect performance, the experimenter may substitute locally available tex-
ture maps.> To match the performance characteristics of Mg’s textures, any texture maps should contain
three channels, with eight bits per channel. If a subjective evaluation of antialiasing is important, textures
with regular detail or hard edges are useful.

One or more textures can be applied to a single surface. The final color is a blend of all textures

n
applied to the surface, 1 Y rex;, where tex; is the color obtained from the i th texture.

i=1

Texture mapping requires two types of information: a texture name and a function that maps points

in the texture map onto a three-dimensional surface. Mg leaves the actual naming of the texture files to
the system-dependent output routines. OutputTxSurface simply specifies the number of texture maps to
be applied to a surface. It also gives ambient and diffuse coefficients for shading the textured surface.
Mg conforms to the RenderMan conventions for mapping between a surface’s parameter space and the
texture space. The texture map always covers the unit square in its s and 7 coordinates. By default, the
texture coordinates of a parametric or quadric surface also range from zero to one, so that the texture cov-
ers the surface exactly. A different mapping is specified by OutputTxCoords which gives four pairs of
texture coordinates. They corresponding to (0,0), (1,0), (0,1), and (1,1) in the surface’s parameter space.
The mapping specified by OutputTxCoords applies to all subsequent patches and quadric surfaces until
another call changes the mapping. Texture coordinates for polygons must be specified for individual ver-
tices. OutputVertexST assigns texture coordinates to polygon vertices, as documented in Section 4.4.3.

3 In the case of an adaptive sampling algorithm, the frequency of detail in the texture maps can indeed affect perfor-
mance. When comparing such a system with another, the experimenter should use Mg’s textures, or others with the
same frequency of detail.

77

OutputTxSurface(n, ka, kd)
OutputTxCoords(s[4], t[4])
OutputVertexST(s, t)

Table 4.7. Texture map commands.

4.5. Controllable Parameters

One of Mg’s most important features is its support for constructing performance experiments by
varying the values of a carefully chosen set of parameters. This section gives an overview of the controll-
able parameters. Some parameters apply to all scene generators; in general these are the parameters that
control viewing and lighting. Other parameters, which directly affect the scene description, are unique to
each scene generator.

Three types of parameters are common to all scene generators: the resolution, the field of view, and
the lighting controls. The default values all depend on the scene. Changing the field of view is similar to
changing the focal length of a lens on a camera. With a wider field of view, objects appear smaller on the
screen, and with a narrower field of view they appear larger. Moving the viewpoint would also change
the apparent size of objects, but, unlike the viewing position, the field of view is independent of the coor-
dinates used in the scene definition. Each scene defines a fixed set of light sources. By default all lights
in the scene are on. To control the number of light sources, one can turn off selected lights. By conven-
tion, the light sources are numbered from zero, and the first is an ambient light source.

Geometric options vary with the scene, and they have no uniform syntax. The options for each
scene are described in the following section. Typically, the types of geometric primitives can be varied.
Other options may control the number, size, or spatial distribution of objects. The spatial distribution
affects the performance of visibility algorithms by varying the number of visible surfaces, the screen area
of visible surfaces, the depth complexity, and the screen coverage. The spatial distribution also affects
the performance of multi-processor systems that use a spatial subdivision to partition the workload.

Shading and texturing options also depend on the scene. Options can control the number of tran-
sparent or reflective objects, the number of texture maps, and the number of textured surfaces.

function flag arguments | default
resolution -r Xres yres depends on scene
field of view | —f angle depends on scene
turn light; off | —Li on

Table 4.8. Universal scene generator options.

4.6. Test Scenes

The primary design goal for the test scenes is to support controlled variation of the scene charac-
teristics, and to make the effects of the variation easy to understand. It should be possible to test the lim-
its of systems with characteristics like very high depth complexity or many small objects. It is less
important that the resulting images look like pictures from any typical workload. The types of scenes are
designed to display different characteristics and to allow different types of controlled variation. Two
scene generators have been implemented for Mg. Spheres creates scenes that contain a variable number
of spheres. It varies the spatial distribution of objects and the material properties of objects, including
transparency and reflection. Terrain creates layered, terrain-like surfaces with surface textures. This sec-
tion describes the types of images that each scene generator produces, and the options that apply to the
individual scenes. Although the scenes can be varied, there is a default setting for each parameter.

78

4.6.1. Spheres

Spheres uses simple geometry, but it allows the experimenter to vary many properties. Its scenes
display only spheres, but the underlying primitives vary. Each object can be modeled by one sphere,
eight bézier patches, or one hundred ninety-two triangles. The scene can be varied by changing the
number, size, and spatial distribution of the spheres. By default, the radius varies inversely with the
number of objects, so that the total projected screen area remains approximately constant. Thus, the
experimenter can evaluate the cost of increasing the number of objects without increasing the total ren-
dered area. The size option specifies a scale factor, which multiplies the default radius. Visibility charac-
teristics are varied by selecting one of three types of spatial arrangements: randomly distributed spheres
within a three-dimensional bounding volume, grids of non-overlapping spheres, or stacked grids of
spheres with many surfaces obscured. The model generator uses pseudo-random numbers to position the
randomly scattered spheres. The x, y, and z coordinates can be taken from either a uniform or a Gaussian
distribution. When the spheres are scattered randomly, many of the spheres intersect. When the spheres
are placed in grids, they do not intersect unless the size factor is greater than 1.2.

One option generates a background polygon, covered with one texture. Besides adding depth to the
scene, the background polygon makes the effects of shadowing and refraction more visible. By default,
there is no background polygon and the image is empty wherever there are no spheres.

function flag arguments | description default
name -N filename use filename for model output spheres
resolution - xres yres 512 by 512
field of view —f angle 30 degrees
turn light; off -L0 white ambient light on
-L1 white point light on
-L2 red point light on
-L3 green point light on
spatial distribution | —du random, uniform distribution —du
—-dG random, Gaussian distribution
—-dg =n n by n grid, not overlapped
—ds nm n by n grid, stacked m deep
number of spheres | —n n make n spheres 100
type of primitive —pb bezier patches spheres
—pp polygons
—pP points polygons format
-ps spheres
size of spheres —s s scale size of spheres by factor s 1.0
background -b add textured background polygon | none
constant shading — for all surfaces off
transparent —t r] p = proportion transparent 0.
0<p<l1
p defaults to 0.2 if —t specified
metallic —m [p] p = proportion reflective 0.
0<p<l1
p defaults to 0.2 if —m specified

Table 4.9. Spheres scene generator options

and their defaults. Spheres are never both tran-
sparent and metallic; if both —t and —m are given, the sum of the percentages must not exceed 1.

79

Surface characteristic can also vary. One option controls the fraction of spheres that are transparent,
and another controls the fraction that are reflective. (No spheres are both transparent and reflective.) By
default, all of the spheres are opaque and non-reflective. Random numbers are used to assign surface
characteristics, so the exact proportions of the different surface types are approximate. However, the
same sequence of pseudo random numbers is always generated, so the proportions are repeatable. Table
4.9 details all of the options that control scene generation.

4.6.2. Terrain

Terrain covers much of the screen with terrain-like collections of parametric patches or polygons.
It simulates scenes such as landscapes or backgrounds for animation, and it can be used to explore texture
mapping performance. The model can contain from one to ten separate terrain surfaces, each composed
of nine hundred primitives. Table 4.10 details all of the options that control scene generation. Five views
of the scene are available. The first is a closeup view of one surface and resembles a landscape. The
other views look at a stack of surfaces from either the front or the top. The terrain elements can be
stacked directly on top of each other or offset so that more of each surface is visible. Texture maps can
be used to specify surface colors. Parameters control the number of textured surfaces and the number of
textures per surface. By using finely-detailed textures that are prone to aliasing, an experimenter can also
study antialiasing and filtering.

function flag arguments | description default
name -N filename use filename for model output | terrain
resolution - xres yres 640 by 480
field of view —f angle 45 degrees
constant shading —C for all surfaces off
turn light; off -LO0 white ambient light on

-L1 white distant light on
number of surfaces | —n n make n terrain surfaces 1 (view 0)

10 (views 1-4)

type of primitive —pb bezier patches patches
-pp polygons
—pP points polygons format

texture maps —t mn apply textures to m surfaces no textures

n textures per surface

select view -v0 landscape view 0
-vl front
-v2 top
-v3 front, ‘‘spread out’’
-v4 top, ‘‘spread out’’

Table 4.10. Terrain scene generator options and their defaults.

80

4.6.3. A Benchmark Suite

A set of five varied test cases has been selected as a benchmark suite. The suite consists of three
sphere scenes and two terrain scenes. Table 4.11 specifies the suite by listing the command line options
necessary to generate each of the scenes. Some characteristics of the scenes are summarized in Table
4.12, and Figure 4.1 shows the resulting images. The images are reproduced in black and white. For
clarity, white backgrounds were added to some of the images.

The first test case, spherel00, has very simple geometry and somewhat more complex shading
requirements. It contains one hundred randomly scattered spheres. Approximately half of the objects
have a simple plastic surface model, but the rest are either transparent or reflective. The coordinates that
position the objects are taken from a uniform distribution. A textured polygon fills the background.

The second scene, spherel600, contains sixteen hundred randomly distributed spheres. The posi-
tion coordinates are taken from a Gaussian distribution, so that the spheres tend to be less evenly distri-
buted over the screen. The depth complexity has more variability and a greater maximum value with the
Gaussian distribution than with a uniform random distribution. Because of the small size of the objects
and the central cluster, this scene is more sparse than the others.

The third scene, stack , displays a large number of primitives and covers most of the screen with a
dense, but regular, arrangement of objects. The spheres are arranged in a grid, thirty by thirty by five
deep. Each sphere is modeled by eight bézier patches, for a total of 36,000 primitives. The spheres all
have the same radius, but the perspective transformation gives the more distant spheres a smaller screen
size. This scene has the most complex geometry of the suite, but the shading is simple.

name specification

spherel00 spheres —n 100 -t.3 -m .2 —s 1.5
spherel600 spheres —n 1600 —dG

stack spheres —ds 30 5 —pb

landscape terrain —v0 -t 18

layers terrain —v4 —pp -T6 1

Table 4.11. Suite of five benchmarks.

Scene spherel00 | spherel600 stack landscape layers

Primitives 100 spheres | 1600 spheres | 36,000 patches | 900 patches | 9,000 polygons
1 polygon

Resolution 512by 512 | 512by 512 512 by 512 640 by 480 640 by 480

% Coverage 100 35 77 63 76

Light sources (type) 3 (point) 3 (point) 3 (point) 1 (distant) 1 (distant)

Reflection yes no no no no

Transparency yes no no no no

Textures 1 0 0 8 6

Table 4.12. Characteristics of five benchmark images.

Figure 4.1(a). Spherel00.

81

82

4.1(b). Sphere1600.

Figure

Figure 4.1(c). Stack.

83

84

Figure 4.1(d). Landscape.

Figure 4.1(e). Layers.

85

86

One terrain scene, landscape, is a close-up view of a heavily-textured terrain surface. Eight
separate texture maps determine its color. The surface is modeled by 900 bézier patches, and approxi-
mately one-third of the surface is visible in the image. The second terrain scene, layers , views ten terrain
surfaces from a position above, and slightly to the front of, the layered objects. The bottom six surfaces
have one texture each. The top four surfaces, which are untextured, obscure most of the textured sur-
faces. Although more than half of the objects have textures, less than a quarter of the visible pixels are
textured.

4.7. Reporting the Results

Unless test conditions are fully documented, it is difficult to reproduce an experiment. When exper-
iments are based on Mg, there are four types of information that should be included in a complete report.

First, the report must contain enough information to allow a reader to generate the same model file.
The fixed benchmark suite may be used, and each scene generator outputs a default version when invoked
with no arguments. But, scene characteristics can be varied by manipulating parameters. Therefore, the
report must specify any deviations from the default values. Parameters are varied by changing the
command-line options. If the scene generator program is run again with the same options, it will generate
the same scene and viewing specifications. Thus, the most convenient documentation of the scene
specifications is a listing of the command line. In addition, each scene generator produces a report that
details the results of all of the options with which it was invoked.

Second, the report should describe the the computing environment, including both hardware and
software. The report should identify which operations are included in the rendering time, and which
operations are performed in separate pre-processing steps.

Third, the report should note any important features of Mg’s implementation on the target system.
For example, Mg provides surface characteristics as input to the renderer’s shading routines. How the
renderer’s illumination model uses these values can vary from system to system. The report should also
document any unimplemented features, such as refraction for transparent surfaces. Finally, any devia-
tions from the interface specifications should be noted.

Fourth, the report should document the relevant rendering parameters, as described in Section 4.3.
These include various run-time options given to the rendering system.

4.8. Implementation Experience

Mg has been ported to two different rendering systems. The first is PhotoRealistic RenderMan
(prman), which is described in Section 3.3. The second is a ray tracer called opal [Apod92a]. One goal
of the implementation effort is to demonstrate that Mg can help identify performance differences among
algorithms. These systems were selected because of their different approaches to rendering and because
both renderers were available on the same computers.

To port Mg, the output library procedures in mg_output.c were modified. Both the prman and opal
versions write model files using the RenderMan Interface Bytestream Protocol, or RIB [Pixa89]. The
differences in their output correspond to the systems’ varying support for transparency and reflection.
Appendix B contains all of the prman version of mg_output.c and the code for the procedures which
differ in the opal version.

4.8.1. An Image-Space Renderer

The prman implementation supports all of Mg’s geometric features, including intersecting objects.
It outputs the RenderMan Interface Bytestream Protocol, or RIB. The RIB requests for geometric primi-
tives and matrix operations correspond closely to Mg’s own interface, except in the handling of vertex
information. When colors, normals, or texture coordinates are specified for polygon vertices, the output
module stores the values. The vertex information is later written to the RIB file by OutputPolygon or
OutputPointsPolygons.

87

Table 4.13 summarizes the surface models supported by the prman implementation. Three types
use standard RenderMan shaders: constant, matte, and plastic. There is no support for refraction with
transparent surfaces or for truly reflective surfaces. The index of refraction is ignored, and reflective sur-
faces are rendered with the standard ‘‘metallic’’ shader which does not provide reflections of objects in
the environment. Textures are supported by invoking custom shaders. When one texture is applied to a
surface, the shader rotates among the ten texture maps that are supplied. When multiple textures are
specified, a fixed set of textures are used and the shader averages the values obtained from the texture
maps. The light sources use the standard RenderMan models: ambient, distant, and point light sources.
The renderer does not implement shadowing directly, but it can simulate shadows with texture mapping
techniques. None of the experiments described in this chapter include shadows.*

surface type description
constant color given by most recent call to OutputColor()
matte ambient and diffuse components
plastic ambient, diffuse, and specular components
reflective non-reflective metal surface

ambient and specular components
texture average of all texture map values,

ambient and diffuse components

Table 4.13. Surface types for prman implementation.

4.8.2. A Ray Tracer

The opal ray tracer uses the same RIB input as prman. It performs stochastic supersampling and
improves its performance with the Kay-Kajiya bounding volume algorithm [Kay86] and shadow ray
caching. Its proprietary adaptive supersampling algorithm is still under development. Opal’s support for
the RenderMan shading language precludes some optimizations commonly found in other ray tracers,
which can assume a uniform illumination model [Apod92b].

The version of opal used in the experiments is a prototype, compiled for debugging and without
optimization. Thus, it is not always meaningful to compare its runtimes directly against prman. Instead,
the analysis will compare each system to itself and examine how runtimes change in response to changes
in the renderer’s input.

The opal implementation of Mg differs from the prman version only in its support for refraction and
reflection. The output module invokes custom shaders that cast secondary rays in the direction of
reflection or transmittance. (Surfaces generated by Mg can be either transparent or reflective, but not
both.) Opal allows secondary rays to be disabled at runtime, in which case it casts only primary rays from
the eye. In the experiments, secondary rays were enabled for scenes with reflective or transparent sur-
faces. Shadow rays are also controlled separately at runtime. The expense of computing shadows ruled
out the use of shadow rays in most of the experiments.

4.9. Experiments using Mg

This section documents a few simple experiments using Mg. These experiments demonstrate the
use of controlled variation and show how the performance characteristics of prman and opal are affected
by their different algorithms. One set of experiments explores prman’s success in culling hidden surfaces
before shading.

4 The performance of the shadow map algorithm has been discussed by its implementers [Reev87].

88

The experiments were run on an SGI Iris Crimson, a fifty megahertz system with a MIPS R4000
cpu and sixty-four megabytes of main memory. The operating system is System V UNIX. In all of the
experiments, images were written to a file in the TIFF format (Tagged Image File Format). Files for
input and output were accessed over a local network. Unless otherwise noted, images were computed
without shadows, which reduced the compute time considerably and gave the renderers more comparable
workloads. Except where noted, rendering system options took their default values. Where applicable,
the defaults are the same for prman and opal. In particular, the images were computed with four jittered
samples per pixel using a 2 by 2 Gaussian filter. The shading rate, which controls the maximum screen
distance between shading samples, was one pixel. Compute times are an average of two or more trials for
most of the runs under one minute.

4.9.1. Comparing Two Rendering Systems

Both systems rendered the five images in the benchmark suite (), varying the resolution. The
spheres models were rendered at 128 by 128, 256 by 256, 512 by 512, and 1024 by 1024. The terrain
models were rendered at 160 by 120, 320 by 240, 640 by 480, and 1280 by 960. Tables 4.14 and 4.15 list
the cpu time measurements. The times are plotted in Figures 4.2 and 4.3.

The measurements show how the compute times increase for both renderers as the image resolution
increases. For the ray tracer, the increase is close to linear in the number of pixels (doubling the resolu-
tion in each direction results in a four-fold increase in pixels). This is expected, since the number of pri-
mary rays is determined by the number of pixels. Prman’s time also increases with the resolution, but
more slowly. This increase is also expected, because the shading and sampling frequencies depend on the
resolution.

User CPU (hh:mm:ss) User CPU (normalized)
resolution 0.25 0.5 1 2 0.25 0.5 1 2
sphere100 0:16 0:55 2:36 7:52 | 1.00 3.44 9.75 29.50
spherel600 | 0:44 1:00 1:39 4:06 | 1.00 1.36 2.25 5.59

stack 1:23 2:59 8:14 16:02 | 1.00 2.16 595 11.59
landscape 0:22 1:08 3:51 14:02 | 1.00 3.09 1050 38.27
layers 0:08 0:16 0:48 2:59 | 1.00 2.00 6.00 2238
average 0:35 1:16 3:26 9:00 | 1.00 2.29 6.07 1749

Table 4.14. Prman. User cpu time for rendering five benchmark images. The resolution is ex-
pressed relative to the default resolution along one axis. The line labeled average shows the ar-
ithmetic mean of the raw cpu times and the geometric mean of the normalized times.

User CPU (hh:mm:ss) User CPU (normalized)
resolution 0.25 0.5 1 2 025 0.5 1 2
sphere100 2:41 10:42 42:14 2:48:23 | 1.00 399 1574 62.75
spherel600 | 0:25 1:19 4:40 17:17 | 1.00 3.16 11.20 4148

stack 5:14 16:37 1:03:46 4:01:41 | 1.00 3.18 1230 46.18
landscape 4:37 18:14 42:56 4:46:01 | 1.00 3.95 9.30 6195
layers 0:58 3:02 10:46 41:10 | 1.00 3.14 11.14 4259
average 2:57 9:59 32:52 2:30:42 | 1.00 346 11.76 50.15

Table 4.15. Opal. User cpu time for rendering five benchmark images. The resolution is ex-
pressed relative to the default resolution along one axis. The line labeled average shows the ar-
ithmetic mean of the raw cpu times and the geometric mean of the normalized times.

1000 -
stack
’ x landscape
User cpu /)
secongs 500 //"‘ X sphere100
_ x sphere1600
layers
0
] I I [
0.25 0.5 1 2
Resolution

Figure 4.2. Prman. User cpu time for rendering five benchmark images. The x axis plots the
resolution (as a fraction of the default resolution in one dimension) on a log scale.

landscape
15000 + + stack
10000 —| x sphere100
User cpu ’
seconds
5000 —
layers
_ _ _ x Spherel600
0
I I I |
0.25 0.5 1 2
Resolution

Figure 4.3. Opal. User cpu time for rendering five benchmark images. The x axis plots the
resolution (as a fraction of the default resolution in one dimension) on a log scale.

89

90

Spherel00, which contains transparent and reflective objects, is moderately difficult for both
renderers. However, opal solves a more difficult problem by rendering transparency with refraction and
inter-object reflections. Prman rendered the transparent surfaces without refraction and did not simulate
reflections.

Stack is the most difficult test case for prman at all resolutions. It is hard because of its depth com-
plexity and the large number of primitives. Prman reduces, but does not eliminate, the costs associate
with depth complexity with algorithms that cull hidden surfaces before shading. Opal is effected less by
depth complexity, because of algorithms that organize objects into spatial hierarchies. Section 4.9.3
explores in more detail the effect of depth complexity on prman’s performance.

For opal, no one image stands out as the most expensive at all resolutions. Stack is one of the most
difficult for opal as well as prman, but probably for a different reason. The model contains a large
number of bézier patches. Intersecting a ray with a patch is costly, while ray-sphere intersection is com-
paratively easy. Despite opal’s relatively efficient ray-patch intersection code, patches still slow down
the renderer.

To compare the relative costs of spheres and patches for both renderers, stack was modeled and ren-
dered with spheres instead of patches. Figure 4.4 plots the compute time with both primitive types for
the two systems, and Table 4.16 lists the data. For opal, the patches are more costly than spheres by
approximately a factor of six at all of the tested resolutions. With spheres, opal is so efficient that it
renders the low-resolution images more quickly than prman. For prman, the costs are more even. At dif-
ferent resolutions, the tradeoff between processing more objects (patches) and performing more subdivi-
sion (spheres) favors different types.

The spheres scene generator uses eight patches to approximate one sphere. Whereas the patch
model for stack contains 36,000 primitives, the sphere model has only 4,500. How are the two renderers
affected by varying the number of primitives in the scene? A simple experiment varied the number of
spheres, increasing n by a factor of four each time: 25, 100, 400, 1,600, 6,400, and 25,600. Figures 4.5
and 4.6 plot the compute time against the number of spheres. First, the spheres were arranged in a Vi by
Vn grid. As n increased, the radius of the spheres decreased, so that the total screen area remained
approximately the same. According to opal’s statistics, the number of primary rays that intersected
spheres varied by no more than eight percent. This statistic is proportional to the screen area covered by
the objects in the scene. The largest example showed the most variation, but its objects are extremely
small. If we consider only the images with 6,400 spheres or less, the number of intersections varied by
less than two percent. All images were rendered at a resolution of 512 by 512.

When the spheres are arranged in a regular grid, no sphere is obscured by another. The spheres
were also scattered randomly, hiding some spheres behind others (Figure 4.6). The screen area, as
estimated by the number of primary rays that intersected spheres, was about thirty percent less than for
the grid arrangement. This statistic varied by no more than eight percent as the number of spheres
increased.

The compute time for opal is virtually unaffected by the increase in the number of objects when the
spheres are placed in a grid. For the scattered spheres, opal’s runtime still increases slowly. (As the
spheres become smaller, they are less likely to hide each other and the visible surfaces cover more screen
area.) We saw above that opal renders patches much more slowly than spheres. This experiment estab-
lishes that the eight-to-one ratio of patches to spheres is not the problem. In contrast to opal, prman’s
effort increases in proportion to the number of spheres. The cross-over point between the two algorithms

5 Tt was not practical to create the same scene with polygons, because the model file would be too large, and the
renderers would have problems with memory and swap space. The sphere scene generator would create 864,000 po-
lygons for the 30 by 30 by 5 grid displayed in stack. The model file would be over 32Mb in the points-polygons for-
mat and almost 150Mb using individual polygons.

91

_x opal patches
10000 — :
. 'x "
.+ opal spheres
User cpu 1000 _ prman patches
seconds prman spheres
(log scale)
100

I f [[
128 256 512 1024
Resolution

Figure 4.4. Comparison of spheres and patches, prman and opal.

resolution
128 256 512 1024
prman spheres 2:23 3:08 5:41 14:41
prman patches 1:23 2:59 8:14 16:02
opal spheres 0:48 2:41 10:04 39:15
opal patches 5:14 16:37 1:03:46 4:01:41

Table 4.16. Comparison of spheres and patches, prman and opal.

depends on many characteristics of the workload. As we have seen, a ray tracer can process spheres very
efficiently, and opal’s performance would suffer with less efficient primitives.

It is also worth noting that the test scene contained no transparency or reflections and it was ren-
dered without shadows. Therefore, opal performed only one-level ray casting as opposed to true recur-
sive ray tracing. There are some significant differences between the two systems in shading and texturing
performance. Prman’s algorithms were designed to improve shading coherence and optimize texture
mapping. On the other hand, ray tracers perform texturing and shading with less coherence. Three of the
benchmark images, spherel00, landscape, and layers, contain textures. In general, prman shows a
better relative performance on the textured images. Landscape, which has extensive texturing, is the
most difficult image for opal at the highest resolution. The next section discusses shading and texturing
in more detail.

4.9.2. Shading and Texturing Issues

Ray tracers, such as opal, support global illumination effects such as reflection, transparency with
refraction, and shadows by following secondary rays in the appropriate directions. In the five-image
benchmark suite, only spherel00 contains reflective and transparent surfaces. The opal timings in the

600 —

Usercpu 400 —

(seconds)
200 —
prman grid
0 I I I [] I
25 100 400 1600 6400 25600
Number of Spheres
(log scale)

Figure 4.5. Grid. Varying the number of spheres, prman and opal. Each image contains
spheres in a \n by Vn grid.

600 —

Usercpu 400 -
(seconds)

200 —

prman scattered

I I I | I I
25 100 400 1600 6400 25600

Number of Spheres
(log scale)

Figure 4.6. Scattered spheres. Varying the number of spheres, prman and opal.

92

93

previous section include reflection and transparency. To explore the compute time costs of global illumi-
nation effects, spherel00 was rendered with two additional shading options. The resulting runtimes are
shown in Table 4.17. The first line shows the time to render the image with only primary rays, using the
same local illumination model as prman. The second line shows the time when we add reflection and
transparency. The third line adds the cost of shadows in addition to reflection and transparency.

Omitting secondary rays entirely, opal is still much slower than prman (Table 4.14). Adding secon-
dary rays for transparency and reflection nearly doubles the compute time at all of the tested resolutions.
The shadow rays increase the cost by about the same amount.

Prman follows the Reyes rendering architecture [Cook87] by shading objects before performing the
full visible surface algorithm. This approach incurs the cost of shading many surfaces that are not visible.
However, it improves the coherence (or locality) of the shading and texturing problem by processing
large pieces of a single surface at one time. In contrast, opal’s ray tracing algorithm fails to preserve
coherence in shading and texturing. This difference is illustrated by the texture access statistics reported
by the renderers. Table 4.18 shows the number of texture pixels accessed by prman and by opal for
spherel00 , landscape , and layers. These three are the only images in the suite that contain textures.

The difference between the two rendering algorithms is striking. The contrast is most pronounced
for sphere100, which presents the hardest problem for opal. Because of the reflections and refraction in
the image, the texture map is accessed in response to secondary rays as well as primary rays. The secon-
dary rays can be directed to any point in scene. Therefore, texture map pixels are accessed in a less
coherent order.

Prman’s coherence is due to its shading before determining visibility. This approach has advan-
tages, as seen in Table 4.18, but it incurs the cost of shading invisible surfaces. The next section
discusses this problem.

User CPU (hh:mm:ss and normalized)
resolution 128 256 512 1024
primary 01:25 1.00 05:32 1.00 21:43 1.00 1:26:51 1.00
secondary 02:41 1.89 10:42 1.93 42:14 1.94 2:48:23 1.94
shadows 04:05 2.88 16:30 2.98 1:06:21 3.05 4:20:21 3.00
Table 4.17. Opal. User cpu time with different levels of ray tracing. Times are for spherel100

rendered with primary rays only, with primary rays and secondary rays in the directions of
reflection and transmittance, or with primary, secondary, and shadow rays. The row labeled
‘‘secondary’’ contains the same data as Table 4.15.

scene resolution texture pixels (millions)
prman opal
landscape 640 by 480 79.2 135.1
landscape 1280 by 960 235.5 895.4
layers 640 by 480 1.9 8.5
layers 1280 by 960 7.2 33.8
sphere100 512 by 512 4.5 347
sphere100 1024 by 1024 14.0 138.4

Table 4.18. Texture access statistics.

94

4.9.3. Prman’s Visible Surface Algorithm

Section 3.3.2 describes an approach called invisibility processing that prman uses to avoid shading
invisible objects and to reduce the input to the full visible surface algorithm. Two experiments evaluated
the success of this approach. The first experiment varied two scene characteristics, depth complexity and
transparency. The images contained spheres in ten-by-ten grids. Up to eight grids appeared in the scene,
stacked one behind the other. Each configuration was rendered twice, with transparent spheres and with
opaque spheres. The commands used to generate the models were of the form

spheres —t tpct —ds 10 depth

where tpct was either zero or one, and deprh varied from one to eight.

When all spheres are transparent, every surfaces is shaded and processed by the visible surface algo-
rithm. But when the spheres are opaque, the grids closet to the camera obscure those further away. If the
invisibility processing is successful, the renderer should be able to avoid processing these obscured sur-
faces. Table 4.19 gives the results of varying the depth of the scene and the opacity. It contains two
statistics in addition to the runtime. The size of the shading problem is indicated by the number of micro-
polygons shaded by the renderer, and the size of the visible surface problem is indicated by the number of
samples.

In the case of transparent spheres, the size of the shading and visible surface problems increase at
about the same rate as the number of layers in the scene. In the case of opaque spheres, the work
increases more slowly, because prman is eliminating a large proportion of the hidden surfaces. (With
only one layer, the opaque spheres require less processing than the transparent spheres because the sides
facing away from the camera are not visible.)

The scenes for the second experiment contained from one to ten terrain surfaces, composed of
patches. The surfaces were stacked directly above each other and viewed from a position in front of and
slightly above the objects. All of the surfaces were the same size in world space, but only the top layer
was visible in its entirety. The screen sizes of the surfaces varied slightly because of the effects of the
perspective projection. Two shading options were used. In one case, each surfaces was modeled as
untextured plastic. In the other, each surface had three texture maps. The commands used to generate the
models were of the form:

terrain —pb —v1 —n nsurfaces,
and
terrain —pb —v1 —n nsurfaces —t nsurfaces3

where nsurfaces varied from one to ten.

Opacity Layers User cpu Samples Micropolygons
m:ss ratio number ratio number ratio
transparent 1:27 1.00 4,416,306 1.00 571,920 1.00

1

2 2:44 1.89 8,518,543 1.93 | 1,099,640 1.92
4 5:16 3.63 | 15,843,296 3.59 | 2,050,520 3.59
8 9:42 6.69 | 27,818,344 630 | 3,623,384 6.34

1 1:08 1.00 2,846,954 1.00 480,576 1.00
2 1:47 1.57 3,993,524 1.40 793,320 1.65
4 2:48 247 5,606,529 197 | 1,272,274 2.65
8 3:45 331 6,954,053 244 | 1,763,870 3.67

opaque

Table 4.19 Sphere depth experiment. Each layer of the scene contains a ten-by-ten grid of
spheres. Scenes have one, two, four, or eight layers. Each configuration was rendered with
opaque surfaces and with transparent surfaces. For each statistic, the table gives both the raw
numbers and the problem size relative to the scene with one layer of spheres.

95

Figure 4.7 shows the effect of adding depth to the scene. It plots the number of non-empty pixels
and the number of micropolygons. Table 4.20 contains the corresponding data and other statistics. The
number of micropolygons increases only slightly faster than the number of visible pixels. This increase is
less than the total screen area of the objects (both visible and obscured), which increase approximately
linearly with the number of surfaces. In summary, prman is able to avoid many of the performance prob-
lems associated with shading before determining visibility.

250 —
micropolygons
200 —
150 — .-+ non-empty pixels
B
Thousands e
100 —
- 4+
504 °
0 T I
0 5 10

Number of surfaces

Figure 4.7. Terrain depth experiment. The number of micropolygons is plotted with a solid
line, and the number of non-empty pixels (at a resolution of 640 by 480 pixels) is plotted with a

dotted line.
Surfaces | Pixels | User cpu (m:ss) Samples Micropolygons shaded

ratio solid textured | number ratio number ratio

1 1.00 0:12 0:21 68,100 1.00 645,361 1.00

2 1.16 0:15 0:25 81,541 1.20 765,978 1.19

3 1.32 0:17 0:29 93,703 1.38 886,332 1.37

4 1.49 0:20 0:33 107,063 1.57 1,017,412 1.58

5 1.66 0:22 0:37 120,869 1.77 1,156,433 1.79

6 1.84 0:25 0:42 135,780 1.99 1,307,791 2.03

7 2.03 0:28 0:49 153,014 2.25 1,474,801 2.29

8 2.22 0:30 0:53 171,851 2.52 1,652,867 2.56

9 2.40 0:34 1:00 193,831 2.85 1,846,140 2.86

10 2.59 0:37 1:08 219,745 3.23 | 2,049,638 3.18

Table 4.20 Terrain depth experiment. The number of non-empty pixels is expressed relative to
the image with one surface. For visible surface samples and shaded micropolygons, the table
gives both the count and the ratio.

96

4.9.4. Summary

The experiments described in this section used renderers with contrasting approaches and known
performance differences. Using models generated by Mg, we could detect these differences and quantify
their effect. For example, Figures 4.5 and 4.6 document clearly that increasing the number of objects in
the scene has little effect on the ray tracer, but slows prman considerably, especially if there are more than
a few thousand objects. This result is expected [Kaji88], although the extent of prman’s per-object over-
head is somewhat surprising. Figure 4.4 shows that the type of modeling primitive affects the ray tracer
far more. This result is also expected. Ray tracing centers on the operation of intersecting rays with
primitives; its cost varies with the primitive type and is especially high for parametric patches. On the
other hand, prman subdivides all objects into an intermediate form and does relatively little work on the
original primitives, so it hardly notices the differences between patches and spheres.

These experiments are successful in having documented these, and other, expected results. They
validate Mg’s ability both to detect the effects of varying the renderer’s input and to distinguish between
systems with different performance characteristics.

The experiments varied several types of parameters, including scene characteristics and rendering
parameters. The scene geometry was varied to assess the impact of varying either the number of objects
or the type of modeling primitive. In each case, one characteristic changed while others remained
approximately constant. For instance, the aggregate screen area of the objects remained approximately
the same although the number of objects increased by a factor of 1,024. The surface characteristics were
varied to measure the success of prman’s visible surface optimizations. Rendering parameters were
changed to measure the effect of increasing the image resolution and to study the ray tracer’s performance
with different levels of ray tracing.

Some of the experiments used Mg’s benchmark suite, while others required that special-purpose
models be generated. When necessary, it was easy to vary and control the scene characteristics using
Mg’s scene generators.

4.10. Conclusions

This chapter addresses three problems in performance measurement for rendering systems. First, it
develops a methodology and a framework for controlled rendering performance experiments. Second, it
proposes an interface for portable test suites that is suitable for realistic image synthesis. Third, it demon-
strates a performance measurement tool, Mg, that follows the methodology and implements the interface.
Mg generates scenes for rendering performance tests, and the scene characteristics vary in a controlled
manner.

Mg displays several advantages over less flexible benchmarks. It is adaptable and can be used to
construct specific tests that produce more than single-figure-of-merit performance numbers. The test
results give information that can be used to evaluate factors in the system’s performance. Mg’s approach
also has disadvantages. Using such a tool requires sophistication. It presents the experimenter with many
choices and variations, and it produces a potentially large amount of data, which must be carefully
evaluated. Even though a fixed benchmark suite has been defined, Mg does not generate a complete,
stand-alone, executable test. Instead, it provides only data files which must be given as input to the sys-
tem being tested. Furthermore, the proper measurement methodology must be determined individually
for each rendering system configuration. Therefore, a tool like this is most useful in the hands of an
implementer or system designer who needs to understand how various factors affect the system’s perfor-
mance.

A major hypothesis in Mg’s design was that test images do not need to have the appearance of
‘‘real’’ images in order to be useful. The test cases constructed for Mg have simple geometry, which
allows the experimenter to understand more easily the effects of controlled variation. Experience with
these models demonstrates that they can detect performance differences between systems and help answer

97

performance questions about a renderer’s algorithms or implementation. With little effort, it is possible
to to create controlled experiments that give useful information about the relationship between the
renderer’s input and its performance.

Mg is intended for systems that render realistic images. However, I have chosen to limit the com-
plexity of the system to make it easier to implement and port. The interface also omits some features in
order to be more general. Two additions, in particular, may be useful in the future. First, adding other
types of bicubic patches and NURBS (non-uniform rational B-splines) would support a wider range of
applications. Second, different types of texture maps, for instance environment maps, would make the
shading interface more realistic. A major limitation in the interface’s definition is the lack of support for
animation. Thus, it cannot be used to evaluate motion blur algorithms or explore frame-to-frame coher-
ence.

98

5
Workload Partitioning for a

Multiprocessor Rendering System

““I believe that the most exciting aspect of ray tracing is that
it lacks coherence. That is, it is easily parallelizable.”’
James T. Kajiya [Kaji88]

5.1. Introduction

Because photorealistic rendering requires a great deal of computation, there is a lot of interest in
using multiprocessor systems to produce images more quickly. To use a multiprocessor effectively, we
must first solve the workload partitioning problem: to divide the work into an efficient set of sub-tasks
that can be distributed among the processing units. For the multiprocessor to perform efficiently, the
workload partitioning algorithm must (1) distribute the work evenly among the processors, and (2) avoid
introducing additional overhead in the way it subdivides the task. In other words, it is important to keep
all processors busy, but they must also be kept productive.

This chapter examines the performance of a class of workload partitioning schemes, those based on
a spatial subdivision of the image plane. Spatial subdivision is attractive, because it separates the render-
ing problem into localized sub-problems. In fact, many rendering algorithms have used spatial subdivi-
sion even on uniprocessors because it improves locality and lowers the effective size of the problem. As
Chapter 3 notes, however, the rendering work is not distributed uniformly over the screen space. There-
fore, a naive spatial subdivision strategy may do a poor job of balancing the workload among the avail-
able processing nodes.

This chapter describes a simple, low-overhead spatial subdivision scheme that balances the work-
load explicitly. Our approach is designed for rendering animated sequences, and it uses costs observed
for one frame to predict costs for the next frame. A second algorithm divides the work among the pro-
cessing nodes so that the estimated cost is approximately the same for all nodes. The cost estimate algo-
rithm is implemented in a program called adjust, which has been used in production to compute two
short animated films.

The studies presented in this chapter target a multiprocessor with distributed memory and sixteen
processing nodes. Each node has a substantial amount of local memory, but there is no shared memory.
The nodes do not have individual connections to disk, but they share a single connection to a host, which
handles disk requests. The target system uses no special graphics hardware and implements all of its
graphics functionality in software. Both the experiments and actual production experience demonstrate
that the partitioning algorithm proposed in this chapter offers a noticeable improvement over the other
schemes available on the system.

The performance studies assume a highly complex animation workload with large, detailed models
and realistic shading and texturing. The workload requires careful antialiasing and medium to high reso-
lution (512 to 4096 pixels per scanline). The experiments described in this chapter use scene descriptions
that were taken unchanged from a full production workload. Because it takes many minutes, or even

99

hours, to render images of this quality on a uniprocessor, we are not attempting to achieve real or near-
real time speeds.

We assume that the processing nodes will cooperate to render a single frame. We did not consider
assigning a different frame to each node for two reasons. First, designing an animated film is a very
labor-intensive problem, and an animator often needs to see individual frames as quickly as possible.
Rendering separate frames in parallel increases the system’s throughput but does not reduce the latency.
Second, complex images often require large amounts of geometric and texture data. Because the shapes
and colors of objects can change over time, we cannot assume that the scene specifications are the same
for two frames of a sequence. The rendering system described in this chapter allows objects to change
dynamically by instantiating a separate copy of the scene database for each frame. If the nodes computed
sixteen frames in parallel, the aggregate working set for the system could be substantially larger.

The next section surveys previous work in spatial subdivision and load balancing for computer
graphics. Section 5.3 describes the rendering system used as a base for the performance experiments.
Sections 5.4 and 5.5 discuss spatial subdivision schemes and cost estimates for adaptive partitioning.
Sections 5.6 and 5.7 present the experimental results and analyze the factors that contributed to the loss of
multiprocessor efficiency. Section 5.8 describes our experience with using the new partitioning algorithm
in production. Section 5.9 evaluates the hardware and software architectures and considers possible
improvements, while Section 5.10 offers conclusions.

5.2. Literature Review

This section reviews previous research in workload partitioning and load balancing for rendering
complex images and briefly considers two related applications. There are several ways to parallelize the
rendering workload. With image-space parallelism, the screen is subdivided and a subset of the pixels is
assigned to each processing node. With object-space parallelism, a region of the three-dimensional
model space is assigned to each node. With object-per-processor parallelism, objects or geometric primi-
tives are distributed to the nodes. Depending on the degree of parallelism and the complexity of the
image, a node might be responsible for one or several objects. With functional parallelism, stages of the
rendering process are assigned to separate nodes, often in a pipeline fashion. Different forms of parallel-
ism may be combined in a single architecture. For example, multiple functional pipelines may render dif-
ferent objects or screen regions in parallel.

Some rendering systems have attained large-scalé parallelism on SIMD (single instruction stream,
multiple data stream) architectures. For example, the Pixel Planes project uses image-space parallelism
with one special-purpose processor per pixel [Fuch85]. Other rendering systems have been implemented
on general-purpose SIMD systems, such as the Connection Machine, using image-space subdivision and
object-per-processor models [Crow89]. Large-scale SIMD architectures tend to require novel approach to
rendering, in comparison with uniprocessor or MIMD implementations.

Rendering algorithms for MIMD (multiple instruction stream, multiple data stream) architectures
more closely resemble those on uniprocessor systems. A very coarse granularity of parallelism may be
obtained by rendering different images in parallel on a number of loosely-coupled processors. In this

case, it may be possible to use uniprocessor software with little modification.

If we apply parallelism, instead, to the computation of a single image, we can improve the latency
and often improve the locality of data references. First, we must partition the work of computing the
image among the available processors. To utilize the processing power effectively, the work must be par-
titioned so that all of the nodes receive similar amounts of work. In static workload partitioning
schemes, the partition remains the same throughout the computation of an image. In dynamic schemes,
work assignments may change during the computation. A fixed scheme generates exactly the same parti-
tion for all images without considering the scene’s characteristics, while an adaptive scheme tailors each
partition to the workload’s characteristics.

100

In summary, varied models of parallelism have been applied to computer graphics. Rather than sur-
vey the broad range of approaches, this chapter will focus on spatial subdivision and load balancing for
MIMD architectures. For a broader view of parallel rendering algorithms, see the surveys by Crow
[Crow88] or by Molnar and Fuchs [Moln90].

5.2.1. Spatial Subdivision for Uniprocessor Graphics

Image-space subdivision has long been used in uniprocessor rendering algorithms. Often its goal is
to reduce the complexity of the problem, as demonstrated in the visible surface algorithms of Warnock
[Warn69] and Franklin [Fran80]. In the Reyes rendering architecture, spatial subdivision has been used
to conserve scratch memory in uniprocessor implementations [Cook87]. Because the system described in
this chapter uses an implementation of Reyes, image-space subdivision is a natural partitioning strategy.

Ray tracing algorithms are executed in the three-dimensional object space, but sampling is initiated
from the two-dimensional screen space. A primary ray is cast from a pixel into a pre-defined portion of
the object space, searching for the nearest object to the image plane. Once a ray intersects an object,
secondary rays are cast to shade the object. Certain rays simulate reflection and refraction, and others test
to see if the surface is in shadow. With image-space rendering algorithms, it is often possible to partition
the model database so that each node stores only the subset that it needs. The data distribution problem is
inherently more difficult with a multiprocessor ray tracer because these secondary rays may need to
access any part of the object space. The computation for any pixel may, therefore, access any part of the
database. Spatial subdivision has been applied both in the two-dimensional image space and in the
three-dimensional object space. (See, for example, Dippé and Swensen’s uniprocessor results [Dipp84].)
Multiprocessor ray tracers are discussed below in a separate sub-section.

5.2.2. Implicit Load Balancing with Spatial Subdivision

Screen subdivision is often tied to the management of the display memory, or frame buffer. In
many cases, this requires a fixed set of relationships between the processing nodes and screen locations.
There have been many attempts to structure the memory so that typical workloads are spread evenly
among the associated processing elements. This is a form of implicit load balancing, which is not
adapted to any specific workload or set of processing conditions. At one extreme, the Pixel Planes archi-
tecture [Fuch82] uses a processor-per-pixel model. Architectures that have fewer processors than pixels
must assign a set of pixels to each processor. If each node processes a fixed contiguous region, the load
will be unbalanced unless the image complexity is distributed evenly over the screen. In 1977, Fuchs
proposed an interleaved pattern of pixels to balance the load implicitly [Fuch77]. His scheme divides the
screen into small tiles (for example, 4 by 4 pixels) and gives each processor one pixel from every tile.
Even when the image is concentrated in a small portion of the screen, this scheme is likely to balance the
load. Interleaved pixel partitioning is used in the Pixel Machine [Potm89] and in the Silicon Graphics
4D/240GTX [Akel89].

5.2.3. Explicit Load Balancing

Explicit algorithms attempt to control the load balance directly by basing work assignments on the
workload’s characteristics or on the observed distribution of work. Parke [Park80] and Kaplan [Kapl79]
simulated screen-based subdivision for multi-processor visible surface algorithms without doing any real
implementation.

Whelan studied the load balancing problem for a proposed real-time, parallel animation system
[Whel85]. His architecture subdivided the two-dimensional screen space among approximately sixteen
processors. Through simulation he compared the performance of fixed partitioning schemes with one
algorithm for explicit load balancing. His explicit load balancing scheme studied the scene’s geometry to
estimate the rendering effort for each pixel. It then used a recursive bisection algorithm to subdivide the
screen into regions with approximately the same amount of predicted work. Whelan concluded that the

101

explicit method balanced the workload much better than the fixed methods, but it required too much over-
head to be feasible for a real time system, which must render many images every second. The load
balancing scheme presented in this chapter, while similar to Whelan’s, is practical because of differences
in the algorithms and in the workloads. The cost estimates that I will describe are simpler (though more
approximate) than Whelan’s, so the overhead is reduced. Even so, our system can more easily absorb the
overhead because our images are much more complex and require about three orders of magnitude more
rendering effort.

Crow experimented with distributed rendering on a collection of workstations. Each workstation
rendered its own subset of objects, and one workstation combined the results to form a complete image
[Crow86]. Crow’s algorithm analyzed scene characteristics and attempted to balance the load among the
workstations. In the final analysis, the overhead for partitioning, distributing the data, and compositing
the image was considerable, and he gained only modest advantages from using multiple workstations.

5.2.4. Load Balancing for Multiprocessor Ray Tracers

There have been many projects to use multiprocessors for ray tracing. These efforts have been
motivated by the compute-intensive nature of raytracing and by the independence of the rays. Many early
designs used spatial subdivision but did not address the load balancing issue directly, for example
[Clea86].

Other multiprocessor designs have addressed the problem of load balancing. Dippé and Swensen
suggested dynamic load balancing based on a three-dimensional subdivision of object space for a pro-
posed ray-tracing architecture [Dipp84]. There were open problems, however, in the implementation of
their distributed load balancing mechanism. Priol and Bouatouch[Prio89] performed static load balanc-
ing by subsampling the image and assigning approximately equal numbers of rays to each node. On a
sixteen-node hypercube, they reported a speedup of only 6.16 for a 128 by 128 pixel image.
Boothe[Boot89] determined that a form of processor self-scheduling worked well for a shared memory
system. His strategy was to distribute many small jobs to the nodes. However, he found many hard prob-
lems with implementing a dynamic scheduling strategy on a message-passing system. Because recursive
ray tracing can send secondary rays to any part of world space, the workload partitioning problem for ray
tracing differs from the image-space problem described in this chapter. The organization and distribution
of data is an important issue not only for load balancing, but also for reducing the number of intersection
calculations [Casp89, Gree90].

5.2.5. Workload Partitioning for Scientific Applications

There has been a wide range of research on partitioning scientific applications for multiprocessing.
The partitioning schemes for our rendering system use a recursive bisection algorithm to generate parti-
tions. Berger and Bokhari [Berg87] describe this strategy, which Baden [Bade87] applied successfully to
an application in fluid dynamics. Baden’s application has several characteristics in common with ours:
the workload is distributed unevenly over a two dimensional grid, the computation is localized within the
grid, and the distribution of complexity changes in time steps. Unlike ours, his application has an accu-
rate and easily obtained cost function. Igbal, Saltz, and Bokhari [Iqba86] and Baden and Kohn [Bade91]
compare recursive bisection with other partitioning strategies.

5.2.6. Frame-to-frame Coherence and Video Compression

The algorithm presented in this chapter depends on similarities in consecutive frames to predict
rendering costs. Algorithms to compress digital video, such as the MPEG standard [LeGa91], exploit
frame-to-frame coherence for dramatic increases in compression. The industry standards for video
compression were developed for applications that are feasible only with high rates of compression. Their
success is due both to spatial coherence within individual frames (resulting in intra-frame compression)

102

and to temporal coherence from frame to frame (resulting in inter-frame compression). Le Gall [LeGa91]
explains that the target applications ‘‘demand a very high compression not achievable with intraframe
coding alone’’ and reports that inter-frame compression can add another factor of three in compression.
The inter-frame compression algorithms include both predictive and interpolative techniques.

Video compression rates as high as 50:1 to 200:1 are possible, but such high rates of compression
depend not only on coherence but also on the use of lossy techniques [Ang91]. With lossy algorithms,
the reconstructed images are not identical to the originals, but they are subjectively similar to the human
eye for image quality that is comparable to analog videotape. Ang, Ruetz, and Auld cite much lower
compression rates for lossless methods, around 3:1. Although frame-to-frame coherence is not sufficient
for very high compression rates, it still makes an important contribution in this application.

5.3. The Rendering Environment

This section describes the environment of our workload partitioning experiments: the parallel
rendering hardware, the rendering software, and the workload. The rendering environment supports pho-
torealistic rendering of complex scenes; it offers power and flexibility to the scene designer. Given the
current state of technology, these goals are incompatible with real-time or near real-time image genera-
tion.

5.3.1. The RM-1 System Architecture

The RM-1 rendering accelerator was designed and constructed in 1987. It first supported animation
production in 1988. The RM-1 is a VME-bus board that operates as an attached processor, and all of its
graphics functionality is implemented in software. Each board has sixteen programmable processing
nodes, consisting of an Inmos T800 transputer and four megabytes of local memory. The T800 cpu has
floating point and runs at twenty megahertz. The memory cycle times vary from 80 nanoseconds to 120
nanoseconds. On the whole, the RM-1 has a high-performance design with more processors, more
memory, and faster parts than typical transputer systems.

One transputer, the root, communicates directly with the host over the VME bus. The other proces-
sors communicate with the host indirectly through the root. Each transputer has four twenty-megabit-
per-second links to other processors. At the start of any run, the communications topology can be
reconfigured through a cross-point switch. However, a ternary tree configuration is almost always used.
In this configuration, each processor has one link to its parent and up to three links to child nodes. The
root uses its parent link to communicate with the host. Early experiments with the RM-1 showed that the
ternary tree helped reduce disk access bottlenecks by shortening the average distance from the nodes to
the host. All of our experiments were run with the ternary tree configuration.

Varied computers have hosted RM-1 boards, including Sun-3 and Sun-4 workstations, the Silicon
Graphics 4D/70 graphics workstation, and the CCI Power 6/32, a general-purpose computer that is about
five times as fast as a VAX 11/780. The role of the host is to provide centralized control and input/output
services for the transputers. The host downloads graphics data and control options to the RM-1 and then
initiates rendering. During the rendering process, servers running on the host handle requests to read tex-
ture data and output display information. The host does not necessarily have a local disk, and it may
obtain code and texture data from servers over the Ethernet.

The system is optimized to generate highly complex images. Specifically, it is not organized for
real-time display or user interaction. Single-frame compute times for our experiments varied from one to
thirty-three minutes when rendered on sixteen processors. In contrast, real-time, or near real-time, appli-
cations require ten to thirty frames per second. Accordingly, the architecture has no video component or
other display hardware. All display output is forwarded to the host computer, which can either transfer
the image to a frame buffer or store it in a file.

103

5.3.2. The Software Architecture

The rendering software is an implementation of the Reyes rendering architecture described in
Chapters 2 and 3 [Cook87], specifically the transitional system discussed in Section 3.4. It can render
arbitrarily complex scenes and interprets a sophisticated programming language for user-defined lighting
and shading algorithms. The algorithms support photo-realistic rendering, with features such as high-
quality antialiasing, motion blur, and depth of field. The system adheres to the RenderMan interface for
transmitting model and control information to the rendering program [Pixa89, Upst90]. The software is
written in C and is downloaded from the host.

All sixteen transputers run the same rendering code. They work on a single image in parallel by
subdividing the image space into disjoint, rectangular regions. The host downloads the model description
and rendering control options to the RM-1 in a language that implements the RenderMan interface.
Through this input stream, the host provides centralized control for the rendering process. If a node
should need information about pixels outside of its region, it computes the information locally. There-
fore, the nodes work independently, communicating only to transmit information to or from the host.

Because the RM-1 has no shared memory, model and control information is distributed to the local
memory of each processor during a model initialization phase at the start of each frame. After the host
transmits the data to the root processor, it is propagated to the other nodes by flooding the ternary tree.
On each node, two processes handle the input stream. One process simply forwards the input to all of the
node’s children. The other process reads the input, bounds geometric primitives in screen space, and
culls all objects that fall completely outside the node’s assigned region. Much of the computation of the
model initialization phase is inherently serial, and all nodes repeat many of the same calculations. The
initialization time increases with the size of the input stream and with the depth of the tree.

The renderer conserves memory by dividing each region into small rectangles, called buckets , and
computing pixel values for each bucket in turn. When a bucket is finished, the transputer discards tem-
porary data structures for the bucket, sends its coordinates and pixel values to the display server on the
host and starts work on the next bucket. The server can write the pixels either to the frame buffer or to a
file.

The current Reyes implementation requires that the subdivision of the image space remain static for
each frame. A node’s local memory is too small to retain the entire model throughout the computation,
and the system’s designers did not want to tackle the very difficult problem of distributing data on the fly
(see, for example, [Boot89]). Instead, the system requires that each processor know its assigned region in
advance, so it can discard data that falls outside of the region. A processor need not, however, work on a
single contiguous region. Indeed, the system already supports an option that subdivides the image into an
interleaved pattern of small tiles. The region assigned to a node is not constrained to have any relation-
ship to its parent’s region. The system does not require that the entire screen be rendered, but to produce
the correct image, the regions must cover all pixels that contain visible objects. The safest way to ensure

this condition is to render the entire screen. However, it is possible to analyze the model file and bound
the image more tightly.

In summary, the workload partitioning problem for the RM-1 accelerator with the Reyes rendering
software has the following characteristics:

e The host provides centralized control.
° The screen space is subdivided into arbitrary, disjoint rectangular regions.
e The regions must completely cover the visible image.

A static partition is specified for each frame.

Any region may be assigned to any processor.

° No real-time constraints are imposed upon the system.

104

The design and implementation of the Reyes rendering architecture is unusual in several respects,
and it is characterized by some uncommon performance considerations. It would be difficult to explain
our measurements without first noting some of the system’s performance characteristics:

The system encourages input-intensive approaches. Reyes relies heavily on texture mapping tech-
niques, as described in Chapter 2, to add surface detail to objects and to simulate non-local illumination
effects such as shadows, reflection, and refraction. The implementation is optimized to encourage the use
of texture maps. A more compute-intensive alternative would be to simulate the optics of non-local
illumination effects with an algorithm such as ray tracing. The texture-mapping approach can reduce the
number of calculations required to determine an object’s color, but it tends to generate many accesses to a
number of large texture files.

Algorithms operate on small polygonal rendering primitives. The renderer subdivides geometric
primitives adaptively to produce internal primitives called micropolygons. The largest dimension of a
micropolygon is typically half the width of a pixel.

The renderer uses a lot of memory. Reyes uses about 350,000 bytes for code and initialized data.
Even simple applications need another one and a half megabytes for data. Each geometric primitive is
subdivided into many micropolygons, and the renderer keeps detailed information about each micropo-
lygon until it has finished all buckets that contain the micropolygon. Furthermore, the renderer retains
extensive information about all objects that intersect a pixel until the pixel is resolved.

Buckets are rendered in row-major order. Each node renders one bucket at a time, traversing its
region from left to right and from top to bottom. Objects often fall into several neighboring buckets, and
the data describing the object cannot be discarded until all of its buckets have been rendered. Consider an
object that intersects two buckets, one above the other. If the node’s region is a vertical strip, the renderer
will move across the its region quickly and will soon reach the second bucket. If the region is a horizon-
tal strip, the renderer will process many more buckets before reaching the second bucket. With horizontal
regions, the renderer tends to retain information for a longer time, use more memory, and exhibit poorer
locality of reference.

Caching texture pages improves performance. Typical workloads exhibit reasonably good locality
of reference to the texture files. The performance of the RM-1 system is improved by caching texture
pages at the nodes and at the server.

The cost of rendering an object is not distributed evenly over the area covered by the object. To
increase the locality of the computations, the renderer processes entire objects, or large pieces of objects,
at one time. An object is first subdivided into smaller geometric primitives and finally into meshes of
micropolygons. Each primitive is bounded in screen space by a rectangular bounding box, and the cost of
each level of subdivision is charged to the bucket that contains the upper left corner of the bounding box.
Similarly, all of the micropolygons in a mesh are shaded at one time. No matter how many buckets the
mesh intersects, the entire shading cost is charged to the bucket that contains the upper left corner of
mesh.

Shading costs vary considerably. Shading and lighting algorithms are not fixed by the system, but
are specified with programs written in the RenderMan shading language. Shading calculations can be
arbitrarily complex, and as Chapter 3 showed, their costs can vary widely. Consequently, it is difficult to
predict shading costs a priori.

105

5.3.3. Timing

The time required to render a frame on the RM-1 system can be expressed as the sum of three com-
ponents:

Tframe = Lmoder Trender+ Tdisplay (51)

T,0aet» OF the model initialization time, is the time to read the model and control information; T,,,,,,, or
the rendering time, is the time to compute values for all of the pixels in the image; and T, is the time
to display the pixels (or write them to a file). All of these values are measured as elapsed, or wall clock,
times.

Each node reports the rendering time for its region. Since the only time reported by the transputers
is the rendering time component, we will simplify the notation and let 7; denote the rendering time for
node i. Timing starts after all nodes have read the model and are ready to render the image. Timing for
each node stops after it has computed values for all of its pixels and has sent its display output to the host.
(The host will not necessarily have received or displayed all of the completed pixels at the time that the
node stops timing.) The rendering times reported by the node thus omit all of the time for model initiali-
zation and some of the display time. The time to render the entire image, which we shall call the RM-1
rendering time, is the time reported by the last transputer to finish:

Trender = max(t,-), ISISP

where p is the number of processing nodes.

The RM-1 nodes report only elapsed, or wallclock, times. Unfortunately, accurate idle times are
unavailable. Direct measurement is difficult, because the transputer’s hardwired scheduler does not allow
for an idle process at the lowest priority. We could estimate idle time by sampling the program counter
or profiling, but this would slow down the computation and alter the effects of multiprocessor contention.
I have, instead, chosen to estimate idle time indirectly, by analyzing wait times for key events.

All of the host computers run the UNIX operating system and can report user cpu time, system cpu
time, and elapsed time at the end of each run. Although the host acts as an intermediary between the tran-
sputers and the disk, the cpu time statistics show that it is mostly idle while the RM-1 is rendering. Let
T, be the elapsed time reported by the host. It includes not only the RM-1 rendering time, but also the
time to initialize the model and display the frame. To approximate the sum of the model initialization
and display overhead, we subtract the RM-1 rendering time from the host’s elapsed time,

Tooder + Tdisplay = Thost = Trender

keeping in mind that part of Ty, overlaps with T,,,,,. Whereas T,,q, is the time for the parallel
rendering portion of the computation, the time 7,4+ Taispiay describes tasks that are more serial in nature.

It is impossible to calculate T4, and T, individually from the available statistics. To under-
stand these costs, I timed model initialization and display with a stopwatch, using messages on the termi-
nal as cues to start and stop timing. I timed three trials each of the three models used in my performance
experiments. In these tests, 7,4 ranged from sixty to seventy-five seconds. These observed initializa-
tion times were remarkably consistent, even though the length of the model files varied by about a factor
of four. However, the animation group at Pixar has worked with models that have taken as long as four
minutes per frame to initialize. Post-rendering display times are negligible when the image is displayed
directly into the frame buffer. When the image is written to a disk file, the display overhead time depends
on the resolution and contents of the image. It can be as little as thirty seconds, or as much as several
minutes.

Table 5.1 summarizes the terms and notation defined in this section and in the rest of the chapter.

106

Rendering time components (Sections 5.3.3 and 5.4.1)

Trame time to compute a frame on the RM-1

T odel model initialization time

Trenders T rendering time (time to compute pixel values)

Tiispiay time to display pixels

Thost elapsed time reported by the host

T partition partitioning overhead time

Tf'm,,,e time to render a frame, including partitioning overhead

Node statistics (Section 5.5)

D number of processing nodes

I rendering time for node i

Xmins Xmax> Ymins Ymax coordinates of a node’s region
estimate; cost estimate for node i

Metrics (Sections 5.6.3 and 5.7)

T, multiprocessor rendering time with p nodes

T uniprocessor rendering time

—

S, multiprocessor speedup with p nodes

E, multiprocessor efficiency with p nodes

W, amount of work required by computation with p nodes
B, balance achieved with p processing nodes

L, lost efficiency for a multiprocessor with p nodes

L loss due to imbalance

L, loss due to read delays

L; loss due to reduced coherence

E} idealized efficiency for a perfectly balanced load

E, idealized efficiency without read contention

Renderer (Sections 5.3.2 and 5.7.3)

bucket a small rectangular region of pixels
micropolygon (Upoly) a small internal rendering primitive
grid a rectangular mesh of micropolygons

Table 5.1. Terms and notation.

107

5.4. Spatial Subdivision Schemes

The performance analysis in this chapter studies a set of spatial subdivision schemes for workload

partitioning. The RM-1 system supports only static workload partitioning schemes, in which the partition
remains fixed throughout the computation of a frame. This section describes the schemes and discusses
the factors that affect their performance. It introduces the performance issues briefly, while the following
sections flesh them out with measurements.

5.4.1. Qualities of Spatial Subdivision Schemes

Let’s first consider the factors that influence the suitability and performance of spatial subdivision

schemes:

1.

Load balancing . A desirable partitioning scheme balances the load evenly among the available
Processors.

Overhead. An ideal subdivision scheme introduces no overhead to compute the workload partition
and to distribute assignments to the processing nodes. We may avoid delays if the host can com-
pute partitions for future frames while the accelerator is busy rendering. If the host would otherwise
be idle, then the true time to process a frame remains T}, as defined in Section 5.3.3, Equation
5.1. If the partition is not computed in parallel with rendering, then the true time to render the
frame must include the partitioning overhead time, Ty ision :

Tframe = Tframe + Tpartition

Correctness. The system must produce correct results, even when the workload is distributed
among multiple processors. For photo-realistic rendering applications we are concerned with image
quality, including antialiasing and filtering (see Chapter 2). The shade of a pixel is computed as a
weighted average of the objects that affect the pixel. If we use a one pixel by one pixel filter for
antialiasing, the final shade of any pixel is completely determined by the objects that intersect the
pixel. For production-quality photorealistic rendering, however, Pixar insists on filters that are two
pixels wide. This means that the final color assigned to one pixel depends on the contents of neigh-
boring pixels. This decision affects multiprocessor rendering, because a node must be able to obtain
information about pixels outside of its region in order to determine the correct shade for border pix-
els. In the current RM-1 system, each node computes the needed information about neighboring
pixels rather than depending on results from other nodes.

Coherence. In computer graphics, coherence is the tendency for images to be locally similar. By
preserving locality, it is possible to reduce the cost of many calculations and improve the locality of
memory and disk references. An ideal partitioning scheme would preserve any coherence in the
workload that the renderer is prepared to exploit. In particular, Reyes improves texture locality and
shading efficiency by processing large pieces of a surface at one time. A partition that scatters
pieces of a coherent surface among many nodes frustrates Reyes’ shading optimizations. Further-
more, a partition that often separates adjacent pixels makes a two-by-two reconstruction filter more
expensive.

There is often a tradeoff between maintaining coherence and minimizing load imbalance. If the par-
titioning scheme is constrained to assign large, coherent regions to each processor, it will tend to
balance the load less evenly than an algorithm that can assign disjoint pixels to processors. What if
the partitioning scheme violates the property of coherence in order to spread the load more evenly?
The processors will all keep busy, but they may have much more work to do. They may take even
longer to complete the task than if they had shared a more uneven, but more coherent load.

Task independence . Ideally, the computations assigned to different nodes will be as localized and
independent as possible. Dependence results in more communication delays or duplicated computa-
tion.

108

6. Systems issues. The partitioning strategy should be a good match for the system. The communica-
tions structure and other characteristics, such as caching, affect the success of a particular subdivi-
sion scheme.

5.4.2. Fixed Spatial Subdivision on the RM-1

To render in parallel on the RM-1, the system partitions the screen space into regions and assigns a
region to each processing node. The user may either specify the regions explicitly or use one of the
system’s fixed subdivision schemes. The system software provides two categories of fixed subdivision
schemes. The window schemes give each processor a single contiguous region, subdividing the screen so
that all windows have the same dimensions. For a sixteen-processor configuration, the partition may con-
sist of sixteen horizontal strips, sixteen vertical strips, or a four-by-four grid. The bucket schemes divide
the screen into small tiles and assign each processor a scattered subset of the tiles. The default tile size is
four by four pixels, but the dimensions may be changed. In the default bucket scheme with p processors,
each processor renders every pth tile across the screen. If the number of processors evenly divides the
number of tiles across the screen, this scheme generates vertical strips. Normally, the strips are thinner
than in the vertical window scheme, and each processor has several strips in different parts of the screen.
A variation of the bucket scheme avoids vertical strips by repeating a rectangular pattern of assignments
across the screen.

The fixed window schemes maintain good coherence. However, they are unlikely to balance the
load well unless the image complexity is distributed uniformly over the entire screen. For example, if the
image is concentrated in half of the screen area, several windows are likely to be empty and the about half
of the nodes will do most of the work. The bucket schemes tend to balance the load evenly, but they des-
troy area coherence by scattering parts of large objects (or of large, coherent regions) among several pro-
Cessors.

Would the fixed window schemes provide better load balancing if we could avoid giving any node
an empty region? To test this idea, I simulated a simple variation of the fixed grid scheme. I determined
a rectangular bounding box that contained all of the objects in the image and subdivided the area within
the bounding box into a uniform four-by-four grid. The bounding box improved the performance of the
fixed grid schemes somewhat (by about ten to twenty percent). Still, the results were less promising than
some exploratory simulations of adaptive subdivision, and I shifted my attention to the adaptive schemes.

5.4.3. Cost Estimates for Adaptive Subdivision

The problem with the schemes described above is that none finds a middle ground with good
balancing and also good coherence. Our hypothesis is that we can achieve this middle ground with static
scheduling by subdividing the screen adaptively , taking into account the characteristics of the workload
in order to balance the work more evenly. An adaptive scheme has two main requirements: a set of cost
estimates and a partitioning algorithm. The cost estimates attempt to predict how much time it will take
to render some small portion of the image. The unit of granularity might, perhaps, be a pixel or a bucket.
We will assume that each cost estimate describes a ‘‘bucket,”” which may be as small as a single pixel or
as large as several pixels in each dimension. The partitioning algorithm assigns a subset of the buckets to
each node in such a way that the summed cost estimates are approximately the same for all nodes.

There are several possible ways to estimate rendering costs. Let us consider four leading candidates
in detail.

1. The geometric model. Geometric complexity is a good predictor of run time for many rendering
algorithms, assuming that shading costs are relatively uniform for the different surfaces in the
image. We can estimate geometric complexity by processing the model description with the fol-
lowing algorithm:

109

for each object {
bound the object in screen space
for each bucket intersected by the bounding box {
increment the cost estimate for the bucket
}

One drawback to this approach is the difficulty of mapping high-level geometry to screen space
quickly, yet accurately. It can be quite expensive to parse the entire model file. Bill Reeves imple-
mented this algorithm and used it for load balancing during the production of the film Tin Toy
(1988). Reeves found that he had to tune his cost estimate program for different models by weight-
ing high-level objects according to a subjective estimate of their shading complexity and other fac-
tors [Reev89]. It was also necessary to subdivide objects finely to produce tighter bounding boxes.
His program balances the load well when it is tuned for the scene, but performs poorly otherwise.
Because it takes several minutes to process the model file, he generates cost estimates on a worksta-
tion that otherwise would not be used for rendering and effectively eliminates partitioning overhead
on the rendering machine. The resulting processor assignments are copied across the local network
to the rendering host. This unwieldy procedure and the significant computational overhead are very
undesirable in a production environment. Reeves’s approach is one of the partitioning schemes
used in my experiments. (It is called the model scheme in the rest of this chapter.) We did not tune
the cost estimates for the different models.

Low-level geometry. We could base cost estimates on low-level primitives, such as micropolygons,
assuming again that the shading complexity is fairly uniform. But because of the very high cost of
subdividing objects into micropolygons, low-level geometry is not feasible for a priori estimates.
Could we, perhaps, use micropolygons to predict costs for future frames? With some modification
to the display server and to the RM-1 rendering code, we could save the number of micropolygons
per bucket as a byproduct of computing a frame. With this information, we could estimate the cost
of the next frame of an animated sequence. The computational overhead would be low, but we
would increase the message traffic between the RM-1 nodes and the host.

I experimented with this approach. First, I rendered an image with an instrumented system
that reported the number of micropolygons and the rendering time for each bucket. Then, using the
number of micropolygons as each bucket’s cost estimate, I subdivided the screen so as to balance
the cost estimates among the processors. I rendered the image again with the resulting partition.
The result was a modest improvement over the best fixed partitioning scheme: about a ten percent
decrease in runtime and an increase from 0.53 to 0.59 in efficiency. This experiment was optimis-
tic, because it predicted the costs of an image with knowledge gained by rendering the same image.
When I tried to use the cost estimates to predict the cost of the next frame in the animated sequence,
the performance was predictably worse because of frame-to-frame differences. The runtime
decreased only about six percent, and the efficiency rose from 0.50 to only 0.53.

The problem with this approach is the weak correlation between the number of micropo-
lygons in a bucket and the milliseconds reported to render the bucket; the correlation coefficient for
some frames was as low as 0.25. This contrasts with the stronger correlation between the number of
micropolygons per node and the node’s rendering time, which was about 0.8 for the same scenes.
Perhaps the micropolygon count fails as a cost estimate because the shading complexity varies
among different objects. I believe, however, that there is an underlying problem with the renderer’s
implementation: because the costs of subdividing and shading an object are not spread uniformly
among the pixels covered by the object (see Section 5.3.2), it is hard to make accurate fine-grained
cost estimates.

110

3. Shading . In the Reyes rendering architecture, shading costs vary widely and are hard to predict. It
would be useful to factor the surface complexity into cost calculations, but it is very hard to esti-
mate costs directly by examining the scene specifications.

4. Time. Obviously, the best predictor of run time would be the actual time required to render the
bucket. Rendering time is an appealing estimate because it indirectly accounts for both surface
complexity and geometric complexity. Of course, run time is only available a posteriori, so it is
not a practical cost estimate for individual still images. But consider animation: given adequate
frame-to-frame coherence, the rendering time for one frame may be a good predictor for the next
frame. As a metric, rendering time accounts for both geometric complexity and shading costs. The
algorithm I developed achieves good results with this approach.

5.4.4. Partitioning Algorithms

The second component of an adaptive subdivision scheme is the partitioning algorithm. We have
used a recursive bisection, or median-cut, algorithm implemented in the program median by Pat Han-
rahan [Hanr88]. The algorithm processes a set of cost estimates corresponding to small regions of the
screen. With one cut it divides the screen into two regions of approximately equal cost. It recursively
bisects each part of the screen until it has created the desired number of rectangular regions. An early
application of recursive bisection to graphics was in Warnock’s visible surface algorithm [Warn69].
More recently, Whelan experimented with recursive bisection for real-time animation [Whel85]. The
algorithm has been used in scientific applications by Berger and Bokhari [Berg87] and by Baden
[Bade87]. Recursive bisection is fast and does an acceptable job of balancing the cost estimates.

Normally, median will make both horizontal and vertical cuts as it subdivides the screen. Figure 5.1
illustrates a partition generated by a recursive bisection with cuts in both directions. Median can also be
constrained to make all cuts in one direction, producing either horizontal or vertical strips. Strictly speak-
ing, median is not limited to bisection. It will produce partitions for any number of processors, not just
for powers of two.

Figure 5.1. Partition generated by recursive bisection. The lines that represent the cuts are su-
perimposed on the image.

111

5.5. Estimating Rendering Costs with the Program Adjust

The program adjust produces cost estimates, using the run time of one frame to predict the cost of
the next frame. Its cost estimates are passed to median, which uses them to subdivide the screen.
Together, adjust and median implement a workload partitioning algorithm. The host computer runs
adjust and median after one rendering job completes and uses the results to make node assignments for
the next frame. Adjust works on a sequence of frames. The first frame is rendered under one of the fixed
window schemes: horizontal strips, vertical strips, or a grid. Starting with this baseline partition, the
algorithm adjusts the boundaries of the windows after each frame to improve the balance.

The algorithm is very simple. Adjust requires two inputs from each node: the coordinates of its
region (Xmins Xmax> Ymin» aNd yna) and its rendering time in seconds (7;). From the screen coordinates, it
calculates the number of pixels rendered by each node. Adjust assigns the same cost estimate to all pixels

rendered by the node. This estimate is simply the node’s rendering time divided by the number of pixels
rendered:

L

timate; =
esmate; (Xmax = Xmin * 1) (Ymax = Ymin + 1)

In practice, the cost estimate is scaled in order to pass an integer to median.

In addition to the array of cost estimates, adjust’s output includes the array’s dimensions and the
image resolution. The cost array need not have the same resolution as the image; median scales the cost
array in each dimension as needed. This allows adjust to make an effective optimization: to view image
partitioning as a one-dimensional problem. We can constrain the algorithm to divide the screen into vert-
ical strips, making p —1 cuts along the horizontal axis, where p is the number of processing nodes.
Because adjust assigns the same cost estimate for all pixels in a region, it makes no difference if it outputs
one cost estimate per column or one for each pixel. Median scales the data appropriately and generates
the same partition in either case. Alternatively, adjust can partition the screen into horizontal strips with
one cost estimate per scanline. There is a vast reduction in the partitioning overhead with a one-
dimensional cost array instead of a two-dimensional cost array (Table 5.2).

Why does adjust use such coarse-grained cost estimates? With just one estimate per node, adjust
cannot pinpoint where the complexity is within a region. Despite the obvious drawbacks to the coarse
granularity, there are problems with a finer granularity. Section 5.4.3 noted how difficult it is to produce
accurate fine-grained estimates based on micropolygons. I also experimented with using the reported mil-
liseconds per bucket as a cost estimate, with no better results. Again, we believe that the problem is that
the rendering work is not spread evenly over the area covered by an object. If an object moves between
frames, the rendering costs may shift to different buckets. Furthermore, it is more expensive to produce
and process finer-grained cost estimates.

Baseline Scheme adjust median | adjust+median
vertical strips 0.139 0.107 0.246
horizontal strips 0.085 0.043 0.128
two-dimensional grid ~ 45.510 25.521 71.031

Table 5.2. Partitioning overhead. All times are in user cpu seconds for partitions with sixteen
regions on the slowest host, a Sun-3. Both programs, adjust and median, are written in C. The
difference in run time for horizontal and vertical strips is explained by the aspect ratio of the
images; there are 512 cost estimates in the x direction, but only 307 in the y direction. The
times are averages for at least 29, and as many as 155, runs of each program.

112

Adjust’s cost estimates are based on the hypothesis that one frame can predict the costs of the next
frame. It can only succeed if there is sufficient frame-to-frame coherence in the workload. To test this
hypothesis, I ran a series of performance experiments on the RM-1 system. The following sections
describe the experiments and analyze the results.

5.6. Experimental Results

The purpose of the performance experiments was to evaluate spatial subdivision for parallel render-
ing and to compare the benefits of static and adaptive partitions. Specifically, I wanted to examine the
feasibility of using frame-to-frame coherence to predict rendering costs. For each experiment, I tried dif-
ferent workload partitioning schemes and computed about ten frames of an animated sequence. I tested
three distinct sequences using, in general, nine partitioning schemes. Table 5.3 describes the spatial sub-
division schemes used in the performance experiments.

Four schemes used fixed spatial subdivisions. Three of these were fixed window schemes: horizon-
tal strips, vertical strips, and a four-by-four grid. The fourth fixed subdivision was a bucket scheme
which divided the screen into tiles of 8 by 8 pixels or 24 by 24 pixels; each of p nodes rendered every p th
tile across the screen. Four adaptive subdivision schemes were also studied. Three of the adaptive
schemes used adjust’s cost estimates, but each produced regions with a different shape: horizontal strips,
vertical strips, and unconstrained two-dimensional grids. The fourth adaptive scheme used cost estimates
that Reeves’s program derived from the model files; it produced two-dimensional grids. All of the adap-
tive schemes used Hanrahan’s median program to generate partitions based on the cost estimates.
Finally, to compute the multiprocessor speedup, each sequence was rendered on a single processing node.

Category Description Cost Estimate Overhead
Fixed single processor none negligible
Adaptive Subdivision | vertical strips time for previous frame < 1 second
horizontal strips time for previous frame < 1 second
two-dimensional grid time for previous frame 1 minute
model (2d) geometry of current frame 3-5 minutes
Fixed Subdivision vertical strips none negligible
horizontal strips none negligible
4-by-4 grid none negligible
buckets none negligible

Table 5.3. Spatial subdivision schemes.

5.6.1. The Workload

The workload for the performance experiments consisted of three sequences taken from short
animated films produced at Pixar. The experimental workload had all the complexity of a full production
workload. Because modeling and animating such complex scenes requires an enormous human effort, I
selected sequences that were already available in the required RenderMan format.! The workload was

1 Still images from a benchmark suite, such as the scenes from Chapter 4’s Mg, are inadequate to test my hypothesis
that information obtained from computing one frame may be used to predict the performance of the following frame in
an animated sequence. Furthermore, it would be very difficult to enhance still images with motion that is representative
of real animation.

113

defined to include the same scene specifications and control options that were used in production runs.
Certain control options can be tuned to improve rendering performance, but I accepted the production
values as given and did not modify them. However, in order to reduce the compute time I had to make
two changes to the experimental workload. First, I computed all images at a resolution of 512 by 307,
instead of the production resolution of 1024 by 614. Second, I computed sequences of only ten or eleven
frames (or less than half a second of film). Sequences from animated films tend to be much longer, as
Table 5.4 shows.

I selected sequences that represent three different, but common, cases in animation rendering. Four
factors characterize the differences among the sequences: screen coverage, complexity, uniformity, and
motion. The sequences are described below, while Tables 5.5 and 5.6 provide further details. The
simplified black and white images in Figure 5.2 document the motion in the sequences and indicate the
contents of the scenes. The frames read from left to right and from top to bottom by rows.

Camera Move. This sequence of ten frames is derived from the film Tin Toy (1988). We see a toy
through the cellophane window of a box, which rests on a wood-grained floor. A similar picture is repro-
duced in Figure 3.3(f). The image fills the entire frame, and the box covers a large part of the screen.
Every part of the image has some texturing, but most of the geometric complexity is in the toy and its
box. The scene is static, and the only motion comes from the camera, which rotates one degree per frame
about the box.

Junior. This sequence of ten frames is from Luxo Jr. in 3D (1989), a short sequel to the film Luxo
Jr. (1986). Models from this film are described in Table 3.3(g), and a similar image from a previous film
is reproduced in Figure 3.3(d). This sequence also contains both a character and a static background, but
here the camera remains fixed and the motion comes from the character, a drafting lamp that is playing
with a rubber ball. The upper two-thirds of the background is empty, and the lower third shows a wooden
floor. All told, the image covers about 45-50% of the screen, varying from frame to frame. Most of the
geometric complexity is in the lamp, yet the complexity varies over the character. The floor has very
simple geometry but complex texturing; separate texture maps simulate the wood grain, shadows, and
reflections. The character’s motion is confined to one part of the screen; the lamp’s base is stationary
while its upper body swings from a crouched position to an upright position.

Tinny . In this sequence of eleven frames from Tin Toy, a wind-up toy races across the screen along
a diagonal path. By the end of the sequence, it has nearly disappeared off the bottom-left edge of the
screen. This sequence illustrates a common rendering technique for character animation. The character
‘‘element’’ is computed alone and composited later with a background that is computed separately. This
technique is cost-effective when the background is static or changes only in well-defined areas. The char-
acter covers approximately 10% of the screen, and the background is entirely empty. Table 3.3(f)
describes the character element in this sequence. Figure 3.3(f) shows a complete frame, including both
the character and the background.

Both the geometric complexity and the shading complexity are fairly uniform over the toy’s surface.
But since the image is concentrated in a small area, the complexity of the whole screen is far from uni-
form. Because of the rapid cross-screen motion, this sequence has the least frame-to-frame coherence and
is the most challenging for our adaptive approach to workload partitioning.

114

Film Total Sequences Total Frames Sequence Length (Frames)
min max mean
Luxo Jr. 6 2520 n.a. n.a. 420
Red’s Dream 28 6049 81 792 216
Tin Toy 57 6709 6 666 118
Luxo Jr. in 3D 1 640 640 640 640
KnickKnack 37 4461 36 318 121

Table 5.4. Length of continuous sequences. The table gives the total number of sequences and
the total number of frames in Pixar’s animated films. The mean sequence length is the number
of frames divided by the number of sequences. Full data for Luxo Jr. are unavailable; the film
could have been rendered as one continuous sequence but was broken arbitrarily into six se-
quences for more convenient filming and post-production. The data for the other films are from
post-production statistics.

Sequence

Model File Size

total

Geometric Primitives

description

Camera Move

276,327 bytes

1354

217 cylinders, 352 hyperboloids,

113 spheres, 14 tori

348 bicubic patches, 310 bilinear patches

Junior

846,640 bytes

2005

12 cylinders, 36 hyperboloids,

24 spheres, 4 tori,
1800 bicubic patches, 129 bilinear patches

Tinny

378,444 bytes

1510

217 cylinders, 350 hyperboloids,

113 spheres, 14 tori,

545 bicubic patches, 271 bilinear patches

Table 5.5. Geometric complexity of the experimental workload. A different model file
describes each frame. The table gives the median file length of all frames in the sequence.

Sequence Texture Files | Texture Channels Size

Camera Move 7 14 11.1 Mb
Junior 5 7 3.4 Mb
Tinny 2 5 4.4 Mb

Table 5.6. Texture data for the experimental workload. The table gives the number of texture
files and the number of distinct texture channels, or components. For example, a single texture
- with red, green, and blue components is represented by one file with three channels. Shadow
information is represented by a single-channel texture file for each light source. The texture
size is the sum of the lengths of all texture files required by a scene.

115

Figure 5.2(a). Motion in the Camera Move sequence. Frame-to-frame differences are
most easily seen in the upper left corner and in the positions of the narrow shadows cast
by a window frame.

116

E: 5 o

-

i

S SR 1 Pt e
Copitan o b 3 e
%Nz,,,,?x»a?@ e 3 ww%&wy s GO e

3 S : S e

.

5
2

GRS e
SRR S esssese e

o
e
o

Lo
G

7

\sy%,% e i : W e

- Stnnaatas
Sasass

i

Lt
e
SotasiannsandiRe

=
o

oo
2

,,. , . , T.Q.,(,,,?,,S.ﬁ
%ﬁw . , . 3.., :. yx:;

G

5

o

g

5

%

o

45

Sl : o
: S . s L
Lo S . - . . . 3 - s

5%

o : : S o : SSSinaada : 2 S
Coa . -] S . e
S % 3 SSesnaiay Tt e . S
... = Seteiu :] ; : ; e . e S
= S8 . . o e e i S s S
SRR S S . S 3 3 L Renaeess =
ESR SRt R - E: 5 R o S R
- PEasaiaas i sy . S . o/,fv,w,wm, %%f/»%%?vrl
e SR oo
e o S e
e : L - i
e Soisstarae st S k Lo
SO 3 5% 58 kmm,smém o 3 S § 8 e F Sosisiaaan
S
=

o i - . s

Law
o

i T

&

29
7

2

5
.

s

5%
G

S

o

5

Sl
o

ol
e o V
. /WW

. e
e s 3
oS

.

.

S e < %Mw,» SR R Tosaa : i
e : oo e L Setee S S
. 21 . . . o
CECOEEEE R fa s o SERTa SR B O SO 28 R & Siseminaee SO
. . 3 i - L
S L : o
SeRas SO ot aneass 5 3 SR S
»lyyw»% S e 2 . Ll : . : : Sicdiina
8 - . : . F . .

e
%»2&%%%%5 i

10r sequence.

SRR O OO O e < . SESEEeS S st
S SERRE S X SEd s . e S ¥
SR S el RNSREERE S S S 2 S S R S

S o A i : ; 3 e & Sociaa : Sed s na

% S > 2 Seh e : S Sas e e e g

. ., . . . , .
SRR : SRR G 2 < SRR SR oo ss s u b s e BN SRR

SR i B e
OO 3 T ConmmRReaten o Wﬁ%&%% onssnemmn Banen S
-

the Jun

m

on

SISO $ S
SRR SRR S e R SRR S S R
Soien - s Sodnaiian Lo Sosininiraaatasteg B et e S
. - e . ,W%Mffy . s

1

L S e : S S
e o (e , Shiinni e g S . SEstnsia
See B o S S edee e - S . S
SSsiasa e : % S e S e
e & S SR
Sesi R e SOBIIONRaEER RS
O R RS 3 SOl
S SR R . $ it stoanee
e S 2 SR SRR BN SR aEaa
e Sl e R S L = St 5 3 e 5 Tasesotatatnania
e Poennaaei s st PR < SRR S = R SSRGS e e
S : 3 - : - o . - - s
G Fo S 5 g : S
e Poaimeen S ; SR 3 St
. LR SR s g Soteene « %“m,,\%
S Sy
L - o
e : b e

SR

Mo

P
L
2(b).

-
.

2

S

o
;
o

-

e S

e
75
G

o

G

o

Figure 5

Gu &.Am,,,%i\%,,a

Sonssa g e | Somtia
30 . ; SR, : o B
V»Y\w%m,%u, S = W%o%&ﬁ@%& & = \3@%,,

B . Do e s

R S o . 3 S e S 3 3 3 A oo
- L @ SR e s
Coiia e - - . S e R

e . = .
N 1 1

>

>
s
e

= oo
SO fi e e
Lo Lo O e e
SR fo >/§/ﬁ}w¢»§ .

0

Salasadad S S SOESE - St S

S A 5 S) . : . 3
. P : e -t S s § -
, B SosaaRE G Siniranol S = oo Soianiinaann - S s
S fone e s R 3 2 SRt e 2 SR e R e SRR e S
St e s R s oS O R g Soinstanneatnitaon
s S ol e - Sonai

$ SRR SosERa S S T s S e

Lo 3 Sha e 3 Siideend Sl Saiiinaene
S S S e : Sad ¥ 3 e e L Sl
i S .,.(A.«,«,,.xw,.,d,,,%m&,,ﬁé,%ﬁ?%,A. .I... .>W»M% «&o%/«yy . ,. ,x,&»&»@&%@

S

4%
o
5
i

o

oS o

e

R

SdnidRsa

S ; < S EEEEEEEE

Sieerees SO S 3 5 % & Sty
e eata ey 3 : S : SRnaRE 4 3 oS e % : S
S S 1 5 seosdoddssssses R RS 3 SSSRR R

Pr st 1 SR st SOOI ety SRR . : Lo
o e g . e 1 S L i .

..,, . S e
L -

< Chie [e ; S e s snee St
b S Sl 1 e Sonamnan : e
, SO RO EOrRo b e st re s S 8 : S e
SesEnsddss s : S SeTTRE R S SRR Soliiataaana

Ssattien i S s : e S
T S G e o SLiieni

SRR RIS S 5 % SO

117

Figure 5.2(c). Motion in the Tinny sequence.

118

5.6.2. Processing Conditions

There was only enough dedicated machine time to run the experiments once, but the length of the
computations compensate for the lack of repetitions. The quickest sequence ran in eighteen minutes, and
the longest required nearly five hours of RM-1 time; most runs took one or two hours to complete. The
measurements for individual frames within an experiment were consistent.

The RM-1 hardware and software are experimental and subject to frequent change. To ensure con-
sistent performance measurements, I froze the computing environment and used the the same RM-1
board, host computer, and software releases for all runs. The host was a Sun—3 workstation that read the
model file, texture data, and programs from its local disk. The RM-1 board was one of the fastest avail-
able, with a memory cycle time of 80 nanoseconds.

Using the full sixteen nodes on the RM-1 board, I rendered each of the three sequences under all of
the partitioning schemes. Next, I varied the number of nodes using the best fixed scheme and the best
adaptive scheme for each sequence. The tile size for the fixed bucket scheme was eight pixels square for
Camera Move and Tinny, and twenty-four pixels square for Junior (as specified by the options used in
production). All of the experiments were rendered with a one pixel by one pixel filter, and a subset of the
experiments were run again with a two-by-two filter.2

5.6.3. Metrics

In Section 5.3.3 we defined T,,,,, as the time to render an image on the RM-1. Because we will
focus on the RM-1 rendering time as the basis for the performance analysis in this chapter, we will drop
the subscript and refer to rendering time with a simple 7. Assume that p is number of nodes rendering
the image, and T, is the multiprocessor rendering time with p processors. Then, T, is the uniprocessor
rendering time. Kuck defines the multiprocessor speedup as [Kuck78]:

S, =

3=

The multiprocessor speedup is a good intuitive metric, describing the multiprocessor’s power as a
multiple of the uniprocessor’s power. However, speedup is a function of the number of processors. We
can scale speedup to compute multiprocessor efficiency, a metric that is independent of the degree of
parallelism [Kuck78]:

S

L (5.2)

B, ==

When T, < T, forp>1,then S, 21 and E, < 1.

Multiprocessor efficiency tells how well an algorithm performs, but it does not give enough infor-
mation to explain its performance. Therefore, we will also examine other metrics. The amount of work
required by the computation is the total compute time for all nodes, or

p
W,=31
in1

This statistic allows us to compare how productively the processors are working under different partition-
ing schemes.

The processor utilization, or the proportion of available time during which processors are rendering,
describes how well the workload is balanced. Let us define a balance metric, B,, which reflects the pro-
cessor utilization and reaches its maximum value of one when the workload is perfectly balanced:

2 Specifically, the filters were a one-by-one box filter and a two-by-two Gaussian filter.

119

B, is the same as the efficiency when the partitioned workload requires the same computational effort as
the uniprocessor workload, that is, when W, = W, =T,. When partitioning the workload for p >1 nodes
increases the amount of work, then the balance metric is no longer equal to the multiprocessor efficiency.
In this case, W, > T, and, consequently,

W, s, T,

B, = >E =
14 pr 14

p I,

5.6.4. Measurements

This section presents the measurements observed for the workload partitioning experiments. Table
5.7 describes the runs on a full, sixteen-processor configuration. The next subsection discusses the exper-
iments that varied the number of processing nodes. Figure 5.3 compares the finish times graphically,
while Table 5.8 shows the rendering time of the different partitions relative to the fastest scheme.

We will postpone a more detailed performance analysis until the following section and make just a
few general observations here. The most important result is that the adjust algorithm outperformed fixed
schemes in all of the test cases. For each sequence, the best fixed scheme took 30-48% longer than the
best adaptive scheme. If we rule out the fixed buckets scheme, which is not used in production because of
image quality considerations,3 the best fixed window scheme took 30% to 84% longer than the best adap-
tive scheme. In only one case does a fixed window partition outperform one of adjust’s partitions. This
occurs with Tinny, when the best fixed window scheme finished more quickly than the slowest adjust
scheme.

Which adaptive scheme is best depends on the workload. In general, RM-1 users have noticed that
vertical strips are rendered faster than horizontal strips. One explanation for this performance difference
is the row-major order for rendering buckets, as discussed in Section 5.3.2. Another explanation is that
the images are wider than they are high (as is a movie screen). Because of the aspect ratio, horizontal
strips are thinner than vertical strips and have a higher surface-to-volume ratio. Their boundaries tend to
cut more objects, so horizontal strips are probably less coherent. Certainly, for the Camera Move
sequence, we observe a large increase in the total work when we select horizontal strips. However, we
can’t discount the influence of the workload. Junior does well with vertical strips, either fixed or adap-
tive, because the image spreads across the screen. Horizontal strips are better for the Tinny sequence
because it is characterized by horizontal motion. As the toy moves across the screen, it stays roughly
within the same horizontal region. In our experience, it is fairly easy to choose a good baseline scheme
intuitively by observing the orientation of the image and the direction of the motion.

The numbers in Table 5.7 tell an incomplete story—the rendering times do not include the partition-
ing overhead of the adaptive schemes. The overhead is negligible for the one-dimensional adjust
schemes, both vertical and horizontal. For a sequence with n frames, we compute n—1 partitions.
Assuming the average overhead costs in Table 5.2, the partitioning overhead would range from one and a
quarter to two and a half seconds. At worst, the cost of running adjust and median in one dimension is
about one-tenth of one percent of the time to render the sequence. Including this overhead in the render-
ing time would not change the efficiency statistics in Table 5.7. In contrast, the partitioning overhead for

3 The bucket schemes support only one-by-one filters. Production quality images require a wider reconstruction
filter, typically a Gaussian filter that is two pixels wide. It would be complicated, and more computationally expensive,
to support wider filters under the bucket schemes.

120

Scheme Tis Sis E Wis Bis
overall min max

Single processor 75401.8 1.00 1.000 75401.8 1.00 1.00 1.00
* Adjust vertical 6494.9 11.61 0.726 91365.8 0.88 0.54 0.97
Adjust horizontal 9349.1 8.07 0.504 136602.3 0.91 0.72 0.95
Adjust 2d 6730.9 11.20 0.700 85664.0 0.80 0.41 0.97
Model 10543.3 7.15 0.447 84642.2 0.50 0.48 0.53
*Fixed vertical 9640.9 7.82 0.489 87538.9 0.57 0.54 0.60
Fixed horizontal 9690.1 7.78 0.486 110112.7 0.71 0.70 0.72
Fixed grid 139809 5.39 0.337 87641.6 0.39 0.39 0.41
Buckets 17703.6 4.26 0.266 261621.7 0.92 0.90 0.94
Scheme T S16 E s Wi Bis

overall min max
Single processor 34833.2 1.00 1.000 34833.8 1.00 1.00 1.00
* Adjust vertical 3827.1 9.10 0.569 48503.6 0.79 0.69 0.93
Adjust horizontal 4316.7 8.07 0.504 50372.7 0.73 0.35 0.89
Adjust 2d 4324.4 8.06 0.503 44006.3 0.64 0.43 0.85
Model 6263.7 5.56 0.348 42643.1 0.43 0.40 0.49
*Fixed vertical 4982.3 6.99 0.437 47371.6 0.59 0.51 0.71
Fixed horizontal 7539.7 4.62 0.289 44280.0 0.37 0.35 0.41
Fixed grid 5801.6 6.00 0.375 40426.7 0.44 0.42 0.48
Buckets 5897.2 5.91 0.369 59156.5 0.63 0.57 0.71
Scheme T S16 Eis Wi Bis

overall min max
Single processor 8571.8 1.00 1.000 8571.8 1.00 1.00 1.00
Adjust vertical 2915.3 2.94 0.184 15306.8 0.33 0.18 0.69
* Adjust horizontal 1079.0 7.94 0.496 11731.1 0.68 0.30 0.87
Adjust 2d 1902.5 4.51 0.282 11146.9 0.37 0.16 0.54
Model 1145.6 7.48 0.468 11496.9 0.63 0.59 0.66
Fixed vertical 3715.8 2.31 0.144 10397.6 0.17 0.12 0.20
Fixed horizontal 1990.6 431 0.269 9934.7 0.31 0.27 0.36
Fixed grid 4218.0 2.03 0.127 9267.5 0.14 0.11 0.21
*Buckets 1438.5 5.96 0.372 19416.1 0.84 0.82 0.87

Table 5.7. Times and statistics. All times are reported as seconds of elapsed time, using 16 processors.
The fastest adaptive scheme and the fastest fixed scheme are marked by asterisks. Three numbers are
given for Bys. The first is the balance observed for the entire sequence. The second and third are the
minimum and maximum values observed when B4 is calculated for each frame individually.

121

(a) Camera Move (b) Junior
adjust vertical adjust vertical |
adjust horizontal | adjust horizontal |
adjust 2d adjust 2d |
model | model |
fixed vertical | fixed vertical |
fixed horizontal | fixed horizontal |
fixed 2d ‘ fixed 2d |
fixed buckets | fixed buckets |
| | | | | | | | |
0 5000 10000 15000 0 2000 4000 6000 8000
rendering time (seconds) rendering time (seconds)
(¢) Tinny
adjust vertical |
adjust hor
adjust 2d |
model
fixed vertical |
fixed horizontal]
fixed 2d |
fixed buckets

I I l I |
0 1000 2000 3000 4000

rendering time (seconds)

Figure 5.3. Rendering times for the adaptive partitions (above the dashed line) and fixed parti-
tions (below the dashed line).

122

Scheme Camera Move Junior Tinny
T relative Tis relative Tis relative

Adjust vertical 6494.9 1.00 3827.1 1.00 29153 2.70
Adjust horizontal 9349.1 1.44 4316.7 1.13 1079.0 1.00
Adjust 2d 6730.9 1.04 4324 4 1.13 1902.5 1.76
Model 10543.3 1.62 6263.7 1.64 1145.6 1.06
Fixed vertical 9640.9 1.48 49823 1.30 3715.8 3.44
Fixed horizontal 9690.1 1.49 7539.7 1.97 1990.6 1.84
Fixed grid 13980.9 2.15 5801.6 1.52 4218.0 391
Buckets 17703.6 2.73 5897.2 1.54 1438.5 1.33

Table 5.8. Rendering time relative to the speed of the fastest partitioning scheme. The ob-
served times are given in seconds.

Sequence Rendering Only | With Partitioning Overhead
T Es T E's

Camera Move | 67309 0.700 | 7370.2 0.639

Junior 43244 0.503 | 4963.7 0.439

Tinny 1902.5 0.282 | 2612.8 0.205

Table 5.9. Partitioning overhead for Adjust 2d.

the two-dimensional adjust scheme is over ten minutes, that is, from nine to thirty-seven percent of the
rendering time. Table 5.9 shows how this overhead affects the statistics. Even if we ignore the partition-
ing overhead, one-dimensional adjust was always faster than the two-dimensional version; only for Cam-
era Move does the rendering time for an adjust 2d partition come close. Once we include the overhead,
the two-dimensional schemes look even worse.

The two-dimensional adaptive schemes cost more because adjust and median process many more
cost estimates. If we provided a smaller matrix of cost estimates, the overhead would be less, but would
the load be as well balanced? It is possible to trade off the granularity of the cost estimates against the
balance of the resulting partition, but I did not experiment with this trade-off. Because the two-
dimensional scheme was never as fast for the experimental workload, even with fine-grained estimates, it
seemed unimportant to tune the granularity of the cost estimates. For some other workloads, experiment-
ing with the granularity of the cost estimates might yield performance improvements.

Initially, we wondered how often we would need to compute a new partition and rebalance the
workload. But the very low overhead of the one-dimensional adjust schemes discouraged us from experi-
menting with the frequency of rebalancing. There is simply no reason not to compute a new partition for
each frame.

The model scheme performed well only for Tinny, and, otherwise, it was comparable to the fixed
schemes. The adjust schemes produce cost estimates by observing the previous frames. Only the model
scheme uses data that describe the current frame. Unlike adjust, the model scheme is insensitive to
frame-to-frame differences. Also, because it uses information about the current frame, it is the only
scheme that can accurately eliminate empty pixels from the computation. However, the program that
generates the cost estimates must be tuned for each model, and even then, it can yield disappointing
results.

123

The overall performance of a partitioning scheme depends not only on how well it balances the
workload but also on the additional amount of computational work that it introduces. The schemes based
on two-dimensional grids (adjust 2d, model, and fixed grid) tend to introduce less additional work. Intui-
tively, the grid subdivisions preserve locality better because they maintain a lower surface-to-volume
ratio in their regions and, therefore, cut fewer objects with the regions’ edges. The scheme that generates
the largest amount of rendering work is the fixed buckets scheme. Whatever it gains by balancing well, it
loses by requiring a great deal of extra computation. Buckets outperformed fixed windows for only the
Tinny sequence, which is very hard for the fixed window schemes to balance. The disappointing perfor-
mance of fixed buckets illustrates the importance of maintaining coherence while subdividing the work-
load.

In summary, why a scheme performs well or poorly is a complex issue. The explanation depends
both on the workload and on the partitioning scheme. A scheme that balances a given workload well may
still perform poorly if it generates much extra work. On the other hand, a very efficient scheme may fail
because its workload is too unbalanced. The following section will analyze the performance of the parti-
tioning schemes in more detail.

5.6.5. Varying the Number of Processors

A second set of experiments varied the number of processing nodes from one to sixteen, using inter-
mediate values of two, four, eight, and twelve. Table 5.10 provides a set of statistics. Figures 5.4, 5.5,
and 5.6 show how rendering time and multiprocessor efficiency vary with the number of processors; the
rendering times are plotted on a log scale.

There was not enough machine time available to test all of the partitioning schemes, so I selected
the best fixed scheme and the best adaptive scheme for each sequence. These are the schemes marked by
asterisks in Table 5.7, with one exception. For the Camera Move sequence, I noticed that fixed horizontal
strips balanced better than fixed vertical strips. But vertical strips still outperformed horizontal because
the horizontal scheme generated more extra work. I hypothesized that the increase in work was due to the
row-major orientation of the renderer. To compensate, I assigned fixed horizontal strips and rotated the
image ninety-degrees so that the strips were rendered as if they were vertical. Indeed, much of the extra
work was eliminated. The rotated horizontal strips were rendered more quickly than any other fixed par-
tition, with an observed multiprocessor efficiency of 0.560 for sixteen processors. Therefore, in varying
the number of processing nodes, I used the rotated fixed horizontal scheme for Camera Move.

As expected, the multiprocessor efficiency drops as the number of nodes increases. It falls very
quickly between one and four nodes for the fixed schemes. After four processors, the slopes for the fixed
schemes become less steep and more similar to the slopes for the adjust schemes. The loss of efficiency
is a result of two trends as we add more processors: the total amount of work tends to increase, and the
work tends to become less balanced. The following section analyzes these trends and their underlying
causes.

5.7. Analysis of Lost Efficiency

By definition, the multiprocessor efficiency, E,, ranges from zero to one. Unfortunately, the max-
imum observed efficiency fell far below one for a sixteen-node RM-1 accelerator. In this section, we will
examine the factors that contribute to the observed loss of efficiency.

Let us define the lost efficiency
L,=1-E,

for a multiprocessor with p nodes. In the RM-1 accelerator, we have identified three major causes of lost

124

Scheme Nodes T, S, E, w, B,
@) overall min max
1 75401.8 1.00 1.000 75401.8 1.00 1.00 1.00
Adjust vertical 2 39861.4 1.89 0.946 76551.6 0.96 0.82 1.00
4 20700.1 3.64 0.911 76056.5 0.92 0.60 0.98
8 11027.5 6.84 0.855 79018.7 0.90 0.56 0.98
12 7925.2 9.51 0.793 84381.1 0.89 0.55 0.97
16 6494.9 11.61 0.726 91365.8 0.88 0.54 0.97
Fixed horizontal 2 42405.7 1.78 0.889 80472.5 0.95 0.93 0.97
4 26051.8 2.89 0.724 78464.6 0.75 0.75 0.76
8 14195.9 5.31 0.664 79512.4 0.70 0.69 0.72
12 10319.2 7.31 0.609 84512.4 0.68 0.68 0.69
16 8412.2 8.96 0.560 90643.0 0.67 0.67 0.68
Scheme Nodes T, S, E, w, B,
®) overall min max
1 34833.2 1.00 1.000 34833.8 1.00 1.00 1.00
Adjust vertical 2 18138.0 1.92 0.960 35230.3 0.97 0.93 0.99
4 9795.5 3.56 0.889 36214.0 0.92 0.82 0.98
8 5449.9 6.39 0.799 38471.2 0.88 0.78 0.97
12 4121.2 8.45 0.704 41957.9 0.85 0.75 0.95
16 3827.1 9.10 0.569 48503.6 0.79 0.69 0.93
Fixed vertical 2 20152.5 1.73 0.864 35201.6 0.87 0.83 0.93
4 12359.9 2.82 0.705 36109.1 0.73 0.67 0.82
8 7082.0 4.92 0.615 38509.0 0.68 0.57 0.81
12 5500.0 6.33 0.528 41564.4 0.63 0.53 0.76
16 4982.3 6.99 0.437 47371.6 0.59 0.51 0.71
Scheme Nodes T, S, E, w, B,
@) overall min max
1 8571.8 1.00 1.000 8571.8 1.00 1.00 1.00
Adjust horizontal 2 5246.3 1.63 0.817 8781.7 0.84 0.51 0.99
4 2813.7 3.05 0.762 9312.5 0.83 0.50 0.96
8 1704.1 5.03 0.629 10097.8 0.74 0.37 0.93
12 1263.3 6.79 0.565 10873.8 0.72 0.32 0.88
16 1079.0 7.94 0.496 11731.1 0.68 0.30 0.87
Buckets 2 6527.1 1.31 0.657 12234.2 0.94 0.50 1.00
4 4703.9 1.82 0.456 18399.2 0.98 0.95 0.99
8 2704.7 3.17 0.396 19163.2 0.89 0.85 0.92
12 2061.9 4.16 0.346 19295.6 0.78 0.73 0.84
16 1438.5 5.96 0.372 19416.1 0.84 0.82 0.87

Table 5.10. Times and statistics, varying the number of processors. Times are reported in seconds of
elapsed time. Three numbers are given for B,. The first is the balance observed for the entire sequence.
The second and third are the minimum and maximum values observed when B, is calculated for each
frame individually.

(a) Finish Time (minutes) (b) Efficiency
1000 — -
"~ _ _ adjust vertical
500 - X N
T x
200 fixed horizontal
. 0.5 4
adjust vertical x _
100 - x 0.4 -
[I [| [1 [I | [
1 2 4 8 1216 12 4 8 12 16
Number of Processors Number of Processors
Figure 5.4. Camera Move. Increasing the number of processing nodes.
(a) Finish Time (minutes) (b) Efficiency
1.0 -
500 —
0.9 -
0.8 -
200 — 0.7 _
fixed vertical 0.6 —|
100 —| ‘
X 0.5 -
adjust vertical x _
x 0.4
50 -
I I [I [1 [] I I
1 2 4 8 1216 12 4 8 12 16
Number of Processors Number of Processors

Figure 5.5. Junior. Increasing the number of processing nodes.

125

126

(a) Finish Time (minutes) (b) Efficiency
1.0 —
100 0.9 —
0.8 -
50 0.7 —
. fixed buckets 0.6
X 0.5 -
20 | adjust horizontal® 0.4 _
X
0.3 —
[I [I [T [T [[[[
1 2 4 8 1216 12 4 8 12 16
Number of Processors Number of Processors

Figure 5.6. Tinny. Increasing the number of processing nodes.

rendering efficiency: imbalance, texture read delays, and reduced coherence. The total lost efficiency can
be expressed as a sum of three terms:

—Jb
L,=L+L,+L;

where Llf’ is the loss due to imbalance, L, is the loss due to read delays, and L; is the loss due to reduced
coherence.

In this section, we will estimate the impact of these three factors. The analysis is approximate, for
two main reasons. First, not all of the effects that contribute to the loss of efficiency could be measured
directly under the current RM-1 implementation, so we estimate them indirectly. Second, we could not
control all of the factors that effect performance without changing the character of the system. For
instance, the effects of texture caching vary for different partitioning schemes and different numbers of
nodes, but to disable caching would alter the system’s performance considerably.

The analysis in this section makes a major assumption, that texturing and the resulting input opera-
tions are an inherent part of the workload. Our goal, therefore, is to balance the mixture of computation
and data accesses so that all nodes finish at approximately the same time. Adjust conforms to this view
by using total elapsed time, and not compute time, as the basis for cost estimates. Evaluating the suitabil-
ity of recursive bisection for balancing scientific workloads, Berger and Bokhari suggested that work esti-
mates be based on a weighted combination of compute effort and communications costs [Berg87], which
our approach does implicitly. As we noted above, the workload partition influences the number of texture
accesses for each of the nodes. In this respect, our analysis is system dependent. Our analysis is also
retrospective. Given the observed performance, we will attempt to explain where efficiency was lost.

After discussing individually the three sources of lost efficiency, we will consider the total picture
for the experiments with sixteen processors. Finally we will see what happens as the number of proces-
sors varies.

127

5.7.1. Imbalance

To assess the impact of imbalance, we ask how much faster would the system render an image if the
load were perfectly balanced? For this analysis, we assume that the total compute time, W,, is fixed and
that each node in a perfectly-balanced system would finish at time W,/p. We substitute W,/p for the
observed rendering time, for T,, in Equation 5.2 to calculate E/, the idealized multiprocessor efficiency
for a perfectly balanced load. The difference between the idealized efficiency and the observed efficiency
is our estimate of the loss due to imbalance:

b_ b
Lp _EP_EP

Table 5.11 shows the estimated loss due to imbalance for the three animated sequences.

Certain sequences are harder to balance than others, no matter which subdivision scheme we
choose. These are the sequences with less uniform complexity, such as Junior and, especially, Tinny. In
all cases, adjust improved considerably on the corresponding fixed window schemes. However, adjust
still lost a noticeable amount of efficiency to imbalance on several occasions. Let’s focus on adjust to see
how it could improve its assignments. Three potential sources of imbalance are poorly-balanced initial
frames, a sub-optimal partitioning algorithm, and inaccurate workload estimates.

Scheme Camera Move Junior Tinny
L L L
Adjust vertical 0.099 0.149 0.376
Adjust horizontal 0.048 0.188 0.235
Adjust 2d 0.180 0.289 0.487
Model 0.444 0.469 0.278
Fixed vertical 0.372 0.298 0.680
Fixed horizontal 0.199 0.498 0.594
Fixed grid 0.523 0.487 0.798
Buckets 0.022 0.220 0.069

Table 5.11. Lost efficiency due to imbalance.

The first possible source of imbalance is a poorly-balanced initial frame. Adjust computes the first
frame of a sequence with one of the fixed window schemes and then tries to improve upon the original
fixed partition. We have always observed a lower balance metric for the first frame than for the adjusted
frames. Figure 5.7 illustrates how the balance tends to vary over a sequence. The curve for the Camera
Move sequence has a typical shape. It rises sharply after the first frame and continues to rise more slowly
until it hits a steady state. The balance maintains its steady state as long as there is good frame-to-frame
coherence in the sequence. When motion weakens the frame-to-frame coherence, the curve dips.

Because we computed balance and efficiency as averages for the entire sequence, the influence of
the slower first frame lowers the average. What happens if we omit this frame from the statistics, and
compute E, for the adjust frames only? As Table 5.12 shows, the improvement is slight. The Camera
Move sequence loses the least efficiency to imbalance, but about half of this loss is accounted for by the
influence of the slower first frame. The other sequences have more serious problems with imbalance,
even after we compensate for the effect of the first frame. In these cases, we will have to look elsewhere
for the causes of imbalance.

A second potential source of imbalance is the recursive bisection algorithm implemented by
median. We cannot expect any partitioning algorithm to produce a perfectly-balanced load because of the
constraints we place on the partition: it must contain one rectangle per processor, and the rectangles must
cover the screen. Furthermore, recursive bisection is not an optimal algorithm, as Igbal, Saltz, and

128

(a) Camera Move, adjust vertical (a) Junior, adjust vertical (a) Tinny, adjust horizontal
1.0 4 1.0 - 1.0 4
09 09— 0.9 -
0.8 — 0.8+ 0.8 —
0.7 0.7 - 0.7 i
0.6 — 0.6 — 0.6 —|
0.5 - 0.5 - 0.5 -
0.4 — 0.4 - 0.4 -
0.3 - 0.3 0.3 -
I [[I [[I I I
1 5 10 1 5 10 1 5 10
frame number frame number frame number

Figure 5.7. Balance improves from the start of the sequence. The balance, B s, is plotted for
the individual frames of each sequence. The dashed lines show the median value for each se-

quence.

Sequence Adjust Scheme all frameslzfﬁcellc;:cs’t,e d frames Improvement

Camera Move vertical 0.726 0.772 0.046
horizontal 0.504 0.507 0.003
2d 0.700 0.794 0.094

Luxo vertical 0.569 0.571 0.002
horizontal 0.504 0.551 0.047
2d 0.503 0.524 0.021

Tinny vertical 0.184 0.188 0.004
horizontal 0.496 0.547 0.051
2d 0.282 0312 0.030

Table 5.12. Loss of efficiency due to a less efficient fixed-window partition for the first frame
of sequence.

Bokhari demonstrate with a counter-example [Igba86]. To evaluate how well median balances, we can
compute a variation of the balance statistic, B;s. Instead of using a node’s runtime, we substitute
median’s cost estimates for the region. This statistic, the balance predicted by median, shows how well
median has balanced the cost estimates. Table 5.13 compares the balance predicted by median with the
observed balance.

The quality of median’s workload assignments is indicated by the column of numbers to the left, the
balance predicted by median. This is the machine utilization that would be achieved given accurate cost
estimates, and it is generally within five to ten percent of perfect balance. By this standard, median pro-
duces acceptable partitions. Even an optimal solution would probably not be perfectly balanced, given
our constraints on the solution. And without computing an optimal partition, it isn’t possible to say how
much better median could do.

The right-hand column of numbers in Table 5.13 points to the real problem—the potentially large
gap between the balance predicted by the cost estimates and the actual balance observed while rendering
the image. The use of inaccurate workload estimates is the remaining source of imbalance, and it does

129

. Balance
Sequence Adjust Scheme Median’s Runtime
Camera Move vertical 0.945 0.940
horizontal 0.938 0.935
2d 0.979 0.905
Luxo vertical 0.960 0.810
horizontal 0.871 0.818
2d 0.973 0.676
Tinny vertical 0.868 0.392
horizontal 0.860 0.759
2d 0.936 0.432

Table 5.13. Observed balance compared with balance predicted by median’s cost estimates.
The table shows the mean value of the balance statistic over the sequence, excluding the first
frame of a sequence, which is rendered with a fixed subdivision scheme.

the most damage. We have discussed in principal two serious problems with adjust’s algorithm. First,
adjust assigns the same cost estimate to all of a node’s pixels, even though costs are not normally distri-
buted uniformly over the region. Second, adjust uses one frame to predict the performance of the next,
even though the image usually changes between frames. As Table 5.13 shows, the predictions are more
accurate when frame-to-frame coherence is stronger. On the whole, the predictions were most accurate
for Camera Move which exhibited the most frame-to-frame coherence, and least accurate for Tinny which
exhibited the least frame-to-frame coherence. The large discrepancies between the estimated and
observed balance for Tinny can be explained by the character’s motion. The direction of the motion is
roughly horizontal, so the predictions for horizontal strips were more robust than the other predictions,
which failed badly.

In summary, how can we improve the balance? Modest improvements can be made by computing
longer sequences, and possibly by using a different partitioning algorithm. For example, Igbal, Saltz, and
Bokhari have proposed a greedy partitioning algorithm [Igba86]. It produces partitions that are close to
optimal for a class of one-dimensional problems that includes our one-dimensional spatial subdivision
problem. However, significant performance gains require better cost estimates. Two important
approaches to explore are increasing the granularity of cost estimates and predicting motion. We have
already noted the problems with obtaining accurate fine-grained cost estimates in the system, and predict-
ing motion may be a hard problem. Let’s not forget adjust’s big virtue—its simplicity. Any algorithm that
takes much longer to compute cost estimates will have to be all that much more accurate to achieve the
same overall performance.

5.7.2. Contention and Communications Delays .

Efficiency also drops when contention and communications latency force a processor to wait. The
major symptom of contention in the RM-1 system is the increase in the time to read texture pages. All
messages to the texture server must go through the root node. In a single-processor configuration, only
the root is active so the messages are transmitted along the shortest possible path. When additional pro-
cessors are configured in a ternary tree, the average path length is increased. Furthermore, the messages
contend for access to the single link to the host, and, possibly, to links lower in the tree. Conditions other
than texture reads may cause a processor to wait, but, as shown by profiling, these conditions contribute
little to the processor’s idle time [Laws89]. Therefore, we will ignore these conditions in this analysis.

A set of experiments independently confirmed that texture read delays are the major symptom of
multiprocessor contention in the system. Using partitions produced by adjust, I ran each of the sixteen
regions serially on the root node. Lacking the machine time to render all three sequences this way, I

130

Camera Move Junior Tinny
Scheme Faults Avg. Total | Faults Avg. Total | Faults Avg. Total
(ms) (seconds) (ms) (seconds) (ms) (seconds)
Single Processor 91348 66 6038 24029 75 1809 93 57 5
Adjust vertical 40280 172 6935 34700 269 9343 355 68 24
Adjust horizontal 99788 494 49292 32842 254 8339 407 69 28
Adjust 2d 39619 194 7683 28734 245 7038 257 66 17
Model 40237 149 6012 27752 216 5981 423 64 27
Fixed vertical 36356 191 6950 32852 264 8663 190 67 13
Fixed horizontal 94428 279 26376 33272 177 5900 222 68 15
Fixed grid 59379 184 10935 28449 171 4876 144 69 10
Buckets 207520 539 111805 43676 339 . 14804 760 51 38

Table 5.14. Texture faults and read time statistics. The column labeled faults shows the
number of texture page requests passed to the server. The average read time indicates the wait
time (in milliseconds) while a single fault is serviced; the average is computed for all sixteen
processors and all frames in the sequence. The total read time (in seconds) is the total time that
all processors waited for texture read operations, summed over the entire sequence.

computed the three middle frames of each sequence using its fastest adjust scheme. Each serial run had
the same intrinsic work and referencing patterns as the corresponding parallel run, so the difference
between their total elapsed times came from communications delays and multiprocessor contention. The
additional texture read time for the parallel runs explained about ninety-five percent of this difference in
elapsed times.

Because idle time statistics are not available, texture access measurements are used to estimate the
loss due to contention and communications delays. Table 5.14 describes the texture read delays. Texture
pages are cached in the node’s local memory, and a texture page fault generates a read request that is sent
to the host’s texture server. For a given sequence, the number of texture page faults varies with the parti-
tioning scheme. When a partition preserves coherence, the renderer exhibits better locality of reference to
the texture pages. Consequently, the fixed bucket partitions tend to generate many faults, and the
schemes based on grids (adjust 2d, model, and fixed grid) tend to generate less.

The average read time is the mean time that a node is idle while waiting for a texture page. Many
factors influence the read time. The time for a read tends to be higher when the load is well-balanced,
because at any given time more nodes are actively contending for texture read services. Naturally, the
read time also depends on the number of processors in the system and the hit rate for the server’s disk
cache. The above factors are primarily artifacts of multiprocessor contention and communications delays.
However, the average read time also suffers from the loss of coherence, since it increases with the volume
of requests.

In this analysis of the loss of efficiency, it would be useful to separate the effects of texture read
contention from the effects of reduced coherence. Unfortunately, the two interact to drive up the cost of
texture accesses. Instead, the analysis approximates the loss of efficiency due to texture read delays. This
approximation, attributes the increase in the average read time solely to contention. On the other hand, it
attributes the increased volume of texture faults to the loss of coherence. So, to estimate the loss of
efficiency due to contention, the analysis uses a modified average read time, described below.

To estimate the loss of efficiency due to contention in the multiprocessor, we ask how much faster
would the system render if texture reads were as fast as on a uniprocessor. How should we estimate this
uniprocessor read time? The ‘‘Single Processor’’ read times in Table 5.14 were strongly affected by the
texture server’s disk cache hit rates. For example, the texture cache of a single node is small for render-
ing an entire Camera Move frame, and the node generates more faults. Consequently, the texture server

131

will find many of the requested pages in its disk cache and respond more quickly. A better estimate for a
uniprocessor read time would be a read time for a partitioned workload, so I have used the average read
time observed when the regions of a partition were rendered serially. These times are much more con-
sistent than the average read times in Table 5.14: 76.7ms for Camera Move, 79.6ms for Junior, and
73.7ms for Tinny.*

The total read time for a processor is the product of the number of texture faults generated by the
processor and its average read time. So, for this analysis, we calculate a new total read time for each pro-
cessor by multiplying the number of its texture faults by the estimated average read time for a uniproces-
sor. A modified finish time for the processor, ¢’;, is calculated from the observed 7 by subtracting the
difference between the observed total read time and the new total. With the modified #; for each proces-
sor, we can calculate the idealized multiprocessor efficiency, E,. The approximate efficiency loss due to
read contention is, then, the difference between the idealized efficiency and the observed efficiency:

I =E}-E,

Table 5.15 shows the approximate loss due to read delays for the three animated sequences. For the
most part, the efficiency losses were low. Tinny required very few texture accesses and exhibited no loss
of efficiency that is directly attributable to communications delays or contention for texture read services.
Otherwise, read delays had the most noticeable influence on the partitioning schemes with a high volume
of read requests. The efficiency loss can be low under a partitioning scheme that preserves locality, but it
can be quite high under a less coherent scheme.

5.7.3. Reduced coherence

Partitioning the image tends to reduce coherence, because different parts of an object (or of coherent
areas) may be assigned to different processors. Weakened coherence affects the system’s performance in
two ways. First, it reduces the locality of reference to texture pages and, therefore, increases the texture
page fault traffic. Second, it increases the probability that two or more processors will have to perform
the same calculations for a single object. After we have accounted for read delays and imbalance, the
remaining cause of inefficiency is lost coherence. An estimate for the loss due to reduced coherence is
derived by subtracting the losses due to imbalance and to read delays from the overall lost efficiency.
Table 5.16 summarizes the contributions of the three major sources of lost efficiency, while Figure 5.8
presents the same information graphically.

In general, the horizontal schemes destroy more coherence than the vertical schemes, and the
schemes based on two-dimensional grids (adjust 2d, model, and fixed grid) preserve coherence most suc-
cessfully. The buckets scheme has the most disruptive effect on coherence.

Other measurements can confirm, and help explain, the effect of different partitioning schemes on
coherence. As Section 5.3.2 explains, each node adaptively subdivides objects into meshes of small
micropolygons. These meshes are called grids. Table 5.17 describes the rendering primitives generated
for each sequence. The renderer streamlines and localizes the shading and texturing operations by shad-
ing an entire grid at one time, while the visible surface algorithm operates on individual micropolygons.
Grids may straddle the boundary between two regions. In this case, each node shades the entire grid
independently, making no attempt to clip the grid to the region’s edge. If a region’s dimensions are
small, it is more likely that its edges will cut a grid and weaken the object coherence. The buckets
scheme chops the screen into many small regions, causing nodes to generate many more grids and
increasing the amount of duplicated computation. Two-dimensional grids preserve the most coherence,
because their edges cut the fewest grids.

4 The same estimate is used for each node. There was not a strong correlation between 7; and the depth of p; in the
ternary tree, except for a few frames where the workload was extremely well balanced. Typically, the strongest
influence on an individual node’s average read time was the number of nodes actively competing with it for resources.

132

Scheme Qamera Move ' Junior . Tinny
modified total L’ modified total L modified total L”

Adjust vertical 3090 0.021 2762 0.089 26 0

Adjust horizontal 7655 0.167 2614 0.049 30 0

Adjust 2d 3039 0.029 2287 0.063 19 0

Model 3086 0.014 2209 0.008 31 0

Fixed vertical 2789 0.013 2615 0.096 14 0

Fixed horizontal 7243 0.070 2648 0.005 16 0

Fixed grid 4555 0.012 2264 0.017 11 0

Buckets 15918 0.181 3476 0.128 56 0

Table 5.15. Lost efficiency due to texture read contention.
Camera Move Junior Tinny
Scheme
Lb L’ L¢ Lb L™ L¢ Lb L L¢

Adjust vertical 0.099 0.019 0.156 0.149 0.087 0.195 0.376 0.000 0.440
Adjust horizontal | 0.048 0.164 0.284 0.188 0.047 0.261 0.235 0.000 0.269
Adjust 2d 0.180 0.027 0.093 0.289 0.060 0.148 0.487 0.000 0.231
Model 0.444 0.012 0.097 0.469 0.008 0.175 0.278 0.000 0.254
Fixed vertical 0.372 0.011 0.128 0.298 0.093 0.172 0.680 0.000 0.176
Fixed horizontal 0.199 0.064 0.251 0.498 0.005 0.208 0.594 0.000 0.137
Fixed grid 0.523 0.010 0.130 0.487 0.016 0.122 0.798 0.000 0.075
Buckets 0.022 0.174 0.538 0.220 0.125 0.286 0.069 0.000 0.559

Table 5.16. Sources of lost efficiency. L® is the estimated loss due to imbalance. L’ is the es-
timated loss due to read delays. The remaining loss, L¢, is attributed to reduced coherence.

Camera Move Junior Tinny

Scheme

Lpoly grids size ppoly grids size ppoly grids size
Single processor 5214381 417556 12.9 2386192 184097 13.7 417251 62562 7.1
Adjust vertical 5467267 529578 13.0 2534551 221032 13.7 864562 149932 7.5
Adjust horizontal 5430446 538440 13.1 2526605 236914 13.8 501359 93939 8.0
Adjust 2d 5320462 474103 13.0 2454256 205513 13.7 550651 92637 7.5
Model 5326266 480635 129 2465791 205764 13.6 1197509 201689 7.7
Fixed vertical 5431836 506014 13.0 2499309 215800 13.8 550318 87396 7.4
Fixed horizontal 5402912 518435 13.1 2512337 217434 13.7 455088 76510 7.6
Fixed grid 5305701 465745 12.9 2437223 198384 13.6 450616 70348 7.3
Buckets 13692455 1036877 134 3361616 255920 13.8 1515146 201910 8.0

Table 5.17. Rendering primitives. The table shows the number of micropolygons (ppoly) and
grids generated for each sequence and the mean size (in micropolygons) of grids.

133

(a) Camera Move

1.0—1 ‘—\ 1 ‘_1 e ST e — _‘" —

09 |. : S0
0.8 [N F51 IO O |3 imbalance

0.5 - “ s coherence
0.4 — ;
0.3+ | observed
0.2 -
0.1 -
0.0 -

adj_ver adj_hor adj—2d model fixed ver fixed hor ﬁxed_grid buckets

1. — N — — ._H_ — —-T —1]

0.9 _ [FRURTRERS EX) FRrreoves N v
0.8 —
0.7 -
0.5 - ‘ N I S e e coherence
04— = \ observed
0.3 -

0.2 -
0.1 -
0.0 =

ad}:'er adﬁlor adj—2d model fixed ver fixed hor ﬁxed_grid buckets

(b) Tinny
:]] imbalance
09_ Jop
0.8 -]
0.7
0.6
0.5 — |
0.4 — N el
0.3 - er e
02 L / 1
0.1 — N]
00 L L] L L] L L] | L
adjver adjhor adj2d model fixed ver fixed hor fixed grid buckets

coherence

- observed

Figure 5.8. Lost efficiency. Solid horizontal lines indicate the observed efficiency. The region above the
solid line represents the lost efficiency. The dotted lines divide this region into three components. From
top to bottom they are: the loss due to texture read delays, the loss due to imbalance, and the loss due to
reduced coherence. Tinny experienced no loss due to read delays.

134

5.7.4. Varying the Number of Processors

Figures 5.9, 5.10, and 5.11 describe the loss of efficiency observed when the number of processing
nodes was varied. In these graphs, the solid horizontal lines bracket the observed efficiency and 100%
efficiency. The region between the solid lines represents the lost efficiency. The dotted lines divide this
region into three components. From top to bottom they are: the loss due to texture read delays, the loss
due to imbalance, and the loss due to reduced coherence. Tinny experienced no loss due to read delays.

The major sources of inefficiency are imbalance and reduced coherence. Read delays make a rela-
tively small contribution to lost efficiency (but they start to cause problems for Junior after twelve proces-
sors). In general, the effect of imbalance is felt quickly and holds steady after four processors. As the
number of processors increases beyond four, the major source of increased inefficiency is reduced coher-
ence. Intuitively, we expect coherence to suffer as we chop the screen into smaller pieces. More
specifically, as we increase the number of nodes, regions become smaller. However, grids stay about the
same size (measured in pixels). Therefore, the edges are likely to intersect more grids.

In summary, to apply spatial subdivision effectively to rendering on a multiprocessor, we must find
algorithms that preserve as much coherence as possible.

5.7.5. Inter-processor dependence

In all of the experiments discussed above, the regions were completely independent. That is, no
part of the computation depended on information about a pixel in another region, and the final shade of a
pixel was completely determined by the objects that intersected the pixel. This was possible because a
one pixel by one pixel reconstruction filter was used for antialiasing in those experiments. For
production-quality photorealistic rendering, Pixar chooses a two by two filter; that is, the final shade of a
pixel is influenced by objects in a two pixel by two pixel area. Thus, the shade of a pixel depends on the
contents of the pixels that surround it. If a pixel is on the border of a region, its value will, therefore,
depend on information about pixels assigned to other nodes.

(a) Fixed Horizontal (b) Adjust Horizontal
1Y 100% 1.0 | xrrreeeeeeeee—— 100%
N N imbalance
0.9 _| 0.9+ e
] imbalance] . coherence
0.8 - 0.8 — ™
0‘7 : O 7 : Observed
— coherence —
0.6 - 0.6
] observed |
0.5 4 0.5 -
0.4 — 0.4 -
T] I [T 1 [[[
12 4 8 12 16 12 4 8 12 16
Number of Processors Number of Processors

Figure 5.9. Camera Move. Loss of efficiency with a varying number of processors. In these
graphs, the small unlabeled area below the solid line at 100% represents the loss of efficiency
due to read contention.

(a) Fixed Horizontal (b) Adjust Horizontal
T 100% 10 e 100%
N T re ad] . LT T ead
0.9 09 N\o e
N N "ce.... imbalance
0.8 — 0.8 '
N imbalance N coheren'c.‘e
0.7 — 0.7
0.6 — 0.6 —
— ‘coherence — observed
0.5 — 0.5 4
I observed I
0.4 — 0.4 -
[T I I] I [I [| I
12 4 8 12 16 12 4 8 12 16
Number of Processors Number of Processors

Figure 5.10. Junior. Loss of efficiency with a varying number of processors.

(a) Fixed Buckets (b) Adjust Vertical
1.0 100% 1.0 - 100%
B B PR imbalance _
0.9 — B 0.9 — imbalance
O 8] 0'8 4 RN e
0.7 - 0.7 - coherence
— coherence —
0.6 — 0.6
0.5 4 0.5 - observed
0.4 : observed 0.4 :
[I I [I [T I I I I
12 4 8 12 16 12 4 8 12 16
Number of Processors Number of Processors

Figure 5.11. Tinny. Loss of efficiency with a varying number of processors. For this sequence,
there was virtually no observed loss of efficiency due to read contention.

135

136

In some architectures, each node would compute values only for the pixels in its region. Nodes
would then communicate to share information about pixels on their borders. In the RM-1 architecture,
nodes do not cooperate in this fashion, and each node compute values for neighboring pixels locally. The
cost of this approach is duplicate computation, rather than communications and synchronization over-
head. This section will discuss the impact of this duplicate computation on runtime and on efficiency.

The Camera Move sequence was computed both with a one-by-one box filter (as documented in
Table 5.7) and with a two-by-two Gaussian filter (as documented in Table 5.18). Independent of parti-
tioning, it is inherently more expensive to use a wider filter. Comparing Tables 5.7 and 5.18, we see a six
percent increase in the time to render the sequence on a single processor when we switch to a two-by-two
filter. With sixteen nodes, there was an increase of eight to fourteen percent, depending on the partition.

The number of extra pixels that are computed because of inter-region dependence varies with the
shape of the partition. If the partition has sixteen vertical strips, the nodes will duplicate one column of
pixels on each side of the fifteen cuts. Thus, thirty of the 512 columns are duplicated, which amounts to a
little less than six percent of the screen. With horizontal strips, thirty of 307 scanlines are duplicated, or
almost ten percent of the screen. With a regular two-dimensional grid, there are three horizontal cuts and
three vertical, and less than two percent of the pixels are duplicated. The two-dimensional partitions pro-
duced by median are not constrained to have cuts equally in each dimension, but typically the number of
duplicated pixels is about the same as for a regular grid.

The extra computational effort to support a wider filter also depends on the distribution of complex-
ity on the screen. The duplicated pixels may be empty, or they may contain a complex portion of the
scene. If the image is concentrated in only part of the screen, then a fixed partition may make a number
of cuts through empty pixels. But when an adaptive scheme successfully focuses computational effort on
the active areas of the screen, the pixels bordering the cuts are more likely to contain data.

All told, the differences observed for Camera Move are relatively consistent among the partitioning
schemes. The largest increases in work were observed for the fixed horizontal scheme, and the smallest
increases were observed for fixed grid and adjust 2d. Comparing multiprocessor times with the single
processor time, the difference in efficiency was no more than 0.03. This small difference in efficiency is
encouraging; it says that the increased rendering time is mostly explained by the extra work inherent in
supporting a wider filter and not by having partitioned the work among sixteen processors.

Adjust vertical had the fastest rendering time with the one-by-one filter. With the two-by-two filter,
adjust 2d rendered more quickly, probably because fewer pixels were duplicated. However, if we add in
the estimated 639 seconds of partitioning overhead (rebalancing nine frames at a cost of seventy-one
seconds each, Table 5.2) adjust vertical still shows better overall performance.

SCheme T16 S16 E16 WIG B 16

mean min max
Single processor 79682.0 1.00 1.000 79682.0 1.00 1.00 1.00
Adjust vertical 7143.5 11.15 0.697 100716.5 0.90 0.56 0.96
Adjust horizontal 10303.2 7.73 0.483 150119.4 0.91 0.72 0.94
*Adjust 2d 6982.3 11.41 0.713 92438.2 0.89 0.40 0.97
Model 113394 7.03 0.439 92744.0 0.51 0.49 0.55
*Fixed vertical 10408.3 7.66 0.478 96365.6 0.58 0.56 0.61
Fixed horizontal 10931.3 7.29 0.456 126150.1 0.72 0.71 0.73
Fixed grid 14732.5 5.41 0.338 94208.0 0.40 0.40 0.40

Table 5.18. Times and statistics with a 2x2 Gaussian filter. Times for Camera Move, reported
as seconds of elapsed time, using 16 processors. The fastest adaptive scheme and the fastest
fixed scheme are marked by asterisks. Two-by-two filters are not supported with the fixed
buckets scheme.

137

5.7.6. Summary

The results confirm our hypotheses about the relationships between balance and coherence.
Specifically, the fixed window schemes tend to exhibit good coherence and poor balance. The fixed
bucket scheme tends to balance well, but it loses efficiency because it destroys coherence. It is possible
to trade off coherence against balance by changing the size of tiles. For the Junior sequence only, the
buckets were larger and more coherent. Consequently, the partition was less well balanced, but it gen-
erated less extra work.

As hypothesized, the adjust schemes were affected about equally by imbalance and by the loss of
coherence. They have problems with imbalance mostly because the cost estimates are only approximate.
Predicting frame-to-frame motion and refining the granularity of the estimates might provide more accu-
rate estimates, but these techniques would probably require a great deal more overhead. The effects of
reduced coherence can be minimized by choosing the appropriate baseline partition for adjust.

In general, none of the runs experienced serious problems with delays caused by slower texture
access times. However, the way we have defined the loss due to read delays masks the actual load placed
on the communications structure. Bear in mind that a major effect of reduced coherence is to increase the
volume of the texture access traffic.

5.8. Production Experience

The Pixar animation production group has successfully used the one-dimensional vertical adjust
scheme in production to render short films, including Luxo Jr. in 3D (1989), and KnickKnack (1989).
All of the production frames were computed at a resolution of 1024 by 614, using a two-by-two Gaussian
filter. The production runs generated some timing statistics, but they are less detailed than the statistics
obtained for the experimental runs. The production frames have been run only on sixteen-node
configurations, so we cannot estimate speedup or efficiency. Also, the simple statistics maintained by the
production software would not allow us to analyze the factors that contribute to the loss of efficiency.

Most notably, the production runs balanced even better than predicted by the performance experi-
ments. Adaptively partitioned frames from Luxo Jr. in 3D typically had B> 0.90. I analyzed the data
for one sequence of ten frames and another of twenty frames. The median value for B s was 0.96, with a
lower quartile of 0.92 and an upper quartile of 0.97. This is noticeably better than the balance observed
for the Junior sequence, which was selected from the same film. (Its median value of B, was only 0.80.)

Initially, I hypothesized that the improved balance was due to the higher resolution of the produc-
tion images. In Section 5.6.5 we noted that, given a constant resolution, the balance is better for parti-
tions with fewer regions. As we decrease the number of nodes, we increase the dimensions of the regions
and have relatively more pixels per cut. We see the same surface-to-volume effect when we increase the
resolution and keep the number of nodes constant: the dimensions of the regions increase relative to the
number of cuts and the workload tends to be more balanced. To test this hypothesis, I ran the Junior
sequence again at a resolution of 1024 by 614, and compared the results for a 512 by 307 run of the same
sequence.® Surprisingly, the balance statistics for the two runs were very close, differing by only 0.002
over the sequence. Apparently, the production runs were more balanced because of differences in the
workload. I chose the Junior sequence at random before the animation for the film was complete, and in
retrospect we discovered that it has more motion and less frame-to-frame coherence than is typical of the
film on the whole.

I also hypothesized that the production runs retained more coherence. At higher resolution, the pro-
duction images contained four times as many pixels as the experimental images, but the maximum grid

5 For the higher-resolution experiment, I had to use a different RM-1 board with a slower memory cycle time and a
host with a different type of local disk. I therefore ran the 512 by 307 sequence again on the new system. The meas-
urements obtained for the two new runs are consistent, but we cannot compare them with numbers elsewhere in this
chapter.

138

size remained a constant number of pixels. Probably, fewer grids would be cut by the edges of regions.
Furthermore, the higher resolution should ease the texture read contention. Assuming the computation
retains more coherence, fewer texture requests should be generated. In addition, a certain amount of com-
putation accompanies each request so the rate of requests should generally not increase with the resolu-
tion. Therefore, the contention for texture reads should be no greater than what we observed for the
experimental workload. These hypotheses were confirmed by comparing the two runs of the Junior
sequence. Table 5.19 documents a remarkable improvement in the texture access statistics when we
increase the image resolution. Because of the improved coherence, there are fewer texture page faults.
Both the average read time for a texture page and the total texture read time drop significantly. Although
the higher resolution sequence covers four times as many pixels, its rendering time is only 2.8 times
greater than the rendering time for the lower resolution sequence. Since the higher resolution computa-
tions make fewer demands on the I/O and communications subsystems, we anticipate that a production
workload can make efficient use of more processing nodes than the experimental workload.

One more advantage was observed during production. The Pixar animation team frequently recom-
puted frames, in which case they generated cost estimates from an earlier rendering of the same frame.
Obviously, the adjust schemes work even better using the results of a previous run to estimate costs for
the same frame.

Resolution 512 by 307 1024 by 614
texture pixels accessed 164,359,114 337,683,481
texture page faults 35,478 27,802
average texture read time | 136 ms 99 ms

total texture read time 4,835 sec 2,742 sec

T 4,237.9 sec 11,817.2 sec
Wis 56,388.8 sec 157,715.8 sec

Table 5.19. Junior. Increasing the display resolution.

5.9. An Evaluation of the Rendering Architecture

A detailed performance evaluation of the RM-1 architecture is beyond the scope of this thesis.
However, this section will briefly consider some of the key characteristics of the hardware and software
and their impact on the system’s performance.

5.9.1. The Hardware Architecture

The use of distributed memory, rather than shared memory, has a wide-ranging affect on implemen-
tation strategies. We assume that, in general, the entire database cannot fit in the local memory of a node.
Therefore, local memory must contain the relevant subset of the database. The data may either be loaded
in advance or demand paged; a subset of the model data is loaded in advance and the texture data are
paged. Without shared memory, dynamic scheduling is difficult, because a new set of data must be
loaded with each new work assignment and because nodes must communicate to schedule the work. The
following section discusses dynamic scheduling in more detail.

The distributed memory model also accentuates the importance of coherence. In a distributed
memory environment, it is more difficult to share results of a computation. When two RM-1 nodes need
the same results, they compute the information independently instead of communicating the results.
When coherence is destroyed, more computation is duplicated. This increases the amount of work, and, if
textures are involved, it also tends to increase the disk traffic.

139

In the experience of production users, four megabytes of local memory is usually adequate, but
more memory would be welcome. Certain workloads show a much higher rate of texture page faults than
the experimental workload, and they would benefit from a larger texture cache. The size of local memory
also limits the amount of intermediate results that can be cached. At times, users must adjust parameters
such as the bucket size, so that the scratch data fit into the available memory. Occasionally, an image
fails because the local memory is too small. In these cases, the user must manually subdivide the work-
load into two separate computations.

Another factor that affects performance is the single connection between the host and the board.
The loss of efficiency due to texture read contention tends to be small, but it cannot be dismissed since its
effect grows with the number of nodes (Figures 5.9 and 5.10). For instance, it accounted for nearly ten
percent of the efficiency loss for the Junior sequence. The texture read delay does not seem to be pri-
marily a problem with the server. As long as the server has adequate memory and local disk, it tends to
have a high disk cache hit rate and consistent access times [Peac89]. Nor does the problem seem to be
with communications delays on the RM-1 board. Although some nodes are as far as four hops from the
host, measurements show little correlation between a node’s distance from the host and its average texture
read time. Having eliminated the other possible causes, we believe that the single connection to the disk
server is the largest factor in the increased texture read delays.

5.9.2. Dynamic Scheduling

The system’s support for static scheduling only, and not dynamic scheduling, is a feature of the
software architecture that is influenced by the design of the hardware architecture. This section discusses
one alternative to the RM-1 system’s static algorithms and estimates its performance. Processor self-
scheduling is a dynamic scheduling algorithm that balances the workload implicitly. The algorithm
divides the screen into many small tiles, so that the number of tiles is much larger than the number of pro-
cessors. Let us assume that the system uses the same set of regions as a fixed bucket scheme. Initially,
the algorithm distributes one tile to each node. Whenever a node finishes a tile it takes another, until all
of the tiles are rendered. On a shared-memory system, nodes typcially access a shared counter. On a
message-based system, a server might supply a new work assignment when requested.

Because the Reyes software supports only static partitioning, we did not experiment directly with
dynamic scheduling. We can, however, estimate its performance. The worst case processor utilization
occurs when one node begins to render the most time-consuming tile just as the other nodes all complete
their last tiles. Assume there are p processors and n tiles, and let tile; be the time to render the ith tile.
Then p-1 nodes are idle while the final tile is rendered, which takes time {n_ax(tilei). The total idle time at

<i<n

the end of the computation is, thus,
(p—1) max(zile;)
1<i<n
Let T,enq.r be the elapsed time to render the entire image, Then, the proportion of idle time for all nodes
is:
-1 g;ié(nle;)

p Trender

Subtracting the proportion of idle time from 100% gives B,, the system utilization for this worst case
scenario:

(p—-1) max(zile;)
1<i<n

1- , h>p (5.3)

p Trender

This expression holds when there are more tiles than processors, which is the only interesting case.

140

Let us substitute actual measurements into Equation 5.3, ignoring the scheduling overhead for now.
I instrumented the renderer to report compute time per bucket and rendered a frame from the Junior
sequence. The 512 by 307 image was divided into 9,824 tiles, each four pixels square. Over half of the
tiles were empty, but 4,178 contained data to render. Evaluating Equation 5.3 with n =4,178, p = 16,
max(tile;)=27.014, and T,,,4, = 276.194, gives a worst-case processor utilization (B¢) of 90.8% for this

1<i<n

frame under dynamic scheduling. This compares well with the best utilization observed in Table 5.7. To
estimate utilization in the typical case, I simulated processor self-scheduling. The simulator processed
buckets in the same order that they were traced during the instrumented run. This order produced nearly
perfect load balancing, with 99.4% processor utilization.

This approach promises excellent load balancing, but it shares the defects of the static bucket
schemes. Unless we assign work carefully, we will tend to reduce coherence and, thus, increase the total
amount of work. The scheduling overhead further increases the amount of work. Let’s assume that the
total amount of rendering work under this scenario would be the same as W 4, or the amount of work, for
a fixed bucket scheme. (It’s hard to predict the effects of texture caching, but this assumption seems rea-
sonable.) Assume optimistically that the load would be perfectly balanced, that is, that each processor
finishes at time W,4/16. Scheduling overhead aside, how quickly would the three test sequences be ren-
dered? Table 5.20 shows the estimated rendering times under these assumptions. For Junior, the render-
ing time is only about four percent faster than the time observed for the fastest adaptive scheme (Table
5.7). For the other sequences, the best static adaptive scheme is still faster.

Therefore, improving the balance is not enough, unless we can retain more coherence. One
approach to maintaining coherence is to vary the tile size, trading off load imbalance against increased
coherence. Coherence tends to be stronger when the tiles are larger. In contrast, the load tends to be
more balanced when tiles are smaller. Intuitively, dynamic scheduling produces a more balanced load
when n > p. Given a constant image resolution, we achieve this inequality with smaller tiles. More for-
mally, in Equation 5.3 the system utilization increases as g%(tilei)/T,e,,de, decreases, since (p—1)/p

remains constant for a given number of processing nodes. How varying the tile size effects
max(tile;)/T,.nqer depends on the workload. However, in typical workloads, the ratio would normally

1<i<n
decrease (and the utilization increase) as tiles get smaller.

Another approach to maintaining coherence is to assign adjacent tiles to the same node whenever
possible. This scheme adds more scheduling complexity, but it preserves more coherence. Its effective-
ness would depend on the workload and on the details of the scheduling algorithm.

So far, we have ignored the overhead of dynamic scheduling, which we expect to be much greater
than for static scheduling. This approach needs either shared memory or very good interprocessor com-
munications, both to support the scheduling overhead and to distribute the data for new work assign-
ments. Such a scheme is most suitable for a shared-memory multiprocessor. Boothe had good success
with dynamic scheduling for a ray tracer on a shared memory machine [Boot89]. However, he found
many problems in implementing a similar algorithm on a distributed memory machine, and suggested
that a static strategy might have been a better choice. Berger and Bokhari [Berg87] suggested that recur-
sive bisection for scientific applications might outperform fine-grained dynamic queueing, even on shared
memory multiprocessors, because recursive bisection preserves locality and reduces overhead.

Sequence Dynamic Scheduling Estimate | Fastest Adaptive
w
Wie —1% Ty
Camera Move | 261621.7 15389.5 6494.9
Junior 59156.5 3697.3 3827.1
Tinny 19416.1 1213.5 1079.0

Table 5.20. Dynamic Scheduling.

141

5.9.3. The Software Architecture

The Reyes rendering software was developed on uniprocessors, first on the VAX 11/780 and later
on the faster CCI Power 6/32. Both of these systems offered a large virtual address space and, typically,
sixteen megabytes of physical memory. Although Reyes was conceived of as an experimental testbed, it
was, in fact, used in production for several film projects during a period of at least four years. Naturally,
the renderer’s design and implementation were influenced by its original computing environments. It was
ported to the RM-1 multiprocessor with few changes to the rendering algorithms.

Certain features that improved uniprocessor performance scale poorly on the RM-1 system. Section
5.7.3 explains that the system shades large pieces of surfaces, called grids, at one time to increase the
computation’s locality. The renderer saves any results that it does not need immediately. On a unipro-
cessor this strategy can reduce the amount of work because each grid is shaded once, and the cached
results are always available. On the RM-1 system, this strategy is less successful because multiple nodes
may need to duplicate the work of shading a single grid. Another performance strategy is to save compu-
tation by using more memory. For instance, increasing the size of buckets improves coherence but
requires additional scratch memory. The smaller local memories of the RM-1 system tend to limit the
bucket size, because the renderer more quickly runs out of scratch memory. The result is to reduce the
use of coherence.®

In the case of Reyes, relatively efficient uniprocessor software was ported to a multiprocessor; the
algorithms were not designed directly for any specific model of parallel computation. This has a subtle
effect on our estimates of speedup. The multiprocessor efficiency and speedup metrics compare the com-
pute time on p > 1 nodes with the compute time on a single node. Thus, two different factors can lead to
a lower multiprocessor efficiency: slow multiprocessor times or fast uniprocessor times. With Reyes’
uniprocessor heritage, we probably obtain a faster baseline measurement on a single node than we would
if the software had been designed directly for a distributed-memory multiprocessor architecture. The
good baseline performance (and not just the failure of the performance strategies to scale well) makes it
harder to obtain a good speedup running Reyes on the RM-1.

The Reyes design experimented with different ideas about parallelism, including vectorized shad-
ing. Screen-based subdivision was supported by the principle of independence; if we subdivide the
image, each region can be computed correctly independently of the other regions. Although the renderer
may duplicate some calculations, its algorithms never depend on non-local results. Cook, Carpenter, and
Catmull formalized concerns about parallelism in the design principles [Cook87]:

The [image rendering] architecture should be able to exploit vectorization, parallelism, and
pipelining. Calculations that are similar should be done together. For example, since the
shading calculations are usually similar at all points on a surface, an entire surface should be
shaded at the same time.

Experience with the RM-1 system demonstrates the inherent conflict in these design goals. As we have
seen, vectorized shading requires good geometric locality while screen-based subdivision reduces the
locality. It is hard to design efficient parallel software without a clear idea of the hardware architecture.

5.9.4. Scaling Issues

The experimental workload tends to use about eight nodes effectively before the efficiency falls.
The previous section argues that a higher-resolution workload might use sixteen nodes more efficiently.
Assume that we have sixteen RM-1 nodes that can be configured either as two eight-node systems or one
sixteen-node system. Running in parallel, the two eight-node boards could each compute the full Camera
Move sequence in 11,027.5 seconds (see Table 5.10). A single sixteen-node system would require about

6 Increasing the bucket size also constrains the ways in which the screen may be partitioned to balance the load
among the RM-1 nodes.

142

18% more time (or 12,989.8) seconds to compute the same twenty frames. Similarly, the sixteen-node
system would take 40% longer to compute the Junior sequence and 27% longer to compute Tinny. The
advantage of a sixteen-node board is that it provides 40-70% quicker turnaround on individual frames.
Two eight-node systems would also require an additional port on a host and could increase the contention
for resources on the host and on the texture server.

Experimental RM-1 systems have been configured with as many as sixty-four nodes. Unfor-
tunately, no performance measurements were made.

Denser memory chips would allow the amount of memory on an RM-1 board to be increased by a
factor of four. Given a choice, we would increase the nodes’ local memory, rather than use all of the new
memory for additional nodes. Adding more nodes with the same local memory would only worsen the
texture access bottleneck. Such a system would probably require at least one more connection to the host.
Increasing local memory would permit larger texture caches and reduce the bottleneck. The best solution
might be to add fewer nodes to the system and still enlarge the local memory; a good compromise could
be determined experimentally.

If faster nodes were available, they would generate texture access requests more quickly. Larger
local memories and, thus, larger texture caches would help reduce the extra strain on the I/O system. A
second connection to the host might also be needed, to reduce the I/O bottleneck.

5.10. Conclusions

This chapter demonstrated the effectiveness of adaptive spatial partitioning for rendering using sim-
ple, low-overhead cost estimates. Our strategy balances the load reasonably well while maintaining most
of the spatial coherence in the computation. Our approach should be applicable to both general-purpose
and special-purpose architectures. In particular, we studied an implementation on a multiprocessor with
general-purpose processing nodes. Although the algorithm was designed to use history when computing
successive frames of animation, it has also been useful for recomputing still images.

The performance analysis in this chapter stresses the importance of maintaining coherence and the
tradeoffs between balance and coherence. When small groups of pixels are computed independently, the
total amount of computation effort rises sharply. The results we observed for the fixed bucket scheme
suggest that pixel interleaving should be thought of as a hardware technique for real-time systems, as dis-
cussed in Section 5.2.2. It is not a promising strategy for implicit load balancing for photorealistic
rendering.

The experiments showed how the rendering time varies with the number of nodes on the RM-1
board; after eight processors, there is relatively little improvement in the rendering time for the experi-
mental workload. Section 5.8 predicts, however, that a higher-resolution production workload may be
able to use eight to sixteen processors more effectively. With the more effective partitioning schemes,
the major underlying cause of the loss of efficiency is the difficulty of maintaining coherence as the
number of regions increases.

Pat Hanrahan has proposed a software architecture for the RM-1 board that would address the issue
of coherence. In his object-parallel approach, the subdivision and shading of each object would be the
responsibility of a single node. Shaded pieces of objects would be distributed to the nodes according to a
spatial subdivision, and then the visible surfaces would be determined. This architecture would have
more complex communications and synchronization problems, but it is an interesting alternative that
could be simulated before implementation.

Our approximation of the efficiency loss due to texture read delays, L”, understates the problems of
the input/output architecture. The I/O subsystem is strained by the loss of coherence as well as by mul-
tiprocessor contention, because a less coherent computation generates more texture read requests. The
texture access bottleneck is probably less serious in the higher-resolution production runs, because

143

regions are larger in relation to grids. Still, it is unlikely that a single connection between the host and the
RM-1 board will be adequate for much more than sixteen nodes. The texture access bandwidth would
probably need to be increased also if faster cpu’s were used.

The cost estimates produced by adjust suffer from two major flaws: they are very coarse-grained,
and they depend on frame-to-frame consistency. With a different rendering implementation, it would be
worthwhile to experiment with finer-grained cost estimates. Bear in mind that the overhead would
increase with the number of cost data points. Predicting motion is, perhaps, less promising because it
would increase the overhead considerably and require the analysis of a considerable amount of data.
Adjust’s advantage is its very low partitioning overhead. A more accurate cost estimate algorithm would
still lose to adjust unless it was also very quick. Adjust performs well because it provides modest
improvements at very low cost.

144

6

Conclusions and Directions for Future Research

In the past, realistic image synthesis was mostly limited to research and development environments.
Researchers had first to discover algorithms for simulating visual experiences, before it was reasonable to
become too concerned about performance. The algorithms and technology have now reached a stage of
maturity where realistic image synthesis is accessible to a wide range of users. It is not only appropriate,
but important to study rigorously the performance of image synthesis systems. A major goal of this
dissertation is to demonstrate the application of performance analysis methodology to the field of image
synthesis.

Two topics provide a foundation for the research. The first, in Chapter 2, is a review of a variety of
rendering algorithms and the factors that affect their performance. The second, in Chapter 3, is a quanti-
tative and qualitative characterization of the image synthesis workload. After establishing the nature of
the systems and the workload, the dissertation considers two applications of performance methodology to
image synthesis: measuring the performance of rendering systems and partitioning the workload for a
MIMD rendering system.

Image synthesis performance depends on a complex set of intertwined factors. The individual algo-
rithms and the ways that they interact in a complete rendering system determine, for the most part, the
computational complexity of the rendering process.

The geometric complexity of the model and the image resolution, in general, determine the size of
the problem. The types of geometric primitives can influence the complexity of the calculations. For
example, Section 4.9.1 shows the performance penalty associated with ray tracing a set of parametric
patches rather than spheres. Geometric characteristics are relatively well-defined and easy to quantify, as
shown by the workload studies in Sections 3.2 and 3.4. However, a raw count of high-level modeling
primitives will not always reflect the true size of a problem. For instance, the frequency of detail varies
with the viewpoint, and the complexity of a sub-algorithm may depend on the screen size of an object or
the number of internal rendering primitives it generates.

Realistic shading and texturing is an open-ended problem. It is much harder to quantify the shading
complexity of a scene than the geometric complexity. A triangle is a triangle, and a patch is a patch, but
the surface characteristics of a primitive can be made arbitrarily complex. Interactions among objects
affect rendering costs, and this is especially true for shading. When objects are seen through transparent
surfaces or are reflected by other objects, the complexity of rendering the scene increases in ways that are
hard to predict. If the rendering system offers a flexible choice of modeling primitives and illumination
models, the model data can specify varying algorithms and, therefore, change the computational com-
plexity of the problem. The dissertation’s major research vehicles, reyes, prman, and opal, are all exam-
ples of renderers that support programmable shading.

Chapter 2 categorizes the key factors that influence the performance of rendering systems. The
actual effect of a cost factor depends on the algorithms and structure of a given rendering system. It is
possible for a scene characteristic to increase the cost of one algorithm while having little effect on
another. An experiment in Section 4.9 demonstrates this. With other factors held constant, the number of
objects affects prman’s performance but has little impact on opal.

145

6.1. Workload characterization

Chapter 3 discusses the complexity of images in terms of the cost factors given in Chapter 2. The
analysis looks for trends in the development of image complexity. At any given time, the complexity of
the image synthesis workload is shaped by the available technology. Historical data indicate that
hardware and software improvements often allow image complexity to advance to a new level. The
dissertation concentrates on the complexity of rendering and on the geometric and shading characteristics
that affect rendering costs. Other types of complexity are now becoming important in graphics applica-
tions, such as animation and dynamics. Some examples are algorithms that drape fabric realistically or
simulate hair. As noted by Greenberg [Gree91] and by Reeves, Ostby, and Leffler [Reev90], image com-
plexity may now be limited more by the problem of modeling complex scenes than by the problem of
rendering complex scenes.

The workload data in Chapter 3 give a good characterization of the geometric properties of a set of
images and a more simple qualitative description of their shading properties. It is much harder to charac-
terize shading complexity rigorously, and this is one possible direction for future work. The cost of shad-
ing and texturing an image is influenced by subtle interactions among objects, such as the reflection of
one surface in another. Therefore, the most fruitful approach may be to instrument rendering systems and
quantify shading characteristics at run time. The spatial distribution of complexity in the image was
characterized by instrumenting the visible surface module. This resulting data describe the variation of
complexity at a very fine level of granularity. It would be worthwhile to study the spatial distribution of
complexity at a coarser level of granularity, dividing the image into larger regions of varying sizes. The
data in Chapter 3 has another limitation. All of the images come from a single installation and were
influenced by the same model of rendering. Another direction for future work is to examine the workload
from a variety of installations. Finally, the results can be extended by profiling and comparing a variety
of rendering systems. Using the same data for all systems would allow us to compare the response of dif-
ferent algorithms to the scene characteristics.

6.2. Performance Measurement

Chapter 4 proposes a methodology for measuring the performance of rendering systems. It
classifies the factors that affect the cost of rendering and advocates controlled experiments that vary these
cost factors. The four categories of cost factors are scene characteristics, viewing specifications, render-
ing parameters, and the computing environment.

In this scheme, the first type of performance experiment varies the scene characteristics. I have
implemented a tool that generates models for rendering performance experiments. Under the control of
parameters, the model generator Mg varies the geometric and shading characteristics of the scene. A
major hypothesis in Mg’s design is that benchmark images need not have the appearance of ‘‘real’’ com-
puter graphics images. What is important, is that they share the computational characteristics of the real
workload. Furthermore, it is easier to understand the effects of geometric variation if the scenes are com-
posed of simple components and if the objects are positioned according to simple algorithms.

Some simple experiments with Mg demonstrate its ability to detect performance differences
between systems. In Section 4.9, Mg’s models are also used to explore the effect of workload changes on
a single system’s performance.

Mg is a prototype, and there are many ways it can be extended in the future. With the current inter-
face, it is hard to generate very complex models without creating an unreasonably large file. More com-
pact output formats or the inclusion of object instantiation in the interface are two techniques that might
improve Mg’s usefulness. The addition of new primitives, new light source models, and environment
maps might support new applications. With only two scene generators, Mg still can create models with a
range of characteristics. New scene generators could emphasize different features, such as environments
suitable for radiosity experiments and models that combine a variety of object sizes and types. A scene
generator that controls the frequency of detail would be useful for testing adaptive sampling and

146

antialiasing algorithms. Mg’s interface already supports this type of variation with controls that change
the size of objects and the texture coordinate mappings.

Adding support for animation is, in general, a hard problem. It would not be too difficult for Mg to
support one simple case, in which the scene is static but the viewpoint moves. This case includes applica-
tions such as a camera move or an architectural ‘‘walk through.”’

One other direction for future research is to use Mg as basis for the work suggested in the previous
section, profiling and characterizing varied rendering systems.

6.3. Workload Partitioning

Chapter 5 defines two potentially conflicting goals for a multiprocessor rendering system: to distri-
bute the work evenly among a set of processing nodes, and to avoid introducing additional costs by parti-
tioning the problem. The additional costs can include the scheduling overhead or extra work that is intro-
duced by weakening coherence. The additional costs can also take the form of idleness, as processors
experience delays due to contention or run out of work and wait for other nodes to finish. A successful
solution to the workload partitioning problem must achieve good balance while preserving as much
coherence as possible.

I proposed a partitioning algorithm for computing animated sequences and implemented it in the
program adjust. To demonstrate the effectiveness of the algorithm, I compared three types of partitions
that it generates with five competing schemes. The partitions were tested on three different animated
sequences. For all of the test cases, adjust gave the best multiprocessor efficiency. Two qualities are
important to adjust’s success, its low overhead and its finding a middle ground in the tradeoffs between
coherence and balance.

One reason for adjust’s low overhead is its simple, easily obtained cost estimate: the processors’
compute times for the previous frame. A second reason is its use of approximation. A single data point
estimates the cost for all pixels rendered by a node. To simplify the problem further, it creates partitions
along one axis, reducing the problem to a single dimension. The analysis in Chapter 5 concludes that the
approximate cost estimates result in somewhat imbalanced partitions. However, the scheduling overhead
is so low that the net effect is a respectable speedup.

The analysis of several competing schemes documents the tradeoffs between balance and coher-
ence. It shows that adjust balances the load reasonably well without destroying too much coherence.
This is possible because the algorithm adapts to the characteristics of the workload.

Two general principles are illustrated by this analysis. First, a moderate improvement can be
worthwhile if it requires little overhead. Any algorithm that takes much longer than adjust to compute
cost estimates has to be much more accurate to achieve the same overall performance. Second, the trade-
off between balance and coherence is a key consideration in parallelizing graphics. Chapter 4 provides a
second illustration of this principle. Ray tracing is commonly considered a good candidate for multipro-
cessing because the rays are independent. Section 4.9.2 shows how the corresponding lack of coherence
increases the cost of texture mapping.

The measurements in Chapter 5 concentrate on compute time. One effect of the loss of coherence is
an increase in the number of texture references. Many image synthesis applications require very large
models or many textures. Accessing model or texture data can be a problem, especially in computing
environments with remote file servers. One direction for future work is to develop algorithms and stra-
tegies to localize texture references and reduce the i/o traffic related to texturing.

[Abra85]

[Akel89]

[Aman84]

[Aman87]

[Ang91]

[Apod9l]

[Apod92a]

[Apod92b]

[Arvo87]

[Bade87]

[Bade91]

[Beat82]

[Berg87]

[Blin76]

[Blin77]

[Blin78]

147

References

G. Abram, L. Westover and T. Whitted, Efficient alias-free rendering using bit-masks and look-up
tables, SSIGGRAPH ’85 Conference Proceedings, Computer Graphics 19,3 (July 1985), 53-59.

K. Akeley, The Silicon Graphics 4D/240GTX superworkstation, IEEE Computer Graphics and
Applications 9,4 (July 1989), 71-83.

J. Amanatides, Ray tracing with cones, SSIGGRAPH ’84 Conference Proceedings, Computer Graphics
18,3 (July 1984), 129-135.

J. Amanatides, Realism in computer graphics: a survey, IEEE Computer Graphics and Applications 7,1
(January 1987), 44-56.

P. H. Ang, P. A. Ruetz and D. Auld, Video compression makes big gains, IEEE Spectrum 28,10
(October 1991), 16-19.

T. Apodaca, Private communication, Pixar, Richmond, California, May 3, 1991.

T. Apodaca, D. Peachey and M. Vandewettering, Opal (computer program), Pixar, Richmond,
California, 1992.

T. Apodaca, Private communication, Pixar, Richmond, California, November 9, 1992.

J. Arvo and D. Kirk, Fast ray tracing by ray classification, SIGGRAPH ’87 Conference Proceedings,
Computer Graphics 21,4 (July 1987), 55-64.

S. B. Baden, Run-time partitioning of scientific continuum calculations running on multiprocessors,
LBL-24643, Physics Division, Lawrence Berkeley Laboratory, Berkeley, California, June 1987. PhD
Thesis, Computer Science Division, University of California, Berkeley.

S. B. Baden and S. R. Kohn, A comparison of load balancing strategies for particle methods running on
MIMD multiprocessors, CS91-99, Department of Computer Science and Engineering, University of
California, San Diego, La Jolla, California, May 1991.

J. C. Beatty and K. S. Booth, eds., Tutorial, computer graphics, IEEE Computer Society Press,
Washington, D.C., second edition, 1982.

M. J. Berger and S. H. Bokhari, A partitioning strategy for nonuniform problems on multiprocessors,
IEEE Transactions on Computers C-36,5 (May 1987), 570-580.

J. F. Blinn and M. E. Newell, Texture and reflection in computer generated images, Communications of
the ACM 19,10 (October 1976), 542-547.

J. F. Blinn, Models of light reflection for computer synthesized pictures, SIGGRAPH ’77 Conference
Proceedings, Computer Graphics 11,2 (July 1977), 192-198.

J. F. Blinn, Simulation of wrinkled surfaces, SSIGGRAPH ’78 Conference Proceedings, Computer
Graphics 12,3 (August 1978), 286-292.

147

[Blin&0]

[Boot89]

[Bora84]

[BuiT75]

[Carp84]

[Casp89]

[Catm74]

[Clar76]

[Clea86]

[Cohe85]

[Cohe88a]

[Cohe88b]

[Cook82]

[Cook84b]

[Cook84a]

[Cook86]

[Cook87]

148

J. F. Blinn, L. C. Carpenter, J. M. Lane and T. Whitted, Scan line methods for displaying parametrically
defined surfaces, Communications of the ACM 23,1 (January 1980), 23-34.

B. Boothe, Multiprocessor strategies for ray-tracing, Technical Report UCB/Computer Science
Department 89/534, Computer Science Division (EECS), University of California, Berkeley, September
1989.

H. Boral and D. J. DeWitt, A methodology for database system performance evaluation, Proceedings
SIGMOD 1984, SIGMOD Record 14,2 (June 1984), 176-185.

P. Bui Tuong, Illumination for computer generated images, Communications of the ACM 18,6 (June
1975), 311-317. Reprinted in [Beat82], pages 449-455.

L. Carpenter, The A-buffer, an antialiased hidden surface method, SIGGRAPH ’84 Conference
Proceedings, Computer Graphics 18,3 (July 1984), 103-108.

E. Caspary and I. D. Scherson, A self-balanced parallel ray-tracing algorithm, in Parallel processing for
computer vision and display, P. M. Dew, R. A. Eamnshaw and T. R. Heywood (editor), Addison-
Wesley, 1989, 408-419.

E. Catmull, A subdivison algorithm for computer display of curved surfaces, UTEC-CSc-74-133,
Computer Science Dept., University of Utah, 1974.

J. H. Clark, Hierarchical geometric models for visible surface algorithms, Communications of the ACM
19,10 (October 1976), 542-554.

J. G. Cleary, B. M. Wyvill, G. M. Birtwistle and R. Vatti, Multiprocessor ray tracing, Computer
Graphics Forum 5,1 (March 1986), 3-12.

M. F. Cohen and D. P. Greenberg, The hemi-cube: a radiosity solution for complex environments,
SIGGRAPH ’85 Conference Proceedings, Computer Graphics 19,3 (July 1985), 31-40.

M. F. Cohen, S. E. Chen, J. R. Wallace and D. P. Greenberg, A progressive refinement approach to fast
radiosity image generation, SIGGRAPH ’88 Conference Proceedings, Computer Graphics 22,4 (August
1988), 75-84.

M. F. Cohen, A consumer’s and developer’s guide to radiosity, in A Consumer’s and Developer’s
Guide to Image Synthesis, Siggraph 88 tutorial notes, August 1988, 201-218.

R. L. Cook and K. E. Torrance, A reflection model for computer graphics, ACM Transactions on
Graphics 1,1 (January 1982), 7-24.

R. L. Cook, T. Porter and L. Carpenter, Distributed ray tracing, SIGGRAPH ’84 Conference
Proceedings, Computer Graphics 18,3 (July 1984), 137-145.

R. L. Cook, Shade trees, SIGGRAPH ’84 Conference Proceedings, Computer Graphics 18,3 (July
1984), 223-231.

R. L. Cook, Stochastic sampling in computer graphics, ACM Transactions on Graphics 5,1 (January
1986), 51-72.

R. L. Cook, L. Carpenter and E. Catmull, The reyes image rendering architecture, SSIGGRAPH ’87
Conference Proceedings, Computer Graphics 21,4 (July 1987), 95-102.

[Crow77]

[Crow81]

[Crow84]

[Crow86]

[Crow88]

[Crow89]

[Denn90]

[Dipp84]

[Dipp85]

[Duff85]

[Dunw88]

[Dunw90]

[Feib80]

[Fiumg3]

[Fium89]

[Fole90]

[Four82]

[Four86]

149
F. C. Crow, The aliasing problem in computer-generated shaded images, Communications of the ACM
20,11 (November 1977), 799-805.

F. C. Crow, A comparison of antialiasing techniques, IEEE Computer Graphics and Applications 1,1
(January 1981), 40-48.

F. C. Crow, Summed-area tables for texture mapping, SIGGRAPH ’84 Conference Proceedings,
Computer Graphics 18,3 (July 1984), 207-212.

F. C. Crow, Experiences in distributed execution: a report on work in progress, ACM SIGGRAPH ’86
Course Notes #15, August, 1986.

F. C. Crow, Parallelism in rendering algorithms, Proc. Graphics Interface '88, June 1988, 87-96.

F. C. Crow, G. Demos, J. Hardy, J. McLaughlin and K. Sims, 3d image synthesis on the Connection
Machine, in Parallel processing for computer vision and display, P. M. Dew, R. A. Earnshaw and T. R.
Heywood (editor), Addison-Wesley, 1989, 254-269.

A.R. Dennis, An overview of rendering techniques, Computers & Graphics 14,1 (1990), 101-115.

M. Dippe and J. Swensen, An adaptive subdivision algorithm and parallel architecture for realistic
image synthesis, SIGGRAPH ’84 Conference Proceedings, Computer Graphics 18,3 (July 1984).

M. Dippe and E. H. Wold, Antialiasing through stochastic sampling, SIGGRAPH ’85 Conference
Proceedings, Computer Graphics 19,3 (July 1985), 69-78.

T. Duff, Compositing 3-D rendered images, SIGGRAPH ’85 Conference Proceedings, Computer
Graphics 19,3 (July 1985), 41-44.

J. C. Dunwoody and M. A. Linton, A dynamic profile of window system usage, Proceedings, 2nd IEEE
Conference on Computer Workstations, March 1988, 90-99.

J. C. Dunwoody and M. A. Linton, Tracing interactive 3d graphics programs, Proceedings, 1990
Symposium on Interactive 3D Graphics, Computer Graphics 24,2 (March 1990), 155-163, 267.

E. A. Feibush, M. Levoy and R. L. Cook, Synthetic texturing using digital filters, SSIGGRAPH ’80
Conference Proceedings, Computer Graphics 14,3 (July 1980), 294-301.

E. Fiume, A. Fournier and L. Rudolph, A parallel scan conversion algorithm with anti-aliasing for a
general-purpose ultracomputer, SIGGRAPH 83 Conference Proceedings, Computer Graphics 17,3
(July 1983), 141-150.

E. Fiume, The mathematical structure of raster graphics, Academic Press, Boston, 1989.

J. D. Foley, A. van Dam, S. K. Feiner and J. F. Hughes, Computer graphics: principles and practices,
2nd edition, Addison-Wesley, Reading, Massachusetts, 1990.

A. Fournier, D. Fussel and L. Carpenter, Computer rendering of stochastic models, Communications of
the ACM 25,6 (June 1982), 371-384.

A. Fournier and W. T. Reeves, A simple model of ocean waves, SIGGRAPH ’'86 Conference
Proceedings, Computer Graphics 20,4 (August 1986), 75-84.

[Fran80]

[Free80]

[Fuch77]

[Fuch80]

[Fuch82]

[Fuch85]

[Fuji86]

[Glas84]

[Gora84]

[Gour71]

[Gran87]

[Gree90]

[Gree91]

[Hage86]

[Hain&7]

[Hall89]
[Hanr88]

[Hanr90]

150
W. R. Franklin, A linear time exact hidden surface algorithm, SIGGRAPH ’80 Conference Proceedings,
Computer Graphics 14,3 (July 1980), 117-123.

H. Freeman, ed., Tutorial and selected readings in interactive computer graphics, IEEE Computer
Society Press, Silver Spring, MD, 1980.

H. Fuchs, Distributing a visible surface algorithm over multiple processors, Proceedings ACM 77,
October 1977, 449-450.

H. Fuchs, Z. M. Kedem and B. F. Naylor, On visible surface generation by a priori tree structures,
SIGGRAPH ’80 Conference Proceedings, Computer Graphics 14,3 (July 1980), 124-133.

H. Fuchs, J. Poulton, A. Paeth and A. Bell, Developing Pixel-Planes, a smart memory-based raster
graphics system, Proc. Conf. on Advanced Research in VLSI, MIT, 1982, 137-146.

H. Fuchs, J. Goldfeather, J. P. Hultquist, S. Spach, J. D. Austin, F. P. Brooks Jr., J. G. Eyles and J.
Poulton, Fast spheres, shadows, textures, transparencies, and image enhancements in pixel-planes,

SIGGRAPH ’85 Conference Proceedings, Computer Graphics 19,3 (July 1985), 111-120.

A. Fujimoto, T. Tanaka and K. Iwata, ARTS: accelerated ray-tracing system, IEEE Computer
Graphics and Applications 6,4 (April 1986), 16-26.

A. S. Glassner, Space subdivision for fast ray tracing, IEEE Computer Graphics and Applications 4,10
(October 1984), 15-22.

C. M. Goral, K. E. Torrance, D. P. Greenberg and B. Battaile, Modeling the interaction of light between
diffuse surfaces, SIGGRAPH ’84 Conference Proceedings, Computer Graphics 18,3 (July 1984), 213-
222.

H. Gouraud, Continuous shading of curved surfaces, IEEE Transactions on Computers C-20,6 (June
1971), 623-629. Reprinted in [Free80], pages 302-308.

C. W. Grant, A preliminary taxonomy of visible surface algorithms, Technical Report UCRL-95948,
Lawrence Livermore National Laboratory, Livermore, California, 1987.

S. A. Green and D. J. Paddon, A highly flexible multiprocessor solution for ray tracing, The Visual
Computer 6(1990), 62-73.

D. P. Greenberg, More accurate simulations at faster rates, IEEE Computer Graphics and Applications
11,1 (January 1991), 23-29.

M. A. Hagen, Varieties of realism: geometries of representational art, Cambridge, Cambridge
University Press, 1986.

E. A. Haines, A proposal for standard graphics environments, IEEE Computer Graphics and
Applications 7,11 (November 1987), 3-5.

R. Hall, Illumination and color in computer generated imagery, Springer-Verlag, New York, 1989.
P. Hanrahan, Median (computer program), Pixar, San Rafael, California, 1988.

P. Hanrahan and J. Lawson, A language for shading and lighting calculations, SIGGRAPH ’90
Conference Proceedings, Computer Graphics 24,4 (August 1990), 289-298.

[Heck86]
[Heck91]
[Hubs82]
[Iqba86]
[Joy88]
[Kaji88]
[Kapl79]
[Kay79]
[Kay86]

[Kuck78]

[Lass87]

[Laws89]

[LeGa91]
[Lee&5]
[Lint86]

[Moln90]

[Newe72]

[Para85]

[Park80]

151

P. S. Heckbert, Survey of Texture Mapping, IEEE Computer Graphics and Applications 6,11
(November 1986), 56-67.

P. S. Heckbert, Simulating global illumination using adaptive meshing, PhD Thesis, Computer Science
Division, University of California, Berkeley, April 1991.

H. Hubschman and S. W. Zucker, Frame-to-frame coherence and the hidden surface computation:
constraints for a convex world, ACM Transactions on Graphics 1,2 (1982), 129-162.

M. A. Igbal, J. H. Saltz and S. H. Bokhari, A comparative analysis of static and dynamic load balancing
strategies, Proceedings, International Conference on Parallel Processing, August 1986, 1040-1047.

K. L. Joy, C. W. Grant, N. L. Max and L. Hatfield, eds., Tutorial, computer graphics: image synthesis,
IEEE Computer Society Press, Washington, D.C., 1988.

J. T. Kajiya, An overview and comparison of rendering methods, ACM SIGGRAPH ’88 Course Notes:
A Consumer’s and Developer’s Guide to Image Synthesis, August 1988.

M. Kaplan and D. P. Greenberg, Parallel processing techniques for hidden surface removal,
SIGGRAPH ’79 Conference Proceedings, Computer Graphics 13,2 (August 1979), 300-307.

D. S. Kay, Transparency, refraction and ray tracing for computer synthesized images, M.S. Thesis,
Program of Computer Graphics, Cornell University, January 1979.

T. L. Kay and J. T. Kajiya, Ray tracing complex scenes, SIGGRAPH ’86 Conference Proceedings,
Computer Graphics 20,4 (August 1986), 269-278.

D. J. Kuck, The structure of computers and computation, John Wiley & Sons, New York, 1978.

J. Lasseter, Principles of traditional animation applied to 3d computer animation, SIGGRAPH ’87
Conference Proceedings, Computer Graphics 21,4 (July 1987), 35-44.

J. Lawson, Private communication, Pixar, San Rafael, California, June 29, 1989.

D. Le Gall, MPEG: a video compression standard for multimedia applications, Communications of the
ACM 34,4 (April 1991), 46-58.

M. E. Lee, R. A. Redner and S. P. Uselton, Statistically optimized sampling for distributed ray tracing,
SIGGRAPH ’85 Conference Proceedings, Computer Graphics 19,3 (July 1985), 61-67.

M. A. Linton, Benchmarking engineering workstations, IEEE Design & Test of Computers 3,3 (June
1986), 25-30.

S. Molnar and H. Fuchs, Advanced raster graphics architecture, in Computer graphics: principles and
practices, 2nd edition, J. D. Foley, A. van Dam, S. K. Feiner and J. F. Hughes (editor), Addison-
Wesley, Reading, Massachusetts, 1990, 873-907.

M. E. Newell, R. G. Newell and T. L. Sancha, A solution to the hidden surface problem, Proceedings
ACM National Meeting, 1972, 443-450. Reprinted in [Free80].

Paramount, Young Sherlock Holmes, (film), 1985.

F. I. Parke, Simulation and expected performance analysis of multiple processor Z-Buffer Systems,
SIGGRAPH ’80 Conference Proceedings, Computer Graphics 14,3 (July 1980), 48-56.

[Peac89]

[Pixa89]

[Port84]

[Potm8&9]

[Prio89]

[Reev83]

[Reev85]

[Reev87]

[Reev89]

[Reev90]

[Rubi80]

[Scho86]

[Schud0]

[Snyd87]

[Suth74]

[Tice88]

[Upst90]

[Verb&4]

[Wall87]

152

D. Peachey, Private communication, Pixar, San Rafael, California, October 26, 1989.

The RenderMan™ Interface, Version 3.1, Pixar, 1001 West Cutting Blvd., San Rafael CA 94804,
September 1989.

T. Porter and T. Duff, Compositing digital images, SIGGRAPH ’84 Conference Proceedings, Computer
Graphics 18,3 (July 1984), 253-259.

M. Potmesil and E. M. Hoffert, The Pixel Machine: a parallel image computer, SIGGRAPH ’89
Conference Proceedings, Computer Graphics 23,3 (July 1989), 69-78.

T. Priol and K. Bouatouch, Static load balancing for a parallel ray tracing algorithm on a MIMD
hypercube, The Visual Computer 5(1989), 109-119.

W. T. Reeves, Particle systems—a technique for modelling a class of fuzzy objects, SIGGRAPH ’83
Conference Proceedings, Computer Graphics 17,3 (July 1983), 359-376.

W. T. Reeves and R. Blau, Approximate and probabilistic algorithms for shading and rendering
structured particle systems, SIGGRAPH ’85 Conference Proceedings, Computer Graphics 19,3 (July
1985), 313-322.

W. T. Reeves, D. H. Salesin and R. L. Cook, Rendering antialiased shadows with depth maps,
SIGGRAPH ’87 Conference Proceedings, Computer Graphics 21,4 (July 1987), 283-291.

W. T. Reeves, Private communication, Pixar, San Rafael, California, March 23, 1989.

W. T. Reeves, E. F. Ostby and S. J. Leffler, The Menv modelling and animation environment, Journal
of Visualization and Computer Animation 1,1 (1990), 33-40.

S. M. Rubin and T. Whitted, A 3-dimensional representation for fast rendering of complex scenes,
SIGGRAPH ’80 Conference Proceedings, Computer Graphics 14,3 (July 1980), 110-116.

P. Schoeler and A. Fournier, Profiling graphic display systems, Proceedings Graphics Interface '86,
Vancouver, British Columbia, May 1986, 49-55.

R. A. Schumacker, A new visual system architecture, Proc. Second Interservice/Industry Training
Equipment Conference, Salt Lake City, Utah, November 18-20, 1980.

J. M. Snyder and A. H. Barr, Ray tracing complex models containing surface tessellations, SIGGRAPH
’87 Conference Proceedings, Computer Graphics 21,4 (July 1987), 119-128.

I. E. Sutherland, R. F. Sproull and R. A. Schumacker, A characterization of ten hidden-surface
algorithms, Computing Surveys 6,1 (March 1974), 1-55.

S. E. Tice, M. Fusco and P. Straley, The picture level benchmark, Computer Graphics World 11,7 (July
1988), 123.

S. Upstill, The RenderMan Companion, Addison-Wesley, 1990.

C. P. Verbeck and D. P. Greenberg, A comprehensive light-source description for computer graphics,
IEEE Computer Graphics and Applications 4,7 (July 1984), 66-75.

J. R. Wallace, M. F. Cohen and D. P. Greenberg, A two-pass solution to the rendering equation: a
synthesis of ray tracing and radiosity methods, SSIGGRAPH ’87 Conference Proceedings, Computer

[Warn69]

[Watk70]

[Weem91]

[Wegh84]

[Weil77]

[Whel85]

[Whit80]

[Whit82]

[Will78]

[Will83]

[Zyda90]

153

Graphics 21,4 (July 1987), 311-320 .

J. E. Wamnock, A hidden surface algorithm for computer generated halftone pictures, Technical Report
4-15, Computer Science Dept., University of Utah, June 1969.

G. S. Watkins, A real time visible surface algorithm, UTEC-CSc-70-101, Computer Science Dept.,
University of Utah, June 1970.

C. Weems, E. Riseman, A. Hanson and A. Rosenfeld, The DARPA image understanding benchmark for
parallel computers, Journal of Parallel and Distributed Computing 11,1 (January 1991), 1-24.

H. Weghorst, G. Hooper and D. P. Greenberg, Improved computational methods for ray tracing, ACM
Transactions on Graphics 3,1 (January 1984), 52-69.

K. Weiler and P. Atherton, Hidden surface removal using polygon area sorting, SIGGRAPH '77
Conference Proceedings, Computer Graphics 11,2 (July 1977), 214-222.

D. S. Whelan, Animac: a multiprocessor architecture for real-time computer animation, Technical
Report 5200:Tr:85, PhD Thesis, Computer Science Department, California Institute of Technology,
May 1985.

T. Whitted, An improved illumination model for shaded display, Communications of the ACM 23,6
(June 1980), 343-349.

T. Whitted, Processing requirements for hidden surface elimination and realistic shading, Proceedings,
Spring COMPCON 82, 1982, 245-250.

L. Williams, Casting curved shadows on curved surfaces, SIGGRAPH ’78 Conference Proceedings,
Computer Graphics 12,3 (August 1978), 270-274.

L. Williams, Pyramidal parametrics, SIGGRAPH ’83 Conference Proceedings, Computer Graphics
17,3 (July 1983), 1-11.

M. J. Zyda, M. A. Fichten and D. H. Jennings, Meaningful graphics workstation performance
measurements, Computers & Graphics 14,3/4 (1990), 519-526.

154

Appendix A
Image Complexity, 1966-1991

The table on the following pages summarizes information about images published in the computer
graphics literature between 1966 and 1991. The survey covers images published in the SIGGRAPH
proceedings from 1977 to 1991, ACM Transactions on Graphics, IEEE Computer Graphics and Applica-
tions, and anthologies in the IEEE tutorial series. Also included are references cited in this thesis, graph-
ics papers published in the Communications of the ACM, and, for earlier data, publications from other
journals. Chapter 3 discusses the selection criteria. The notes below explain the interpretation of the
fields in the table entries.

The data in this table come from the reference cited for each image. The table is not complete,
because many of the references do not provide information for all of the table’s columns. I have made
only a few guesses, based on an inspection of the image or statements in the publication.

Year
Source

Picture

Type

Objects

Primitives:

Primitives:

Primitives:

Codes

Notes

The year that the reference was published, unless it gives a different year of creation for the
image.

A reference from the list included at the end of this Appendix, or a reference to a chapter of
this thesis.

The author’s title for the image, possibly shortened, or a descriptive phrase to identify it.
There is only one table entry for each distinct scene. If the reference contains more than one
image of a scene, the entry describes the most complex version.

The first letter shows whether the image was created for production use in an actual applica-
tion (P) or for computer graphics research (R). The second letter shows whether the image is
a frame from an animated sequence (A) or an independent still image (S).

No attempt has been made to reconcile varying definitions of ‘‘object,”” which may mean
anything from a low-level primitive to a real-world object. Therefore, it is not meaningful to
compare the entries in this column except among the images from a single reference.

total

The total includes all modeling primitives, as reported in the publication. In some cases, the
numbers appear to be approximate or to include only primitives relevant to the research
reported in the reference; therefore, the total may not equal the sum of the next two columns
(polygons and other primitives). If the size of a model can be varied, the table reports the
number of primitives used to generate the published image.

polygons
The number of polygons in the model.

other

The number of modeling primitives other than polygons, broken down by type, if possible.
For some exclusively polygonal models, this column shows the number of edges and/or ver-
tices in the polygons.

The five entries in this column hint at the shading and rendering complexity: A (antialias-
ing), R (reflections), S (shadows), T (transparency), and X (texture mapping). If the code
letter appears in the table, either the corresponding quality can be seen in the image or it is
documented in the reference. If a dash (-) appears instead, either the corresponding quality
is absent or there is not enough information to confirm its presence.

Other information given in the reference, such as the source of the model, the number of
light sources, or an unusually high resolution. Unless otherwise indicated, all images are
approximately 512 by 512.

155

XIS sayored 019noIq OS¢ < IR 10qo1 [8LImm] 8L61
o Sy 1JeIOIe
8% X amoq
SET sq Jopurko
Sul[-uappry I): Quod [LL1urey] LL6T
QUAS , JUBIS,, SANR[MOdS 000°021 000°0C1 ¥ Joqrey 3ig
QU2ds , JNOYJIp,, reonayiodLy 000°S 000°s sa 10QIeH
2u20s o1duuts,, pasodoxd 00z 00T) 9SNOH SHRqoY [vLwns] pL6T
S61 S61 Sy €1 om31g
£6€ £6¢ sq 71 om31y
oSy oSy sa 11 om31g
ocL oTL sq 01 om3ig
-I— $79 $79 sd 6 2m3rg
-I— $79 $79 s¥ 8 om31g
[0L3em] uo paseq €9 £9 Sq L om3ry
-1— ovl ovl) 9°G som3ry
[0L3mog] uo paseq STT ST sa ¥ om31y
v1 2! sy gom3ly [gLomoN] TL61
[6911eD] 03 TeqIUILS 6L 6L Sy asnoy
[£92ddv] 01 reprurs LT1 LTl sd suerdire
QuI-uSppry P1 4! Sy (e) wopooszoyur [1ID0] 1L61
1T T vd 1doorey [1LpP10D] 1L61
QuI-usppIy $93pa (7T ‘S0NIAA 76 vL Sa 3uping {oLmo] 0L61
$33p3 019 091 091 € sdq IS
$93p2 006 Y44 STT I sdq snio)
$93p2 (09 LT L1 sdq 28en00 oweyy-y [oLrnog] 0L61
$93pa3 7T ‘S90nIoA 891 901 901 Sd uoriaed ueuIIOD
Qul[-uappyy $3pa 7LE we we 1 S¥ 105(q0 xoAu0d [691ED] 6961
061 061 4 sS4 JOLIED 19A0 JJeI0ITE
(54! 94! I X JyeIoIe
184 It € Sq sured suryoewr samy
suy-usppry (43 (43 T X §102(q0 om) [L9oddy] L961
$Y001q OF oy Syq SY00[q [oLwng] 9961
Yo suo3Ajod 1®101
SAON SIpo) SIANIWLIJ spfqQ | adA], ML Inog Javdx

156

$201N08 JY31[€7 ‘SSe[3 J0 s0a1ld 28 XI1-dvV soyored o1qnoIq €01 €0p1 8 vd WSIuy SSe[d paurels [c8AoaY] G861
0£0°59 Sd $9Ie10eL]
680°8 Sy 001 [oweL]
LOV'1 s¥ Sum-x
UEI(] JO "AlU[] ‘[OPOUI §,PUBLISYING TLOT N MA
066 Sd yoe)
8L1 sy 9SNOH [s81oum] $861
—sd saroyds 969°¢ Sy uonduNy duts
—S- 9¢5°1 951 Sy 2qnd d153p0a3
—s- ST0°1 ST0°1 ST0°1 Sd prures£d 9ATsMOAI
—S- sa1ouds 10y 10v 100 Sy srends
—sq €S Sy SI[eq/PIe0qIINOYO [y8seln] 861
WY WOIJ SWeI] 93eIoAL 000°0ST vd 121y 31famig
uonnjosaz 19x1d 000SX000€ 000°8+9 vd Tsuny [pgmorg] #3861
X—V S19pul[Ad ¢ ‘se1oyds y/ 16 vd a1puy ¢ ‘deyd ¥861
SIYS1 ¢ -LSY s1opul]kd ¢ ‘sa10yds ¢ 353 £68 8¢ Sa wooy [00d
SIS -1S¥ soxoyds g 101C 601C €9 sa 9U20g DYJO
W3 | —s- axoyds | T6EL £6€1 6¢ S¥ eIoure)
SIYSI ¢ —s- soxoyds ¢ 0861 €861 1T s¥ suo3£104
$IY31L € 20943y | —Sy 9081 9081 8¢ sq spoud [pudom] 361
Suiserenue o —G9— Y179 P19 Sq Q0BIMS [B)0RI] [egiley] €861
99961 999°61 Sa (uo3a1s) 931000
755 T5S°E S¥ 332 109s8g
95T 4 I BURURq [zgmorD] 7861
$93p2 09LC 008°T Sy STI0) PIPIS-Og
$93po 1TH'8T 88181 N UTe119) [ejoely
$93pe OSt'61 6Tl sy o3or
$33p2 000 ¥ 000CE Sy QUA0S WOOX
Suiserene O XI1S— $3pa 199°0L ¥SS'ET sa $38SB[3 pUe $3[N0q [z8imuml] 7861
8954T X ou00s189) [[8mo1D] 1861
soyored o1qnoiq gz 8T sd 10de9) [ogung] 0861
000°0t 000°9% X INGIFI200
000°CT 000°CT A Jey s Jepog
000°ST 000°ST A oyepy ‘Kapmg
000°00S 000008 A $o[qqIn [6LmsD] 6L61
o suog£jod 2103
SIION SIpo) SIADIWILIY s3lqQ | adA], NI NINOS JBIX

157

sy ¢ 01 dn —vV 0Z01 S sd PETIMS
—V ¥E0T I ¥ T1nys [L814al L861
X-S¥ Sovl S sprjos oruojerd
—sd ¥T81 X 10deay
—S- 1T1LLY ¥ X ar013
[984e3]] woiy —s- (A4 X $9YOURIQ 331
[98Ae] woiy —s- SSpL sd $9AB9[o1
[984ex]] woiy OIXTY OIXTY sq OTx«Prurefd
¥201 ¥201 sd PxxPIureId [L80ATY] L861
—S-v 1LT1 S819 oSt L T Sd $9AB[3o
—S-v LTl 1 el 4 syd SOYOURIq 921
susuz —suv 4 00¥C 0bT (04 S¥ oupenbiadns
—S-v 960¥ 960¥ Sy SxxPrureIfd
[¥8se1D] uo paseq —S-v ¥201 ¥201 sa pxaDIUTRIAd
poseIEnwE B —SYV 000°011 v seom [9g4ex] 9861
SISy —1S¥UV 01¢ 01¢ Y dure;
—Sd- soyojed 91 ‘saxoyds (09 9L 19 S¥ sazoyds Aurys [984of] 9861
so1oyds
SIS § ‘sorapenb G¢ ‘s1opurfAd 9/ 86C1 €I¥1 ¥ee Y oYy
-1— soupenb [1¢ ‘saxouds 96z 9 €LL 89L X %
SJYSI § (4443 (4643 08 S¥ 0qozes
SIYSI ¢ soupenb g ‘s1opulffo ¢ T0L9 TILY €€ Sy Ireyoysy
SIS S 98C¢ 98¢ 184 N SpIed
SIS ¢ 12414 144014 (421 1 PIBOQSSaYO [ogureH] 9861
—S-v ¥588 Sy TeaTUOIN
—S-v 48! vd $20ys
[ox1dysordwres 91 —S-v 14544 v amed 9p Auo,
‘popnpoxo suogAjod mopeys —S-y 169 v yusq [983104] 9861
(¢)paserenue —Sd 000°0% Sq L-X¥
—S-v #8501 S¥ S8 04¥01, DD
poserenue —S— 110L 110L L10L Sq VNA [og1ng] 9861
X—3q sayoted 01qnoIq 089°G8 [UOI)ORIJII dABM
uonnjosor [ox1d §ZTIX8H0T X—dUV soyored o1qnoIq 47476 vd Jos8UNS 18 yoraq [ogmoy] 9861
spoxid 80TX8H0T 0791 Sq WISy [ogusig] 9861
_yjo suogAjod 2103
SIJION S9poO) SoADIWILIJ sp0fqQ | 2dAJ, MLy DINOS IBIX

158

spx1d $701x0871 ‘Pxid/soidures 6 XLSIV sooeyans oupenb 091 000°0C 009°1C 009T sdq uoneIsyIon [e[69a10] 1661
X-S4- 000°02¢ Sy ssaid Supund [q169910] 0661
X1S-V sa1ouds 00S sa 9u00s ordurs [06°res] 0661

XI—V Boroyds 0001 ‘sezoyds ouod 011 [291) seunsLyD

A sazoyds Quod 4 1 Sq SN0}

00S 1X8$0T ‘IJq uonour XI—V sazoyds suod 0Q0‘ET vid 3001 odei3 Jumpouelq
In[q uonouwr —V saxoyds 2uod 0501 v 15QY UPRWONYO [o6xe] 0661

—-1S3- SOOBJINS PAATND 7O 68 v Q01p unfrey
somureudp Apoq pidy XIS $30BJINS PAAITO 9 L6 v oel 3urjrey [o6ered] 0661
SIYS QT ‘so[Suein 1S¥- 000°0T St JqrIoAu0d [06PUNA] 0661

©Jep 21mx3) QY ‘sdewr omyxa) ¢ X— 000 [WIOOJ WNasnut

1oxtd/sordures 971 ‘20mos S| vore -1S-V 000°0S SY WOoOoI 83}
000°L1 X uone)s [68unod] 6861

SIYSIL L —S- sa10yds S0t ‘sou0d S60F 1 1618 SY ES]

{9843 ‘pgserD] uo paseq —s- 960% 9601 I sd e1Q)

SIS ¢ —sy s19pulIAd 00T ‘sexouds 00Ty 1 10¥8 1wl X s3up

-LSY sa1ouds ¢ 618 9618 S Sq urejunout

suo3A10d 9ABOU0D ‘a3pe-ordnnu pg -1SYd SPE6 SHE6 +9 SI s1ead
BUENEY —sy soxoyds 18¢L 1 78¢L sa sireq [L8ureH] L861

—S-v SO[SURL} QJRIPAUWLINUI | 0TXY Ssq $SB13 JO PIoY

—S-V SO[SURLY 91RIPOULISIUL 01XT Sd $391) pue sse1d

-1S¥9vV SO[3uBLn QJRIPIULIUT 000 00F N 2091d wnosnuu sse3

—S-v So[3ueLn QJRIPAULIIUT)00‘00T SYq SIOAO]O ‘SSBI3 ‘STOMO

XISYV | so[3uewmn sperpaunIaldt 000001 | JUSUIBWIO SSBIq

—$-V | so[duewmn ajeIpaunisi 000‘001 sd Auaqr yo anjelg

—S$-V SO[3URL) SJRIPAULINUL (00‘ST sa SOPISLI] SAIORYRI

—QaVv So[3ueI) SJRIpaULIAUT 00001 S 9201d wmnasnuw jodea)
SOOIMOS ¢ WOIJ SMOPRYS ISNYJIP X—S—V SO[3ueLn dJRIPAULIAUL (0T sa qey sorydesd [8pAug] L861

88LXYTOT ‘S[oUURYD AIMIXI) 6] XLSIAV €8L°91 v a 210)8 9319 U1 Jy31u [L8a1s0]
SSL XISV (B)¢°€ QIR 998 0506 vd mopurm doys ayiq ¢ "deyD L861
1Yo suo3Ajod ®10

SON SIpoD SIANIWILIJ s3oafqQ | odAg, ImdIg Inog IvIX

Sources

[Appe67]

[Arvo87]

[Bara90]

[Beat82]

[Berg86]

[Bish86]

[Blin80]

[Bouk70]

[Brow84]

[Crow81]

[Crow82]

[Csur79]

[Dyer87]

[Four86]

[Free80]

[Fuji86]

[Gali69]

159

A. Appel, The notion of quantitative invisibility and the machine rendering of solids, Proceedings ACM
National Meeting, 1967, 214-220. Reprinted in [Free80].

J. Arvo and D. Kirk, Fast ray tracing by ray classification, SSIGGRAPH ’87 Conference Proceedings,
Computer Graphics 21,4 (July 1987), 55-64.

D. Baraff, Curved surfaces and coherence for non-penetrating rigid-body simulation, SIGGRAPH ’90
Conference Proceedings, Computer Graphics 24,4 (August 1990), 19-28.

J. C. Beatty and K. S. Booth, eds., Tutorial, computer graphics, IEEE Computer Society Press,
Washington, D.C., second edition, 1982.

P. Bergeron, A general version of Crow’s shadow volumes, IEEE Computer Graphics and Applications
6,9 (September 1986), 17-28.

G. Bishop and D. M. Weimer, Fast Phong shading, SIGGRAPH ’86 Conference Proceedings, Computer
Graphics 20,4 (August 1986), 103-106.

J. F. Blinn, L. C. Carpenter, J. M. Lane and T. Whitted, Scan line methods for displaying parametrically
defined surfaces, Communications of the ACM 23,1 (January 1980), 23-34.

W. J. Bouknight, A procedure for generation of three-dimensional half-toned computer grapics
presentations, Communications of the ACM, September 1970, 292-301. Reprinted in [Free80].

M. D. Brown, The last starfighter: making a movie with computer graphics, IEEE Computer Graphics
and Applications 4,7 (July 1984), 7-8.

F. C. Crow, A comparison of antialiasing techniques, IEEE Computer Graphics and Applications 1,1
(January 1981), 40-48.

F. C. Crow, A More Flexible Image Generation Environment, SIGGRAPH ’'82 Conference
Proceedings, Computer Graphics 16,3 (July 1982), 9-18.

C. Csuri, R. Hackathorn, R. Parent, W. Carlson and M. Howard, Towards an interactive high visual
complexity animation system, SIGGRAPH ’79 Conference Proceedings, Computer Graphics 13,2
(August 1979), 289-299.

S. Dyer and S. Whitman, A vectorized scan-line z-buffer rendering algorithm, IEEE Computer
Graphics and Applications 7,7 (July 1987), 34-45.

A. Fournier and W. T. Reeves, A simple model of ocean waves, SIGGRAPH ’86 Conference
Proceedings, Computer Graphics 20,4 (August 1986), 75-84.

H. Freeman, ed., Tutorial and selected readings in interactive computer graphics, IEEE Computer
Society Press, Silver Spring, MD, 1980.

A. Fujimoto, T. Tanaka and K. Iwata, ARTS: accelerated ray-tracing system, IEEE Computer
Graphics and Applications 6,4 (April 1986), 16-26.

R. Galimberti and U. Montanari, An algorithm for hidden line elimination, Communications of the ACM
12,4 (April 1969), 206 -211.

[Glas84]

[Gold71]

[Gree91a]

[Gree91b]

[Hain86]

[Hain87]

[Haml77]

[Joy86]

[Kaji83]

[Kay86]

[Lout70]

[Max90]

[McGr71]

[Mund90]

[Newe72]

[Ostb87]

[Potm89]

[Reev85]

160
A. S. Glassner, Space subdivision for fast ray tracing, IEEE Computer Graphics and Applications 4,10
(October 1984), 15-22.
R. A. Goldstein and R. Nagel, 3-d visual simulation, Simulation 16,1 (January 1971), 25-31.

D. P. Greenberg, A ray tracing simulation of a radiosity simulation, IEEE Computer Graphics and
Applications 11,1 (January 1991), 6-7.

D. P. Greenberg, More accurate simulations at faster rates, IEEE Computer Graphics and Applications
11,1 (January 1991), 23-29.

E. A. Haines and D. P. Greenberg, The light buffer: a shadow-testing accelerator, IEEE Computer
Graphics and Applications 6,9 (September 1986), 6-16.

E. A. Haines, A proposal for standard graphics environments, IEEE Computer Graphics and
Applications 7,11 (November 1987), 3-5.

G. Hamlin, Jr. and C. W. Gear, Raster-scan hidden surface algorithm techniques, SIGGRAPH '77
Conference Proceedings, Computer Graphics 11,2 (July 1977), 206-213. Reprinted in [Free80].

K. I. Joy and M. N. Bhetanabhotla, Ray tracing parametric surface patches utilizing numerical
techniques and ray coherence, SIGGRAPH ’86 Conference Proceedings, Computer Graphics 20,4
(August 1986), 279-285.

J. T. Kajiya, New techniques for ray tracing procedurally defined objects, ACM Transactions on
Graphics 2,3 (July 1983), 161-181.

T. L. Kay and J. T. Kajiya, Ray tracing complex scenes, SIGGRAPH 86 Conference Proceedings,
Computer Graphics 20,4 (August 1986), 269-278.

P. P. Loutrel, A solution to the hidden-line problem for computer-drawn polyhedra, IEEE Transactions
on Computers, March 1970, 221-229. Reprinted in [Free80].

N. Max, Cone-spheres, SIGGRAPH ’90 Conference Proceedings, Computer Graphics 24,4 (August
1990), 59-62.

F. J. McGrath, A method for eliminating hidden lines with polyhedra, Simulation 16,1 (January 1971),
37-41.

G. Mundell, Convertible Grand Prix prototype (computer-generated image), IEEE Computer Graphics
and Applications 10,4 (July 1990), 9.

M. E. Newell, R. G. Newell and T. L. Sancha, A solution to the hidden surface problem, Proceedings
ACM National Meeting, 1972, 443-450. Reprinted in [Free80].

E. Ostby and B. Reeves, A night in the bike store (computer-generated image), SIGGRAPH ’87
Conference Proceedings, Computer Graphics 21,4 (July 1987), 352.

M. Potmesil and E. M. Hoffert, The Pixel Machine: a parallel image computer, SIGGRAPH ’89
Conference Proceedings, Computer Graphics 23,3 (July 1989), 69-78.

W. T. Reeves, Statistics associated with the making of Young Sherlock Holmes, Technical Memo 140,
Computer Graphics Project, Lucasfilm Ltd, San Rafael, California, October 20, 1985.

[Sale90]

[Snyd87]

[Suth70]

[Suth74]

[Watk70]

[Wegh84]

[Whel85]

[Whit82]

[Will78]

161

D. Salesin and J. Stolfi, Rendering csg models with a zz-buffer,, SSIGGRAPH ’90 Conference
Proceedings, Computer Graphics 24,4 (August 1990), 67-76.

J. M. Snyder and A. H. Barr, Ray tracing complex models containing surface tessellations, SSIGGRAPH
’87 Conference Proceedings, Computer Graphics 21,4 (July 1987), 119-128.

I. E. Sutherland, Computer displays, Scientific American 222,6 (June 1970). Reprinted in [Beat82],
pages 4-20.

I. E. Sutherland, R. F. Sproull and R. A. Schumacker, A characterization of ten hidden-surface
algorithms, Computing Surveys 6,1 (March 1974), 1-55.

G. S. Watkins, A real time visible surface algorithm, UTEC-CSc-70-101, Computer Science Dept.,
University of Utah, June 1970.

H. Weghorst, G. Hooper and D. P. Greenberg, Improved computational methods for ray tracing, ACM
Transactions on Graphics 3,1 (January 1984), 52-69.

D. S. Whelan, Animac: a multiprocessor architecture for real-time computer animation, Technical
Report 5200:Tr:85, PhD Thesis, Computer Science Department, California Institute of Technology,
May 1985.

T. Whitted and D. M. Weimer, A software testbed for the development of 3d raster graphics systems,
ACM Transactions on Graphics 1,1 (January 1982), 43-58.

L. Williams, Casting curved shadows on curved surfaces, SSIGGRAPH ’78 Conference Proceedings,
Computer Graphics 12,3 (August 1978), 270-274.

B.1.

B.2.

B.3.

B4.

B.S.

B.6.

B.7.

B.8.

B.9.

162

Appendix B

Mg Interface Specifications and Source Code

This printed version of the technical report contains only Section B.1, which specifies the
Mg interface. The complete text of this appendix, which includes all of the source listings
described below, is available online. The online text and source listings may be obtained by
anonymous ftp from toe.cs.berkeley.edu in the directory pub/tech—reports/cs/csd~93-736.
You may also request a copy of the source listings by mail to ricki @cs.berkeley.edu.

Interface specification

tk_defs.h

tk_lib.c

tk_output.c (prman/rib version)

tk_output.c (differences in opal version)

tk_texture.c

sg_spheres.h

sg_spheres.c

sg_terrain.c

B.1. The Mg Interface

/¥
* Mg output interface definition
%

*/

typedef double xyz[3];
typedef double rgb[3];
typedef double rgbal4];

enum SurfaceType {Constant, Matte, Plastic, Reflective};
enum LightType {Ambient, Distant, Point};
enum BasisType {Bezier, Bspline, Catrom};

* Initialization

* QutputBegin and OutputEnd are the first and last output

* procedures called by any scene generator.

* For convenience, they may write any prologue, epilogue, or
* auxiliary files required by the target system.

* QOutputBegin takes the name of the picture as an argument.

OutputBegin (name)
char *name;

OutputEnd ()

/ *
* Frame Setup
*/

OutputViewpoint (position, look_at, up, field_of_view, near, far)
Xyz position, look_at, up;
double field_of_view, near, far;

OutputResolution(xres, yres)
int xres, yres;

static int nlights = 0;

OutputLight (model, intensity, color, position, direction)
enum LightType model;

double intensity;

rgb color;

Xyz position, direction;

163

164

/ *
* Matrix commands
*/

OutputSave()

OutputRestore()

Outputldentity()

OutputTranslate(dx,dy,dz)
double dx, dy, dz;

OutputScale(sx, sy, sz)
double sx, sy, sz;

OutputRotate(angle, dx, dy, dz)
double angle, dx, dy, dz;

165

/*

* Object Geometry

*/

/*

* vertex routines

*

* OutputVertex(), OutputVertexNormal(), and OutputVertexColor()
* set values for the current vertex.
* OutputVertex() increments vcount.
*

*/

OutputVertexReset()

OutputVertex(v)

Xyz V;

OutputVertexNormal(n)

Xyz n;

OutputVertexST(s, t)
double s, t;

OutputVertexColor(c)
rgba c;

OutputPolygon (n, v, nflag, cflag, tflag) /* specify vertices in clockwise order */
int n, v[], nflag, cflag, tflag;

OutputPointsPolygons(np, nv, v, nflag, cflag, tflag)
int np, nv[], v[], nflag, cflag, tflag;

OutputPatch (basis, v)
enum BasisType basis;
int v[];

OutputSphere (radius)
double radius;

OutputCone (radius, height)
double radius, height;

OutputCylinder (radius, bottom, top)
double radius, bottom, top;

/*

* Shading interface. All shading properties stay in effect until overwritten.
* Color

* Opacity (percent opaque, index of refraction)

* Surface characteristics (surface model;

* coefficients of ambient, diffuse, and specular reflection;
* roughness for specular reflection)

* Texture map information

*/

OutputColor(color)

xyz color;

OutputOpacity(percent, refraction)
rgb percent;
double refraction;

OutputSurface(model, ka, kd, ks, roughness)
enum SurfaceType model;
double ka, kd, ks, roughness;

/*
* s,t texture coordinates for parametric or quadric surface
*/

OutputTxCoords(s, t)
double s[4], t[4];

/*
* specify texture map(s) for a surface

* texture shading model specifies number of textures, Ka, and Kd.

*/

OutputTxSurface(n, ka, kd)
int n;
double ka, kd;

166

