
Measuring Cache and TLB Performance and Their Effect
on Benchmark Run Times†§

Rafael H. Saavedra‡

Alan Jay Smith‡‡

ABSTRACT

In previous research, we have developed and presented a model for measuring
machines and analyzing programs, and for accurately predicting the running time of any
analyzed program on any measured machine. That work is extended here by: (a)
developing a high level program to measure the design and performance of the cache
and TLB for any machine; (b) using those measurements, along with published miss
ratio data, to improve the accuracy of our run time predictions; (c) using our analysis
tools and measurements to study and compare the design of several machines, with par-
ticular reference to their cache and TLB performance. As part of this work, we describe
the design and performance of the cache and TLB for ten machines. The work
presented in this paper extends a powerful technique for the evaluation and analysis of
both computer systems and their workloads; this methodology is valuable both to com-
puter users and computer system designers.

1. Introduction

The performance of a computer system is a function of the speed of the individual functional units,
such as the integer, branch, and floating-point units, caches, bus, memory system, and I/O units, and of
the workload presented to the system. In our previous research [Saav89, 90, 92b, 92c], described below,
we have measured the performance of the parts of the CPU on corresponding portions of various work-
loads, but this work has not explicitly considered the behavior and performance of the cache memory. It
is well known (see e.g. [Smit82]) that caches are a critical component of any high performance computer
system, and that access time to the cache and the misses from the cache are frequently the single factor
most constraining performance. In this paper we extend our work on machine characterization and per-
formance prediction to include the effect of cache memories and cache memory misses.

Our research in the area of performance evaluation has focused on developing a uniprocessor
machine-independent model (the Abstract Machine Model) of program execution to characterize machine
and application performance, and the effectiveness of compiler optimization. In previous papers we have
shown that we can measure the performance of a CPU on various abstract operations, and can separately
measure the frequency of these operations in various workloads. By combining these separate
hhhhhhhhhhhhhhhhhh
† The material presented here is based on research supported principally by NASA under grant NCC2-550, and also in part
by the National Science Foundation under grants MIP-8713274, MIP-9116578 and CCR-9117028, by the State of Califor-
nia under the MICRO program, and by Sun Microsystems, Mitsubishi Electric Research Laboratories, Philips
Laboratories/Signetics, Apple Computer Corporation, Intel Corporation, Digital Equipment Corporation. and IBM.
§ This paper has been issued as technical report USC-CS-93-546 of the Computer Science Department at USC and techni-
cal report UCB-CSD-93-767 of the Computer Science Division, UC Berkeley, July 19, 1993.
‡ Computer Science Department, Henry Salvatori Computer Science Center, University of Southern California, Los
Angeles, California 90089-0781 (e-mail: saavedra@palenque.usc.edu).
‡‡ Computer Science Division, EECS Department, University of California, Berkeley, California 94720.



2

measurements, we can make fairly accurate estimates of execution times for arbitrary machine/program
combinations [Saav89, Saav92]. Our technique allows us to identify those operations, either on the
machine or in the programs, which dominate the benchmark results. This information helps designers to
improve the performance of future machines, and users to tune their applications to better utilize the per-
formance of existing machines. Recently, the abstract machine concept was used by Culler et al. to
evaluate the mechanisms for fine-grained parallelisms in the J-machine and CM-5 [Sper93].

The model presented in the previous papers omitted any consideration of TLB and cache misses, i.e.
of program locality. Our measurement technique involves the timing of operations executed repeatedly
within small loops; in such cases, few cache and TLB misses are encountered. Thus for workloads with
high miss ratios, that technique will underestimate run times. Our results on the SPEC and Perfect bench-
marks in reported in [Saav92] do not show large errors because the locality on most of these programs is
relatively high [Pnev90, GeeJ91].

In this paper we deal with the issue of locality and incorporate this factor in our performance model.
Here we show that our basic model can be easily extended to include a term which accounts for the time
delay experienced by a program as a result of bringing data to the processor from different levels of the
memory hierarchy. We focus on characterizing cache and TLB units by running experiments which
measure their most important parameters, such as cache and TLB size, miss penalty, associativity and line
(page) size. We present cache and TLB measurements for a variety of computers. We then combine
these measurements with results obtained by other studies of the cache and TLB miss ratios for the SPEC
benchmarks to compute the delay experienced by these programs as a result of the cache and TLB misses.
These new results are then used to evaluate how much our execution time predictions for the SPEC
benchmarks improve when we incorporate these memory delays. We show that the prediction errors
decrease in most of the programs, although the improvement is modest. We also consider the SPEC
benchmarks as being part of a single workload and use them to evaluate the impact of memory delay in
the overall performance of different machines.

Finally, we discuss in some detail the performance differences between the caches and TLBs of four
machines based on the same family of processors. We show that the SPEC benchmark results on these
machines can be explained by the differences in their memory systems.

This paper is organized as follows: Section 2 contains a brief discussion of the Abstract Machine
Performance Model. Section 3 presents our approach to characterizing the memory hierarchy and the
experimental methodology followed throughout the paper. The experimental results are presented in Sec-
tion 4. The effect of locality in the SPEC benchmarks is contained in Section 5, followed by a discussion
of the results in Section 6. A small conclusion section ends this paper.

2. Background Material

We have developed a performance model based on the concept of the abstract machine that allows
us to characterize the performance of the CPU, predict the execution time of uniprocessor applications,
and evaluate the effectiveness of compiler optimizations. In this section we briefly discuss and explain
this model.

2.1. The Abstract Machine Performance Model

We call the approach we have used for performance evaluation the abstract machine performance
model. The idea is that every machine is modeled as and is considered to be a high level language
machine that executes the primitive operations of Fortran. We have used Fortran for three reasons: (a)
Most standard benchmarks and large scientific programs are written in Fortran; (b) Fortran is relatively
simple to work with; (c) Our work is funded by NASA, which is principally concerned with the perfor-
mance of high end machines running large scientific programs written in Fortran. Our methodology
could be straightforwardly used for other similar high level languages such as C and Pascal.



3

There are three basic parts to our methodology. In the first part, we analyze each physical machine
by measuring the execution time of each primitive Fortran operation on that machine. Primitive opera-
tions include things like add-real-single-precision, store-single-precision, etc; the full set of operations is
presented in [Saav89, 92a]. Measurements are made by using timing loops with and without the opera-
tion to be measured. Such measurements are complicated by the fact that some operations are not separ-
able from other operations (e.g. store), and that it is very difficult to get precise values in the prescence of
noise (e.g. cache misses, task switching) and low resolution clocks [Saav89, 92a]. We have also called
this machine analysis phase narrow spectrum benchmarking. This approach, of using the abstract
machine model, is extremely powerful, since it saves us from considering the peculiarities of each
machine, as would be done in an analysis at the machine instruction level [Peut77].

The second part of our methodology is to analyze Fortran programs. This analysis has two parts. In
the first, we do a static parsing of the source program and count the number of primitive operations per
line. In the second, we execute the program and count the number of times each line is executed. From
those two sets of measurements, we can determine the number of times each primitive operation is exe-
cuted in an execution of the entire program.

The third part of our methodology is to combine the operation times and the operation frequencies
to predict the running time of a given program on a given machine without having run that program on
that machine. As part of this process, we can determine which operations account for most of the running
time, which parts of the program account for most of the running time, etc. In general, we have found our
run time predictions to be remarkably accurate [Saav92a, 92b]. We can also easily estimate the perfor-
mance of hypothetical machines (or modifications of existing machines) on a variety of real or proposed
workloads.

It is very important to note and explain that we separately measure machines and programs, and
then combine the two as a linear model. We do not do any curve fitting to improve our predictions. The
feedback between prediction errors and model improvements is limited to improvements in the accuracy
of measurements of specific parameters, and to the creation of new parameters when the lumping of dif-
ferent operations as one parameter were found to cause unacceptable errors. The curve fitting approach
has been used and has been observed to be of limited accuracy [Pond90]. The main problems with
curve-fitting is that the parameters produced by the fit have no relation to the machine and program
characteristics, and they tend to vary widely with changes in the input data.

In [Saav89] we presented a CPU Fortran abstract machine model consisting of approximately 100
abstract operations and showed that it was possible to use it to characterize the raw performance of a wide
range of machines ranging from workstations to supercomputers. These abstract operations were also
combined into a set of reduced parameters, each of which was associated with the performance of a
specific CPU functional unit. The use of such reduced parameters permitted straightforward machine to
machine comparisons.

In [Saav92a, 92b] we studied the characteristics of the SPEC and Perfect Club benchmarks using
the same abstract machine model and showed that it is possible to predict the execution time of arbitrary
programs on a large number of machines. Our results were successful in accurately predicting ‘incon-
sistent’ machine performance, i.e. that machine A is faster than B for program x, but slower for program
y. Both of these studies assumed that programs were compiled and executed without optimization.

In [Saav92c] we extended our model to include the effect of (scalar) compiler optimization. It is
very difficult to predict which optimizations will be performed by a compiler and also to predict their per-
formance impact. We found, however, that we could model the performance improvement due to optimi-
zation as an improvement in the implementation of the abstract machine (an ‘‘optimized’’ machine) while
assuming that the behavior of the program remains unchanged. We showed that it is possible to accu-
rately predict the execution time of optimized programs in the large majority of cases.



4

2.2. Adding Locality to the Abstract Machine Model

The variations in execution time due to changes in locality are not captured by our performance
model, which ignores how the stream of references affects the content of both the cache and the TLB.
This is a direct consequence of using a linear model, and it is clearly expressed in the following equation

TA , M =
i = 1
Σ
n

Ci , A Pi , M (1)

where TA , M is the total execution time of the program, Ci , A is the number of times operation i is exe-
cuted by program A , and Pi , M is the execution time of parameter i on machine M .

Equation (1) does not include a term to account for cache and TLB misses. Never the less, we have
found that with a few exceptions (e.g. MATRIX300 without use of a blocking preprocessor), our predic-
tions have been quite good. This has been the case because most of the programs that have been analyzed
(almost all of which are standard benchmarks) have relatively low miss ratios.

It is straightforward to extend equation (1) to include cache and TLB misses (and/or misses at any
other level of the memory hierarchy):

TA , M =
i = 1
Σ
n

Ci , A Pi , M +
i = 1
Σ
m

Fi , A Di , M , (2)

where Fi A (faults)is the number of misses at the level i of the memory hierarchy, and Di , M (delay) is the
penalty paid by the respective miss. How many levels of the memory hierarchy exist varies between
machines, but in most machines there are one or two levels of caches, a TLB, main memory, and disk1.
In order to use equation (2) we need: 1) to measure the number of misses at each level of hierarchy, or at
least on those levels which significantly affect the execution time, and 2) to measure the set of penalties
due to different types of misses.

Measurement of the number of misses by a given program for a given memory hierarchy can be
done either by trace driven simulation (see e.g. [Smit82, 85]) or by hardware measurement. The former
can be extremely time consuming for any but the shortest programs ([Borg90, GeeJ91]), and the latter
requires both measurement tools (a hardware monitor or logical analyzer) and access to the necessary
electrical signals. This measurement of miss ratios, however, is beyond the scope of this paper; we are
principally concerned here with analysis of the memory hierarchy and performance prediction. We rely
on measurements taken by others [GeeJ91] for the miss ratios used in this paper.

3. Characterizing the Performance of the Cache and TLB

We have written a set of experiments (narrow spectrum benchmarks or micro benchmarks) to meas-
ure the physical and performance characteristics of the memory hierarchy in uniprocessors, in particular,
the primary and secondary caches and the TLB. Each experiment measures the average time per iteration
required to read, modify, and write a subset of the elements belonging to an array of a known size. The
number of misses will be a function of the size of the array and the stride between consecutive addresses
referenced. From the number of misses and the number of references, as we vary the stride and array
size, we can compute the relevant memory hierarchy parameters, including the size of the cache and the
TLB, the size of a cache line and the granularity of a TLB entry, the time needed to satisfy a cache or
TLB miss, the cache and TLB associativity, and the performance effect of write buffers. Other parame-
ters such as the number of sets in the cache or entries in the TLB are obtained easily from the above
hhhhhhhhhhhhhhhh

1 The TLB is not a level in the memory hierarchy, but it is a high-speed buffer which maintains recently
used virtual and real memory address pairs [Smit82]. However, to simplify our discussion in the rest of the
paper we refer to it as part of the memory hierarchy. Doing this does not affect in any way our methodology
or conclusions.



5

parameters.

At least one previous study used a similar technique to measure the cache miss penalty, although the
measurement was made at the machine instruction level, not using a high level language program. Peuto
and Shustek [Peut77] wrote an assembly language loop which generated a predictable number of cache
misses; from this, they were able to calculate the cache miss penalty for the IBM 3033 and the Amdahl
470V/6. They also determined the effectiveness of the write buffers in the 3033. For both machines,
however, they knew the cache design parameters (e.g. cache size) and so didn’t need to deduce them.

3.1. Experimental Methodology

We explain how we measure cache parameters by assuming that there is only one level of the
memory hierarchy to measure; to the extent that the characteristics of two levels (e.g. cache and TLB) are
sufficiently different, it is straightforward to calculate the parameters of each from these measurements.
In what follows we assume the existence of separate instruction and data caches, although this is done
only to simplify the discussion; the instruction loop that we use is so small that the measurements are vir-
tually identical for a unified cache. Assume that a machine has a cache capable of holding C 4-byte
words, a line size of b words, and an associativity a . The number of sets in the cache is given by C /ab .
We also assume that the replacement algorithm is LRU, and that the lowest available address bits are
used to select the cache set.

Each of our experiments consists of computing a simple floating-point function on each of a subset
of elements taken from a one-dimensional array of N 4-byte elements. We run each experiment several
times to eliminate experimental noise [Saav89]. The reason for the (arbitrary) floating point computation
is to avoid having a measurement loop which actually does nothing and is therefore eliminated by the
compiler optimizer from the program. This subset is given by the following sequence: 1, s + 1, 2s + 1, ...,
N − s + 1. Thus, each experiment is characterized by a particular value of N and s . The stride s allows us
to change the rate at which misses are generated by controlling the number of consecutive accesses to the
same cache line, page, etc. The magnitude of s varies from 1 to N /2 in powers of two.

Computing a new value on a particular element involves first reading the element into the CPU,
computing the new value using a simple recursive equation, and writing the result back into the cache.
Thus, on each iteration the cache gets two consecutive requests, one read and one write, both having the
same address. Of these two requests only the read can generate a cache miss, and it is the time needed to
fetch the value for the read that our experiments measure.

Depending on the values of N and s and the size of the cache (C ), the line size (b ), and the associa-
tivity (a ), there are four possible regimes of operations; each of these is characterized by the rate at which
misses occur in the cache. A summary of the characteristics of the four regimes is given in table 1.

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Regime Size of Array Stride Frequency of Misses Time per Iterationiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

1 1 ≤ N ≤ C 1 ≤ s ≤ N /2 no misses Tno −missiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
2.a C < N 1 ≤ s ≤ b one miss every b /s elements Tno −miss + Ms /b
2.b C < N b ≤ s < N /a one miss every element Tno −miss + M
2.c C < N N /a ≤ s ≤ N /2 no misses Tno −missiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic

c
c
c
c
c
c

c
c
c
c
c
c
c

c
c
c
c
c
c
c

c
c
c
c
c
c
c

c
c
c
c
c
c
c

c
c
c
c
c
c
c

Table 1: Cache miss patterns as a function of N and s. No misses are generated when N ≤ D . When N > D , the
rate of misses is determined by the stride between consecutive elements. M is the miss penalty.

Regime 1: N ≤ C .
The complete array fits into the cache and thus, for all values of the stride s , once the array is
loaded for the first time, there are no more misses. The execution time per iteration (Tno −misses )
includes the time to read one element from the cache, compute its new value, and store the result
back into the cache. Note that in a cache where the update policy is write-through, Tno −miss may



6

also include the time that the processor is forced to wait if the write buffer backs up.

Regime 2.a: N > C and 1 ≤ s < b .
The array is bigger than the cache, and there are b /s consecutive accesses to the same cache line.
The first access to the line always generates a miss, because every cache line is displaced from the
cache before it can be re-used in subsequent computations of the function. This follows from condi-
tion N > C . Therefore, the execution time per iteration is Tno −miss + Ms /b , where M is the miss
penalty and represents the time that it takes to read the data from main memory and resume execu-
tion.

Regime 2.b: N > C and b ≤ s < N /a .
The array is bigger than the cache and there is a cache miss every iteration, as each element of the
array maps to a different line. Again, every cache line is displaced from the cache before it can be
re-used. The execution time per iteration is Tno −miss + M .

Regime 2.c: N > C and N /a ≤ s ≤ N /2.
The array is bigger than the cache, but the number of addresses mapping to a single set is less than
the set associativity; thus, once the array is loaded, there are no more misses. Even when the array
has N elements, only N /s < a of these are touched by the experiment, and all of them can fit in a
single set. This follows from the fact that N /a ≤ s . The execution time per iteration is Tno −miss .

Figure 1 illustrates the state of the cache in each of the four regimes. In these examples we assume
that the cache size is large enough to hold 32 4-byte elements, the cache line is 4 elements long, and the
(set) associativity is 2. We also assume that the replacement policy is LRU, and that the first element of
the array maps to the first element of the first line of the cache. On each of the cache configurations we
highlight those elements that are read and generate a miss, those that are read but do not generate a miss,
and those that are loaded into the cache as a result of accessing other elements in the same line, but are
not touched by the experiment. The four diagrams in upper part of the figure corresponds to regime 1.
Here the size of the array is equal to the cache size, so, independently of the value of s , no misses occur.
If we double N , which is represented by the lower half of the figure, then cache misses will occur at a rate
which depends on the value of s . The leftmost diagram represents regime 2.a, the middle two diagrams
regime 2.b, and the rightmost diagram regime 2.c.

3.2. Measuring the Characteristics of the Cache

By making a plot of the value of the execution time per iteration as a function of N and s , we can
identify where our experiments make a transition from one regime to the next, and using this information
we can obtain the values of the parameters that affect the performance of the cache and the TLB. In what
follows we explain how these parameters are obtained.

3.2.1. Cache Size

Measuring the size of the cache is achieved by increasing the value of N until cache misses start to
occur. When this happens the time per iteration becomes significantly larger than Tno −miss . The cache
size is given by the largest N such that the average time iteration is equal to Tno −miss .

3.2.2. Average Miss Delay

An experiment executing in regime 2.b generates a miss every iteration, while one in regime 1 gen-
erates no misses, so the difference between their respective times gives the memory delay per miss. An
technique is to measure the difference in the iteration time between regime 2.a and regime 1, and then
multiply this difference by b /s , which is the number of references per miss.



7

272625

24232221

201918

32313029

28

17

16151413

1211109

8765

4321

272625

24232221

201918

32313029

28

17

16151413

1211109

8765

4321

52515049

44434241

1 2 3 4

9 10 11 12

17 18 19 20

272625 28
57 58 59 60

432133 34 35 36

33 34 35 36

s = 32

C = 32 x 4 bytes b = 4 x 4 bytes
a = 2N = 64

s = 8s = 4s = 2

272625

201918

28

17

1211109

4321 1 2 3 4

17 18 19 20

X X X X

X X X X

XXXX

XXXX

X X X X

X X X X

XXXX

XXXX

X X X X

X X X X

XXXX

XXXX

X X X X

X X X X

XXXX

XXXX

X X X X

X X X X

XXXX

XXXX

s = 8s = 4s = 2 s = 16

a = 2
b = 4 x 4 bytesC = 32 x 4 bytes

N = 32

no misses

1 miss every 2 elements

no misses

1 miss every element

no misses

1 miss every element

no misses

no misses

no readread & no missread & miss

272625

24232221

201918

32313029

28

17

16151413

1211109

8765

4321
33 34 35 36

37 38 39 40

41 42 43 44

45 46 47 48

49 50 51 52

53 54 55 56

57 58 59 60

61 62 63 64

272625

24232221

201918

32313029

28

17

16151413

1211109

8765

4321
33 34 35 36

37 38 39 40

41 42 43 44

45 46 47 48

49 50 51 52

53 54 55 56

57 58 59 60

61 62 63 64

set 0

set 1

set 2

set 3

set 0

set 1

set 2

set 3

set 0

set 1

set 2

set 3

set 3

set 2

set 1

set 0

Figure 1: The figure illustrates the four different regimes of cache accesses produce by a particular combination of
N and s . Each diagram shows the mapping of elements to cache entries, assuming that the first element of
the array maps to the first entry of the first cache line in the cache. The replacement policy is LRU. The
four diagrams on the upper part of the figure correspond to regime 1. For the diagram in the lower half of
the figure, the leftmost diagram corresponds to regime 2.a, the two in the middle to regime 2.b, and the right-
most to regime 2.c. The sequence of elements reference by an experiment is: 1, s + 1, 2s + 1, ... , N − s + 1.

3.2.3. Cache Line Size

In regime 2.a, the rate at which misses occur is one every b /s iterations. This rate increases with s ,
and achieves its maximum when s ≥ b , when there is a miss on every iteration (regime 2.b). The value of
s when the transition between regimes 2.a and 2.b happens gives the cache line size.

3.2.4. Associativity

The associativity of the cache (for a ≥ 2) is given by the value N /s , which is the number of dif-
ferent elements referenced by the experiments, if it is the case that there is a transition from regime 2.b to
regime 2.c. As we mentioned before, if N /a ≤ s , then a ≥ N /s , which means that this regime is easily
identified because the time per iteration drops from Tno −miss + M to Tno −miss . In a direct-mapped cache,
however, there is no transition because the maximum value of s for our experiments is N /2, which



8

corresponds to an associativity of 2. However, we can identify a direct-mapped cache when we observe
that the time per iteration does not decrease when s equals N /2.

3.2.5. Write Buffers

A cache, in which the update policy is write-through, normally contains a small buffer of pending
writes which are sent to main memory only when the memory bus is not being used to satisfy fetches.
The existence of a write buffer allows giving priority to reads over writes. This helps in reducing the
amount of time that the CPU has to stall waiting for writes to complete. Furthermore, if the processor
needs a datum which is still in the write buffer, it can in some designs (e.g. the IBM 3033 [Smit82]) be
read immediately from there without waiting for the write to occur. In order to guarantee uniprocessor
sequential consistency, it is necessary that in a machine with write buffers, on a read, the read address
must either be compared with the addresses of pending writes, or the pending writes must be allowed to
complete before the read is performed. The existence of write buffers and their effectiveness can be
detected by observing how the time per iteration changes as s gets closer to N /2.

We know that the number of different elements touched by a particular experiment is N /s . This
number decreases as s increases, which means that the time between two accesses to the same element
also decreases. In a cache with a write buffer it may happen that if s is very close to N /2, then the time
from the moment an element is written until it is read again can become smaller than the time it takes for
the write to occur, so the fetch can be retrieved from the buffer, provided that the write buffers provide
that facility. When this occurs the time per iteration will decrease by the difference in time between fetch-
ing the data from the write buffer and fetching it from memory.

3.3. Measuring Parameters of the TLB

The phenomena we observe when we consider the TLB are the same as for the cache; the only
difference is in the particular values of N and s where the changes in behavior occur. The measurements
we present in the next section show the behavior of both the cache and the TLB when both are active, and
in some regions their effects overlap. In all cases, however, it is relatively straightforward to isolate the
effects of one from the other.

4. Experimental Results for Caches and TLBs

We ran our cache evaluation benchmark on several computers, and we show the results in figures
2-4 and in table 2. The graphs shown in the figures show the average time per iteration as a function of
the size of the array and the stride, while table 2 summarizes the cache and TLB parameters extracted
from the profiles. The units used in the graphs are: bytes for measures of size, and nanoseconds for time
related magnitudes. Each curve on each of the graphs correspond to a particular array size (N ), while the
horizontal axis represents different stride values (s ). We only shown curves for array sizes that are
greater or equal to the size of the cache.

The four basic regimes for the different cache and TLB miss patterns can be seen clearly in most of
the figures. A very clear example is the results for the IBM RS/6000 530 (fig. 2, lower-right graph). On
this machine, regime 1 is represented by the curve labeled 64K. The other three regimes of cache misses
are in the three curves with labels 128K, 256K, and 512K. The first segment on each curve, where the
value of the average time per iteration increases in proportion to s , corresponds to regime 2.a. The next
segment of the curve, where the time per iteration is almost constant, corresponds to regime 2.b, and the
sudden drop in the time per iteration at the end is where regime 2.c starts. In the same graph, curves for
array sizes of 1M, 2M, and 4M show the same regimes for both the cache and TLB.

The results in table 2 for the DEC 3100, DEC 5400, MIPS M/2000, and DEC 5500 show the differ-
ences in their cache organizations. These four machines use the R2000/R2001 or R3000/R3001 proces-
sors from MIPS Corporation (now part of Silicon Graphics Inc.). All have a 64KB direct mapped cache
and a fully-associative TLB with 64 entries with an entry granularity of 4096 bytes. The main difference



9

between their respective caches are the line size and the miss penalty. The DEC 3100 has the smallest
line size having only 4 bytes [Furl90]; the DEC 5400 and 5500 have line sizes of 16 bytes, and the MIPS
M/2000 has the largest line size of 64 bytes. The miss penalty per line also shows a wide range of values,
from 540 ns for the DEC 3100 to 1680 ns for the DEC 5400.

It is interesting to compare the ratios between the cache and TLB penalty misses and the execution
time of a single iteration with no misses, which are given in table 2. Although the no-miss time of the
test is not a good measure of the true speed of the processor, it at least gives an indication of the basic
floating-point performance (add and multiply) and helps to put in perspective the miss penalties. The
results show a large variation in the ratio of the cache penalty to the no-miss iteration time, ranging from
0.51 on the Sparcstation 1+ to 4.00 on the VAX 9000. In the VAX 9000, loading a cache line takes four
times longer than the no-miss iteration time. With respect to TLB misses the range of values goes from
0.53 to 6.35, with the highest value corresponding to the IBM RS/6000 530.

Note that a high miss penalty does not necessarily reflect a bad cache design. The miss penalty may
be high as a tradeoff for a low miss ratio, as the result of cost/performance tradeoffs, as the result of an
optimization for low miss ratio workloads, or as a result of a deliberate slowing down of a design in order
to hit a specific product price/performance point, as discussed below in section 6.

4.1. Effective Prefetching

An interesting characteristic of the IBM RS/6000 which can be observed in our measurements is
what we call effective prefetching. The cache does not have hardware support to do prefetching
[O’Bri90], but it can produce the same effect, that is, fetching cache lines before they are needed by the
computation, thus preventing the processor from stalling. This is accomplished in the RS/6000 by its
independent integer, branch, and floating-point units. In this respect the IBM RS/6000 behaves like a
decoupled architecture [Smit84, Good85, Wulf88]. The integer and branch unit can execute several
instructions ahead of the floating-point unit in floating-point intensive code and generate loads to the
cache that even in the presence of misses arrive before the floating-point unit requires the values
[O’Bri90]. Because the execution time of our test is dominated by floating-point operations, the illusion
of prefetching is present in our measurements. This is evident on the left side of the RS/6000 curves
(regime 2.a), independent of the address space region; as long as the stride is less or equal to 16 bytes (4
words), there is no miss penalty.

4.2. TLB Entries with Multiple Granularities

The results for the Sparcstation 1 and 1+ show that their respective TLB entry granularities are 128
Kbytes and more than 2 Mbytes. The reason for these large numbers is that the TLB entries can map
memory regions using four different levels of granularity. Furthermore, entries with different granulari-
ties can coexist in the TLB. The page table for these machines have four levels [Cypr90]. At each level,
there can be either a page table entry (PTE) or a page table pointer (PTP) which points to another page
table. A PTE can thus point to a region of 4GB (level 0), 16MB (level 1), 256KB (level 2) or 4KB (level
3). Each PTE in the TLB is tagged to indicate the size of the region it covers, and translation is done
accordingly. The operating system determines the coverage of a PTE at the time the region is mapped.
The availability of variable granularity PTEs has a number of advantages; in particular, it allows very
large memories to be referenced by small TLBs.

5. The Effect of Locality in the SPEC Benchmarks

In this section we combine the experimental cache and TLB results obtained in the last section with
the cache and TLB miss ratios for the Fortran SPEC benchmarks to compute the memory delay caused by
misses. We then use these results to evaluate: 1) whether our execution time predictions improve when
we incorporate the memory delay experience by the programs; and 2) how much impact does each cache
and TLB configuration have on the overall performance of their respective machines.



10

Cache Parametersiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DEC 3100 DEC 5400 DEC 5500 MIPS M/2000 VAX 9000iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

cache size 64 KB 64 KB 64 KB 64 KB 128 KB
associativity 1-way 1-way 1-way 1-way 2-way
line size 4 bytes 16 bytes 16 bytes 64 bytes 64 bytesiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
miss penalty (word) 540 ns 1680 ns 750 ns 800 ns 740 ns
normalized penalty 0.6490 2.2400 1.875 1.2389 4.0000iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
miss penalty (line) 540 ns 1680 ns 750 ns 1440 ns 980 ns
normalized penalty 0.6490 2.2400 1.875 2.5477 5.2973iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
miss penalty / word 540 ns 420 ns 188 ns 90 ns 61 ns
normalized penalty 0.6490 0.5600 0.4700 0.1592 0.3297iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
virtual prefetching no no no no noiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

TLB Parametersiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DEC 3100 DEC 5400 DEC 5500 MIPS M/2000 VAX 9000iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

region covered 256 KB 256 KB 256 KB 256 KB 8 MB
num. of entries 64 64 64 64 1024
associativity 64-way 64-way 64-way 64-way 2-way
entry granularity 4096 bytes 4096 bytes 4096 bytes 4096 bytes 8192 bytes
miss penalty (entry) 480 ns 400 ns 260 ns 350 ns 280 ns
normalized penalty 0.5769 0.5333 0.6500 0.6194 1.5135
page size 4096 bytes 4096 bytes 4096 bytes 4096 bytes 8192 bytesiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c

Cache Parametersiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
RS/6000 530 HP 9000/720 Sparc 1 Sparc 1+ [1st] DEC 4000/610 [2nd]iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

cache size 64 KB 256 KB 128 KB 64 KB 8 KB 1 MB
associativity 4-way 1-way 1-way 1-way 1-way 16-way
line size 128 bytes 32 bytes 16 bytes 16 bytes 32 bytes 32 bytesiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
miss penalty (word) 350 ns 360 ns 780 ns 560 ns 46 ns 410 ns
normalized penalty 2.0588 1.6744 0.5652 0.5091 0.4340 3.8679iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
miss penalty (line) 700 ns 480 ns 780 ns 560 ns 46 ns 410 ns
normalized penalty 4.1176 2.2326 0.5652 0.5091 0.4340 3.8679iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
miss penalty / word 22 ns 60 ns 195 ns 140 ns 12 ns 102 ns
normalized penalty 0.1294 0.2791 0.1413 0.1273 0.1085 0.9670iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
virtual prefetching yes no no no no noiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

TLB Parametersiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
RS/6000 530 HP 9000/720 Sparc 1 Sparc 1+ DEC 4000/610iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

region covered 512 KB 512 KB 8 MB 1 GB 128 KB
num. of entries 128 64 64 64 16
associativity 2-way 64-way 64-way 64-way 16-way
entry granularity 4096 bytes 8192 bytes 128 Kbytes 16 Mbytes 8192 bytes
miss penalty (entry) 1080 ns 940 ns 880 ns n.a. 250 ns
normalized penalty 6.3529 4.3721 0.6377 n.a. 2.3585
page size 4096 bytes 8192 bytes 4096 bytes 4096 bytes 8192 bytesiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c

Table 2: Cache and TLB parameters measured using the memory hierarchy benchmark. The normalized penalty is
the ratio between the cache penalty time and the no-miss execution time per iteration. We define virtual pre-
fetching as the ability of the machine to satisfy cache misses before the subunit that consumes the data needs
the values, which is manifested in the execution time as a zero-cycle miss delay. The miss penalty per line is
the delay that the program will experience on each access if it traverses a data structure in such way that
each reference touches a different line. The miss penalty (word) is the average penalty if the data is traversed
sequentially. The DEC Alpha 4000/610 results are reported for both the first (on chip) level and second lev-
el caches.



11

Effect of stride on the memory hierarchy: DEC 3100

0

2500

2250

(nsec)

1000

2000

1750

1500

1250

750

500

250

e

i
t

m
1M

512K
256K

128K

4M

2M

64K

stride (bytes)stride (bytes)

128K32K 2M512K8K2K512128328

stride (bytes)

cache miss:
540 ns

line size:
4 bytes

page size: 4096 bytes

TLB miss:
480 ns

stride (bytes)stride (bytes)
128K32K 2M512K8K2K512128328

stride (bytes)

0

2500

2250
(nsec)

1000

2000

1750

1500

1250

750

500

250

e

i
t

m

64K

4M

2M

1M

512K256K128K

2750

3000

line size: 16 bytes

page size: 4096 bytes

cache size:

cache miss:
1680 ns

Effect of stride on the memory hierarchy: DEC 5400

Effect of stride on the memory hierarchy: MIPS M/2000

64K

4M

2M

1M

512K
256K

128K

stride (bytes)

0

stride (bytes)

128K32K 2M512K8K2K512128328

2500

2250

(nsec)

1000

2000

1750

1500

1250

750

500

250

e

i
t

m

stride (bytes)

1250

2500

2250

(nsec)

1000

2000

1750

1500

750

500

250

0

prefetching

Effect of stride on the memory hierarchy: IBM RS/6000 530

e
m
i
t

stride (bytes)

64K

128K32K 2M512K8K

128K

256K

512K

1M

2M

4M

2K512128328

page size: 4096 bytes

line size: 128 bytes

cache miss:
700 ns.

TLB miss:
1080 ns

effective

page size: 4096

line size:
64 bytes

cache miss
(line): 1440 ns

TLB miss:
350 ns

cache miss:
(word): 800 ns

cache size:

(direct-mapped cache)

(fully associative TLB)

(direct-mapped cache)

(fully associative TLB)

(direct-mapped cache)

(fully associative TLB)

(write buffers)

(4-way associative)

(2-way associative TLB)

400 ns
TLB miss:

cache size:

cache size:

Figure 2: Profile of the performance of the memory hierarchy (cache and TLB) on the DECstation 3100, MIPS M/2000, Decstation 5400, and IBM RS/6000
530. Each curve indicates the amount of address space touched by the experiment and the stride represents the distance between two consecutive
addresses.



12

0

2500

2250

1000

2000

1750

1500

1250

750

500

250

e

i
t

stride (bytes)stride (bytes)

128K32K 2M512K8K2K512128328

stride (bytes)

64K
cache size:

(nsec)

m

(nsec)(nsec)

4M2M1M512K256K128K

(direct-mapped cache)
(virtual address)cache miss:

560 ns

line size:
16 bytes

Effect of stride on the memory hierarchy: Sparcstation 1+ Effect of stride on the memory hierarchy: Sparcstation 1

3000

2750

t
i

m
e

0

1500

1750

2000

1000

(nsec)

2250

2500

1250

8 32 128 512 2K 8K 512K 2M32K 128K

stride (bytes)

4M2M1M

512K

256K

cache miss:
780 ns

line size:
16 bytes

TLB entry granularity: 128 Kbytes

TLB miss:
880 ns

(direct-mapped cache)

(virtual address)

(fully-associative TLB)

stride (bytes)stride (bytes)

128K32K 2M512K8K2K512128328

stride (bytes)

0

2500

2250

1000

2000

1750

1500

1250

750

500

250

e

i
t

(nsec)

m

(nsec)(nsec)

line size:
32 bytes

page size: 8192 bytes

cache miss:
480 ns

TLB miss:
940 ns

cache size:
256K

4M

2M

1M

512K

(fully-associative TLB)

(direct-mapped cache)

Effect of stride on the memory hierarchy: HP 9000/720

stride (bytes)

128K32K 2M512K8K2K512128328

1250

2500

2250

(nsec)

1000

2000

1750

1500

750

500

250

0

e
m
i
t

Effect of stride on the memory hierarchy: VAX 9000

cache miss:

256K

512K

1M

2M

4M

128K

16M
8M

line size 64 bytes

980 ns

page size: 8192 bytes

TLB miss: 280 ns

8M

(2-way associative TLB)

(2-way associative cache)
(write buffers)

cache size:
128K

cache size:

Figure 3: Profile of the performance of the memory hierarchy (cache and TLB) on the Sparcstation 1, Sparcstation 1+, HP 9000/720, and VAX 9000. Each
curve indicates the amount of address space touched by the experiment and the stride represents the distance between two consecutive addresses.



13

460 ns
no-miss time:

Effect of stride on the memory hierarchy: DEC 5500

260 ns

750 ns

16 bytes

(nsec)

2250

2500

250

500

750

1250

1500

1750

2000

1000

8
0

m

t
i

e
line size:

page size: 4096

TLB miss:

128K
256K 512K (fully associative TLB)

(direct-mapped cache)

1M
2M

4M

cache size:
64K

cache miss

32 128 512 2K 8K 512K 2M32K 128K
stride (bytes)

512K

2M

16M

4M

8M

8M

Effect of stride on the memory hierarchy: DEC ALPHA

0

1250

1125

(nsec)

500

1000

875

750

675

375

250

125

e

i
t

m

128K32K 2M512K8K2K512128328
stride (bytes)

TLB miss:

(fully associative TLB)

cache size: 8K
1st-level1st-level cache

page size: 8192 bytes

2nd-level cache
miss penalty: 410 ns

miss penalty: 46 ns

250 ns

2nd-level
cache size: 1M

(direct-mapped 1st-level cache)
(16-way associative 2nd-level cache)

Figure 4: Profile of the performance of the memory hierarchy (cache and TLB) on the DECstation 5500 and DEC
Alpha 4000/610 running at 160 MHz. Each curve indicates the amount of address space touched by the ex-
periment and the stride represents the distance between two consecutive addresses.



14

5.1. The SPEC Benchmarks Cache and TLB Miss Ratios

The experimental cache and TLB measurements of the memory hierarchy obtained in the last sec-
tion can be combined with previously computed miss ratios on SPEC Fortran benchmarks to compute the
specific miss ratios that each machine experiences.

Cache Miss Ratiosiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
machine DODUC FPPPP TOMCATV MATRIX300 NASA7 SPICE2G6 Averageiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

DECstation 3100 0.0280 0.0814 0.2218 0.1860 0.2470 0.1758 0.1566
DECstation 5400 0.0140 0.0407 0.1109 0.0930 0.1235 0.0879 0.0783
DECstation 5500 0.0140 0.0407 0.1109 0.0930 0.1235 0.0879 0.0783
MIPS M/2000 0.0107 0.0277 0.0501 0.0763 0.0977 0.0648 0.0546
VAX 9000 0.0004 0.0001 0.0188 0.0292 0.0589 0.0317 0.0232
IBM RS/6000 530 0.0003 0.0001 0.0094 0.0670 0.0703 0.0380 0.0309
HP 9000/720 0.0001 0.0342 0.0691 0.0679 0.0703 0.0371 0.0465
Sparcstation 1 0.0071 0.0405 0.1101 0.0881 0.1100 0.0698 0.0709
Sparcstation 1+ 0.0140 0.0407 0.1109 0.0930 0.1235 0.0879 0.0783iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
cc
c
c
c
c
c
c
c
c
c
c
c
c
c

average cc
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c

0.0098 cc
c
c
c
c
c
c
c
c
c
c
c
c
c

0.0340 cc
c
c
c
c
c
c
c
c
c
c
c
c
c

0.0902 cc
c
c
c
c
c
c
c
c
c
c
c
c
c

0.0882 cc
c
c
c
c
c
c
c
c
c
c
c
c
c

0.1139 cc
c
c
c
c
c
c
c
c
c
c
c
c
c

0.0757 cc
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c

0.0686 cc
c
c
c
c
c
c
c
c
c
c
c
c
c

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

TLB Miss Ratiosiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
machine DODUC FPPPP TOMCATV MATRIX300 NASA7 SPICE2G6 Averageiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

DECstation 3100 0.0000 0.0000 0.0003 0.0993 0.0409 0.0048 0.0242
DECstation 5400 0.0000 0.0000 0.0003 0.0993 0.0409 0.0048 0.0242
DECstation 5500 0.0000 0.0000 0.0003 0.0993 0.0409 0.0048 0.0242
MIPS M/2000 0.0000 0.0000 0.0003 0.0993 0.0409 0.0048 0.0242
VAX 9000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
IBM RS/6000 530 0.0000 0.0000 0.0019 0.0919 0.0410 0.0038 0.0231
HP 9000/720 0.0000 0.0000 0.0001 0.0503 0.0266 0.0010 0.0130
Sparcstation 1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Sparcstation 1+ 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

average 0.0000 0.0000 0.0004 0.0599 0.0257 0.0027 0.0148iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c

Table 3: Cache and TLB miss ratios, for caches of the appropriate size and configuration, from Gee, et. al.
[GeeJ91a and GeeJ91b]. DEC Alpha 4000/610 results are not shown in this table or in the rest of this paper
because of restrictions on benchmarking the machine to which we have access. We expect to add complete
alpha results to a final version of this paper.

Gee et al. [GeeJ91, 92] have measured the cache and TLB miss ratios for the entire suite of SPEC
benchmarks and have compared their results against other measurements based on hardware monitors,
very long address traces, and those which include operating system and multiprogramming behavior.
They found that the instruction cache miss ratios on all the SPEC benchmarks are very low relative to
other measured and published results; the data cache miss ratios for the integer benchmarks were also
found to be are consistently lower than published results. The data miss ratios for the floating-point
benchmarks, however, are significantly higher and they appear to be in the same range as previous meas-
urements.

In this section we use their results on the Fortran SPEC benchmarks to obtain the approximate miss
ratios for the different cache and TLB configurations characterized in the previous sections. We note that
the miss ratios reported in [GeeJ91,92] were obtained under specific conditions, and that measurements
for different systems might be different. Their measurements were obtained in the following way: 1) by
using memory reference streams taken from the DECstation 3100, which contains the MIPS 2000
microprocessor; 2) by using specific Fortran and C compilers; and 3) by running each program in a
uniprogramming mode, to completion, without consideration of any operating system activity (of which
there was very little). For these reasons, their miss ratios only approximate the actual miss ratios on
machines other than the DECstation 3100. However, we believe that the differences between the various



15

machines and their compilers are not so large as to invalidate the use of these results.

In table 3 we present the cache and TLB miss ratios for the different machines. All the results,
except those for the DECstation 3100, were obtained by using the parameters shown in table 2 and using
the results published in [GeeJ91,92]. The cache miss ratios for the DECstation 3100 were not obtained
directly from their tables; the block size on this machine is only 4 bytes, while the cache miss ratios pub-
lished in [GeeJ91] were computed for block sizes ranging from 16 to 256 bytes. However, we have made
a rough approximation of the miss ratios on the DECstation 3100 by doubling the results computed for a
line size of 16 bytes. We did this based on the observation that the precision of floating-point numbers
used in the Fortran SPEC benchmarks is 8 bytes, and hence on a machine with a 32-bit memory interface,
reading or writing the second part of a floating-point number never generates a miss, if the line size is at
least 8 bytes long. On the other hand, when the line size is only 4 bytes long, if the first part of the
floating-point number misses, then the second part also generates a miss. (An alternate approach would
be to use the "ratio of ratios" from [Smit87], which would suggest increasing the data miss ratios by
around a factor of 2.5.)

In table 3, the smallest cache miss ratios for each of the programs are highlighted. The effect of
associativity and a large block size can be seen in the miss ratios of the IBM RS/6000 530. The average
miss ratio on this machine, which has a 64KB, 4-way set associative cache with a 128-byte block size, is
0.0309. Even though the RS/6000 has a very high miss penalty, the absolute loss of performance from
cache misses can be seen from table 4 to be the smallest of all of the machines shown. It is also interest-
ing to note that the VAX 9000 has the lowest average cache miss ratio of all machines, although it also
has the highest normalized miss penalty. This machine has a 128KB, 2-way set associative cache with a
64-byte line. Hence, at least with respect to this particular workload, it is not the machine having the
largest cache size, or the longest cache line, or the highest degree of associativity, or the one with the
smallest miss ratio, but the one which combines the three factors in the most effective way.

Execution Time Penalty: Cacheiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
machine DODUC FPPPP TOMCATV MATRIX300 NASA7 SPICE2G6 Totaliiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

DECstation 3100 4.41 (1.27) 33.29 (5.28) 54.69 (8.83) 65.89 (5.94) 314.81 (8.31) 393.41 (10.61) 866.50 (8.49)
DECstation 5400 6.86 (2.12) 51.78 (9.03) 85.07 (15.93) 102.49 (11.21) 489.70 (15.28) 611.97 (18.09) 1347.87 (15.09)
DECstation 5500 3.06 (1.71) 23.12 (7.30) 37.98 (10.76) 45.75 (7.21) 218.61 (9.83) 273.20 (12.27) 601.73 (10.14)
MIPS M/2000 2.50 (1.36) 16.78 (7.29) 18.30 (3.49) 40.04 (5.16) 184.47 (6.78) 214.83 (4.93) 476.93 (5.42)
VAX 9000 0.09 (0.17) 0.06 (0.14) 6.35 (7.33) 14.17 (8.01) 102.87 (20.73) 97.21 (6.38) 220.75 (9.28)
IBM RS/6000 530 0.03 (0.02) 0.03 (0.03) 1.50 (0.77) 15.38 (2.50) 58.07 (3.76) 55.12 (2.31) 130.13 (2.62)
HP 9000/720 0.01 (0.01) 9.32 (13.57) 11.36 (6.66) 16.03 (2.75) 59.73 (5.02) 55.35 (3.61) 151.81 (4.18)
SPARCstation 1 1.62 (0.47) 23.92 (7.10) 39.21 (7.37) 45.08 (3.59) 202.51 (4.12) 225.62 (6.70) 537.96 (5.00)
SPARCstation 1+ 2.29 (0.55) 17.26 (2.97) 28.36 (5.09) 34.16 (2.56) 163.23 (3.15) 203.99 (4.54) 449.29 (3.57)iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
cc
c
c
c
c
c
c
c
c
c
c
c
c
c

average cc
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c

2.32 (0.85) cc
c
c
c
c
c
c
c
c
c
c
c
c
c

19.51 (5.86) cc
c
c
c
c
c
c
c
c
c
c
c
c
c

31.42 (7.36) cc
c
c
c
c
c
c
c
c
c
c
c
c
c

42.11 (5.44) cc
c
c
c
c
c
c
c
c
c
c
c
c
c

199.33 (8.55) cc
c
c
c
c
c
c
c
c
c
c
c
c
c

236.74 (7.72) cc
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c

531.44 (7.09) cc
c
c
c
c
c
c
c
c
c
c
c
c
c

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Execution Time Penalty: TLBiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
machine DODUC FPPPP TOMCATV MATRIX300 NASA7 SPICE2G6 Totaliiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

DECstation 3100 0.00 (0.00) 0.00 (0.00) 0.07 (0.01) 31.27 (2.73) 46.34 (1.14) 9.55 (0.23) 87.23 (0.79)
DECstation 5400 0.00 (0.00) 0.00 (0.00) 0.05 (0.01) 26.05 (2.63) 38.61 (1.06) 7.96 (0.20) 72.67 (0.71)
DECstation 5500 0.00 (0.00) 0.00 (0.00) 0.04 (0.01) 16.94 (2.55) 25.10 (1.04) 5.17 (0.21) 47.25 (0.73)
MIPS M/2000 0.00 (0.00) 0.00 (0.00) 0.05 (0.01) 22.80 (2.87) 33.79 (1.18) 6.96 (0.15) 63.60 (0.69)
VAX 9000 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
IBM RS/6000 530 0.00 (0.00) 0.00 (0.00) 0.94 (0.48) 65.11 (11.53) 104.51 (6.98) 17.01 (0.70) 187.57 (3.82)
HP 9000/720 0.00 (0.00) 0.00 (0.00) 0.04 (0.02) 31.02 (5.47) 59.02 (4.96) 3.90 (0.25) 93.98 (2.55)
Sparcstation 1 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
Sparcstation 1+ 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

average 0.00 (0.00) 0.00 (0.00) 0.13 (0.06) 21.47 (3.09) 34.15 (1.82) 5.62 (0.19) 61.37 (1.03)iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c

Table 4: Total Execution time penalty (in seconds) due to cache misses and TLB misses. The numbers in
parentheses show the corresponding percent of non-miss total run time. The delay for each program and
machine combination is computed from the miss ratios and the average memory delay measurements.



16

With respect to the TLB, only three of the six programs exhibit TLB miss ratios that measurably
affect the execution time of the programs on the DECstations, MIPS M/2000, IBM RS/6000 530, and HP
9000/720. On these machines, the TLB miss ratio for MATRIX300 is almost 0.10, and for NASA7 it is
close to 0.04. Furthermore, the degree of associativity appears not to affect the TLB miss ratios on these
two programs. The results in [GeeJ92], however, indicate that a TLB with 256 entries, 2-way set associa-
tive and with an entry granularity of 8KB will have miss ratios of less than 0.0001 on all SPEC bench-
marks. Thus, we expect that the current SPEC benchmark suite will not at all test the performance of the
TLB in new machines by the middle of this decade.

5.2. Execution Time Delay Due to Cache and TLB Misses

In table 4 we combine the cache and TLB miss ratios of the SPEC Fortran programs with the
memory delays measured on each of the machines to compute the execution time penalty due to cache
and TLB misses. The results show that the delay due to TLB misses on benchmarks MATRIX300 and
NASA7 is as large as the delay due to cache misses. Moreover, on the IBM RS/6000 530 the total delay
due to TLB misses (187.57 sec) is larger than the delay due to cache misses (130.13).

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Spice2g6 Excluded Spice2g6 Includediiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Without Latency With Latency Without Latency With Latencyiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
machine average root mean average root mean average root mean average root mean

error square error square error square error squareiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DECstation 3100 −9.56 % 14.34 % −3.30 % 11.47 % −1.47 % 20.62 % 5.39 % 22.52 %
DECstation 5400 −8.44 % 12.77 % 1.79 % 11.01 % −0.90 % 19.00 % 10.21 % 23.59 %
DECstation 5500 −18.84 % 22.81 % −11.36 % 17.02 % −7.29 % 29.29 % 0.79 % 29.55 %
MIPS M/2000 −9.91 % 16.65 % −4.51 % 13.24 % −8.39 % 15.20 % −3.08 % 12.20 %
VAX 9000 −6.44 % 24.09 % −0.24 % 20.57 % −8.07 % 22.96 % −1.91 % 19.24 %
IBM RS/6000 530 0.64 % 20.95 % 5.42 % 19.35 % 7.00 % 24.84 % 11.48 % 24.56 %
HP 9000/720 −11.40 % 22.48 % −4.41 % 20.32 % −6.55 % 21.76 % −0.11 % 20.51 %
Sparcstation 1 −6.73 % 22.84 % −2.43 % 23.08 % 0.50 % 25.66 % 5.13 % 27.41 %
Sparcstation 1+ −15.56 % 23.26 % −12.83 % 21.78 % −6.57 % 22.31 % −9.57 % 22.81 %iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

overall −9.58 % 20.42 % −3.54 % 18.06 % −3.86 % 22.9278 % 2.37 % 22.78 %iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Table 5: Summary of prediction errors by machine. The prediction errors under the label "Spice2g6 Excluded" are
computed on five of the six Fortran SPEC benchmarks, while those under the label "Spice2g6 Included" are
computed over the six benchmarks.

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Without Latency With Latencyiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

program average root mean average root mean
error square error squareiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

DODUC −0.26 % 5.30 % 0.58 % 5.47 %
FPPPP −3.82 % 23.22 % 1.51 % 22.51 %
TOMCATV −3.67 % 14.20 % 3.00 % 13.27 %
MATRIX300 −31.77 % 33.21 % −23.80 % 26.55 %
NASA7 −8.39 % 14.62 % 1.00 % 14.58 %iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
c
c
c
c
c
c
c
c
c
c
c
c

overall (1) c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c

−9.58 % cc
c
c
c
c
c
c
c
c
c

20.42 % c
c
c
c
c
c
c
c
c
c
c
c

−3.54 % cc
c
c
c
c
c
c
c
c
c

18.06 % c
c
c
c
c
c
c
c
c
c
c
c

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
SPICE2G6 28.37 % 35.98 % 35.68 % 42.81 %iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

overall (2) −3.86 % 22.78 % 2.37 % 22.92 %iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic
c
c

c
c
c

c
c
c

c
c
c

c
c
c

c
c
c

c
c
c

Table 6: Summary of prediction errors by program. Even when the rms error of DODUC increases when the cache
and TLB miss delay is included, on eight of the nine machines the prediction error decreases.



17

5.3. Execution Prediction with Locality Delay

We now have estimates of the execution time delays due to cache and TLB misses and in this sec-
tion we determine whether including that factor improves our execution time predictions. We do this
analysis twice, once with the SPICE2G6 benchmark and once without; this is because our original predic-
tion (see [Saav92a,b] and table 6) for that program was significantly high, and thus adding additional
delays can not only make that prediction worse, but could obscure an otherwise general improvement. A
summary of the prediction errors is given in tables 5 and 6. The complete results, including the indivi-
dual execution time predictions and prediction errors are given in [Saav92a]. In the tables, a negative
(positive) average error means that our prediction was lower (greater) than the actual execution time.

The results in table 5 indicate that if the results for benchmark SPICE2G6 are not considered, then
the average error decreases in magnitude for all but one machine (the IBM RS/6000), and the root mean
square (rms) error also decreases for all but one machine (the Sparcstation I). The overall average error
decreases from −9.58% to −3.54%, while the rms error decreases from 20.42% to 18.06%. The rms error
on the Sparcstation 1 increases because our predictions on FPPPP and TOMCATV have a positive error
even when locality effects are ignored. Likewise, the average positive error for the RS/6000 increases.
The skewness in the distribution of average errors appears to decrease when locality is taken into account.
When locality is ignored, the average errors range from −18.84 to +0.64, but with the delay factor the
errors range from −12.83 to +5.42.

If we include SPICE2G6, then we see that the overall rms error decreases very little, from 22.92%
to 22.78%, while the average error changes from −3.86 to +2.37. The distribution of average errors, how-
ever, also presents less skewness. In fact, when locality is ignored, the number of machines with negative
and positive average errors are 7 and 2 respectively. The corresponding numbers when our predictions
take into account locality are 4 and 5.

With respect to the programs (table 6), the results show that the overall rms errors improve for four
out of the six benchmarks. The only benchmarks for which the rms error increases are DODUC and
SPICE2G6. Although the overall rms error on DODUC increases, the individual predictions show that on
eight of the nine machines the prediction error decreases or remains constant [Saav92a]. The reason why
the overall error increases is because the error on the MIPS M/2000, which is the one that increases, is
much larger than the other eight errors2. Of all the programs, the one which experiences the largest
improvement is MATRIX300, where the average error decreases from -31.77% to 23.80%.

5.4. The Effect of the Memory System on Performance

In this section we use the results of §6.2 to evaluate the effect of the different memory systems on
the overall performance of the machines. We do this by computing, for each of the Fortran SPEC bench-
marks, a new SPECratio which is our estimate of the performance of that program on that machine, given
zero cache and TLB misses.

The baseline SPECratios we use here have been taken from the original SPEC reports [SPEC90a
SPEC90b SPEC91a, SPEC91b], except for the VAX 9000, which we benchmarked ourselves. We also
changed a few of the original SPEC numbers, in particular, we ignored the lastest SPECratios for
MATRIX300 on the HP-9000/720, the IBM RS/6000 series, and the Sparcstations. Here we decided to
use older results or re-executed the benchmark without using the machines’ optimizing preprocessors.
The reason for this is that these preprocessors change the original matrix multiply algorithm, which is
based on the SAXPY routine, and replace it by a blocking algorithm. These blocking algorithms exhibit
significantly lower miss ratios than the ones computed by Gee et al. [Gee91], and would thus make our
analysis meaningless.

hhhhhhhhhhhhhhhh
2 The rms error is a non linear function which assigns more weight to the largest values.



18

SPECratios: With and Without Locality Effectsiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
machine DODUC FPPPP TOMCATV MATRIX300 NASA7 SPICE2G6 SPECfpiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

DECstation 3100 orig. 11.31 12.51 9.88 9.84 13.18 9.49 10.95
modi. 11.62 14.49 12.42 12.48 17.26 11.30 13.11iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
diff. 2.68 % 13.71 % 20.43 % 21.13 % 23.68 % 15.97 % 16.54 %iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

DECstation 5400 orig. 12.80 13.37 9.88 10.43 12.81 9.10 11.27
modi. 13.43 17.32 14.47 14.81 19.31 11.90 15.02iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
diff. 4.71 % 22.79 % 31.74 % 29.62 % 33.68 % 23.55 % 24.91 %iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

DECstation 5500 orig. 21.15 25.72 19.59 19.61 26.05 16.41 21.14
modi. 21.91 31.99 27.26 26.93 38.08 20.27 27.11iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
diff. 3.47 % 19.58 % 28.11 % 27.17 % 31.60 % 19.07 % 22.01 %iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

MIPS M/2000 orig. 17.58 20.39 17.66 13.31 18.37 12.07 16.29
modi. 18.00 22.98 20.12 16.33 22.94 13.59 18.67iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
diff. 2.36 % 11.26 % 12.23 % 18.48 % 19.95 % 11.18 % 12.76 %iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

VAX 9000 orig. 46.81 69.52 40.32 43.64 46.00 46.00 47.92
modi. 46.92 69.62 44.63 50.54 60.17 56.56 54.10iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
diff. 0.23 % 0.14 % 9.67 % 13.66 % 23.55 % 18.67 % 11.42 %iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

IBM RS/6000 530 orig. 27.68 54.74 75.69 21.80 35.48 27.59 36.71
modi. 27.69 54.77 81.36 35.60 49.76 30.09 43.29iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
diff. 0.05 % 0.05 % 6.97 % 38.77 % 28.70 % 8.31 % 15.20 %iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

HP 9000/720 orig. 47.17 78.10 51.34 25.81 51.88 75.22 51.68
modi. 47.18 102.71 65.90 35.28 74.82 92.42 65.35iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
diff. 0.03 % 23.96 % 22.09 % 26.84 % 30.66 % 18.61 % 20.92 %iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Sparcstation 1 orig. 5.05 7.82 5.96 11.04 10.21 8.22 7.76
modi. 5.07 8.33 6.53 12.40 11.38 8.91 8.38iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
diff. 0.44 % 6.16 % 8.82 % 11.00 % 10.29 % 7.74 % 7.47 %iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Sparcstation 1+ orig. 8.07 11.42 9.17 16.35 15.60 10.27 11.42
modi. 8.15 12.21 10.16 18.66 17.86 11.26 12.49iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
diff. 0.99 % 6.49 % 9.81 % 12.35 % 12.67 % 8.75 % 8.59 %iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

average 2.13 % 14.88 % 21.41 % 28.43 % 30.68 % 18.84 % 19.97 %iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Table 7: The effect of memory delay on the overall machine performance. The results labeled orig. include the
memory delay due to cache and TLB misses, from the measured run time, while those labeled modi. are
determined by subtracting the computed respective memory delay penalty. The SPECfp is obtained by tak-
ing the geometric mean of the individual SPECratios.

Table 7 presents for each machine and program combination the original SPECratios (orig.), the
modified SPECratios assuming a memory delay of zero cycles (modi.), and their respective difference.
The modified figure is computed by subtracting our computed delay for cache and TLB misses from the
measured run time. The rightmost column shows the SPECfp ratio (the geometric average of the six
SPECratios) computed for original and modified results. As expected, the impact of the cache and TLB
misses varies significantly from program to program. For example, DODUC exhibits the smallest effect
with the maximum performance degradation of less than 5% (DEC 5400), and an average of only 2.13%.
Conversely, the largest average impact is observed for the MATRIX300 and NASA7 benchmarks with
28.43% and 30.68% respectively.

Considering the machines, we find that the largest change in performance is for the DEC 5400 and
5500, for which performance improves by 24.91% and 22.01% respectively when delays for cache and
TLB misses are eliminated. The lowest impact is observed for the Sparcstation 1 which obtains an
improvement of only 7.47%. It is important to note that the performance differences that we are reporting
are functions of three factors: a) the miss ratios of the benchmarks, b) the delays in loading the cache and
TLB when misses occur, c) and the raw performance of the CPU. Since the Sparcstations are among the
slowest of the machines measured, the proportional effect of cache and TLB miss delays is less. This is
despite the fact that, as shown in table 3, the Sparcstations have relatively high miss ratios, and that the
total delay due to misses (from table 7) is also relatively high.



19

Machine Characteristicsiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Characteristics DEC 3100 DEC 5400 MIPS M/2000 DEC 5500iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
CPU R2000 R3000 R3000 R3000
FPU R2010 R3010 R3010 R3010
Frequency 16.67 MHz 20 MHz 25 MHz 30 MHz
Freq. ratio 0.834 1.000 1.250 1.500
Cache (instr) 64 KB 64 KB 64 KB 64 KB
Cache (data) 64 KB 64 KB 64 KB 64 KB
Main memory 24 MB 64 MB 64 MB 32 MB
CC compiler MIPS 1.31 MIPS 2.1 MIPS 2.1 MIPS 2.1

c
c
c
c
c
c
c
c
c
c
c
c
c

F77 compiler c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c

MIPS 2.1 c
c
c
c
c
c
c
c
c
c
c
c
c

MIPS 2.1 c
c
c
c
c
c
c
c
c
c
c
c
c

MIPS 2.1 c
c
c
c
c
c
c
c
c
c
c
c
c

MIPS 2.1 c
c
c
c
c
c
c
c
c
c
c
c
c

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

SPEC Benchmark Resultsiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
program DEC 3100 DEC 5400 MIPS M/2000 DEC 5500iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Gcc 10.9 (0.991) 11.0 (1.000) 19.0 (1.727) 20.3 (1.845)
Espresso 12.0 (0.851) 14.1 (1.000) 18.3 (1.298) 21.7 (1.539)
Spice 2g6 9.5 (1.044) 9.1 (1.000) 12.1 (1.330) 16.4 (1.802)
Doduc 11.3 (0.883) 12.8 (1.000) 17.6 (1.375) 21.1 (1.648)
Nasa7 13.2 (1.031) 12.8 (1.000) 18.4 (1.438) 26.1 (2.039)
Li 13.1 (1.073) 12.2 (1.000) 23.8 (1.951) 23.4 (1.918)
Eqntott 11.2 (0.824) 13.6 (1.000) 18.4 (1.353) 22.4 (1.647)
Matrix300 9.8 (0.942) 10.4 (1.000) 13.3 (1.279) 19.6 (1.885)
Fpppp 12.5 (0.933) 13.4 (1.000) 20.4 (1.522) 25.7 (1.918)
Tomcatv 9.9 (1.000) 9.9 (1.000) 17.7 (1.788) 19.6 (1.980)iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
SPECint 11.8 (0.929) 12.7 (1.000) 19.8 (1.555)) 21.9 (1.724)
SPECfp 10.9 (0.965) 11.3 (1.000) 16.3 (1.443) 21.1 (1.867)
SPECMark 11.3 (0.958) 11.8 (1.000) 17.6 (1.492) 21.5 (1.822)iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Table 8: The top portion of this table shows the characteristics of four machines based on either the MIPS R2000
or R3000. Below are the SPEC benchmark results, each shown as a SPECratio. The numbers inside
parentheses are normalized with respect to the DEC 5400.

6. Discussion

The data we’ve gathered, and our performance estimation technique, allow us to study the perfor-
mance of several different machines based on the same instruction set architecture, but with significantly
different memory systems. In table 8 we show the main machine characteristics of four different
machines based on MIPS processors: DEC 3100, DEC 5400, MIPS M/2000, and DEC 5500. Note that
the main difference between the machines is their clock rates. Although the DEC 3100 uses the
R2000/R2010 processor pair instead of the R3000/R3010, the performance difference between them,
other than the clock rate, is too small to have a significant effect. In the same table we give the SPECra-
tios of the machines on the SPEC programs as quoted in the SPEC Newsletter [SPEC90, SPEC91].
Alongside each SPECratio we indicate, in parentheses, the relative performance with respect to the DEC
5400.

The most interesting observation here is that the SPEC results on the DEC 5400 compared to the
other machines cannot be explained only by the relative differences in their clock rates. The SPEC
results indicate that, with respect to the DEC 5400, the DEC 3100 is 15% (0.958 vs. 0.834) faster than we
would expect it to be. Similarly, the MIPS M/2000 is around 19% faster (1.492 vs. 1.250), while the
DEC 5500 is 21% faster (1.822 vs. 1.500) than what their clock rate ratios indicate. Notwithstanding the
small statistical variation, this situation appears to be consistent across all benchmarks.

Table 8 provides only aggregate performance numbers, but doesn’t allow us to understand the rea-
sons for the performance differences; our measurement and analysis technique permits us, in this section,



20

to understand the reasons for the performance variations between machines. We have taken the 109
machine performance parameters [Saav92a,b] that we measure, and have combined them into 13 parame-
ters, each reflecting some specific component of the machine implementation. (See also [Saav92a,b] for
the use of the same 13 parameters for machine analysis.) In figure 5, we show the value of each of those
parameters, normalized to the performance of the DEC 5400, for each of the DEC 5500, DEC 3100 and
MIPS M/2000.

3

2

1

2.
78

1.
63

1.
49

1.
34 1.

48

1.
47 1.

54 1.
64

1.
50

1.
49 1.

63

1.
31

1.
52

DECstation 5500

DECstation 3100

1.
24

0.
89

0.
81

0.
76 0.
82

0.
81

0.
83 0.
88

0.
83

0.
71 0.

87

0.
79

0.
63

memory

integer

integer flt. point

flt. point

double

double
division

procedure

address intrinsic

logical branches
operations

add

multiply

operations

add

multiply

add

multiply

flt. point

calls

arithmetic functions

Relative speed of reduced operations with respect to the DECstation 5400

R
e
l
a
t
i
v
e

P
e
r
f
o
r
m
a
n
c
e

MIPS M/20002.
67

1.
37

1.
25

1.
11 1.

25

1.
24 1.
26 1.

37

1.
27 1.
30 1.

39

1.
09

1.
28

Figure 5: Normalized performance of the abstract reduced parameters. The results are normalized with respect to
those of the DEC 5400. The ratio of all dimensions, except memory operations, is close to the relative clock
rate ratios.

We see in figure 5 that the ratios of twelve of the thirteen parameters are close to the ratios of the
clock rates. Specifically, the average relative ratios of these parameters is 1.500 for the DEC 5500, 1.262
for the MIPS M/2000, and 0.803 for the DEC 3100. These numbers are close to the expected values. The
performance of memory operations, however, is significantly higher in the three machines than it is for
the DEC 5400. This performance limitation is what explains the lower performance observed of the
SPEC suite on the DEC 5500.

We can proceed even further by comparing the memory hierarchies of the machines. In table 2, we
see that the basic structure of their caches and TLBs are similar, i.e., the four machines have direct-
mapped caches of 64 KB and fully associative TLBs with 64 entries with an entry granularity of 4096
bytes. Furthermore, the ratios between the TLB miss delays (480 ns for the DEC 3100, 400 ns for the
DEC 5400, 350 ns for the MIPS M/2000, and 260 ns for the DEC 5500) are very close to the clock rate
ratios (0.8333, 1.143, and 1.538). The main configuration difference between the caches is that the line
size of the DEC 3100 is only 4 bytes, instead of 16 bytes on the DEC 5400 and DEC 5500, and 64 bytes
on the MIPS M/2000. However, this difference is not the source of the discrepancy. The reason behind
the DEC 5400’s worse than expected performance is the excessive penalty of cache misses. A cache miss
on the DEC 5400 takes approximately 1680 ns compared to 750 ns on the DEC 5500, even though both
machines have a 16-byte line size. Thus, the DEC 5400 cache miss penalty is 2.24 times higher than that
for the 5500, although their clock ratio is 1.5.



21

Comparing the miss penalties of the DEC 3100 and MIPS M/2000 with the DEC 5400 is not as
straightforward, because of the difference in line sizes. Here the line size, from the 3100 to the 5400,
increases by a factor of 4, at the same time the miss penalty increases only by a factor of 3.111. However,
the reduction in miss ratios due to a larger line size is for most programs smaller than the corresponding
line size increase. For example, an acceptable rule of thumb for caches with parameters similar to the
DECstations, and over a large sample of programs, is that doubling the line size will not decrease the
miss ratio by more than a factor of 1.5 [Smit87]. Therefore, the decrease in the miss ratio when we
increase the line size by a factor of four should be only around 2.25, which is much lower than the 3.111
increase in the miss penalty of the DEC 5400. (In section 5.1, we used a factor of two to estimate the
miss ratio for a 4-byte line relative to that for a 16-byte line.)

Now, if we look at the cache parameters of the MIPS M/2000, we see that the line size is a factor of
4 larger with respect to the DEC 5500 and a factor of 16 with respect to the DEC 3100, but the respective
increases in the the miss penalties are only 2.667 and 1.920. Even if we assume that the decrease in miss
ratio is only 1.4, as a result of doubling the line size, the corresponding decreases in miss ratios should be
3.842 and 1.960, which are larger than the corresponding line miss penalties increases. The more aggres-
sive cache design on the MIPS M/2000 is effectively reducing the miss ratio without overly increasing
the penalty as is the case with the DEC 5400. This complemented with wraparound loads (see the
corresponding entries in table 2 for rows "miss penalty (word)" and "miss penalty (line)") are the main
reasons why the performance of the MIPS M/2000 on the SPEC benchmarks is higher than for other
machines based on the R3000/R3010 chips and with comparable clock rates.

It is worth pointing out that the low performance of the DEC 5400 memory system does not (likely)
indicate poor design. Most vendors need a series of different machines, with different levels of perfor-
mance and different prices. Unfortunately, the engineering cost of such separate developments is usually
prohibitive, even were the people available to do the work. Therefore, a typical solution to this problem
is to design and build the fastest possible machine, for sale at the highest price/performance point. That
machine is then deliberately slowed down by techniques such as slower memories, slower clocks, dis-
abled functional unit bypasses, smaller and slower caches and TLBs, etc., to allow the vendor to sell
lower price/performance machines. These slower machines are usually not significantly cheaper than the
higher performance ones to manufacture, but the lower margin is more than compensated for by the sav-
ings in engineering cost, time and personnel.

7. Conclusions

In this paper we have shown that we can extend our basic abstract machine model to incorporate the
effects of program locality and the characteristics of the memory hierarchy to compute the delay due to
the misses that occur at some level of the memory hierarchy. We have been able to measure and analyze
the design and performance of the caches and TLBs for a variety of machines using only a high level
analysis program and without the need to refer to machine manuals or obtain information from the
manufacturer. Using previously published miss ratio data, we have been able to improve our predictions
of program run times by combining our memory performance measurements with those miss ratios.

An important aspect of our methodology, and something which is illustrated in this paper, is that we
can construct relatively simple machine-independent tools for making good observations about the
behavior of different units on many machines using programs written in a high-level language. These
measurements are accurate enough to make predictions and at the same time can be used to compare
machines with different instructions sets or memory structures. In §6 we showed how our cache and TLB
measurements can be used to explain, in conjunction with the machine characterizations, the performance
differences observed on machines with similar characteristics.



22

Acknowledgements

We would like to thank A. Karp from IBM for suggesting measuring the characteristics of the
memory hierarchy, as well as David E. Culler and Luis Miguel from U.C. Berkeley who let us run our
programs in their machines.

Bibliography

[Borg90] Brog, A.m Kesslet, R.E., and Wall, D.W.,
‘‘Generation and Analysis of Very Long Address
Traces’’, Proc. of the 17th Int. Symp. on Comp. Arch.,
Seattle, Washington, May 1990, pp. 270-279.

[CYPR90] Cypress Semiconductors, SPARC Refer-
ence Manual, Cypress Semiconductors, 1990.

[Furl90] Furlong, T.C., Nielsen, M.J.K., Wilhelm,
N.C., ‘‘Development of the DECstation 3100’’, Digi-
tal Technical Journal, Vol.2, No.2, Spring 1990, pp.
84-88.

[GeeJ91] Gee, J., Hill, M.D., Pnevmatikatos, D.N.,
and Smith A.J., ‘‘Cache Performance of the SPEC
Benchmark Suite’’, submitted for publication, also
University of California, Berkeley, Technical Report
No. UCB/CSD 91/648, October 1991. (To appear,
IEEE MICRO, August, 1993.)

[GeeJ92] Gee, J. and Smith, A.J., ‘‘TLB Performance
of the SPEC Benchmark Suite’’, paper in prepara-
tion, draft of January 1992.

[Good85] Goodman, J.R., Hsieh,J., Kiou, K.,
Pleszkun A.R., Scheuchter, P.B., and Young, H.C.,
‘‘PIPE: A VLSI Decoupled Architecture’’, Proc. of
the 12th Int. Symp. on Comp. Arch., Boston, Mas-
sachusetts, June 1985, pp. 20-27.

[Peut77] Peuto, B.L., and Shustek, L.J., ‘‘An Instruc-
tion Timing Model of CPU Performance’’, Fourth
International Symposium on Computer Architecture,
in Computer Architecture News, Vol.5, No.7, March
1977, pp. 165-178.

[Pnev90] Pnevmatikatos, D.N. and Hill, M.D.,
‘‘Cache Performance on the Integer SPEC Bench-
marks’’, Computer Architecture News, Vol.18, No.2,
June 1990, pp. 53-68.

[Saav89] Saavedra-Barrera, R.H., Smith, A.J., and
Miya, E. ‘‘Machine Characterization Based on an
Abstract High-Level Language Machine’’, IEEE
Trans. on Comp. Vol.38, No.12, December 1989, pp.
1659-1679.

[Saav90] Saavedra-Barrera, R.H. and Smith, A.J.,
Benchmarking and the Abstract Machine Characteri-
zation Model, UC Berkeley, Tech. Rept. No.
UCB/CSD 90/607, November 1990.

[Saav92a] Saavedra-Barrera, R.H., CPU Performance
Evaluation and Execution Time Prediction Using
Narrow Spectrum Benchmarking, Ph.D. Thesis, UC
Berkeley, Tech. Rept. No. UCB/CSD 92/684, Febru-
ary 1992.

[Saav92b] Saavedra, R.H. and Smith, A.J., ‘‘Analysis
of Benchmark Characteristics and Benchmark Perfor-
mance Prediction’’, submitted for publication, USC
Tech. Rept. No. USC-CS-92-524, October 1992.

[Saav92c] Saavedra, R.H. and Smith, A.J., ‘‘Perfor-
mance Characterization of Optimizing Compilers,
submitted for publication, USC Tech. Rept. No.
USC-CS-92-525, also UC Berkeley, Tech. Rept. No.
UCB/CSD 92/699, August 1992.

[Smit82] Smith, A.J., ‘‘Cache Memories’’, ACM
Computing Surveys, Vol.14, No.3, September 1982,
pp. 473-530.

[Smith84] Smith, J.E., ‘‘Decoupled Access/Execute
Architectures’’, ACM Trans. on Computer Systems,
Vol.2, No.4, November 1984, pp. 289-308.

[Smit87] Smith, A.J., ‘‘Line (Block) Size Choice for
CPU Caches’’, IEEE Trans. on Computers, Vol. C-
36, No.9, September 1987, pp. 1063-1075.

[SPEC90a] SPEC, ‘‘SPEC Newsletter: Benchmark
Results’’, Vol.2, Issue 2, Spring 1990.

[SPEC90b] SPEC, ‘‘SPEC Newsletter: Benchmark
Results’’, Vol.2, Issue 3, Summer 1990.

[SPEC91] SPEC, ‘‘SPEC Newsletter: Benchmark
Results’’, Vol.3, Issue 1, Winter 1991.

[Sper93] Spertus, E., Goldstein, S.C., Schauser, K.E.,
von Eicken, T., Culler, D.E., and Dally, W.J.,
‘‘Evaluation of Mechanisms for Fine-Grained Parallel
Programs in the J-Machine and the CM-5’’, Proc. of
the 20’th Int. Symp. on Comp. Arch., San Diego, Cali-
fornia, May 16-19 1993, pp. 302-313.

[Wulf88] Wolf, W.A., ‘‘The WM Computer Archi-
tecture’’, Computer Architecture News, Vol.16, No.1,
March 1988, pp. 70-84.


