
VIGL: Visualization Graphics Library

Allen B. Downey

Report No. UCB/CSD 93/764

June 1993

Computer Science Division (EECS)
University of California
Berkeley, California 94720



VIGL: Visualization Graphics Library�

Allen B. Downey

June 1993

1 Introduction

VIGL is a library of C procedures for displaying graphical (X window) rep-
resentations of two-dimensional data. They can be called directly from C or
FORTRAN, or through the FIDIL I/O Library. This document presents the
C interface to these procedures.

There are six kinds of objects in the universe of the graphics library:
spaces, grids, segments, points, graphs and coordinate transformations. A
space is a window that corresponds to a problem space you are dealing with.
A grid is the graphical representation of a two-dimensional data object; it
corresponds to a FIDIL map. Segments and points are simple graphical
objects that can be displayed in a problem space. Graphs are windows that
contain a standard x{y plot of some 1-dimensional data. Finally, coordinate
transformations are mappings from the index space to the problem space;
they are used to create quadrilateral (but non-rectangular) grids.

Grids are displayed as unions of quadrilateral regions �lled with colored
cells, one for each data point. You can control the mapping between a cell's
value and its color with the vigl_set_something_parameters procedures.

In general, these objects are created with the procedure named vigl_cre-
ate_something and destroyed with vigl_destroy_something. Grids and seg-
ments are displayed with vigl_draw_something_in_space, and deleted with
vigl_erase_something.

�This work funded by NSF (DARPA) grant DMS-8919074.

1



Graphical objects exist and can be manipulated even when they are not
being displayed.

2 Spaces

Space* vigl_create_space(float* low, float* high,

float* min_cell_size, int* size, int* loc)

Creates and displays a new window for the problem space, according to the
provided dimensions. loc is an array of two integers that speci�es the upper
right-hand corner of the window in screen (pixel) coordinates. size (also an
array of two integers) gives the suggested size of the window.

min_cell_size is an array of two 
oats giving the dimensions (in problem-
space coordinates) of the smallest cell you plan to draw in this space. This is
an optional hint that is used by the library to choose the size of the window.
The library tries to choose a window size as close as possible to the suggested
dimensions subject to the constraint that the minimumcell size be an integral
number of pixels. The actual size of the window will replace the suggested
values in the size array. If min_cell_size is 0.0, the suggested size is accepted.

The arrays high and low contain the dimensions of the problem space.
For example, a problem space running from 0.0 to 1.0 in each dimension is
indicated by

low = {0.0, 0.0};

high = {1.0, 1.0};

vigl_build_attic_for_space(Space* space)

An attic is a small space (1/3 the size) attached to a problem space used
for temporary storage of various objects. In Select mode (described under
vigl_interact below), clicking Button 1 on an object moves it into the attic,
or back.

2



vigl_set_space_parameters(Space* space, int map_type,

float params[])

Setting the parameters for a space (or grid) controls the mapping between

oating point values and cell colors. The map_type is one of the following.

HUE_MAP hue mapping: low values are blue, high values are red

BANDED_HUE_MAP same as HUE_MAP, except for periodic black bands

GRAY_MAP gray scale

BANDED_COLOR_MAP color bands: blue 7! green, blue 7! cyan, blue
7! yellow, green 7! yellow, green 7! cyan, red7!magenta, red7!yellow,
red7!white

RANDOM_MAP random mapping

The argument params is an array of three elements giving the range of
values, and a special value used to represent invalid data. For example, if
the range of valid values is 0.0{100.0, we might choose �99:0 to represent
invalid data. Then,

params[0] = 0.0

params[1] = 100.0

params[2] = -99.0 (invalid data)

Cells with values outside of the range are mapped to an attention-getting
color, depending on the color map.

Individual grids may carry their own mappings (set with vigl_set_grid_pa-
rameters). Any grid without a mapping will use the space's mapping as a
default. Attempting to draw a grid without a mapping in a space without a
mapping results in an error.

Changing a space's color mapping automatically updates all grids in the
space and the space's attic.

vigl_destroy_space(Space* space)

Erases the space and its window. Subsequent operations on this space may
cause unexpected behavior.

3



3 Grids

Grid* vigl_create_grid(float cell_size[], float o�set[])

Creates a new empty grid with cell dimensions given by cell_size problem
space coordinates. The vector o�set gives the location of the lower-left corner
of the grid.

To display the grid, you must specify some data using vigl_add_to_grid,
and draw the grid with vigl_draw_grid_in_space.

vigl_add_to_grid(Grid* grid, float data[], int lwb[], int upb[])

Adds a rectangle of data to an existing grid. data is a pointer to an array
of 
oating point values in row-major form (apologies to FORTRAN users).
lwb and upb are index ranges that specify where in the grid these values fall.

By adding multiple rectangles to a single grid, you can construct an ar-
bitrarily complex grid. Note that areas of the grid that are not covered by
data are transparent.

If two regions within a grid overlap, the result is unde�ned unless the
data is identical in the overlapping cells.

vigl_set_grid_parameters(Grid* grid, int map_type, float params[])

For an explanation of the mapping between 
oating point values and cell
colors, see vigl_set_space_parameters above. This procedure binds a color
mapping to a speci�c grid. When the grid is drawn, this binding will override
the space's color mapping. If the grid is already displayed, it will be updated.

vigl_draw_grid_in_space(Grid* grid, Space* space)

This procedure causes the grid to appear as a graphical object in the given
problem space (or, instead of the space argument, you can pass the constant
DEFAULTSPACE). All of the button bindings described in vigl_interact will
apply to the new object.

4



vigl_erase_grid(Grid* grid)

Removes grid from the space in which it appears. If it is not being displayed,
this procedure has no e�ect.

vigl_destroy_grid(Grid* grid)

Returns the storage used by grid, which is no longer a valid argument to
other routines.

4 Segments

Segments* vigl_create_segments(float data[], int n, char* color)

Creates a new graphical object consisting of a set of line segments. data is
an array of 4n 
oating-point values specifying the endpoints of the segments
in the format x0; y0; x

0

0
; y0

0
; x1; y1; : : :, so that line i has endpoints (xi; yi) and

(x0

i
; y0

i
). n is the number of line segments. color is a string containing standard

X color speci�cation. See Color Speci�cation for details.

vigl_draw_segments_in_space(Segments* segment, Space* space)

This procedure is analogous to vigl_draw_grid_in_space, described above. A
set of line segments is considered a single graphics object, and behaves as
such (for example, when it is moved back an forth between the attic and the
primary space).

vigl_erase_segments(Segments* segments)

Removes a set of line segments from the space in which it is displayed.

vigl_destroy_segments(Segments* segments)

Releases storage for segments, which is thereafter an invalid argument.

5



5 Graphs

Graph* vigl_create_graph(int size[], int loc[], char* color)

Creates a new graph and displays its window, according to the dimensions in
size and the location in loc. color determines the color of the objects (axes,
labels and data lines) in the graph. See Color Speci�cation for details.

vigl_draw_graph(Graph* graph, float data[], int mask[],

int n, float low, float high, float axis)

Adds data to an existing graph window. data is a vector of 
oating-point
values; n is its length. mask is an array of integers that indicate the validity
(1) or invalidity (0) of the corresponding piece of data. Invalid data will
not be displayed in the graph. If mask is NULL, all data are considered
valid. params is an array of three values specifying the range of the data and
where the axis falls on the graph. For example, if the data fall in the range
0.0{100.0 and the x-axis is at y = 0:0, then:

params[0] = 0.0 (low)

params[1] = 100.0 (high)

params[2] = 0.0 (axis)

If the �rst two parameters are the same, the range will be determined
automatically.

vigl_erase_graph(Graph* graph)

Erases the data and axes from a graph, but leaves the empty window intact.

vigl_destroy_graph(Graph* graph)

Erases a graph space and recycles the associated resources.

6



6 Coordinate Transformations

By default, VIGL assumes that the mapping between index space and the
problem space is a function of the o�set and the size of the grid cells. Specif-
ically,

x = (i� lwb) � cell_size+ o�set;

where i is the index pair, lwb is the index pair of the lower-left corner of
the grid, cell_size is the size of the cells, o�set is the position of the lower-
left corner of the grid, x is the position of the ith cell, in problem space
coordinates.

VIGL provides a mechanism for overriding this default and providing an
arbitrary mapping between index space and problem space. This mapping
is called a Tform (for coordinate transformation). The following are the
procedures for creating, applying, and destroying Tform objects.

Tform* vigl_create_tform(int lwb[], int upb[],

void (*map)(int *, float *))

lwb and upb are arrays of two integers, giving the index range over which
the coordinate tranformation is valid. If the transformation is applied to any
grid with cells outside this range, an error will result.

map is a user-provided function that maps the index space into the prob-
lem space. The following is a simple example:

map (int *i, float *x)

{

x[0] = i[0] * 30.0 + 25.0;

x[1] = i[1] * 40.0 + 20.0;

}

This mapping would be equivalent to a grid with the lower-left corner at
(25.0, 20.0) and each cell 30 units wide and 40 units high.

vigl_apply_tform(Grid* grid, Tform* tform)

7



Applies a coordinate transformation to a grid. The same transformation may
be applied to a number of grids. If the grid is displayed in some space, it is
updated automatically. If the grid contains a cell that falls outside the range
of the transformation, an error results.

vigl_destroy_tform(Tform* tform)

Frees up the transformation. Note that destroying a grid does not destroy
any associated transformation.

7 Interactive behavior

vigl_interact(Space* space)

The above procedures can be used to present data in various formats, but
they do not allow the user to perform any sort of interactive inspection.
The procedure vigl_interact creates a control window with a set of tools for
manipulating and inspecting the objects on the screen.

The procedure does not return until the user presses the Continue... but-
ton in the control window. The other buttons are explained below.

7.1 Select

Puts the user in select mode (the default), in which the following button
bindings are active:

� Button 1: moves an object back and forth between the window and its
attic. If there is no attic, this button has no e�ect.

� Button 2: pulls an object to the front of the \pile" of objects in the
problem space

� Button 3: pushes an object to the back of the \pile" of objects in the
problem space

8



7.2 Inspect

Switches to inspect mode (the cursor becomes an eye). The following bind-
ings are active:

Button 1: clicking on a grid cell causes the 
oating point value
of that cell to appear next to the cursor. The value will stay as
long as the button is held, then will disappear.

7.3 Plot Line

Switches to plotting mode (the cursor is a cross hair). Button 1 is used to
specify the endpoints of a line segment. Once drawn, the line segment can
be manipulated by dragging its endpoints (again with Button 1).

A graph will appear that shows the values of any grid cells that fall
under the line segment. The graph is updated automatically whenever the
user moves the line segment, or adds, erases, or modi�es a grid. The graph
disappears when the user leaves plotting mode.

vigl_interact_not(Space* space)

If there is a control panel associated with space, this procedure destroys
it. The control panel persists until this procedure is called or the space
associated with it is destroyed.

8 Sample Code

The following code demonstrates the use of some of the library routines. It
resides in the tests subdirectory of the VIGL directory.

#include "vigl.h"

/* some parameters for the problem space */

float low[2] = {0.0, 0.0};

float high[2] = {400.0, 400.0};

float min_cell_size[2] = {1.0, 1.0};

9



int size[2] = { 400, 0 };

int loc[2] = { 200, 100 };

/* the index range of the grid, cell size and position */

int lwb[2] = {5, 15};

int upb[2] = {25, 35};

float cell_size[2] = {10.0, 10.0};

float offset[2] = {0.0, 0.0};

float params[3] = {0.0, 15.0, 0.0};

/* the index range of the coordinate transformation */

int mlwb[2] = {5, 16};

int mupb[2] = {25, 36};

/* coordinates for line segments and points */

float coords [12] = { 100, 100, 200, 200,

200, 300, 200, 400,

350, 150, 250, 150 };

/* declaration of a user procedure that allocates memory

for the data array and stores the data there */

extern float *create_array ();

/* this procedure calculates the coordinate transformation that

maps the index space into the problem space */

void map (int *i, float *x)

{

x[0] = (float)(8*i[0]+2*i[1]+100);

x[1] = (float)(8*i[1]+2*i[0]+100);

}

main(argc, argv)

int argc;

char *argv[];

{

Space *space;

Grid *grid, *grid2;

10



Points *points;

Segments *segments;

Tform *tform;

int i;

float *data = create_array();

/* create a new problem space, set the color map, */

/* and create the attic */

space = vigl_create_space (low, high, min_cell_size,

size, loc);

vigl_set_space_parameters (space, GRAY_MAP, params);

vigl_build_attic_for_space (space);

/* create a new grid, add the data array to the grid, */

/* and draw it */

grid = vigl_create_grid (cell_size, offset);

vigl_add_to_grid (grid, data, lwb, upb);

vigl_draw_grid_in_space (grid, space);

/* wait for the user to inspect the problem space */

/* and press Continue... */

vigl_interact (space);

/* create a new coordinate transformation and apply */

/* it to the grid. The grid will be redrawn with */

/* the new transformation */

tform = vigl_create_tform (lwb, upb, map);

vigl_apply_tform (grid, tform);

/* create a new set of line segments and display them */

segments = vigl_create_segments (coords, 3, "blue");

vigl_draw_segments_in_space (segments, space);

/* create a new set of point and display them */

points = vigl_create_points (coords, 6, "red");

vigl_draw_points_in_space (points, space);

11



/* wait for the user */

vigl_interact (space);

/* erase everything */

vigl_erase_grid (grid);

vigl_erase_segments (segments);

vigl_erase_points (points);

/* wait for the user */

vigl_interact (space);

/* redraw everything */

vigl_draw_grid_in_space (grid, space);

vigl_draw_segments_in_space (segments, space);

vigl_draw_points_in_space (points, space);

/* wait */

vigl_interact (space);

/* destroy everything */

vigl_destroy_grid (grid);

vigl_destroy_segments (segments);

vigl_destroy_points (points);

vigl_destroy_space (space);

}

9 Installation, Con�guration, and Compila-

tion

Figure 1 is a diagram of a typical (non-distributed) VIGL application. The
user code is linked with the VIGL library. The VIGL library makes calls to
the X server, which creates and maintains the display, and generates user
events like button presses and keystrokes.

This scheme has two disadvantages. First, the VIGL library is large, so
linking time is long and the executable code is large. Second, the user code

12



User's code

VIGL library

CLIENT

X SERVER

Figure 1: Diagram of a typical, non-distributed VIGL application.

User's Code

VIGL client stub

CLIENT

VIGL server stub

VIGL library

VIGL SERVER

X SERVER

Figure 2: A distributed version of the application in Figure 1.

and the VIGL library have to run on the same machine, which may not be
the most e�cient use of the hardware.

Figure 2 shows the distributed version of the same application. The user
code is linked with the client stubs, which are much smaller than the VIGL
library. These stubs communicate with the VIGL server using UNIX sockets.
The VIGL server, which contains the VIGL library, invokes the appropriate
procedure and generates events for the X server.

9.1 Installation

The VIGL directory contains �ve subdirectories:

lib contains the VIGL library procedures described above

vigl_server contains the VIGL server stubs

gen_client contains VIGL client stubs for a generic workstation architecture
(32-bit words, IEEE Standard 
oating-point)

13



cray_client contains VIGL client stubs for a Cray supercomputer

tests contains sample application code, including the sample shown above

Each directory contains a Make�le that builds the relevant object �le. In
lib, the object �le is libvigl.a. This library contains the VIGL procedures. In
cray_client and gen_client, there is also a �le named libvigl.a, but it contains
only the client stub procedures.

The vigl_server directory builds an executable �le named \server". In
order to run VIGL as a distributed application, \server" must be running on
the VIGL server machine.

9.2 Compilation

The following is the procedure for building a non-distributed VIGL applica-
tion.

� Compile the VIGL library by moving into the lib directory and typing
\make".

� Compile the user code and link it with libvigl.a in the lib directory

For example,

VLIB = $(VIGL_HOME)/lib

CFLAGS = -I$(VLIB) #search VLIB for header files

LFLAGS = -L$(VLIB) #look for libraries in VLIB

gcc $(LFLAGS) test.o -lvigl

The following is the procedure for building a distributed VIGL applica-
tion.

� As above, compile the VIGL library.

� Compile either the generic client or the Cray client by moving to the
appropriate directory and typing \make".

� Compile the VIGL server by moving to the vigl_server directory and
typing \make".

14



� Compile the user code and link it with libvigl.a in the client directory,
not the lib directory.

For example,

VLIB = $(VIGL_HOME)/gen_client

CFLAGS = -I$(VLIB) #search VLIB for header files

LFLAGS = -L$(VLIB) #look for libraries in VLIB

gcc $(LFLAGS) test.o -lvigl

9.3 Con�guration

Before you can run either version of a VIGL application, you have to set
several environment variables to tell the application where to �nd the X
server and, for distributed applications, the VIGL server.

To set the X server, type:

setenv DISPLAY host_name:0.0

Usually the default X server is the machine that is running the VIGL
application.

To set the VIGL server, type:

setenv VIGL_DISPLAY host_name

You must make sure that the VIGL server is running on the named host.
If it is not, the VIGL applications will print an error message and abort.

15


