
The Nachos Instructional Operating System

Wayne A. Christopher, Steven J. Procter, and Thomas E. Anderson

Computer Science Division

University of California
Berkeley, CA 94720

Abstract

In teaching operating systems at an undergraduate level, we believe that it is important

to provide a project that is realistic enough to show how real operating systems work, yet is

simple enough that the students can understand and modify it in signi�cant ways. A number

of these instructional systems have been created over the last two decades, but recent advances

in hardware and software design, along with the increasing power of available computational

resources, have changed the basis for many of the tradeo�s made by these systems.

We have implemented an instructional operating system, called Nachos, and designed a

series of assignments to go with it. Our system includes CPU and device simulators, and it

runs as a regular UNIX process. Nachos illustrates and takes advantage of modern operating

systems technology, such as threads and remote procedure calls, recent hardware advances, such

as RISC's and the prevalence of memory hierarchies, and modern software design techniques,

such as protocol layering and object-oriented programming. Nachos has been used to teach

undergraduate operating systems classes at several universities with positive results.

This work was supported in part by the National Science Foundation (CDA-8722788) and the Digital Equipment
Corporation (the Systems Research Center and the External Research Program). Anderson was also supported by a
National Science Foundation Young Investigator Award.
A copy of Nachos can be obtained by anonymous ftp from ftp.cs.berkeley.edu, �le \/ucb/nachos/nachos-2.1.tar".

Questions about Nachos can be directed via e-mail to Anderson (tea@cs.berkeley.edu) or posted to the \alt.os.nachos"
newsgroup.

1



1 Introduction

In undergraduate computer science education, course projects provide a useful tool for teaching
basic concepts and for showing how those concepts can be used to solve real-world problems. A
realistic project is especially important in undergraduate operating systems courses, where many of
the concepts are best taught, we believe, by example and experimentation.

This paper discusses an operating system, simulation environment, and set of assignments that
we developed for the undergraduate operating systems course at the University of California at
Berkeley.

Over the years, numerous projects have been developed for teaching operating systems; among
the published ones are Tunis [Holt 1983] and Minix [Tanenbaum 1987b, Aguirre et al. 1991]. Many
of these projects were motivated by the development of UNIX [Ritchie & Thompson 1974] in the
mid-1970's. Earlier operating systems, such as MULTICS [Daley & Dennis 1968] and OS/360 [Mealy
et al. 1966] were far too complicated for an undergraduate to understand, much less modify, in a
semester. Even UNIX itself is too complicated for this purpose, but UNIX showed that the core
of an operating system can be written in only a few dozen pages with a few simple but powerful
interfaces [Lions 1977]. Indeed, the project previously used at Berkeley, the TOY Operating System,
was originally developed by Ken Thompson in 1973.

The introduction of minicomputers, and later, workstations, also aided the development of in-
structional operating systems. Rather than having to run the operating system on the bare hardware,
computing cycles became cheap enough to make it feasible to execute an operating system kernel
using a simulation of real hardware. The operating system can run as a normal UNIX process, and
invoke the simulator when it would otherwise access physical devices or execute user instructions.
This vastly simpli�es operating systems development, by reducing the compile-execute-debug cycle
and by allowing the use of o�-the-shelf symbolic debuggers. Because of these advantages, many
commercial operating system development e�orts now routinely use simulated machines [Bedichek
1990].

However, recent advances in operating systems, hardware architecture, and software engineering
have left many operating systems projects developed over the past two decades out of date. Network-
ing and distributed applications are now commonplace. Threads are crucial for the construction of
both operating systems and higher-level concurrent applications. And the cost-performance trade-
o�s among memory, CPU speed and secondary storage are now quite di�erent from those imposed
by core memory, discrete logic, magnetic drums, and card readers.

For these reasons, we decided to design and implement a new teaching operating system and
simulation environment. Our system, called Nachos, makes it possible to give assignments that
require students to write signi�cant portions of each of the major pieces of a modern operating
system: thread management, �le systems, multiprogramming, virtual memory, and networking. We
use these assignments to illustrate principles of computer system design needed to understand the
computer systems of today and of the future: concurrency and synchronization, caching and locality,
the tradeo� between simplicity and performance, building reliability from unreliable components,
dynamic scheduling, the power of a level of translation, layering, and distributed computing. Facility
with these concepts is valuable, we believe, even for those students who do not end up working in
operating system development.

In building Nachos, we were continually faced with a tradeo� between simplicity and realism

2



in choosing what code we provided students and what we asked students to implement. A careful
balance is needed between the time students spend reading code versus adding features to existing
code versus learning new concepts. Starting with code that is too realistic could lead students to
lose sight of key ideas in a forest of details.

Our approach was to build the simplest implementation we could think of for each sub-system
of Nachos; this provides students a working example, albeit overly simplistic, of the operation of
each component of an operating system. The assignments ask the students to add functionality to
this bare-bones system and to improve its performance on micro-benchmarks that we provide. As a
result of our emphasis on simplicity, the Nachos operating system is about 2500 lines of code, about
half of which are devoted to interface descriptions and comments.1 It is thus practical for students
to read, understand, and modify Nachos during a single semester course. By contrast, the UNIX
BSD 4.3 �le system by itself, even excluding the device drivers, is roughly 5000 lines of code [Le�er
et al. 1989]. Since we spend only about two to three weeks of the semester on �le systems, this
makes UNIX impractical as a basis for an undergraduate operating systems course project.

The �rst version of Nachos was completed in January 1992 and used for one term as the project
for the undergraduate operating systems course at Berkeley. We then revised both the code and
the assignments, releasing the second version of Nachos for public distribution in August 1992.
This version is currently in use at several universities including Stanford, Harvard, Carnegie-Mellon,
Colorado State, University of Washington, and of course, Berkeley; this paper focuses on describing
this version. We are also continuing to work to further improve Nachos. Nachos currently runs on
both DEC MIPS and SUN SPARC workstations; we believe that it would be straightforward to port
Nachos to other platforms.

The rest of this paper describes Nachos in more detail. Section 2 provides an overview of Nachos;
Section 3 describes the Nachos assignments. Sections 4 and 5 summarize our experiences.

2 Nachos Overview

Figure 1 outlines the internal structure of the Nachos instructional software. In Nachos, as in many
of its predecessor systems, applications, the operating system kernel, and the hardware simulator
run together in a normal UNIX process.2

In this UNIX process, at the lowest level, Nachos simulates the behavior of a standard uniproces-
sor workstation, including CPU instruction execution, address translation, interrupts, and several
physical I/O devices, such as a disk, a network controller, and a console. The Nachos operating
system kernel runs on top of the hardware simulation, providing many of the standard features of
a modern operating system kernel, including threads, a �le system, and virtual memory support.
User-level applications, such as the shell, run on top of this kernel via a traditional system call
interface. For e�ciency, the hardware simulation and the operating system kernel run in native
mode, at full speed on the underlying physical hardware; we simulate instruction execution only for
user-level application code, to allow us to catch user-level page faults and other exceptions.

1The hardware simulator takes up another 2500 lines, but students do not need to understand the details of its
operation.

2By contrast, Minix runs directly on personal computer hardware, avoiding the need for simulation. While this
approach is more realistic, it has the disadvantage of making debugging more di�cult.

3



CPU and I/O device simulation

Machine-dependent OS layer

Thread management

File system

Networking

Address space management

System call interface Virtual memory

Shell

Application Application

��AA

h

User-Level

Portable OS Kernel

Hardware Simulation

Figure 1: Nachos Software Structure

4



Nachos has several signi�cant di�erences with earlier systems:

� We can run normal C programs as user programs on our operating system, because we simulate
a standard, well-documented, instruction set (MIPS R2/3000 integer instructions [Kane 1987]).
In the past, operating systems projects typically simulated their own ad hoc instruction set,
requiring user programs to be written in a special purpose assembly language. Because the
R2/3000 is a RISC, our instruction set simulation code is only about 10 pages long.

� We accurately simulate the behavior of a network of workstations, each running Nachos. We
connect Nachos \machines", each running as a UNIX process, together via UNIX sockets,
simulating a local area network. A thread on one \machine" can then send a packet to a
thread running on a di�erent \machine"; of course, both are simulated on the same physical
hardware.

� Our simulation is deterministic. Debugging non-repeatable execution sequences is a fact of
life for professional operating system engineers, but it did not seem advisable for us to make
this experience our students' �rst introduction to operating systems. Instead of using UNIX
signals to simulate asynchronous devices such as the disk and the timer, Nachos maintains
a simulated time that is incremented whenever a user program executes an instruction and
whenever a call is made to certain low-level operating system routines. Interrupt handlers are
then invoked when the simulated time reaches the appropriate point.3

� Our simulation is randomizable to add unpredictable, but repeatable, behavior. For instance,
the network simulation randomly chooses which packets to drop; provided the initial seed to
the random number generator is the same, however, the behavior of the system is repeatable.

� We hide our hardware simulation routines from the rest of Nachos via a machine-dependent
interface layer [Rashid et al. 1988]. For example, we de�ne an abstract disk that accepts
requests to read and write disk sectors and provides an interrupt handler to be called on
request completion. The details of our disk simulator are hidden behind this abstraction, in
much the same way that disk device speci�c details are isolated in a normal operating system.
One advantage to using a machine-dependent interface layer is to help students understand
that they are building a real operating system: the Nachos kernel could be ported to a physical
machine simply by replacing the hardware simulation with real hardware and some machine-
dependent driver routines. Another advantage is to make clear to students what portions of
Nachos can be modi�ed (the kernel and the applications) versus what portions are o� limits
(the hardware simulation | at least until they take a computer architecture course). We did
not make this distinction clear in our �rst version of Nachos, to our later regret.

� Nachos is implemented in a subset of C++ [Stroustrup 1986]. Object-oriented programming is
becoming more popular, and we found that it was a natural idiom for stressing the importance
of modularity and clean interfaces in building operating systems. To simplify matters, we

3The one aspect of the simulation we did not make reproducible was the precise timing of network communications.
Since this came at the end of the semester, it did not seem to cause problems. We are working on providing precise
network timing for the next release of Nachos.

5



omitted certain aspects of the C++ language: derived classes, operator and function overload-
ing, C++ streams, and generics. We also kept inlines to a minimum. Although our students
did not know C++ before taking our course, we found that they learned our subset of the
language very easily.

� The Nachos assignments take a quantitative approach to operating system design. Frequently,
the choice of how to implement some piece of operating system functionality comes down to
a tradeo� between simplicity and performance. We believe that teaching students how to
make informed decisions about tradeo�s is one of the key roles of an undergraduate operating
systems course. The Nachos hardware simulation re
ects current hardware performance char-
acteristics; we exploit this by having students measure and explain the performance of their
implementations on some simple benchmarks that we provide.

3 The Assignments

Nachos contains �ve major components, each the focus of one assignment given during the semester:
thread management and synchronization, the �le system, user-level multiprogramming support, the
virtual memory system, and networking. Each assignment is designed to build upon previous ones;
for instance, every part of Nachos uses thread primitives for managing concurrency. This re
ects
part of the charm of developing operating systems: you get to \use what you build."

In this section, we discuss each of the �ve assignments in turn, describing the hardware simulation
facilities and the operating system structures we provide, along with what we ask the students to
implement. The assignments are intended to be of roughly equal size, each taking 3 weeks of a 15
week semester course. The �le system assignment appears from two semesters experience to be the
hardest of the �ve; the multiprogramming assignment seems to give students the least di�culty.
We spend on average 30 { 45 minutes in section each week discussing the assignments. Students
work in pairs, and we conduct 15 minute graded design reviews after every assignment with each
team. We found that the design reviews were very helpful at encouraging students to design before
implementing.

3.1 Thread Management

The �rst assignment introduces the concepts of threads and concurrency. We provide students
with a basic working thread system and an implementation of semaphores; the assignment is to
implement Mesa-style locks and condition variables [Lampson & Redell 1980] using semaphores,
and then to implement solutions to a number of concurrency problems using these synchronization
primitives [Birrell 1989]. For instance, we ask students to program a simple producer-consumer
interaction through a bounded bu�er, using condition variables to denote the \bu�er empty" and
\bu�er full" states.

In much the same way as pointers for beginning programmers, understanding concurrency re-
quires a conceptual leap on the part of students. Contrary to Dijkstra [Dijkstra 1989], we believe
that the best way to teach concurrency is with a \hands-on" approach. Nachos helps in two ways.
First, thread management in Nachos is explicit: students can trace, literally statement by statement,
what happens during a context switch from one thread to another, both from the perspective of

6



an outside observer and from that of the threads involved. We believe this experience is crucial
to de-mystifying concurrency. Precisely because C and C++ allow nothing to be swept under the
covers, concurrency may be easier to understand (although harder to use) in these programming
languages than in those explicitly designed for concurrency, such as Ada [Mundie & Fisher 1986],
Modula-3 [Nelson 1991], and Concurrent Euclid [Holt 1983].

Second, a working thread system, as in Nachos, allows students to practice writing concurrent
programs and to test out those programs. Even experienced programmers �nd it di�cult to think
concurrently; a widely used OS textbook had an error in one of its concurrent algorithms that went
undetected for several years. When we �rst used Nachos, we omitted many of the practice problems
we now include in the assignment, thinking that students would see enough concurrency in the rest
of the project. In retrospect, the result was that many students were still making concurrency errors
even in the �nal phase of the project.

Our thread system is based on FastThreads [Anderson et al. 1989]. Our primary goal was
simplicity, to reduce the e�ort required for students to trace the behavior of the thread system. Our
implementation takes a total of about 10 pages of C++ and a page of MIPS assembly code. For
simplicity, thread scheduling is normally non-preemptive, but to emphasize the importance of critical
sections and synchronization, we have a command-line option that causes threads to be time-sliced
at \random", but repeatable, points in the program. Concurrent programs are correct only if they
work when \a context switch can happen at any time."

3.2 File Systems

Real �le systems can be very complex artifacts. The UNIX �le system, for example, has at least
three levels of indirection | the per-process �le descriptor table, the system-wide open �le table,
and the in-core inode table | before one even gets to disk blocks [McKusick et al. 1984]. As a
result, in order to build a �le system that is simple enough for students to read and understand in
a couple of weeks, we were forced to make some hard choices as to where to sacri�ce realism.

We provide a basic working �le system stripped of as much functionality as possible. While
the �le system has an interface similar to that of UNIX [Ritchie & Thompson 1974] (cast in terms
of C++ objects), it also has many signi�cant limitations with respect to commercial �le systems:
there is no synchronization (only one thread can access the �le system at a time), �les have a very
small maximum size, �les have a �xed size once created, there is no caching or bu�ering of �le data,
the �le name space is completely 
at (there is no hierarchical directory structure), and there is no
attempt at providing robustness across machine and disk crashes. As a result, our basic �le system
takes only about 15 pages of code.

The assignment is �rst, to correct some of these limitations, and second, to improve the perfor-
mance of the resulting �le system. We list a few possible optimizations, such as caching and disk
scheduling, but it is up to the students to decide which are the most cost-e�ective for our benchmark
(the sequential write and then read of a large �le).

At the hardware level, we provide a disk simulator, which accepts \read sector" and \write
sector" requests and signals the completion of an operation via an interrupt. The disk data is stored
in a UNIX �le; read and write sector operations are performed using normal UNIX �le reads and
writes. After the UNIX �le is updated, we calculate how long the simulated disk operation should
have taken (from the track and sector of the request), and set an interrupt to occur that far in

7



the future. Read and write sector requests (emulating hardware) return immediately; higher level
software is responsible for waiting until the interrupt occurs.

We made several mistakes along the way in developing the Nachos �le system. In our �rst
attempt, the �le system was much more realistic than the current one, but it also took more than
four times as much code. We were forced to re-write it to cut it down to something that students
could quickly read and understand. When we handed out this simpler �le system, we did not provide
enough code for it to be completely working, leaving out �le read and �le write to be written by
students as part of the assignment. Although these are fairly straightforward to implement, the fact
that our code did not work meant that students had di�culty understanding how each of the pieces
of the �le system �t together.

We also initially gave students the option of which limitations to �x; from our experience, we
found that students learned the most from�xing the �rst four listed above. In particular, the students
who chose to implement a hierarchical directory structure found that although it was conceptually
simple, the implementation required a relatively large amount of code.

Finally, many modern �le systems include some form of write-ahead logging [Hagmann 1987,
Kazar et al. 1990] or log-structure [Rosenblum & Ousterhout 1992], simplifying crash recovery. The
assignment now completely ignores this issue, but we are currently looking at ways to do crash
recovery by adding simple write-ahead logging code to the baseline Nachos �le system. As it stands,
the choice of whether or not to address crash recovery is simply a tradeo�. In the limited amount
of time available, we ask students to focus on how basic �le systems work, how the �le abstraction
allows disk data layout to be radically changed without changing the �le system interface, and and
how caching can be used to improve I/O performance.

3.3 Multiprogramming

In the third assignment, we provide code to create a user address space, load a Nachos �le con-
taining an executable image into user memory, and then to run the program. Our initial code is
restricted to running only a single user program at a time. Students expand on this base to support
multiprogramming. Students implement a variety of system calls (such as UNIX fork and exec) as
well as a user-level shell. We also ask them to optimize the multiprogramming performance of their
system on a mixed workload of I/O- and CPU-bound jobs.

While we supply relatively little Nachos code as part of this assignment, the hardware simulation
does require a fair amount of code. We simulate the entire MIPS R2/3000 integer instruction set and
a simple single-level page table translation scheme. (For this assignment, a program's entire virtual
address space must be mapped into physical memory; true virtual memory is left for assignment
four.) In addition, we provide students an abstraction that hides most of the details of the MIPS
object code format.

This assignment requires few conceptual leaps, but it does tie together the work of the previous
two assignments, resulting in a usable, albeit limited, operating system. Because our simulator can
run C programs, our students found it easy to write the shell and other utility programs (such as
UNIX \cat") to exercise their system. (One overly ambitious student attempted to port emacs.) The
assignment illustrates that there is little di�erence between writing user code and writing operating
system kernel code, except that user code runs in its own address space, isolating the kernel from
user errors.

8



One important topic we chose to leave out (again, as a tradeo� against time constraints) is
the trend toward a small-kernel operating system structure, where pieces of the operating system
are split o� into user-level servers [Wulf et al. 1974]. Because of its modular design, it would
be straightforward to move Nachos towards a small-kernel structure, except that (i) we have no
symbolic debugging support for user programs and (ii) we would need a stub compiler to make it
easy to make procedure calls across address spaces [Birrell & Nelson 1984].

3.4 Virtual Memory

Assignment four asks students to replace their simple memory management code from the previous
assignment with a true virtual memory system, that is, one that presents to each user program the
abstraction of an (almost) unlimited virtual memory size by using main memory as a cache for the
disk. We provide no new hardware or operating system components for this assignment.

The assignment has three parts. First, students implement the mechanism for page fault handling
| their code must catch the page fault, �nd the needed page on disk, �nd a page frame in memory
to hold the needed page (writing the old contents of the page frame to disk if it is dirty), read
the new page from disk into memory, adjust the page table entry, and then resume the execution
of the program. This mechanism can take advantage of what the students have built in previous
assignments: the backing store for an address space can be simply represented as a Nachos �le, and
synchronization is needed when multiple page faults occur concurrently.

The second part of the assignment is to devise a policy for managing the memory as a cache |
for deciding which page to toss out when a new page frame is needed, in what circumstances (if any)
to do read-ahead, when to write unused dirty pages back to disk, and how many pages to bring in
before initially starting to run a program [Levy & Lipman 1982, Le�er et al. 1989].

These policy questions can have a large impact on overall system performance, in part because
of the large and increasing gap between CPU speed and disk latency | this gap has widened by
two orders of magnitude in only the last decade. Unfortunately, the simplest policies often have
unacceptable performance. To encourage students to implement realistic policies, the third part of
the assignment is to measure the performance of the paging system on a benchmark we provide
| a matrix multiply program where the matrices do not �t in memory. This workload is clearly
not representative of real-life paging behavior, but it is simple enough that students can understand
the impact of policy changes on the application. Further, the application illustrates some of the
problems with caching | small changes in the implementation of matrix multiply can have a large
impact on performance [Lam et al. 1991].

3.5 Networking

Although distributed systems have become increasingly important commercially, most instructional
operating systems do not have a networking component. To address this, the capstone of the project
is to write a signi�cant and interesting distributed application.

At the hardware level, each UNIX process running Nachos represents a uniprocessor workstation.
We simulate the behavior of a network of workstations by running multiple copies of Nachos, each
in its own UNIX process, and by using UNIX sockets to pass network packets from one Nachos
\machine" to another. The Nachos operating system can communicate with other systems by

9



sending packets into the simulated network; the transmission is actually accomplished by socket
send and receive. The Nachos network provides unreliable transmission of limited-size packets from
machine to machine. The likelihood that any packet will be dropped can be set as a command-line
option, as can the seed used to determine which packets are \randomly" chosen to be dropped.
Packets are dropped but never corrupted, so that checksums are not required.

To show students how to use the network and, at the same time, to illustrate the bene�ts of
layering, we built a simple post o�ce protocol on top of the network. The post o�ce layer provides a
set of \mailboxes" that serve to route incoming packets to the appropriate waiting thread. Messages
sent through the post o�ce also contain a return address to be used for acknowledgements.

The assignment is �rst to provide reliable transmission of arbitrary-sized packets, and then
to build a distributed application on top of that service. Supporting arbitrary-sized packets is
straightforward | one need merely to split any large packet into �xed-size pieces, add fragment
serial numbers, and send them one by one. Reliability is more interesting, requiring a careful
analysis and design to be implemented correctly. To reduce the time to do the assignment, we do
not ask students to implement congestion control or window management, although of course these
are important issues in protocol design [Hedrick 1987].

The choice of how to complete the project is left up to the students' creativity. We do make a
few suggestions: multi-user UNIX talk, a distributed �le system with caching [Nelson et al. 1988],
a process migration facility [Douglis & Ousterhout 1991], distributed virtual memory [Li & Hudak
1989], a gateway protocol that is robust to machine crashes. Perhaps the most interesting application
a student built was a distributed version of the \battleship" game, with each player on a di�erent
machine. This illustrated the role of distributed state, since each machine kept only its local view
of the gameboard; it also exposed several performance problems in our hardware simulation which
we have since �xed.

Perhaps the biggest limitation of our current implementation is that we do not model network
performance correctly, because we do not keep the timers on each of the Nachos machines synchro-
nized with one another. We are currently working on addressing this problem, using distributed
simulation techniques for e�ciency [Chandy & Misra 1981, Je�erson et al. 1987]. With this, we
will be able to benchmark the performance of the students' network protocols; this will also enable
students to implement parallel algorithms for message-passing multiprocessors as the �nal part of
the project.

4 Lessons Learned

Designing and implementing Nachos taught us a lot about how instructional software should be put
together, and provided insights on how students learn about complex systems. In this section, we
discuss some of the lessons that we learned.

In devising the assignments, we had to decide which pieces of the Nachos code to provide students
and which pieces to leave for students to write themselves. At one extreme, we could have provided
students only the hardware simulation routines, leaving a tabula rasa for students to build an entire
operating system from scratch. This seemed impractical, given the scope of what we wanted students
to achieve during the semester.

Since our goal was to maximize learning for the amount of student e�ort expended, we at �rst

10



provided students with the mundane and the technically di�cult parts of the operating system,
such as generic list and bitmap management routines on the one hand, and low level thread context
switch code on the other. We did this by writing the entire operating system from scratch, and then
ripping out the parts that we thought students should write for themselves.

We found, however, that code (if simple enough) can be very useful at illustrating how some piece
of the operating system should behave. The key is that the code has to be able to run standalone,
without further e�ort on the part of students. Our thread system, although limited, could show
exactly what happens when one thread relinquishes a processor to another thread. By contrast, when
we provided students with less than a working �le system, students had di�culty understanding how
the pieces of the �le system �t together. Similarly, we initially left to students the de�nition of the
system call interface, including how parameters were to be passed from user code to the kernel. A
simple example would have avoided the resulting confusion.

Of course, reading code by itself can be a boring and pointless exercise; we addressed this by
keeping our code as simple as possible, and by asking students to modify it in fairly fundamental
ways. The result is that the assignments focus on the more interesting aspects of operating systems,
where tradeo�s exist so that there is no single right answer.

Another lesson that we learned from experience was the need to add a quantitative aspect to the
assignments. We explicitly encouraged students to implement simple solutions to the assignments,
to avoid sprawling complexity. But because we initially had no standard benchmarks for measuring
the performance of student implementations, students tended to devise overly simplistic solutions,
where only a bit more e�ort was needed to be realistic. We hope that the performance tests that
we have since added will encourage students to identify when complexity is justi�ed by its bene�ts.
In the future, we also intend to experiment with a di�erent approach towards this same end | to
ask students to explain what performance they would expect from their implementation, along with
the likely e�ect of di�erent performance optimizations, on a simple benchmark. The idea would be
to encourage students to reason about the performance of their system, instead of simply making
changes and measuring the result.

Finally, we were not able to �nd a textbook to adequately explain many of the concepts used
in Nachos, particularly in the areas of concurrency and networking. For instance, the operating
system textbook we ended up using only lightly touches on locks and condition variables; instead, it
devotes most of a chapter to describing how to build critical sections using only memory read and
memory write operations as primitives. Yet every operating system that we know of implements
critical sections using interrupt disable and/or memory read-modify-write instructions.

To address this, we supplemented the textbook with a few relevant papers, namely: Birrell
[1989], Ritchie and Thompson [1974], McKusick et al. [1984], Gray [1981], Levy and Lipman [1982],
Hedrick [1987], and Lampson [1984]. We found that many of our students could understand and
use the key ideas from these papers, particularly when we gave them a roadmap to each paper's
terminology. An important side goal was to de-mystify reading research papers | one way for
students to continue their education after graduation to keep up with the rapid pace of technological
change in our industry.

11



5 Conclusions

We have written an instructional operating system, called Nachos. It is designed to re
ect recent
advances in hardware and software technology, to illustrate modern operating system concepts, and,
more broadly, to help teach students how to design complex computer systems. Nachos has been
used in undergraduate operating systems courses at several universities, and the results were positive.
We plan to use Nachos in future semesters, and we have made it publicly available in the hope that
others will also �nd it useful.

6 Acknowledgements

We would like to thank the Spring 1992 CS 162 class at Berkeley for serving as guinea pigs while
Nachos was under development. Brian Bershad, Garth Gibson, Ed Lazowska, John Ousterhout,
and Dave Patterson gave us very helpful advice during the design of Nachos. John Ousterhout also
wrote the MIPS simulator included in Nachos. Mendel Rosenblum ported Nachos to the SPARC;
Miguel Valdez and Yan Or are continuing work on improving Nachos. We credit Lance Berc with
the acronym for Nachos: Not Another Completely Heuristic Operating System.

References

[Aguirre et al. 1991] Aguirre, G., Errecalde, M., Guerrero, R., Kavka, C., Leguizamon, G., Printista,
M., and Gallard, R. Experiencing MINIX as a Didactical Aid for Operating Systems
Courses. Operating Systems Review, 25:32{39, July 1991.

[Anderson et al. 1989] Anderson, T., Lazowska, E., and Levy, H. The Performance Implications of
Thread Management Alternatives for Shared Memory Multiprocessors. IEEE Transac-

tions on Computers, 38(12):1631{1644, December 1989.

[Bedichek 1990] Bedichek, R. Some E�cient Architecture Simulation Techniques. In Proceedings of
the 1990 USENIX Winter Conference, pp. 53{63, January 1990.

[Birrell & Nelson 1984] Birrell, A. and Nelson, B. Implementing Remote Procedure Calls. ACM

Transactions on Computer Systems, 2(1):39{59, February 1984.

[Birrell 1989] Birrell, A. An Introduction to Programming with Threads. Technical Report #35,
Digital Equipment Corporation's Systems Research Center, Palo Alto, California, January
1989.

[Chandy & Misra 1981] Chandy, K. and Misra, J. Asynchronous Distributed Simulation via a Se-
quence of Parallel Computations. Communications of the ACM, 24(4):198{206, April
1981.

[Daley & Dennis 1968] Daley, R. and Dennis, J. Virtual Memory, Processes and Sharing in MUL-
TICS. Communications of the ACM, 11(5):306{312, May 1968.

12



[Dijkstra 1989] Dijkstra, E. On the Cruelty of Really Teaching Computer Science. Communications
of the ACM, 32(12):1398{1404, December 1989.

[Douglis & Ousterhout 1991] Douglis, F. and Ousterhout, J. Transparent Process Migration: Design
Alternatives and the Sprite Implementation. Software|Practice and Experience, 21(7),
July 1991.

[Gray 1981] Gray, J. The Transaction Concept: Virtues and Limitations. In Proceedings of the 7th

International Conference on Very Large Data Bases, pp. 144{154, September 1981.

[Hagmann 1987] Hagmann, R. Reimplementing the Cedar File System Using Logging and Group
Commit. In Proceedings of the 11th ACM Symposium on Operating Systems Principles,
pp. 155{162, November 1987.

[Hedrick 1987] Hedrick, C. Introduction to the Internet Protocols. Technical report, Rutgers Com-
puter Science Facilities Group, July 1987.

[Holt 1983] Holt, R. Concurrent Euclid, the UNIX System, and TUNIS. Addison-Wesley, 1983.

[Je�erson et al. 1987] Je�erson, D., Beckman, B., Wieland, F., Blume, L., DiLoreto, M., Hontabas,
P., Laroche, P., Studevant, K., Tupman, J., Warren, V., Wedel, J., Younger, H., and
Bellenot, S. Distributed Simulation and the TimeWarp Operating System. In Proceedings
of the 11th ACM Symposium on Operating Systems Principles, pp. 77{93, November 1987.

[Kane 1987] Kane, G. MIPS R2000 RISC Architecture. Prentice Hall, 1987.

[Kazar et al. 1990] Kazar, M., Leverett, B., Anderson, O., Apostolides, V., Bottos, B., Chutani, S.,
Everhart, C., Mason, W., Tu, S.-T., and Zayas, E. DEcorum File System Architectural
Overview. In Proceedings of the 1990 USENIX Summer Conference, pp. 151{164, June
1990.

[Lam et al. 1991] Lam, M., Rothberg, E., and Wolf, M. The Cache Performance and Optimizations
of Blocked Algorithms. In Proceedings of the 4th International Conference on Architectural
Support for Programming Languages and Operating Systems, pp. 63{74, April 1991.

[Lampson & Redell 1980] Lampson, B. and Redell, D. Experiences with Processes and Monitors in
Mesa. Communications of the ACM, 23(2):104{117, February 1980.

[Lampson 1984] Lampson, B. W. Hints for Computer System Design. IEEE Software, 1(1):11{28,
January 1984.

[Le�er et al. 1989] Le�er, S., McKusick, K., Karels, M., and Quarterman, J. Design and Imple-

mentation of the 4.3 BSD Unix Operating System. Addison-Wesley, 1989.

[Levy & Lipman 1982] Levy, H. and Lipman, P. Virtual Memory Management in the VAX/VMS
Operating System. IEEE Computer, pp. 35{41, March 1982.

[Li & Hudak 1989] Li, K. and Hudak, P. Memory Coherence in Shared Virtual Memory Systems.
ACM Transactions on Computer Systems, 7(4):321{359, November 1989.

13



[Lions 1977] Lions, J. A Commentary on the UNIX Operating System, June 1977. Department of
Computer Science, University of New South Wales.

[McKusick et al. 1984] McKusick, M., Joy, W., Le�er, S., and Fabry, R. A Fast File System for
UNIX. ACM Transactions on Computer Systems, 2(3):181{197, August 1984.

[Mealy et al. 1966] Mealy, G., Witt, B., and Clark, W. The Functional Structure of OS/360. IBM
Systems Journal, 5(1):3{51, January 1966.

[Mundie & Fisher 1986] Mundie, D. and Fisher, D. Parallel Processing in Ada. IEEE Computer,
19(8):20{25, August 1986.

[Nelson 1991] Nelson, G., editor. Systems Programming with Modula-3. Prentice Hall, 1991.

[Nelson et al. 1988] Nelson, M., Welch, B., and Ousterhout, J. Caching in the Sprite Network File
System. ACM Transactions on Computer Systems, 6(1):134{154, February 1988.

[Patterson & Hennessy 1990] Patterson, D. and Hennessy, J. Computer Architecture: A Quantita-

tive Approach. Morgan Kaufman, San Mateo, CA, 1990.

[Patterson 1992] Patterson, D. Has CS Changed in 20 Years? Computing Research News, 4(2):2{3,
March 1992.

[Rashid et al. 1988] Rashid, R., Tevanian, A., Young, M., Golub, D., Baron, R., Black, D., Bolosky,
W., and Chew, J. Machine-Independent Virtual Memory Management for Paged Unipro-
cessor and Multiprocessor Architectures. IEEE Transactions on Computers, 37(8):896{
908, August 1988.

[Ritchie & Thompson 1974] Ritchie, D. and Thompson, K. The Unix Time-Sharing System. Com-
munications of the ACM, 17(7):365{375, July 1974.

[Rosenblum & Ousterhout 1992] Rosenblum, M. and Ousterhout, J. The Design and Implementa-
tion of a Log-Structured File System. ACM Transactions on Computer Systems, 10(1):26{
52, February 1992.

[Stroustrup 1986] Stroustrup, B. The C++ Programming Language. Addison-Wesley, Reading, MA,
1986.

[Tanenbaum 1987a] Tanenbaum, A. Operating Systems: Design and Implementation. Prentice-Hall,
1987.

[Tanenbaum 1987b] Tanenbaum, A. A UNIX Clone with Source Code for Operating Systems
Courses. Operating Systems Review, 21(1):20{29, January 1987.

[Wulf et al. 1974] Wulf, W., Cohen, E., Corwin, W., Jones, A., Levin, R., Pierson, C., and Pollack,
F. HYDRA: The Kernel of a Multiprocessor Operating System. Communications of the
ACM, 17(6):337{344, June 1974.

14



A Biographies

Wayne Christopher is a graduate student in the Computer Science Division at the University of
California at Berkeley. He received his B.A. in mathematics and philosophy in 1986 and his M.S.
in electrical engineering in 1989, both from Berkeley. With any luck he will receive his Ph.D. in
1993. His research interests include realistic animation, virtual reality, multimedia, networks, and
operating systems. His e-mail address is \faustus@cs.berkeley.edu".

Steven Procter is a senior software engineer at Real Time Solutions in Berkeley, California. He
received his B.A. in mathematics in 1988 and his M.S. in computer science in 1992, both from
the University of California at Berkeley. His interests include operating systems, two dimensional
computer graphics and multimedia. His e-mail address is \rts2!procter@uunet.uu.net".

Thomas Anderson is an Assistant Professor in the Computer Science Division at the University
of California at Berkeley. He received his A.B. in philosophy from Harvard University in 1983
and his M.S. and Ph.D. in computer science from the University of Washington in 1989 and 1991,
respectively. He won an NSF Young Investigator Award in 1992, and he co-authored award papers at
the 1989 SIGMETRICS Conference, the 1989 and 1991 Symposia on Operating Systems Principles,
and the 1992 ASPLOS Conference. His interests include operating systems, computer architecture,
multiprocessors, high speed networks, massive storage systems, and computer science education. His
e-mail address is \tea@cs.berkeley.edu".

15


