
The Roommates Problem

Online Matching on General Graphs

Ethan Bernstein1 & Sridhar Rajagopalan2

CS Dept., UC-Berkeley

1 Introduction

The study of algorithms for on-line problems is a topic of current interest in algorithmic

theory. In this paradigm, information (the input) is provided to the algorithm as a time

series. The response (the output) of the algorithm is also viewed as a time series. The

de�ning property of an on-line algorithm is that the response has to be causal with respect

to the input. Thus, the response at time t can depend only on the inputs before and

including time t. In contrast, one usually studies the \o�-line" situation where the entire

input is available to the algorithm before it computes any part of the output.

Sleator and Tarjan [5], suggested a measure of the e�cacy of on-line algorithms. The

measure, the worst-case performance ratio, compares the performance of an on-line algorithm

to the performance of the optimal o�-line solution. On one hand, this measure allows us to

directly compare the o�-line and on-line situations. On the other, it also provides us with a

basis to compare two on-line algorithms.

In this paper, we study a variant of the on-line maximum matching problem. Such

1Supported by an NSF Graduate Fellowship.

2Supported by grants CCR-8896202 and IRI-8902813 from the NSF.

1

problems arguably have applications in issues such as job scheduling and resource allocations

[4, 3]. We choose to state our problem here in the context of one such application, the

roommates problem.

In this problem, the world consists of 2n people. The people arrive one at a time to

an inn. Each informs the innkeeper which of the others he would agree to share a room

with. The innkeeper must then assign the guest a room. We assume that the compatibility

function is symmetric3. The performance of the innkeeper is measured by the number of

rooms that are doubly occupied. In the weighted version of the problem, the compatibility

function maps guest pairs to non-negative weights. The goal of the innkeeper is then to

maximize the weight contained in doubly occupied rooms.

In this paper, we shall show that there is a deterministic algorithm that achieves a worst

case performance ratio of 2
3
in the unweighted case. We will also show that this is the best

possible ratio for any deterministic algorithm. For the weighted problem, we will exhibit a

deterministic algorithm that achieves a ratio of 1
4
in the weighted case. In this case however,

the bound is not tight. The best upper bound we have for deterministic algorithms is 1
3 .

2 Past work

The on-line matching problem in bipartite graphs was �rst considered in the paper of Karp,

Vazirani and Vazirani [4]. In this problem, there are n boys and an equal number of girls.

The girls arrive one at a time and indicate to a judge which of the boys she is interested

in. The judge then has to choose one from among those she has expressed an interest in to

3Thus, if Alice would share a room with Bob, then Bob would not mind.

2

marry her o� to. The aim of the judge is to maximize the number of married couples.

The main result in this paper is a randomized algorithm that achieves a performance

ratio of 1 � 1
e
against oblivious adversaries. This number is also shown to be optimal.

Kalyanasundaram and Pruhs [3] consider the more general problem where the under-

lying graph, though still bipartite, is allowed to be weighted. However, they require that

the bipartite graph be complete and that the weights be positive and satisfy the triangle

inequality. They provide an algorithm that achieves an optimal performance ratio of 1
3
on

such graphs.

Notice that these previous works provide analysis only for bipartite graphs with restricted

weightings. In contrast, our variant of online maximum matching is the �rst to allow non-

trivial performance guarantees on general graphs with arbitrary weightings.

Finally, both [3] and the paper of Khuller, Mitchell and Vazirani [2] provide optimal

competitive algorithms for variants of the minimum weighted matching problem.

3 The Problem.

Given an undirected graph G(V;E) with vertex set V and edge set E �

0
BBB@
V

2

1
CCCA, a matching

M on G is a subset of E such that no two members of M share a common vertex. An

instance of the on-line matching problem, consists of G plus some ordering � on V . When

an algorithm is run on (G; �) it runs for jV j phases. During the tth phase the algorithm is

given a list of the edges in E adjacent to v�(t). At that time it may select one of those edges

to add to its matching.

3

Sleator and Tarjan [ST] suggest the worst case competitive ratio as a measure of the

e�cacy of an on line algorithm. In situations where the goal is to maximize some quantity,

the corresponding measure is the worst case performance ratio. We de�ne it here in the

context of maximum matchings. Let M be a maximum weight (cardinality) matching in

G(V;E), and let 	 be the matching picked by the (deterministic) on-line algorithm A. Then

we de�ne the performance ratio of A on (G; �)

PG;�(A) =
j	j

jMj

And the worst case performance ratio of A is just

P (A) = min
G;�

PG;�(A)

4 The weighted case.

We discuss here weighted on-line maximum matching. The better results that can be ob-

tained in the simpler unweighted case are discussed in a subsequent section.

4.1 Conventions.

We will refer to the vertex that just arrived as v. If a vertex r arrives earlier than s we will

say r < s. The set of vertices that have not yet arrived plus v form the set Y . We will

use y to denote any generic element of Y . All vertices that we have not yet matched but

have arrived in the past comprise the set X. We denote a generic element of X by x. The

graph (X;Y) = B is the bipartite graph on the vertices X and Y with weights as have been

revealed to us. We will let m(B) denote the size of the maximum matching on B and we

4

will use u to denote the vertex that v is matched to (if one exists), in some such matching.

At a generic moment of execution, any algorithm has two options.

� It could match v to some vertex x 2 X. (match occurs)

� It could add v to X. (nomatch occurs).

Every algorithm can be speci�ed by de�ning the criterion that decides which option the

algorithm will choose.

4.2 Two potential functions.

We de�ne a potential �(y) associated with each vertex y 2 Y that measures how important

that vertex is to us. We de�ne �(y) for every y 2 Y as follows.

�(y)
def
= m(B)�m(B � fyg)

We also de�ne a global potential function that measures the goodness of the current situation.

�
def
= m(B) + 2 � wtf edges that we have matched so far g

The de�nition of � is exactly the maxim, \A bird in the hand is worth two in the bush."

Notice that as in most potential based arguments we have a local quantity and a global

potential. The argument consists of delineating the interplay between these two quantities.

We will use the superscript + as in �+(�) to denote the values of quantities after v has

been processed. We will use �f to denote the change of the quantity f with respect to time.

Therefore, for any quantity f ,

�f
def
= f+ � f

5

4.3 The Algorithm.

Recall that u is the vertex that v is matched to inM(B). Our algorithm

examines only two options.

� Match v to u. (match happens)

� Add v to X. (nomatch happens)

Of these two options, it picks the one that maximizes �+.

4.4 Analysis.

We use the following two lemmas to analyze the algorithm.

Lemma [Stability Lemma]: The values of �(�) never decrease. Hence, 8y 2 Y

��(y) � 0

Lemma [Payo� Lemma]: The following lower bounds hold

(a) �� � �(v)

(b) �� � 1
2
(wt(v; y)� �+(y)) for every y 2 Y .

Theorem : The algorithm that we have described achieves a worst case performance ratio

of 1
4 .

Proof : Consider any edge (r; s) in the graph. We will show that the sum of the gains in

the global potential � when r and s arrive must be at least 1
2wt(r; s). Therefore given any

matching M in the graph,

��nal �
X

(r;s)2M

1

2
wt(r; s) =

1

2
jM j

6

Since the �nal potential is equal to twice the weight of the algorithm's matching, the algo-

rithm achieves a performance ratio of at least 1
4
.

To see our claim about any edge (r; s), r < s, notice that the Payo� Lemma says that

��jv=r �
1

2

�
wt(r; s)� �+(s)jv=r

�

The Stability Lemma tells us that

�(s)jv=s � �+(s)jv=r

And the Payo� Lemma gives

��jv=s � �(s)jv=s

Therefore, adding the above three inequalities we get,

��jv=r +��jv=s �
1

2
wt(r; s)

2

We now prove our two lemmas. First we must introduce some new notation. We will

denote by B y the graph on (X;Y + fyg) and by B ! y the graph on (X;Y � fyg). We

will similarly de�ne x ! B and x B as the graphs on (X + fxg; Y) and (X � fxg; Y)

respectively. Hence the graph that results when match happens is the graph x B ! v.

Similarly, the graph that results when nomatch happens is v! B ! v.

We begin by pointing out a few simple facts about matchings. Firstly, m(B y) �

m(B) � m(B ! y0) for arbitrary vertices y; y0. Similarly, m(x! B) � m(B) � m(x B).

We begin with the following technical lemma.

Lemma 1: m(B)�m(B ! y) � m(B ! v)�m(B ! v; y).

7

Proof : This lemma says that �(y) does not decrease if we remove a vertex (in this case v)

from Y . We rearrange the terms and add 2m(B) from both sides so that it su�ces if we

show that

(m(B)�m(B ! v)) + (m(B)�m(B ! y)) � m(B)�m(B ! v; y)

Since v and y are on the same side of a bipartite graph, the right hand side of above

inequality must consist of two disjoint alternating paths. The weights of these two paths

represent upper bounds on the values of the two terms on the left hand side of the above

inequality. 2

Corollary 1.1: m(B)�m(B ! y) � m(v! B)�m(v! B ! y).

Proof sketch: We can view the process of adding a vertex x to X as a process of deleting

one from Y . We augment Y by the vertex y1 and X by the vertex v. The weight of the

edge (v; y1) is1. The e�ect of deletion of the vertex y1 is the same as that of the addition

of v to X. 2

Lemma [Stability Lemma]: The values of �(�) never decrease. Hence, 8y 2 Y

��(y) � 0

Proof : If match occurs then B+ is a subgraph of B. Also, the maximummatching in B+

is a subset of the matching in B. Therefore, any augmenting path in B+ is there in B. Since,

�(y) essentially represents an augmenting path, we are done.

If nomatch occurs then the new B can be obtained by deleting v from Y and adding v

to X. Lemma 1 and Corollary 1.1 tells us that �(y) does not decrease in either case. 2

8

Another way of viewing the quantity �(�) is that it is an investment that we have made.

We will want to cash this investment sometime in the future. The lemma above tells us that

these investments will not go sour. However, we also need two more guarantees. The �rst

to tell us that we can reclaim our investments whenever we wish to. The second that these

investments are su�cient for our objectives. We make these claims in the following lemma.

Lemma [Payo� Lemma]: The following lower bounds hold

(a) �� � �(v)

(b) �� � 1
2 (wt(v; y)� �+(y)) for any y in Y .

Proof : Since one option that we have is to match v to u, we are guaranteed that

�� � m(B)�m(u B ! v) (1)

Alternately, since we could choose not to match v temporarily, we are guaranteed that for

any y 2 Y ,

�� � wt(v; y)�m(B) +m(B ! v; y) (2)

The inequality (1) already gives us (a) of the lemma since m(u B ! v) � m(B ! v).

Adding the inequalities (1) and (2) gives us

2 ��� � wt(v; y) +m(B ! v; y)�m(u B ! v)

Since m(u B ! v; y) � m(B ! v; y) we get

2 ��� � wt(v; y) +m(u B ! v; y)�m(u B ! v) (3)

The inequality (3) is exactly the claim (b) in the event that match happens. In the event

that nomatch happens, Corollary 1.1 can be applied to (3) to get the claim. 2

9

4.5 An upper bound on the performance ratio for the weighted

case

Theorem 1: Any on-line weighted matching algorithm has a worst-case performance ratio

� 1
3
.

Proof : Let A be some on-line weighted matching algorithm. We will show the existence of

either a graph on which A achieves a performance ratio of < 1
3
, or a sequence of graphs on

which the performance ratio of A approaches 1
3
.

Fix some R > 3. Given an � > 0, let N = R�1
�
. We de�ne G(�) as follows : : :

� The vertex set of G(�), ordered by arrival, is fa�1; b�1; a0; b0; a1; b1; � � � ; aN ; bNg.

� We de�ne the edge set of G(�) recursively : : :

1. wt(a�1; b�1) = 1,

2. 8i > 0; wt(ai; bi) = (R� i�) �wt(ai�1; bi�1).

3. 8i > 0; wt(ai�1; ai) = wt(ai; bi).

Consider running A on G(�). There must be some �rst edge which A chooses. Now, reveal

the graph G0(�) to A, where each edge has the same weight as in G(�) until A chooses its �rst

edge, as which point all unrevealed edges are switched to weight 0. Clearly the matching

A chooses on G0(�) must be this single edge. Let r� be the ratio of the �nal non-zero edge

revealed to the edge A chooses. It is easy to see that, for su�ciently small � if r� is close to

1 (say < 1:1), then A achieves a performance ratio < 1
3 . So we need only consider the case

where r� is bounded away from 1. For any M < R�r�
�

the performance ratio A achieves on

10

G0(�) is at most

1

r� +
P

1�i�M

Q
1�j�i

1
r�+j�

If we �x M , then as �! 0, the performance ratio of A on G0(�) approaches

1

r� +
P

1�i�M
1
ri
�

=
r� � 1

r2� � r� + 1� 1
rM
�

But since we could choose M to be arbitrarily large, and r� is bounded away from 1, the

performance of A on G 0(�) as � ! 0, approaches r��1
r2��r�+1

This function has a maximum of 1
3

at r� = 2, so the best worst-case performance ratio A could possibly achieve as � ! 0 is 1
3.

2

5 The Unweighted case.

We had said earlier that in the case that the graph G(V;E) was unweighted, stronger results

could be obtained. In this section we show a tight bound of 2
3 on the best possible performance

ratio of deterministic algorithms for the unweighted problem.

5.1 Unweighted Matching Algorithm

Let G(V;E) be an arbitrary unweighted graph. Let v and Y be de�ned as in the weighted

case. However, unlike the weighted case, the set X does not consist of all the vertices

that have arrived but are not matched. When v arrives, the algorithm will either match v

(match), leave v unmatched and place it in X (nomatch), or discard v (discard), in

11

which case it will never attempt to match v. As before, B = (X;Y) is the restriction of G

to edges between X and Y . We now describe the algorithm.

1. Compute T , the new B that would result if nomatch were cho-

sen.

2. If m(B) � m(T), then match v and u (if u exists), and

discard v otherwise.

3. Otherwise, nomatch : B T .

Lemma 1: If 9x 2 X, adjacent to v, then discard does not occur.

Proof : Assume v has an edge to x 2 X. Given any maximummatchingM on B, removing

the edge matching x and adding fx; vg gives a maximum matching on B that matches v.

Therefore, if m(B) � m(T), then match will occur rather than discard . 2

Lemma 2: Let S be the set of maximum matchings on B. Let 	 be the set of edges that our

algorithm �nally matches. Then 9M 2 S, such that M � 	

Proof : By induction on jY j. Notice that the induction reverses the progress of time!

Basis: jY j = 0, Immediate.

Induction: Let M+ be the maximum matching on B+ such that M+ � 	, which is

guaranteed by the inductive hypothesis. We look at what the algorithm does with v:

If discard , then B+ � B, and M+ itself is a maximum matching on B which is a

subset of 	.

If match , and v gets paired with u, then M =M+ [fu; vg is a maximummatching on

B with M � 	.

12

If nomatch , thenM+ without its edge matching v is a maximummatching on B which

is contained in 	. 2

Corollary 2.1: Any vertex put into X gets paired eventually.

Proof : If m(T) > m(B), then every matching on B+(= T) must match v. So if v is placed

in X in step 3, then by Lemma 2, v must be paired eventually. 2

A little case analysis can now be used to give the following theorem.

Theorem 1: Let M be a maximum matching on G. Every augmenting path p in M� 	

has at least 5 edges in it. Hence, our algorithm achieves a performance ratio of 2
3.

Proof : In the following argument we will use Xa and Ba to represent the states of X and

B when the vertex va arrives. We show every augmenting path p in M � 	 is such that

jpj 6= 1 and jpj 6= 3. We look at the easy case �rst.

Assume there is an augmenting path p = (va; vb). Let wlog va < vb. Then, since va is

unpaired, va is immediately discarded (Corollary 2.1). But, va could only be discarded if vb

is matched in every maximummatching on Ba. Therefore, vb is eventually paired with some

x 2 Xa (Lemma 2).

The other case is slightly more complicated. Let, if possible, there be an augmenting

path p = (va; vb; vc; vd). We prove a contradiction by examining the relative arrival order of

these four vertices. Noting symmetry, we need to consider only the two cases in which va is

the �rst vertex to arrive or vb is the �rst vertex to arrive. We consider these one at a time.

If va were to arrive �rst then the same argument as above tells us vb gets paired to some

vertex in Xa. However, since vc 62 Xa, this contradicts the fact that vb and vc are paired.

Now assume, vb is the �rst to arrive. If va arrives second, it will be paired (Lemma 1).

13

)(If vc arrives second, it must be immediately paired to vb. But this implies that either

va or vd must be matched in every maximummatching on Bc. Therefore, the algorithm will

eventually pair va or vd (Lemma 2).)(Finally, if vd arrives second, it must be the case

that va is matched in every maximum matching on Bd that matches vb with vc. But, then

va must eventually be paired (Lemma 2).)(

This completes the proof that there is no one or three edge augmenting path inM�	.

2

5.2 An upper bound.

We will now show that 2
3
is the best possible performance ratio for any deterministic algo-

rithm. Consider the input instances hP5; �1i and hP5; �2i where P5 is the simple path with

5 edges (and 6 vertices) and �1 = (2; 3; 1; 4; 5; 6) and �2 = (3; 4; 1; 2; 5; 6). Any deterministic

algorithm will fail to achieve a matching of size 3 on one of these inputs. The reason is that

the situation encountered by the algorithm after 2 vertices have arrived is exactly the same

for both the examples. However, in one case, match is a bad decision and in the other

nomatch (or discard) is. Since any deterministic algorithm must do one of the two, it

fails on the corresponding input. 2

6 Conclusion

The following are the most interesting open problems.

1. Is it possible to tighten the gap in the weighted case? This paper shows that the best

possible worst case performance ratio for deterministic algorithms is somewhere in the

14

interval [1
4
; 1
3
]. We also note that the analysis of the algorithm detailed in Section 3 is

tight (even though it does not seem to be). There is a class of graphs on which this

algorithm achieves competitive ratios arbitrarily close to 1
4
. In this case, we conjecture

that the algorithm that matches v to any x 2 X (and not just u) greedily on � achieves

a better performance ratio. It is not true, however that this algorithm dominates our

algorithm. There are cases where the matching it gets is smaller. However, in such

cases the �rst algorithm does extremely well.

2. What can be said about randomized algorithms working against oblivious adversaries

[1]? It is possible to show that any randomized algorithm can not perform better than

4
5
in the unweighted case by using an extension of the analysis in this paper via Yao's

lemma [6]. On the other hand there is a deterministic 2
3 algorithm.

7 Acknowledgements.

We wish to acknowledge the contributions of Umesh Vazirani to this work.

References

[1] S.Ben-David, A.Borodin, R.Karp, G.Tardos, A.Wigderson. \On the Power of Random-

ization in On-Line Algorithms", Proceedings of the 22nd ACM STOC, pp. 379{386,

1990.

15

[2] S.Khuller, S.Mitchell, V.Vazirani. \On-Line Algorithms for Weighted Matching and

Stable Marriages", Technical Report TR 90-1043, Department of Computer Science,

Cornell University, 1990.

[3] B.Kalyanasundaram, K.Pruhs. \On-Line Weighted Matching", Proceedings of the

SODA,1991, San Francisco.

[4] R.Karp, U.Vazirani, V.Vazirani. \An Optimal Algorithm for On-Line Bipartite Match-

ing", Proceedings of the 22nd ACM STOC, pp. 352{358, 1990.

[5] D.Sleator, R.Tarjan. \Amortized E�ciency of List Update and Paging Rules", Commu-

nications of the ACM, vol. 28, pp. 202{208, 1985.

[6] A.Yao. \Probabilistic computations: Toward a uni�ed measure of complexity." Proceed-

ings of the 18th IEEE FOCS, pp. 222{227, 1977.

16

