
Tight Bounds on Expected Time to Add Correctly and Add Mostly

Correctly

Peter Gemmell� Mor Harcholy

April 16, 1993

Abstract

We consider the problem of adding two n-bit numbers which are chosen independently and
uniformly at random where the adder is circuit of AND, OR, and NOT gates of fanin two.

The fastest currently known worst-case adder has running time logn+O(
p
logn) [Khrapchenko].

We �rst present a circuit which adds at least 1� � fraction of pairs of numbers correctly and
has running time log log (n

�
) +O(

p
log log (n

�
)).

We then prove that this running time is optimal.
Next we present a circuit which always produces the correct answer. We show this circuit

adds two n-bit numbers from the uniform distribution in expected 1

2
logn+ O(

p
logn) time, a

speed up factor of two over the best possible running time of a worst-case adder.
We prove that this expected running time is optimal.

�Computer Science Division, UC Berkeley, CA 94720. Supported by NSF grant number CCR-9201092.
yComputer Science Division, UC Berkeley, CA 94720. Supported by National Physical Science Consortium (NPSC)

Fellowship.

0

1 Introduction

Khrapchenko [Khrapchenko] exhibited a circuit of AND, OR, and NOT gates which could add
any two n bit numbers in depth log(n)+O(

p
log(n)). This nearly matches the obvious log(n) lower

bound for worst-case running time.

In this paper, we consider the issue of expected time to add two n bit numbers, where the numbers
are chosen independently from the uniform distribution. Because most additions do not involve
long propagations of carries, we can achieve considerable savings in time over worst-case adders.

We will design an adder circuit with optimal expected running time, (1
2
log(n)+O(

p
log(n))) which

we call a Fast Adder. This Fast Adder circuit will consist of two parts. We call the �rst part a
Near Adder. A Near Adder is a very fast adder, which is correct on all but an � fraction of pairs
of n bit numbers. In section 2, we construct the Near Adder, and in section 3, we prove that the
Near Adder is optimal.

The second part of the Fast Adder circuit is a Checker which quickly deduces whether the Near
Adder has done the addition correctly. The idea of a checker was introduced by Blum [Blum,Kannan].
If the checker determines the addition to be correct the Fast Adder outputs the answer determined
by the Near Adder. If however the checker determines that the addition may have been incorrect,
the addition is redone using the slow-but-sure conventional adder. It is important to note that the
result of the Fast Adder is therefore guaranteed to be correct.

The Fast Adder circuit will be described in detail in section 4. The Near Adder computation can
be overlapped with the checking computation. The total expected running time for the Fast Adder
is then:

max(TimeNear Adder; T imeChecker) + Timeconventional adder � Pr[Near Adder incorrect]

In section 5 we prove that the expected running time of the Fast Adder is optimal, namely that
no circuit for adding two n-bit integers chosen independently from the uniform distribution, has
better expected running time. 1

Our bound on computation time assumes unit gate delay for each gate, fanin of 2, and unbounded
fanout.

2 Near Adder Circuit for Adding Most Numbers Correctly Quickly

In this section we show how to convert a conventional adder of two n-bit numbers into a much
faster, but sometimes unreliable adder, which we call a Near Adder. The Near Adder circuit is
fast, yet incorrect on a small (�) fraction of the inputs. Near Adders take advantage of the property

1There are circuits which produce the correct sum in expected log log(n) + O(
p

log log(n)) time. However, these
circuits do not also produce a guarantee that the output is correct for the particular input in expected sub 1

2 log(n)
time. For those familiar with Blum's work on wa�ing [Blum], one could say that the expected wa�ing time of

addition is at most log log(n) +O(
p

log log(n)). Here, a wa�ing circuit is one which continually outputs an answer.

The wa�ing time is the time required to stabilize on the correct output.

1

that, for most inputs, each of the output bits depends only on a small number of adjacent input
bits.

Theorem 1 For all � > 0, there exists a Near Adder that has depth log log(n
�
) + O(

q
log log(n

�
))

and that is correct on all but � fraction of pairs of n bit inputs.

Proof:

The structure of the Near Adder we propose is shown in �gure 1. Given two n-bit numbers, the Near
Adder divides them into n

d
blocks of size d-bits each. The Near Adder then uses the conventional

adder to add consecutive 2d-bit blocks in parallel as shown in �gure 1. When adding each of these
2d-bit blocks, the Near Adder assumes the carry-in to the 2d-bit block is zero. The Near Adder
returns the most signi�cant d bits of each of these 2d-bit summands (the unshaded parts) as the
sum of the two n-bit numbers.

The running-time of the Near Adder is the time it takes for the conventional adder to add two
2d-bit numbers. Using Khrapchenko's [Khrapchenko] circuit, this time is log(d) +O(

p
log(d)).

The probability of error in the Near Adder is the probability that for any of the n 2d-bit summands,
the 2d-bit summand should have had a carry-in of 1 and the second d bits of the 2d-bit summand
(the shaded part) consisted of all 1's. That is, the probability of error is the probability that for
some 2d-bit summand the carry should have been 1 and it would have propagated through the
lower order d-bits, making a change to the higher order d-bits which we keep as our answer. So,

Pr[error in Near Adder] = (no. 2d-bit summands) � (Pr[carry-in 1]) � (Pr[carry propagated via lower d bits])

= (
n

d
� 2) � (1

2
) � (1

2d
)

In order for to achieve the depth and error bounds described in theorem (1), we assign the block
size to be 2d = 2 log(n

�
).

3 Lower Bound on Time To Add Most Numbers Correctly

In this section we determine a lower bound on the depth, d, of a circuit which adds 2 n-bit numbers
with con�dence 1� �. We will show that d must be > log log(n

�
) .

We divide the n-bit inputs and n bit output (ignoring a possible �nal carry) into n

2d+1
blocks of

size 2d + 1.

Denote by block1 the leftmost block and denote by b1 the most signi�cant output bit of block1.
Because the circuit is restricted to having depth d, we know that there is at least one pair of input
bits in block1 such that neither of these input bits a�ects the value of the bit b1. Let E1 be the

2

event that these two input bits are either both 0 or both 1 and that the output bit b1 is incorrect.
Now throw away block1 and all blocks such that b1 depends on some inputs from those blocks. Note
that we throw away at most 2d + 1 blocks in this step.

Denote by block2 the leftmost remaining block and denote by b2 the most signi�cant output bit of
block2. We know that there is at least one pair of input bits in block2 such that neither of these
input bits a�ects the value of the bit b2. Let E2 be the event that these two input bits are either
both 0 or both 1 and that the output bit b2 is incorrect. Now throw away block2 and all blocks
such that b2 depends on some inputs from those blocks.

We de�ne events E1 : : :E n

(2d+1)2
in this way.

Analyzing the probability of propagation-related error, we have:

8i : 1 � i � n

2d + 1
; Pr[Ei] � 1

4

1

22d

Furthermore, the events Ei are independent which yields:

� � 1�
n

(2d+1)2Y
i=1

(1� 1

22d+2
) � n

22d
1

22d+2

) d � log log(
n

�
)

4 Fast Adder Circuit For Adding Correctly in Fast Expected

Time

In this section we construct a Fast Adder, which adds all numbers correctly, but has low expected
running time. The Fast Adder circuit consists of two subcircuits which are run in parallel. The
�rst subcircuit is the Near Adder described in section 2. The second subcircuit is a Checker which
will determine if the output of the Near Adder is correct. If the Checker circuit determines the
output of the Near Adder to be correct, the Fast Adder outputs the output of the Near Adder. If,
on the other hand, the Checker circuit determines the output of the Near Adder to be incorrect,
Khrapchenko's [Khrapchenko] worst-case adder will be run to determine the output of the Fast
Adder. In section 4:1 below, we describe the Checker, and in section 4:2 we analyze the expected
running time of the Fast Adder. Note that it is important to set parameters in the Fast Adder
such that the running time of the Checker is low, and such that the probability of error in the Near
Adder is very low.

4.1 The Design of a Checker for our Near Adder

We now show how to build a checker for Near Adder whose computation can be overlapped with
the computation of the Near Adder. Our checker will alert us if the carry could have propagated

3

though the lower d bits of any of the 2d-bit blocks. For the sake of speed, our checker will not
examine all the lower d bits of any block. Instead, it will examine a small number, c, of pairs of
bits in each block. Also, our checker will not determine whether the carry-in should have been a 1
not a 0, but rather our checker will simply assume that the carry-in was a 1.

Our checker is illustrated in �gure 2. It takes as its inputs the 2 n-bit operands. It then uses XOR
gates (denoted by X), to check if two corresponding positions in the 2 numbers create a propagate.
The checker must output FAIL if the d bits making up the shaded part of some 2d-bit block would
propagate a carry. If the subblock of c-bits would propagate a carry, the corresponding AND gate
is turned on and the checker in �gure 2 outputs FAIL.

Pr [Checker detects a possible error] � (
n

d
� 2) � (1

2c
)

The running time for the checker is constant to do all the XOR operations in parallel plus log c to
do all the AND operations plus log(n

d
� 2) to do the NOR operation.

Running time for checker = 1 + log c+ log (
n

d
� 2)

� 1 + log c+ logn� log d

To achieve a reasonably low probability of having to fail the Near Adder and a reasonably low
circuit depth for the checker, we set c = log(n)

Note that the computation of the checker in no way interferes with the computation of the Near
Adder.

4.2 Combining the Near Adder and Checker into the Fast Adder

In this section we combine the Near Adder and the Checker described earlier to create a Fast Adder
which outputs the correct output on all inputs.

The total expected running time for a probabilistic adder is :

max(TimeNearAdder; T imeChecker)+Timeconvadder � Pr[checker determines Near Adder addition may be incorrect]

k

max(log(d) +O(
q
log(d)); 1 + log c+ logn� log d) + (log(n) + O(

q
log(n))) � (n

d
� 2)(

1

2c
)

By setting the block size, 2d, to be 2
p
n and the number of bits checked per block, c, to be log(n),

we get the expected time to compute the sum of two n bit numbers to be 1

2
log(n) +O(

p
log(n)).

4

5 Lower Bound on Expected Time to Add Correctly

In this section we prove that any adder for 2 n-bit numbers, which are independently chosen from
the uniform distribution must have expected running time � 1

2
logn.

Let T = E[time to add with certainty].

Divide the summands and output into blocks of size 2T + 1. Let bi be the most signi�cant bit in
the ith block.

Any circuit which adds with certainty must have a checker output bit.

Claim 2 This checker output bit must be connected (either directly or indirectly) to at least one
bit from each block.

Proof: Since the adder circuit has depth T, each output bit can be connected to � 2T input bits
per block. Therefore, there exists at least one bit in each block that isn't looked at by the checker
output bit of the adder. Now assume we are given inputs in which all the bits in the block to the
left of this bit that isn't looked at are propagates. Then we can set the bit not examined such
that bi is correct, or incorrect. In both cases the checker output bit will output correct, which is a
contradiction.

Therefore, we have:

T � log(number of bits examined)

= log(
n

2T
)

= logn� T

Therefore, T � 1

2
log n.

References

[Blum] M. Blum. Designing Programs to Check their Work. Submitted to the CACM for publica-
tion.

[Blum,Kannan] M. Blum, S. Kannan. Unbounded Programs that Check their Work. 21st Sympo-
sium on the Theory of Computation, Seattle, 1989.

[Khrapchenko] V.M. Khrapchenko. Asymptotic Estimation of Addition Time of a Parallel Adder.
Systems Theory Research vol. 19, pp. 107-125, 1967.

5

d
+

nz }| { 9>>>>>>=
>>>>>>;
INPUT

2d
��
�0

�
��
�
��
�
����
��

2d
��
�0

�
��
�
��
�
����
��

2d
��
�0

�
��
�
��
�
����
��

2d
��
�0

�
��
�
��
�
����
��

2d
��
�0

�
��
�
��
�
����
��

2d
��
�0

�
��
�
��
�
����
��

2d
��
�0

nz }| { 9=
;OUTPUT

Figure 1: Near Adder

6

d
+

nz }| { 9>>>>>>=
>>>>>>;
INPUT

X X X X X X X X X X X X X X X X

And And And And And And And And

Nor

?

E
E
E
EE

E
E
E
EE

E
E
E
EE

E
E
E
EE

E
E
E
EE

E
E
E
EE

E
E
E
EE

E
E
E
EE

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

@
@
@
@
@
@
@
@
@
@
@
@
@
@@R

@
@
@@R

J
J
JĴ ? ?

�

�
�

��	

�
�

�
�

�
�

�
�

�
�

�
�

�
��	

Figure 2: Checker for Near Adder

7

