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Abstract

We apply queueing theory to derive the probability distribution on the queue buildup as-
sociated with greedy routing on an n � n array and an n � n torus of processors. We assume
packets continuously arrive at each node of the array or torus with Poisson rate � and have
random destinations. We assume an edge may be traversed by only one packet at a time and
the time to traverse an edge is exponentially distributed with mean 1.

To analyze the queue size in steady-state, we formulate both these problems as equivalent
Jackson queueing network models. With this model, determining the probability distribution
on the queue size at each node involves solving O(n4) simultaneous linear equations. However,
we eliminate the need to solve these simultaneous equations by deriving a very simple formula
for the total arrival rates and for the expected queue sizes in the case of greedy routing.

This simple formula shows that in the case of the n � n array, the expected queue size at
a node increases as the Euclidean distance of the node from the center of the array decreases.
Furthermore, in the case of the n � n torus, the probability distribution on the queue size is
identical for every node.

We also translate our results about queue sizes into results about the average packet delay.
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1 Introduction

� PROBLEM JUSTIFICATION

An array of processors is one of the most commonly used communication networks because it has
a very simple layout which uses an almost minimal number of wires, and which is also very easy to
enlarge. A torus of processors has the same cost bene�ts, with the added bene�t that the nodes
are indistinguishable, thereby making it easier to analyze.

The most common type of oblivious routing on arrays or tori of processors is the greedy routing
algorithm which sends a packet �rst to its correct column and only then to its correct row. We
investigate the problem of greedily routing packets which arrive continuously at the nodes of the
array or torus at Poisson rate � and have random destinations. This problem is important since it
comprises the �rst half of any randomized routing algorithm.

Since a wire (edge) of the array (or torus) may be used by only one packet at a time, packets
naturally get delayed at the processor nodes of the array (torus). It is therefore important in
building arrays (tori) of processors that we create appropriate sized bu�ers at each node of the
array (torus) to hold packets which are delayed (in queue). In this paper we determine the size of
these necessary bu�ers.

� PREVIOUS HISTORY

Previous work in this area includes Leighton's work [Leighton,92] which examines the array problem
except that:

� Packets are prioritized at the queues in terms of Farthest First, rather than our method which
uses FCFS (�rst come �rst serve).

� Cherno� Bounds rather than queueing theory is the method of analysis

� Leighton only derives limits on the tail end of the distribution, rather than the whole distri-
bution.

Leighton's work does not include an analysis of tori.

More closely related work is a paper by Stamoulis and Tsitsiklis [Stamoulis, Tsitsiklis,91]. This
work uses queueing theory, however the network analyzed is a hypercube (rather than an array),
and the authors are concerned more with the problem of average delay of a single packet as it moves
through the network, rather than with an analysis of queue size at each node of the network.

� SYNOPSIS OF PAPER

In this paper we solve the problem of determining the queue size at each node of the n � n array
(torus) in steady-state by converting the problem into a Jackson Queueing Network Model which
can then be analyzed via queueing theory. The queueing theory analysis requires solving O(n4)
simultaneous linear equations to determine the steady-state total arrival rate at each server, which
can then be plugged into the queueing formula to determine a probability distribution on the queue
size at each server. One very interesting observation made in this paper is that when the routing
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algorithm is greedy a very simple formula can be used to determine the total arrival rates for the
nodes of the array (torus), making it unnecessary to solve all the simultaneous equations. This
greatly simpli�es the process of determining the probability distribution on the queue size at each
server.

Another consequence of this simple formula is that in the case of an n � n array, it can be used
to prove that the total arrival rate increases as we look at nodes closer and closer to the center of
the array. Observing that the expected queue size at a node is directly proportional to the total
arrival rate at the node, we are then able to prove that the expected queue size at a node of
the array increases as we look at nodes closer to the center of the array.

In the case of an n� n torus, the simple formula for the total arrival rate at each node is constant
for all the nodes of the torus. This leads to the conclusion that the the expected queue size is
the same at all the nodes of the torus.

� OUTLINE OF CHAPTERS

Since the array is more di�cult to analyze than the torus, we devote most of the paper to talking
exclusively about the array problem. In the last section, we then show how the same type of
analysis can be used to solve the torus problem.

Section 2 contains a detailed problem de�nition, for the case of the n� n array.

In Section 3 we provide background material on the Jackson Queueing Network Model, and also
provide the formula for the probability distribution on the queue size at the servers of this network
model.

In Section 4 we �rstly show how to cast our original problem into the framework of the Jackson
Queueing Network model. Having formulated our problem in terms of a Jackson Queueing Network,
we next illustrate the simultaneous equations which must be solved to determine the total arrival
rate at each server (which in turn are used to determine the queue size at the server).

Section 5 obviates the need to solve the simultaneous equations of Section 4 by developing a very
simple formula for determining the total arrival rates and a very simple formula for the expected
queue size at each node. This simple formula shows that the expected queue size at a node of the
array increases as the node's Euclidean distance from the center of the array decreases.

Section 6 illustrates the use of this simple formula to immediately determine the probability dis-
tribution on the queue sizes of the 5 � 5 array problem. It also illustrates the general properties
proved in Section 5 for the 5� 5 array problem.

In Section 7, we apply the same analysis used for an array to determine the probability distribution
on the queue size at the processors of the n � n torus. It turns out that since the torus has no
distinguished nodes, the probability distribution on the queue size is the same for every processor
node in the torus.

In Section 8 we give an upper bound on the arrival rate �. We also derive a formula for the average
delay of a packet and we compute expected queue sizes for intermediate � and very high �.

In Section 9, we summarize our results, and in Section 10 we discuss several alternative useful
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analyses which could be implemented using the same Jackson Queueing Network Theorem.

In Appendix A, we give a more formal derivation for the arrival rate formula Section 5, rather than
the more intuitive proof provided in Section 5.

Appendix B looks at an alternative way we could have set up the Jackson Queueing Model for our
routing problem on the array, in which we use a di�erent way of classifying the packets.

Lastly, Appendix C illustrates the O(n4) simultaneous equations for the case of the 3� 3 array.

2 Problem De�nition

Our network is an n�n array of processors, as shown in Figure 1. New packets arrive at processor
P(i;j) at Poisson rate �, where 0 < � < 1.

Each packet is assigned a random destination in the array. A packet contains a destination �eld
and a data �eld.

When a new packet arrives, it is routed to its destination via the following greedy routing

algorithm: First, the packet is routed to its correct column and next to its correct row. If two
packets require the same edge, contention is resolved via First-Come-First-Served (FCFS).

The time it takes for a packet to move through an edge is exponentially distributed with mean 1.
Only one packet may be on an edge at a time.

Our goal is to compute the probability distribution on the queue size at each processor, when the
network is in steady-state.

The �rst step in solving the above problem is to convert it into a common queueing network model.
We next analyze the distribution on the queue sizes in the model, which gives us the distribution
on the queue sizes in our original problem. In the next section we describe the queueing network
model we'll be using.

3 Multiple-Job-Class Open Jackson Queueing Network Model

In this section we describe the Queueing Network Model we will be using in this paper. The model
we use allows packets to be associated with a class or type. There are simpler queueing models in
which the packets aren't typed, however, as we will see in Section 3 we will need this more extensive
model to handle our routing problem of Section 1.

The Queueing Network Model we use [Buzacott,Shanthikumar,93] assumes there are m servers

with one processor per server. There are r classes, or types of packets. Packets of class l arrive

at server i from outside the network at a Poisson rate r
(l)
i . This model allows packets to change

their class as they move from server to server. A packet of class l at server i next moves to server

j and becomes of class k type with probability p
(l)(k)
ij . (The queueing network model assumes

a complete directed graph connecting the servers. We can model a network with fewer edges, by
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simply making some of the edge probabilities zero.) A packet at server imay also leave the network,
with some probability, rather than continuing to another server. Lastly the service rate at server i
is exponentially distributed with rate �i.

We will use the notation n
(l)
i

to denote the number of packets at server i of class l, and ni =
Pr

l=1 n
(l)
i

to denote the total number of packets at server i.

Theorem 1 (Buzacott,Shanthikumar,93) When the queueing network is in steady state,

pi(n
(1)
i ; : : : ; n

(r)
i ) =

 
ni

n
(1)
i ; : : : ; n

(r)
i

!
rY
l=1

0
@ �̂

(l)
i

�̂i

1
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n
(l)
i

(1� �i)�
ni
i (1)
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�̂i

�i
(2)

�̂i =
rX

l=1

�̂
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�̂
(l)
i = r

(l)
i +

mX
j=1

rX
k=1

p
(k)(l)
ji �̂

(k)
j (3)

The proof of this theorem is given in [Buzacott,Shanthikumar,93].

The above theorem tells us how to compute the joint probability of having, for example, n
(1)
i packets

of type 1 at server i and n
(2)
i packets of type 2 at server i ..., and n

(r)
i packets of type r at server

i. It says we must �rst solve m � r simultaneous linear equations to obtain �̂
(l)
i for l = 1; : : : ; r and

i = 1; : : : ; m. Then we plug these �̂
(l)
i 's into the above formula for pi(n

(1)
i ; : : : ; n

(r)
i ).

Note that �̂
(l)
i represents the rate at which packets of class l 
ow into server i, including both those

packets which arrive from outside as well as packets arriving from other servers.

Now, suppose we want to know the probability that there are ni packets at server i. By de�nition,
pi(ni), the probability that there are ni packets at server i, is the sum of Equation 1 over all values

of n
(1)
i ; n

(2)
i ; : : : ; n

(r)
i such that n

(1)
i + n

(2)
i + : : :+ n

(r)
i = ni.

Corollary 2

pi(ni) = (1� �i)�
ni
i

where �i is de�ned as above in Theorem 1.

Proof: Note that the expression for pi(n
(1)
i ; : : : ; n

(r)
i ) begins with a multinomial probability, and

observe that by de�nition
Pr

l=1

 
�̂
(l)

i

�̂i

!
= 1.
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Lastly let Ni be a random variable representing the number of packets at server i. Since by
Corollary 2 Ni has a distribution which is geometric times a factor �i, we have:

E[Ni] =
�i

1� �i
(4)

var(Ni) =
�i

(1� �i)2

4 Modeling the Routing Problem on an Array as a Jackson

Queueing Network

In this section we show how to formulate the problem of greedy routing on an n�n array in terms of
the queueing network model introduced in Section 2 so that we may apply Theorem 1 to determine
the probability distribution on the queue sizes. We build up to the exact formulation with some
discussion.

A �rst attempt might be to let each of the n2 nodes of the array be a server, where the servers are
connected only by those edges which are in the array. (All other edges between processors have 0
probabilities associated with them.) Now the probability that a packet moves from server (i; j) to
server (i0; j 0) is either 1 or 0, depending on the destination of the packet. If we now make the

destination of the packet be the \class" associated with the packet, the probability that
a packet moves from server (i; j) to server (i0; j0) depends only on (i; j), (i0; j 0), and the class of
the packet, as required by the queueing network model of Section 2. (Note that if our queueing
network model didn't allow for classes, the process of moving from server to server would not be
Markovian). Observe that in this formulation, the class of a packet does not change as the packet
moves between servers.

The above formulation doesn't quite work, however. Suppose, for example we model the service
rate of each server as 1. Queuing theory assumes one queue at each server. However, suppose
that 2 packets arrive at the same node and want exit the node in di�erent directions. The array
allows both packets to leave the node since they won't con
ict with each other. In the current
queueing model formulation, however, one packet would �rst have to wait for the other packet to
�nish. Setting the service to 4, the number of outgoing edges, indicates that the node can send
four packets out on one edge which isn't right, either.

We can �x this problem by realizing that congestion in the array is an edge problem not a node
problem. Therefore we associate a server with each outgoing edge, rather than each node of the
array, as shown in Figure 2.

Rows and columns are numbered from 0 to n� 1 with 0; 0 being in the upper, lefthand corner. We
use the notation Pi;j;L to denote the left processor at row i, column j. Likewise Pi;j;R Pi;j;U Pi;j;D
respectively denote the right, up and down (i; j) processors. Lastly we let Pi;j;C denote the center
(i; j) processor. We will refer to processors Pi;j;L; Pi;j;R; Pi;j;U , and Pi;j;D respectively as the left,
right, up, and down petals of the 
ower (i; j), and to Pi;j;C as the center processor of 
ower (i; j).

Each petal processor has its own queue and sits on an edge. Packets on queue at a petal processor
may be thought of as waiting to use that edge. Only one packet at a time can use the edge, and
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the time spent by a packet on an edge is on average one time unit (the service rate of every petal
processor is 1).

When a packet originates at a node of the original n � n array, we model it as originating on the
petal (of the corresponding 
ower) which corresponds to the �rst edge the packet must use to get
to its destination. The packet then moves from the petal of one 
ower to a petal of another 
ower,
etc., until it reaches its destination, at which point it moves to the center processor of its destination

ower and leaves the system. We set the service rate for the center processors to be 1.

The edges into one processor in our queueing network are shown in Figure 3. For clarity edges to
and from the central processor (that is, into and out of the system) and edges from the petals to
other nodes are not shown. In the greedy algorithm a packet which moves upward will only move
upward or leave the system subsequently. So the only edge into the 
ower from the Up petal below
goes to the Up petal of the middle 
ower. Likewise the only edge from the Down petal above is to
the Down petal in the middle.

Packets traveling left or right may continue in the same direction or may turn up or down (or they
may leave the system | not shown). So there are edges from the left and right petals of the 
owers
on the side to the Up, Down, and Left and Right petals in the middle.

We are now ready to formulate the routing problem on an n � n array as a Jackson Queueing
Network. Given an n � n array of processors P(i;j) with grid connections, such that:

� new packets arrive at P(i;j) from outside the system at rate �,

� Each packet is assigned a random destination when it �rst arrives.

� The packet is routed to its destination via the Greedy algorithm.

� The rate at which a packet traverses an edge is exponential rate 1.

� Only one packet may traverse an edge at a time.

� Edge contention is resolved using FCFS

We analyze the queue sizes at the nodes of the above array by looking at the following
queueing network model:

� The number of servers, m, is 5n2, denoted by Pi;j;R, Pi;j;L, Pi;j;U , Pi;j;D, Pi;j;C , for i =
0; : : : ; n� 1 and j = 0; : : : ; n� 1.

� The number of classes, r, is n2, one for each possible destination.

� Packets never change class. A packet of class d (that is, for destination d) at server PijS next

moves to server Pi0j0S0 with probability p
(d)
ijS;i0j0S0 . It's value is 1 if the greedy algorithm routes

a packet at server ii;j;S with destination d to server ii0;j0;S0 , and 0 otherwise.

� Packets of class d arrive at server ii;j;S with Poisson rate rdi;j;S = c � q

n2
, where q = the number

of possible destinations a packet at server Pi;j;S might be headed for via the greedy algorithm.
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� �i, the service rate at server i, is 1 for all petal servers and 1 for the center servers.

For the above queueing network model, the system of linear equations speci�ed in Corollary 2 from
Section 2 become:

�̂
(d)
i = r

(d)
i +

mX
j=1

p
(d)
ji �̂

(d)
j (5)

�̂i =
rX

d=1

�̂
(d)
i

�i =
�̂i

�i
= �̂i

pi(ni) = (1� �i)�
ni
i

Thus to calculate pi(ni), the probability of having ni packets at server i, we can �rst solve the

simultaneous equations for all the �̂
(d)
i 's and then sum them to obtain the �̂i's. Since the service

rate, �i is 1, the �̂i's are the �i's which then give us pi(ni) for each i and any ni we choose. Also
the number of packets has a geometric distribution.

The expected number of packets queued at a node is the sum of the expected number of packets
queued at each petal of the associated 
ower.

E[Nrc] =
X

S2R;U;L;D

E[NrcS]

The number of simultaneous linear equations generated by Equation 5 is r � m = 5n4. Solving
a system of 5n4 linear equations in 5n4 unknowns seems daunting. For general networks with
feedback paths there are mutually dependent variables. However in the model of a greedy

routing algorithms, no packet path has a loop, so no variables are mutually dependent.
This, along with other features of greedy routing makes a general analytic solution of

the system of equations for arbitrary sized arrays feasible. As an example, Appendix C
shows the simultaneous linear equations which result for the case of a 3� 3 array.

In the next section, we propose, however, an easier way to obtain the �̂i's directly by combinatorial
analysis.

5 A Simple Method For Determining Queue Size on Array

Recall from Section 2 that �̂i represents the total rate at which packets arrive at server i from both
outside the system as well as from other servers. In the observation below, we give an equivalent
interpretation to �̂i which also allows it to be computed quickly.
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Observation 3 For oblivious routing schemes, the value �̂i has a simple, intuitive meaning: it is

the number of paths through node i weighted by the frequency of use of each path. If the frequencies

of use of all paths are the same, �̂i is just the number of paths times the frequency of use.

Theorem 4 The total arrival rate of packets at petal node Pr;c;S is

�̂Pr;c;R =
�

n
(col(P ) + 1)(n� col(P )� 1)

�̂Pr;c;L =
�

n
(n� col(P ))col(P )

�̂Pr;c;U =
�

n
(n� row(P ))row(P )

�̂Pr;c;D =
�

n
(row(P ) + 1)(n� row(P )� 1)

Proof: Here we present an combinatorial proof of these equations. A derivation from the original
de�ning equations is given in Appendix A.

Consider the number of paths through some right petal Pr;c;R. All paths through that petal must
have a destination in a 
ower to the right of it. There are n(n�col(P )�1) destinations that paths
might have. See Figure 4. Additionally since the algorithm routes packets to the correct column
before changing rows, only packets which arrive from outside at the col(P ) 
owers to the left on
the same row, plus those arriving from the outside at the 
ower Pr;c, go through the petal. Thus
there are a total of (col(P ) + 1)n(n � col(P )� 1) paths through the petal. Since the arrival rate
at each 
ower from outside is � and each of n2 destinations is equally likely, the arrival rate at any
right petal Pr;c;R is �

n
(col(P ) + 1)(n� col(P )� 1).

The arguments for petals in other directions is similar.

The above theorem gives us an easier way to compute all the �̂i's and thereby the pi(ni)'s. Note
that the above theorem assumes (as we have assumed throughout this paper) that the arrival rate
from outside to the nodes in the original n � n array is the same for every node.

Theorem 4 doesn't mention the arrival rate at the center server of each 
ower. This can safely
be ignored. Since any packet arriving at the center node leaves the system, the arrival rate can't
in
uence the arrival rate at any other petal. Also since packets leave the system immediately, that
is the service rate �PrcC is 1, no queue ever forms:

�PrcC =
�̂PrcC
1 = 0

and
E[NPrcC ] =

�PrcC
1� �PrcC

= 0
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Theorem 5 The expected total number of packets in queue at a 
ower (r; c) is

E[N(r;c)] =
n

�

�
1

b+ x2 � x
+

1

b+ (x+ 1)2 � (x+ 1)
+

1

b+ y2 � y
+

1

b+ (y + 1)2 � (y + 1)

�
� 4

where b = n
�
� n2�1

4 and x and y are the horizontal and vertical distance of (r; c) from the center of

the array.

Proof: Recall we number rows and columns 0; : : : ; n� 1. The center of the array is at (n�12 ; n�12 ).
Let x = col(P )� n�1

2 and y = row(P ) � n�1
2 , the x and y o�sets of the node from the center of

the array. So col(P ) = x + n�1
2 and row(P ) = y + n�1

2 . Note that when n is even, the center of
the array as well as the o�sets are fractions.

Rewriting the formulas from Theorem 4 in terms of x and y gives

�̂Pr;c;R =
�

n

�
n � 1

2
+ (x+ 1)

��
n+ 1

2
� (x+ 1)

�

�̂Pr;c;L =
�

n

�
n � 1

2
+ x

��
n+ 1

2
� x

�

�̂Pr;c;U =
�

n

�
n � 1

2
+ y

��
n+ 1

2
� y

�

�̂Pr;c;D =
�

n

�
n � 1

2
+ (y + 1)

��
n+ 1

2
� (y + 1)

�

Using Equation 4 we have

E[NPr;c;R ] =

�
n

�
n�1
2 + (x+ 1)

��
n+1
2 � (x+ 1)

�
1� �

n

�
n�1
2 + (x+ 1)

��
n+1
2 � (x+ 1)

�

=
n2�1
4 � (x+ 1)2 + (x+ 1)�

n
�
� n2�1

4

�
+ (x+ 1)2 � (x+ 1)

E[NPr;c;L ] =

�
n

�
n�1
2 + x)

��
n+1
2 � x

�
1� �

n

�
n�1
2 + x

��
n+1
2 � x

�

=
n2�1
4 � x2 + x�

n
�
� n2�1

4

�
+ x2 � x

E[NPr;c;U ] =

�
n

�
n�1
2 + y)

��
n+1
2 � y

�
1� �

n

�
n�1
2 + y

��
n+1
2 � y

�

=
n2�1
4 � y2 + y�

n
�
� n2�1

4

�
+ y2 � y

E[NPr;c;D ] =

�
n

�
n�1
2 + (y + 1)

��
n+1
2 � (y + 1)

�
1� �

n

�
n�1
2 + (y + 1)

��
n+1
2 � (y + 1)

�

9



=
n2�1
4 � (y + 1)2 + (y + 1)�

n
�
� n2�1

4

�
+ (y + 1)2 � (y + 1)

Let a = n2�1
4 and b = n

�
� n2�1

4 . We see that

E[NPr;c;R ] =
a � (x+ 1)2 + (x+ 1)

b+ (x+ 1)2 � (x+ 1)

E[NPr;c;L ] =
a � x2 + x

b+ x2 � x

E[NPr;c;U ] =
a � y2 + y

b+ y2 � y

E[NPr;c;D ] =
a � (y + 1)2 + (y + 1)

b+ (y + 1)2 � (y + 1)

The expected value of the queue at a node is the sum of expected values of queues at each petal,
so

E[Nr;c] =
X
S

E[NPr;c;S ]

=
a � (x+ 1)2 + (x+ 1)

b+ (x+ 1)2 � (x+ 1)
+
a� x2 + x

b+ x2 � x
+
a� y2 + y

b+ y2 � y
+
a� (y + 1)2 + (y + 1)

b+ (y + 1)2 � (y + 1)

=
a

b+ (x+ 1)2 � (x+ 1)
� (x+ 1)2 + (x+ 1)

b+ (x+ 1)2 � (x+ 1)
+

a

b+ x2 � x
� x2 + x

b+ x2 � x

+
a

b+ y2 � y
� y2 + y

b+ y2 � y
+

a

b+ (y + 1)2 � (y + 1)
� (y + 1)2 + (y + 1)

b+ (y + 1)2 � (y + 1)

=
a

b+ (x+ 1)2 � (x+ 1)
+

b

b+ (x+ 1)2 � (x+ 1)
+

a

b+ x2 � x
+

b

b+ x2 � x

+
a

b+ y2 � y
+

b

b+ y2 � y
+

a

b+ (y + 1)2 � (y + 1)
+

b

b+ (y + 1)2 � (y + 1)
� 4

= (a+ b)

�
1

b+ (x+ 1)2 � (x+ 1)
+

1

b+ x2 � x
+

1

b+ y2 � y
+

1

b+ (y + 1)2 � (y + 1)

�
� 4

=
n

�

�
1

b+ (x+ 1)2 � (x+ 1)
+

1

b+ x2 � x
+

1

b+ y2 � y
+

1

b+ (y + 1)2 � (y + 1)

�
� 4

In the next section we will show an example of how the formulas derived in theorem 4 together
with Corollary 2 are used to quickly derive the exact probability distribution on the queue sizes in
the case of the 5 � 5 array. We will also observe the phenomenon of Theorem 5, when analyzing
the 5� 5 array.

6 An Example: Numerical Results

In this section we compute the probability distribution on the queue sizes of the nodes (i; j) of the
5� 5 array of processors where i = 0; : : : ; 4 and j = 0; : : : ; 4. To do this we look at the associated

10



Jackson Queueing Network as described in Section 4, and compute the probability distribution on
the queue size of each petal processor in the Jackson Network. Then, for each 
ower, (i; j), we sum
up the queue size of each of its petals to obtain the queue size for the 
ower, which in turn is the
queue size of node (i; j) in the original 5� 5 array of processors.

To compute the probability distribution on the queue size of each petal processor in the associ-
ated Jackson Queueing Network, we use Equation 4 (see Section 3), however rather than solving
simultaneous equations, we derive the �̂i's directly by the formulas in Theorem 5.

Figure 5a shows the �̂i for each petal server i as derived using Theorem 4. We assume � = 5
12 ,

since it makes the numbers nice. Since �i = 1 for all petal servers i, �i = �̂i. Corollary 2 then
tells us that the probability that there are ni packets in queue at petal server i, pi(ni), is equal
to (1 � �i)�

ni
i . We have not drawn the probability distribution on the queue size for each petal,

however, it is clear that the distribution is geometric and therefore has an exponential shape. (Note
that since the queue sizes on the petals of a 
ower are not independent we can't simply combine
these probability distributions, however we can sum their expected values).

In Figure 5b, we show E[Ni], the expected number of packets in queue at i, for each petal server
i. Lastly, in Figure 5c, for each 
ower (i; j), we total the expected number of packets in queue at
each of its petals, to obtain the expected number of packets in queue at node (i; j) of the original
5� 5 array. Observe that Figure 5c clearly illustrates the phenomenon described in Theorem 5.

7 A Simple Method For Determining Queue Size on A Torus

In this section we study the queue build-up on an n � n torus with bidirectional edges. A 5 � 5
torus is illustrated in Figure 6. Recall that for the n�n array, the expected queue size at each node
decreases as we moved farther from the center of the array. Since the torus has no distinguished
nodes, it seems reasonable that the expected queue size at each node of a torus should be the same.
In this section we show this to be the case.

The assumptions are that packets arrive at each node of the torus at Poisson rate �. The packets
have random destinations. We assume the packets take the greedy path to their destinations. On
the torus, this means that a packet �rst moves within its row to the correct destination column by
taking the shortest route to the column (either left or right � n

2 steps). Then, the packet moves
with that column to its destination again by taking the shortest route (either up or down � n

2
steps). If n is even, destinations exactly n

2 nodes away (that is, equally close either direction) are
routed up or to the right.

We also assume only one packet may traverse an edge at a time, and the time to traverse an edge
is exponentially distributed with mean 1. Therefore queues build up on the edges of the torus. To
analyze the queue size, we will convert the torus into a Jackson Queueing Network by replacing
each node of the torus by a 
ower with 4 petal servers, one for each edge incident to the node. This
is the same transformation we made on the n � n array. As in the case of the array, we assume
the service rate at each petal server is exponentially distributed with mean 1. Also as in the case
of the array, we associate a class with each packet, which is the packet's �nal destination node.

11



To apply the queueing theory formulas of section 3, we need to compute �̂i, the total arrival rate
into server i, for each server i in the network. We could of course do this by solving the O(n4)

simultaneous linear equations for the �̂
(d)
i 's as described in section 4, and then summing the �̂

(d)
i 's

to obtain �̂i.

A far simpler idea is to use observation 3 to obtain a version of theorem 4 for the torus. We present
this theorem below. Observe that the total arrival rate for a petal is independent of the petal's row
and column, as we expected. First we present the average distance and arrival rates for a ring.

Lemma 6 For a ring with n nodes, the average distance to any destination on a ring is

Dave =

(
n� 1

n

4 if n is odd
n
4 if n is even

Proof: We don't show the derivation here.

Lemma 7 For a ring with n nodes, where n is even, the total arrival rate of packets at petal node

PS is

�̂PR =
�

8
(n+ 2)

�̂PL =
�

8
(n� 2)

If n is odd, the total arrival rate of packets at petal node PS is

�̂PR = �̂PL =
�

8
(n� 1

n
)

Proof: � RING: n: even

�̂PR = (frequency of any path)(no. paths through iR)

=
�

n
(
n

2
+ (

n

2
� 1) + � � �+ 1)

=
�

n
(1 + 2 + 3+ � � �+ n

2
)

=
�

8
(n+ 2)

�̂PL = (frequency of any path)(no. paths through iL)

=
�

n
((
n

2
� 1) + (

n

2
� 2) + � � �+ 1)

=
�

n
(1 + 2 + 3 + � � �+ (

n

2
� 1))

=
�

8
(n� 2)

12



� RING: n: odd

�̂PR = �̂PL

=
�

n
(
(n� 1)

2
+ (

(n� 1)

2
� 1) + � � �+ 1)

=
�

n
(1 + 2 + 3+ � � �+ (n� 1)

2
)

=
�

8
(n� 1

n
)

Theorem 8 For an n�n torus, where n is even, the total arrival rate of packets at petal node PS
is

�̂PR =
�

8
(n+ 2)

�̂PL =
�

8
(n� 2)

�̂PU =
�

8
(n+ 2)

�̂PD =
�

8
(n� 2)

Regardless of the direction, where n is odd the total arrival rate of packets at petal node PS is

�̂PS =
�

8
(n� 1

n
)

Proof:

To compute �̂PS , we see by Observation 3 that

�̂PS = (frequency of any path) (number of paths through PS)

� TORUS: n: even
When n is even, the maximum distance travelled Up or Right is n

2 , while the maximum distance
travelled Down or Left is n

2 � 1.

Figure 7a illustrates computing the number of greedy paths through PU . Computing the number
of greedy paths through PD is the same process, except that now the maximum distance travelled
is n

2 � 1.

�̂PU = (frequency of any path)(no. greedy paths through PU )

13



=
�

n2
(n � n

2
+ n � (n

2
� 1) + � � �+ n � 1)

=
�

n2
� n � (1 + 2 + 3 + � � �+ n

2
)

=
�

8
(n+ 2)

�̂PD = (frequency of any path)(no. greedy paths through PD)

=
�

n2
(n � (n

2
� 1) + n � (n

2
� 2) + � � �+ n � 1)

=
�

n2
� n � (1 + 2 + 3+ � � �+ (

n

2
� 1))

=
�

8
(n� 2)

Figure 7b illustrates computing the number of greedy paths through PR. Computing the number
of greedy paths through PL is the same process, except that now the maximum distance travelled
is n

2 � 1.

�̂PR = (frequency of any path)(no. greedy paths through PR)

=
�

n2
(
n

2
� n + (

n

2
� 1) � n+ � � �+ 1 � n)

=
�

n2
� n � (1 + 2+ 3 + � � �+ n

2
)

=
�

8
(n+ 2)

�̂PL = (frequency of any path)(no. greedy paths through PL)

=
�

n2
((
n

2
� 1) � n + (

n

2
� 2) � n+ � � �+ 1 � n)

=
�

n2
� n � (1 + 2 + 3 + � � �+ (

n

2
� 1))

=
�

8
(n� 2)

� TORUS: n: odd
When n is odd, the maximum distance travelled in any direction is n�1

2 . Computing �̂PU is the

same as computing �̂PD and computing �̂PR is the same as computing �̂PL .

�̂PU = �̂PD = (frequency of any path)(no. greedy paths through PD)
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=
�

n2
(n � n� 1

2
+ n � (n� 1

2
� 1) + � � �+ n � 1)

=
�

n2
� n � (1 + 2 + 3 + � � �+ n� 1

2
)

=
�

8
(n � 1

n
)

The computation of �̂PL is similar.

It is interesting to observe that the total arrival rates computed above for the torus are the same
as the total arrival rates in the case of a ring.

Using the �̂PS 's, we can now compute the expected queue size at each node from equation 4. If n
is even, the expected queue size at node i is

E[Ni] =
2(n+ 2)

8
�
� (n+ 2)

+
2(n� 2)

8
�
� (n� 2)

If n is odd, the expected queue size is

E[Ni] =
n2 � 1

8n
�
� (n2 + 1)

8 Bounds on �, Queue Sizes, and Delay Times for Arrays

Up until this point, we never discussed what values of � (arrival rate at each node from outside)
were plausible, i.e., allowed the network to reach steady state. In this section, we give upper
bounds for �. We will then compute the queue sizes at the nodes of the array for speci�c values
of �, including 99% of maximum and half of maximum. Lastly, we will use Little's Formula to
translate our knowledge about queue sizes into formulas for packet delay times.

8.1 Bounds on �

Theorem 9 In order for the array network to reach steady state, we must have

� <
4

n

Proof: Recall the formula for expected queue size at iS (node i, petal S), given in Equation 4.

E[NiS] =
�iS

1� �iS
=

�̂iS

1� �̂iS

where the �̂iS 's are as de�ned in Theorem 4. Thus the expected queue size at iS becomes in�nite
as �̂iS approaches 1.
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The expected queue size is largest for the left or upper petal of the center node of the array, i.e.,
node (n2 ;

n
2 ). By Theorem 4,

�̂Pn
2 ;

n
2 ;L

=
�

n
� n
2
� n
2
= �

n

4

To ensure that the queue size is �nite, we require �̂Pn
2 ;

n
2 ;L

< 1, which implies � < 4
n
.

8.2 Average Delay For Array

In this subsection we derive the average delay of packets.

Little's Formula [Buzacott,Shanthikumar,93] states

N = �T

where N is the average number of jobs in queue and T is the average delay of a job and � is the
arrival rate of jobs. Solving for the average delay

T =
N

�

The arrival rate of jobs in the system is n2� (a di�erent �) since there are n2 nodes in the system.
We solve here for n odd. Let q = 4b� 1 = n( 4

�
� n).

T =
1

�
N

=
1

n2�

n�1
2X

x=�(n�1)
2

n�1
2X

y=�(n�1)
2

E[Nx;y]

� 1

n2�

Z n
2

�n
2

Z n
2

�n
2

�
1

b+ x2 � x
+

1

b+ (x+ 1)2 � (x+ 1)
+

1

b+ y2 � y
+

1

b+ (y + 1)2 � (y + 1)
� 4

�
dxdy

=
1

n2�

 
2p
q

 
y tan�1

2x� 1p
q

+ y tan�1
2x+ 1p

q
+ x tan�1

2y � 1p
q

+ x tan�1
2y + 1p

q

!
� 4xy

!�����
x;y=n

2

x;y=�n
2

=
4

n�

 
2p
q

 
tan�1

n� 1p
q

+ tan�1
n+ 1p

q

!
� n

!

8.3 Average Delay for Torus

In this section we compute the average delay of a packet in the case of a torus. As in the previous
section, we simply use Little's Formula. Now, however the computations are much simpler because
the expected queue size at each node is the same.

We assume n:odd
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T =
1

n2�
N

=
1

n2�
n2 � n2 � 1

8n
�
� (n2 + 1)

=
n2 � 1

2n� �
4 (n

2 � 1)

8.4 Queue Sizes

To get a feel for the di�erence in queue size over nodes of the array, we will compare the expected
queue size at the center of the array (where it's highest, by theorem 5) with the expected queue
size at the corner of the array (where it is lowest). We do this �rst for the case where � is half of
the maximum arrival rate, namely � = 2

n
.

�̂Pn
2 ;

n
2 ;R

=
1

2
� 2

n2

�̂Pn
2 ;

n
2 ;L

=
1

2

�̂Pn
2 ;

n
2 ;D

=
1

2
� 2

n2

�̂Pn
2 ;

n
2 ;U

=
1

2

E[NPn
2 ;

n
2 ;R

] =
n2 � 4

n2 + 4
!

n!1 1

E[NPn
2 ;

n
2 ;L

] = 1

E[NPn
2 ;

n
2 ;D

] =
n2 � 4

n2 + 4
!

n!1 1

E[NPn
2 ;

n
2 ;U

] = 1

�̂P0;0;R =
2(n� 1)

n2

�̂P0;0;L = 0

�̂P0;0;D =
2(n� 1)

n2

�̂P0;0;U = 0

17



E[NP0;0;R ] =
2(n� 1)

n2 � 2(n� 1)
!

n!1 0

E[NP0;0;L ] = 0

E[NP0;0;D ] =
2(n� 1)

n2 � 2(n� 1)
!

n!1 0

E[NP0;0;U ] = 0

So for � = 2
n
, and for large n, the highest expected queue size is 4 and the lowest queue size is 0.

Now let's look at what happens when the arrival rate is almost at the maximum, � = :99 � 4
n
.

�̂Pn
2 ;

n
2 ;R

= :99(1� 4

n2
)

�̂Pn
2 ;

n
2 ;L

= :99

�̂Pn
2 ;

n
2 ;D

= :99(1� 4

n2
)

�̂Pn
2 ;

n
2 ;U

= :99

E[NPn
2 ;

n
2 ;R

] =
:99n2 � 3:96

:01n2 + 3:96
!

n!1 99

E[NPn
2 ;

n
2 ;L

] = 99

E[NPn
2 ;

n
2 ;D

] =
:99n2 � 3:96

:01n2 + 3:96
!

n!1 99

E[NPn
2 ;

n
2 ;U

] = 99

�̂P0;0;R = 3:96 � n � 1

n2

�̂P0;0;L = 0

�̂P0;0;D = 3:96 � n � 1

n2

�̂P0;0;U = 0

E[NP0;0;R ] =
3:96(n� 2)

n2 � 3:96(n� 2)
!

n!1 0
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E[NP0;0;L ] = 0

E[NP0;0;D ] =
3:96(n� 2)

n2 � 3:96(n� 2)
!

n!1 0

E[NP0;0;U ] = 0

9 Conclusion

This paper combines ideas from the areas of communication networks, queueing theory, and com-
binatorics to analyze the queue buildup at the nodes of an n � n array and an n�n torus during
greedy routing.

The three main contributions of the paper are:

� A way to formulate the problem of greedy routing on an array or torus as a Jackson Queueing
Network model.

� A very simple method for computing the probability distribution on the queue size and delay
in the Jackson Queueing Network with greedy routing.

� A theorem showing that the expected queue size is greater for nodes closest to the center of
the array.

10 Future Extensions

There are numerous possible extensions to the work in this paper.

The techniques of this paper can be used for analyzing queue size on di�erent commonly used
networks, such as the shu�e-exchange network. Alternatively, the same networks can be analyzed
using d�erent oblivious routing algorithms.

Another idea is to use the same Jackson Queueing Network Model, but examine only the queue
buildup of packets whose destination is, say, the center node. Note that it is easy to look at the
queues formed by just one class. The usefulness of such a study is in avoiding bottlenecks when
writing routing algorithms.

Lastly, in this paper we have only dealt with queue size in steady state. The rate of queue build
up when the network is overloaded or the clearing of packets after an overload can be computed by
casting the same balance equations used to derive Theorem 1 as di�erential equations and solving
them. For a start, see [Buzacott,Shanthikumar,93].
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A Derivation of Theorem 4

In this appendix we give a rigorous derivation of Theorem 4. For brevity we indicate the row of
processor PrcS by Pr, the column by Pc, and the side which it is on (Right, Left, Up, or Down)
by PS . To begin the derivation, we de�ne the probability of a packet moving from one petal to
another.

p
(d)
jr;c;s ir;c;s

=

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

1

8>>>>>>>>>>>><
>>>>>>>>>>>>:

if is = R and dc > ic and js = R and jr;c�1 = ir;c

if is = U and dc = ic and dr < ir and

8><
>:

js = R and jr;c�1 = ir;c, or
js = U and jr+1;c = ir;c, or
js = L and jr;c+1 = ir;c

if is = L and dc < ic and js = L and jr;c+1 = ir;c

if is = D and dc = ic and dr > ir and

8><
>:

js = R and jr;c�1 = ir;c, or
js = L and jr;c+1 = ir;c, or
js = D and jr�1;c = ir;c

0 otherwise

Of course, p(d)ji is 0 if jr;c;s is outside the array, that is, if jr < 0, jr � n, jc < 0, or jc � n. We
ignore the probability of moving to the center processor since it has no e�ect on queue sizes.

Applying the above de�nitions, the general system of linear equations speci�ed in Equation 5
simpli�es to

�̂
(d)
Pr;c;R

= r
(d)
Pr;c;R

+ p
(d)
Pr;c�1;RPr;c;R

�̂
(d)
Pr;c�1;R

�̂
(d)
Pr;c;U

= r
(d)
Pr;c;U

+ p
(d)
Pr;c�1;RPr;c;U

�̂
(d)
Pr;c�1;R

+ p
(d)
Pr+1;c;U Pr;c;U

�̂
(d)
Pr+1;c;U

+ p
(d)
Pr;c+1;LPr;c;U

�̂
(d)
Pr;c+1;L

�̂
(d)
Pr;c;L

= r
(d)
Pr;c;L

+ p
(d)
Pr;c+1;LPr;c;L

�̂
(d)
Pr;c+1;L

�̂
(d)
Pr;c;D

= r
(d)
Pr;c;D

+ p
(d)
Pr;c�1;RPr;c;D

�̂
(d)
Pr;c�1;R

+ p
(d)
Pr;c+1;LPr;c;D

�̂
(d)
Pr;c+1;L

+ p
(d)
Pr�1;c;DPr;c;D

�̂
(d)
Pr�1;c;D

Again nodes \beyond" the edge and center nodes do not contribute and are not counted. Ignoring
the equations at the edge nodes, we have only 4n2 equations to solve, each with an average of 2
unknowns.

The arrival rates at the petals from the outside is

r
(dr;c)
Pr;c;S

=

8>>>>><
>>>>>:

�
N

8>>><
>>>:

if PS = R and dc > Pc, or
if PS = U and dc = Pc and dr < Pr, or
if PS = L and dc < Pc, or
if PS = D and dc = Pc and dr > Pr

0 otherwise
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Let's begin by writing the equations for Right chains beginning in the left 
owers of the array.

�̂
(d)
Pr;0;R

= r
(d)
Pr;0;R

�̂
(d)
Pr;c;R

= r
(d)
Pr;c;R

+ p
(d)
Pr;c�1;RPr;c;R

�̂
(d)
Pr;c�1;R

Since each �̂
(d)
ir;c;R only depends on the �̂

(d)
Pr;c;R

values to the left of it in the same row, we can easily
compute their values. To begin, we specialize the equations for the destination

�̂
(d)
Pr;0;R

=

(
�
N

if dc > 0
0 otherwise

�̂
(d)
Pr;c;R

=

(
�
N

if dc > Pc
0 otherwise

)
+ p

(d)
Pr;c�1;RPr;c;R

�̂
(d)
Pr;c�1;R

Expanding this for the next column

�̂
(d)
Pr;1;R

=

(
�
N

if dc > 1
0 otherwise

)
+ p

(d)
Pr;0;RPr;1;R

�̂
(d)
Pr;0;R

=

(
�
N

if dc > 1
0 otherwise

)
+ p

(d)
Pr;0;RPr;1;R

(
�
N

if dc > 0
0 otherwise

=

(
2 �
N

if dc > 1
0 otherwise

And in general

�̂
(d)
Pr;c;R

=

(
(Pc + 1) �

N
if dc > Pc

0 otherwise

Similarly

�̂
(d)
Pr;c;L

=

(
(n� Pc)

�
N

if dc < Pc
0 otherwise

�̂
(d)
Pr;c;U

=

(
n(n� Pr)

�
N

if dc = Pc and dr < Pr
0 otherwise

�̂
(d)
Pr;c;D

=

(
n(Pr + 1) �

N
if dc = Pc and dr > Pr

0 otherwise

Next we need to sum over all the classes. The results are the equations given in Theorem 4

�̂Pr;c;R =
�

n
(Pc + 1)(n� Pc � 1)

�̂Pr;c;L =
�

n
(n� Pc)Pc

�̂Pr;c;U =
�

n
(n� Pr)Pr

�̂Pr;c;D =
�

n
(Pr + 1)(n� Pr � 1)
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B Alternative Queueing Network Model Design for Formulating

the Routing Problem on Array

There are many other ways in which greedy routing on an n� n array can be formulated in terms
of the queueing network model. We discuss one possibility here. This formulation uses only 5

classes and one server per node, leading to 5n2 simultaneous equations for the �̂
(l)
i 's rather than

the 5n4 simultaneous, but independent, equations we currently solve. In this model, the class of a
packet represents what direction the packet arrived from (left, right, up, or down, or outside). The

probabilities p
(d)
ji are now reals between 0 and 1 relating to the average distribution of packets from

that node. Since this formulation induces loops, some variables are mutually dependent.

C Simultaneous Equations for the 3� 3 Array Problem

Although solving an arbitrary system of 4 � 81 linear equations in 4 � 81 unknowns speci�ed by
Equation 5 is daunting, the equations derived from our model have a straight forward solution.
Since no packet's path ever returns to the same node, there are no dependencies loops among the
variables in the system of linear equations.

Recall that the general solution given in Theorem 4 allows one to �nd the �̂'s without writing out
and solving the system of linear equations. However these serve as a check that the results from
the general solution are, indeed, correct.

We use coding in the symbols to reduce the number of equations which need to be written out.

The symbol �̂
([012]0)
00R represents the destination classes 00, 10, and 20, that is �̂

(00)
00R, �̂

(10)
00R, and �̂

(20)
00R.

For instance the �rst two statements represent nine equations.

�̂
([012]0)
00R = 0

�̂
([012][12])
00R = �

9

�̂
:([12]0)
00D = 0

�̂
([12]0)
00D = �

9 + �̂
([12]0)
01L

�̂
:([012]2)
01R = 0

�̂
([012]2)
01R = �

9 + �̂
([012]2)
00R

�̂
:([012]0)
01L = 0

�̂
([012]0)
01L = �

9 + �̂
([012]0)
02L

�̂
:([12]1)
01D = 0

�̂
([12]1)
01D = �

9 + �̂
([12]1)
00R + �̂

([12]1)
02L
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�̂
([012]2)
02L = 0

�̂
([012][01])
02L = �

9

�̂
:([12]2)
02D = 0

�̂
([12]2)
02D = �

9 + �̂
([12]2)
01R

�̂
([012]0)
10R = 0

�̂
([012][12])
10R = �

9

�̂
:(00)
10U = 0

�̂
(00)
10U = �

9 + �̂
(00)
11L + �̂

(00)
20U

�̂
:(20)
10D = 0

�̂
(20)
10D = �

9 + �̂
(20)
11L + �̂

(20)
00D

�̂
:([012]2)
11R = 0

�̂
([012]2)
11R = �

9 + �̂
([012]2)
10R

�̂
:(01)
11U = 0

�̂
(01)
11U = �

9 + �̂
(01)
10R + �̂

(01)
21U + �̂

(01)
12L

�̂
:([012]0)
11L = 0

�̂
([012]0)
11L = �

9 + �̂
([012]0)
12L

�̂
:(21)
11D = 0

�̂
(21)
11D = �

9 + �̂
(21)
10R + �̂

(21)
01D + �̂

(21)
12L

�̂
:(02)
12U = 0

�̂
(02)
12U = �

9 + �̂
(02)
11R + �̂

(02)
22U

�̂
([012]2)
12L = 0

�̂
([012][01])
12L = �

9

�̂
:(22)
12D = 0

�̂
(22)
12D = �

9 + �̂
(22)
11R + �̂

(22)
02D

�̂
([012]0)
20R = 0

�̂
([012][12])
20R = �

9

�̂
:([01]0)
20U = 0

�̂
([01]0)
20U = �

9 + �̂
([01]0)
21L
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�̂
:([012]2)
21R = 0

�̂
([012]2)
21R = �

9 + �̂
([012]2)
20R

�̂
:([01]1)
21U = 0

�̂
([01]1)
21U = �

9 + �̂
([01]1)
20R + �̂

([01]1)
22L

�̂
:([012]0)
21L = 0

�̂
([012]0)
21L = �

9 + �̂
([012]0)
22L

�̂
:([01]2)
22U = 0

�̂
([01]2)
22U = �

9 + �̂
([01]2)
21R

�̂
([012]2)
22L = 0

�̂
([012][01])
22L = �

9

Again in coded form, the solution to all the variables is

�̂
([012][12])
00R = �

9 �̂
([012][12])
10R = �

9 �̂
([012][12])
20R = �

9

�̂
(00)
10U = 6�9 �̂

([01]0)
20U = 3�9

�̂
([12]0)
00D = 3�9 �̂

(20)
10D = 6�9

�̂
([012]2)
01R = 2�9 �̂

([012]2)
11R = 2�9 �̂

([012]2)
21R = 2�9

�̂
(01)
11U = 6�9 �̂

([01]1)
21U = 3�9

�̂
([012]0)
01L = 2�9 �̂

([012]0)
11L = 2�9 �̂

([012]0)
21L = 2�9

�̂
([12]1)
01D = 3�9 �̂

(21)
11D = 6�9
�̂
(02)
12U = 6�9 �̂

([01]2)
22U = 3�9

�̂
([012][01])
02L = �

9 �̂
([012][01])
12L = �

9 �̂
([012][01])
22L = �

9

�̂
([12]2)
02D = 3�9 �̂

(22)
12D = 6�9

For the 3� 3 array, the sum of �̂
(d)
Pr;c;S

's over all destinations is the same: 2�
3 . The expected values

E[NPr;c;S ] are all
2�

3�2� .

E[N00] = 4�
3�2�

E[N01] = 6�
3�2�

E[N02] = 4�
3�2�

E[N10] = 6�
3�2�

E[N11] = 8�
3�2�

E[N12] = 6�
3�2�

E[N20] = 4�
3�2�

E[N21] = 6�
3�2�

E[N22] = 4�
3�2�

Example: Say � = 1
2 . The expected queue lengths are
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1 1:5 1

1:5 2 1:5

1 1:5 1

Example: Say � = 1
4 . The expected queue lengths are

:4 :6 :4

:6 :8 :6

:4 :6 :4

Note that the expected queue size grows signi�cantly toward the center of the array. Theorem 5,
shows that this is true for arrays of all sizes.

D Average Delay in an Array by Summing Delays at Nodes

Substituting E[Ni] for N and �̂i for �, we get

Ti =
�̂i

�i � �̂i

1

�̂i

=
1

�i � �̂i

The delay along any path is the sum of the delay at each petal through which the packet passes
from the source, S, to the destination, D.

Tpath =
DX
i=S

1

�i � �̂i

Since we set all service rates �i to 1, we have

Tpath =
DX
i=S

1

1� �̂i

We can compute the average delay, A, by summing the delay of paths from all sources to all
destinations and dividing by the number of paths.

A =
1

n4

n2X
S=0

n2X
D=0

DX
i=S

1

1� �̂i

Since we are summing, we can seperate the computations for rows and columns.

A =
1

n4

n2X
S=0

n2X
D=0

(total row delayS;D) +
1

n4

n2X
S=0

n2X
D=0

(total column delayS;D)
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From Theorem 4 we see that the row and column formulas are equivalent. Therefore we only need
make one of the calculations and double it. We arbitrarily choose rows.

A =
2

n4

n2X
S=0

n2X
D=0

(total row delayS;D)

Notice that the columns no longer matter in the above formula. Therefore we only need to do the
calculation for one row and multiply by the number of columns, n.

A =
2

n4
n

n�1X
Srow=0

n

n�1X
Drow=0

(total row delayS;D)

=
2

n2

n�1X
Srow=0

n�1X
Drow=0

(total row delayS;D)

Plugging in the actual formulas from Theorem 4 we get

A =
2

n2

n�1X
Srow=0

n�1X
Drow=0

DX
i=S

8>><
>>:

1
1��

n
i(n�i)

if Drow < Srow

0 if Drow = Srow
1

1��
n
(i+1)(n�i�1)

if Drow > Srow

=
2

n2

0
@ n�1X
Srow=1

Srow�1X
Drow=0

SrowX
i=Drow+1

1

1� �
n
i(n� i)

+
n�2X

Srow=0

n�1X
Drow=Srow+1

Drow�1X
i=Srow

1

1� �
n
(i+ 1)(n� i� 1)

1
A

Note that the expected delay at a petal node doesn't depend on the source or the destination.
Therefore we can simply multiply the expected delay at each petal node by the number of paths
through it and sum them all.

A =
2

n2

 
n�1X
i=0

i(n� i)

1� �
n
i(n� i)

+
n�1X
i=0

(i+ 1)(n� i� 1)

1� �
n
(i+ 1)(n� i� 1)

!

Behold! The same expression appears in the numerator and the denominator. Is this reasonable?
Remember from Observation 3 that �̂i is just the number of paths through a petal times a weight.
Thus it is reasonable to have the same expression in the numerator and denominator.

We have not been able to reduce the expression further. We note that both forms are similar toZ
x dx

a+ bx
=

x

b
� a

b2
log(a+ bx)

except for the missing dx, which is:

d i(n� i)

di
= n� 2i

d (i+ 1)(n� i� 1)

di
= n� 2i� 2
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