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Abstract

INFIDEL is an abstract machine that operates on grids. It is written in L as an
extension of Basil. It has been designed as a target for the FIDIL compiler, but it
can be programmed directly in L. The machine implements the abstract types ‘grid’
and ‘domain.’ Domains represent sets of points with integer coordinates. Grids
are an extension of arrays for finite-difference algorithms. These types correspond
closely to the FIDIL types ‘map’ and ‘domain.’ INFIDEL serves three purposes.
First, it is proposed as an intermediate step in the compilation of FIDIL programs.
Second, it defines the level at which FIDIL programs and foreign code can be
linked together. Third, part of the interface is not only available for direct use in
application programs, but is also usable in yet-to-be-written system code that will
implement INFIDEL on new architectures.
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Chapter 1

Overview

INFIDEL is an abstract machine that operates on grids. It is written in L as an
extension of Basil. It has been designed as a target for the FIDIL compiler, but it
can be programmed directly in L[Sem93].

The machine implements the abstract types grid and domain. Domains repre-
sent sets of points with integer coordinates. Grids are an extension of arrays for
finite-difference algorithms. These types correspond closely to the FIDIL types
map and domain.

INFIDEL serves three purposes. First, it is proposed as an intermediate step in
the compilation of FIDIL programs. Second, it defines the level at which FIDIL
programs and foreign code can be linked together. Third, part of the interface
is not only available for direct use in application programs, but is also usable in
yet-to-be-written system code that will implement INFIDEL on new architectures.

The next two chapters (2 and 3) describe data structures and algorithms for
respectively domains and grids. Chapter 4 is a reference manual for INFIDEL.
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Chapter 2

Domains

A domain is a set of indices. More precisely, it is a finite set of n-dimensional
points with integer coordinates. Its intended primary use is to describe index sets
for operations on grids. As such, its representation is optimized for the types
of grids that, in our experience, are most likely to occur in modern algorithms
for partial differential equations. Our goal is twofold: the design aims to obtain
efficient operations not only on domains, but also on grids with those domains,
exposing opportunities for vectorization and parallelization on both regular and
irregular shapes.

According to these principles, we have identified several domain representa-
tions: manhattan, bitmap, thin, thick, tiled, collage. These representations are
supported by INFIDEL. Any of them can represent an arbitrary set of points, but
each is optimized for a set of points with specific properties.

Good abstraction dictates that the programmer should not be concerned with
the particular representation used, but always think of a domain just as a set of
indices. We support this up to a point. Functions that operate on domains (union,
intersection, shift, etc.) take domain arguments with arbitrary representations; they
make a choice of representation for the result, and compute it. This choice is not
always optimal; moreover, it is easy to construct an index set that fares poorly in
any of the available representations. However, we believe that what we provide is
adequate for a large number of existing modern PDE algorithms.

Here we present briefly each domain representation. A full discussion of their
properties, and of the algorithms used to operate on them, is in section 2.2.
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2.1 Domain types

2.1.1 Manhattan domains

The basic index set, the one used by arrays in most conventional languages, is
an n-dimensional box of points, defined by its lower and upper bounds in each
dimension. Its immediate extension is a union of boxes. A box is a convenient
object for vectorization, and it is easy to partition for parallelization. A union of
boxes maintains these properties. The shape arises frequently—for instance, the
boundary region of a box can be described as a union of boxes, as shown in fig. 2.1.

Figure 2.1: The boundary of a box as a union of boxes

A manhattan domain is a union of disjoint boxes in canonical form. This form
does not minimize the number of boxes necessary to describe the domain, but keeps
its number small. The representation is unique for a given set of indices.

2.1.2 Thin and thick domains

The thin representation is used for irregular, sparse index sets. The thin descriptor
is an ordered list of points. The thick domain is a manhattan with thin holes. The
descriptor is an ordered pair (m; �), where m is a manhattan descriptor, and � a
thin descriptor, with � � m, and it represents the set difference of m and � . The
manhattan component m of a thick domain is called its base. Figure 2.2 shows
examples of thin and thick domains.

2.1.3 Bitmap domains

For irregular, medium density situations, the bitmap domain is more appropriate
than the thick or the thin. The bitmap descriptor is a boolean grid (see section 3.1)
with a manhattan domain, called its base. The grid values (true or false) indicate
which of the base points belong to the domain. Figure 2.3 shows a bitmap domain.
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Figure 2.2: A thin domain and a thick domain

Figure 2.3: A bitmap domain

2.1.4 Tiled domains

A tiled descriptor represents concisely certain regular index sets; roughly speaking,
those produced by iterating with non-unit stride over manhattan domains. Such
domains are encoded as the intersection of some infinite, regular tiling of the
n-dimensional space, and a manhattan domain.

The tiling is obtained by covering the space with identical, n-dimensional tiles.
The representative tile is a boolean array. The elements of a tile are called tesserae.
A true-valued tessera, also called in-tessera, means that the point is in the domain;
a false-valued tessera (an out-tessera) means the opposite. The tiles are laid down
so that the lower bound of the first tile is at the origin.

A tiled domain descriptor is the ordered pair (b; t), where b is a manhattan
descriptor, called the base, and t is a tile. Fig. 2.4 shows an example.
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representative
tile

Figure 2.4: A tiled domain

2.1.5 Collage domains

The set of tiled domain is not closed under the union operation, and cases of
domains that are almost tiled, but not quite, may arise, as shown in Fig. 2.5. To
represent these domains we use the collage descriptor. This descriptor encodes a
domain as the union of tiled domains (bi; ti) with certain properties, among which:
the bi’s are all disjoint, and the ti’s have the same side lengths. This representation
captures well union, intersection, and difference of tiled domains, and simplifies
gracefully.

Figure 2.5: Union of two tiled domains that is not tiled

2.2 Domain Algorithms

We present efficient algorithms for operating on each domain type. The operations
are of two types: set-theoretic (union, intersection, difference) and geometric
(shift, transpose, contract, expand, inject, project). The formal definition of these
operators is in appendix B.

In the following sections, we often talk about descriptors and the sets of points
they represent. For instance, a box descriptors b = (l; u) represents the points
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in box B with lower bound l and upper bound u. The } operator transforms a
descriptor into a set of points. For instance: }b = }(l; u) = B.

2.2.1 Manhattan algorithms

Formal definition of manhattan domain

We give the formal definition of canonical form for a manhattan domain.

A box B is the set of points p in Zn whose coordinates fall between two points
l and u, called the lower bound and the upper bound of B. More precisely:

p =

2
64
p1
...
pn

3
75 ; l =

2
64
l1
...
ln

3
75 ; u =

2
64
u1
...
un

3
75 ;

B = fp 2 Z
n j li � pi � ui; i = 1; : : : ; ng:

We define an ordering relation for points in Zn:

p < q i� 9j such that pj < qj and pk = qk ; k = j + 1; : : : ; n

This is just lexicographic ordering, if we assume the coordinate with lowest index
to be the the least significant.

A similar relation for boxes is introduced. If box B� has bounds l�, u� and
box B� l�, u� , then we have:

B� < B�
i� l� < l�:

The unit vectors vi, i = 1 : : :n, are vectors with a 1 in the i-th position and 0
elsewhere. For instance:

v1 =

2
66664

1
0
...
0

3
77775 :

A canonical form for a set of points P in Z
n is a sequence of boxes C =

(B1; : : : ;Bm), ordered by the < relation above, forming a partition of P with
the property of prioritized maximal extension:

8p; q 2 P with p = q + vi
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p 2 B�,
q 2 B� ,
� 6= �

9=
; =)

2
64

l�1
...

l�i�1

3
75 6=

2
664

l�1
...

l�i�1

3
775 _

2
64

u�1
...

u�i�1

3
75 6=

2
664

u�1
...

u�i�1

3
775 :

In the case i = 1, the above relation is equivalent to:

8p; q 2 P with p = q + v1 9� such that p; q 2 B�:

This property can be intuitively explained with this rule: a box should extend as
much as possible along dimension i, as long as that does not preclude maximum
extension along dimensions i� 1; : : : ; 1.

Breaking and coalescing

To reason about boxes as sets of points, we associate a unit box to each point; that
is we associate point p = [p1 : : : pn] to the n-dimensional volume in Rn with lower
bound p and upper bound p + [1 : : :1]. We represent a box as the union of the
unit boxes of its points. The d-faces of the box are the d-dimensional rectangles in
R

n, with d � n, that define its boundary. For instance, when n = 3, the box is a
parallelepiped, the 2-faces are the faces of the parallelepiped, the 1-faces its edges,
the 0-faces its vertices. The n-face is the box itself.

Most of the manhattan algorithms utilize two procedures: BREAK and CO-
ALESCE. BREAK takes an arbitrary list of boxes and produces a list of boxes in
sufficiently fragmented form representing the same set of points. This form has
the property that the 2n planes defining a box B do not cut any box adjacent to or
overlapping B. In other words, any two boxes Bi and Bj from a list in sufficiently
fragmented form are in one of three possible situations with respect to each other:

1. they are identical;

2. they are non-adjacent, that is 8p 2 Bi8q 2 Bj ; kp� qk � 2;

3. they share a d-face, 0 � d � n (the special case d = n is the same as
situation 1, i.e. they are identical).

COALESCE takes a list of disjoint boxes in sufficiently fragmented form and
returns a list of boxes in canonical forms representing the same set of points. It
proceeds by joining boxes as much as possible along dimension 0, then joining the
boxes of the result as much as possible along dimension 1, and so on.
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Union, intersection, difference

The union of manhattan domains x and y is computed as follows:

1. compute the union of the boxes in the canonical form of x and y;

2. compute a fragmented form using BREAK;

3. find pairs of identical boxes;

4. eliminate one box from each pair, keep unpaired boxes;

5. compute the canonical form using COALESCE.

For intersection and symmetric difference, only step 4 changes:

4. (intersection) keep one box from each pair, discard unpaired boxes.

4. (symmetric difference) discard all pairs, keep unpaired boxes.

The difference x�y is computed as x\(x
y), where
 is the symmetric difference
operator.

Transpose, project

The transposition (or projection) of a box Bx is also a box By , whose bounds can
be computed with simple operations on the bounds of Bx. However, performing
these operations on a list of boxes in canonical form does not produce, in general,
a canonical form. The resulting list of boxes is still disjoint, and it suffices to
break and coalesce it to compute the result. These are the steps for evaluating the
transposition (or contraction) of a manhattan domain m:

1. transpose (or contract) each box of m;

2. compute a fragmented form using BREAK;

3. compute the canonical form using COALESCE.

Contract

Contracting requires an extra step, because the contracted boxes may overlap. Be-
tween the BREAK and the COALESCE step, redundant boxes must be eliminated,
similarly to the union algorithm.
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Shift, expand

These are the easiest operations, as shifting or expanding each box in a manhattan
domain preserves the canonical form. No breaking and coalescing is necessary.

Inject

This is the only operation on a manhattan domain that does not produce another
manhattan domain (except in trivial cases). The result of inject(m;S) is the tiled
domain (b; t), where the base is given by b = expand(m;S), the tile has sides with
dimensions S, and its only in-tessera is the one in the lower left corner.

2.2.2 Tiled and collage algorithms

The tiled representation is somewhat more ad hoc than the manhattan representa-
tion. The canonical form is not unique: there can be many different tiled repre-
sentations of the same domain. However, once the tile size is chosen, the form is
unique. Choosing the most convenient tile size appears to be a hard problem, and
we do it only for some specific cases.

Tiles that produce the same tiling of the space are equivalent. The smallest
tile of an equivalence set is an irreducible tile. All tiles in the equivalence set are
obtained by replicating the irreducible tile in the set along one or more directions.
The replication functionR takes a tile t and a replication factor S = [s1 : : :sn] and
replicates t si times along direction i.

A domain b is regularly tiled by a tile t with side lengths " if

b = expand(contract(b; "); "):

In this case the boundary of b follows tile boundaries when the space is tiled by
t, and never cuts any tile. A tiled domain (b; t) is regular if its base b is regularly
tiled by t.

A collage domain c is encoded as a set of regular tiled domains with disjoint
bases, called the components of c:

}c =
[

(bi;ti)2c

}(bi; ti)

where bi is a manhattan domain, ti a tile with side lengths "i, and the following
additional properties hold:
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1. "i = "j for all valid i; j (all tiles have the same dimensions);

2. 8i; j such that i 6= j, ti 6= tj (the tiles are all different);

3. there is no replication factor S (except for the trivial replication factor
[1 : : :1]) such that ti = R(ui; S) for all i, with adequate ui (the tiles are
mutually irreducible).

4. ti must have at least one in-tessera for all i (there are no empty components).

5. ti may not be the unit tile (if it were, the collage would have been promoted
to a manhattan).

This representation allows the run-time system to reconstruct manhattan domains
from unions of tiled domains in certain cases. More specifically, if the result of an
operation on collage domains has a single component with a full tile, a manhattan
descriptor is returned.

In some cases a collage domain with more than one component could be
represented more concisely by a manhattan descriptor, but the system does not
recognize it. Figure 2.6 is an example.

Figure 2.6: A collage domain that should be a manhattan

In general, there is no guarantee that a “minimal tile”1 is always used. Set
operations on domains with differently-sized tiles may yield a result with a larger
tile size. This has a negative impact not so much on the cost of domain operations,
as much on the efficiency of vectorizing operations on grids with such domains.
We expect this not to be a problem in practice, because of the relatively regular
patterns of expansion and contraction found in most algorithms.

1This is just an intuitive notion. A tiled domain can always be encoded by a unitary tile and a
manhattan base with lots of small boxes.
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Kernel descriptors

It is easier to perform certain operations on an alternative representation for a col-
lage domain, the kernel descriptor. This representation is similar to the collage
descriptor but has different properties. A kernel descriptor is a set of tiled descrip-
tors with regularly-tiled bases and exactly one in-tessera in each tile. The bases
may overlap, and the tiles are all different but have all the same size.

The implementation of certain operations produces sets of tiled descriptors
with irregularly-tiled bases as intermediate results. When these sets satisfy all
other properties of a collage or a kernel descriptor, they are called, respectively,
quasi-collage and quasi-kernel.

Union

We show only the union algorithm; intersection and symmetric difference share
the same general structure and differ only in obvious details.

We first consider the case of two collage domains with the same tile size.
Similarly to the manhattan situation, the union algorithm for domain descriptors x
and y proceeds by mutually decomposing the bases of both operands. Every tiled
component (bxi ; t

x
i ) of x is partitioned into a set of tiled components f(bxij; t

x
i )g:

}(bxi ; t
x
i ) =

[
j

}(bxij ; t
x
i )

with the following property: given (i; j), either bxij \ b
y
k = ; for all k, or bxij � byk

for some k. All of this holds when exchanging x and y. The result is that every
decomposed base of x is either identical to a decomposed base of y, or disjoint from
all of them—and vice versa. The procedure DECOMPOSE is used to compute these
subdivisions. After subdividing, the union is performed component by component
on the decomposed domains. Then components with identical tiles are merged,
and property 3 and 5 are imposed in order. Property 4 is preserved by the union
algorithm, but must be imposed in the intersection and symmetric difference, since
the algorihm may create empty components that must be removed. The following
procedure takes domains x and y and computes the result x [ y in du:

1. set dx  DECOMPOSE(x; y), dy  DECOMPOSE(y; x);

2. set d dx [ dy .

3. set du  ;;
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4. repeat until d is empty:

(a) take a tiled component (b; t) out of d;

(b) if there is another tiled component (b; t0) (same base, different tile) in d,
take that out as well and set u to the descriptor of the union of (b; t) and
(b; t0). This is equal to (b; t^ t0), where the ^ operator is the logical-or
of the operands’ tesserae.

(c) if there is no other tiled component with the same base in d, set u  
(b; t);

(d) set du  du [ u;

5. replace all components of du with the same tile with a single component,
taking the union of their bases;

6. if all the tiles can be simplified using the same replication factor, do so;

7. if du has a single component with a unitary tile, convert it to a manhattan
descriptor.

When the tiles of x and y do not have the same size, we construct two descriptors,
x0 and y0, that encode the same index sets as x and y respectively, and have equally-
sized tiles. This is done by computing the least common multiple (LCM) of the
two side lengths (one from x, one from y) in each direction. The vector thus
produced is called the LCM-size. Each tile txi of x and tyi of y is replicated by
an adequate factor to produce a tile whose size is the LCM-size. Since these tiles
produce the same tiling of the space, it is not necessary to change the bases. The
descriptors x0 and y0 are quasi-collage; the algorithm proceeds as given, but at the
end a regularization step is necessary, as described in the next section.

Regularization

Given a quasi-collage descriptor c0, this procedure computes a collage descriptor c
representing the same set of points:

1. compute a quasi-kernel descriptor k0 from c0. To do so, break every com-
ponent of c0 with N in-tesserae into N components with 1 in-tessera, and
merge components with identical tiles.
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2. Compute a kernel descriptor k from k0 by regularizing the bases. Given an
irregular tiled component (birr; t), with a tile size vector ", and coordinate
vector� for the single in-tessera of t, the base for an equivalent regularly-tiled
descriptor is given by

breg = expand(project(shift(birr;��); "); "):

3. Compute c from k by transforming the components of k into collage descrip-
tors, and taking their union.

Shift

A collage domain is shifted by shifting each component, and then regularizing the
result. To shift a component by a shift amount S, the base is shifted by S, and the
tile is rotated by S. Rotating a tile is equivalent to shifting it with wrap-around, as
if the tile was closed onto itself in an n-dimensional toroidal shape.

Transpose, expand, inject

Transposition (expansion) of a collage domain is done component-wise, by trans-
posing (expanding) the base and the tile of each component. Injection is achieved
by expanding the base and injecting the tile of each component. It is easy to verify
that the collage properties are preserved by these transformations. No regulariza-
tion is needed.

Contract, project

Because division is always harder than multiplication, contraction (projection)
requires one extra step. If the contraction (projection) factor in each direction is a
multiple of the tile size in that direction, then it is sufficient to contract (project)
each tile and each base. If not, the tile must first be replicated until its size is a
multiple of the contraction factor. Then the domain must be regularized; then each
base and each tile is contracted (projected).

2.2.3 Bitmap algorithms

Bitmap domains are represented as logical grids with manhattan domains. Op-
erations on bitmap domains have corresponding operations on grids. With no
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exception, the algorithms are quite easy to derive and express in terms of the
INFIDEL grid primitives, and we don’t discuss them here.

Operations on bitmap domains always produce bitmap domains. The INFI-
DEL function simplify-bitmap-domain returns a manhattan descriptor when
its argument is a completely full bitmap domain (all the elements of the grid are
true), and the null domain descriptor when its argument is a completely empty
bitmap. This operation is somewhat expensive, so it is not done automatically after
each bitmap operation that might take advantage of it.

2.2.4 Thin algorithms

A thin domain descriptor is a list of points in lexicographic order. The algorithms
for operating on these descriptors are also quite obvious. The sorted list represen-
tation makes the set operations (union, intersection, difference) much faster than
if a manhattan descriptor had been used, because adjacent points in a manhattan
descriptor are merged into a single box.

When one operand of certain set operation is thin, and the other is not, it
may be hard to determine the best representation for the result. The system uses
parameterizable heuristics to decide if, for instance, the union of a thin and a
manhattan should produce a thin or a manhattan descriptor. In certain cases, it is
clear what the result should be: for instance, the difference of a manhattan and a
thin produces a thick descriptor if they are not disjoint, and a manhattan otherwise.

2.2.5 Thick algorithms

A thick descriptor k is the pair (m; �), where m is a manhattan descriptor and � a
thin descriptor, with � � m. The set of points described by k is }(m � �). Set
operations on thick descriptors are easily described (and implemented) in terms of
operations on manhattan and thin descriptors, using set algebra. For instance, if
kx = (mx; �x) and ky = (my ; �y), then we have:

kx [ ky = (mx � �x) [ (my � �y)

= (mx [my; (�x � sy) [ (�y � sx) [ (�x \ �y)):

Geometric operations are also straightforward.
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2.3 INFIDEL Domain Interface

2.3.1 The domain type

The type of a domain expression in INFIDEL is (domain n), where n is its
dimensionality. After transformation, variables of this type acquire type t. Domain
objects are garbage-collected and never need to be explicitly freed, although it is
possible to free them passing them tofree-gc. Most domain descriptors are small,
with one exception: bitmap domains can occupy as much space as the grids they
describe, and it may be desirable to free them explicitly.

Type-predicate operators allow determining what descriptor is used to encode
a given domain. The structure names for domain descriptors are manhattan,
collaged, thind, thickd, bitmapd. INFIDEL also defines the tiled structure,
which is only used as a subcomponent of a collage domain. The type predicate
is obtained by prepending -p to the structure name (manhattan-p, collaged-p,
etc.).

2.3.2 Domain constructors

INFIDEL has three operators to construct domains. The operator domcons takes
these arguments: l and u (the lower and upper bounds), and d (the dimensionality).
It returns a manhattan descriptor consisting of a single box with the given bounds.
The bounds l and u are passed as pointers to integers, and should point to integer
arrays with length d.

The second operator, domcons-t, takes these arguments: p (the points in the
domain), n (the number of points), and d (the dimensionality). It returns a thin
descriptor with the given points, which are copied. The point array p is passed as
a pointer to integer, which should point to an integer array of length nd.

The third operator, to-domain, takes a boolean grid and returns a bitmap
domain. A copy of the grid is made for the descriptor (using the copy-on-demand
mechanism described in section 3.2), so the grid can be safely freed.

These are the only constructors. The other types of descriptors are produced au-
tomatically as needed. Explicit conversion routines (to-bitmap, to-manhattan,
to-thin) are available, but it is hoped that they will not be needed at the application
level.
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Chapter 3

Grids

3.1 Overview

Grids are n-dimensional arrays with arbitrary index sets. The INFIDEL virtual
machine offers various types of operations on grids. We divide them in two main
classes. Elementwise operations are those that access individual elements of one or
more grids in a data-parallel fashion. Remapping operations are those that change
the association between indices and elements in a grid. In INFIDEL, elementwise
operations are eager, and remapping operations are lazy. An instance of a lazy
operations can be made eager by adding an elementwise copy. The reason for the
lazy semantics is precisely the avoidance of the extra copy.

In theory, grids could be used to represent a variety of data structures: sets,
lists, vectors, matrices. In practice, grid operations are designed to work optimally
for large grids with scalar elements, and index sets of the types described in
section 2. These are the situations in which the target applications spend most
of their execution time and memory resources. When conventional programming
techniques are used in these situations, full exploitation of the features of the host
computer may require considerable effort. The grid interface reduces this effort.

The interface is at a conveniently high level for the algorithm designer, and is
meant to hide most architectural characteristics of the target computer. Although
the design of the interface has taken into account future multiprocessor implemen-
tations, the only currently available implementation (the one we describe here) is
for a uniprocessor with vector units. We consider this not only a useful tool by
itself, for use on vector machines such as Cray computers, but also a building block
for future parallel implementations.
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As hinted, the interface is not completely machine-independent. However, the
machine-dependent parts are not meant to provide a different functionality, and
are included because they represent opportunities for optimization. It is up to the
compiler writer, or the L programmer, to take advantage of them.

The INFIDEL run-time library performs several dynamic optimizations, in-
cluding choice of optimal vectorizing direction in multidimensional grids, delayed
allocation and early release of grid memory. Most of these optimizations are
automatic: some require that certain high-level hints be passed to grid operations.

3.2 Chunks

The run-time system maintains three components for each grid: domain, data
descriptor, and data. The data is divided in chunks. In the uniprocessor implemen-
tation, this division allows several dynamic memory optimizations. Chunks have
a maximum size, to reduce heap fragmentation. They are reference-counted, and
they can be shared among grids. The sharing is transparent. A copy-on-demand
mechanism guarantees correct update semantics for shared chunks. Chunks are
also allocated on demand: grid-alloc returns a grid without allocating its chunks.
The first time an element of a chunk is set, that chunk is allocated. Correspond-
ingly, an early-release mechanism is provided. The mechanism deallocates chunks
immediately after their last use in an elementwise operation.

Chunkification affects almost every aspect of the interface design and system
implementation; therefore we postpone a full discussion of its properties to the
sections describing individual operations.

3.3 The grid type

Grid expressions have type (grid n e), where n is the dimensionality of the grid,
and e is the element type. Just like domains, grids are L boxed structures, and
they are stored in locations of type t. Grids, therefore, can and will be garbage-
collected. However, the garbage collection algorithm cannot guarantee that grids
that are no longer used will be timely freed (or even freed at all). Especially when
grids are large, free-gc should be used to reclaim the space as soon as possible.
Optionally, a grid may be freed during its last use, as described in section 3.5.
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3.4 Grid allocation

The arguments to the INFIDEL operator grid-alloc are: domain, element type,
and optional hints. The return value is a grid with the given domain and element
type.

The hints are passed in a structure of type grid-alloc-hints that provides
various information about the grid, among which how the grid’s data should be
partitioned. Partitioning hints may be given at different levels of abstraction: from a
complete specification of the partitioning, to hints about the preferred vectorization
direction. When no partitioning hint is given, the system chooses an initial partition
automatically, based on the grid’s domain and element type.

A grid’s chunks are allocated lazily. A chunk is allocated when one or more of
its elements are set for the first time. Attempting to use a value from an unallocated
chunk results in a run-time error.

Once all chunks of a grid are allocated, their total size is at least as large as the
number of elements in the grid multiplied by the element size. It can be larger in
the following cases:

� when the grid has a thick or bitmap domain D, the layout of the data in the
chunks is the same as for a grid whose domain is the base ofD (its manhattan
component). This layout strategy sacrifices space to regularity. The storage
locations corresponding to a false value in the boolean grid of the bitmap
domain, or the thin holes of the thick domain, are not normally accessible.

� A value � > 0 may be passed in the allowable-memory-overhead field
of the optimization hints. This hint informs the system that it is acceptable to
allocate � times more space than strictly necessary for a manhattan domain,
if doing so helps in avoiding bad strides along one or more dimensions.

3.5 Elementwise operations

INFIDEL offers essentially a single data-parallel elementwise operation, namely
map-grid. The arguments to map-grid are: an operator f , a domain D called
the restriction domain, and one or more grids G1; : : : ; Gg. The domain D is
intersected with the domain of each grid Gi to obtain the computation domain D0,
that is D0 = D \

�Tg
i=1 �(Gi)

�
, where �(G) denotes the domain of grid G. The

operator f takes g arguments. f should have no side effects other than storing
values into its arguments. Map-grid applies f to G1[p]; : : : ; Gg[p] at each point
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p 2 D0, in parallel. The square brackets denote the indexing operation: G[p] is the
location at which element p of grid G is stored. When used in a value context, the
same notation stands for the value itself. Examples:

(map-grid D setf :grids (A B))

stores elements of grid B into grid A, restricted to domain D.

(map-grid D

(slambda (x y z) (setf x (+ y z)))

:grids (A B C))

computes the elementwise sum of B and C and stores the result in A, again restricted
to domain D.

A variation of map-grid is map-grid*, which takes the extra argument p. A
variable named p is bound to each index during execution, and it may be used in
the operator body (which should be an slambda).

3.5.1 Arguments to elementwise operations

The grid arguments tomap-gridmust either be variables, or constant-factor remap-
ping expressions of variables. Example:

(map-grid D

(slambda (x y z) (setf x (+ y x)))

:grids ((A)

((grid-shift B [0 1]))

((grid-shift B [0 -1]))))

The main reason for allowing remapping expressions as arguments is that it exposes
opportunities for an important vector optimizations: improved vector-register allo-
cation through strip-mining. This optimization requires knowing, at compile time,
that two of the arguments are remappings of the same grid (B in the example); and
it also requires knowing the remapping parameters (in this case, the shift amount).

In general, instead of using remapping expressions in map-grid, one can obtain
the same effect by storing the (lazily) remapped grids in temporary variables.
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3.5.2 Optimization directives in elementwise operations

Additional information can be passed to map-grid for the purpose of optimization.
The information can be specific to a grid argument, or to the restriction domain.
Each item of information is called, respectively, grid directive or domain directive.
Grid directives are passed as keyword arguments associated with grid parameters.
Domain directives are passed as additional keyword arguments to map-grid.

Here we present the directives and explain their meaning. In section 3.7 we
discuss in more detail the way in which they operate.

The :free grid directive

Grids are large objects, and memory is one of the critical resources in the target
applications The :free directive, when applied to grid G, informs map-grid that
this is the last use of G and the early-release mechanism should be applied to its
chunks. For instance, if this were the last use of B and C, one might write:

(let ((((grid 2 float) A) (grid-alloc D float)))

(map-grid D (slambda (x y z) (setf x (+ y z)))

:grids ((A) (B :free t) (C :free t)))

...

Using the :free directive causes each chunk to be freed immediately after its last
use. Since chunks are also allocated on demand, the total amount of memory used
in the above example is likely to exceed the amount of memory used by B and C

only by a few chunks, and by just a single chunk in an optimal situation.

The :partition grid directive

In certain cases, through compile-time analysis in the front end, or knowledge of
the algorithm, the data descriptor of a grid (also called partition descriptor can be
computed at compile time. When the data descriptor of all grids in a map-grid

operation is a constant, it can be passed to map-grid via the :partition grid
directive. If the restriction domain is also a constant, several simplifications can be
performed. The resulting code has less run-time overhead and is more suitable for
small grids.
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The :mask domain directive

This directive affects only the size of the generated code, with no significant impact
on its speed. It indicates that the computation domain could be a bitmap or thick
domain, and its default value is conservatively t. In the default case the compilation
of map-grid produces two versions of the statement(s) that operate on individual
grid elements: one for the bitmap and thick domains, and one for all others. When
the :mask directive is nil, the bitmap/thick version is not produced.

3.5.3 Unsafety in elementwise operations

Elementwise operations have unsafe semantics. When the computation domain
D is of type thick or bitmap, the effective computation domain De is the entire
base of the thick or bitmap domain; that is, its manhattan component. This means
that f is applied to grid elements over De instead of D. This choice allows good
vectorization at the expense of operating on more elements than strictly needed.
The operator f is modified to prevent side effects for those points in De � D.
However, some architectures make it impossible, or difficult at any rate, to prevent
all side effects. In particular, on several members of the Cray family it is not
possible to selectively disable execution of arithmetic operations that may cause
floating point exceptions.

We consider the issue in more detail. On the Cray X-MP and Y-MP the effect
of storing a vector element can be conditionally nullified by using the Conditional
Vector Merge instruction. Given a boolean grid b with domain De such that
b[p] = p 2 D, then the assignment

x[p] E

(where E is some side-effect-free expression) is rewritten as

x[p] if b[p] then E else x[p]:

This almost obtains the desired result. Unfortunately, the execution of E can
produce floating point exceptions on points in De � D. Such exceptions are
completely meaningless and should be ignored. Most processor architectures
(including the Cray) do not allow taking the exception conditionally. Also, the
Cray does not support IEEE Floating Point-style exceptional values; therefore
turning off exceptions is generally not desirable, as errors can go undetected.

A possible way to avoid unwanted exceptions is to conditionally replace the
operands of every floating-point operation with “safe” values. This may be too
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expensive if intermediate results need to be replaced as well. The expression E can
be analyzed to determine safe input values, that would guarantee all intermediate
results to be safe. Even so, the cost of the conditional replacement may be too high
and we have not implemented this solution.

The INFIDEL programmer must deal with these situations directly. As a
palliative, the INFIDEL set-hidden-elements operator takes a grid and a value,
and it stores that value in all “unreachable” elements of the grid: those whose
indices are in De � D. The programmer should choose a “safe” value for those
points, that is, one that will not produce exceptions in subsequent elementwise
operations. The programmer’s understanding of the algorithm enables her to use
set-hidden-elements sparingly.

3.6 Remapping Operations

The remapping operations change the association between indices and elements of
a grid, and possibly add or remove elements. They are: shift, transpose, inject,
project, restrict (the FIDIL on operator), and merge (the FIDIL disjoint union
operator). They all have lazy semantics. The result of these operations does not
require allocation of additional data memory, but only a typically small amount of
descriptor memory. This is achieved by sharing the chunks of the result with the
chunks of the operand (or operands). The operations however return a conceptually
new object, not just a different view of the same object.

The lazy semantics do not always optimize the resulting program in terms of
speed and memory usage. The alternative is to use eager versions of the same
routines, which are obtained by combining the lazy versions with an elementwise
copy on a newly allocated grid. The optimal choice between eager and lazy
semantics in a specific situation depends on many factors, among which: the
parameters of the operation, the target architecture, and the subsequent reference
pattern of the grids involved.

A lazy remapping of a sufficiently large grid is cheap, when compared to the
eager version, as no data is copied. The remapping affects the cost of operations
that access the remapped grid’s elements (that is, map-grid). For the vector pro-
cessor implementation, using a lazily-remapped grid in an elementwise operation
corresponds to a simple index translation that in most cases does not affect the
vectorization efficiency. In these cases the access overhead is almost nil.

The availability of lazy remapping semantics is useful even on a distributed-
memory multiprocessor (DMMP); for instance, when two or more remappings are
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applied to a grid before any of the elements are used. On a DMMP, however,
accessing a lazily-remapped grid may involve moving data across the intercon-
nection network, and is much more expensive. To avoid duplications of transfers,
the semantics should be those of latched evaluation [Sku90]. In this scheme,
when a lazily-remapped grid is used for the first time, new chunks are permanently
allocated for it; and further references to that grid use the new chunks.

3.7 Grid Algorithms

In this section we present the algorithms used in the vector processor implementa-
tion of elementwise and remapping operations.

A grid G is a triplet (d; P; C), where d is the domain descriptor, P the data
descriptor, and C the chunk vector. The domain descriptor encodes the domain of
the grid as one of the objects presented in section 2. The data descriptor specifies
how points in the domain map into locations in the chunks. The chunk vector is
an array of chunks. A chunk is a one-dimensional array where G’s elements are
stored. Fig. 3.1 gives a visual representation of G.

chunks

data

domain

descriptor

Figure 3.1: A grid.

25



3.7.1 Section descriptors

Given a grid G = (d; P; C), the grid element G[p], with p 2 d, is stored in C[c][I ],
where c = c(p; P ) and I = I(p; P ). We call c the chunk index and I the linear
index. This section explains how c and I are computed from p and P .

The data descriptorP ofG is a set of section descriptors. Each of these encodes
the layout of a subset of G’s elements that can be accessed in a regular and efficient
way. There are two types of section descriptors. One, the thin section descriptor,
is used when the domain descriptor d is thin; the other, the tiled section descriptor,
in all other cases. We discuss the tiled descriptor first.

A tiled section descriptor S is the tuple (bS ; "S ; �S; cS; zS ; �S) where:

� bS is a box descriptor;

� "S (an injection factor) and �S (a shift factor) are integer vectors of length
n;

� cS (the chunk index) is an integer;

� zS (the zero index) is also an integer;

� �S (the stride vector) is an integer n-vector.

The box, injection factor, and shift factor represent the section domain �S , by the
following relation:

�S = inject(}bS ; "S)� �S

(recall that � is the shift operator). This is equivalent to a tiled domain with a
single in-tessera, or a kernel domain with a single component.

The chunk index, zero index, and stride vector encode the mapping between
an index and a position in a chunk. For p 2 �S , the following formula defines the
relation between p, c, and I :

G[p] � C[cS ][zS + pS � �S ] (3.1)

with
pS =

p� �S
"S

: (3.2)

and x � y is the inner product of x and y. We call pS the section index. Using pS
instead of p in 3.1 may seem confusing, but is essential to guarantee the correct
functioning of lazy remappings.
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A thin section descriptor consists of a thin domain descriptor � , a point range
� = (il; iu), a chunk index c and a linear index z. The point range specifies which
points of � are included in the section, by giving the indices of the first and last
point in � ’s list of points. The location of the first element of the section is C[c][z].
Following points map into subsequent elements.

3.7.2 Non-thin elementwise operations

We describe the implementation of an elementwise operation with domain D on
grids G1; : : : ; Gg, with D � �(Gi)), for the cases in which the descriptor of D is
not thin.

Since D may be fairly irregular, and the grids are partitioned, one important
issue is computing efficiently the locations of the grids’ elements. We do this by
decomposing the operation into many elementwise operations on disjoint subdo-
mains whose union is D. For each of these subdomains the linear index generation
is regular and allows vectorization.

A computation partition PC is a set of disjoint section domains �Cj , such thatS
j �

C
j = D, and given a grid Gi, there exist a k such that �Cj � �(SGi

k ); that is,
each computation section domain is a subset of some section domain of each grid.

Every computation section domain �C is described by the familiar tuple
(bC ; �C ; "C), with:

�C = inject(}bC; "C)� �C :

The indices of the section are obtained by

p = pC"C + �C ; pC 2 bC :

The section index pS is obtained from equation 3.2:

pS =
pC"C + �C � �S

"S
:

The linear index I then is given by:

I = zS +
�C � �S

"S
� �S + pC �

"C
"S

�S :

which we can rewrite as
I = zCS + pC � �CS

with zCS = zS+
�C��S

"S
��S and �CS = "C

"S
�S . Showing that the integer divisions

in the last two formulas are exact is left as an act of faith to the reader.
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This shows that in order to compute the linear index from pC it is sufficient to
use zCS instead of zS , and �CS instead of �S . This is convenient because pC is
determined only by the computation section domain and not (directly) by any of
the grids involved.

Let f be the operator of the elementwise operation. The steps for executing
the operation are:

1. obtain PC by splittingD and all the �(SGi

k );

2. for each �C 2 PC do the following:

(a) find the section S of each grid such that �C � �(S); we do this with a
linear search through the grid’s partition descriptor;

(b) compute the zero index zCS and the stride vector �CS for each grid;

(c) generate all indices pC 2 bC and evaluate f on the chunk elements
indexed by zCS + pC � �CS .

This description omits the memory management actions that release dying chunks
after their last use. The scheme assigns a reference count to each chunk. In the
preamble of an elementwise operation, the counts of dying chunks (those belonging
to grids that are dead after the operation) are increased to reflect the number of
times each chunk will be referenced during the operation. Then the grid is freed;
but those chunks that have further uses remain allocated. After operating on
each computation section, the count of each dying chunk used in that section is
decremented, and the chunk is freed when the count reaches zero.

3.7.3 The universal transducer

The universal transducer T is a function that encodes arbitrary sequences of
applications of inject, project, shift, and transpose, on either domains or grids. We
use the universal transducer in the implementation of the map-grid operator, and
in the evaluation and simplification of remapping expressions.

The first argument to T is a domain, or a grid; the second argument is a
transducer factor, the tuple (�; �; "; �0; !). We define

T (x; �) � transpose(inject(project(x� �; �); ")� �0; !)

with � = (�; �; "; �0; !). We overload T to operate on points as well, with the
following definition:

T (p; �) =

�
p+ �

�
"+ �0

�

 !
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where 
 is the permutation operator, thus defined: (x 
 y)[i] = x[y[i]]. The
elements of y are restricted to be a permutation of [1; 2; : : : ; n]. Every permutation
factor y has an inverse, y�1, defined by:

(x
 y)
 y�1 = (x
 y�1)
 y = x for all x:

Also note that 
 is associative: (x
 y)
 z = x
 (y 
 z).

With this definition of T (p; �), given a grid G, the following identity occurs:

G[p] = T (G; �)[T (p; �)] (3.3)

when p 2 domainOf(G) and (p � �) mod � = 0. The latter condition on p is
necessary because the project-by-� operation causes elements of G to be lost in
the remapping: precisely those whose index p is such that (p� �) mod � 6= 0.

The usefulness of T comes from the fact that given two transducer factors �1

and �2, it is possible to compute a factor �21 = �2 � �1 that combines their effect:
that is,

T (T (X; �1); �2) = T (X; �21) for all X:

For this to be true in all cases, the null factor �0 must be introduced. This factor
does not have a corresponding tuple, but is defined by the following identity:

T (X; �0) = null grid or null domain, for all X:

Here is an example of a remapping sequence that produces a null grid:

contract(expand(contract(G; 2); 2)� 1; 2):

The rest of this section shows transducer factors corresponding to remapping
operations, how transducer factors are composed, and how to put a transducer
factor in normal form.

Transducers for domain operators

Let 1 = [1; : : : ; 1], 0 = [0; : : : ; 0], !id = [1; 2; : : : ; n]. The following equivalences
exists:

shift(X;S) = T (X; (S; 1; 1; 0; !id))

project(X;S) = T (X; (0; S; 1; 0; !id))

inject(X;S) = T (X; (0; 1; S; 0; !id))

transpose(X;S) = T (X; (0; 1; 1; 0; S))

The transducer for the shift operator can also be defined by:

shift(X;S) = T (X; (0; 1; 1; S; !id)):
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Composition of transducer factors

We show how to compute a transducer factor �21 such that

T (X; �21) = T (T (X; �1); �2):

The composition of �1 and �2 is encoded by the following equations:

T (T (p; �1); �2) =

2
664
�
p+ �1

�1
"1 + �01

�

 !1 + �2

�2
"2 + �02

3
775
 !2 (3.4)

with the restrictions

(p+ �1) mod �1 = 0 (3.5)��
(p+ �1)

"1

�1
+ �01

�

 !1 + �2

�
mod �2 = 0 (3.6)

Equation 3.5 defines which grid elements “survive” the contraction by �1, and 3.6
the contraction by �2. We define:

�̂2 = �2 
 !�1
1

�̂2 = �2 
 !�1
1

"̂2 = "2 
 !�1
1

�̂02 = �02 
 !�1
1 :

We can then rewrite 3.6 as:�
(p+ �1)

"1

�1
+ �01 + �̂2

�
mod �̂2 = 0

or equivalently:

�
"1p+ "1�1 + (�01 + �̂2)�1

�
mod �1�̂2 = 0: (3.7)

To derive a single transducer factor whose effect combines those of �1 and �2, we
must solve equations 3.5 and 3.7 simultaneously. If the system has no solutions,
then �21 = �0, the null factor. Otherwise, the solutions satisfy the equation

(p+ �) mod � = 0
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where � and � can be computed from the coefficients of the system, as shown in
appendix A. This is the same condition imposed by a shift by � and a contraction
by �. Therefore we have:

�21 = (�; �; "21; �
0

21; !21):

We now show how to compute "21, �021, and !21. We can rewrite equation 3.4 as:

T (p; �21) =

�
(p+ �1)

"1"̂2

�1�̂2
+ (�01 + �̂2)

"̂2

�̂2
+ �̂02

�

 !1 
 !2: (3.8)

For convenience, we define:

�̄ = �1

"̄ = "1"̂2

�̄ = �1�̂2

�̄0 = (�01 + �̂2)
"̂2

�̂2
+ �̂02

!̄ = !1 
 !2:

The value of �̄0 is not necessarily integer. In an implementation it is more convenient
to compute �̄�̄0:

�̄�̄0 = (�01 + �̂2)"̂2�1 + �̂02�1�̂2:

We now equate the right hand side of 3.8 (using the new definitions) and the
definition of T (p; �21):�

p+ �̄

�̄
"̄ + �̄0

�

 !̄ =

�
p+ �

�
"21 + �021

�

 !21:

This must hold for all p. We now have enough conditions to determine the missing
values, which are given by:

"21 =
�"̄

�̄

�021 =
�"̄�̄ + ��̄�̄0 � �̄"21�

�̄�
!21 = !̄:
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Normal form

If two transducer factors �1 and �2 are such that T (x; �1) = T (x; �2) for all x,
we say that �1 and �2 are equivalent and we denote it by �1 � �2. It is easy to
see that any factor has an infinite number of equivalent factors, because of the
degree of freedom induced by the two independent shift factors, � and �0. We
define the normal form of a transducer factor � the factor �n such that �n � � and
0 � �0n < "n. Such form always exists and is unique, and can be computed as
follows:

�n = � + �b�0="c

�n = �

"n = "

�0n = �0 mod "

The proof is omitted.

3.7.4 Remapping operations

To obtain some remapping of a grid G = (D;P; C), we compute separately the
domain and the section descriptors of the result Ĝ. As mentioned, the chunks of
Ĝ are shared with G. The new domain is computed using domain operations; here
we show how to compute the new section descriptors.

Remapping by transducer

First we consider the case in which the remapping can be encoded by a transducer
factor � . This includes the operations of project, inject, shift, and transpose. To
obtain a new section descriptor, we start by deriving the new section domain �̂S
from the old one, �S = inject(bS ; "S)� �S . We could construct a tiled descriptor
to represent �S , and then use domain operators to transduce it; but it is possible to
compute the result with arithmetic operations only. First notice that

�S = T (bS; �S) with �S = (0; 1; "S ; �S ; !id)

and therefore

�̂S = T (�S ; �) = T (bS; �̃) where �̃ = � � �S :

We want the result to be in the same form: �̂S = inject(b̂S; "̂S) + �̂S . Recall that

�̂S = T (bS; �̃) = transpose(inject(project(bS � �̃; �̃); "̃)� �̃0; !̃):
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Shifting and projecting a box produces another box (possibly the null box). By
shuffling around the transpose operation, we can then write:

b̂S = project(transpose(bS � �̃; !̃); �̃
 !̃)

"̂S = "̃
 !̃

�̂S = �̃0 
 !̃:

If �̃ is in normal form, then 0 � �̂S < "̂S , as required to properly represent a tiled
section domain. To compute

b0 = project(b; �)

where b = (l; u), b0 = (l0; u0), we use the following relations:

l0 = dl=�e ; u0 = bu=�c :

If l0i > u0i for any dimension i, the result is the null box. In this case, the transduced
section is null and it is not included in P̂ . Those chunks of G (if any) that are not
used by any section of Ĝ, are not included in the chunk vector Ĉ. The chunk index
ĉS is computed from cS taking into account deleted chunks.

As the last step, we compute the zero index ẑS and the stride vector �̂S .
Combining equations 3.1 and 3.2 we have:

G[p] = C[cS ][zS +
p� �S
"S

� �S ] (3.9)

and from equation 3.3:

G[p] = T (G; �)[T (p; �)] = Ĝ[T (p; �)] = Ĉ[ĉS ][ẑS+
T (p; �)� �̂S

"̂S
� �̂S ]: (3.10)

Expanding T (p; �) and equating the right hand sides of 3.9 and 3.10, we obtain:

�̂S =

�
�

""S

 !

�
"̂S(�S 
 !) (3.11)

ẑS = zS �

�
�S + �

� "+ �0
�

 ! � �̂S

"̂S
� �̂S : (3.12)

(Equation 3.11 is obtained by taking the limit for p!1; equation 3.12 by setting
p = �S .) By noting that !̃ = !, we can write equivalent but more convenient
expressions. It is particularly useful to rewrite 3.12 since some of its subexpressions
do not necessarily have integer values:

�̂S =

�
�"̃

""S
�S

�

 !

ẑS = zS �
(�S + �)"+ (�0 � �̃0)�

"̃�

 ! � �̂S :
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Remapping by restrict/merge

The restrict and merge operations do not change the association of indices and
elements, but only add or remove elements. In the case of Ĝ = merge(Gx; Gy),
the partition descriptor of Ĝ is the union of the section descriptors of Gx and a
simple modification of the section descriptors of Gy , obtained by replacing the
chunk index cS with cS+Nx, where Nx is the number of chunks inGx. The chunk
vector of the result, Ĉ, is the concatenation of Cx and Cy.

For Ĝ = restrict(G;DR), the partition of Ĝ is obtained by intersecting each
section domain withDR. If the result is the null domain, that section is not included
in the result. The zero index and stride vector do not change. If some chunks of G
are not used by any section of Ĝ, they are not included in Ĉ. The chunk index in
the section descriptors is updated accordingly.

3.7.5 Reduction

To generate grid reduction code in the vector processor implementation, we add
the remapping operator grid-stretch to the machinery we have developed for
elementwise operations. This operator is an extension of grid-transpose, and its
use is restricted to the constant-factor remapping expressions in map-grid. Unlike
the other remapping operators, grid-stretch does not return a new grid object,
but a different view of its grid argument. The elements of the result are shared with
those of the argument, and assigning into one of them affects both objects.

The definition of stretch is similar to that of transpose:

stretch(G; S)[p
 S] = G[p]: (3.13)

The dimensionality of stretch(G; S),nS , is the length of S, and it is independent of
n, the dimensionality ofG. The elements ofS = [s0; : : : ; snS�1] are either integers
between 0 and n � 1 included, or the undefined index, denoted by a diamond (�).
(In the implementation we use the value �1 to signify a diamond). The integer
elements of S are all different, that is i 6= j , (si 6= sj _ si 6= �). The meaning
of 
 changes slightly:

(x
 y)[i] =

(
x[y[i]] when y[i] 6= �
� when y[i] = �

It is obvious then that transpose is a special case of stretch, with nS = n and no
diamonds.
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When a vector with diamonds is used as a grid index, as in 3.13, the diamond
stands for “any integer coordinate.” Equation 3.13 then stands for an infinite number
of equations, each of which is obtained by replacing diamonds in p
S with integer
numbers. By necessity then if any element ofS is a diamond, stretch(G; S) has an
infinite domain. Since the rest of the system does not deal with infinite domains,
this is one reason why the use of grid-stretch is restricted.

To identify precisely the stretch factor S outside the context of an expression
stretch(G; S), it is necessary to specify the input dimensionality n of G. We
refine the definition of S to be the pair ([s0; : : : ; snS�1]; n). For convenience we
abbreviate such pair as [s0; : : : ; snS�1]n.

Certain values of S are invertible. We say that S�1 is the inverse of S if for all
p, (p
 S)
 S�1 = p. For instance, to verify that [0; �]�1

1 = [0]2, consider:

[p0]
 [0; �]1 = [p0; �]

[p0; p1]
 [0]2 = [p0]:

However, [0]2 is not invertible, as it induces some loss of information. We require
that the second argument of grid-stretch be invertible.

Because grid-stretch returns an assignable object that always shares its
storage with its grid argument, it can be used in a left-hand-side position; for
instance:

(map-grid (domain-of B)

(slambda (x y) (setf x (+ x y)))

:grids ((grid-stretch A [0 -1])

B))

The effect of this code is approximately the following:

for all p from domainOf(B)
A[p
 [0; �]�1

1 ] = A[p
 [0; �]�1
1 ] +B[p]

If we make the further assumption that operations for different indices p are serial-
ized (in some order), then this code accumulates in A the elements of B along the
0-th dimension. A should have been initialized to the identity for the operation (0
in this case).

Depending on the shape of each computation section, it can be more convenient
to vectorize along one of the reduction dimensions, or orthogonally to it. Thus
two versions of the elementwise code are produced, and the most efficient one
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is chosen at run time on a section-by-section basis. Each version itself contains
two sub-versions, one with masking for the bitmap/thick domain case, the other
without masking. This quadruplication of code is not an issue, because in general
the elementwise code is quite short.

A grid-reduce operator is also available in INFIDEL (it is implemented
in terms of map-grid and grid-stretch). We include the functionality of
grid-stretch in the interface because it exposes opportunities for optimiza-
tion. Specifically, the reduction could be combined with other constant-factor
remappings in the same map-grid operation, making it possible to obtain improved
vector-register allocation. We do none of it, but someone might in the future.
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Chapter 4

INFIDEL Reference Manual

4.1 Support types

This section describes miscellaneous abstract types, constructs, and features.

4.1.1 Vectors and points

These are simple but useful extensions to create and manipulate arrays.

cons-vector type &rest elements [Macro]

cons-vector returns a pointer to a vector of type type initialized with elements.
The vector is stack-allocated and no larger than needed to contain elements.

cons-point &rest coords [Macro]

cons-point returns a pointer to a vector of integers with the values given in
coords. It expands into a cons-vector with type int. The L reader has been
modified to translate a bracket-enclosed list into a cons-point. Example: [1 2

3] is read as (cons-point 1 2 3).

4.1.2 Virtual vectors

A virtual vector is an L object identified by a symbol. This object represents
a vector, but its elements are not stored in adjacent memory locations: they are
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implemented as separate variables, typically to be used as loop indices. Some L
macros accept both vectors (arrays) and virtual vectors as their arguments: one of
them is the macro aref.

aref v i [Operator]

aref is the generic indexing operator in L. It maps directly into the C indexing
operator, producing v[i]. In addition, v can be a virtual vector. In this case, if i is
not compile-time constant, an error occurs. Otherwise, aref expands into the i-th
component of v.

4.2 Domains

4.2.1 Generic domain operators

domain n [Type]

Locations containing domain values have static type (domain n), where n is the
number of dimensions.

domcons lower-bound upper-bound ndim [Operator]

domcons returns a value of type (domain ndim) that represents the set of points
in a rectangle of dimensions ndim whose bounds are specified in lower-bound
and upper-bound. ndim is an integer variable, lower-bound and upper-bound are
pointers to integers.

domcons-t points np ndim [Operator]

np and ndim are integers. points is an array of size np* ndim representing np points,
each with ndim coordinates. The j-th coordinate of point i is stored in points [i
* ndim + j]. domcons-t returns the domain of dimensions ndim representing
such set of points.

to-domain grid [Operator]
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grid is an integer grid, whose values should be 0 or 1. to-domain returns the
domain p : grid [p] = 1.

domain-union x y [Function]
domain-intersection x y [Function]
domain-difference x y [Function]
domain-accrete x [Function]
domain-boundary x [Function]
domain-shift x p [Function]
domain-contract x p [Function]
domain-project x p [Function]
domain-inject x p [Function]

These are the standard operations on domains as defined in the FIDIL reference
manual. x and y are domains. p is an integer array.

domain-reduce x p [Function]

This is the domain counterpart of the FIDIL reduce operator on grids. Given
x = domainOf(G), it returns domainOf(reduce(G; f; p; v0)).

domain-init [Function]

domain-init is an initialization procedure that must be called before any opera-
tions on domains. Its return type is void.

null-domain n [Operator]

null-domain returns a descriptor for an empty domain in n dimensions.

null-domain-p x [Operator]

null-domain-p returns true if x is the null domain, false otherwise.

setf-lowerbound l x [Function]
setf-upperbound u x [Function]
setf-bounds l u x [Function]
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setf-lowerbound sets the integer array l to contain the lower bound of domain x.
l must point to an integer array with at least as many elements as the dimensionality
of x. setf-upperbound sets u to the upper bound of x. setf-bounds returns in l
and u both lower and upper bounds and may be more efficient than obtaining them
separately. These functions do not return a value.

point-in-domain p d [Function]

point-in-domain is true if p is in d, false otherwise. p is an array of integers, d
a domain.

domain-size d [Function]

domain-size returns the number of points in its domain argument.

4.2.2 Low-level domain operators

This section describes a lower-level part of the domain interface. Mostly, these
operators expose choices of representation for domain values. We do not recom-
mend using these operators in portable programs. We include their description
for two reasons. First, we do not have sufficient programming experience with
INFIDEL to guarantee that the high-level, generic domain interface is always ad-
equate for producing efficient code. The low-level interface gives opportunities
for experimentation. Second, these operators can be useful building blocks for a
multiprocessor port of INFIDEL.

A domain value is represented by an instance of one of several structure types.
Currently these types are defined: manhattan, thin, thick, bitmap, collage. The
domain library is meant to be extensible, and new domain types should be added
as needed.

manhattan [Structure]
thind [Structure]
thickd [Structure]
bitmapd [Structure]
collaged [Structure]

These structures implement the domain types. They have associated predicates
(manhattan-p, etc.) and symbolic names to be used in the typecase and type-p
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macros. For better isolation, the names of their fields are not part of the interface.
Their constructor functions (make-manhattan, etc.), should not be used directly.

manhattan-component domain [Operator]

manhattan-component returns the manhattan component of domain. Argument
and return type are both t. It is an error if domain does not have a manhattan
component. Currently, only thin domains do not have a manhattan component.
Manhattan domains are their own manhattan component. For thick and bitmap
domains, the manhattan component is some superset of points with a manhattan
structure, which depends on how they have been created. For collage domains, the
manhattan component is the union of the bases of the tiled components.

to-manhattan x [Function]
to-bitmap x [Function]
to-thin x [Function]

These functions convert their domain argument respectively to manhattan, bitmap,
or thin form.

4.3 Grids

Grids represent mappings betweenn-dimensional integer tuples and values of some
type. Grids are optimized for implementing “large” scalar maps.

grid n eltype [Type]

This is the type of an n-dimensional grid value, with elements of type eltype.

grid-alloc domain eltype [Operator]

grid-alloc returns a grid with index set domain and element type eltype. The
grid’s data is not initialized. The effect of reading a grid’s element before it has
been written is undefined.1

1It could return a random value or cause a run-time error, depending on whether the chunk for
that element has yet been allocated or not.
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It is foreseen that in the near future this operator will take another optional
argument, containing hints on the allocation and partitioning of the grid.

grid-free grid [Operator]

grid-free releases all memory associated with grid. Under certain circumstances,
a grid that is no longer in use is freed automatically by the garbage collector. The
use of grid-free is recommended for large grids. Garbage collection should be
adequate for small grids.

domain-of grid [Operator]

domain-of returns the domain of grid.

grid-index grid point elsize [Operator]
grid-index* grid point elsize [Operator]

grid-index returns a pointer to the element of grid indexed by point. elsize is
the size of an element of the grid, in words. The type returned by grid-index is
(pointer void). The caller should cast the return value into the desired pointer
type. This pointer can then be used for reading or setting the element’s value.

grid-index* is the same as grid-index, but it should be used when the
pointer is used only for reading the element.

If the element is undefined, the returned pointer value is undefined, and the
effect of reading or writing through this pointer is also undefined.

If point is outside the grid’s domain, an error is signalled.

4.3.1 Remapping operations

grid-copy grid [Function]

Return a copy of grid.

grid-shift grid factor [Function]
grid-project grid factor [Function]
grid-inject grid factor [Function]
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grid-transpose grid factor [Function]
grid-restrict grid domain [Function]
grid-merge gx gy [Function]

The FIDIL map operators shift, project, inject, transpose, on, and disjoint union.
factor is an array of integers.

4.3.2 Elementwise operations

grid-reduce g op ival [Operator]

grid-reduce is the equivalent of the FIDIL reduce operator when the type of the
result is a grid element. g is the grid to reduce, op the binary operator used in the
reduction, and ival an initial value for the result: typically the null value for the
operator.

set-grid-reduce result g op ival n factor [Operator]

set-grid-reduce computes in result the reduction of grid g by the binary op-
erator op, with initial value ival, and along the n dimensions specified by factor.
result must be a previously allocated grid with the correct domain (obtainable by
domain-reduce).

map-grid domain op &key grids others [Operator]
map-grid* domain index op &key grids others [Operator]

map-grid and map-grid* execute an operation in a data-parallel fashion over
the domain D equal to the intersection of domain and the domains of the grid
arguments. op specifies the operation to be applied to the grids’ elements at each
point. index is a virtual vector, available within op, that at execution time is bound
to each point of D. grids is a list of grid specifiers, and others a list of non-local
variable specifiers.

The grids argument

A grid specifier has the form (grid-expression &key free partition). Grid-
expression is either a variable, or an expression containing only constant-factor
remappings: that is, any combination ofgrid-shift,grid-inject, grid-project,
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grid-transpose, and grid-stretchwith a compile-time known factor (the sec-
ond argument).

The keyword arguments are called grid directives. They provide information
that may help optimize the operation.

The free directive is used to indicate that the data of the grid is dead after
the operation, and the memory allocator can reclaim the data area. This is done
transparently. After the completion of map-grid, a grid with the value t for its
free directive behaves just as if it had just been allocated.

The partition directive provides a way to specify the partition of a grid, when
the partition is known at compile time (an alternative way is through the use of a
partial value: see the implementation note below). If the partitions of all grids are
provided, map-grid can perform several optimizations.

The others argument

The others argument is a list of variables used by the operator op, other than the
variables in its lambda list. The necessity for other is due to a deficiency of L: the
lack of closures. During expansion of map-grid, the code generated by applying
op to the grid elements is placed in a separate L function called a looper. Variables
in op that are lexically visible where the map-grid statement appears, may no
longer be so after the code is moved to the looper. Such variables must be included
in the other list or map-grid will generate incorrect code.

Examples

This section presents examples of the use of map-grid.

(map-grid (domain-of a)

(slambda (x) (setf x 0))

:grids ((a)))

The above code sets to 0 all elements of the integer grid a.

(map-grid (domain-intersection (domain-of b)

(domain-of c))

(slambda (x y z) (setf x (+ y z)))

:grids ((a)

(b)

(c)))
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The above code adds the elements of b and c on the intersection of their domains,
and stores the result in a.

(map-grid d

incf

:grids (((grid-stretch a [-1 0 1]))

(b)))

The above code is usable only internally for execution on a uniprocessor. a is a
2-dimensional grid, and b a 3-dimensional one. “Rows” of b on d along the 1st
dimension (index 0) are added intoa. More specifically, if i; j; k are the coordinates
of the point P as it spans d, the operation performed is: a[j; k] += b[i; j; k].

Implementation note

map-grid makes use of the compile-time capabilities of L. In the general case,
map-grid expands into code that calls library functions, and those call back the
looper function. Under certain conditions, map-grid expands into a simplified
inlined code. The conditions are:

1. domain is a compile-time constant;

2. all grids expand into partial values with a known domain;

3. the computation partition has a small number of sections.

This is likely to be useful for operations on small or medium-sized grids with a
simple domain, when the domain is known at compile time.

4.4 Caveats

Not all the described types and operators are available in the current system, mostly
because we don’t have yet any applications that use them. At the time this report
is written, the following applies:

� all types and operations related to thin and thick domains are not imple-
mented; only manhattan, collage, and bitmap domains are available;

� the grid allocator does not accept hints and always partitions the domain
automatically;
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� vector operations are not optimized dynamically; however, the layout for a
grid section is longest-major, that is, the stride along the longest dimension
is 1. This is a good choice in most cases.

� the map-grid operation does not fold into inline code when all descriptors
have known values. It used to do it in an older version. I believe there is no
major obstacle to fixing it back.
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Appendix A

Facts of modular arithmetics

A diophantine equation of the form

(ax+ b) mod c = 0 (A.1)

where a, b, and c are integer, and we are interested in integer solutions, is always
solvable if a and c are mutually prime, that is gcd(a; c) = 1. The solutions can
be obtained by computing1 the modular inverse of a with respect to c, which we
denote (a)�1

(mod c), defined by:

h
(a)�1

(mod c) c
i

mod c = 1:

The solutions have the form

x = �b (a)�1
(mod c) + kc for all integer k:

If a and c are not mutually prime, let d = gcd(a; c) > 1. If b mod d = 0, we can
rewrite equation A.1 as: �

a

d
x+

b

d

�
mod

c

d
= 0:

and solve it as described. If b mod d 6= 0, there are no solutions.

A system of equations of the form:(
(x+ b) mod c = 0
(x+ b0) mod c0 = 0

(A.2)

1In our application, a brute-force search of all integers between 1 and a mod c is adequate.
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is solved by finding the intersection of the set of solutions of each equation. We
know that (

x = �b+ kc
x = �b0 + k0c0

(A.3)

We derive

k0 =
kc� b+ b0

c0

and, because k0 must be integer,

(kc� b+ b0) mod c0 = 0

which is just equation A.1. Given d = gcd(c; c0), if (b� b0) mod d 6= 0, then the
system has no solutions; otherwise,

k =
b� b0

d

�
c

d

�
�1

(mod c)
+ �

c0

d
for all integer �

and substituting k in the first equation of A.3 we obtain

x = �b+ c
b� b0

d

�
c

d

��1

(mod c)
+ �

cc0

d

which is the same as saying

(x+ �) mod � = 0

with

� = b� c
b� b0

d

�
c

d

��1

(mod c)

� =
cc0

d
:
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Appendix B

FIDIL Domain and map
operators

Tables B.1 and B.2 give the standard operators and functions on domains. Ta-
bles B.3–B.6 give the standard operators and functions on maps.
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Expression Meaning

nullDomain(n) The empty domain of type domain[n]. The quantity n
must be a compile-time integer constant.

D1 +D2 Union of D1 and D2.
D1 �D2 Intersection of D1 and D2.
D1 �D2 Set difference of D1 and D2.
p in D where D is a domain of arity n and p is an array of type

valtype(D): a logical expression that is true iff p is a
member of D:

lwb(D)
upb(D)

For a domain of arity n: An integer map with domain
[1..n] (for n = 1, an integer) whose kth component is
the minimum (lwb) or maximum (upb) value of of the
kth component of the elements of D.

arity(D) yields n for a domain of arity n.
sizeOf(D) The cardinality of D.
shift(D;S), D << S Where S is of type valtype(D) and n is the arity of D:

The domain fd+ Sjd in Dg:
shift(D) Same as shift(D, -lwb(D)).

inject(D;S) The domain fd�Sjd in Dg:

project(D;S) The domain fd � Sjd in Dg, where ‘�’ denotes ele-
mentwise integer division, rounding toward �1.

expand(D;S) The domain feje� S in Dg.

contract(E; S) The domainD such thatE = expand(D;S), if it exists.

Table B.1: Operators and functions on domains, part 1.
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Expression Meaning

accrete(D) The set of points that are within a distance 1 in all
coordinates from some point of D.

boundary(D) accrete(D)�D.
reduce(D;S) the domainR such that ifD = domainOf(G) for some

map G, then R = domainOf(reduce(G; f; S; v0)) for
any f , v0.

Table B.2: Operators and functions on domains, part 2.
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Expression Meaning

domainOf(X) The domain of map X . This may also appear in a left-hand
side context if X is a partial map variable. The result of an
assignment to the domain of X is a map whose initial image
consists of undefined values.

toDomain(X) where X is a logical map:
fp 2 domainOf(X)jX [p]g:

image(X) where X is a map whose codomain is an integer map of arity
n: the domain of dimension n whose elements are all elements
in the image of X—that is, the set fdjX [p] = d; for some pg:

upb(X) upb(domainOf(X))
lwb(X) lwb(domainOf(X))
arity(X) arity(domainOf(X))
X # Y The composition ofX andY . X andY are maps; Y ’s codomain

must be valtype(domainOf(X)); and image(Y ) must be a
subset of domainOf(X).

X # Y is a map object (which is assignable if X is
assignable) such that

(X#Y )[p] � X [Y [p]]:
Hence, its domain is domainOf(Y ).

shift(X;S),
X << S

shift(X)

where S is a [1..n] integer (an integer for n = 1), with default
value -lwb(X), and n is the arity of X : the map

X # [p from domainOf(X): p-S].

inject(X;S) X # [p from inject(domainOf(X), S): p/S].

project(X;S) X # [p from project(domainOf(X), S): S*p].

contract(X;S) [p in expand([0..0, : : :, 0..0], S) :

[project(X << -p, S)].

expand(X;S) Produces a map defined by the relation
expand(contract(X;S),S) = X .

Table B.3: Operators and functions on maps, part 1.
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Expression Meaning

X on D The map X restricted to domain D.
X (+) Y where domainOf(X) \ domainOf(Y ) = fg: the union

of the graphs of X and Y , whose codomains must be
identical and whose domains must be of identical arity.

concat(E1,: : : ,En) Concatenation of E1; : : : ; E2. The Ei must be 1-dimen-
sional maps with contiguous domains and some (com-
mon) codomain T , or values of typeT , which are treated
as one-element maps with lower bound 0. At least one
of the Ei must be a map on T: The result has the same
lower bound as E1 and an upper bound equal to the sum
of the lengths of the Ei.

F@ Assuming that F takes arguments of type Ti and returns
a result of type T , F@ is a function extending F to
arguments of type [Di] Ti, where the Di are domains of
the same arity, and returns a result of type [D] T , where
D is the intersection of the Di: The result of applying
this function is the result of applying F pointwise to
the elements corresponding to the intersection of the
argument domains.

F <@> For F as above returning type T1: The extension of F to
arguments of types [Di]T as above, returning a value of
type [D1]T1 defined by

F< @ >(x1; : : : ; xn)
= F@(x1; : : : ; xn) (+) (x1 on (D1 �D)):

Table B.4: Operators and functions on maps, part 2.
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Expression Meaning

compress(X) where X is a map on a domain of arity 1: The one-
dimensional map, X 0 with a contiguous domain having
a lower bound of 1 such that X 0[i] is the value of X [pi],
for pi the ith smallest element in the domain of X .

compress(X;W ) where W is a one-dimensional map whose codomain is
logical: compress(X on toDomain(W )).

decompress(X;W ) The map X 0 such that
compress(X 0;W ) = compress(X).

reduce(X; f; S; v0) where X is a rectangular map of arity n and codomain
C; S = [i1; : : : ; ir]; 1 � i1 < : : : < ir � n; and f is a
function taking two arguments, one of some type R, the
second of typeC, yielding a result of typeR. The result,
B, is of type T = [�(n� r)]R, or T = R if n = r, and
is defined as follows.

B[j1; : : : ; ji1�1; ji1+1; : : :]
= f(f(� � �f(v0; v1); � � �); vm). where the vi are the

elements
X [j1; : : : ; ji1�1; k; ji1+1; : : :]

for all k for which the expression is defined, taken in
some undefined order.

reduce(X; f; v0) where X is any map with codomain C; v0 is of some
typeR; and f is as above. The result is of typeR and has
the value v0 if the domain of X is empty, and otherwise

f(f(� � �f(v0; v1); � � �); vm)
where the vi; i > 0 are the elements of X is some unde-
fined order.

Table B.5: Operators and functions on maps, part 3.
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Expression Meaning

sort(X;P ) where X is a contiguous, one-dimensional map with co-
domain T and P is logical-valued binary function with
arguments of type T : the map X 0 with the same domain
as X that results from permuting the image of X so that
i < j implies P (X 0[i]; X 0[j]): The permutation is strict:
the order of image elements x and y such that P (x; y)
and P (y; x) is unchanged by the sort.

trace(A; S) reduce(A,proc +, S, 0)
outerproduct(A;B) where A and B are maps with rectangular domains of

dimensions na and nb and the same codomains: The
map C defined as follows.

C[i1; : : : ; ina; j1; : : : ; jnb] =
A[i1; : : : ; ina]�B[j1; : : : ; jnb]

transpose(X [; �]) where � = [�1; : : : ; �n] is a permutation of the inte-
gers between 1 and n, and n is the arity of the map X :
The object, X 0, resulting from transposing the indices
of X according to �. Specifically, X 0[i�1; : : : ; i�n ] =
X [i1; : : : ; in]. The default for � is [2,1].

flip(X; �) whereX is of type [D1] : : : [Dn]T : The map,X 0 defined
by the following.

X 0[p�1] : : : [p�n ] = X [p1] : : : [pn]:
The default for � is [2,1].

flip(X) where X is a record of maps with identical domains:
produces the map taking p in the common domain to the
record with field values Fi[p];where the Fi are the fields
of X. X can also be a map of records, in which case flip
performs the inverse operation.

remap(X) The object resulting from “reassociating” the indices of
X , which must be of type [*m][*n]T to form an
isomorphic object, Y of type [*m + n]T . If p is a
valid index of X and q is a valid index of X[p], then
Y [concat(p; q)] = X[p][q].

remap(Y;m) If X , Y , and m are as above, then remap(Y;m)=X .

Table B.6: Operators and functions on maps, part 4.
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*, 51
+, 51
–, 51
<@>, 54
@, 54
#, 53
aref, 38
bitmapd, 40
collaged, 40
cons-point, 37
cons-vector, 37
domain-accrete, 39
domain-boundary, 39
domain-contract, 39
domain-difference, 39
domain-init, 39
domain-inject, 39
domain-intersection, 39
domain-of, 42
domain-project, 39
domain-reduce, 39
domain-shift, 39
domain-size, 40
domain-union, 39
domain, 38
domcons-t, 38
domcons, 38
grid-alloc, 41
grid-copy, 42
grid-free, 42
grid-index*, 42

grid-index, 42
grid-inject, 42
grid-merge, 43
grid-project, 42
grid-reduce, 43
grid-restrict, 43
grid-shift, 42
grid-transpose, 43
grid, 41
manhattan-component, 41
manhattan, 40
map-grid*, 43
map-grid, 43
null-domain-p, 39
null-domain, 39
point-in-domain, 40
set-grid-reduce, 43
setf-bounds, 39
setf-lowerbound, 39
setf-upperbound, 39
thickd, 40
thind, 40
to-bitmap, 41
to-domain, 38
to-manhattan, 41
to-thin, 41

accrete, 52
arity function, 51, 53

boundary, 52
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compress, 55
concat, 54
contract, 51, 53

decompress, 55
domainOf, 53

expand, 51, 53

flip, 56

image, 53
in operator, 51
inject, 51, 53

lwb, 51, 53

nullDomain function, 51

on keyword, 54
on operator, 54
outerproduct, 56

project, 51, 53

reduce, 52, 55
remap, 56

shift, 51, 53
sizeOf function, 51
sort, 56

toDomain, 53
trace, 56
transpose, 56

upb, 51, 53
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